< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/register.hpp"



  26 #include "ci/ciObjArray.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/idealKit.hpp"

  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"


  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subtypenode.hpp"

  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"

  49 #include "utilities/bitMap.inline.hpp"
  50 #include "utilities/growableArray.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 
  53 //----------------------------GraphKit-----------------------------------------
  54 // Main utility constructor.
  55 GraphKit::GraphKit(JVMState* jvms)
  56   : Phase(Phase::Parser),
  57     _env(C->env()),
  58     _gvn(*C->initial_gvn()),
  59     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  60 {

  61   _exceptions = jvms->map()->next_exception();
  62   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  63   set_jvms(jvms);







  64 }
  65 
  66 // Private constructor for parser.
  67 GraphKit::GraphKit()
  68   : Phase(Phase::Parser),
  69     _env(C->env()),
  70     _gvn(*C->initial_gvn()),
  71     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  72 {
  73   _exceptions = nullptr;
  74   set_map(nullptr);
  75   DEBUG_ONLY(_sp = -99);
  76   DEBUG_ONLY(set_bci(-99));
  77 }
  78 
  79 
  80 
  81 //---------------------------clean_stack---------------------------------------
  82 // Clear away rubbish from the stack area of the JVM state.
  83 // This destroys any arguments that may be waiting on the stack.

 328 }
 329 static inline void add_one_req(Node* dstphi, Node* src) {
 330   assert(is_hidden_merge(dstphi), "must be a special merge node");
 331   assert(!is_hidden_merge(src), "must not be a special merge node");
 332   dstphi->add_req(src);
 333 }
 334 
 335 //-----------------------combine_exception_states------------------------------
 336 // This helper function combines exception states by building phis on a
 337 // specially marked state-merging region.  These regions and phis are
 338 // untransformed, and can build up gradually.  The region is marked by
 339 // having a control input of its exception map, rather than null.  Such
 340 // regions do not appear except in this function, and in use_exception_state.
 341 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 342   if (failing_internal()) {
 343     return;  // dying anyway...
 344   }
 345   JVMState* ex_jvms = ex_map->_jvms;
 346   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 347   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 348   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");

 349   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 350   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 351   assert(ex_map->req() == phi_map->req(), "matching maps");
 352   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 353   Node*         hidden_merge_mark = root();
 354   Node*         region  = phi_map->control();
 355   MergeMemNode* phi_mem = phi_map->merged_memory();
 356   MergeMemNode* ex_mem  = ex_map->merged_memory();
 357   if (region->in(0) != hidden_merge_mark) {
 358     // The control input is not (yet) a specially-marked region in phi_map.
 359     // Make it so, and build some phis.
 360     region = new RegionNode(2);
 361     _gvn.set_type(region, Type::CONTROL);
 362     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 363     region->init_req(1, phi_map->control());
 364     phi_map->set_control(region);
 365     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 366     record_for_igvn(io_phi);
 367     _gvn.set_type(io_phi, Type::ABIO);
 368     phi_map->set_i_o(io_phi);

 856         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 857           tty->print_cr("Zombie local %d: ", local);
 858           jvms->dump();
 859         }
 860         return false;
 861       }
 862     }
 863   }
 864   return true;
 865 }
 866 
 867 #endif //ASSERT
 868 
 869 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 870 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 871   ciMethod* cur_method = jvms->method();
 872   int       cur_bci   = jvms->bci();
 873   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 874     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 875     return Interpreter::bytecode_should_reexecute(code) ||
 876            (is_anewarray && code == Bytecodes::_multianewarray);
 877     // Reexecute _multianewarray bytecode which was replaced with
 878     // sequence of [a]newarray. See Parse::do_multianewarray().
 879     //
 880     // Note: interpreter should not have it set since this optimization
 881     // is limited by dimensions and guarded by flag so in some cases
 882     // multianewarray() runtime calls will be generated and
 883     // the bytecode should not be reexecutes (stack will not be reset).
 884   } else {
 885     return false;
 886   }
 887 }
 888 
 889 // Helper function for adding JVMState and debug information to node
 890 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 891   // Add the safepoint edges to the call (or other safepoint).
 892 
 893   // Make sure dead locals are set to top.  This
 894   // should help register allocation time and cut down on the size
 895   // of the deoptimization information.
 896   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 924 
 925   if (env()->should_retain_local_variables()) {
 926     // At any safepoint, this method can get breakpointed, which would
 927     // then require an immediate deoptimization.
 928     can_prune_locals = false;  // do not prune locals
 929     stack_slots_not_pruned = 0;
 930   }
 931 
 932   // do not scribble on the input jvms
 933   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 934   call->set_jvms(out_jvms); // Start jvms list for call node
 935 
 936   // For a known set of bytecodes, the interpreter should reexecute them if
 937   // deoptimization happens. We set the reexecute state for them here
 938   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 939       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 940 #ifdef ASSERT
 941     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 942     assert(method() == youngest_jvms->method(), "sanity");
 943     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 944     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");

 945 #endif // ASSERT
 946     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 947   }
 948 
 949   // Presize the call:
 950   DEBUG_ONLY(uint non_debug_edges = call->req());
 951   call->add_req_batch(top(), youngest_jvms->debug_depth());
 952   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 953 
 954   // Set up edges so that the call looks like this:
 955   //  Call [state:] ctl io mem fptr retadr
 956   //       [parms:] parm0 ... parmN
 957   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 958   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 959   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 960   // Note that caller debug info precedes callee debug info.
 961 
 962   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 963   uint debug_ptr = call->req();
 964 
 965   // Loop over the map input edges associated with jvms, add them
 966   // to the call node, & reset all offsets to match call node array.


 967   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 968     uint debug_end   = debug_ptr;
 969     uint debug_start = debug_ptr - in_jvms->debug_size();
 970     debug_ptr = debug_start;  // back up the ptr
 971 
 972     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 973     uint j, k, l;
 974     SafePointNode* in_map = in_jvms->map();
 975     out_jvms->set_map(call);
 976 
 977     if (can_prune_locals) {
 978       assert(in_jvms->method() == out_jvms->method(), "sanity");
 979       // If the current throw can reach an exception handler in this JVMS,
 980       // then we must keep everything live that can reach that handler.
 981       // As a quick and dirty approximation, we look for any handlers at all.
 982       if (in_jvms->method()->has_exception_handlers()) {
 983         can_prune_locals = false;
 984       }
 985     }
 986 
 987     // Add the Locals
 988     k = in_jvms->locoff();
 989     l = in_jvms->loc_size();
 990     out_jvms->set_locoff(p);
 991     if (!can_prune_locals) {
 992       for (j = 0; j < l; j++)
 993         call->set_req(p++, in_map->in(k+j));

 994     } else {
 995       p += l;  // already set to top above by add_req_batch
 996     }
 997 
 998     // Add the Expression Stack
 999     k = in_jvms->stkoff();
1000     l = in_jvms->sp();
1001     out_jvms->set_stkoff(p);
1002     if (!can_prune_locals) {
1003       for (j = 0; j < l; j++)
1004         call->set_req(p++, in_map->in(k+j));

1005     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1006       // Divide stack into {S0,...,S1}, where S0 is set to top.
1007       uint s1 = stack_slots_not_pruned;
1008       stack_slots_not_pruned = 0;  // for next iteration
1009       if (s1 > l)  s1 = l;
1010       uint s0 = l - s1;
1011       p += s0;  // skip the tops preinstalled by add_req_batch
1012       for (j = s0; j < l; j++)
1013         call->set_req(p++, in_map->in(k+j));
1014     } else {
1015       p += l;  // already set to top above by add_req_batch
1016     }
1017 
1018     // Add the Monitors
1019     k = in_jvms->monoff();
1020     l = in_jvms->mon_size();
1021     out_jvms->set_monoff(p);
1022     for (j = 0; j < l; j++)
1023       call->set_req(p++, in_map->in(k+j));
1024 
1025     // Copy any scalar object fields.
1026     k = in_jvms->scloff();
1027     l = in_jvms->scl_size();
1028     out_jvms->set_scloff(p);
1029     for (j = 0; j < l; j++)
1030       call->set_req(p++, in_map->in(k+j));
1031 
1032     // Finish the new jvms.
1033     out_jvms->set_endoff(p);
1034 
1035     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1036     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1037     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1038     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1039     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1040     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1041 
1042     // Update the two tail pointers in parallel.

1043     out_jvms = out_jvms->caller();
1044     in_jvms  = in_jvms->caller();
1045   }
1046 
1047   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1048 
1049   // Test the correctness of JVMState::debug_xxx accessors:
1050   assert(call->jvms()->debug_start() == non_debug_edges, "");
1051   assert(call->jvms()->debug_end()   == call->req(), "");
1052   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1053 }
1054 
1055 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1056   Bytecodes::Code code = java_bc();
1057   if (code == Bytecodes::_wide) {
1058     code = method()->java_code_at_bci(bci() + 1);
1059   }
1060 
1061   if (code != Bytecodes::_illegal) {
1062     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1198   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1199   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1200   return _gvn.transform( new AndLNode(conv, mask) );
1201 }
1202 
1203 Node* GraphKit::ConvL2I(Node* offset) {
1204   // short-circuit a common case
1205   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1206   if (offset_con != (jlong)Type::OffsetBot) {
1207     return intcon((int) offset_con);
1208   }
1209   return _gvn.transform( new ConvL2INode(offset));
1210 }
1211 
1212 //-------------------------load_object_klass-----------------------------------
1213 Node* GraphKit::load_object_klass(Node* obj) {
1214   // Special-case a fresh allocation to avoid building nodes:
1215   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1216   if (akls != nullptr)  return akls;
1217   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1218   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1219 }
1220 
1221 //-------------------------load_array_length-----------------------------------
1222 Node* GraphKit::load_array_length(Node* array) {
1223   // Special-case a fresh allocation to avoid building nodes:
1224   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1225   Node *alen;
1226   if (alloc == nullptr) {
1227     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1228     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1229   } else {
1230     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1231   }
1232   return alen;
1233 }
1234 
1235 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1236                                    const TypeOopPtr* oop_type,
1237                                    bool replace_length_in_map) {
1238   Node* length = alloc->Ideal_length();

1247         replace_in_map(length, ccast);
1248       }
1249       return ccast;
1250     }
1251   }
1252   return length;
1253 }
1254 
1255 //------------------------------do_null_check----------------------------------
1256 // Helper function to do a null pointer check.  Returned value is
1257 // the incoming address with null casted away.  You are allowed to use the
1258 // not-null value only if you are control dependent on the test.
1259 #ifndef PRODUCT
1260 extern uint explicit_null_checks_inserted,
1261             explicit_null_checks_elided;
1262 #endif
1263 Node* GraphKit::null_check_common(Node* value, BasicType type,
1264                                   // optional arguments for variations:
1265                                   bool assert_null,
1266                                   Node* *null_control,
1267                                   bool speculative) {

1268   assert(!assert_null || null_control == nullptr, "not both at once");
1269   if (stopped())  return top();
1270   NOT_PRODUCT(explicit_null_checks_inserted++);
1271 























1272   // Construct null check
1273   Node *chk = nullptr;
1274   switch(type) {
1275     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1276     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1277     case T_ARRAY  : // fall through
1278       type = T_OBJECT;  // simplify further tests
1279     case T_OBJECT : {
1280       const Type *t = _gvn.type( value );
1281 
1282       const TypeOopPtr* tp = t->isa_oopptr();
1283       if (tp != nullptr && !tp->is_loaded()
1284           // Only for do_null_check, not any of its siblings:
1285           && !assert_null && null_control == nullptr) {
1286         // Usually, any field access or invocation on an unloaded oop type
1287         // will simply fail to link, since the statically linked class is
1288         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1289         // the static class is loaded but the sharper oop type is not.
1290         // Rather than checking for this obscure case in lots of places,
1291         // we simply observe that a null check on an unloaded class

