< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/register.hpp"


  26 #include "ci/ciObjArray.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/idealKit.hpp"

  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"

  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subtypenode.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"

  49 #include "utilities/bitMap.inline.hpp"
  50 #include "utilities/growableArray.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 
  53 //----------------------------GraphKit-----------------------------------------
  54 // Main utility constructor.
  55 GraphKit::GraphKit(JVMState* jvms)
  56   : Phase(Phase::Parser),
  57     _env(C->env()),
  58     _gvn(*C->initial_gvn()),
  59     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  60 {

  61   _exceptions = jvms->map()->next_exception();
  62   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  63   set_jvms(jvms);







  64 }
  65 
  66 // Private constructor for parser.
  67 GraphKit::GraphKit()
  68   : Phase(Phase::Parser),
  69     _env(C->env()),
  70     _gvn(*C->initial_gvn()),
  71     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  72 {
  73   _exceptions = nullptr;
  74   set_map(nullptr);
  75   DEBUG_ONLY(_sp = -99);
  76   DEBUG_ONLY(set_bci(-99));
  77 }
  78 
  79 
  80 
  81 //---------------------------clean_stack---------------------------------------
  82 // Clear away rubbish from the stack area of the JVM state.
  83 // This destroys any arguments that may be waiting on the stack.

 328 }
 329 static inline void add_one_req(Node* dstphi, Node* src) {
 330   assert(is_hidden_merge(dstphi), "must be a special merge node");
 331   assert(!is_hidden_merge(src), "must not be a special merge node");
 332   dstphi->add_req(src);
 333 }
 334 
 335 //-----------------------combine_exception_states------------------------------
 336 // This helper function combines exception states by building phis on a
 337 // specially marked state-merging region.  These regions and phis are
 338 // untransformed, and can build up gradually.  The region is marked by
 339 // having a control input of its exception map, rather than null.  Such
 340 // regions do not appear except in this function, and in use_exception_state.
 341 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 342   if (failing_internal()) {
 343     return;  // dying anyway...
 344   }
 345   JVMState* ex_jvms = ex_map->_jvms;
 346   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 347   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 348   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");

 349   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 350   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 351   assert(ex_map->req() == phi_map->req(), "matching maps");
 352   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 353   Node*         hidden_merge_mark = root();
 354   Node*         region  = phi_map->control();
 355   MergeMemNode* phi_mem = phi_map->merged_memory();
 356   MergeMemNode* ex_mem  = ex_map->merged_memory();
 357   if (region->in(0) != hidden_merge_mark) {
 358     // The control input is not (yet) a specially-marked region in phi_map.
 359     // Make it so, and build some phis.
 360     region = new RegionNode(2);
 361     _gvn.set_type(region, Type::CONTROL);
 362     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 363     region->init_req(1, phi_map->control());
 364     phi_map->set_control(region);
 365     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 366     record_for_igvn(io_phi);
 367     _gvn.set_type(io_phi, Type::ABIO);
 368     phi_map->set_i_o(io_phi);

 856         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 857           tty->print_cr("Zombie local %d: ", local);
 858           jvms->dump();
 859         }
 860         return false;
 861       }
 862     }
 863   }
 864   return true;
 865 }
 866 
 867 #endif //ASSERT
 868 
 869 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 870 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 871   ciMethod* cur_method = jvms->method();
 872   int       cur_bci   = jvms->bci();
 873   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 874     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 875     return Interpreter::bytecode_should_reexecute(code) ||
 876            (is_anewarray && code == Bytecodes::_multianewarray);
 877     // Reexecute _multianewarray bytecode which was replaced with
 878     // sequence of [a]newarray. See Parse::do_multianewarray().
 879     //
 880     // Note: interpreter should not have it set since this optimization
 881     // is limited by dimensions and guarded by flag so in some cases
 882     // multianewarray() runtime calls will be generated and
 883     // the bytecode should not be reexecutes (stack will not be reset).
 884   } else {
 885     return false;
 886   }
 887 }
 888 
 889 // Helper function for adding JVMState and debug information to node
 890 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 891   // Add the safepoint edges to the call (or other safepoint).
 892 
 893   // Make sure dead locals are set to top.  This
 894   // should help register allocation time and cut down on the size
 895   // of the deoptimization information.
 896   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 947   }
 948 
 949   // Presize the call:
 950   DEBUG_ONLY(uint non_debug_edges = call->req());
 951   call->add_req_batch(top(), youngest_jvms->debug_depth());
 952   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 953 
 954   // Set up edges so that the call looks like this:
 955   //  Call [state:] ctl io mem fptr retadr
 956   //       [parms:] parm0 ... parmN
 957   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 958   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 959   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 960   // Note that caller debug info precedes callee debug info.
 961 
 962   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 963   uint debug_ptr = call->req();
 964 
 965   // Loop over the map input edges associated with jvms, add them
 966   // to the call node, & reset all offsets to match call node array.


 967   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 968     uint debug_end   = debug_ptr;
 969     uint debug_start = debug_ptr - in_jvms->debug_size();
 970     debug_ptr = debug_start;  // back up the ptr
 971 
 972     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 973     uint j, k, l;
 974     SafePointNode* in_map = in_jvms->map();
 975     out_jvms->set_map(call);
 976 
 977     if (can_prune_locals) {
 978       assert(in_jvms->method() == out_jvms->method(), "sanity");
 979       // If the current throw can reach an exception handler in this JVMS,
 980       // then we must keep everything live that can reach that handler.
 981       // As a quick and dirty approximation, we look for any handlers at all.
 982       if (in_jvms->method()->has_exception_handlers()) {
 983         can_prune_locals = false;
 984       }
 985     }
 986 
 987     // Add the Locals
 988     k = in_jvms->locoff();
 989     l = in_jvms->loc_size();
 990     out_jvms->set_locoff(p);
 991     if (!can_prune_locals) {
 992       for (j = 0; j < l; j++)
 993         call->set_req(p++, in_map->in(k+j));

 994     } else {
 995       p += l;  // already set to top above by add_req_batch
 996     }
 997 
 998     // Add the Expression Stack
 999     k = in_jvms->stkoff();
1000     l = in_jvms->sp();
1001     out_jvms->set_stkoff(p);
1002     if (!can_prune_locals) {
1003       for (j = 0; j < l; j++)
1004         call->set_req(p++, in_map->in(k+j));

1005     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1006       // Divide stack into {S0,...,S1}, where S0 is set to top.
1007       uint s1 = stack_slots_not_pruned;
1008       stack_slots_not_pruned = 0;  // for next iteration
1009       if (s1 > l)  s1 = l;
1010       uint s0 = l - s1;
1011       p += s0;  // skip the tops preinstalled by add_req_batch
1012       for (j = s0; j < l; j++)
1013         call->set_req(p++, in_map->in(k+j));
1014     } else {
1015       p += l;  // already set to top above by add_req_batch
1016     }
1017 
1018     // Add the Monitors
1019     k = in_jvms->monoff();
1020     l = in_jvms->mon_size();
1021     out_jvms->set_monoff(p);
1022     for (j = 0; j < l; j++)
1023       call->set_req(p++, in_map->in(k+j));
1024 
1025     // Copy any scalar object fields.
1026     k = in_jvms->scloff();
1027     l = in_jvms->scl_size();
1028     out_jvms->set_scloff(p);
1029     for (j = 0; j < l; j++)
1030       call->set_req(p++, in_map->in(k+j));
1031 
1032     // Finish the new jvms.
1033     out_jvms->set_endoff(p);
1034 
1035     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1036     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1037     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1038     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1039     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1040     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1041 
1042     // Update the two tail pointers in parallel.

1043     out_jvms = out_jvms->caller();
1044     in_jvms  = in_jvms->caller();
1045   }
1046 
1047   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1048 
1049   // Test the correctness of JVMState::debug_xxx accessors:
1050   assert(call->jvms()->debug_start() == non_debug_edges, "");
1051   assert(call->jvms()->debug_end()   == call->req(), "");
1052   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1053 }
1054 
1055 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1056   Bytecodes::Code code = java_bc();
1057   if (code == Bytecodes::_wide) {
1058     code = method()->java_code_at_bci(bci() + 1);
1059   }
1060 
1061   if (code != Bytecodes::_illegal) {
1062     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1198   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1199   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1200   return _gvn.transform( new AndLNode(conv, mask) );
1201 }
1202 
1203 Node* GraphKit::ConvL2I(Node* offset) {
1204   // short-circuit a common case
1205   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1206   if (offset_con != (jlong)Type::OffsetBot) {
1207     return intcon((int) offset_con);
1208   }
1209   return _gvn.transform( new ConvL2INode(offset));
1210 }
1211 
1212 //-------------------------load_object_klass-----------------------------------
1213 Node* GraphKit::load_object_klass(Node* obj) {
1214   // Special-case a fresh allocation to avoid building nodes:
1215   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1216   if (akls != nullptr)  return akls;
1217   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1218   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1219 }
1220 
1221 //-------------------------load_array_length-----------------------------------
1222 Node* GraphKit::load_array_length(Node* array) {
1223   // Special-case a fresh allocation to avoid building nodes:
1224   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1225   Node *alen;
1226   if (alloc == nullptr) {
1227     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1228     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1229   } else {
1230     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1231   }
1232   return alen;
1233 }
1234 
1235 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1236                                    const TypeOopPtr* oop_type,
1237                                    bool replace_length_in_map) {
1238   Node* length = alloc->Ideal_length();

1247         replace_in_map(length, ccast);
1248       }
1249       return ccast;
1250     }
1251   }
1252   return length;
1253 }
1254 
1255 //------------------------------do_null_check----------------------------------
1256 // Helper function to do a null pointer check.  Returned value is
1257 // the incoming address with null casted away.  You are allowed to use the
1258 // not-null value only if you are control dependent on the test.
1259 #ifndef PRODUCT
1260 extern uint explicit_null_checks_inserted,
1261             explicit_null_checks_elided;
1262 #endif
1263 Node* GraphKit::null_check_common(Node* value, BasicType type,
1264                                   // optional arguments for variations:
1265                                   bool assert_null,
1266                                   Node* *null_control,
1267                                   bool speculative) {

1268   assert(!assert_null || null_control == nullptr, "not both at once");
1269   if (stopped())  return top();
1270   NOT_PRODUCT(explicit_null_checks_inserted++);
1271 























1272   // Construct null check
1273   Node *chk = nullptr;
1274   switch(type) {
1275     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1276     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1277     case T_ARRAY  : // fall through
1278       type = T_OBJECT;  // simplify further tests
1279     case T_OBJECT : {
1280       const Type *t = _gvn.type( value );
1281 
1282       const TypeOopPtr* tp = t->isa_oopptr();
1283       if (tp != nullptr && !tp->is_loaded()
1284           // Only for do_null_check, not any of its siblings:
1285           && !assert_null && null_control == nullptr) {
1286         // Usually, any field access or invocation on an unloaded oop type
1287         // will simply fail to link, since the statically linked class is
1288         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1289         // the static class is loaded but the sharper oop type is not.
1290         // Rather than checking for this obscure case in lots of places,
1291         // we simply observe that a null check on an unloaded class

1355         }
1356         Node *oldcontrol = control();
1357         set_control(cfg);
1358         Node *res = cast_not_null(value);
1359         set_control(oldcontrol);
1360         NOT_PRODUCT(explicit_null_checks_elided++);
1361         return res;
1362       }
1363       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1364       if (cfg == nullptr)  break;  // Quit at region nodes
1365       depth++;
1366     }
1367   }
1368 
1369   //-----------
1370   // Branch to failure if null
1371   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1372   Deoptimization::DeoptReason reason;
1373   if (assert_null) {
1374     reason = Deoptimization::reason_null_assert(speculative);
1375   } else if (type == T_OBJECT) {
1376     reason = Deoptimization::reason_null_check(speculative);
1377   } else {
1378     reason = Deoptimization::Reason_div0_check;
1379   }
1380   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1381   // ciMethodData::has_trap_at will return a conservative -1 if any
1382   // must-be-null assertion has failed.  This could cause performance
1383   // problems for a method after its first do_null_assert failure.
1384   // Consider using 'Reason_class_check' instead?
1385 
1386   // To cause an implicit null check, we set the not-null probability
1387   // to the maximum (PROB_MAX).  For an explicit check the probability
1388   // is set to a smaller value.
1389   if (null_control != nullptr || too_many_traps(reason)) {
1390     // probability is less likely
1391     ok_prob =  PROB_LIKELY_MAG(3);
1392   } else if (!assert_null &&
1393              (ImplicitNullCheckThreshold > 0) &&
1394              method() != nullptr &&
1395              (method()->method_data()->trap_count(reason)

1429   }
1430 
1431   if (assert_null) {
1432     // Cast obj to null on this path.
1433     replace_in_map(value, zerocon(type));
1434     return zerocon(type);
1435   }
1436 
1437   // Cast obj to not-null on this path, if there is no null_control.
1438   // (If there is a null_control, a non-null value may come back to haunt us.)
1439   if (type == T_OBJECT) {
1440     Node* cast = cast_not_null(value, false);
1441     if (null_control == nullptr || (*null_control) == top())
1442       replace_in_map(value, cast);
1443     value = cast;
1444   }
1445 
1446   return value;
1447 }
1448 
1449 
1450 //------------------------------cast_not_null----------------------------------
1451 // Cast obj to not-null on this path
1452 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {









1453   const Type *t = _gvn.type(obj);
1454   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1455   // Object is already not-null?
1456   if( t == t_not_null ) return obj;
1457 
1458   Node* cast = new CastPPNode(control(), obj,t_not_null);
1459   cast = _gvn.transform( cast );
1460 
1461   // Scan for instances of 'obj' in the current JVM mapping.
1462   // These instances are known to be not-null after the test.
1463   if (do_replace_in_map)
1464     replace_in_map(obj, cast);
1465 
1466   return cast;                  // Return casted value
1467 }
1468 











1469 // Sometimes in intrinsics, we implicitly know an object is not null
1470 // (there's no actual null check) so we can cast it to not null. In
1471 // the course of optimizations, the input to the cast can become null.
1472 // In that case that data path will die and we need the control path
1473 // to become dead as well to keep the graph consistent. So we have to
1474 // add a check for null for which one branch can't be taken. It uses
1475 // an OpaqueNotNull node that will cause the check to be removed after loop
1476 // opts so the test goes away and the compiled code doesn't execute a
1477 // useless check.
1478 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1479   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1480     return value;
1481   }
1482   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1483   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1484   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1485   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1486   _gvn.set_type(iff, iff->Value(&_gvn));
1487   if (!tst->is_Con()) {
1488     record_for_igvn(iff);

1561 // These are layered on top of the factory methods in LoadNode and StoreNode,
1562 // and integrate with the parser's memory state and _gvn engine.
1563 //
1564 
1565 // factory methods in "int adr_idx"
1566 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1567                           MemNode::MemOrd mo,
1568                           LoadNode::ControlDependency control_dependency,
1569                           bool require_atomic_access,
1570                           bool unaligned,
1571                           bool mismatched,
1572                           bool unsafe,
1573                           uint8_t barrier_data) {
1574   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1575   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1576   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1577   DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx));
1578   Node* mem = memory(adr_idx);
1579   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1580   ld = _gvn.transform(ld);

1581   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1582     // Improve graph before escape analysis and boxing elimination.
1583     record_for_igvn(ld);
1584     if (ld->is_DecodeN()) {
1585       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1586       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1587       // a Phi). Recording such cases is still perfectly sound, but may be
1588       // unnecessary and result in some minor IGVN overhead.
1589       record_for_igvn(ld->in(1));
1590     }
1591   }
1592   return ld;
1593 }
1594 
1595 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1596                                 MemNode::MemOrd mo,
1597                                 bool require_atomic_access,
1598                                 bool unaligned,
1599                                 bool mismatched,
1600                                 bool unsafe,

1614   if (unsafe) {
1615     st->as_Store()->set_unsafe_access();
1616   }
1617   st->as_Store()->set_barrier_data(barrier_data);
1618   st = _gvn.transform(st);
1619   set_memory(st, adr_idx);
1620   // Back-to-back stores can only remove intermediate store with DU info
1621   // so push on worklist for optimizer.
1622   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1623     record_for_igvn(st);
1624 
1625   return st;
1626 }
1627 
1628 Node* GraphKit::access_store_at(Node* obj,
1629                                 Node* adr,
1630                                 const TypePtr* adr_type,
1631                                 Node* val,
1632                                 const Type* val_type,
1633                                 BasicType bt,
1634                                 DecoratorSet decorators) {


1635   // Transformation of a value which could be null pointer (CastPP #null)
1636   // could be delayed during Parse (for example, in adjust_map_after_if()).
1637   // Execute transformation here to avoid barrier generation in such case.
1638   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1639     val = _gvn.makecon(TypePtr::NULL_PTR);
1640   }
1641 
1642   if (stopped()) {
1643     return top(); // Dead path ?
1644   }
1645 
1646   assert(val != nullptr, "not dead path");







1647 
1648   C2AccessValuePtr addr(adr, adr_type);
1649   C2AccessValue value(val, val_type);
1650   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1651   if (access.is_raw()) {
1652     return _barrier_set->BarrierSetC2::store_at(access, value);
1653   } else {
1654     return _barrier_set->store_at(access, value);
1655   }
1656 }
1657 
1658 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1659                                Node* adr,   // actual address to store val at
1660                                const TypePtr* adr_type,
1661                                const Type* val_type,
1662                                BasicType bt,
1663                                DecoratorSet decorators) {

1664   if (stopped()) {
1665     return top(); // Dead path ?
1666   }
1667 
1668   C2AccessValuePtr addr(adr, adr_type);
1669   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1670   if (access.is_raw()) {
1671     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1672   } else {
1673     return _barrier_set->load_at(access, val_type);
1674   }
1675 }
1676 
1677 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1678                             const Type* val_type,
1679                             BasicType bt,
1680                             DecoratorSet decorators) {
1681   if (stopped()) {
1682     return top(); // Dead path ?
1683   }
1684 
1685   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1686   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1687   if (access.is_raw()) {
1688     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1689   } else {

1754                                      Node* new_val,
1755                                      const Type* value_type,
1756                                      BasicType bt,
1757                                      DecoratorSet decorators) {
1758   C2AccessValuePtr addr(adr, adr_type);
1759   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1760   if (access.is_raw()) {
1761     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1762   } else {
1763     return _barrier_set->atomic_add_at(access, new_val, value_type);
1764   }
1765 }
1766 
1767 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1768   return _barrier_set->clone(this, src, dst, size, is_array);
1769 }
1770 
1771 //-------------------------array_element_address-------------------------
1772 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1773                                       const TypeInt* sizetype, Node* ctrl) {
1774   uint shift  = exact_log2(type2aelembytes(elembt));
1775   uint header = arrayOopDesc::base_offset_in_bytes(elembt);













1776 
1777   // short-circuit a common case (saves lots of confusing waste motion)
1778   jint idx_con = find_int_con(idx, -1);
1779   if (idx_con >= 0) {
1780     intptr_t offset = header + ((intptr_t)idx_con << shift);
1781     return basic_plus_adr(ary, offset);
1782   }
1783 
1784   // must be correct type for alignment purposes
1785   Node* base  = basic_plus_adr(ary, header);
1786   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1787   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1788   return basic_plus_adr(ary, base, scale);
1789 }
1790 




























1791 //-------------------------load_array_element-------------------------
1792 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1793   const Type* elemtype = arytype->elem();
1794   BasicType elembt = elemtype->array_element_basic_type();
1795   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1796   if (elembt == T_NARROWOOP) {
1797     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1798   }
1799   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1800                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1801   return ld;
1802 }
1803 
1804 //-------------------------set_arguments_for_java_call-------------------------
1805 // Arguments (pre-popped from the stack) are taken from the JVMS.
1806 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1807   // Add the call arguments:
1808   uint nargs = call->method()->arg_size();
1809   for (uint i = 0; i < nargs; i++) {
1810     Node* arg = argument(i);
1811     call->init_req(i + TypeFunc::Parms, arg);




