1355         }
1356         Node *oldcontrol = control();
1357         set_control(cfg);
1358         Node *res = cast_not_null(value);
1359         set_control(oldcontrol);
1360         NOT_PRODUCT(explicit_null_checks_elided++);
1361         return res;
1362       }
1363       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1364       if (cfg == nullptr)  break;  // Quit at region nodes
1365       depth++;
1366     }
1367   }
1368 
1369   //-----------
1370   // Branch to failure if null
1371   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1372   Deoptimization::DeoptReason reason;
1373   if (assert_null) {
1374     reason = Deoptimization::reason_null_assert(speculative);
1375   } else if (type == T_OBJECT) {
1376     reason = Deoptimization::reason_null_check(speculative);
1377   } else {
1378     reason = Deoptimization::Reason_div0_check;
1379   }
1380   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1381   // ciMethodData::has_trap_at will return a conservative -1 if any
1382   // must-be-null assertion has failed.  This could cause performance
1383   // problems for a method after its first do_null_assert failure.
1384   // Consider using 'Reason_class_check' instead?
1385 
1386   // To cause an implicit null check, we set the not-null probability
1387   // to the maximum (PROB_MAX).  For an explicit check the probability
1388   // is set to a smaller value.
1389   if (null_control != nullptr || too_many_traps(reason)) {
1390     // probability is less likely
1391     ok_prob =  PROB_LIKELY_MAG(3);
1392   } else if (!assert_null &&
1393              (ImplicitNullCheckThreshold > 0) &&
1394              method() != nullptr &&
1395              (method()->method_data()->trap_count(reason)

1429   }
1430 
1431   if (assert_null) {
1432     // Cast obj to null on this path.
1433     replace_in_map(value, zerocon(type));
1434     return zerocon(type);
1435   }
1436 
1437   // Cast obj to not-null on this path, if there is no null_control.
1438   // (If there is a null_control, a non-null value may come back to haunt us.)
1439   if (type == T_OBJECT) {
1440     Node* cast = cast_not_null(value, false);
1441     if (null_control == nullptr || (*null_control) == top())
1442       replace_in_map(value, cast);
1443     value = cast;
1444   }
1445 
1446   return value;
1447 }
1448 
1449 
1450 //------------------------------cast_not_null----------------------------------
1451 // Cast obj to not-null on this path
1452 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {









1453   const Type *t = _gvn.type(obj);
1454   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1455   // Object is already not-null?
1456   if( t == t_not_null ) return obj;
1457 
1458   Node* cast = new CastPPNode(control(), obj,t_not_null);
1459   cast = _gvn.transform( cast );
1460 
1461   // Scan for instances of 'obj' in the current JVM mapping.
1462   // These instances are known to be not-null after the test.
1463   if (do_replace_in_map)
1464     replace_in_map(obj, cast);
1465 
1466   return cast;                  // Return casted value
1467 }
1468 











1469 // Sometimes in intrinsics, we implicitly know an object is not null
1470 // (there's no actual null check) so we can cast it to not null. In
1471 // the course of optimizations, the input to the cast can become null.
1472 // In that case that data path will die and we need the control path
1473 // to become dead as well to keep the graph consistent. So we have to
1474 // add a check for null for which one branch can't be taken. It uses
1475 // an OpaqueNotNull node that will cause the check to be removed after loop
1476 // opts so the test goes away and the compiled code doesn't execute a
1477 // useless check.
1478 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1479   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1480     return value;
1481   }
1482   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1483   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1484   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1485   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1486   _gvn.set_type(iff, iff->Value(&_gvn));
1487   if (!tst->is_Con()) {
1488     record_for_igvn(iff);

1561 // These are layered on top of the factory methods in LoadNode and StoreNode,
1562 // and integrate with the parser's memory state and _gvn engine.
1563 //
1564 
1565 // factory methods in "int adr_idx"
1566 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1567                           MemNode::MemOrd mo,
1568                           LoadNode::ControlDependency control_dependency,
1569                           bool require_atomic_access,
1570                           bool unaligned,
1571                           bool mismatched,
1572                           bool unsafe,
1573                           uint8_t barrier_data) {
1574   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1575   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1576   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1577   DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx));
1578   Node* mem = memory(adr_idx);
1579   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1580   ld = _gvn.transform(ld);

1581   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1582     // Improve graph before escape analysis and boxing elimination.
1583     record_for_igvn(ld);
1584     if (ld->is_DecodeN()) {
1585       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1586       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1587       // a Phi). Recording such cases is still perfectly sound, but may be
1588       // unnecessary and result in some minor IGVN overhead.
1589       record_for_igvn(ld->in(1));
1590     }
1591   }
1592   return ld;
1593 }
1594 
1595 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1596                                 MemNode::MemOrd mo,
1597                                 bool require_atomic_access,
1598                                 bool unaligned,
1599                                 bool mismatched,
1600                                 bool unsafe,

1614   if (unsafe) {
1615     st->as_Store()->set_unsafe_access();
1616   }
1617   st->as_Store()->set_barrier_data(barrier_data);
1618   st = _gvn.transform(st);
1619   set_memory(st, adr_idx);
1620   // Back-to-back stores can only remove intermediate store with DU info
1621   // so push on worklist for optimizer.
1622   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1623     record_for_igvn(st);
1624 
1625   return st;
1626 }
1627 
1628 Node* GraphKit::access_store_at(Node* obj,
1629                                 Node* adr,
1630                                 const TypePtr* adr_type,
1631                                 Node* val,
1632                                 const Type* val_type,
1633                                 BasicType bt,
1634                                 DecoratorSet decorators) {


1635   // Transformation of a value which could be null pointer (CastPP #null)
1636   // could be delayed during Parse (for example, in adjust_map_after_if()).
1637   // Execute transformation here to avoid barrier generation in such case.
1638   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1639     val = _gvn.makecon(TypePtr::NULL_PTR);
1640   }
1641 
1642   if (stopped()) {
1643     return top(); // Dead path ?
1644   }
1645 
1646   assert(val != nullptr, "not dead path");







1647 
1648   C2AccessValuePtr addr(adr, adr_type);
1649   C2AccessValue value(val, val_type);
1650   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1651   if (access.is_raw()) {
1652     return _barrier_set->BarrierSetC2::store_at(access, value);
1653   } else {
1654     return _barrier_set->store_at(access, value);
1655   }
1656 }
1657 
1658 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1659                                Node* adr,   // actual address to store val at
1660                                const TypePtr* adr_type,
1661                                const Type* val_type,
1662                                BasicType bt,
1663                                DecoratorSet decorators) {

1664   if (stopped()) {
1665     return top(); // Dead path ?
1666   }
1667 
1668   C2AccessValuePtr addr(adr, adr_type);
1669   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1670   if (access.is_raw()) {
1671     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1672   } else {
1673     return _barrier_set->load_at(access, val_type);
1674   }
1675 }
1676 
1677 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1678                             const Type* val_type,
1679                             BasicType bt,
1680                             DecoratorSet decorators) {
1681   if (stopped()) {
1682     return top(); // Dead path ?
1683   }
1684 
1685   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1686   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1687   if (access.is_raw()) {
1688     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1689   } else {

1754                                      Node* new_val,
1755                                      const Type* value_type,
1756                                      BasicType bt,
1757                                      DecoratorSet decorators) {
1758   C2AccessValuePtr addr(adr, adr_type);
1759   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1760   if (access.is_raw()) {
1761     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1762   } else {
1763     return _barrier_set->atomic_add_at(access, new_val, value_type);
1764   }
1765 }
1766 
1767 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1768   return _barrier_set->clone(this, src, dst, size, is_array);
1769 }
1770 
1771 //-------------------------array_element_address-------------------------
1772 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1773                                       const TypeInt* sizetype, Node* ctrl) {
1774   uint shift  = exact_log2(type2aelembytes(elembt));
1775   uint header = arrayOopDesc::base_offset_in_bytes(elembt);













1776 
1777   // short-circuit a common case (saves lots of confusing waste motion)
1778   jint idx_con = find_int_con(idx, -1);
1779   if (idx_con >= 0) {
1780     intptr_t offset = header + ((intptr_t)idx_con << shift);
1781     return basic_plus_adr(ary, offset);
1782   }
1783 
1784   // must be correct type for alignment purposes
1785   Node* base  = basic_plus_adr(ary, header);
1786   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1787   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1788   return basic_plus_adr(ary, base, scale);
1789 }
1790 

































1791 //-------------------------load_array_element-------------------------
1792 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1793   const Type* elemtype = arytype->elem();
1794   BasicType elembt = elemtype->array_element_basic_type();
1795   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1796   if (elembt == T_NARROWOOP) {
1797     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1798   }
1799   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1800                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1801   return ld;
1802 }
1803 
1804 //-------------------------set_arguments_for_java_call-------------------------
1805 // Arguments (pre-popped from the stack) are taken from the JVMS.
1806 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1807   // Add the call arguments:
1808   uint nargs = call->method()->arg_size();
1809   for (uint i = 0; i < nargs; i++) {
1810     Node* arg = argument(i);
1811     call->init_req(i + TypeFunc::Parms, arg);




































1812   }
1813 }
1814 
1815 //---------------------------set_edges_for_java_call---------------------------
1816 // Connect a newly created call into the current JVMS.
1817 // A return value node (if any) is returned from set_edges_for_java_call.
1818 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1819 
1820   // Add the predefined inputs:
1821   call->init_req( TypeFunc::Control, control() );
1822   call->init_req( TypeFunc::I_O    , i_o() );
1823   call->init_req( TypeFunc::Memory , reset_memory() );
1824   call->init_req( TypeFunc::FramePtr, frameptr() );
1825   call->init_req( TypeFunc::ReturnAdr, top() );
1826 
1827   add_safepoint_edges(call, must_throw);
1828 
1829   Node* xcall = _gvn.transform(call);
1830 
1831   if (xcall == top()) {
1832     set_control(top());
1833     return;
1834   }
1835   assert(xcall == call, "call identity is stable");
1836 
1837   // Re-use the current map to produce the result.
1838 
1839   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1840   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1841   set_all_memory_call(xcall, separate_io_proj);
1842 
1843   //return xcall;   // no need, caller already has it
1844 }
1845 
1846 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1847   if (stopped())  return top();  // maybe the call folded up?
1848 
1849   // Capture the return value, if any.
1850   Node* ret;
1851   if (call->method() == nullptr ||
1852       call->method()->return_type()->basic_type() == T_VOID)
1853         ret = top();
1854   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1855 
1856   // Note:  Since any out-of-line call can produce an exception,
1857   // we always insert an I_O projection from the call into the result.
1858 
1859   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1860 
1861   if (separate_io_proj) {
1862     // The caller requested separate projections be used by the fall
1863     // through and exceptional paths, so replace the projections for
1864     // the fall through path.
1865     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1866     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1867   }















































































1868   return ret;
1869 }
1870 
1871 //--------------------set_predefined_input_for_runtime_call--------------------
1872 // Reading and setting the memory state is way conservative here.
1873 // The real problem is that I am not doing real Type analysis on memory,
1874 // so I cannot distinguish card mark stores from other stores.  Across a GC
1875 // point the Store Barrier and the card mark memory has to agree.  I cannot
1876 // have a card mark store and its barrier split across the GC point from
1877 // either above or below.  Here I get that to happen by reading ALL of memory.
1878 // A better answer would be to separate out card marks from other memory.
1879 // For now, return the input memory state, so that it can be reused
1880 // after the call, if this call has restricted memory effects.
1881 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1882   // Set fixed predefined input arguments
1883   call->init_req(TypeFunc::Control, control());
1884   call->init_req(TypeFunc::I_O, top()); // does no i/o
1885   call->init_req(TypeFunc::ReturnAdr, top());
1886   if (call->is_CallLeafPure()) {
1887     call->init_req(TypeFunc::Memory, top());

1949     if (use->is_MergeMem()) {
1950       wl.push(use);
1951     }
1952   }
1953 }
1954 
1955 // Replace the call with the current state of the kit.
1956 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
1957   JVMState* ejvms = nullptr;
1958   if (has_exceptions()) {
1959     ejvms = transfer_exceptions_into_jvms();
1960   }
1961 
1962   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1963   ReplacedNodes replaced_nodes_exception;
1964   Node* ex_ctl = top();
1965 
1966   SafePointNode* final_state = stop();
1967 
1968   // Find all the needed outputs of this call
1969   CallProjections callprojs;
1970   call->extract_projections(&callprojs, true, do_asserts);
1971 
1972   Unique_Node_List wl;
1973   Node* init_mem = call->in(TypeFunc::Memory);
1974   Node* final_mem = final_state->in(TypeFunc::Memory);
1975   Node* final_ctl = final_state->in(TypeFunc::Control);
1976   Node* final_io = final_state->in(TypeFunc::I_O);
1977 
1978   // Replace all the old call edges with the edges from the inlining result
1979   if (callprojs.fallthrough_catchproj != nullptr) {
1980     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1981   }
1982   if (callprojs.fallthrough_memproj != nullptr) {
1983     if (final_mem->is_MergeMem()) {
1984       // Parser's exits MergeMem was not transformed but may be optimized
1985       final_mem = _gvn.transform(final_mem);
1986     }
1987     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1988     add_mergemem_users_to_worklist(wl, final_mem);
1989   }
1990   if (callprojs.fallthrough_ioproj != nullptr) {
1991     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1992   }
1993 
1994   // Replace the result with the new result if it exists and is used
1995   if (callprojs.resproj != nullptr && result != nullptr) {
1996     C->gvn_replace_by(callprojs.resproj, result);














1997   }
1998 
1999   if (ejvms == nullptr) {
2000     // No exception edges to simply kill off those paths
2001     if (callprojs.catchall_catchproj != nullptr) {
2002       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
2003     }
2004     if (callprojs.catchall_memproj != nullptr) {
2005       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
2006     }
2007     if (callprojs.catchall_ioproj != nullptr) {
2008       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
2009     }
2010     // Replace the old exception object with top
2011     if (callprojs.exobj != nullptr) {
2012       C->gvn_replace_by(callprojs.exobj, C->top());
2013     }
2014   } else {
2015     GraphKit ekit(ejvms);
2016 
2017     // Load my combined exception state into the kit, with all phis transformed:
2018     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2019     replaced_nodes_exception = ex_map->replaced_nodes();
2020 
2021     Node* ex_oop = ekit.use_exception_state(ex_map);
2022 
2023     if (callprojs.catchall_catchproj != nullptr) {
2024       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
2025       ex_ctl = ekit.control();
2026     }
2027     if (callprojs.catchall_memproj != nullptr) {
2028       Node* ex_mem = ekit.reset_memory();
2029       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
2030       add_mergemem_users_to_worklist(wl, ex_mem);
2031     }
2032     if (callprojs.catchall_ioproj != nullptr) {
2033       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
2034     }
2035 
2036     // Replace the old exception object with the newly created one
2037     if (callprojs.exobj != nullptr) {
2038       C->gvn_replace_by(callprojs.exobj, ex_oop);
2039     }
2040   }
2041 
2042   // Disconnect the call from the graph
2043   call->disconnect_inputs(C);
2044   C->gvn_replace_by(call, C->top());
2045 
2046   // Clean up any MergeMems that feed other MergeMems since the
2047   // optimizer doesn't like that.
2048   while (wl.size() > 0) {
2049     _gvn.transform(wl.pop());
2050   }
2051 
2052   if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2053     replaced_nodes.apply(C, final_ctl);
2054   }
2055   if (!ex_ctl->is_top() && do_replaced_nodes) {
2056     replaced_nodes_exception.apply(C, ex_ctl);
2057   }
2058 }
2059 
2060 
2061 //------------------------------increment_counter------------------------------
2062 // for statistics: increment a VM counter by 1
2063 
2064 void GraphKit::increment_counter(address counter_addr) {
2065   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2066   increment_counter(adr1);
2067 }
2068 
2069 void GraphKit::increment_counter(Node* counter_addr) {
2070   Node* ctrl = control();
2071   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2072   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2232  *
2233  * @param n          node that the type applies to
2234  * @param exact_kls  type from profiling
2235  * @param maybe_null did profiling see null?
2236  *
2237  * @return           node with improved type
2238  */
2239 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2240   const Type* current_type = _gvn.type(n);
2241   assert(UseTypeSpeculation, "type speculation must be on");
2242 
2243   const TypePtr* speculative = current_type->speculative();
2244 
2245   // Should the klass from the profile be recorded in the speculative type?
2246   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2247     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2248     const TypeOopPtr* xtype = tklass->as_instance_type();
2249     assert(xtype->klass_is_exact(), "Should be exact");
2250     // Any reason to believe n is not null (from this profiling or a previous one)?
2251     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2252     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2253     // record the new speculative type's depth
2254     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2255     speculative = speculative->with_inline_depth(jvms()->depth());
2256   } else if (current_type->would_improve_ptr(ptr_kind)) {
2257     // Profiling report that null was never seen so we can change the
2258     // speculative type to non null ptr.
2259     if (ptr_kind == ProfileAlwaysNull) {
2260       speculative = TypePtr::NULL_PTR;
2261     } else {
2262       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2263       const TypePtr* ptr = TypePtr::NOTNULL;
2264       if (speculative != nullptr) {
2265         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2266       } else {
2267         speculative = ptr;
2268       }
2269     }
2270   }
2271 
2272   if (speculative != current_type->speculative()) {
2273     // Build a type with a speculative type (what we think we know
2274     // about the type but will need a guard when we use it)
2275     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2276     // We're changing the type, we need a new CheckCast node to carry
2277     // the new type. The new type depends on the control: what
2278     // profiling tells us is only valid from here as far as we can
2279     // tell.
2280     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2281     cast = _gvn.transform(cast);
2282     replace_in_map(n, cast);
2283     n = cast;
2284   }
2285 
2286   return n;
2287 }
2288 
2289 /**
2290  * Record profiling data from receiver profiling at an invoke with the
2291  * type system so that it can propagate it (speculation)
2292  *
2293  * @param n  receiver node
2294  *
2295  * @return   node with improved type
2296  */
2297 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2298   if (!UseTypeSpeculation) {
2299     return n;
2300   }
2301   ciKlass* exact_kls = profile_has_unique_klass();
2302   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2303   if ((java_bc() == Bytecodes::_checkcast ||
2304        java_bc() == Bytecodes::_instanceof ||
2305        java_bc() == Bytecodes::_aastore) &&
2306       method()->method_data()->is_mature()) {
2307     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2308     if (data != nullptr) {
2309       if (!data->as_BitData()->null_seen()) {
2310         ptr_kind = ProfileNeverNull;







2311       } else {
2312         if (TypeProfileCasts) {
2313           assert(data->is_ReceiverTypeData(), "bad profile data type");
2314           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2315           uint i = 0;
2316           for (; i < call->row_limit(); i++) {
2317             ciKlass* receiver = call->receiver(i);
2318             if (receiver != nullptr) {
2319               break;




2320             }

2321           }
2322           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2323         }
2324       }
2325     }
2326   }
2327   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2328 }
2329 
2330 /**
2331  * Record profiling data from argument profiling at an invoke with the
2332  * type system so that it can propagate it (speculation)
2333  *
2334  * @param dest_method  target method for the call
2335  * @param bc           what invoke bytecode is this?
2336  */
2337 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2338   if (!UseTypeSpeculation) {
2339     return;
2340   }
2341   const TypeFunc* tf    = TypeFunc::make(dest_method);
2342   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2343   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2344   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2345     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2346     if (is_reference_type(targ->basic_type())) {
2347       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2348       ciKlass* better_type = nullptr;
2349       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2350         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2351       }
2352       i++;
2353     }
2354   }
2355 }
2356 
2357 /**
2358  * Record profiling data from parameter profiling at an invoke with
2359  * the type system so that it can propagate it (speculation)
2360  */
2361 void GraphKit::record_profiled_parameters_for_speculation() {
2362   if (!UseTypeSpeculation) {
2363     return;
2364   }
2365   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2485                                   // The first null ends the list.
2486                                   Node* parm0, Node* parm1,
2487                                   Node* parm2, Node* parm3,
2488                                   Node* parm4, Node* parm5,
2489                                   Node* parm6, Node* parm7) {
2490   assert(call_addr != nullptr, "must not call null targets");
2491 
2492   // Slow-path call
2493   bool is_leaf = !(flags & RC_NO_LEAF);
2494   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2495   if (call_name == nullptr) {
2496     assert(!is_leaf, "must supply name for leaf");
2497     call_name = OptoRuntime::stub_name(call_addr);
2498   }
2499   CallNode* call;
2500   if (!is_leaf) {
2501     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2502   } else if (flags & RC_NO_FP) {
2503     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2504   } else  if (flags & RC_VECTOR){
2505     uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2506     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2507   } else if (flags & RC_PURE) {
2508     assert(adr_type == nullptr, "pure call does not touch memory");
2509     call = new CallLeafPureNode(call_type, call_addr, call_name);
2510   } else {
2511     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2512   }
2513 
2514   // The following is similar to set_edges_for_java_call,
2515   // except that the memory effects of the call are restricted to AliasIdxRaw.
2516 
2517   // Slow path call has no side-effects, uses few values
2518   bool wide_in  = !(flags & RC_NARROW_MEM);
2519   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2520 
2521   Node* prev_mem = nullptr;
2522   if (wide_in) {
2523     prev_mem = set_predefined_input_for_runtime_call(call);
2524   } else {
2525     assert(!wide_out, "narrow in => narrow out");
2526     Node* narrow_mem = memory(adr_type);
2527     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2528   }
2529 
2530   // Hook each parm in order.  Stop looking at the first null.
2531   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2532   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2533   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2534   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2535   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2536   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2537   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2538   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2539   /* close each nested if ===> */  } } } } } } } }
2540   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2541 
2542   if (!is_leaf) {
2543     // Non-leaves can block and take safepoints:
2544     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2545   }
2546   // Non-leaves can throw exceptions:
2547   if (has_io) {
2548     call->set_req(TypeFunc::I_O, i_o());
2549   }
2550 
2551   if (flags & RC_UNCOMMON) {
2552     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2553     // (An "if" probability corresponds roughly to an unconditional count.
2554     // Sort of.)
2555     call->set_cnt(PROB_UNLIKELY_MAG(4));
2556   }
2557 
2558   Node* c = _gvn.transform(call);
2559   assert(c == call, "cannot disappear");
2560 

2568 
2569   if (has_io) {
2570     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2571   }
2572   return call;
2573 
2574 }
2575 
2576 // i2b
2577 Node* GraphKit::sign_extend_byte(Node* in) {
2578   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2579   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2580 }
2581 
2582 // i2s
2583 Node* GraphKit::sign_extend_short(Node* in) {
2584   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2585   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2586 }
2587 

2588 //------------------------------merge_memory-----------------------------------
2589 // Merge memory from one path into the current memory state.
2590 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2591   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2592     Node* old_slice = mms.force_memory();
2593     Node* new_slice = mms.memory2();
2594     if (old_slice != new_slice) {
2595       PhiNode* phi;
2596       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2597         if (mms.is_empty()) {
2598           // clone base memory Phi's inputs for this memory slice
2599           assert(old_slice == mms.base_memory(), "sanity");
2600           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2601           _gvn.set_type(phi, Type::MEMORY);
2602           for (uint i = 1; i < phi->req(); i++) {
2603             phi->init_req(i, old_slice->in(i));
2604           }
2605         } else {
2606           phi = old_slice->as_Phi(); // Phi was generated already
2607         }

2664   gvn.transform(iff);
2665   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2666   return iff;
2667 }
2668 
2669 //-------------------------------gen_subtype_check-----------------------------
2670 // Generate a subtyping check.  Takes as input the subtype and supertype.
2671 // Returns 2 values: sets the default control() to the true path and returns
2672 // the false path.  Only reads invariant memory; sets no (visible) memory.
2673 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2674 // but that's not exposed to the optimizer.  This call also doesn't take in an
2675 // Object; if you wish to check an Object you need to load the Object's class
2676 // prior to coming here.
2677 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2678                                ciMethod* method, int bci) {
2679   Compile* C = gvn.C;
2680   if ((*ctrl)->is_top()) {
2681     return C->top();
2682   }
2683 