1812   }
1813 }
1814 
1815 //---------------------------set_edges_for_java_call---------------------------
1816 // Connect a newly created call into the current JVMS.
1817 // A return value node (if any) is returned from set_edges_for_java_call.
1818 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1819 
1820   // Add the predefined inputs:
1821   call->init_req( TypeFunc::Control, control() );
1822   call->init_req( TypeFunc::I_O    , i_o() );
1823   call->init_req( TypeFunc::Memory , reset_memory() );
1824   call->init_req( TypeFunc::FramePtr, frameptr() );
1825   call->init_req( TypeFunc::ReturnAdr, top() );
1826 
1827   add_safepoint_edges(call, must_throw);
1828 
1829   Node* xcall = _gvn.transform(call);
1830 
1831   if (xcall == top()) {
1832     set_control(top());
1833     return;
1834   }
1835   assert(xcall == call, "call identity is stable");
1836 
1837   // Re-use the current map to produce the result.
1838 
1839   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1840   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1841   set_all_memory_call(xcall, separate_io_proj);
1842 
1843   //return xcall;   // no need, caller already has it
1844 }
1845 
1846 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1847   if (stopped())  return top();  // maybe the call folded up?
1848 
1849   // Capture the return value, if any.
1850   Node* ret;
1851   if (call->method() == nullptr ||
1852       call->method()->return_type()->basic_type() == T_VOID)
1853         ret = top();
1854   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1855 
1856   // Note:  Since any out-of-line call can produce an exception,
1857   // we always insert an I_O projection from the call into the result.
1858 
1859   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1860 
1861   if (separate_io_proj) {
1862     // The caller requested separate projections be used by the fall
1863     // through and exceptional paths, so replace the projections for
1864     // the fall through path.
1865     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1866     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1867   }








































































1868   return ret;
1869 }
1870 
1871 //--------------------set_predefined_input_for_runtime_call--------------------
1872 // Reading and setting the memory state is way conservative here.
1873 // The real problem is that I am not doing real Type analysis on memory,
1874 // so I cannot distinguish card mark stores from other stores.  Across a GC
1875 // point the Store Barrier and the card mark memory has to agree.  I cannot
1876 // have a card mark store and its barrier split across the GC point from
1877 // either above or below.  Here I get that to happen by reading ALL of memory.
1878 // A better answer would be to separate out card marks from other memory.
1879 // For now, return the input memory state, so that it can be reused
1880 // after the call, if this call has restricted memory effects.
1881 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1882   // Set fixed predefined input arguments
1883   call->init_req(TypeFunc::Control, control());
1884   call->init_req(TypeFunc::I_O, top()); // does no i/o
1885   call->init_req(TypeFunc::ReturnAdr, top());
1886   if (call->is_CallLeafPure()) {
1887     call->init_req(TypeFunc::Memory, top());

1949     if (use->is_MergeMem()) {
1950       wl.push(use);
1951     }
1952   }
1953 }
1954 
1955 // Replace the call with the current state of the kit.
1956 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
1957   JVMState* ejvms = nullptr;
1958   if (has_exceptions()) {
1959     ejvms = transfer_exceptions_into_jvms();
1960   }
1961 
1962   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1963   ReplacedNodes replaced_nodes_exception;
1964   Node* ex_ctl = top();
1965 
1966   SafePointNode* final_state = stop();
1967 
1968   // Find all the needed outputs of this call
1969   CallProjections callprojs;
1970   call->extract_projections(&callprojs, true, do_asserts);
1971 
1972   Unique_Node_List wl;
1973   Node* init_mem = call->in(TypeFunc::Memory);
1974   Node* final_mem = final_state->in(TypeFunc::Memory);
1975   Node* final_ctl = final_state->in(TypeFunc::Control);
1976   Node* final_io = final_state->in(TypeFunc::I_O);
1977 
1978   // Replace all the old call edges with the edges from the inlining result
1979   if (callprojs.fallthrough_catchproj != nullptr) {
1980     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1981   }
1982   if (callprojs.fallthrough_memproj != nullptr) {
1983     if (final_mem->is_MergeMem()) {
1984       // Parser's exits MergeMem was not transformed but may be optimized
1985       final_mem = _gvn.transform(final_mem);
1986     }
1987     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1988     add_mergemem_users_to_worklist(wl, final_mem);
1989   }
1990   if (callprojs.fallthrough_ioproj != nullptr) {
1991     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1992   }
1993 
1994   // Replace the result with the new result if it exists and is used
1995   if (callprojs.resproj != nullptr && result != nullptr) {
1996     C->gvn_replace_by(callprojs.resproj, result);




1997   }
1998 
1999   if (ejvms == nullptr) {
2000     // No exception edges to simply kill off those paths
2001     if (callprojs.catchall_catchproj != nullptr) {
2002       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
2003     }
2004     if (callprojs.catchall_memproj != nullptr) {
2005       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
2006     }
2007     if (callprojs.catchall_ioproj != nullptr) {
2008       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
2009     }
2010     // Replace the old exception object with top
2011     if (callprojs.exobj != nullptr) {
2012       C->gvn_replace_by(callprojs.exobj, C->top());
2013     }
2014   } else {
2015     GraphKit ekit(ejvms);
2016 
2017     // Load my combined exception state into the kit, with all phis transformed:
2018     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2019     replaced_nodes_exception = ex_map->replaced_nodes();
2020 
2021     Node* ex_oop = ekit.use_exception_state(ex_map);
2022 
2023     if (callprojs.catchall_catchproj != nullptr) {
2024       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
2025       ex_ctl = ekit.control();
2026     }
2027     if (callprojs.catchall_memproj != nullptr) {
2028       Node* ex_mem = ekit.reset_memory();
2029       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
2030       add_mergemem_users_to_worklist(wl, ex_mem);
2031     }
2032     if (callprojs.catchall_ioproj != nullptr) {
2033       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
2034     }
2035 
2036     // Replace the old exception object with the newly created one
2037     if (callprojs.exobj != nullptr) {
2038       C->gvn_replace_by(callprojs.exobj, ex_oop);
2039     }
2040   }
2041 
2042   // Disconnect the call from the graph
2043   call->disconnect_inputs(C);
2044   C->gvn_replace_by(call, C->top());
2045 
2046   // Clean up any MergeMems that feed other MergeMems since the
2047   // optimizer doesn't like that.
2048   while (wl.size() > 0) {
2049     _gvn.transform(wl.pop());
2050   }
2051 
2052   if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2053     replaced_nodes.apply(C, final_ctl);
2054   }
2055   if (!ex_ctl->is_top() && do_replaced_nodes) {
2056     replaced_nodes_exception.apply(C, ex_ctl);
2057   }
2058 }
2059 
2060 
2061 //------------------------------increment_counter------------------------------
2062 // for statistics: increment a VM counter by 1
2063 
2064 void GraphKit::increment_counter(address counter_addr) {
2065   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2066   increment_counter(adr1);
2067 }
2068 
2069 void GraphKit::increment_counter(Node* counter_addr) {
2070   Node* ctrl = control();
2071   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2072   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2232  *
2233  * @param n          node that the type applies to
2234  * @param exact_kls  type from profiling
2235  * @param maybe_null did profiling see null?
2236  *
2237  * @return           node with improved type
2238  */
2239 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2240   const Type* current_type = _gvn.type(n);
2241   assert(UseTypeSpeculation, "type speculation must be on");
2242 
2243   const TypePtr* speculative = current_type->speculative();
2244 
2245   // Should the klass from the profile be recorded in the speculative type?
2246   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2247     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2248     const TypeOopPtr* xtype = tklass->as_instance_type();
2249     assert(xtype->klass_is_exact(), "Should be exact");
2250     // Any reason to believe n is not null (from this profiling or a previous one)?
2251     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2252     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2253     // record the new speculative type's depth
2254     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2255     speculative = speculative->with_inline_depth(jvms()->depth());
2256   } else if (current_type->would_improve_ptr(ptr_kind)) {
2257     // Profiling report that null was never seen so we can change the
2258     // speculative type to non null ptr.
2259     if (ptr_kind == ProfileAlwaysNull) {
2260       speculative = TypePtr::NULL_PTR;
2261     } else {
2262       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2263       const TypePtr* ptr = TypePtr::NOTNULL;
2264       if (speculative != nullptr) {
2265         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2266       } else {
2267         speculative = ptr;
2268       }
2269     }
2270   }
2271 
2272   if (speculative != current_type->speculative()) {
2273     // Build a type with a speculative type (what we think we know
2274     // about the type but will need a guard when we use it)
2275     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2276     // We're changing the type, we need a new CheckCast node to carry
2277     // the new type. The new type depends on the control: what
2278     // profiling tells us is only valid from here as far as we can
2279     // tell.
2280     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2281     cast = _gvn.transform(cast);
2282     replace_in_map(n, cast);
2283     n = cast;
2284   }
2285 
2286   return n;
2287 }
2288 
2289 /**
2290  * Record profiling data from receiver profiling at an invoke with the
2291  * type system so that it can propagate it (speculation)
2292  *
2293  * @param n  receiver node
2294  *
2295  * @return   node with improved type
2296  */
2297 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2298   if (!UseTypeSpeculation) {
2299     return n;
2300   }
2301   ciKlass* exact_kls = profile_has_unique_klass();
2302   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2303   if ((java_bc() == Bytecodes::_checkcast ||
2304        java_bc() == Bytecodes::_instanceof ||
2305        java_bc() == Bytecodes::_aastore) &&
2306       method()->method_data()->is_mature()) {
2307     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2308     if (data != nullptr) {
2309       if (!data->as_BitData()->null_seen()) {
2310         ptr_kind = ProfileNeverNull;







2311       } else {
2312         if (TypeProfileCasts) {
2313           assert(data->is_ReceiverTypeData(), "bad profile data type");
2314           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2315           uint i = 0;
2316           for (; i < call->row_limit(); i++) {
2317             ciKlass* receiver = call->receiver(i);
2318             if (receiver != nullptr) {
2319               break;




2320             }

2321           }
2322           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2323         }
2324       }
2325     }
2326   }
2327   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2328 }
2329 
2330 /**
2331  * Record profiling data from argument profiling at an invoke with the
2332  * type system so that it can propagate it (speculation)
2333  *
2334  * @param dest_method  target method for the call
2335  * @param bc           what invoke bytecode is this?
2336  */
2337 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2338   if (!UseTypeSpeculation) {
2339     return;
2340   }
2341   const TypeFunc* tf    = TypeFunc::make(dest_method);
2342   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2343   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2344   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2345     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2346     if (is_reference_type(targ->basic_type())) {
2347       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2348       ciKlass* better_type = nullptr;
2349       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2350         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2351       }
2352       i++;
2353     }
2354   }
2355 }
2356 
2357 /**
2358  * Record profiling data from parameter profiling at an invoke with
2359  * the type system so that it can propagate it (speculation)
2360  */
2361 void GraphKit::record_profiled_parameters_for_speculation() {
2362   if (!UseTypeSpeculation) {
2363     return;
2364   }
2365   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2485                                   // The first null ends the list.
2486                                   Node* parm0, Node* parm1,
2487                                   Node* parm2, Node* parm3,
2488                                   Node* parm4, Node* parm5,
2489                                   Node* parm6, Node* parm7) {
2490   assert(call_addr != nullptr, "must not call null targets");
2491 
2492   // Slow-path call
2493   bool is_leaf = !(flags & RC_NO_LEAF);
2494   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2495   if (call_name == nullptr) {
2496     assert(!is_leaf, "must supply name for leaf");
2497     call_name = OptoRuntime::stub_name(call_addr);
2498   }
2499   CallNode* call;
2500   if (!is_leaf) {
2501     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2502   } else if (flags & RC_NO_FP) {
2503     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2504   } else  if (flags & RC_VECTOR){
2505     uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2506     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2507   } else if (flags & RC_PURE) {
2508     call = new CallLeafPureNode(call_type, call_addr, call_name, adr_type);
2509   } else {
2510     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2511   }
2512 
2513   // The following is similar to set_edges_for_java_call,
2514   // except that the memory effects of the call are restricted to AliasIdxRaw.
2515 
2516   // Slow path call has no side-effects, uses few values
2517   bool wide_in  = !(flags & RC_NARROW_MEM);
2518   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2519 
2520   Node* prev_mem = nullptr;
2521   if (wide_in) {
2522     prev_mem = set_predefined_input_for_runtime_call(call);
2523   } else {
2524     assert(!wide_out, "narrow in => narrow out");
2525     Node* narrow_mem = memory(adr_type);
2526     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2527   }
2528 
2529   // Hook each parm in order.  Stop looking at the first null.
2530   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2531   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2532   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2533   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2534   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2535   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2536   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2537   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2538   /* close each nested if ===> */  } } } } } } } }
2539   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2540 
2541   if (!is_leaf) {
2542     // Non-leaves can block and take safepoints:
2543     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2544   }
2545   // Non-leaves can throw exceptions:
2546   if (has_io) {
2547     call->set_req(TypeFunc::I_O, i_o());
2548   }
2549 
2550   if (flags & RC_UNCOMMON) {
2551     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2552     // (An "if" probability corresponds roughly to an unconditional count.
2553     // Sort of.)
2554     call->set_cnt(PROB_UNLIKELY_MAG(4));
2555   }
2556 
2557   Node* c = _gvn.transform(call);
2558   assert(c == call, "cannot disappear");
2559 

2567 
2568   if (has_io) {
2569     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2570   }
2571   return call;
2572 
2573 }
2574 
2575 // i2b
2576 Node* GraphKit::sign_extend_byte(Node* in) {
2577   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2578   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2579 }
2580 
2581 // i2s
2582 Node* GraphKit::sign_extend_short(Node* in) {
2583   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2584   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2585 }
2586 

2587 //------------------------------merge_memory-----------------------------------
2588 // Merge memory from one path into the current memory state.
2589 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2590   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2591     Node* old_slice = mms.force_memory();
2592     Node* new_slice = mms.memory2();
2593     if (old_slice != new_slice) {
2594       PhiNode* phi;
2595       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2596         if (mms.is_empty()) {
2597           // clone base memory Phi's inputs for this memory slice
2598           assert(old_slice == mms.base_memory(), "sanity");
2599           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2600           _gvn.set_type(phi, Type::MEMORY);
2601           for (uint i = 1; i < phi->req(); i++) {
2602             phi->init_req(i, old_slice->in(i));
2603           }
2604         } else {
2605           phi = old_slice->as_Phi(); // Phi was generated already
2606         }

2663   gvn.transform(iff);
2664   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2665   return iff;
2666 }
2667 
2668 //-------------------------------gen_subtype_check-----------------------------
2669 // Generate a subtyping check.  Takes as input the subtype and supertype.
2670 // Returns 2 values: sets the default control() to the true path and returns
2671 // the false path.  Only reads invariant memory; sets no (visible) memory.
2672 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2673 // but that's not exposed to the optimizer.  This call also doesn't take in an
2674 // Object; if you wish to check an Object you need to load the Object's class
2675 // prior to coming here.
2676 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2677                                ciMethod* method, int bci) {
2678   Compile* C = gvn.C;
2679   if ((*ctrl)->is_top()) {
2680     return C->top();
2681   }
2682 









2683   // Fast check for identical types, perhaps identical constants.
2684   // The types can even be identical non-constants, in cases
2685   // involving Array.newInstance, Object.clone, etc.
2686   if (subklass == superklass)
2687     return C->top();             // false path is dead; no test needed.
2688 
2689   if (gvn.type(superklass)->singleton()) {
2690     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2691     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2692 
2693     // In the common case of an exact superklass, try to fold up the
2694     // test before generating code.  You may ask, why not just generate
2695     // the code and then let it fold up?  The answer is that the generated
2696     // code will necessarily include null checks, which do not always
2697     // completely fold away.  If they are also needless, then they turn
2698     // into a performance loss.  Example:
2699     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2700     // Here, the type of 'fa' is often exact, so the store check
2701     // of fa[1]=x will fold up, without testing the nullness of x.
2702     //
2703     // At macro expansion, we would have already folded the SubTypeCheckNode
2704     // being expanded here because we always perform the static sub type
2705     // check in SubTypeCheckNode::sub() regardless of whether
2706     // StressReflectiveCode is set or not. We can therefore skip this
2707     // static check when StressReflectiveCode is on.
2708     switch (C->static_subtype_check(superk, subk)) {
2709     case Compile::SSC_always_false:
2710       {
2711         Node* always_fail = *ctrl;
2712         *ctrl = gvn.C->top();
2713         return always_fail;
2714       }
2715     case Compile::SSC_always_true:
2716       return C->top();
2717     case Compile::SSC_easy_test:
2718       {
2719         // Just do a direct pointer compare and be done.
2720         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2721         *ctrl = gvn.transform(new IfTrueNode(iff));
2722         return gvn.transform(new IfFalseNode(iff));
2723       }
2724     case Compile::SSC_full_test:
2725       break;
2726     default:
2727       ShouldNotReachHere();
2728     }
2729   }
2730 
2731   // %%% Possible further optimization:  Even if the superklass is not exact,
2732   // if the subklass is the unique subtype of the superklass, the check
2733   // will always succeed.  We could leave a dependency behind to ensure this.
2734 
2735   // First load the super-klass's check-offset
2736   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2737   Node* m = C->immutable_memory();
2738   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2739   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2740   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2741   int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2742   bool might_be_cache = (chk_off_con == cacheoff_con);

2743 
2744   // Load from the sub-klass's super-class display list, or a 1-word cache of
2745   // the secondary superclass list, or a failing value with a sentinel offset
2746   // if the super-klass is an interface or exceptionally deep in the Java
2747   // hierarchy and we have to scan the secondary superclass list the hard way.
2748   // Worst-case type is a little odd: null is allowed as a result (usually
2749   // klass loads can never produce a null).
2750   Node *chk_off_X = chk_off;
2751 #ifdef _LP64
2752   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2753 #endif
2754   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2755   // For some types like interfaces the following loadKlass is from a 1-word
2756   // cache which is mutable so can't use immutable memory.  Other
2757   // types load from the super-class display table which is immutable.
2758   Node *kmem = C->immutable_memory();
2759   // secondary_super_cache is not immutable but can be treated as such because:
2760   // - no ideal node writes to it in a way that could cause an
2761   //   incorrect/missed optimization of the following Load.
2762   // - it's a cache so, worse case, not reading the latest value

2773 
2774   // Gather the various success & failures here
2775   RegionNode* r_not_subtype = new RegionNode(3);
2776   gvn.record_for_igvn(r_not_subtype);
2777   RegionNode* r_ok_subtype = new RegionNode(4);
2778   gvn.record_for_igvn(r_ok_subtype);
2779 
2780   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2781   // SubTypeCheck node
2782   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2783     ciCallProfile profile = method->call_profile_at_bci(bci);
2784     float total_prob = 0;
2785     for (int i = 0; profile.has_receiver(i); ++i) {
2786       float prob = profile.receiver_prob(i);
2787       total_prob += prob;
2788     }
2789     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2790       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2791       for (int i = 0; profile.has_receiver(i); ++i) {
2792         ciKlass* klass = profile.receiver(i);

2793         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2794         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2795         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2796           continue;
2797         }
2798         float prob = profile.receiver_prob(i);
2799         ConNode* klass_node = gvn.makecon(klass_t);
2800         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2801         Node* iftrue = gvn.transform(new IfTrueNode(iff));
2802 
2803         if (result == Compile::SSC_always_true) {
2804           r_ok_subtype->add_req(iftrue);
2805         } else {
2806           assert(result == Compile::SSC_always_false, "");
2807           r_not_subtype->add_req(iftrue);
2808         }
2809         *ctrl = gvn.transform(new IfFalseNode(iff));
2810       }
2811     }
2812   }

2823   // subklass.  In this case we need exactly the 1 test above and we can
2824   // return those results immediately.
2825   if (!might_be_cache) {
2826     Node* not_subtype_ctrl = *ctrl;
2827     *ctrl = iftrue1; // We need exactly the 1 test above
2828     PhaseIterGVN* igvn = gvn.is_IterGVN();
2829     if (igvn != nullptr) {
2830       igvn->remove_globally_dead_node(r_ok_subtype);
2831       igvn->remove_globally_dead_node(r_not_subtype);
2832     }
2833     return not_subtype_ctrl;
2834   }
2835 
2836   r_ok_subtype->init_req(1, iftrue1);
2837 
2838   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2839   // is roughly 63% of the remaining cases).  Test to see if the loaded
2840   // check-offset points into the subklass display list or the 1-element
2841   // cache.  If it points to the display (and NOT the cache) and the display
2842   // missed then it's not a subtype.


2843   Node *cacheoff = gvn.intcon(cacheoff_con);
2844   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2845   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
2846   *ctrl = gvn.transform(new IfFalseNode(iff2));
2847 
2848   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2849   // No performance impact (too rare) but allows sharing of secondary arrays
2850   // which has some footprint reduction.
2851   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2852   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
2853   *ctrl = gvn.transform(new IfFalseNode(iff3));
2854 
2855   // -- Roads not taken here: --
2856   // We could also have chosen to perform the self-check at the beginning
2857   // of this code sequence, as the assembler does.  This would not pay off
2858   // the same way, since the optimizer, unlike the assembler, can perform
2859   // static type analysis to fold away many successful self-checks.
2860   // Non-foldable self checks work better here in second position, because
2861   // the initial primary superclass check subsumes a self-check for most
2862   // types.  An exception would be a secondary type like array-of-interface,
2863   // which does not appear in its own primary supertype display.
2864   // Finally, we could have chosen to move the self-check into the
2865   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2866   // dependent manner.  But it is worthwhile to have the check here,
2867   // where it can be perhaps be optimized.  The cost in code space is
2868   // small (register compare, branch).
2869 
2870   // Now do a linear scan of the secondary super-klass array.  Again, no real
2871   // performance impact (too rare) but it's gotta be done.
2872   // Since the code is rarely used, there is no penalty for moving it
2873   // out of line, and it can only improve I-cache density.
2874   // The decision to inline or out-of-line this final check is platform
2875   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2876   Node* psc = gvn.transform(
2877     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2878 
2879   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2880   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2881   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2882 
2883   // Return false path; set default control to true path.
2884   *ctrl = gvn.transform(r_ok_subtype);
2885   return gvn.transform(r_not_subtype);
2886 }
2887 
2888 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {





2889   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
2890   if (expand_subtype_check) {
2891     MergeMemNode* mem = merged_memory();
2892     Node* ctrl = control();
2893     Node* subklass = obj_or_subklass;
2894     if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2895       subklass = load_object_klass(obj_or_subklass);
2896     }
2897 
2898     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
2899     set_control(ctrl);
2900     return n;
2901   }
2902 
2903   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
2904   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2905   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2906   set_control(_gvn.transform(new IfTrueNode(iff)));
2907   return _gvn.transform(new IfFalseNode(iff));
2908 }
2909 
2910 // Profile-driven exact type check:
2911 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2912                                     float prob,
2913                                     Node* *casted_receiver) {
2914   assert(!klass->is_interface(), "no exact type check on interfaces");
2915 











2916   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);





2917   Node* recv_klass = load_object_klass(receiver);
2918   Node* want_klass = makecon(tklass);
2919   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2920   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2921   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2922   set_control( _gvn.transform(new IfTrueNode (iff)));
2923   Node* fail = _gvn.transform(new IfFalseNode(iff));
2924 
2925   if (!stopped()) {
2926     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2927     const TypeOopPtr* recvx_type = tklass->as_instance_type();
2928     assert(recvx_type->klass_is_exact(), "");
2929 
2930     if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2931       // Subsume downstream occurrences of receiver with a cast to
2932       // recv_xtype, since now we know what the type will be.
2933       Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2934       (*casted_receiver) = _gvn.transform(cast);





2935       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
2936       // (User must make the replace_in_map call.)
2937     }
2938   }
2939 
2940   return fail;
2941 }
2942 











2943 //------------------------------subtype_check_receiver-------------------------
2944 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2945                                        Node** casted_receiver) {
2946   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2947   Node* want_klass = makecon(tklass);
2948 
2949   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2950 
2951   // Ignore interface type information until interface types are properly tracked.
2952   if (!stopped() && !klass->is_interface()) {
2953     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2954     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2955     if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2956       Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2957       (*casted_receiver) = _gvn.transform(cast);



2958     }
2959   }
2960 
2961   return slow_ctl;
2962 }
2963 
2964 //------------------------------seems_never_null-------------------------------
2965 // Use null_seen information if it is available from the profile.
2966 // If we see an unexpected null at a type check we record it and force a
2967 // recompile; the offending check will be recompiled to handle nulls.
2968 // If we see several offending BCIs, then all checks in the
2969 // method will be recompiled.
2970 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2971   speculating = !_gvn.type(obj)->speculative_maybe_null();
2972   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2973   if (UncommonNullCast               // Cutout for this technique
2974       && obj != null()               // And not the -Xcomp stupid case?
2975       && !too_many_traps(reason)
2976       ) {
2977     if (speculating) {

3046 
3047 //------------------------maybe_cast_profiled_receiver-------------------------
3048 // If the profile has seen exactly one type, narrow to exactly that type.
3049 // Subsequent type checks will always fold up.
3050 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3051                                              const TypeKlassPtr* require_klass,
3052                                              ciKlass* spec_klass,
3053                                              bool safe_for_replace) {
3054   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3055 
3056   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3057 
3058   // Make sure we haven't already deoptimized from this tactic.
3059   if (too_many_traps_or_recompiles(reason))
3060     return nullptr;
3061 
3062   // (No, this isn't a call, but it's enough like a virtual call
3063   // to use the same ciMethod accessor to get the profile info...)
3064   // If we have a speculative type use it instead of profiling (which
3065   // may not help us)
3066   ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;













3067   if (exact_kls != nullptr) {// no cast failures here
3068     if (require_klass == nullptr ||
3069         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3070       // If we narrow the type to match what the type profile sees or
3071       // the speculative type, we can then remove the rest of the
3072       // cast.
3073       // This is a win, even if the exact_kls is very specific,
3074       // because downstream operations, such as method calls,
3075       // will often benefit from the sharper type.
3076       Node* exact_obj = not_null_obj; // will get updated in place...
3077       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3078                                             &exact_obj);
3079       { PreserveJVMState pjvms(this);
3080         set_control(slow_ctl);
3081         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3082       }
3083       if (safe_for_replace) {
3084         replace_in_map(not_null_obj, exact_obj);
3085       }
3086       return exact_obj;

3176   // If not_null_obj is dead, only null-path is taken
3177   if (stopped()) {              // Doing instance-of on a null?
3178     set_control(null_ctl);
3179     return intcon(0);
3180   }
3181   region->init_req(_null_path, null_ctl);
3182   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3183   if (null_ctl == top()) {
3184     // Do this eagerly, so that pattern matches like is_diamond_phi
3185     // will work even during parsing.
3186     assert(_null_path == PATH_LIMIT-1, "delete last");
3187     region->del_req(_null_path);
3188     phi   ->del_req(_null_path);
3189   }
3190 
3191   // Do we know the type check always succeed?
3192   bool known_statically = false;
3193   if (_gvn.type(superklass)->singleton()) {
3194     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3195     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3196     if (subk->is_loaded()) {
3197       int static_res = C->static_subtype_check(superk, subk);
3198       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3199     }
3200   }
3201 
3202   if (!known_statically) {
3203     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3204     // We may not have profiling here or it may not help us. If we
3205     // have a speculative type use it to perform an exact cast.
3206     ciKlass* spec_obj_type = obj_type->speculative_type();
3207     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3208       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3209       if (stopped()) {            // Profile disagrees with this path.
3210         set_control(null_ctl);    // Null is the only remaining possibility.
3211         return intcon(0);
3212       }
3213       if (cast_obj != nullptr) {
3214         not_null_obj = cast_obj;
3215       }
3216     }

3232   record_for_igvn(region);
3233 
3234   // If we know the type check always succeeds then we don't use the
3235   // profiling data at this bytecode. Don't lose it, feed it to the
3236   // type system as a speculative type.
3237   if (safe_for_replace) {
3238     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3239     replace_in_map(obj, casted_obj);
3240   }
3241 
3242   return _gvn.transform(phi);
3243 }
3244 
3245 //-------------------------------gen_checkcast---------------------------------
3246 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3247 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3248 // uncommon-trap paths work.  Adjust stack after this call.
3249 // If failure_control is supplied and not null, it is filled in with
3250 // the control edge for the cast failure.  Otherwise, an appropriate
3251 // uncommon trap or exception is thrown.
3252 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3253                               Node* *failure_control) {
3254   kill_dead_locals();           // Benefit all the uncommon traps
3255   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
















3256   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3257   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();


3258 
3259   // Fast cutout:  Check the case that the cast is vacuously true.
3260   // This detects the common cases where the test will short-circuit
3261   // away completely.  We do this before we perform the null check,
3262   // because if the test is going to turn into zero code, we don't
3263   // want a residual null check left around.  (Causes a slowdown,
3264   // for example, in some objArray manipulations, such as a[i]=a[j].)
3265   if (improved_klass_ptr_type->singleton()) {
3266     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3267     if (objtp != nullptr) {
3268       switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) {







3269       case Compile::SSC_always_true:
3270         // If we know the type check always succeed then we don't use
3271         // the profiling data at this bytecode. Don't lose it, feed it
3272         // to the type system as a speculative type.
3273         return record_profiled_receiver_for_speculation(obj);






3274       case Compile::SSC_always_false:




3275         // It needs a null check because a null will *pass* the cast check.
3276         // A non-null value will always produce an exception.
3277         if (!objtp->maybe_null()) {
3278           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3279           Deoptimization::DeoptReason reason = is_aastore ?
3280             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3281           builtin_throw(reason);
3282           return top();
3283         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3284           return null_assert(obj);
3285         }
3286         break; // Fall through to full check
3287       default:
3288         break;
3289       }
3290     }
3291   }
3292 
3293   ciProfileData* data = nullptr;
3294   bool safe_for_replace = false;
3295   if (failure_control == nullptr) {        // use MDO in regular case only
3296     assert(java_bc() == Bytecodes::_aastore ||
3297            java_bc() == Bytecodes::_checkcast,
3298            "interpreter profiles type checks only for these BCs");
3299     data = method()->method_data()->bci_to_data(bci());
3300     safe_for_replace = true;

3301   }
3302 
3303   // Make the merge point
3304   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3305   RegionNode* region = new RegionNode(PATH_LIMIT);
3306   Node*       phi    = new PhiNode(region, toop);



3307   C->set_has_split_ifs(true); // Has chance for split-if optimization
3308 
3309   // Use null-cast information if it is available
3310   bool speculative_not_null = false;
3311   bool never_see_null = ((failure_control == nullptr)  // regular case only
3312                          && seems_never_null(obj, data, speculative_not_null));
3313 







3314   // Null check; get casted pointer; set region slot 3
3315   Node* null_ctl = top();
3316   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);






3317 
3318   // If not_null_obj is dead, only null-path is taken
3319   if (stopped()) {              // Doing instance-of on a null?
3320     set_control(null_ctl);



3321     return null();
3322   }
3323   region->init_req(_null_path, null_ctl);
3324   phi   ->init_req(_null_path, null());  // Set null path value
3325   if (null_ctl == top()) {
3326     // Do this eagerly, so that pattern matches like is_diamond_phi
3327     // will work even during parsing.
3328     assert(_null_path == PATH_LIMIT-1, "delete last");
3329     region->del_req(_null_path);
3330     phi   ->del_req(_null_path);
3331   }
3332 
3333   Node* cast_obj = nullptr;
3334   if (improved_klass_ptr_type->klass_is_exact()) {
3335     // The following optimization tries to statically cast the speculative type of the object
3336     // (for example obtained during profiling) to the type of the superklass and then do a
3337     // dynamic check that the type of the object is what we expect. To work correctly
3338     // for checkcast and aastore the type of superklass should be exact.
3339     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3340     // We may not have profiling here or it may not help us. If we have
3341     // a speculative type use it to perform an exact cast.
3342     ciKlass* spec_obj_type = obj_type->speculative_type();
3343     if (spec_obj_type != nullptr || data != nullptr) {
3344       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3345       if (cast_obj != nullptr) {
3346         if (failure_control != nullptr) // failure is now impossible
3347           (*failure_control) = top();
3348         // adjust the type of the phi to the exact klass:
3349         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3350       }
3351     }
3352   }
3353 
3354   if (cast_obj == nullptr) {
3355     // Generate the subtype check
3356     Node* improved_superklass = superklass;
3357     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {



3358       improved_superklass = makecon(improved_klass_ptr_type);
3359     }
3360     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3361 
3362     // Plug in success path into the merge
3363     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3364     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3365     if (failure_control == nullptr) {
3366       if (not_subtype_ctrl != top()) { // If failure is possible
3367         PreserveJVMState pjvms(this);
3368         set_control(not_subtype_ctrl);
3369         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3370         Deoptimization::DeoptReason reason = is_aastore ?
3371           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3372         builtin_throw(reason);
3373       }
3374     } else {
3375       (*failure_control) = not_subtype_ctrl;
3376     }
3377   }
3378 
3379   region->init_req(_obj_path, control());
3380   phi   ->init_req(_obj_path, cast_obj);
3381 
3382   // A merge of null or Casted-NotNull obj
3383   Node* res = _gvn.transform(phi);
3384 
3385   // Note I do NOT always 'replace_in_map(obj,result)' here.
3386   //  if( tk->klass()->can_be_primary_super()  )
3387     // This means that if I successfully store an Object into an array-of-String
3388     // I 'forget' that the Object is really now known to be a String.  I have to
3389     // do this because we don't have true union types for interfaces - if I store
3390     // a Baz into an array-of-Interface and then tell the optimizer it's an
3391     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3392     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3393   //  replace_in_map( obj, res );
3394 
3395   // Return final merged results
3396   set_control( _gvn.transform(region) );
3397   record_for_igvn(region);
3398 
3399   return record_profiled_receiver_for_speculation(res);




































































































































































3400 }
3401 
3402 //------------------------------next_monitor-----------------------------------
3403 // What number should be given to the next monitor?
3404 int GraphKit::next_monitor() {
3405   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3406   int next = current + C->sync_stack_slots();
3407   // Keep the toplevel high water mark current:
3408   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3409   return current;
3410 }
3411 
3412 //------------------------------insert_mem_bar---------------------------------
3413 // Memory barrier to avoid floating things around
3414 // The membar serves as a pinch point between both control and all memory slices.
3415 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3416   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3417   mb->init_req(TypeFunc::Control, control());
3418   mb->init_req(TypeFunc::Memory,  reset_memory());
3419   Node* membar = _gvn.transform(mb);

3511     lock->create_lock_counter(map()->jvms());
3512     increment_counter(lock->counter()->addr());
3513   }
3514 #endif
3515 
3516   return flock;
3517 }
3518 
3519 
3520 //------------------------------shared_unlock----------------------------------
3521 // Emit unlocking code.
3522 void GraphKit::shared_unlock(Node* box, Node* obj) {
3523   // bci is either a monitorenter bc or InvocationEntryBci
3524   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3525   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3526 
3527   if (stopped()) {               // Dead monitor?
3528     map()->pop_monitor();        // Kill monitor from debug info
3529     return;
3530   }

3531 
3532   // Memory barrier to avoid floating things down past the locked region
3533   insert_mem_bar(Op_MemBarReleaseLock);
3534 
3535   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3536   UnlockNode *unlock = new UnlockNode(C, tf);
3537 #ifdef ASSERT
3538   unlock->set_dbg_jvms(sync_jvms());
3539 #endif
3540   uint raw_idx = Compile::AliasIdxRaw;
3541   unlock->init_req( TypeFunc::Control, control() );
3542   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3543   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3544   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3545   unlock->init_req( TypeFunc::ReturnAdr, top() );
3546 
3547   unlock->init_req(TypeFunc::Parms + 0, obj);
3548   unlock->init_req(TypeFunc::Parms + 1, box);
3549   unlock = _gvn.transform(unlock)->as_Unlock();
3550 
3551   Node* mem = reset_memory();
3552 
3553   // unlock has no side-effects, sets few values
3554   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3555 
3556   // Kill monitor from debug info
3557   map()->pop_monitor( );
3558 }
3559 
3560 //-------------------------------get_layout_helper-----------------------------
3561 // If the given klass is a constant or known to be an array,
3562 // fetch the constant layout helper value into constant_value
3563 // and return null.  Otherwise, load the non-constant
3564 // layout helper value, and return the node which represents it.
3565 // This two-faced routine is useful because allocation sites
3566 // almost always feature constant types.
3567 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3568   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3569   if (!StressReflectiveCode && klass_t != nullptr) {
3570     bool xklass = klass_t->klass_is_exact();
3571     if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) {







3572       jint lhelper;
3573       if (klass_t->isa_aryklassptr()) {
3574         BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();


3575         if (is_reference_type(elem, true)) {
3576           elem = T_OBJECT;
3577         }
3578         lhelper = Klass::array_layout_helper(elem);
3579       } else {
3580         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3581       }
3582       if (lhelper != Klass::_lh_neutral_value) {
3583         constant_value = lhelper;
3584         return (Node*) nullptr;
3585       }
3586     }
3587   }
3588   constant_value = Klass::_lh_neutral_value;  // put in a known value
3589   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3590   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3591 }
3592 
3593 // We just put in an allocate/initialize with a big raw-memory effect.
3594 // Hook selected additional alias categories on the initialization.
3595 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3596                                 MergeMemNode* init_in_merge,
3597                                 Node* init_out_raw) {
3598   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3599   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3600 
3601   Node* prevmem = kit.memory(alias_idx);
3602   init_in_merge->set_memory_at(alias_idx, prevmem);
3603   kit.set_memory(init_out_raw, alias_idx);


3604 }
3605 
3606 //---------------------------set_output_for_allocation-------------------------
3607 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3608                                           const TypeOopPtr* oop_type,
3609                                           bool deoptimize_on_exception) {
3610   int rawidx = Compile::AliasIdxRaw;
3611   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3612   add_safepoint_edges(alloc);
3613   Node* allocx = _gvn.transform(alloc);
3614   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3615   // create memory projection for i_o
3616   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3617   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3618 
3619   // create a memory projection as for the normal control path
3620   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3621   set_memory(malloc, rawidx);
3622 
3623   // a normal slow-call doesn't change i_o, but an allocation does
3624   // we create a separate i_o projection for the normal control path
3625   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3626   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3627 
3628   // put in an initialization barrier
3629   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3630                                                  rawoop)->as_Initialize();
3631   assert(alloc->initialization() == init,  "2-way macro link must work");
3632   assert(init ->allocation()     == alloc, "2-way macro link must work");
3633   {
3634     // Extract memory strands which may participate in the new object's
3635     // initialization, and source them from the new InitializeNode.
3636     // This will allow us to observe initializations when they occur,
3637     // and link them properly (as a group) to the InitializeNode.
3638     assert(init->in(InitializeNode::Memory) == malloc, "");
3639     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3640     init->set_req(InitializeNode::Memory, minit_in);
3641     record_for_igvn(minit_in); // fold it up later, if possible

3642     Node* minit_out = memory(rawidx);
3643     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3644     // Add an edge in the MergeMem for the header fields so an access
3645     // to one of those has correct memory state
3646     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3647     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3648     if (oop_type->isa_aryptr()) {
3649       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3650       int            elemidx  = C->get_alias_index(telemref);
3651       hook_memory_on_init(*this, elemidx, minit_in, minit_out);

























3652     } else if (oop_type->isa_instptr()) {

3653       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3654       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3655         ciField* field = ik->nonstatic_field_at(i);
3656         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3657           continue;  // do not bother to track really large numbers of fields
3658         // Find (or create) the alias category for this field:
3659         int fieldidx = C->alias_type(field)->index();
3660         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3661       }
3662     }
3663   }
3664 
3665   // Cast raw oop to the real thing...
3666   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3667   javaoop = _gvn.transform(javaoop);
3668   C->set_recent_alloc(control(), javaoop);
3669   assert(just_allocated_object(control()) == javaoop, "just allocated");
3670 
3671 #ifdef ASSERT
3672   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

3683       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3684     }
3685   }
3686 #endif //ASSERT
3687 
3688   return javaoop;
3689 }
3690 
3691 //---------------------------new_instance--------------------------------------
3692 // This routine takes a klass_node which may be constant (for a static type)
3693 // or may be non-constant (for reflective code).  It will work equally well
3694 // for either, and the graph will fold nicely if the optimizer later reduces
3695 // the type to a constant.
3696 // The optional arguments are for specialized use by intrinsics:
3697 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3698 //  - If 'return_size_val', report the total object size to the caller.
3699 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3700 Node* GraphKit::new_instance(Node* klass_node,
3701                              Node* extra_slow_test,
3702                              Node* *return_size_val,
3703                              bool deoptimize_on_exception) {

3704   // Compute size in doublewords
3705   // The size is always an integral number of doublewords, represented
3706   // as a positive bytewise size stored in the klass's layout_helper.
3707   // The layout_helper also encodes (in a low bit) the need for a slow path.
3708   jint  layout_con = Klass::_lh_neutral_value;
3709   Node* layout_val = get_layout_helper(klass_node, layout_con);
3710   int   layout_is_con = (layout_val == nullptr);
3711 
3712   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3713   // Generate the initial go-slow test.  It's either ALWAYS (return a
3714   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3715   // case) a computed value derived from the layout_helper.
3716   Node* initial_slow_test = nullptr;
3717   if (layout_is_con) {
3718     assert(!StressReflectiveCode, "stress mode does not use these paths");
3719     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3720     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3721   } else {   // reflective case
3722     // This reflective path is used by Unsafe.allocateInstance.
3723     // (It may be stress-tested by specifying StressReflectiveCode.)
3724     // Basically, we want to get into the VM is there's an illegal argument.
3725     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3726     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3727     if (extra_slow_test != intcon(0)) {
3728       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3729     }
3730     // (Macro-expander will further convert this to a Bool, if necessary.)