2684   // Fast check for identical types, perhaps identical constants.
2685   // The types can even be identical non-constants, in cases
2686   // involving Array.newInstance, Object.clone, etc.
2687   if (subklass == superklass)
2688     return C->top();             // false path is dead; no test needed.
2689 
2690   if (gvn.type(superklass)->singleton()) {
2691     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2692     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2693 
2694     // In the common case of an exact superklass, try to fold up the
2695     // test before generating code.  You may ask, why not just generate
2696     // the code and then let it fold up?  The answer is that the generated
2697     // code will necessarily include null checks, which do not always
2698     // completely fold away.  If they are also needless, then they turn
2699     // into a performance loss.  Example:
2700     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2701     // Here, the type of 'fa' is often exact, so the store check
2702     // of fa[1]=x will fold up, without testing the nullness of x.
2703     //
2704     // At macro expansion, we would have already folded the SubTypeCheckNode
2705     // being expanded here because we always perform the static sub type
2706     // check in SubTypeCheckNode::sub() regardless of whether
2707     // StressReflectiveCode is set or not. We can therefore skip this
2708     // static check when StressReflectiveCode is on.
2709     switch (C->static_subtype_check(superk, subk)) {
2710     case Compile::SSC_always_false:
2711       {
2712         Node* always_fail = *ctrl;
2713         *ctrl = gvn.C->top();
2714         return always_fail;
2715       }
2716     case Compile::SSC_always_true:
2717       return C->top();
2718     case Compile::SSC_easy_test:
2719       {
2720         // Just do a direct pointer compare and be done.
2721         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2722         *ctrl = gvn.transform(new IfTrueNode(iff));
2723         return gvn.transform(new IfFalseNode(iff));
2724       }
2725     case Compile::SSC_full_test:
2726       break;
2727     default:
2728       ShouldNotReachHere();
2729     }
2730   }
2731 
2732   // %%% Possible further optimization:  Even if the superklass is not exact,
2733   // if the subklass is the unique subtype of the superklass, the check
2734   // will always succeed.  We could leave a dependency behind to ensure this.
2735 
2736   // First load the super-klass's check-offset
2737   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2738   Node* m = C->immutable_memory();
2739   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2740   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2741   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();

2779   gvn.record_for_igvn(r_ok_subtype);
2780 
2781   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2782   // SubTypeCheck node
2783   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2784     ciCallProfile profile = method->call_profile_at_bci(bci);
2785     float total_prob = 0;
2786     for (int i = 0; profile.has_receiver(i); ++i) {
2787       float prob = profile.receiver_prob(i);
2788       total_prob += prob;
2789     }
2790     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2791       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2792       for (int i = 0; profile.has_receiver(i); ++i) {
2793         ciKlass* klass = profile.receiver(i);
2794         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2795         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2796         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2797           continue;
2798         }




2799         float prob = profile.receiver_prob(i);
2800         ConNode* klass_node = gvn.makecon(klass_t);
2801         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2802         Node* iftrue = gvn.transform(new IfTrueNode(iff));
2803 
2804         if (result == Compile::SSC_always_true) {
2805           r_ok_subtype->add_req(iftrue);
2806         } else {
2807           assert(result == Compile::SSC_always_false, "");
2808           r_not_subtype->add_req(iftrue);
2809         }
2810         *ctrl = gvn.transform(new IfFalseNode(iff));
2811       }
2812     }
2813   }
2814 
2815   // See if we get an immediate positive hit.  Happens roughly 83% of the
2816   // time.  Test to see if the value loaded just previously from the subklass
2817   // is exactly the superklass.
2818   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);

2832       igvn->remove_globally_dead_node(r_not_subtype);
2833     }
2834     return not_subtype_ctrl;
2835   }
2836 
2837   r_ok_subtype->init_req(1, iftrue1);
2838 
2839   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2840   // is roughly 63% of the remaining cases).  Test to see if the loaded
2841   // check-offset points into the subklass display list or the 1-element
2842   // cache.  If it points to the display (and NOT the cache) and the display
2843   // missed then it's not a subtype.
2844   Node *cacheoff = gvn.intcon(cacheoff_con);
2845   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2846   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
2847   *ctrl = gvn.transform(new IfFalseNode(iff2));
2848 
2849   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2850   // No performance impact (too rare) but allows sharing of secondary arrays
2851   // which has some footprint reduction.
2852   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2853   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
2854   *ctrl = gvn.transform(new IfFalseNode(iff3));
2855 
2856   // -- Roads not taken here: --
2857   // We could also have chosen to perform the self-check at the beginning
2858   // of this code sequence, as the assembler does.  This would not pay off
2859   // the same way, since the optimizer, unlike the assembler, can perform
2860   // static type analysis to fold away many successful self-checks.
2861   // Non-foldable self checks work better here in second position, because
2862   // the initial primary superclass check subsumes a self-check for most
2863   // types.  An exception would be a secondary type like array-of-interface,
2864   // which does not appear in its own primary supertype display.
2865   // Finally, we could have chosen to move the self-check into the
2866   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2867   // dependent manner.  But it is worthwhile to have the check here,
2868   // where it can be perhaps be optimized.  The cost in code space is
2869   // small (register compare, branch).
2870 
2871   // Now do a linear scan of the secondary super-klass array.  Again, no real
2872   // performance impact (too rare) but it's gotta be done.
2873   // Since the code is rarely used, there is no penalty for moving it
2874   // out of line, and it can only improve I-cache density.
2875   // The decision to inline or out-of-line this final check is platform
2876   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2877   Node* psc = gvn.transform(
2878     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2879 
2880   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2881   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2882   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2883 
2884   // Return false path; set default control to true path.
2885   *ctrl = gvn.transform(r_ok_subtype);
2886   return gvn.transform(r_not_subtype);
2887 }
2888 
2889 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {





2890   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
2891   if (expand_subtype_check) {
2892     MergeMemNode* mem = merged_memory();
2893     Node* ctrl = control();
2894     Node* subklass = obj_or_subklass;
2895     if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2896       subklass = load_object_klass(obj_or_subklass);
2897     }
2898 
2899     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
2900     set_control(ctrl);
2901     return n;
2902   }
2903 
2904   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
2905   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2906   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2907   set_control(_gvn.transform(new IfTrueNode(iff)));
2908   return _gvn.transform(new IfFalseNode(iff));
2909 }
2910 
2911 // Profile-driven exact type check:
2912 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2913                                     float prob,
2914                                     Node* *casted_receiver) {
2915   assert(!klass->is_interface(), "no exact type check on interfaces");
2916 











2917   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);




2918   Node* recv_klass = load_object_klass(receiver);
2919   Node* want_klass = makecon(tklass);
2920   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2921   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2922   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2923   set_control( _gvn.transform(new IfTrueNode (iff)));
2924   Node* fail = _gvn.transform(new IfFalseNode(iff));
2925 
2926   if (!stopped()) {
2927     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2928     const TypeOopPtr* recvx_type = tklass->as_instance_type();
2929     assert(recvx_type->klass_is_exact(), "");
2930 
2931     if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2932       // Subsume downstream occurrences of receiver with a cast to
2933       // recv_xtype, since now we know what the type will be.
2934       Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2935       (*casted_receiver) = _gvn.transform(cast);





2936       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
2937       // (User must make the replace_in_map call.)
2938     }
2939   }
2940 
2941   return fail;
2942 }
2943 











2944 //------------------------------subtype_check_receiver-------------------------
2945 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2946                                        Node** casted_receiver) {
2947   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2948   Node* want_klass = makecon(tklass);
2949 
2950   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2951 
2952   // Ignore interface type information until interface types are properly tracked.
2953   if (!stopped() && !klass->is_interface()) {
2954     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2955     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2956     if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2957       Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2958       (*casted_receiver) = _gvn.transform(cast);



2959     }
2960   }
2961 
2962   return slow_ctl;
2963 }
2964 
2965 //------------------------------seems_never_null-------------------------------
2966 // Use null_seen information if it is available from the profile.
2967 // If we see an unexpected null at a type check we record it and force a
2968 // recompile; the offending check will be recompiled to handle nulls.
2969 // If we see several offending BCIs, then all checks in the
2970 // method will be recompiled.
2971 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2972   speculating = !_gvn.type(obj)->speculative_maybe_null();
2973   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2974   if (UncommonNullCast               // Cutout for this technique
2975       && obj != null()               // And not the -Xcomp stupid case?
2976       && !too_many_traps(reason)
2977       ) {
2978     if (speculating) {

3047 
3048 //------------------------maybe_cast_profiled_receiver-------------------------
3049 // If the profile has seen exactly one type, narrow to exactly that type.
3050 // Subsequent type checks will always fold up.
3051 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3052                                              const TypeKlassPtr* require_klass,
3053                                              ciKlass* spec_klass,
3054                                              bool safe_for_replace) {
3055   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3056 
3057   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3058 
3059   // Make sure we haven't already deoptimized from this tactic.
3060   if (too_many_traps_or_recompiles(reason))
3061     return nullptr;
3062 
3063   // (No, this isn't a call, but it's enough like a virtual call
3064   // to use the same ciMethod accessor to get the profile info...)
3065   // If we have a speculative type use it instead of profiling (which
3066   // may not help us)
3067   ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;













3068   if (exact_kls != nullptr) {// no cast failures here
3069     if (require_klass == nullptr ||
3070         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3071       // If we narrow the type to match what the type profile sees or
3072       // the speculative type, we can then remove the rest of the
3073       // cast.
3074       // This is a win, even if the exact_kls is very specific,
3075       // because downstream operations, such as method calls,
3076       // will often benefit from the sharper type.
3077       Node* exact_obj = not_null_obj; // will get updated in place...
3078       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3079                                             &exact_obj);
3080       { PreserveJVMState pjvms(this);
3081         set_control(slow_ctl);
3082         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3083       }
3084       if (safe_for_replace) {
3085         replace_in_map(not_null_obj, exact_obj);
3086       }
3087       return exact_obj;

3177   // If not_null_obj is dead, only null-path is taken
3178   if (stopped()) {              // Doing instance-of on a null?
3179     set_control(null_ctl);
3180     return intcon(0);
3181   }
3182   region->init_req(_null_path, null_ctl);
3183   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3184   if (null_ctl == top()) {
3185     // Do this eagerly, so that pattern matches like is_diamond_phi
3186     // will work even during parsing.
3187     assert(_null_path == PATH_LIMIT-1, "delete last");
3188     region->del_req(_null_path);
3189     phi   ->del_req(_null_path);
3190   }
3191 
3192   // Do we know the type check always succeed?
3193   bool known_statically = false;
3194   if (_gvn.type(superklass)->singleton()) {
3195     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3196     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3197     if (subk->is_loaded()) {
3198       int static_res = C->static_subtype_check(superk, subk);
3199       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3200     }
3201   }
3202 
3203   if (!known_statically) {
3204     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3205     // We may not have profiling here or it may not help us. If we
3206     // have a speculative type use it to perform an exact cast.
3207     ciKlass* spec_obj_type = obj_type->speculative_type();
3208     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3209       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3210       if (stopped()) {            // Profile disagrees with this path.
3211         set_control(null_ctl);    // Null is the only remaining possibility.
3212         return intcon(0);
3213       }
3214       if (cast_obj != nullptr) {
3215         not_null_obj = cast_obj;
3216       }
3217     }

3233   record_for_igvn(region);
3234 
3235   // If we know the type check always succeeds then we don't use the
3236   // profiling data at this bytecode. Don't lose it, feed it to the
3237   // type system as a speculative type.
3238   if (safe_for_replace) {
3239     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3240     replace_in_map(obj, casted_obj);
3241   }
3242 
3243   return _gvn.transform(phi);
3244 }
3245 
3246 //-------------------------------gen_checkcast---------------------------------
3247 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3248 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3249 // uncommon-trap paths work.  Adjust stack after this call.
3250 // If failure_control is supplied and not null, it is filled in with
3251 // the control edge for the cast failure.  Otherwise, an appropriate
3252 // uncommon trap or exception is thrown.
3253 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3254                               Node* *failure_control) {
3255   kill_dead_locals();           // Benefit all the uncommon traps
3256   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
















3257   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3258   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();


3259 
3260   // Fast cutout:  Check the case that the cast is vacuously true.
3261   // This detects the common cases where the test will short-circuit
3262   // away completely.  We do this before we perform the null check,
3263   // because if the test is going to turn into zero code, we don't
3264   // want a residual null check left around.  (Causes a slowdown,
3265   // for example, in some objArray manipulations, such as a[i]=a[j].)
3266   if (improved_klass_ptr_type->singleton()) {
3267     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3268     if (objtp != nullptr) {
3269       switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) {







3270       case Compile::SSC_always_true:
3271         // If we know the type check always succeed then we don't use
3272         // the profiling data at this bytecode. Don't lose it, feed it
3273         // to the type system as a speculative type.
3274         return record_profiled_receiver_for_speculation(obj);






3275       case Compile::SSC_always_false:




3276         // It needs a null check because a null will *pass* the cast check.
3277         // A non-null value will always produce an exception.
3278         if (!objtp->maybe_null()) {
3279           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3280           Deoptimization::DeoptReason reason = is_aastore ?
3281             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3282           builtin_throw(reason);
3283           return top();
3284         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3285           return null_assert(obj);
3286         }
3287         break; // Fall through to full check
3288       default:
3289         break;
3290       }
3291     }
3292   }
3293 
3294   ciProfileData* data = nullptr;
3295   bool safe_for_replace = false;
3296   if (failure_control == nullptr) {        // use MDO in regular case only
3297     assert(java_bc() == Bytecodes::_aastore ||
3298            java_bc() == Bytecodes::_checkcast,
3299            "interpreter profiles type checks only for these BCs");
3300     data = method()->method_data()->bci_to_data(bci());
3301     safe_for_replace = true;

3302   }
3303 
3304   // Make the merge point
3305   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3306   RegionNode* region = new RegionNode(PATH_LIMIT);
3307   Node*       phi    = new PhiNode(region, toop);



3308   C->set_has_split_ifs(true); // Has chance for split-if optimization
3309 
3310   // Use null-cast information if it is available
3311   bool speculative_not_null = false;
3312   bool never_see_null = ((failure_control == nullptr)  // regular case only
3313                          && seems_never_null(obj, data, speculative_not_null));
3314 







3315   // Null check; get casted pointer; set region slot 3
3316   Node* null_ctl = top();
3317   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);






3318 
3319   // If not_null_obj is dead, only null-path is taken
3320   if (stopped()) {              // Doing instance-of on a null?
3321     set_control(null_ctl);



3322     return null();
3323   }
3324   region->init_req(_null_path, null_ctl);
3325   phi   ->init_req(_null_path, null());  // Set null path value
3326   if (null_ctl == top()) {
3327     // Do this eagerly, so that pattern matches like is_diamond_phi
3328     // will work even during parsing.
3329     assert(_null_path == PATH_LIMIT-1, "delete last");
3330     region->del_req(_null_path);
3331     phi   ->del_req(_null_path);
3332   }
3333 
3334   Node* cast_obj = nullptr;
3335   if (improved_klass_ptr_type->klass_is_exact()) {
3336     // The following optimization tries to statically cast the speculative type of the object
3337     // (for example obtained during profiling) to the type of the superklass and then do a
3338     // dynamic check that the type of the object is what we expect. To work correctly
3339     // for checkcast and aastore the type of superklass should be exact.
3340     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3341     // We may not have profiling here or it may not help us. If we have
3342     // a speculative type use it to perform an exact cast.
3343     ciKlass* spec_obj_type = obj_type->speculative_type();
3344     if (spec_obj_type != nullptr || data != nullptr) {
3345       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3346       if (cast_obj != nullptr) {
3347         if (failure_control != nullptr) // failure is now impossible
3348           (*failure_control) = top();
3349         // adjust the type of the phi to the exact klass:
3350         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3351       }
3352     }
3353   }
3354 
3355   if (cast_obj == nullptr) {
3356     // Generate the subtype check
3357     Node* improved_superklass = superklass;
3358     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {



3359       improved_superklass = makecon(improved_klass_ptr_type);
3360     }
3361     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3362 
3363     // Plug in success path into the merge
3364     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3365     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3366     if (failure_control == nullptr) {
3367       if (not_subtype_ctrl != top()) { // If failure is possible
3368         PreserveJVMState pjvms(this);
3369         set_control(not_subtype_ctrl);
3370         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3371         Deoptimization::DeoptReason reason = is_aastore ?
3372           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3373         builtin_throw(reason);
3374       }
3375     } else {
3376       (*failure_control) = not_subtype_ctrl;
3377     }
3378   }
3379 
3380   region->init_req(_obj_path, control());
3381   phi   ->init_req(_obj_path, cast_obj);
3382 
3383   // A merge of null or Casted-NotNull obj
3384   Node* res = _gvn.transform(phi);
3385 
3386   // Note I do NOT always 'replace_in_map(obj,result)' here.
3387   //  if( tk->klass()->can_be_primary_super()  )
3388     // This means that if I successfully store an Object into an array-of-String
3389     // I 'forget' that the Object is really now known to be a String.  I have to
3390     // do this because we don't have true union types for interfaces - if I store
3391     // a Baz into an array-of-Interface and then tell the optimizer it's an
3392     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3393     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3394   //  replace_in_map( obj, res );
3395 
3396   // Return final merged results
3397   set_control( _gvn.transform(region) );
3398   record_for_igvn(region);
3399 
3400   return record_profiled_receiver_for_speculation(res);




































































































































































3401 }
3402 
3403 //------------------------------next_monitor-----------------------------------
3404 // What number should be given to the next monitor?
3405 int GraphKit::next_monitor() {
3406   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3407   int next = current + C->sync_stack_slots();
3408   // Keep the toplevel high water mark current:
3409   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3410   return current;
3411 }
3412 
3413 //------------------------------insert_mem_bar---------------------------------
3414 // Memory barrier to avoid floating things around
3415 // The membar serves as a pinch point between both control and all memory slices.
3416 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3417   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3418   mb->init_req(TypeFunc::Control, control());
3419   mb->init_req(TypeFunc::Memory,  reset_memory());
3420   Node* membar = _gvn.transform(mb);

3514     lock->create_lock_counter(map()->jvms());
3515     increment_counter(lock->counter()->addr());
3516   }
3517 #endif
3518 
3519   return flock;
3520 }
3521 
3522 
3523 //------------------------------shared_unlock----------------------------------
3524 // Emit unlocking code.
3525 void GraphKit::shared_unlock(Node* box, Node* obj) {
3526   // bci is either a monitorenter bc or InvocationEntryBci
3527   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3528   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3529 
3530   if (stopped()) {               // Dead monitor?
3531     map()->pop_monitor();        // Kill monitor from debug info
3532     return;
3533   }

3534 
3535   // Memory barrier to avoid floating things down past the locked region
3536   insert_mem_bar(Op_MemBarReleaseLock);
3537 
3538   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3539   UnlockNode *unlock = new UnlockNode(C, tf);
3540 #ifdef ASSERT
3541   unlock->set_dbg_jvms(sync_jvms());
3542 #endif
3543   uint raw_idx = Compile::AliasIdxRaw;
3544   unlock->init_req( TypeFunc::Control, control() );
3545   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3546   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3547   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3548   unlock->init_req( TypeFunc::ReturnAdr, top() );
3549 
3550   unlock->init_req(TypeFunc::Parms + 0, obj);
3551   unlock->init_req(TypeFunc::Parms + 1, box);
3552   unlock = _gvn.transform(unlock)->as_Unlock();
3553 
3554   Node* mem = reset_memory();
3555 
3556   // unlock has no side-effects, sets few values
3557   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3558 
3559   // Kill monitor from debug info
3560   map()->pop_monitor( );
3561 }
3562 
3563 //-------------------------------get_layout_helper-----------------------------
3564 // If the given klass is a constant or known to be an array,
3565 // fetch the constant layout helper value into constant_value
3566 // and return null.  Otherwise, load the non-constant
3567 // layout helper value, and return the node which represents it.
3568 // This two-faced routine is useful because allocation sites
3569 // almost always feature constant types.
3570 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3571   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3572   if (!StressReflectiveCode && klass_t != nullptr) {
3573     bool xklass = klass_t->klass_is_exact();
3574     if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) {







3575       jint lhelper;
3576       if (klass_t->isa_aryklassptr()) {
3577         BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();


3578         if (is_reference_type(elem, true)) {
3579           elem = T_OBJECT;
3580         }
3581         lhelper = Klass::array_layout_helper(elem);
3582       } else {
3583         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3584       }
3585       if (lhelper != Klass::_lh_neutral_value) {
3586         constant_value = lhelper;
3587         return (Node*) nullptr;
3588       }
3589     }
3590   }
3591   constant_value = Klass::_lh_neutral_value;  // put in a known value
3592   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3593   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3594 }
3595 
3596 // We just put in an allocate/initialize with a big raw-memory effect.
3597 // Hook selected additional alias categories on the initialization.
3598 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3599                                 MergeMemNode* init_in_merge,
3600                                 Node* init_out_raw) {
3601   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3602   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3603 
3604   Node* prevmem = kit.memory(alias_idx);
3605   init_in_merge->set_memory_at(alias_idx, prevmem);
3606   kit.set_memory(init_out_raw, alias_idx);


3607 }
3608 
3609 //---------------------------set_output_for_allocation-------------------------
3610 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3611                                           const TypeOopPtr* oop_type,
3612                                           bool deoptimize_on_exception) {
3613   int rawidx = Compile::AliasIdxRaw;
3614   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3615   add_safepoint_edges(alloc);
3616   Node* allocx = _gvn.transform(alloc);
3617   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3618   // create memory projection for i_o
3619   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3620   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3621 
3622   // create a memory projection as for the normal control path
3623   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3624   set_memory(malloc, rawidx);
3625 
3626   // a normal slow-call doesn't change i_o, but an allocation does
3627   // we create a separate i_o projection for the normal control path
3628   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3629   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3630 
3631   // put in an initialization barrier
3632   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3633                                                  rawoop)->as_Initialize();
3634   assert(alloc->initialization() == init,  "2-way macro link must work");
3635   assert(init ->allocation()     == alloc, "2-way macro link must work");
3636   {
3637     // Extract memory strands which may participate in the new object's
3638     // initialization, and source them from the new InitializeNode.
3639     // This will allow us to observe initializations when they occur,
3640     // and link them properly (as a group) to the InitializeNode.
3641     assert(init->in(InitializeNode::Memory) == malloc, "");
3642     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3643     init->set_req(InitializeNode::Memory, minit_in);
3644     record_for_igvn(minit_in); // fold it up later, if possible

3645     Node* minit_out = memory(rawidx);
3646     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3647     int mark_idx = C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()));
3648     // Add an edge in the MergeMem for the header fields so an access to one of those has correct memory state.
3649     // Use one NarrowMemProjNode per slice to properly record the adr type of each slice. The Initialize node will have
3650     // multiple projections as a result.
3651     set_memory(_gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(mark_idx))), mark_idx);
3652     int klass_idx = C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()));
3653     set_memory(_gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(klass_idx))), klass_idx);
3654     if (oop_type->isa_aryptr()) {





3655       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3656       int            elemidx  = C->get_alias_index(telemref);
3657       hook_memory_on_init(*this, elemidx, minit_in, _gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(elemidx))));




3658     } else if (oop_type->isa_instptr()) {
3659       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3660       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3661         ciField* field = ik->nonstatic_field_at(i);
3662         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3663           continue;  // do not bother to track really large numbers of fields
3664         // Find (or create) the alias category for this field:
3665         int fieldidx = C->alias_type(field)->index();
3666         hook_memory_on_init(*this, fieldidx, minit_in, _gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(fieldidx))));
3667       }
3668     }
3669   }
3670 
3671   // Cast raw oop to the real thing...
3672   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3673   javaoop = _gvn.transform(javaoop);
3674   C->set_recent_alloc(control(), javaoop);
3675   assert(just_allocated_object(control()) == javaoop, "just allocated");
3676 
3677 #ifdef ASSERT

3689       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3690     }
3691   }
3692 #endif //ASSERT
3693 
3694   return javaoop;
3695 }
3696 
3697 //---------------------------new_instance--------------------------------------
3698 // This routine takes a klass_node which may be constant (for a static type)
3699 // or may be non-constant (for reflective code).  It will work equally well
3700 // for either, and the graph will fold nicely if the optimizer later reduces
3701 // the type to a constant.
3702 // The optional arguments are for specialized use by intrinsics:
3703 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3704 //  - If 'return_size_val', report the total object size to the caller.
3705 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3706 Node* GraphKit::new_instance(Node* klass_node,
3707                              Node* extra_slow_test,
3708                              Node* *return_size_val,
3709                              bool deoptimize_on_exception) {

3710   // Compute size in doublewords
3711   // The size is always an integral number of doublewords, represented
3712   // as a positive bytewise size stored in the klass's layout_helper.
3713   // The layout_helper also encodes (in a low bit) the need for a slow path.
3714   jint  layout_con = Klass::_lh_neutral_value;
3715   Node* layout_val = get_layout_helper(klass_node, layout_con);
3716   int   layout_is_con = (layout_val == nullptr);
3717 
3718   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3719   // Generate the initial go-slow test.  It's either ALWAYS (return a
3720   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3721   // case) a computed value derived from the layout_helper.
3722   Node* initial_slow_test = nullptr;
3723   if (layout_is_con) {
3724     assert(!StressReflectiveCode, "stress mode does not use these paths");
3725     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3726     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3727   } else {   // reflective case
3728     // This reflective path is used by Unsafe.allocateInstance.
3729     // (It may be stress-tested by specifying StressReflectiveCode.)
3730     // Basically, we want to get into the VM is there's an illegal argument.
3731     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3732     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3733     if (extra_slow_test != intcon(0)) {
3734       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3735     }
3736     // (Macro-expander will further convert this to a Bool, if necessary.)