3741 
3742     // Clear the low bits to extract layout_helper_size_in_bytes:
3743     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3744     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3745     size = _gvn.transform( new AndXNode(size, mask) );
3746   }
3747   if (return_size_val != nullptr) {
3748     (*return_size_val) = size;
3749   }
3750 
3751   // This is a precise notnull oop of the klass.
3752   // (Actually, it need not be precise if this is a reflective allocation.)
3753   // It's what we cast the result to.
3754   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3755   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3756   const TypeOopPtr* oop_type = tklass->as_instance_type();
3757 
3758   // Now generate allocation code
3759 
3760   // The entire memory state is needed for slow path of the allocation
3761   // since GC and deoptimization can happened.
3762   Node *mem = reset_memory();
3763   set_all_memory(mem); // Create new memory state
3764 
3765   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3766                                          control(), mem, i_o(),
3767                                          size, klass_node,
3768                                          initial_slow_test);
3769 
3770   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3771 }
3772 
3773 //-------------------------------new_array-------------------------------------
3774 // helper for both newarray and anewarray
3775 // The 'length' parameter is (obviously) the length of the array.
3776 // The optional arguments are for specialized use by intrinsics:
3777 //  - If 'return_size_val', report the non-padded array size (sum of header size
3778 //    and array body) to the caller.
3779 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3780 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3781                           Node* length,         // number of array elements
3782                           int   nargs,          // number of arguments to push back for uncommon trap
3783                           Node* *return_size_val,
3784                           bool deoptimize_on_exception) {

3785   jint  layout_con = Klass::_lh_neutral_value;
3786   Node* layout_val = get_layout_helper(klass_node, layout_con);
3787   int   layout_is_con = (layout_val == nullptr);
3788 
3789   if (!layout_is_con && !StressReflectiveCode &&
3790       !too_many_traps(Deoptimization::Reason_class_check)) {
3791     // This is a reflective array creation site.
3792     // Optimistically assume that it is a subtype of Object[],
3793     // so that we can fold up all the address arithmetic.
3794     layout_con = Klass::array_layout_helper(T_OBJECT);
3795     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3796     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3797     { BuildCutout unless(this, bol_lh, PROB_MAX);
3798       inc_sp(nargs);
3799       uncommon_trap(Deoptimization::Reason_class_check,
3800                     Deoptimization::Action_maybe_recompile);
3801     }
3802     layout_val = nullptr;
3803     layout_is_con = true;
3804   }
3805 
3806   // Generate the initial go-slow test.  Make sure we do not overflow
3807   // if length is huge (near 2Gig) or negative!  We do not need
3808   // exact double-words here, just a close approximation of needed
3809   // double-words.  We can't add any offset or rounding bits, lest we
3810   // take a size -1 of bytes and make it positive.  Use an unsigned
3811   // compare, so negative sizes look hugely positive.
3812   int fast_size_limit = FastAllocateSizeLimit;
3813   if (layout_is_con) {
3814     assert(!StressReflectiveCode, "stress mode does not use these paths");
3815     // Increase the size limit if we have exact knowledge of array type.
3816     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3817     assert(fast_size_limit == 0 || count_leading_zeros(fast_size_limit) > static_cast<unsigned>(LogBytesPerLong - log2_esize),
3818            "fast_size_limit (%d) overflow when shifted left by %d", fast_size_limit, LogBytesPerLong - log2_esize);
3819     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3820   }
3821 
3822   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3823   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3824 
3825   // --- Size Computation ---
3826   // array_size = round_to_heap(array_header + (length << elem_shift));
3827   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3828   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3829   // The rounding mask is strength-reduced, if possible.
3830   int round_mask = MinObjAlignmentInBytes - 1;
3831   Node* header_size = nullptr;
3832   // (T_BYTE has the weakest alignment and size restrictions...)
3833   if (layout_is_con) {
3834     int       hsize  = Klass::layout_helper_header_size(layout_con);
3835     int       eshift = Klass::layout_helper_log2_element_size(layout_con);

3836     if ((round_mask & ~right_n_bits(eshift)) == 0)
3837       round_mask = 0;  // strength-reduce it if it goes away completely
3838     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3839     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3840     assert(header_size_min <= hsize, "generic minimum is smallest");
3841     header_size = intcon(hsize);
3842   } else {
3843     Node* hss   = intcon(Klass::_lh_header_size_shift);
3844     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3845     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3846     header_size = _gvn.transform(new AndINode(header_size, hsm));
3847   }
3848 
3849   Node* elem_shift = nullptr;
3850   if (layout_is_con) {
3851     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3852     if (eshift != 0)
3853       elem_shift = intcon(eshift);
3854   } else {
3855     // There is no need to mask or shift this value.
3856     // The semantics of LShiftINode include an implicit mask to 0x1F.
3857     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3858     elem_shift = layout_val;

3907   }
3908   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
3909 
3910   if (return_size_val != nullptr) {
3911     // This is the size
3912     (*return_size_val) = non_rounded_size;
3913   }
3914 
3915   Node* size = non_rounded_size;
3916   if (round_mask != 0) {
3917     Node* mask1 = MakeConX(round_mask);
3918     size = _gvn.transform(new AddXNode(size, mask1));
3919     Node* mask2 = MakeConX(~round_mask);
3920     size = _gvn.transform(new AndXNode(size, mask2));
3921   }
3922   // else if round_mask == 0, the size computation is self-rounding
3923 
3924   // Now generate allocation code
3925 
3926   // The entire memory state is needed for slow path of the allocation
3927   // since GC and deoptimization can happened.
3928   Node *mem = reset_memory();
3929   set_all_memory(mem); // Create new memory state
3930 
3931   if (initial_slow_test->is_Bool()) {
3932     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3933     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3934   }
3935 
3936   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();




















3937   Node* valid_length_test = _gvn.intcon(1);
3938   if (ary_type->isa_aryptr()) {
3939     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3940     jint max = TypeAryPtr::max_array_length(bt);
3941     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3942     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3943   }
3944 
3945   // Create the AllocateArrayNode and its result projections
3946   AllocateArrayNode* alloc
3947     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3948                             control(), mem, i_o(),
3949                             size, klass_node,
3950                             initial_slow_test,
3951                             length, valid_length_test);
3952 
3953   // Cast to correct type.  Note that the klass_node may be constant or not,
3954   // and in the latter case the actual array type will be inexact also.
3955   // (This happens via a non-constant argument to inline_native_newArray.)
3956   // In any case, the value of klass_node provides the desired array type.
3957   const TypeInt* length_type = _gvn.find_int_type(length);
3958   if (ary_type->isa_aryptr() && length_type != nullptr) {
3959     // Try to get a better type than POS for the size
3960     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3961   }
3962 
3963   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3964 
3965   array_ideal_length(alloc, ary_type, true);
3966   return javaoop;
3967 }
3968 
3969 // The following "Ideal_foo" functions are placed here because they recognize
3970 // the graph shapes created by the functions immediately above.
3971 
3972 //---------------------------Ideal_allocation----------------------------------

4085   set_all_memory(ideal.merged_memory());
4086   set_i_o(ideal.i_o());
4087   set_control(ideal.ctrl());
4088 }
4089 
4090 void GraphKit::final_sync(IdealKit& ideal) {
4091   // Final sync IdealKit and graphKit.
4092   sync_kit(ideal);
4093 }
4094 
4095 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4096   Node* len = load_array_length(load_String_value(str, set_ctrl));
4097   Node* coder = load_String_coder(str, set_ctrl);
4098   // Divide length by 2 if coder is UTF16
4099   return _gvn.transform(new RShiftINode(len, coder));
4100 }
4101 
4102 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4103   int value_offset = java_lang_String::value_offset();
4104   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4105                                                      false, nullptr, 0);
4106   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4107   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4108                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4109                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4110   Node* p = basic_plus_adr(str, str, value_offset);
4111   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4112                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4113   return load;
4114 }
4115 
4116 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4117   if (!CompactStrings) {
4118     return intcon(java_lang_String::CODER_UTF16);
4119   }
4120   int coder_offset = java_lang_String::coder_offset();
4121   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4122                                                      false, nullptr, 0);
4123   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4124 
4125   Node* p = basic_plus_adr(str, str, coder_offset);
4126   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4127                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4128   return load;
4129 }
4130 
4131 void GraphKit::store_String_value(Node* str, Node* value) {
4132   int value_offset = java_lang_String::value_offset();
4133   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4134                                                      false, nullptr, 0);
4135   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4136 
4137   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4138                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4139 }
4140 
4141 void GraphKit::store_String_coder(Node* str, Node* value) {
4142   int coder_offset = java_lang_String::coder_offset();
4143   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4144                                                      false, nullptr, 0);
4145   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4146 
4147   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4148                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4149 }
4150 
4151 // Capture src and dst memory state with a MergeMemNode
4152 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4153   if (src_type == dst_type) {
4154     // Types are equal, we don't need a MergeMemNode
4155     return memory(src_type);
4156   }
4157   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4158   record_for_igvn(merge); // fold it up later, if possible
4159   int src_idx = C->get_alias_index(src_type);
4160   int dst_idx = C->get_alias_index(dst_type);
4161   merge->set_memory_at(src_idx, memory(src_idx));
4162   merge->set_memory_at(dst_idx, memory(dst_idx));
4163   return merge;
4164 }

4237   i_char->init_req(2, AddI(i_char, intcon(2)));
4238 
4239   set_control(IfFalse(iff));
4240   set_memory(st, TypeAryPtr::BYTES);
4241 }
4242 
4243 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4244   if (!field->is_constant()) {
4245     return nullptr; // Field not marked as constant.
4246   }
4247   ciInstance* holder = nullptr;
4248   if (!field->is_static()) {
4249     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4250     if (const_oop != nullptr && const_oop->is_instance()) {
4251       holder = const_oop->as_instance();
4252     }
4253   }
4254   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4255                                                         /*is_unsigned_load=*/false);
4256   if (con_type != nullptr) {
4257     return makecon(con_type);






4258   }
4259   return nullptr;
4260 }
4261 









4262 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4263   const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr();
4264   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4265   if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4266     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4267     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4268     return casted_obj;



4269   }
4270   return obj;
4271 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/register.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciObjArray.hpp"
  29 #include "ci/ciUtilities.hpp"
  30 #include "classfile/javaClasses.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/c2/barrierSetC2.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/flatArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "utilities/bitMap.inline.hpp"
  56 #include "utilities/growableArray.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 
  59 //----------------------------GraphKit-----------------------------------------
  60 // Main utility constructor.
  61 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  62   : Phase(Phase::Parser),
  63     _env(C->env()),
  64     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  65     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  66 {
  67   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  68   _exceptions = jvms->map()->next_exception();
  69   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  70   set_jvms(jvms);
  71 #ifdef ASSERT
  72   if (_gvn.is_IterGVN() != nullptr) {
  73     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  74     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  75     _worklist_size = _gvn.C->igvn_worklist()->size();
  76   }
  77 #endif
  78 }
  79 
  80 // Private constructor for parser.
  81 GraphKit::GraphKit()
  82   : Phase(Phase::Parser),
  83     _env(C->env()),
  84     _gvn(*C->initial_gvn()),
  85     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  86 {
  87   _exceptions = nullptr;
  88   set_map(nullptr);
  89   DEBUG_ONLY(_sp = -99);
  90   DEBUG_ONLY(set_bci(-99));
  91 }
  92 
  93 
  94 
  95 //---------------------------clean_stack---------------------------------------
  96 // Clear away rubbish from the stack area of the JVM state.
  97 // This destroys any arguments that may be waiting on the stack.

 342 }
 343 static inline void add_one_req(Node* dstphi, Node* src) {
 344   assert(is_hidden_merge(dstphi), "must be a special merge node");
 345   assert(!is_hidden_merge(src), "must not be a special merge node");
 346   dstphi->add_req(src);
 347 }
 348 
 349 //-----------------------combine_exception_states------------------------------
 350 // This helper function combines exception states by building phis on a
 351 // specially marked state-merging region.  These regions and phis are
 352 // untransformed, and can build up gradually.  The region is marked by
 353 // having a control input of its exception map, rather than null.  Such
 354 // regions do not appear except in this function, and in use_exception_state.
 355 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 356   if (failing_internal()) {
 357     return;  // dying anyway...
 358   }
 359   JVMState* ex_jvms = ex_map->_jvms;
 360   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 361   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 362   // TODO 8325632 Re-enable
 363   // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 364   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 365   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 366   assert(ex_map->req() == phi_map->req(), "matching maps");
 367   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 368   Node*         hidden_merge_mark = root();
 369   Node*         region  = phi_map->control();
 370   MergeMemNode* phi_mem = phi_map->merged_memory();
 371   MergeMemNode* ex_mem  = ex_map->merged_memory();
 372   if (region->in(0) != hidden_merge_mark) {
 373     // The control input is not (yet) a specially-marked region in phi_map.
 374     // Make it so, and build some phis.
 375     region = new RegionNode(2);
 376     _gvn.set_type(region, Type::CONTROL);
 377     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 378     region->init_req(1, phi_map->control());
 379     phi_map->set_control(region);
 380     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 381     record_for_igvn(io_phi);
 382     _gvn.set_type(io_phi, Type::ABIO);
 383     phi_map->set_i_o(io_phi);

 871         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 872           tty->print_cr("Zombie local %d: ", local);
 873           jvms->dump();
 874         }
 875         return false;
 876       }
 877     }
 878   }
 879   return true;
 880 }
 881 
 882 #endif //ASSERT
 883 
 884 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 885 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 886   ciMethod* cur_method = jvms->method();
 887   int       cur_bci   = jvms->bci();
 888   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 889     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 890     return Interpreter::bytecode_should_reexecute(code) ||
 891            (is_anewarray && (code == Bytecodes::_multianewarray));
 892     // Reexecute _multianewarray bytecode which was replaced with
 893     // sequence of [a]newarray. See Parse::do_multianewarray().
 894     //
 895     // Note: interpreter should not have it set since this optimization
 896     // is limited by dimensions and guarded by flag so in some cases
 897     // multianewarray() runtime calls will be generated and
 898     // the bytecode should not be reexecutes (stack will not be reset).
 899   } else {
 900     return false;
 901   }
 902 }
 903 
 904 // Helper function for adding JVMState and debug information to node
 905 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 906   // Add the safepoint edges to the call (or other safepoint).
 907 
 908   // Make sure dead locals are set to top.  This
 909   // should help register allocation time and cut down on the size
 910   // of the deoptimization information.
 911   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 962   }
 963 
 964   // Presize the call:
 965   DEBUG_ONLY(uint non_debug_edges = call->req());
 966   call->add_req_batch(top(), youngest_jvms->debug_depth());
 967   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 968 
 969   // Set up edges so that the call looks like this:
 970   //  Call [state:] ctl io mem fptr retadr
 971   //       [parms:] parm0 ... parmN
 972   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 973   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 974   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 975   // Note that caller debug info precedes callee debug info.
 976 
 977   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 978   uint debug_ptr = call->req();
 979 
 980   // Loop over the map input edges associated with jvms, add them
 981   // to the call node, & reset all offsets to match call node array.
 982 
 983   JVMState* callee_jvms = nullptr;
 984   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 985     uint debug_end   = debug_ptr;
 986     uint debug_start = debug_ptr - in_jvms->debug_size();
 987     debug_ptr = debug_start;  // back up the ptr
 988 
 989     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 990     uint j, k, l;
 991     SafePointNode* in_map = in_jvms->map();
 992     out_jvms->set_map(call);
 993 
 994     if (can_prune_locals) {
 995       assert(in_jvms->method() == out_jvms->method(), "sanity");
 996       // If the current throw can reach an exception handler in this JVMS,
 997       // then we must keep everything live that can reach that handler.
 998       // As a quick and dirty approximation, we look for any handlers at all.
 999       if (in_jvms->method()->has_exception_handlers()) {
1000         can_prune_locals = false;
1001       }
1002     }
1003 
1004     // Add the Locals
1005     k = in_jvms->locoff();
1006     l = in_jvms->loc_size();
1007     out_jvms->set_locoff(p);
1008     if (!can_prune_locals) {
1009       for (j = 0; j < l; j++) {
1010         call->set_req(p++, in_map->in(k + j));
1011       }
1012     } else {
1013       p += l;  // already set to top above by add_req_batch
1014     }
1015 
1016     // Add the Expression Stack
1017     k = in_jvms->stkoff();
1018     l = in_jvms->sp();
1019     out_jvms->set_stkoff(p);
1020     if (!can_prune_locals) {
1021       for (j = 0; j < l; j++) {
1022         call->set_req(p++, in_map->in(k + j));
1023       }
1024     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1025       // Divide stack into {S0,...,S1}, where S0 is set to top.
1026       uint s1 = stack_slots_not_pruned;
1027       stack_slots_not_pruned = 0;  // for next iteration
1028       if (s1 > l)  s1 = l;
1029       uint s0 = l - s1;
1030       p += s0;  // skip the tops preinstalled by add_req_batch
1031       for (j = s0; j < l; j++)
1032         call->set_req(p++, in_map->in(k+j));
1033     } else {
1034       p += l;  // already set to top above by add_req_batch
1035     }
1036 
1037     // Add the Monitors
1038     k = in_jvms->monoff();
1039     l = in_jvms->mon_size();
1040     out_jvms->set_monoff(p);
1041     for (j = 0; j < l; j++)
1042       call->set_req(p++, in_map->in(k+j));
1043 
1044     // Copy any scalar object fields.
1045     k = in_jvms->scloff();
1046     l = in_jvms->scl_size();
1047     out_jvms->set_scloff(p);
1048     for (j = 0; j < l; j++)
1049       call->set_req(p++, in_map->in(k+j));
1050 
1051     // Finish the new jvms.
1052     out_jvms->set_endoff(p);
1053 
1054     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1055     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1056     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1057     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1058     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1059     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1060 
1061     // Update the two tail pointers in parallel.
1062     callee_jvms = out_jvms;
1063     out_jvms = out_jvms->caller();
1064     in_jvms  = in_jvms->caller();
1065   }
1066 
1067   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1068 
1069   // Test the correctness of JVMState::debug_xxx accessors:
1070   assert(call->jvms()->debug_start() == non_debug_edges, "");
1071   assert(call->jvms()->debug_end()   == call->req(), "");
1072   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1073 }
1074 
1075 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1076   Bytecodes::Code code = java_bc();
1077   if (code == Bytecodes::_wide) {
1078     code = method()->java_code_at_bci(bci() + 1);
1079   }
1080 
1081   if (code != Bytecodes::_illegal) {
1082     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1218   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1219   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1220   return _gvn.transform( new AndLNode(conv, mask) );
1221 }
1222 
1223 Node* GraphKit::ConvL2I(Node* offset) {
1224   // short-circuit a common case
1225   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1226   if (offset_con != (jlong)Type::OffsetBot) {
1227     return intcon((int) offset_con);
1228   }
1229   return _gvn.transform( new ConvL2INode(offset));
1230 }
1231 
1232 //-------------------------load_object_klass-----------------------------------
1233 Node* GraphKit::load_object_klass(Node* obj) {
1234   // Special-case a fresh allocation to avoid building nodes:
1235   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1236   if (akls != nullptr)  return akls;
1237   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1238   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1239 }
1240 
1241 //-------------------------load_array_length-----------------------------------
1242 Node* GraphKit::load_array_length(Node* array) {
1243   // Special-case a fresh allocation to avoid building nodes:
1244   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1245   Node *alen;
1246   if (alloc == nullptr) {
1247     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1248     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1249   } else {
1250     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1251   }
1252   return alen;
1253 }
1254 
1255 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1256                                    const TypeOopPtr* oop_type,
1257                                    bool replace_length_in_map) {
1258   Node* length = alloc->Ideal_length();

1267         replace_in_map(length, ccast);
1268       }
1269       return ccast;
1270     }
1271   }
1272   return length;
1273 }
1274 
1275 //------------------------------do_null_check----------------------------------
1276 // Helper function to do a null pointer check.  Returned value is
1277 // the incoming address with null casted away.  You are allowed to use the
1278 // not-null value only if you are control dependent on the test.
1279 #ifndef PRODUCT
1280 extern uint explicit_null_checks_inserted,
1281             explicit_null_checks_elided;
1282 #endif
1283 Node* GraphKit::null_check_common(Node* value, BasicType type,
1284                                   // optional arguments for variations:
1285                                   bool assert_null,
1286                                   Node* *null_control,
1287                                   bool speculative,
1288                                   bool null_marker_check) {
1289   assert(!assert_null || null_control == nullptr, "not both at once");
1290   if (stopped())  return top();
1291   NOT_PRODUCT(explicit_null_checks_inserted++);
1292 
1293   if (value->is_InlineType()) {
1294     // Null checking a scalarized but nullable inline type. Check the null marker
1295     // input instead of the oop input to avoid keeping buffer allocations alive.
1296     InlineTypeNode* vtptr = value->as_InlineType();
1297     while (vtptr->get_oop()->is_InlineType()) {
1298       vtptr = vtptr->get_oop()->as_InlineType();
1299     }
1300     null_check_common(vtptr->get_null_marker(), T_INT, assert_null, null_control, speculative, true);
1301     if (stopped()) {
1302       return top();
1303     }
1304     if (assert_null) {
1305       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1306       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1307       // replace_in_map(value, vtptr);
1308       // return vtptr;
1309       replace_in_map(value, null());
1310       return null();
1311     }
1312     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1313     return cast_not_null(value, do_replace_in_map);
1314   }
1315 
1316   // Construct null check
1317   Node *chk = nullptr;
1318   switch(type) {
1319     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1320     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1321     case T_ARRAY  : // fall through
1322       type = T_OBJECT;  // simplify further tests
1323     case T_OBJECT : {
1324       const Type *t = _gvn.type( value );
1325 
1326       const TypeOopPtr* tp = t->isa_oopptr();
1327       if (tp != nullptr && !tp->is_loaded()
1328           // Only for do_null_check, not any of its siblings:
1329           && !assert_null && null_control == nullptr) {
1330         // Usually, any field access or invocation on an unloaded oop type
1331         // will simply fail to link, since the statically linked class is
1332         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1333         // the static class is loaded but the sharper oop type is not.
1334         // Rather than checking for this obscure case in lots of places,
1335         // we simply observe that a null check on an unloaded class

1399         }
1400         Node *oldcontrol = control();
1401         set_control(cfg);
1402         Node *res = cast_not_null(value);
1403         set_control(oldcontrol);
1404         NOT_PRODUCT(explicit_null_checks_elided++);
1405         return res;
1406       }
1407       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1408       if (cfg == nullptr)  break;  // Quit at region nodes
1409       depth++;
1410     }
1411   }
1412 
1413   //-----------
1414   // Branch to failure if null
1415   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1416   Deoptimization::DeoptReason reason;
1417   if (assert_null) {
1418     reason = Deoptimization::reason_null_assert(speculative);
1419   } else if (type == T_OBJECT || null_marker_check) {
1420     reason = Deoptimization::reason_null_check(speculative);
1421   } else {
1422     reason = Deoptimization::Reason_div0_check;
1423   }
1424   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1425   // ciMethodData::has_trap_at will return a conservative -1 if any
1426   // must-be-null assertion has failed.  This could cause performance
1427   // problems for a method after its first do_null_assert failure.
1428   // Consider using 'Reason_class_check' instead?
1429 
1430   // To cause an implicit null check, we set the not-null probability
1431   // to the maximum (PROB_MAX).  For an explicit check the probability
1432   // is set to a smaller value.
1433   if (null_control != nullptr || too_many_traps(reason)) {
1434     // probability is less likely
1435     ok_prob =  PROB_LIKELY_MAG(3);
1436   } else if (!assert_null &&
1437              (ImplicitNullCheckThreshold > 0) &&
1438              method() != nullptr &&
1439              (method()->method_data()->trap_count(reason)

1473   }
1474 
1475   if (assert_null) {
1476     // Cast obj to null on this path.
1477     replace_in_map(value, zerocon(type));
1478     return zerocon(type);
1479   }
1480 
1481   // Cast obj to not-null on this path, if there is no null_control.
1482   // (If there is a null_control, a non-null value may come back to haunt us.)
1483   if (type == T_OBJECT) {
1484     Node* cast = cast_not_null(value, false);
1485     if (null_control == nullptr || (*null_control) == top())
1486       replace_in_map(value, cast);
1487     value = cast;
1488   }
1489 
1490   return value;
1491 }
1492 

1493 //------------------------------cast_not_null----------------------------------
1494 // Cast obj to not-null on this path
1495 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1496   if (obj->is_InlineType()) {
1497     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1498     vt->as_InlineType()->set_null_marker(_gvn);
1499     vt = _gvn.transform(vt);
1500     if (do_replace_in_map) {
1501       replace_in_map(obj, vt);
1502     }
1503     return vt;
1504   }
1505   const Type *t = _gvn.type(obj);
1506   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1507   // Object is already not-null?
1508   if( t == t_not_null ) return obj;
1509 
1510   Node* cast = new CastPPNode(control(), obj,t_not_null);
1511   cast = _gvn.transform( cast );
1512 
1513   // Scan for instances of 'obj' in the current JVM mapping.
1514   // These instances are known to be not-null after the test.
1515   if (do_replace_in_map)
1516     replace_in_map(obj, cast);
1517 
1518   return cast;                  // Return casted value
1519 }
1520 
1521 Node* GraphKit::cast_to_non_larval(Node* obj) {
1522   const Type* obj_type = gvn().type(obj);
1523   if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) {
1524     return obj;
1525   }
1526 
1527   Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass());
1528   replace_in_map(obj, new_obj);
1529   return new_obj;
1530 }
1531 
1532 // Sometimes in intrinsics, we implicitly know an object is not null
1533 // (there's no actual null check) so we can cast it to not null. In
1534 // the course of optimizations, the input to the cast can become null.
1535 // In that case that data path will die and we need the control path
1536 // to become dead as well to keep the graph consistent. So we have to
1537 // add a check for null for which one branch can't be taken. It uses
1538 // an OpaqueNotNull node that will cause the check to be removed after loop
1539 // opts so the test goes away and the compiled code doesn't execute a
1540 // useless check.
1541 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1542   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1543     return value;
1544   }
1545   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1546   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1547   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1548   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1549   _gvn.set_type(iff, iff->Value(&_gvn));
1550   if (!tst->is_Con()) {
1551     record_for_igvn(iff);

1624 // These are layered on top of the factory methods in LoadNode and StoreNode,
1625 // and integrate with the parser's memory state and _gvn engine.
1626 //
1627 
1628 // factory methods in "int adr_idx"
1629 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1630                           MemNode::MemOrd mo,
1631                           LoadNode::ControlDependency control_dependency,
1632                           bool require_atomic_access,
1633                           bool unaligned,
1634                           bool mismatched,
1635                           bool unsafe,
1636                           uint8_t barrier_data) {
1637   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1638   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1639   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1640   DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx));
1641   Node* mem = memory(adr_idx);
1642   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1643   ld = _gvn.transform(ld);
1644 
1645   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1646     // Improve graph before escape analysis and boxing elimination.
1647     record_for_igvn(ld);
1648     if (ld->is_DecodeN()) {
1649       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1650       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1651       // a Phi). Recording such cases is still perfectly sound, but may be
1652       // unnecessary and result in some minor IGVN overhead.
1653       record_for_igvn(ld->in(1));
1654     }
1655   }
1656   return ld;
1657 }
1658 
1659 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1660                                 MemNode::MemOrd mo,
1661                                 bool require_atomic_access,
1662                                 bool unaligned,
1663                                 bool mismatched,
1664                                 bool unsafe,

1678   if (unsafe) {
1679     st->as_Store()->set_unsafe_access();
1680   }
1681   st->as_Store()->set_barrier_data(barrier_data);
1682   st = _gvn.transform(st);
1683   set_memory(st, adr_idx);
1684   // Back-to-back stores can only remove intermediate store with DU info
1685   // so push on worklist for optimizer.
1686   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1687     record_for_igvn(st);
1688 
1689   return st;
1690 }
1691 
1692 Node* GraphKit::access_store_at(Node* obj,
1693                                 Node* adr,
1694                                 const TypePtr* adr_type,
1695                                 Node* val,
1696                                 const Type* val_type,
1697                                 BasicType bt,
1698                                 DecoratorSet decorators,
1699                                 bool safe_for_replace,
1700                                 const InlineTypeNode* vt) {
1701   // Transformation of a value which could be null pointer (CastPP #null)
1702   // could be delayed during Parse (for example, in adjust_map_after_if()).
1703   // Execute transformation here to avoid barrier generation in such case.
1704   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1705     val = _gvn.makecon(TypePtr::NULL_PTR);
1706   }
1707 
1708   if (stopped()) {
1709     return top(); // Dead path ?
1710   }
1711 
1712   assert(val != nullptr, "not dead path");
1713   if (val->is_InlineType()) {
1714     // Store to non-flat field. Buffer the inline type and make sure
1715     // the store is re-executed if the allocation triggers deoptimization.
1716     PreserveReexecuteState preexecs(this);
1717     jvms()->set_should_reexecute(true);
1718     val = val->as_InlineType()->buffer(this, safe_for_replace);
1719   }
1720 
1721   C2AccessValuePtr addr(adr, adr_type);
1722   C2AccessValue value(val, val_type);
1723   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1724   if (access.is_raw()) {
1725     return _barrier_set->BarrierSetC2::store_at(access, value);
1726   } else {
1727     return _barrier_set->store_at(access, value);
1728   }
1729 }
1730 
1731 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1732                                Node* adr,   // actual address to store val at
1733                                const TypePtr* adr_type,
1734                                const Type* val_type,
1735                                BasicType bt,
1736                                DecoratorSet decorators,
1737                                Node* ctl) {
1738   if (stopped()) {
1739     return top(); // Dead path ?
1740   }
1741 
1742   C2AccessValuePtr addr(adr, adr_type);
1743   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1744   if (access.is_raw()) {
1745     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1746   } else {
1747     return _barrier_set->load_at(access, val_type);
1748   }
1749 }
1750 
1751 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1752                             const Type* val_type,
1753                             BasicType bt,
1754                             DecoratorSet decorators) {
1755   if (stopped()) {
1756     return top(); // Dead path ?
1757   }
1758 
1759   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1760   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1761   if (access.is_raw()) {
1762     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1763   } else {

1828                                      Node* new_val,
1829                                      const Type* value_type,
1830                                      BasicType bt,
1831                                      DecoratorSet decorators) {
1832   C2AccessValuePtr addr(adr, adr_type);
1833   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1834   if (access.is_raw()) {
1835     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1836   } else {
1837     return _barrier_set->atomic_add_at(access, new_val, value_type);
1838   }
1839 }
1840 
1841 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1842   return _barrier_set->clone(this, src, dst, size, is_array);
1843 }
1844 
1845 //-------------------------array_element_address-------------------------
1846 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1847                                       const TypeInt* sizetype, Node* ctrl) {
1848   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1849   uint shift;
1850   uint header;
1851   if (arytype->is_flat() && arytype->klass_is_exact()) {
1852     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1853     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1854     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1855     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1856     // though we don't need the address node in this case and throw it away again.
1857     shift = arytype->flat_log_elem_size();
1858     header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
1859   } else {
1860     shift = exact_log2(type2aelembytes(elembt));
1861     header = arrayOopDesc::base_offset_in_bytes(elembt);
1862   }
1863 
1864   // short-circuit a common case (saves lots of confusing waste motion)
1865   jint idx_con = find_int_con(idx, -1);
1866   if (idx_con >= 0) {
1867     intptr_t offset = header + ((intptr_t)idx_con << shift);
1868     return basic_plus_adr(ary, offset);
1869   }
1870 
1871   // must be correct type for alignment purposes
1872   Node* base  = basic_plus_adr(ary, header);
1873   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1874   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1875   return basic_plus_adr(ary, base, scale);
1876 }
1877 
1878 Node* GraphKit::cast_to_flat_array(Node* array, ciInlineKlass* vk, bool is_null_free, bool is_not_null_free, bool is_atomic) {
1879   assert(vk->maybe_flat_in_array(), "element of type %s cannot be flat in array", vk->name()->as_utf8());
1880   if (!vk->has_nullable_atomic_layout()) {
1881     // Element does not have a nullable flat layout, cannot be nullable
1882     is_null_free = true;
1883   }
1884   if (!vk->has_atomic_layout() && !vk->has_non_atomic_layout()) {
1885     // Element does not have a null-free flat layout, cannot be null-free
1886     is_not_null_free = true;
1887   }
1888   if (is_null_free) {
1889     // TODO 8350865 Impossible type
1890     is_not_null_free = false;
1891   }
1892 
1893   bool is_exact = is_null_free || is_not_null_free;
1894   ciArrayKlass* array_klass = ciArrayKlass::make(vk, is_null_free, is_atomic, true);
1895   assert(array_klass->is_elem_null_free() == is_null_free, "inconsistency");
1896   assert(array_klass->is_elem_atomic() == is_atomic, "inconsistency");
1897   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1898   arytype = arytype->cast_to_exactness(is_exact);
1899   arytype = arytype->cast_to_not_null_free(is_not_null_free);
1900   assert(arytype->is_null_free() == is_null_free, "inconsistency");
1901   assert(arytype->is_not_null_free() == is_not_null_free, "inconsistency");
1902   assert(arytype->is_atomic() == is_atomic, "inconsistency");
1903   return _gvn.transform(new CastPPNode(control(), array, arytype, ConstraintCastNode::StrongDependency));
1904 }
1905 
1906 //-------------------------load_array_element-------------------------
1907 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1908   const Type* elemtype = arytype->elem();
1909   BasicType elembt = elemtype->array_element_basic_type();
1910   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1911   if (elembt == T_NARROWOOP) {
1912     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1913   }
1914   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1915                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1916   return ld;
1917 }
1918 
1919 //-------------------------set_arguments_for_java_call-------------------------
1920 // Arguments (pre-popped from the stack) are taken from the JVMS.
1921 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1922   PreserveReexecuteState preexecs(this);
1923   if (EnableValhalla) {
1924     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1925     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1926     jvms()->set_should_reexecute(true);
1927     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1928     inc_sp(arg_size);
1929   }
1930   // Add the call arguments
1931   const TypeTuple* domain = call->tf()->domain_sig();
1932   uint nargs = domain->cnt();
1933   int arg_num = 0;
1934   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1935     Node* arg = argument(i-TypeFunc::Parms);
1936     const Type* t = domain->field_at(i);
1937     // TODO 8284443 A static call to a mismatched method should still be scalarized
1938     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1939       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1940       if (!arg->is_InlineType()) {
1941         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1942         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass());
1943       }
1944       InlineTypeNode* vt = arg->as_InlineType();
1945       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1946       // If an inline type argument is passed as fields, attach the Method* to the call site
1947       // to be able to access the extended signature later via attached_method_before_pc().
1948       // For example, see CompiledMethod::preserve_callee_argument_oops().
1949       call->set_override_symbolic_info(true);
1950       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1951       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1952       C->dependencies()->assert_evol_method(call->method());
1953       arg_num++;
1954       continue;
1955     } else if (arg->is_InlineType()) {
1956       // Pass inline type argument via oop to callee
1957       arg = arg->as_InlineType()->buffer(this, true);
1958     }
1959     if (t != Type::HALF) {
1960       arg_num++;
1961     }
1962     call->init_req(idx++, arg);
1963   }
1964 }
1965 
1966 //---------------------------set_edges_for_java_call---------------------------
1967 // Connect a newly created call into the current JVMS.
1968 // A return value node (if any) is returned from set_edges_for_java_call.
1969 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1970 
1971   // Add the predefined inputs:
1972   call->init_req( TypeFunc::Control, control() );
1973   call->init_req( TypeFunc::I_O    , i_o() );
1974   call->init_req( TypeFunc::Memory , reset_memory() );
1975   call->init_req( TypeFunc::FramePtr, frameptr() );
1976   call->init_req( TypeFunc::ReturnAdr, top() );
1977 
1978   add_safepoint_edges(call, must_throw);
1979 
1980   Node* xcall = _gvn.transform(call);
1981 
1982   if (xcall == top()) {
1983     set_control(top());
1984     return;
1985   }
1986   assert(xcall == call, "call identity is stable");
1987 
1988   // Re-use the current map to produce the result.
1989 
1990   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1991   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1992   set_all_memory_call(xcall, separate_io_proj);
1993 
1994   //return xcall;   // no need, caller already has it
1995 }
1996 
1997 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1998   if (stopped())  return top();  // maybe the call folded up?
1999 







2000   // Note:  Since any out-of-line call can produce an exception,
2001   // we always insert an I_O projection from the call into the result.
2002 
2003   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
2004 
2005   if (separate_io_proj) {
2006     // The caller requested separate projections be used by the fall
2007     // through and exceptional paths, so replace the projections for
2008     // the fall through path.
2009     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
2010     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
2011   }
2012 
2013   // Capture the return value, if any.
2014   Node* ret;
2015   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
2016     ret = top();
2017   } else if (call->tf()->returns_inline_type_as_fields()) {
2018     // Return of multiple values (inline type fields): we create a
2019     // InlineType node, each field is a projection from the call.
2020     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2021     uint base_input = TypeFunc::Parms;
2022     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2023   } else {
2024     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2025     ciType* t = call->method()->return_type();
2026     if (!t->is_loaded() && InlineTypeReturnedAsFields) {
2027       // The return type is unloaded but the callee might later be C2 compiled and then return
2028       // in scalarized form when the return type is loaded. Handle this similar to what we do in
2029       // PhaseMacroExpand::expand_mh_intrinsic_return by calling into the runtime to buffer.
2030       // It's a bit unfortunate because we will deopt anyway but the interpreter needs an oop.
2031       IdealKit ideal(this);
2032       IdealVariable res(ideal);
2033       ideal.declarations_done();
2034       ideal.if_then(ret, BoolTest::eq, ideal.makecon(TypePtr::NULL_PTR)); {
2035         // Return value is null
2036         ideal.set(res, ret);
2037       } ideal.else_(); {
2038         // Return value is non-null
2039         sync_kit(ideal);
2040 
2041         // Change return type of call to scalarized return
2042         const TypeFunc* tf = call->_tf;
2043         const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc();
2044         const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2045         call->_tf = new_tf;
2046         _gvn.set_type(call, call->Value(&_gvn));
2047         _gvn.set_type(ret, ret->Value(&_gvn));
2048 
2049         Node* store_to_buf_call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
2050                                                     OptoRuntime::store_inline_type_fields_Type(),
2051                                                     StubRoutines::store_inline_type_fields_to_buf(),
2052                                                     nullptr, TypePtr::BOTTOM, ret);
2053 
2054         // We don't know how many values are returned. This assumes the
2055         // worst case, that all available registers are used.
2056         for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2057           if (domain->field_at(i) == Type::HALF) {
2058             store_to_buf_call->init_req(i, top());
2059             continue;
2060           }
2061           Node* proj =_gvn.transform(new ProjNode(call, i));
2062           store_to_buf_call->init_req(i, proj);
2063         }
2064         make_slow_call_ex(store_to_buf_call, env()->Throwable_klass(), false);
2065 
2066         Node* buf = _gvn.transform(new ProjNode(store_to_buf_call, TypeFunc::Parms));
2067         const Type* buf_type = TypeOopPtr::make_from_klass(t->as_klass())->join_speculative(TypePtr::NOTNULL);
2068         buf = _gvn.transform(new CheckCastPPNode(control(), buf, buf_type));
2069 
2070         ideal.set(res, buf);
2071         ideal.sync_kit(this);
2072       } ideal.end_if();
2073       sync_kit(ideal);
2074       ret = _gvn.transform(ideal.value(res));
2075     }
2076     if (t->is_klass()) {
2077       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2078       if (type->is_inlinetypeptr()) {
2079         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass());
2080       }
2081     }
2082   }
2083 
2084   return ret;
2085 }
2086 
2087 //--------------------set_predefined_input_for_runtime_call--------------------
2088 // Reading and setting the memory state is way conservative here.
2089 // The real problem is that I am not doing real Type analysis on memory,
2090 // so I cannot distinguish card mark stores from other stores.  Across a GC
2091 // point the Store Barrier and the card mark memory has to agree.  I cannot
2092 // have a card mark store and its barrier split across the GC point from
2093 // either above or below.  Here I get that to happen by reading ALL of memory.
2094 // A better answer would be to separate out card marks from other memory.
2095 // For now, return the input memory state, so that it can be reused
2096 // after the call, if this call has restricted memory effects.
2097 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2098   // Set fixed predefined input arguments
2099   call->init_req(TypeFunc::Control, control());
2100   call->init_req(TypeFunc::I_O, top()); // does no i/o
2101   call->init_req(TypeFunc::ReturnAdr, top());
2102   if (call->is_CallLeafPure()) {
2103     call->init_req(TypeFunc::Memory, top());