3747 
3748     // Clear the low bits to extract layout_helper_size_in_bytes:
3749     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3750     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3751     size = _gvn.transform( new AndXNode(size, mask) );
3752   }
3753   if (return_size_val != nullptr) {
3754     (*return_size_val) = size;
3755   }
3756 
3757   // This is a precise notnull oop of the klass.
3758   // (Actually, it need not be precise if this is a reflective allocation.)
3759   // It's what we cast the result to.
3760   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3761   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3762   const TypeOopPtr* oop_type = tklass->as_instance_type();
3763 
3764   // Now generate allocation code
3765 
3766   // The entire memory state is needed for slow path of the allocation
3767   // since GC and deoptimization can happened.
3768   Node *mem = reset_memory();
3769   set_all_memory(mem); // Create new memory state
3770 
3771   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3772                                          control(), mem, i_o(),
3773                                          size, klass_node,
3774                                          initial_slow_test);
3775 
3776   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3777 }
3778 
3779 //-------------------------------new_array-------------------------------------
3780 // helper for both newarray and anewarray
3781 // The 'length' parameter is (obviously) the length of the array.
3782 // The optional arguments are for specialized use by intrinsics:
3783 //  - If 'return_size_val', report the non-padded array size (sum of header size
3784 //    and array body) to the caller.
3785 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3786 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3787                           Node* length,         // number of array elements
3788                           int   nargs,          // number of arguments to push back for uncommon trap
3789                           Node* *return_size_val,
3790                           bool deoptimize_on_exception) {

3791   jint  layout_con = Klass::_lh_neutral_value;
3792   Node* layout_val = get_layout_helper(klass_node, layout_con);
3793   int   layout_is_con = (layout_val == nullptr);
3794 
3795   if (!layout_is_con && !StressReflectiveCode &&
3796       !too_many_traps(Deoptimization::Reason_class_check)) {
3797     // This is a reflective array creation site.
3798     // Optimistically assume that it is a subtype of Object[],
3799     // so that we can fold up all the address arithmetic.
3800     layout_con = Klass::array_layout_helper(T_OBJECT);
3801     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3802     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3803     { BuildCutout unless(this, bol_lh, PROB_MAX);
3804       inc_sp(nargs);
3805       uncommon_trap(Deoptimization::Reason_class_check,
3806                     Deoptimization::Action_maybe_recompile);
3807     }
3808     layout_val = nullptr;
3809     layout_is_con = true;
3810   }
3811 
3812   // Generate the initial go-slow test.  Make sure we do not overflow
3813   // if length is huge (near 2Gig) or negative!  We do not need
3814   // exact double-words here, just a close approximation of needed
3815   // double-words.  We can't add any offset or rounding bits, lest we
3816   // take a size -1 of bytes and make it positive.  Use an unsigned
3817   // compare, so negative sizes look hugely positive.
3818   int fast_size_limit = FastAllocateSizeLimit;
3819   if (layout_is_con) {
3820     assert(!StressReflectiveCode, "stress mode does not use these paths");
3821     // Increase the size limit if we have exact knowledge of array type.
3822     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3823     assert(fast_size_limit == 0 || count_leading_zeros(fast_size_limit) > static_cast<unsigned>(LogBytesPerLong - log2_esize),
3824            "fast_size_limit (%d) overflow when shifted left by %d", fast_size_limit, LogBytesPerLong - log2_esize);
3825     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3826   }
3827 
3828   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3829   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3830 
3831   // --- Size Computation ---
3832   // array_size = round_to_heap(array_header + (length << elem_shift));
3833   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3834   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3835   // The rounding mask is strength-reduced, if possible.
3836   int round_mask = MinObjAlignmentInBytes - 1;
3837   Node* header_size = nullptr;
3838   // (T_BYTE has the weakest alignment and size restrictions...)
3839   if (layout_is_con) {
3840     int       hsize  = Klass::layout_helper_header_size(layout_con);
3841     int       eshift = Klass::layout_helper_log2_element_size(layout_con);

3842     if ((round_mask & ~right_n_bits(eshift)) == 0)
3843       round_mask = 0;  // strength-reduce it if it goes away completely
3844     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3845     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3846     assert(header_size_min <= hsize, "generic minimum is smallest");
3847     header_size = intcon(hsize);
3848   } else {
3849     Node* hss   = intcon(Klass::_lh_header_size_shift);
3850     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3851     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3852     header_size = _gvn.transform(new AndINode(header_size, hsm));
3853   }
3854 
3855   Node* elem_shift = nullptr;
3856   if (layout_is_con) {
3857     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3858     if (eshift != 0)
3859       elem_shift = intcon(eshift);
3860   } else {
3861     // There is no need to mask or shift this value.
3862     // The semantics of LShiftINode include an implicit mask to 0x1F.
3863     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3864     elem_shift = layout_val;

3913   }
3914   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
3915 
3916   if (return_size_val != nullptr) {
3917     // This is the size
3918     (*return_size_val) = non_rounded_size;
3919   }
3920 
3921   Node* size = non_rounded_size;
3922   if (round_mask != 0) {
3923     Node* mask1 = MakeConX(round_mask);
3924     size = _gvn.transform(new AddXNode(size, mask1));
3925     Node* mask2 = MakeConX(~round_mask);
3926     size = _gvn.transform(new AndXNode(size, mask2));
3927   }
3928   // else if round_mask == 0, the size computation is self-rounding
3929 
3930   // Now generate allocation code
3931 
3932   // The entire memory state is needed for slow path of the allocation
3933   // since GC and deoptimization can happened.
3934   Node *mem = reset_memory();
3935   set_all_memory(mem); // Create new memory state
3936 
3937   if (initial_slow_test->is_Bool()) {
3938     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3939     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3940   }
3941 
3942   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();




















3943   Node* valid_length_test = _gvn.intcon(1);
3944   if (ary_type->isa_aryptr()) {
3945     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3946     jint max = TypeAryPtr::max_array_length(bt);
3947     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3948     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3949   }
3950 
3951   // Create the AllocateArrayNode and its result projections
3952   AllocateArrayNode* alloc
3953     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3954                             control(), mem, i_o(),
3955                             size, klass_node,
3956                             initial_slow_test,
3957                             length, valid_length_test);
3958 
3959   // Cast to correct type.  Note that the klass_node may be constant or not,
3960   // and in the latter case the actual array type will be inexact also.
3961   // (This happens via a non-constant argument to inline_native_newArray.)
3962   // In any case, the value of klass_node provides the desired array type.
3963   const TypeInt* length_type = _gvn.find_int_type(length);
3964   if (ary_type->isa_aryptr() && length_type != nullptr) {
3965     // Try to get a better type than POS for the size
3966     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3967   }
3968 
3969   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3970 
3971   array_ideal_length(alloc, ary_type, true);
3972   return javaoop;
3973 }
3974 
3975 // The following "Ideal_foo" functions are placed here because they recognize
3976 // the graph shapes created by the functions immediately above.
3977 
3978 //---------------------------Ideal_allocation----------------------------------

4073 void GraphKit::add_parse_predicates(int nargs) {
4074   if (ShortRunningLongLoop) {
4075     // Will narrow the limit down with a cast node. Predicates added later may depend on the cast so should be last when
4076     // walking up from the loop.
4077     add_parse_predicate(Deoptimization::Reason_short_running_long_loop, nargs);
4078   }
4079   if (UseLoopPredicate) {
4080     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4081     if (UseProfiledLoopPredicate) {
4082       add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4083     }
4084   }
4085   if (UseAutoVectorizationPredicate) {
4086     add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs);
4087   }
4088   // Loop Limit Check Predicate should be near the loop.
4089   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4090 }
4091 
4092 void GraphKit::sync_kit(IdealKit& ideal) {

4093   set_all_memory(ideal.merged_memory());
4094   set_i_o(ideal.i_o());
4095   set_control(ideal.ctrl());
4096 }
4097 
4098 void GraphKit::final_sync(IdealKit& ideal) {
4099   // Final sync IdealKit and graphKit.
4100   sync_kit(ideal);
4101 }
4102 
4103 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4104   Node* len = load_array_length(load_String_value(str, set_ctrl));
4105   Node* coder = load_String_coder(str, set_ctrl);
4106   // Divide length by 2 if coder is UTF16
4107   return _gvn.transform(new RShiftINode(len, coder));
4108 }
4109 
4110 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4111   int value_offset = java_lang_String::value_offset();
4112   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4113                                                      false, nullptr, 0);
4114   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4115   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4116                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4117                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4118   Node* p = basic_plus_adr(str, str, value_offset);
4119   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4120                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4121   return load;
4122 }
4123 
4124 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4125   if (!CompactStrings) {
4126     return intcon(java_lang_String::CODER_UTF16);
4127   }
4128   int coder_offset = java_lang_String::coder_offset();
4129   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4130                                                      false, nullptr, 0);
4131   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4132 
4133   Node* p = basic_plus_adr(str, str, coder_offset);
4134   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4135                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4136   return load;
4137 }
4138 
4139 void GraphKit::store_String_value(Node* str, Node* value) {
4140   int value_offset = java_lang_String::value_offset();
4141   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4142                                                      false, nullptr, 0);
4143   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4144 
4145   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4146                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4147 }
4148 
4149 void GraphKit::store_String_coder(Node* str, Node* value) {
4150   int coder_offset = java_lang_String::coder_offset();
4151   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4152                                                      false, nullptr, 0);
4153   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4154 
4155   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4156                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4157 }
4158 
4159 // Capture src and dst memory state with a MergeMemNode
4160 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4161   if (src_type == dst_type) {
4162     // Types are equal, we don't need a MergeMemNode
4163     return memory(src_type);
4164   }
4165   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4166   record_for_igvn(merge); // fold it up later, if possible
4167   int src_idx = C->get_alias_index(src_type);
4168   int dst_idx = C->get_alias_index(dst_type);
4169   merge->set_memory_at(src_idx, memory(src_idx));
4170   merge->set_memory_at(dst_idx, memory(dst_idx));
4171   return merge;
4172 }

4245   i_char->init_req(2, AddI(i_char, intcon(2)));
4246 
4247   set_control(IfFalse(iff));
4248   set_memory(st, TypeAryPtr::BYTES);
4249 }
4250 
4251 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4252   if (!field->is_constant()) {
4253     return nullptr; // Field not marked as constant.
4254   }
4255   ciInstance* holder = nullptr;
4256   if (!field->is_static()) {
4257     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4258     if (const_oop != nullptr && const_oop->is_instance()) {
4259       holder = const_oop->as_instance();
4260     }
4261   }
4262   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4263                                                         /*is_unsigned_load=*/false);
4264   if (con_type != nullptr) {
4265     return makecon(con_type);






4266   }
4267   return nullptr;
4268 }
4269 
4270 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4271   const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr();
4272   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4273   if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4274     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4275     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4276     return casted_obj;



4277   }
4278   return obj;
4279 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/register.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciMethod.hpp"
  29 #include "ci/ciObjArray.hpp"
  30 #include "ci/ciUtilities.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/c2/barrierSetC2.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/flatArrayKlass.hpp"
  38 #include "opto/addnode.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/convertnode.hpp"
  41 #include "opto/graphKit.hpp"
  42 #include "opto/idealKit.hpp"
  43 #include "opto/inlinetypenode.hpp"
  44 #include "opto/intrinsicnode.hpp"
  45 #include "opto/locknode.hpp"
  46 #include "opto/machnode.hpp"
  47 #include "opto/multnode.hpp"
  48 #include "opto/narrowptrnode.hpp"
  49 #include "opto/opaquenode.hpp"
  50 #include "opto/parse.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/runtime.hpp"
  53 #include "opto/subtypenode.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/deoptimization.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "utilities/bitMap.inline.hpp"
  59 #include "utilities/growableArray.hpp"
  60 #include "utilities/powerOfTwo.hpp"
  61 
  62 //----------------------------GraphKit-----------------------------------------
  63 // Main utility constructor.
  64 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  65   : Phase(Phase::Parser),
  66     _env(C->env()),
  67     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  68     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  69 {
  70   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  71   _exceptions = jvms->map()->next_exception();
  72   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  73   set_jvms(jvms);
  74 #ifdef ASSERT
  75   if (_gvn.is_IterGVN() != nullptr) {
  76     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  77     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  78     _worklist_size = _gvn.C->igvn_worklist()->size();
  79   }
  80 #endif
  81 }
  82 
  83 // Private constructor for parser.
  84 GraphKit::GraphKit()
  85   : Phase(Phase::Parser),
  86     _env(C->env()),
  87     _gvn(*C->initial_gvn()),
  88     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  89 {
  90   _exceptions = nullptr;
  91   set_map(nullptr);
  92   DEBUG_ONLY(_sp = -99);
  93   DEBUG_ONLY(set_bci(-99));
  94 }
  95 
  96 
  97 
  98 //---------------------------clean_stack---------------------------------------
  99 // Clear away rubbish from the stack area of the JVM state.
 100 // This destroys any arguments that may be waiting on the stack.