2165     if (use->is_MergeMem()) {
2166       wl.push(use);
2167     }
2168   }
2169 }
2170 
2171 // Replace the call with the current state of the kit.
2172 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2173   JVMState* ejvms = nullptr;
2174   if (has_exceptions()) {
2175     ejvms = transfer_exceptions_into_jvms();
2176   }
2177 
2178   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2179   ReplacedNodes replaced_nodes_exception;
2180   Node* ex_ctl = top();
2181 
2182   SafePointNode* final_state = stop();
2183 
2184   // Find all the needed outputs of this call
2185   CallProjections* callprojs = call->extract_projections(true, do_asserts);

2186 
2187   Unique_Node_List wl;
2188   Node* init_mem = call->in(TypeFunc::Memory);
2189   Node* final_mem = final_state->in(TypeFunc::Memory);
2190   Node* final_ctl = final_state->in(TypeFunc::Control);
2191   Node* final_io = final_state->in(TypeFunc::I_O);
2192 
2193   // Replace all the old call edges with the edges from the inlining result
2194   if (callprojs->fallthrough_catchproj != nullptr) {
2195     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2196   }
2197   if (callprojs->fallthrough_memproj != nullptr) {
2198     if (final_mem->is_MergeMem()) {
2199       // Parser's exits MergeMem was not transformed but may be optimized
2200       final_mem = _gvn.transform(final_mem);
2201     }
2202     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2203     add_mergemem_users_to_worklist(wl, final_mem);
2204   }
2205   if (callprojs->fallthrough_ioproj != nullptr) {
2206     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2207   }
2208 
2209   // Replace the result with the new result if it exists and is used
2210   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2211     // If the inlined code is dead, the result projections for an inline type returned as
2212     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2213     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2214            "unexpected number of results");
2215     C->gvn_replace_by(callprojs->resproj[0], result);
2216   }
2217 
2218   if (ejvms == nullptr) {
2219     // No exception edges to simply kill off those paths
2220     if (callprojs->catchall_catchproj != nullptr) {
2221       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2222     }
2223     if (callprojs->catchall_memproj != nullptr) {
2224       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2225     }
2226     if (callprojs->catchall_ioproj != nullptr) {
2227       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2228     }
2229     // Replace the old exception object with top
2230     if (callprojs->exobj != nullptr) {
2231       C->gvn_replace_by(callprojs->exobj, C->top());
2232     }
2233   } else {
2234     GraphKit ekit(ejvms);
2235 
2236     // Load my combined exception state into the kit, with all phis transformed:
2237     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2238     replaced_nodes_exception = ex_map->replaced_nodes();
2239 
2240     Node* ex_oop = ekit.use_exception_state(ex_map);
2241 
2242     if (callprojs->catchall_catchproj != nullptr) {
2243       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2244       ex_ctl = ekit.control();
2245     }
2246     if (callprojs->catchall_memproj != nullptr) {
2247       Node* ex_mem = ekit.reset_memory();
2248       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2249       add_mergemem_users_to_worklist(wl, ex_mem);
2250     }
2251     if (callprojs->catchall_ioproj != nullptr) {
2252       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2253     }
2254 
2255     // Replace the old exception object with the newly created one
2256     if (callprojs->exobj != nullptr) {
2257       C->gvn_replace_by(callprojs->exobj, ex_oop);
2258     }
2259   }
2260 
2261   // Disconnect the call from the graph
2262   call->disconnect_inputs(C);
2263   C->gvn_replace_by(call, C->top());
2264 
2265   // Clean up any MergeMems that feed other MergeMems since the
2266   // optimizer doesn't like that.
2267   while (wl.size() > 0) {
2268     _gvn.transform(wl.pop());
2269   }
2270 
2271   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2272     replaced_nodes.apply(C, final_ctl);
2273   }
2274   if (!ex_ctl->is_top() && do_replaced_nodes) {
2275     replaced_nodes_exception.apply(C, ex_ctl);
2276   }
2277 }
2278 
2279 
2280 //------------------------------increment_counter------------------------------
2281 // for statistics: increment a VM counter by 1
2282 
2283 void GraphKit::increment_counter(address counter_addr) {
2284   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2285   increment_counter(adr1);
2286 }
2287 
2288 void GraphKit::increment_counter(Node* counter_addr) {
2289   Node* ctrl = control();
2290   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2291   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2451  *
2452  * @param n          node that the type applies to
2453  * @param exact_kls  type from profiling
2454  * @param maybe_null did profiling see null?
2455  *
2456  * @return           node with improved type
2457  */
2458 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2459   const Type* current_type = _gvn.type(n);
2460   assert(UseTypeSpeculation, "type speculation must be on");
2461 
2462   const TypePtr* speculative = current_type->speculative();
2463 
2464   // Should the klass from the profile be recorded in the speculative type?
2465   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2466     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2467     const TypeOopPtr* xtype = tklass->as_instance_type();
2468     assert(xtype->klass_is_exact(), "Should be exact");
2469     // Any reason to believe n is not null (from this profiling or a previous one)?
2470     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2471     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2472     // record the new speculative type's depth
2473     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2474     speculative = speculative->with_inline_depth(jvms()->depth());
2475   } else if (current_type->would_improve_ptr(ptr_kind)) {
2476     // Profiling report that null was never seen so we can change the
2477     // speculative type to non null ptr.
2478     if (ptr_kind == ProfileAlwaysNull) {
2479       speculative = TypePtr::NULL_PTR;
2480     } else {
2481       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2482       const TypePtr* ptr = TypePtr::NOTNULL;
2483       if (speculative != nullptr) {
2484         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2485       } else {
2486         speculative = ptr;
2487       }
2488     }
2489   }
2490 
2491   if (speculative != current_type->speculative()) {
2492     // Build a type with a speculative type (what we think we know
2493     // about the type but will need a guard when we use it)
2494     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2495     // We're changing the type, we need a new CheckCast node to carry
2496     // the new type. The new type depends on the control: what
2497     // profiling tells us is only valid from here as far as we can
2498     // tell.
2499     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2500     cast = _gvn.transform(cast);
2501     replace_in_map(n, cast);
2502     n = cast;
2503   }
2504 
2505   return n;
2506 }
2507 
2508 /**
2509  * Record profiling data from receiver profiling at an invoke with the
2510  * type system so that it can propagate it (speculation)
2511  *
2512  * @param n  receiver node
2513  *
2514  * @return   node with improved type
2515  */
2516 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2517   if (!UseTypeSpeculation) {
2518     return n;
2519   }
2520   ciKlass* exact_kls = profile_has_unique_klass();
2521   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2522   if ((java_bc() == Bytecodes::_checkcast ||
2523        java_bc() == Bytecodes::_instanceof ||
2524        java_bc() == Bytecodes::_aastore) &&
2525       method()->method_data()->is_mature()) {
2526     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2527     if (data != nullptr) {
2528       if (java_bc() == Bytecodes::_aastore) {
2529         ciKlass* array_type = nullptr;
2530         ciKlass* element_type = nullptr;
2531         ProfilePtrKind element_ptr = ProfileMaybeNull;
2532         bool flat_array = true;
2533         bool null_free_array = true;
2534         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2535         exact_kls = element_type;
2536         ptr_kind = element_ptr;
2537       } else {
2538         if (!data->as_BitData()->null_seen()) {
2539           ptr_kind = ProfileNeverNull;
2540         } else {
2541           if (TypeProfileCasts) {
2542             assert(data->is_ReceiverTypeData(), "bad profile data type");
2543             ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2544             uint i = 0;
2545             for (; i < call->row_limit(); i++) {
2546               ciKlass* receiver = call->receiver(i);
2547               if (receiver != nullptr) {
2548                 break;
2549               }
2550             }
2551             ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2552           }

2553         }
2554       }
2555     }
2556   }
2557   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2558 }
2559 
2560 /**
2561  * Record profiling data from argument profiling at an invoke with the
2562  * type system so that it can propagate it (speculation)
2563  *
2564  * @param dest_method  target method for the call
2565  * @param bc           what invoke bytecode is this?
2566  */
2567 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2568   if (!UseTypeSpeculation) {
2569     return;
2570   }
2571   const TypeFunc* tf    = TypeFunc::make(dest_method);
2572   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2573   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2574   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2575     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2576     if (is_reference_type(targ->basic_type())) {
2577       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2578       ciKlass* better_type = nullptr;
2579       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2580         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2581       }
2582       i++;
2583     }
2584   }
2585 }
2586 
2587 /**
2588  * Record profiling data from parameter profiling at an invoke with
2589  * the type system so that it can propagate it (speculation)
2590  */
2591 void GraphKit::record_profiled_parameters_for_speculation() {
2592   if (!UseTypeSpeculation) {
2593     return;
2594   }
2595   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2715                                   // The first null ends the list.
2716                                   Node* parm0, Node* parm1,
2717                                   Node* parm2, Node* parm3,
2718                                   Node* parm4, Node* parm5,
2719                                   Node* parm6, Node* parm7) {
2720   assert(call_addr != nullptr, "must not call null targets");
2721 
2722   // Slow-path call
2723   bool is_leaf = !(flags & RC_NO_LEAF);
2724   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2725   if (call_name == nullptr) {
2726     assert(!is_leaf, "must supply name for leaf");
2727     call_name = OptoRuntime::stub_name(call_addr);
2728   }
2729   CallNode* call;
2730   if (!is_leaf) {
2731     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2732   } else if (flags & RC_NO_FP) {
2733     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2734   } else  if (flags & RC_VECTOR){
2735     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2736     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2737   } else if (flags & RC_PURE) {
2738     call = new CallLeafPureNode(call_type, call_addr, call_name, adr_type);
2739   } else {
2740     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2741   }
2742 
2743   // The following is similar to set_edges_for_java_call,
2744   // except that the memory effects of the call are restricted to AliasIdxRaw.
2745 
2746   // Slow path call has no side-effects, uses few values
2747   bool wide_in  = !(flags & RC_NARROW_MEM);
2748   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2749 
2750   Node* prev_mem = nullptr;
2751   if (wide_in) {
2752     prev_mem = set_predefined_input_for_runtime_call(call);
2753   } else {
2754     assert(!wide_out, "narrow in => narrow out");
2755     Node* narrow_mem = memory(adr_type);
2756     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2757   }
2758 
2759   // Hook each parm in order.  Stop looking at the first null.
2760   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2761   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2762   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2763   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2764   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2765   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2766   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2767   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2768   /* close each nested if ===> */  } } } } } } } }
2769   assert(call->in(call->req()-1) != nullptr || (call->req()-1) > (TypeFunc::Parms+7), "must initialize all parms");
2770 
2771   if (!is_leaf) {
2772     // Non-leaves can block and take safepoints:
2773     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2774   }
2775   // Non-leaves can throw exceptions:
2776   if (has_io) {
2777     call->set_req(TypeFunc::I_O, i_o());
2778   }
2779 
2780   if (flags & RC_UNCOMMON) {
2781     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2782     // (An "if" probability corresponds roughly to an unconditional count.
2783     // Sort of.)
2784     call->set_cnt(PROB_UNLIKELY_MAG(4));
2785   }
2786 
2787   Node* c = _gvn.transform(call);
2788   assert(c == call, "cannot disappear");
2789 

2797 
2798   if (has_io) {
2799     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2800   }
2801   return call;
2802 
2803 }
2804 
2805 // i2b
2806 Node* GraphKit::sign_extend_byte(Node* in) {
2807   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2808   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2809 }
2810 
2811 // i2s
2812 Node* GraphKit::sign_extend_short(Node* in) {
2813   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2814   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2815 }
2816 
2817 
2818 //------------------------------merge_memory-----------------------------------
2819 // Merge memory from one path into the current memory state.
2820 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2821   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2822     Node* old_slice = mms.force_memory();
2823     Node* new_slice = mms.memory2();
2824     if (old_slice != new_slice) {
2825       PhiNode* phi;
2826       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2827         if (mms.is_empty()) {
2828           // clone base memory Phi's inputs for this memory slice
2829           assert(old_slice == mms.base_memory(), "sanity");
2830           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2831           _gvn.set_type(phi, Type::MEMORY);
2832           for (uint i = 1; i < phi->req(); i++) {
2833             phi->init_req(i, old_slice->in(i));
2834           }
2835         } else {
2836           phi = old_slice->as_Phi(); // Phi was generated already
2837         }

2894   gvn.transform(iff);
2895   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2896   return iff;
2897 }
2898 
2899 //-------------------------------gen_subtype_check-----------------------------
2900 // Generate a subtyping check.  Takes as input the subtype and supertype.
2901 // Returns 2 values: sets the default control() to the true path and returns
2902 // the false path.  Only reads invariant memory; sets no (visible) memory.
2903 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2904 // but that's not exposed to the optimizer.  This call also doesn't take in an
2905 // Object; if you wish to check an Object you need to load the Object's class
2906 // prior to coming here.
2907 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2908                                ciMethod* method, int bci) {
2909   Compile* C = gvn.C;
2910   if ((*ctrl)->is_top()) {
2911     return C->top();
2912   }
2913 
2914   const TypeKlassPtr* klass_ptr_type = gvn.type(superklass)->is_klassptr();
2915   const TypeAryKlassPtr* ary_klass_t = klass_ptr_type->isa_aryklassptr();
2916   Node* vm_superklass = superklass;
2917   // TODO 8366668 Compute the VM type here for when we do a direct pointer comparison
2918   if (ary_klass_t && ary_klass_t->klass_is_exact() && ary_klass_t->exact_klass()->is_obj_array_klass()) {
2919     ary_klass_t = ary_klass_t->get_vm_type();
2920     vm_superklass = gvn.makecon(ary_klass_t);
2921   }
2922 
2923   // Fast check for identical types, perhaps identical constants.
2924   // The types can even be identical non-constants, in cases
2925   // involving Array.newInstance, Object.clone, etc.
2926   if (subklass == superklass)
2927     return C->top();             // false path is dead; no test needed.
2928 
2929   if (gvn.type(superklass)->singleton()) {
2930     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2931     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2932 
2933     // In the common case of an exact superklass, try to fold up the
2934     // test before generating code.  You may ask, why not just generate
2935     // the code and then let it fold up?  The answer is that the generated
2936     // code will necessarily include null checks, which do not always
2937     // completely fold away.  If they are also needless, then they turn
2938     // into a performance loss.  Example:
2939     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2940     // Here, the type of 'fa' is often exact, so the store check
2941     // of fa[1]=x will fold up, without testing the nullness of x.
2942     //
2943     // At macro expansion, we would have already folded the SubTypeCheckNode
2944     // being expanded here because we always perform the static sub type
2945     // check in SubTypeCheckNode::sub() regardless of whether
2946     // StressReflectiveCode is set or not. We can therefore skip this
2947     // static check when StressReflectiveCode is on.
2948     switch (C->static_subtype_check(superk, subk)) {
2949     case Compile::SSC_always_false:
2950       {
2951         Node* always_fail = *ctrl;
2952         *ctrl = gvn.C->top();
2953         return always_fail;
2954       }
2955     case Compile::SSC_always_true:
2956       return C->top();
2957     case Compile::SSC_easy_test:
2958       {
2959         // Just do a direct pointer compare and be done.
2960         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2961         *ctrl = gvn.transform(new IfTrueNode(iff));
2962         return gvn.transform(new IfFalseNode(iff));
2963       }
2964     case Compile::SSC_full_test:
2965       break;
2966     default:
2967       ShouldNotReachHere();
2968     }
2969   }
2970 
2971   // %%% Possible further optimization:  Even if the superklass is not exact,
2972   // if the subklass is the unique subtype of the superklass, the check
2973   // will always succeed.  We could leave a dependency behind to ensure this.
2974 
2975   // First load the super-klass's check-offset
2976   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2977   Node* m = C->immutable_memory();
2978   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2979   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2980   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();
2981   int chk_off_con = (chk_off_t != nullptr && chk_off_t->is_con()) ? chk_off_t->get_con() : cacheoff_con;
2982   // TODO 8366668 Re-enable. This breaks test/hotspot/jtreg/compiler/c2/irTests/ProfileAtTypeCheck.java
2983   bool might_be_cache = true;//(chk_off_con == cacheoff_con);
2984 
2985   // Load from the sub-klass's super-class display list, or a 1-word cache of
2986   // the secondary superclass list, or a failing value with a sentinel offset
2987   // if the super-klass is an interface or exceptionally deep in the Java
2988   // hierarchy and we have to scan the secondary superclass list the hard way.
2989   // Worst-case type is a little odd: null is allowed as a result (usually
2990   // klass loads can never produce a null).
2991   Node *chk_off_X = chk_off;
2992 #ifdef _LP64
2993   chk_off_X = gvn.transform(new ConvI2LNode(chk_off_X));
2994 #endif
2995   Node *p2 = gvn.transform(new AddPNode(subklass,subklass,chk_off_X));
2996   // For some types like interfaces the following loadKlass is from a 1-word
2997   // cache which is mutable so can't use immutable memory.  Other
2998   // types load from the super-class display table which is immutable.
2999   Node *kmem = C->immutable_memory();
3000   // secondary_super_cache is not immutable but can be treated as such because:
3001   // - no ideal node writes to it in a way that could cause an
3002   //   incorrect/missed optimization of the following Load.
3003   // - it's a cache so, worse case, not reading the latest value

3014 
3015   // Gather the various success & failures here
3016   RegionNode* r_not_subtype = new RegionNode(3);
3017   gvn.record_for_igvn(r_not_subtype);
3018   RegionNode* r_ok_subtype = new RegionNode(4);
3019   gvn.record_for_igvn(r_ok_subtype);
3020 
3021   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
3022   // SubTypeCheck node
3023   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
3024     ciCallProfile profile = method->call_profile_at_bci(bci);
3025     float total_prob = 0;
3026     for (int i = 0; profile.has_receiver(i); ++i) {
3027       float prob = profile.receiver_prob(i);
3028       total_prob += prob;
3029     }
3030     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
3031       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
3032       for (int i = 0; profile.has_receiver(i); ++i) {
3033         ciKlass* klass = profile.receiver(i);
3034         // TODO 8366668 Do we need adjustments here??
3035         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
3036         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
3037         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
3038           continue;
3039         }
3040         float prob = profile.receiver_prob(i);
3041         ConNode* klass_node = gvn.makecon(klass_t);
3042         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
3043         Node* iftrue = gvn.transform(new IfTrueNode(iff));
3044 
3045         if (result == Compile::SSC_always_true) {
3046           r_ok_subtype->add_req(iftrue);
3047         } else {
3048           assert(result == Compile::SSC_always_false, "");
3049           r_not_subtype->add_req(iftrue);
3050         }
3051         *ctrl = gvn.transform(new IfFalseNode(iff));
3052       }
3053     }
3054   }

3065   // subklass.  In this case we need exactly the 1 test above and we can
3066   // return those results immediately.
3067   if (!might_be_cache) {
3068     Node* not_subtype_ctrl = *ctrl;
3069     *ctrl = iftrue1; // We need exactly the 1 test above
3070     PhaseIterGVN* igvn = gvn.is_IterGVN();
3071     if (igvn != nullptr) {
3072       igvn->remove_globally_dead_node(r_ok_subtype);
3073       igvn->remove_globally_dead_node(r_not_subtype);
3074     }
3075     return not_subtype_ctrl;
3076   }
3077 
3078   r_ok_subtype->init_req(1, iftrue1);
3079 
3080   // Check for immediate negative hit.  Happens roughly 11% of the time (which
3081   // is roughly 63% of the remaining cases).  Test to see if the loaded
3082   // check-offset points into the subklass display list or the 1-element
3083   // cache.  If it points to the display (and NOT the cache) and the display
3084   // missed then it's not a subtype.
3085   // TODO 8366668 Re-enable
3086 /*
3087   Node *cacheoff = gvn.intcon(cacheoff_con);
3088   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
3089   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
3090   *ctrl = gvn.transform(new IfFalseNode(iff2));
3091 */
3092   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
3093   // No performance impact (too rare) but allows sharing of secondary arrays
3094   // which has some footprint reduction.
3095   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
3096   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
3097   *ctrl = gvn.transform(new IfFalseNode(iff3));
3098 
3099   // -- Roads not taken here: --
3100   // We could also have chosen to perform the self-check at the beginning
3101   // of this code sequence, as the assembler does.  This would not pay off
3102   // the same way, since the optimizer, unlike the assembler, can perform
3103   // static type analysis to fold away many successful self-checks.
3104   // Non-foldable self checks work better here in second position, because
3105   // the initial primary superclass check subsumes a self-check for most
3106   // types.  An exception would be a secondary type like array-of-interface,
3107   // which does not appear in its own primary supertype display.
3108   // Finally, we could have chosen to move the self-check into the
3109   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3110   // dependent manner.  But it is worthwhile to have the check here,
3111   // where it can be perhaps be optimized.  The cost in code space is
3112   // small (register compare, branch).
3113 
3114   // Now do a linear scan of the secondary super-klass array.  Again, no real
3115   // performance impact (too rare) but it's gotta be done.
3116   // Since the code is rarely used, there is no penalty for moving it
3117   // out of line, and it can only improve I-cache density.
3118   // The decision to inline or out-of-line this final check is platform
3119   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3120   Node* psc = gvn.transform(
3121     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3122 
3123   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3124   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3125   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3126 
3127   // Return false path; set default control to true path.
3128   *ctrl = gvn.transform(r_ok_subtype);
3129   return gvn.transform(r_not_subtype);
3130 }
3131 
3132 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3133   const Type* sub_t = _gvn.type(obj_or_subklass);
3134   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3135     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3136     obj_or_subklass = makecon(sub_t);
3137   }
3138   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3139   if (expand_subtype_check) {
3140     MergeMemNode* mem = merged_memory();
3141     Node* ctrl = control();
3142     Node* subklass = obj_or_subklass;
3143     if (!sub_t->isa_klassptr()) {
3144       subklass = load_object_klass(obj_or_subklass);
3145     }
3146 
3147     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3148     set_control(ctrl);
3149     return n;
3150   }
3151 
3152   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3153   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3154   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3155   set_control(_gvn.transform(new IfTrueNode(iff)));
3156   return _gvn.transform(new IfFalseNode(iff));
3157 }
3158 
3159 // Profile-driven exact type check:
3160 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3161                                     float prob, Node* *casted_receiver) {