 345 }
 346 static inline void add_one_req(Node* dstphi, Node* src) {
 347   assert(is_hidden_merge(dstphi), "must be a special merge node");
 348   assert(!is_hidden_merge(src), "must not be a special merge node");
 349   dstphi->add_req(src);
 350 }
 351 
 352 //-----------------------combine_exception_states------------------------------
 353 // This helper function combines exception states by building phis on a
 354 // specially marked state-merging region.  These regions and phis are
 355 // untransformed, and can build up gradually.  The region is marked by
 356 // having a control input of its exception map, rather than null.  Such
 357 // regions do not appear except in this function, and in use_exception_state.
 358 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 359   if (failing_internal()) {
 360     return;  // dying anyway...
 361   }
 362   JVMState* ex_jvms = ex_map->_jvms;
 363   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 364   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 365   // TODO 8325632 Re-enable
 366   // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 367   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 368   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 369   assert(ex_map->req() == phi_map->req(), "matching maps");
 370   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 371   Node*         hidden_merge_mark = root();
 372   Node*         region  = phi_map->control();
 373   MergeMemNode* phi_mem = phi_map->merged_memory();
 374   MergeMemNode* ex_mem  = ex_map->merged_memory();
 375   if (region->in(0) != hidden_merge_mark) {
 376     // The control input is not (yet) a specially-marked region in phi_map.
 377     // Make it so, and build some phis.
 378     region = new RegionNode(2);
 379     _gvn.set_type(region, Type::CONTROL);
 380     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 381     region->init_req(1, phi_map->control());
 382     phi_map->set_control(region);
 383     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 384     record_for_igvn(io_phi);
 385     _gvn.set_type(io_phi, Type::ABIO);
 386     phi_map->set_i_o(io_phi);

 874         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 875           tty->print_cr("Zombie local %d: ", local);
 876           jvms->dump();
 877         }
 878         return false;
 879       }
 880     }
 881   }
 882   return true;
 883 }
 884 
 885 #endif //ASSERT
 886 
 887 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 888 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 889   ciMethod* cur_method = jvms->method();
 890   int       cur_bci   = jvms->bci();
 891   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 892     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 893     return Interpreter::bytecode_should_reexecute(code) ||
 894            (is_anewarray && (code == Bytecodes::_multianewarray));
 895     // Reexecute _multianewarray bytecode which was replaced with
 896     // sequence of [a]newarray. See Parse::do_multianewarray().
 897     //
 898     // Note: interpreter should not have it set since this optimization
 899     // is limited by dimensions and guarded by flag so in some cases
 900     // multianewarray() runtime calls will be generated and
 901     // the bytecode should not be reexecutes (stack will not be reset).
 902   } else {
 903     return false;
 904   }
 905 }
 906 
 907 // Helper function for adding JVMState and debug information to node
 908 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 909   // Add the safepoint edges to the call (or other safepoint).
 910 
 911   // Make sure dead locals are set to top.  This
 912   // should help register allocation time and cut down on the size
 913   // of the deoptimization information.
 914   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 942 
 943   if (env()->should_retain_local_variables()) {
 944     // At any safepoint, this method can get breakpointed, which would
 945     // then require an immediate deoptimization.
 946     can_prune_locals = false;  // do not prune locals
 947     stack_slots_not_pruned = 0;
 948   }
 949 
 950   // do not scribble on the input jvms
 951   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 952   call->set_jvms(out_jvms); // Start jvms list for call node
 953 
 954   // For a known set of bytecodes, the interpreter should reexecute them if
 955   // deoptimization happens. We set the reexecute state for them here
 956   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 957       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 958 #ifdef ASSERT
 959     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 960     assert(method() == youngest_jvms->method(), "sanity");
 961     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 962     // TODO 8371125
 963     // assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 964 #endif // ASSERT
 965     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 966   }
 967 
 968   // Presize the call:
 969   DEBUG_ONLY(uint non_debug_edges = call->req());
 970   call->add_req_batch(top(), youngest_jvms->debug_depth());
 971   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 972 
 973   // Set up edges so that the call looks like this:
 974   //  Call [state:] ctl io mem fptr retadr
 975   //       [parms:] parm0 ... parmN
 976   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 977   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 978   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 979   // Note that caller debug info precedes callee debug info.
 980 
 981   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 982   uint debug_ptr = call->req();
 983 
 984   // Loop over the map input edges associated with jvms, add them
 985   // to the call node, & reset all offsets to match call node array.
 986 
 987   JVMState* callee_jvms = nullptr;
 988   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 989     uint debug_end   = debug_ptr;
 990     uint debug_start = debug_ptr - in_jvms->debug_size();
 991     debug_ptr = debug_start;  // back up the ptr
 992 
 993     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 994     uint j, k, l;
 995     SafePointNode* in_map = in_jvms->map();
 996     out_jvms->set_map(call);
 997 
 998     if (can_prune_locals) {
 999       assert(in_jvms->method() == out_jvms->method(), "sanity");
1000       // If the current throw can reach an exception handler in this JVMS,
1001       // then we must keep everything live that can reach that handler.
1002       // As a quick and dirty approximation, we look for any handlers at all.
1003       if (in_jvms->method()->has_exception_handlers()) {
1004         can_prune_locals = false;
1005       }
1006     }
1007 
1008     // Add the Locals
1009     k = in_jvms->locoff();
1010     l = in_jvms->loc_size();
1011     out_jvms->set_locoff(p);
1012     if (!can_prune_locals) {
1013       for (j = 0; j < l; j++) {
1014         call->set_req(p++, in_map->in(k + j));
1015       }
1016     } else {
1017       p += l;  // already set to top above by add_req_batch
1018     }
1019 
1020     // Add the Expression Stack
1021     k = in_jvms->stkoff();
1022     l = in_jvms->sp();
1023     out_jvms->set_stkoff(p);
1024     if (!can_prune_locals) {
1025       for (j = 0; j < l; j++) {
1026         call->set_req(p++, in_map->in(k + j));
1027       }
1028     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1029       // Divide stack into {S0,...,S1}, where S0 is set to top.
1030       uint s1 = stack_slots_not_pruned;
1031       stack_slots_not_pruned = 0;  // for next iteration
1032       if (s1 > l)  s1 = l;
1033       uint s0 = l - s1;
1034       p += s0;  // skip the tops preinstalled by add_req_batch
1035       for (j = s0; j < l; j++)
1036         call->set_req(p++, in_map->in(k+j));
1037     } else {
1038       p += l;  // already set to top above by add_req_batch
1039     }
1040 
1041     // Add the Monitors
1042     k = in_jvms->monoff();
1043     l = in_jvms->mon_size();
1044     out_jvms->set_monoff(p);
1045     for (j = 0; j < l; j++)
1046       call->set_req(p++, in_map->in(k+j));
1047 
1048     // Copy any scalar object fields.
1049     k = in_jvms->scloff();
1050     l = in_jvms->scl_size();
1051     out_jvms->set_scloff(p);
1052     for (j = 0; j < l; j++)
1053       call->set_req(p++, in_map->in(k+j));
1054 
1055     // Finish the new jvms.
1056     out_jvms->set_endoff(p);
1057 
1058     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1059     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1060     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1061     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1062     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1063     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1064 
1065     // Update the two tail pointers in parallel.
1066     callee_jvms = out_jvms;
1067     out_jvms = out_jvms->caller();
1068     in_jvms  = in_jvms->caller();
1069   }
1070 
1071   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1072 
1073   // Test the correctness of JVMState::debug_xxx accessors:
1074   assert(call->jvms()->debug_start() == non_debug_edges, "");
1075   assert(call->jvms()->debug_end()   == call->req(), "");
1076   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1077 }
1078 
1079 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1080   Bytecodes::Code code = java_bc();
1081   if (code == Bytecodes::_wide) {
1082     code = method()->java_code_at_bci(bci() + 1);
1083   }
1084 
1085   if (code != Bytecodes::_illegal) {
1086     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1222   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1223   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1224   return _gvn.transform( new AndLNode(conv, mask) );
1225 }
1226 
1227 Node* GraphKit::ConvL2I(Node* offset) {
1228   // short-circuit a common case
1229   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1230   if (offset_con != (jlong)Type::OffsetBot) {
1231     return intcon((int) offset_con);
1232   }
1233   return _gvn.transform( new ConvL2INode(offset));
1234 }
1235 
1236 //-------------------------load_object_klass-----------------------------------
1237 Node* GraphKit::load_object_klass(Node* obj) {
1238   // Special-case a fresh allocation to avoid building nodes:
1239   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1240   if (akls != nullptr)  return akls;
1241   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1242   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1243 }
1244 
1245 //-------------------------load_array_length-----------------------------------
1246 Node* GraphKit::load_array_length(Node* array) {
1247   // Special-case a fresh allocation to avoid building nodes:
1248   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1249   Node *alen;
1250   if (alloc == nullptr) {
1251     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1252     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1253   } else {
1254     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1255   }
1256   return alen;
1257 }
1258 
1259 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1260                                    const TypeOopPtr* oop_type,
1261                                    bool replace_length_in_map) {
1262   Node* length = alloc->Ideal_length();

1271         replace_in_map(length, ccast);
1272       }
1273       return ccast;
1274     }
1275   }
1276   return length;
1277 }
1278 
1279 //------------------------------do_null_check----------------------------------
1280 // Helper function to do a null pointer check.  Returned value is
1281 // the incoming address with null casted away.  You are allowed to use the
1282 // not-null value only if you are control dependent on the test.
1283 #ifndef PRODUCT
1284 extern uint explicit_null_checks_inserted,
1285             explicit_null_checks_elided;
1286 #endif
1287 Node* GraphKit::null_check_common(Node* value, BasicType type,
1288                                   // optional arguments for variations:
1289                                   bool assert_null,
1290                                   Node* *null_control,
1291                                   bool speculative,
1292                                   bool null_marker_check) {
1293   assert(!assert_null || null_control == nullptr, "not both at once");
1294   if (stopped())  return top();
1295   NOT_PRODUCT(explicit_null_checks_inserted++);
1296 
1297   if (value->is_InlineType()) {
1298     // Null checking a scalarized but nullable inline type. Check the null marker
1299     // input instead of the oop input to avoid keeping buffer allocations alive.
1300     InlineTypeNode* vtptr = value->as_InlineType();
1301     while (vtptr->get_oop()->is_InlineType()) {
1302       vtptr = vtptr->get_oop()->as_InlineType();
1303     }
1304     null_check_common(vtptr->get_null_marker(), T_INT, assert_null, null_control, speculative, true);
1305     if (stopped()) {
1306       return top();
1307     }
1308     if (assert_null) {
1309       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1310       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1311       // replace_in_map(value, vtptr);
1312       // return vtptr;
1313       replace_in_map(value, null());
1314       return null();
1315     }
1316     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1317     return cast_not_null(value, do_replace_in_map);
1318   }
1319 
1320   // Construct null check
1321   Node *chk = nullptr;
1322   switch(type) {
1323     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1324     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1325     case T_ARRAY  : // fall through
1326       type = T_OBJECT;  // simplify further tests
1327     case T_OBJECT : {
1328       const Type *t = _gvn.type( value );
1329 
1330       const TypeOopPtr* tp = t->isa_oopptr();
1331       if (tp != nullptr && !tp->is_loaded()
1332           // Only for do_null_check, not any of its siblings:
1333           && !assert_null && null_control == nullptr) {
1334         // Usually, any field access or invocation on an unloaded oop type
1335         // will simply fail to link, since the statically linked class is
1336         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1337         // the static class is loaded but the sharper oop type is not.
1338         // Rather than checking for this obscure case in lots of places,
1339         // we simply observe that a null check on an unloaded class