3162   assert(!klass->is_interface(), "no exact type check on interfaces");
3163   Node* fail = top();
3164   const Type* rec_t = _gvn.type(receiver);
3165   if (rec_t->is_inlinetypeptr()) {
3166     if (klass->equals(rec_t->inline_klass())) {
3167       (*casted_receiver) = receiver; // Always passes
3168     } else {
3169       (*casted_receiver) = top();    // Always fails
3170       fail = control();
3171       set_control(top());
3172     }
3173     return fail;
3174   }
3175   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3176   const TypeAryKlassPtr* ary_klass_t = tklass->isa_aryklassptr();
3177     // TODO 8366668 Compute the VM type
3178   if (ary_klass_t && ary_klass_t->klass_is_exact() && ary_klass_t->exact_klass()->is_obj_array_klass()) {
3179     tklass = ary_klass_t->get_vm_type();
3180   }
3181   Node* recv_klass = load_object_klass(receiver);
3182   fail = type_check(recv_klass, tklass, prob);





3183 
3184   if (!stopped()) {
3185     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3186     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3187     assert(recv_xtype->klass_is_exact(), "");
3188 
3189     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3190       // Subsume downstream occurrences of receiver with a cast to
3191       // recv_xtype, since now we know what the type will be.
3192       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3193       Node* res = _gvn.transform(cast);
3194       if (recv_xtype->is_inlinetypeptr()) {
3195         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3196         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3197       }
3198       (*casted_receiver) = res;
3199       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3200       // (User must make the replace_in_map call.)
3201     }
3202   }
3203 
3204   return fail;
3205 }
3206 
3207 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3208                            float prob) {
3209   Node* want_klass = makecon(tklass);
3210   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3211   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3212   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3213   set_control(_gvn.transform(new IfTrueNode (iff)));
3214   Node* fail = _gvn.transform(new IfFalseNode(iff));
3215   return fail;
3216 }
3217 
3218 //------------------------------subtype_check_receiver-------------------------
3219 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3220                                        Node** casted_receiver) {
3221   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3222   Node* want_klass = makecon(tklass);
3223 
3224   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3225 
3226   // Ignore interface type information until interface types are properly tracked.
3227   if (!stopped() && !klass->is_interface()) {
3228     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3229     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3230     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3231       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3232       if (recv_type->is_inlinetypeptr()) {
3233         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3234       }
3235       (*casted_receiver) = cast;
3236     }
3237   }
3238 
3239   return slow_ctl;
3240 }
3241 
3242 //------------------------------seems_never_null-------------------------------
3243 // Use null_seen information if it is available from the profile.
3244 // If we see an unexpected null at a type check we record it and force a
3245 // recompile; the offending check will be recompiled to handle nulls.
3246 // If we see several offending BCIs, then all checks in the
3247 // method will be recompiled.
3248 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3249   speculating = !_gvn.type(obj)->speculative_maybe_null();
3250   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3251   if (UncommonNullCast               // Cutout for this technique
3252       && obj != null()               // And not the -Xcomp stupid case?
3253       && !too_many_traps(reason)
3254       ) {
3255     if (speculating) {

3324 
3325 //------------------------maybe_cast_profiled_receiver-------------------------
3326 // If the profile has seen exactly one type, narrow to exactly that type.
3327 // Subsequent type checks will always fold up.
3328 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3329                                              const TypeKlassPtr* require_klass,
3330                                              ciKlass* spec_klass,
3331                                              bool safe_for_replace) {
3332   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3333 
3334   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3335 
3336   // Make sure we haven't already deoptimized from this tactic.
3337   if (too_many_traps_or_recompiles(reason))
3338     return nullptr;
3339 
3340   // (No, this isn't a call, but it's enough like a virtual call
3341   // to use the same ciMethod accessor to get the profile info...)
3342   // If we have a speculative type use it instead of profiling (which
3343   // may not help us)
3344   ciKlass* exact_kls = spec_klass;
3345   if (exact_kls == nullptr) {
3346     if (java_bc() == Bytecodes::_aastore) {
3347       ciKlass* array_type = nullptr;
3348       ciKlass* element_type = nullptr;
3349       ProfilePtrKind element_ptr = ProfileMaybeNull;
3350       bool flat_array = true;
3351       bool null_free_array = true;
3352       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3353       exact_kls = element_type;
3354     } else {
3355       exact_kls = profile_has_unique_klass();
3356     }
3357   }
3358   if (exact_kls != nullptr) {// no cast failures here
3359     if (require_klass == nullptr ||
3360         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3361       // If we narrow the type to match what the type profile sees or
3362       // the speculative type, we can then remove the rest of the
3363       // cast.
3364       // This is a win, even if the exact_kls is very specific,
3365       // because downstream operations, such as method calls,
3366       // will often benefit from the sharper type.
3367       Node* exact_obj = not_null_obj; // will get updated in place...
3368       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3369                                             &exact_obj);
3370       { PreserveJVMState pjvms(this);
3371         set_control(slow_ctl);
3372         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3373       }
3374       if (safe_for_replace) {
3375         replace_in_map(not_null_obj, exact_obj);
3376       }
3377       return exact_obj;

3467   // If not_null_obj is dead, only null-path is taken
3468   if (stopped()) {              // Doing instance-of on a null?
3469     set_control(null_ctl);
3470     return intcon(0);
3471   }
3472   region->init_req(_null_path, null_ctl);
3473   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3474   if (null_ctl == top()) {
3475     // Do this eagerly, so that pattern matches like is_diamond_phi
3476     // will work even during parsing.
3477     assert(_null_path == PATH_LIMIT-1, "delete last");
3478     region->del_req(_null_path);
3479     phi   ->del_req(_null_path);
3480   }
3481 
3482   // Do we know the type check always succeed?
3483   bool known_statically = false;
3484   if (_gvn.type(superklass)->singleton()) {
3485     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3486     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3487     if (subk != nullptr && subk->is_loaded()) {
3488       int static_res = C->static_subtype_check(superk, subk);
3489       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3490     }
3491   }
3492 
3493   if (!known_statically) {
3494     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3495     // We may not have profiling here or it may not help us. If we
3496     // have a speculative type use it to perform an exact cast.
3497     ciKlass* spec_obj_type = obj_type->speculative_type();
3498     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3499       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3500       if (stopped()) {            // Profile disagrees with this path.
3501         set_control(null_ctl);    // Null is the only remaining possibility.
3502         return intcon(0);
3503       }
3504       if (cast_obj != nullptr) {
3505         not_null_obj = cast_obj;
3506       }
3507     }

3523   record_for_igvn(region);
3524 
3525   // If we know the type check always succeeds then we don't use the
3526   // profiling data at this bytecode. Don't lose it, feed it to the
3527   // type system as a speculative type.
3528   if (safe_for_replace) {
3529     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3530     replace_in_map(obj, casted_obj);
3531   }
3532 
3533   return _gvn.transform(phi);
3534 }
3535 
3536 //-------------------------------gen_checkcast---------------------------------
3537 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3538 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3539 // uncommon-trap paths work.  Adjust stack after this call.
3540 // If failure_control is supplied and not null, it is filled in with
3541 // the control edge for the cast failure.  Otherwise, an appropriate
3542 // uncommon trap or exception is thrown.
3543 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) {

3544   kill_dead_locals();           // Benefit all the uncommon traps
3545   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3546   const Type* obj_type = _gvn.type(obj);
3547   if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) {
3548     // Special case: larval inline objects must not be scalarized. They are also generally not
3549     // allowed to participate in most operations except as the first operand of putfield, or as an
3550     // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being
3551     // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize
3552     // value objects in all other places. This special case comes from the limitation of the Java
3553     // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete
3554     // value type. We must do this first because C->static_subtype_check may do nothing when
3555     // StressReflectiveCode is set.
3556     return obj;
3557   }
3558 
3559   // Else it must be a non-larval object
3560   obj = cast_to_non_larval(obj);
3561 
3562   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3563   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3564   bool safe_for_replace = (failure_control == nullptr);
3565   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3566 
3567   // Fast cutout:  Check the case that the cast is vacuously true.
3568   // This detects the common cases where the test will short-circuit
3569   // away completely.  We do this before we perform the null check,
3570   // because if the test is going to turn into zero code, we don't
3571   // want a residual null check left around.  (Causes a slowdown,
3572   // for example, in some objArray manipulations, such as a[i]=a[j].)
3573   if (improved_klass_ptr_type->singleton()) {
3574     const TypeKlassPtr* kptr = nullptr;
3575     if (obj_type->isa_oop_ptr()) {
3576       kptr = obj_type->is_oopptr()->as_klass_type();
3577     } else if (obj->is_InlineType()) {
3578       ciInlineKlass* vk = obj_type->inline_klass();
3579       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3580     }
3581 
3582     if (kptr != nullptr) {
3583       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3584       case Compile::SSC_always_true:
3585         // If we know the type check always succeed then we don't use
3586         // the profiling data at this bytecode. Don't lose it, feed it
3587         // to the type system as a speculative type.
3588         obj = record_profiled_receiver_for_speculation(obj);
3589         if (null_free) {
3590           assert(safe_for_replace, "must be");
3591           obj = null_check(obj);
3592         }
3593         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3594         return obj;
3595       case Compile::SSC_always_false:
3596         if (null_free) {
3597           assert(safe_for_replace, "must be");
3598           obj = null_check(obj);
3599         }
3600         // It needs a null check because a null will *pass* the cast check.
3601         if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) {

3602           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3603           Deoptimization::DeoptReason reason = is_aastore ?
3604             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3605           builtin_throw(reason);
3606           return top();
3607         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3608           return null_assert(obj);
3609         }
3610         break; // Fall through to full check
3611       default:
3612         break;
3613       }
3614     }
3615   }
3616 
3617   ciProfileData* data = nullptr;

3618   if (failure_control == nullptr) {        // use MDO in regular case only
3619     assert(java_bc() == Bytecodes::_aastore ||
3620            java_bc() == Bytecodes::_checkcast,
3621            "interpreter profiles type checks only for these BCs");
3622     if (method()->method_data()->is_mature()) {
3623       data = method()->method_data()->bci_to_data(bci());
3624     }
3625   }
3626 
3627   // Make the merge point
3628   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3629   RegionNode* region = new RegionNode(PATH_LIMIT);
3630   Node*       phi    = new PhiNode(region, toop);
3631   _gvn.set_type(region, Type::CONTROL);
3632   _gvn.set_type(phi, toop);
3633 
3634   C->set_has_split_ifs(true); // Has chance for split-if optimization
3635 
3636   // Use null-cast information if it is available
3637   bool speculative_not_null = false;
3638   bool never_see_null = ((failure_control == nullptr)  // regular case only
3639                          && seems_never_null(obj, data, speculative_not_null));
3640 
3641   if (obj->is_InlineType()) {
3642     // Re-execute if buffering during triggers deoptimization
3643     PreserveReexecuteState preexecs(this);
3644     jvms()->set_should_reexecute(true);
3645     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3646   }
3647 
3648   // Null check; get casted pointer; set region slot 3
3649   Node* null_ctl = top();
3650   Node* not_null_obj = nullptr;
3651   if (null_free) {
3652     assert(safe_for_replace, "must be");
3653     not_null_obj = null_check(obj);
3654   } else {
3655     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3656   }
3657 
3658   // If not_null_obj is dead, only null-path is taken
3659   if (stopped()) {              // Doing instance-of on a null?
3660     set_control(null_ctl);
3661     if (toop->is_inlinetypeptr()) {
3662       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3663     }
3664     return null();
3665   }
3666   region->init_req(_null_path, null_ctl);
3667   phi   ->init_req(_null_path, null());  // Set null path value
3668   if (null_ctl == top()) {
3669     // Do this eagerly, so that pattern matches like is_diamond_phi
3670     // will work even during parsing.
3671     assert(_null_path == PATH_LIMIT-1, "delete last");
3672     region->del_req(_null_path);
3673     phi   ->del_req(_null_path);
3674   }
3675 
3676   Node* cast_obj = nullptr;
3677   if (improved_klass_ptr_type->klass_is_exact()) {
3678     // The following optimization tries to statically cast the speculative type of the object
3679     // (for example obtained during profiling) to the type of the superklass and then do a
3680     // dynamic check that the type of the object is what we expect. To work correctly
3681     // for checkcast and aastore the type of superklass should be exact.
3682     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3683     // We may not have profiling here or it may not help us. If we have
3684     // a speculative type use it to perform an exact cast.
3685     ciKlass* spec_obj_type = obj_type->speculative_type();
3686     if (spec_obj_type != nullptr || data != nullptr) {
3687       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3688       if (cast_obj != nullptr) {
3689         if (failure_control != nullptr) // failure is now impossible
3690           (*failure_control) = top();
3691         // adjust the type of the phi to the exact klass:
3692         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3693       }
3694     }
3695   }
3696 
3697   if (cast_obj == nullptr) {
3698     // Generate the subtype check
3699     Node* improved_superklass = superklass;
3700     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3701       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3702       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3703       // Additionally, the benefit would only be minor in non-constant cases.
3704       improved_superklass = makecon(improved_klass_ptr_type);
3705     }
3706     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);

3707     // Plug in success path into the merge
3708     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3709     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3710     if (failure_control == nullptr) {
3711       if (not_subtype_ctrl != top()) { // If failure is possible
3712         PreserveJVMState pjvms(this);
3713         set_control(not_subtype_ctrl);
3714         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3715         Deoptimization::DeoptReason reason = is_aastore ?
3716           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3717         builtin_throw(reason);
3718       }
3719     } else {
3720       (*failure_control) = not_subtype_ctrl;
3721     }
3722   }
3723 
3724   region->init_req(_obj_path, control());
3725   phi   ->init_req(_obj_path, cast_obj);
3726 
3727   // A merge of null or Casted-NotNull obj
3728   Node* res = _gvn.transform(phi);
3729 
3730   // Note I do NOT always 'replace_in_map(obj,result)' here.
3731   //  if( tk->klass()->can_be_primary_super()  )
3732     // This means that if I successfully store an Object into an array-of-String
3733     // I 'forget' that the Object is really now known to be a String.  I have to
3734     // do this because we don't have true union types for interfaces - if I store
3735     // a Baz into an array-of-Interface and then tell the optimizer it's an
3736     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3737     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3738   //  replace_in_map( obj, res );
3739 
3740   // Return final merged results
3741   set_control( _gvn.transform(region) );
3742   record_for_igvn(region);
3743 
3744   bool not_inline = !toop->can_be_inline_type();
3745   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array());
3746   if (EnableValhalla && (not_inline || not_flat_in_array)) {
3747     // Check if obj has been loaded from an array
3748     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3749     Node* array = nullptr;
3750     if (obj->isa_Load()) {
3751       Node* address = obj->in(MemNode::Address);
3752       if (address->isa_AddP()) {
3753         array = address->as_AddP()->in(AddPNode::Base);
3754       }
3755     } else if (obj->is_Phi()) {
3756       Node* region = obj->in(0);
3757       // TODO make this more robust (see JDK-8231346)
3758       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3759         IfNode* iff = region->in(2)->in(0)->isa_If();
3760         if (iff != nullptr) {
3761           iff->is_flat_array_check(&_gvn, &array);
3762         }
3763       }
3764     }
3765     if (array != nullptr) {
3766       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3767       if (ary_t != nullptr) {
3768         if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) {
3769           // Casting array element to a non-inline-type, mark array as not null-free.
3770           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3771           replace_in_map(array, cast);
3772           array = cast;
3773         }
3774         if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) {
3775           // Casting array element to a non-flat-in-array type, mark array as not flat.
3776           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3777           replace_in_map(array, cast);
3778           array = cast;
3779         }
3780       }
3781     }
3782   }
3783 
3784   if (!stopped() && !res->is_InlineType()) {
3785     res = record_profiled_receiver_for_speculation(res);
3786     if (toop->is_inlinetypeptr() && !maybe_larval) {
3787       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass());
3788       res = vt;
3789       if (safe_for_replace) {
3790         replace_in_map(obj, vt);
3791         replace_in_map(not_null_obj, vt);
3792         replace_in_map(res, vt);
3793       }
3794     }
3795   }
3796   return res;
3797 }
3798 
3799 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3800   // Load markword
3801   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3802   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3803   if (check_lock && !UseCompactObjectHeaders) {
3804     // COH: Locking does not override the markword with a tagged pointer. We can directly read from the markword.
3805     // Check if obj is locked
3806     Node* locked_bit = MakeConX(markWord::unlocked_value);
3807     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3808     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3809     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3810     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3811     _gvn.transform(iff);
3812     Node* locked_region = new RegionNode(3);
3813     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3814 
3815     // Unlocked: Use bits from mark word
3816     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3817     mark_phi->init_req(1, mark);
3818 
3819     // Locked: Load prototype header from klass
3820     set_control(_gvn.transform(new IfFalseNode(iff)));
3821     // Make loads control dependent to make sure they are only executed if array is locked
3822     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3823     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3824     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3825     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3826 
3827     locked_region->init_req(2, control());
3828     mark_phi->init_req(2, proto);
3829     set_control(_gvn.transform(locked_region));
3830     record_for_igvn(locked_region);
3831 
3832     mark = mark_phi;
3833   }
3834 
3835   // Now check if mark word bits are set
3836   Node* mask = MakeConX(mask_val);
3837   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3838   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3839   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3840   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3841 }
3842 
3843 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3844   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3845 }
3846 
3847 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3848   // We can't use immutable memory here because the mark word is mutable.
3849   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3850   // check is moved out of loops (mainly to enable loop unswitching).
3851   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3852   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3853   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3854 }
3855 
3856 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3857   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3858 }
3859 
3860 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) {
3861   assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat");
3862 
3863   // TODO 8350865 Add a stress flag to always access atomic if layout exists?
3864   if (!vk->has_non_atomic_layout()) {
3865     return intcon(1); // Always atomic
3866   } else if (!vk->has_atomic_layout()) {
3867     return intcon(0); // Never atomic
3868   }
3869 
3870   Node* array_klass = load_object_klass(array);
3871   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3872   Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset);
3873   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
3874   Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT)));
3875   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3876 }
3877 
3878 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3879 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3880   RegionNode* region = new RegionNode(3);
3881   Node* null_ctl = top();
3882   null_check_oop(val, &null_ctl);
3883   if (null_ctl != top()) {
3884     PreserveJVMState pjvms(this);
3885     set_control(null_ctl);
3886     {
3887       // Deoptimize if null-free array
3888       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3889       inc_sp(nargs);
3890       uncommon_trap(Deoptimization::Reason_null_check,
3891                     Deoptimization::Action_none);
3892     }
3893     region->init_req(1, control());
3894   }
3895   region->init_req(2, control());
3896   set_control(_gvn.transform(region));
3897   record_for_igvn(region);
3898   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3899     // Since we were just successfully storing null, the array can't be null free.
3900     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3901     ary_t = ary_t->cast_to_not_null_free();
3902     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3903     if (safe_for_replace) {
3904       replace_in_map(ary, cast);
3905     }
3906     ary = cast;
3907   }
3908   return ary;
3909 }
3910 
3911 //------------------------------next_monitor-----------------------------------
3912 // What number should be given to the next monitor?
3913 int GraphKit::next_monitor() {
3914   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3915   int next = current + C->sync_stack_slots();
3916   // Keep the toplevel high water mark current:
3917   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3918   return current;
3919 }
3920 
3921 //------------------------------insert_mem_bar---------------------------------
3922 // Memory barrier to avoid floating things around
3923 // The membar serves as a pinch point between both control and all memory slices.
3924 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3925   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3926   mb->init_req(TypeFunc::Control, control());
3927   mb->init_req(TypeFunc::Memory,  reset_memory());
3928   Node* membar = _gvn.transform(mb);

4020     lock->create_lock_counter(map()->jvms());
4021     increment_counter(lock->counter()->addr());
4022   }
4023 #endif
4024 
4025   return flock;
4026 }
4027 
4028 
4029 //------------------------------shared_unlock----------------------------------
4030 // Emit unlocking code.
4031 void GraphKit::shared_unlock(Node* box, Node* obj) {
4032   // bci is either a monitorenter bc or InvocationEntryBci
4033   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
4034   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
4035 
4036   if (stopped()) {               // Dead monitor?
4037     map()->pop_monitor();        // Kill monitor from debug info
4038     return;
4039   }
4040   assert(!obj->is_InlineType(), "should not unlock on inline type");
4041 
4042   // Memory barrier to avoid floating things down past the locked region
4043   insert_mem_bar(Op_MemBarReleaseLock);
4044 
4045   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
4046   UnlockNode *unlock = new UnlockNode(C, tf);
4047 #ifdef ASSERT
4048   unlock->set_dbg_jvms(sync_jvms());
4049 #endif
4050   uint raw_idx = Compile::AliasIdxRaw;
4051   unlock->init_req( TypeFunc::Control, control() );
4052   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
4053   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
4054   unlock->init_req( TypeFunc::FramePtr, frameptr() );
4055   unlock->init_req( TypeFunc::ReturnAdr, top() );
4056 
4057   unlock->init_req(TypeFunc::Parms + 0, obj);
4058   unlock->init_req(TypeFunc::Parms + 1, box);
4059   unlock = _gvn.transform(unlock)->as_Unlock();
4060 
4061   Node* mem = reset_memory();
4062 
4063   // unlock has no side-effects, sets few values
4064   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
4065 
4066   // Kill monitor from debug info
4067   map()->pop_monitor( );
4068 }
4069 
4070 //-------------------------------get_layout_helper-----------------------------
4071 // If the given klass is a constant or known to be an array,
4072 // fetch the constant layout helper value into constant_value
4073 // and return null.  Otherwise, load the non-constant
4074 // layout helper value, and return the node which represents it.
4075 // This two-faced routine is useful because allocation sites
4076 // almost always feature constant types.
4077 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
4078   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
4079   if (!StressReflectiveCode && klass_t != nullptr) {
4080     bool xklass = klass_t->klass_is_exact();
4081     bool can_be_flat = false;
4082     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4083     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4084       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4085       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4086       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array());
4087     }
4088     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4089       jint lhelper;
4090       if (klass_t->is_flat()) {
4091         lhelper = ary_type->flat_layout_helper();
4092       } else if (klass_t->isa_aryklassptr()) {
4093         BasicType elem = ary_type->elem()->array_element_basic_type();
4094         if (is_reference_type(elem, true)) {
4095           elem = T_OBJECT;
4096         }
4097         lhelper = Klass::array_layout_helper(elem);
4098       } else {
4099         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4100       }
4101       if (lhelper != Klass::_lh_neutral_value) {
4102         constant_value = lhelper;
4103         return (Node*) nullptr;
4104       }
4105     }
4106   }
4107   constant_value = Klass::_lh_neutral_value;  // put in a known value
4108   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4109   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4110 }
4111 
4112 // We just put in an allocate/initialize with a big raw-memory effect.
4113 // Hook selected additional alias categories on the initialization.
4114 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4115                                 MergeMemNode* init_in_merge,
4116                                 Node* init_out_raw) {
4117   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4118   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4119 
4120   Node* prevmem = kit.memory(alias_idx);
4121   init_in_merge->set_memory_at(alias_idx, prevmem);
4122   if (init_out_raw != nullptr) {
4123     kit.set_memory(init_out_raw, alias_idx);
4124   }
4125 }
4126 
4127 //---------------------------set_output_for_allocation-------------------------
4128 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4129                                           const TypeOopPtr* oop_type,
4130                                           bool deoptimize_on_exception) {
4131   int rawidx = Compile::AliasIdxRaw;
4132   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4133   add_safepoint_edges(alloc);
4134   Node* allocx = _gvn.transform(alloc);
4135   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4136   // create memory projection for i_o
4137   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4138   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4139 
4140   // create a memory projection as for the normal control path
4141   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4142   set_memory(malloc, rawidx);
4143 
4144   // a normal slow-call doesn't change i_o, but an allocation does
4145   // we create a separate i_o projection for the normal control path
4146   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4147   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4148 
4149   // put in an initialization barrier
4150   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4151                                                  rawoop)->as_Initialize();
4152   assert(alloc->initialization() == init,  "2-way macro link must work");
4153   assert(init ->allocation()     == alloc, "2-way macro link must work");
4154   {
4155     // Extract memory strands which may participate in the new object's
4156     // initialization, and source them from the new InitializeNode.
4157     // This will allow us to observe initializations when they occur,
4158     // and link them properly (as a group) to the InitializeNode.
4159     assert(init->in(InitializeNode::Memory) == malloc, "");
4160     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4161     init->set_req(InitializeNode::Memory, minit_in);
4162     record_for_igvn(minit_in); // fold it up later, if possible
4163     _gvn.set_type(minit_in, Type::MEMORY);
4164     Node* minit_out = memory(rawidx);
4165     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4166     // Add an edge in the MergeMem for the header fields so an access
4167     // to one of those has correct memory state
4168     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4169     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4170     if (oop_type->isa_aryptr()) {
4171       const TypeAryPtr* arytype = oop_type->is_aryptr();
4172       if (arytype->is_flat()) {
4173         // Initially all flat array accesses share a single slice
4174         // but that changes after parsing. Prepare the memory graph so
4175         // it can optimize flat array accesses properly once they
4176         // don't share a single slice.
4177         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4178         C->set_flat_accesses_share_alias(false);
4179         ciInlineKlass* vk = arytype->elem()->inline_klass();
4180         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4181           ciField* field = vk->nonstatic_field_at(i);
4182           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4183             continue;  // do not bother to track really large numbers of fields
4184           int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
4185           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4186           int fieldidx = C->get_alias_index(adr_type, true);
4187           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4188           // can result in per flat array field Phis to be created which confuses the logic of
4189           // Compile::adjust_flat_array_access_aliases().
4190           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4191         }
4192         C->set_flat_accesses_share_alias(true);
4193         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4194       } else {
4195         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4196         int            elemidx  = C->get_alias_index(telemref);
4197         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4198       }
4199     } else if (oop_type->isa_instptr()) {
4200       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4201       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4202       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4203         ciField* field = ik->nonstatic_field_at(i);
4204         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4205           continue;  // do not bother to track really large numbers of fields
4206         // Find (or create) the alias category for this field:
4207         int fieldidx = C->alias_type(field)->index();
4208         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4209       }
4210     }
4211   }
4212 
4213   // Cast raw oop to the real thing...
4214   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4215   javaoop = _gvn.transform(javaoop);
4216   C->set_recent_alloc(control(), javaoop);
4217   assert(just_allocated_object(control()) == javaoop, "just allocated");
4218 
4219 #ifdef ASSERT
4220   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

4231       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4232     }
4233   }
4234 #endif //ASSERT
4235 
4236   return javaoop;
4237 }
4238 
4239 //---------------------------new_instance--------------------------------------
4240 // This routine takes a klass_node which may be constant (for a static type)
4241 // or may be non-constant (for reflective code).  It will work equally well
4242 // for either, and the graph will fold nicely if the optimizer later reduces
4243 // the type to a constant.
4244 // The optional arguments are for specialized use by intrinsics:
4245 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4246 //  - If 'return_size_val', report the total object size to the caller.
4247 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4248 Node* GraphKit::new_instance(Node* klass_node,
4249                              Node* extra_slow_test,
4250                              Node* *return_size_val,
4251                              bool deoptimize_on_exception,
4252                              InlineTypeNode* inline_type_node) {
4253   // Compute size in doublewords
4254   // The size is always an integral number of doublewords, represented
4255   // as a positive bytewise size stored in the klass's layout_helper.
4256   // The layout_helper also encodes (in a low bit) the need for a slow path.
4257   jint  layout_con = Klass::_lh_neutral_value;
4258   Node* layout_val = get_layout_helper(klass_node, layout_con);
4259   bool  layout_is_con = (layout_val == nullptr);
4260 
4261   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4262   // Generate the initial go-slow test.  It's either ALWAYS (return a
4263   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4264   // case) a computed value derived from the layout_helper.
4265   Node* initial_slow_test = nullptr;
4266   if (layout_is_con) {
4267     assert(!StressReflectiveCode, "stress mode does not use these paths");
4268     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4269     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4270   } else {   // reflective case
4271     // This reflective path is used by Unsafe.allocateInstance.
4272     // (It may be stress-tested by specifying StressReflectiveCode.)
4273     // Basically, we want to get into the VM is there's an illegal argument.
4274     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4275     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4276     if (extra_slow_test != intcon(0)) {
4277       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4278     }
4279     // (Macro-expander will further convert this to a Bool, if necessary.)

4290 
4291     // Clear the low bits to extract layout_helper_size_in_bytes:
4292     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4293     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4294     size = _gvn.transform( new AndXNode(size, mask) );
4295   }
4296   if (return_size_val != nullptr) {
4297     (*return_size_val) = size;
4298   }
4299 
4300   // This is a precise notnull oop of the klass.
4301   // (Actually, it need not be precise if this is a reflective allocation.)
4302   // It's what we cast the result to.
4303   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4304   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4305   const TypeOopPtr* oop_type = tklass->as_instance_type();
4306 
4307   // Now generate allocation code
4308 
4309   // The entire memory state is needed for slow path of the allocation
4310   // since GC and deoptimization can happen.
4311   Node *mem = reset_memory();
4312   set_all_memory(mem); // Create new memory state
4313 
4314   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4315                                          control(), mem, i_o(),
4316                                          size, klass_node,
4317                                          initial_slow_test, inline_type_node);
4318 
4319   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4320 }
4321 
4322 //-------------------------------new_array-------------------------------------
4323 // helper for newarray and anewarray
4324 // The 'length' parameter is (obviously) the length of the array.
4325 // The optional arguments are for specialized use by intrinsics:
4326 //  - If 'return_size_val', report the non-padded array size (sum of header size
4327 //    and array body) to the caller.
4328 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4329 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4330                           Node* length,         // number of array elements
4331                           int   nargs,          // number of arguments to push back for uncommon trap
4332                           Node* *return_size_val,
4333                           bool deoptimize_on_exception,
4334                           Node* init_val) {
4335   jint  layout_con = Klass::_lh_neutral_value;
4336   Node* layout_val = get_layout_helper(klass_node, layout_con);
4337   bool  layout_is_con = (layout_val == nullptr);
4338 
4339   if (!layout_is_con && !StressReflectiveCode &&
4340       !too_many_traps(Deoptimization::Reason_class_check)) {
4341     // This is a reflective array creation site.
4342     // Optimistically assume that it is a subtype of Object[],
4343     // so that we can fold up all the address arithmetic.
4344     layout_con = Klass::array_layout_helper(T_OBJECT);
4345     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4346     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4347     { BuildCutout unless(this, bol_lh, PROB_MAX);
4348       inc_sp(nargs);
4349       uncommon_trap(Deoptimization::Reason_class_check,
4350                     Deoptimization::Action_maybe_recompile);
4351     }
4352     layout_val = nullptr;
4353     layout_is_con = true;
4354   }
4355 
4356   // Generate the initial go-slow test.  Make sure we do not overflow
4357   // if length is huge (near 2Gig) or negative!  We do not need
4358   // exact double-words here, just a close approximation of needed
4359   // double-words.  We can't add any offset or rounding bits, lest we
4360   // take a size -1 of bytes and make it positive.  Use an unsigned
4361   // compare, so negative sizes look hugely positive.
4362   int fast_size_limit = FastAllocateSizeLimit;
4363   if (layout_is_con) {
4364     assert(!StressReflectiveCode, "stress mode does not use these paths");
4365     // Increase the size limit if we have exact knowledge of array type.
4366     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4367     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);


4368   }
4369 
4370   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4371   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4372 
4373   // --- Size Computation ---
4374   // array_size = round_to_heap(array_header + (length << elem_shift));
4375   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4376   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4377   // The rounding mask is strength-reduced, if possible.
4378   int round_mask = MinObjAlignmentInBytes - 1;
4379   Node* header_size = nullptr;
4380   // (T_BYTE has the weakest alignment and size restrictions...)
4381   if (layout_is_con) {
4382     int       hsize  = Klass::layout_helper_header_size(layout_con);
4383     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4384     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4385     if ((round_mask & ~right_n_bits(eshift)) == 0)
4386       round_mask = 0;  // strength-reduce it if it goes away completely
4387     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4388     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4389     assert(header_size_min <= hsize, "generic minimum is smallest");
4390     header_size = intcon(hsize);
4391   } else {
4392     Node* hss   = intcon(Klass::_lh_header_size_shift);
4393     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4394     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4395     header_size = _gvn.transform(new AndINode(header_size, hsm));
4396   }
4397 
4398   Node* elem_shift = nullptr;
4399   if (layout_is_con) {
4400     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4401     if (eshift != 0)
4402       elem_shift = intcon(eshift);
4403   } else {
4404     // There is no need to mask or shift this value.
4405     // The semantics of LShiftINode include an implicit mask to 0x1F.
4406     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4407     elem_shift = layout_val;

4456   }
4457   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4458 
4459   if (return_size_val != nullptr) {
4460     // This is the size
4461     (*return_size_val) = non_rounded_size;
4462   }
4463 
4464   Node* size = non_rounded_size;
4465   if (round_mask != 0) {
4466     Node* mask1 = MakeConX(round_mask);
4467     size = _gvn.transform(new AddXNode(size, mask1));
4468     Node* mask2 = MakeConX(~round_mask);
4469     size = _gvn.transform(new AndXNode(size, mask2));
4470   }
4471   // else if round_mask == 0, the size computation is self-rounding
4472 
4473   // Now generate allocation code
4474 
4475   // The entire memory state is needed for slow path of the allocation
4476   // since GC and deoptimization can happen.
4477   Node *mem = reset_memory();
4478   set_all_memory(mem); // Create new memory state
4479 
4480   if (initial_slow_test->is_Bool()) {
4481     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4482     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4483   }
4484 
4485   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4486   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4487 
4488   Node* raw_init_value = nullptr;
4489   if (init_val != nullptr) {
4490     // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays
4491     if (ary_type->is_flat()) {
4492       initial_slow_test = intcon(1);
4493     }
4494 
4495     if (UseCompressedOops) {
4496       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4497       init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop()));
4498       Node* lower = _gvn.transform(new CastP2XNode(control(), init_val));
4499       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4500       raw_init_value = _gvn.transform(new OrLNode(lower, upper));
4501     } else {
4502       raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val));
4503     }
4504   }
4505 
4506   Node* valid_length_test = _gvn.intcon(1);
4507   if (ary_type->isa_aryptr()) {
4508     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4509     jint max = TypeAryPtr::max_array_length(bt);
4510     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4511     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4512   }
4513 
4514   // Create the AllocateArrayNode and its result projections
4515   AllocateArrayNode* alloc
4516     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4517                             control(), mem, i_o(),
4518                             size, klass_node,
4519                             initial_slow_test,
4520                             length, valid_length_test,
4521                             init_val, raw_init_value);
4522   // Cast to correct type.  Note that the klass_node may be constant or not,
4523   // and in the latter case the actual array type will be inexact also.
4524   // (This happens via a non-constant argument to inline_native_newArray.)
4525   // In any case, the value of klass_node provides the desired array type.
4526   const TypeInt* length_type = _gvn.find_int_type(length);
4527   if (ary_type->isa_aryptr() && length_type != nullptr) {
4528     // Try to get a better type than POS for the size
4529     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4530   }
4531 
4532   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4533 
4534   array_ideal_length(alloc, ary_type, true);
4535   return javaoop;
4536 }
4537 
4538 // The following "Ideal_foo" functions are placed here because they recognize
4539 // the graph shapes created by the functions immediately above.
4540 
4541 //---------------------------Ideal_allocation----------------------------------

4654   set_all_memory(ideal.merged_memory());
4655   set_i_o(ideal.i_o());
4656   set_control(ideal.ctrl());
4657 }
4658 
4659 void GraphKit::final_sync(IdealKit& ideal) {
4660   // Final sync IdealKit and graphKit.
4661   sync_kit(ideal);
4662 }
4663 
4664 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4665   Node* len = load_array_length(load_String_value(str, set_ctrl));
4666   Node* coder = load_String_coder(str, set_ctrl);
4667   // Divide length by 2 if coder is UTF16
4668   return _gvn.transform(new RShiftINode(len, coder));
4669 }
4670 
4671 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4672   int value_offset = java_lang_String::value_offset();
4673   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4674                                                      false, nullptr, Type::Offset(0));
4675   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4676   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4677                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4678                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4679   Node* p = basic_plus_adr(str, str, value_offset);
4680   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4681                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4682   return load;
4683 }
4684 
4685 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4686   if (!CompactStrings) {
4687     return intcon(java_lang_String::CODER_UTF16);
4688   }
4689   int coder_offset = java_lang_String::coder_offset();
4690   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4691                                                      false, nullptr, Type::Offset(0));
4692   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4693 
4694   Node* p = basic_plus_adr(str, str, coder_offset);
4695   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4696                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4697   return load;
4698 }
4699 
4700 void GraphKit::store_String_value(Node* str, Node* value) {
4701   int value_offset = java_lang_String::value_offset();
4702   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4703                                                      false, nullptr, Type::Offset(0));
4704   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4705 
4706   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4707                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4708 }
4709 
4710 void GraphKit::store_String_coder(Node* str, Node* value) {
4711   int coder_offset = java_lang_String::coder_offset();
4712   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4713                                                      false, nullptr, Type::Offset(0));
4714   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4715 
4716   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4717                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4718 }
4719 
4720 // Capture src and dst memory state with a MergeMemNode
4721 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4722   if (src_type == dst_type) {
4723     // Types are equal, we don't need a MergeMemNode
4724     return memory(src_type);
4725   }
4726   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4727   record_for_igvn(merge); // fold it up later, if possible
4728   int src_idx = C->get_alias_index(src_type);
4729   int dst_idx = C->get_alias_index(dst_type);
4730   merge->set_memory_at(src_idx, memory(src_idx));
4731   merge->set_memory_at(dst_idx, memory(dst_idx));
4732   return merge;
4733 }

4806   i_char->init_req(2, AddI(i_char, intcon(2)));
4807 
4808   set_control(IfFalse(iff));
4809   set_memory(st, TypeAryPtr::BYTES);
4810 }
4811 
4812 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4813   if (!field->is_constant()) {
4814     return nullptr; // Field not marked as constant.
4815   }
4816   ciInstance* holder = nullptr;
4817   if (!field->is_static()) {
4818     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4819     if (const_oop != nullptr && const_oop->is_instance()) {
4820       holder = const_oop->as_instance();
4821     }
4822   }
4823   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4824                                                         /*is_unsigned_load=*/false);
4825   if (con_type != nullptr) {
4826     Node* con = makecon(con_type);
4827     if (field->type()->is_inlinetype()) {
4828       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass());
4829     } else if (con_type->is_inlinetypeptr()) {
4830       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass());
4831     }
4832     return con;
4833   }
4834   return nullptr;
4835 }
4836 
4837 //---------------------------load_mirror_from_klass----------------------------
4838 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4839 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4840   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4841   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4842   // mirror = ((OopHandle)mirror)->resolve();
4843   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4844 }
4845 
4846 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4847   const Type* obj_type = obj->bottom_type();
4848   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4849   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4850     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4851     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4852     obj = casted_obj;
4853   }
4854   if (sig_type->is_inlinetypeptr()) {
4855     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass());
4856   }
4857   return obj;
4858 }
< prev index next >