1403         }
1404         Node *oldcontrol = control();
1405         set_control(cfg);
1406         Node *res = cast_not_null(value);
1407         set_control(oldcontrol);
1408         NOT_PRODUCT(explicit_null_checks_elided++);
1409         return res;
1410       }
1411       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1412       if (cfg == nullptr)  break;  // Quit at region nodes
1413       depth++;
1414     }
1415   }
1416 
1417   //-----------
1418   // Branch to failure if null
1419   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1420   Deoptimization::DeoptReason reason;
1421   if (assert_null) {
1422     reason = Deoptimization::reason_null_assert(speculative);
1423   } else if (type == T_OBJECT || null_marker_check) {
1424     reason = Deoptimization::reason_null_check(speculative);
1425   } else {
1426     reason = Deoptimization::Reason_div0_check;
1427   }
1428   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1429   // ciMethodData::has_trap_at will return a conservative -1 if any
1430   // must-be-null assertion has failed.  This could cause performance
1431   // problems for a method after its first do_null_assert failure.
1432   // Consider using 'Reason_class_check' instead?
1433 
1434   // To cause an implicit null check, we set the not-null probability
1435   // to the maximum (PROB_MAX).  For an explicit check the probability
1436   // is set to a smaller value.
1437   if (null_control != nullptr || too_many_traps(reason)) {
1438     // probability is less likely
1439     ok_prob =  PROB_LIKELY_MAG(3);
1440   } else if (!assert_null &&
1441              (ImplicitNullCheckThreshold > 0) &&
1442              method() != nullptr &&
1443              (method()->method_data()->trap_count(reason)

1477   }
1478 
1479   if (assert_null) {
1480     // Cast obj to null on this path.
1481     replace_in_map(value, zerocon(type));
1482     return zerocon(type);
1483   }
1484 
1485   // Cast obj to not-null on this path, if there is no null_control.
1486   // (If there is a null_control, a non-null value may come back to haunt us.)
1487   if (type == T_OBJECT) {
1488     Node* cast = cast_not_null(value, false);
1489     if (null_control == nullptr || (*null_control) == top())
1490       replace_in_map(value, cast);
1491     value = cast;
1492   }
1493 
1494   return value;
1495 }
1496 

1497 //------------------------------cast_not_null----------------------------------
1498 // Cast obj to not-null on this path
1499 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1500   if (obj->is_InlineType()) {
1501     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1502     vt->as_InlineType()->set_null_marker(_gvn);
1503     vt = _gvn.transform(vt);
1504     if (do_replace_in_map) {
1505       replace_in_map(obj, vt);
1506     }
1507     return vt;
1508   }
1509   const Type *t = _gvn.type(obj);
1510   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1511   // Object is already not-null?
1512   if( t == t_not_null ) return obj;
1513 
1514   Node* cast = new CastPPNode(control(), obj,t_not_null);
1515   cast = _gvn.transform( cast );
1516 
1517   // Scan for instances of 'obj' in the current JVM mapping.
1518   // These instances are known to be not-null after the test.
1519   if (do_replace_in_map)
1520     replace_in_map(obj, cast);
1521 
1522   return cast;                  // Return casted value
1523 }
1524 
1525 Node* GraphKit::cast_to_non_larval(Node* obj) {
1526   const Type* obj_type = gvn().type(obj);
1527   if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) {
1528     return obj;
1529   }
1530 
1531   Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass());
1532   replace_in_map(obj, new_obj);
1533   return new_obj;
1534 }
1535 
1536 // Sometimes in intrinsics, we implicitly know an object is not null
1537 // (there's no actual null check) so we can cast it to not null. In
1538 // the course of optimizations, the input to the cast can become null.
1539 // In that case that data path will die and we need the control path
1540 // to become dead as well to keep the graph consistent. So we have to
1541 // add a check for null for which one branch can't be taken. It uses
1542 // an OpaqueNotNull node that will cause the check to be removed after loop
1543 // opts so the test goes away and the compiled code doesn't execute a
1544 // useless check.
1545 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1546   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1547     return value;
1548   }
1549   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1550   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1551   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1552   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1553   _gvn.set_type(iff, iff->Value(&_gvn));
1554   if (!tst->is_Con()) {
1555     record_for_igvn(iff);

1628 // These are layered on top of the factory methods in LoadNode and StoreNode,
1629 // and integrate with the parser's memory state and _gvn engine.
1630 //
1631 
1632 // factory methods in "int adr_idx"
1633 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1634                           MemNode::MemOrd mo,
1635                           LoadNode::ControlDependency control_dependency,
1636                           bool require_atomic_access,
1637                           bool unaligned,
1638                           bool mismatched,
1639                           bool unsafe,
1640                           uint8_t barrier_data) {
1641   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1642   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1643   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1644   DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx));
1645   Node* mem = memory(adr_idx);
1646   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1647   ld = _gvn.transform(ld);
1648 
1649   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1650     // Improve graph before escape analysis and boxing elimination.
1651     record_for_igvn(ld);
1652     if (ld->is_DecodeN()) {
1653       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1654       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1655       // a Phi). Recording such cases is still perfectly sound, but may be
1656       // unnecessary and result in some minor IGVN overhead.
1657       record_for_igvn(ld->in(1));
1658     }
1659   }
1660   return ld;
1661 }
1662 
1663 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1664                                 MemNode::MemOrd mo,
1665                                 bool require_atomic_access,
1666                                 bool unaligned,
1667                                 bool mismatched,
1668                                 bool unsafe,

1682   if (unsafe) {
1683     st->as_Store()->set_unsafe_access();
1684   }
1685   st->as_Store()->set_barrier_data(barrier_data);
1686   st = _gvn.transform(st);
1687   set_memory(st, adr_idx);
1688   // Back-to-back stores can only remove intermediate store with DU info
1689   // so push on worklist for optimizer.
1690   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1691     record_for_igvn(st);
1692 
1693   return st;
1694 }
1695 
1696 Node* GraphKit::access_store_at(Node* obj,
1697                                 Node* adr,
1698                                 const TypePtr* adr_type,
1699                                 Node* val,
1700                                 const Type* val_type,
1701                                 BasicType bt,
1702                                 DecoratorSet decorators,
1703                                 bool safe_for_replace,
1704                                 const InlineTypeNode* vt) {
1705   // Transformation of a value which could be null pointer (CastPP #null)
1706   // could be delayed during Parse (for example, in adjust_map_after_if()).
1707   // Execute transformation here to avoid barrier generation in such case.
1708   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1709     val = _gvn.makecon(TypePtr::NULL_PTR);
1710   }
1711 
1712   if (stopped()) {
1713     return top(); // Dead path ?
1714   }
1715 
1716   assert(val != nullptr, "not dead path");
1717   if (val->is_InlineType()) {
1718     // Store to non-flat field. Buffer the inline type and make sure
1719     // the store is re-executed if the allocation triggers deoptimization.
1720     PreserveReexecuteState preexecs(this);
1721     jvms()->set_should_reexecute(true);
1722     val = val->as_InlineType()->buffer(this, safe_for_replace);
1723   }
1724 
1725   C2AccessValuePtr addr(adr, adr_type);
1726   C2AccessValue value(val, val_type);
1727   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1728   if (access.is_raw()) {
1729     return _barrier_set->BarrierSetC2::store_at(access, value);
1730   } else {
1731     return _barrier_set->store_at(access, value);
1732   }
1733 }
1734 
1735 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1736                                Node* adr,   // actual address to store val at
1737                                const TypePtr* adr_type,
1738                                const Type* val_type,
1739                                BasicType bt,
1740                                DecoratorSet decorators,
1741                                Node* ctl) {
1742   if (stopped()) {
1743     return top(); // Dead path ?
1744   }
1745 
1746   C2AccessValuePtr addr(adr, adr_type);
1747   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1748   if (access.is_raw()) {
1749     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1750   } else {
1751     return _barrier_set->load_at(access, val_type);
1752   }
1753 }
1754 
1755 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1756                             const Type* val_type,
1757                             BasicType bt,
1758                             DecoratorSet decorators) {
1759   if (stopped()) {
1760     return top(); // Dead path ?
1761   }
1762 
1763   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1764   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1765   if (access.is_raw()) {
1766     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1767   } else {

1832                                      Node* new_val,
1833                                      const Type* value_type,
1834                                      BasicType bt,
1835                                      DecoratorSet decorators) {
1836   C2AccessValuePtr addr(adr, adr_type);
1837   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1838   if (access.is_raw()) {
1839     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1840   } else {
1841     return _barrier_set->atomic_add_at(access, new_val, value_type);
1842   }
1843 }
1844 
1845 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1846   return _barrier_set->clone(this, src, dst, size, is_array);
1847 }
1848 
1849 //-------------------------array_element_address-------------------------
1850 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1851                                       const TypeInt* sizetype, Node* ctrl) {
1852   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1853   uint shift;
1854   uint header;
1855   if (arytype->is_flat() && arytype->klass_is_exact()) {
1856     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1857     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1858     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1859     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1860     // though we don't need the address node in this case and throw it away again.
1861     shift = arytype->flat_log_elem_size();
1862     header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
1863   } else {
1864     shift = exact_log2(type2aelembytes(elembt));
1865     header = arrayOopDesc::base_offset_in_bytes(elembt);
1866   }
1867 
1868   // short-circuit a common case (saves lots of confusing waste motion)
1869   jint idx_con = find_int_con(idx, -1);
1870   if (idx_con >= 0) {
1871     intptr_t offset = header + ((intptr_t)idx_con << shift);
1872     return basic_plus_adr(ary, offset);
1873   }
1874 
1875   // must be correct type for alignment purposes
1876   Node* base  = basic_plus_adr(ary, header);
1877   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1878   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1879   return basic_plus_adr(ary, base, scale);
1880 }
1881 
1882 Node* GraphKit::cast_to_flat_array(Node* array, ciInlineKlass* elem_vk) {
1883   assert(elem_vk->maybe_flat_in_array(), "no flat array for %s", elem_vk->name()->as_utf8());
1884   if (!elem_vk->has_atomic_layout() && !elem_vk->has_nullable_atomic_layout()) {
1885     return cast_to_flat_array_exact(array, elem_vk, true, false);
1886   } else if (!elem_vk->has_nullable_atomic_layout() && !elem_vk->has_non_atomic_layout()) {
1887     return cast_to_flat_array_exact(array, elem_vk, true, true);
1888   } else if (!elem_vk->has_atomic_layout() && !elem_vk->has_non_atomic_layout()) {
1889     return cast_to_flat_array_exact(array, elem_vk, false, true);
1890   }
1891 
1892   bool is_null_free = false;
1893   if (!elem_vk->has_nullable_atomic_layout()) {
1894     // Element does not have a nullable flat layout, cannot be nullable
1895     is_null_free = true;
1896   }
1897 
1898   ciArrayKlass* array_klass = ciObjArrayKlass::make(elem_vk, false);
1899   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1900   arytype = arytype->cast_to_flat(true)->cast_to_null_free(is_null_free);
1901   return _gvn.transform(new CheckCastPPNode(control(), array, arytype, ConstraintCastNode::DependencyType::NonFloatingNarrowing));
1902 }
1903 
1904 Node* GraphKit::cast_to_flat_array_exact(Node* array, ciInlineKlass* elem_vk, bool is_null_free, bool is_atomic) {
1905   assert(is_null_free || is_atomic, "nullable arrays must be atomic");
1906   ciArrayKlass* array_klass = ciObjArrayKlass::make(elem_vk, true, is_null_free, is_atomic);
1907   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1908   assert(arytype->klass_is_exact(), "inconsistency");
1909   assert(arytype->is_flat(), "inconsistency");
1910   assert(arytype->is_null_free() == is_null_free, "inconsistency");
1911   assert(arytype->is_not_null_free() == !is_null_free, "inconsistency");
1912   return _gvn.transform(new CheckCastPPNode(control(), array, arytype, ConstraintCastNode::DependencyType::NonFloatingNarrowing));
1913 }
1914 
1915 //-------------------------load_array_element-------------------------
1916 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1917   const Type* elemtype = arytype->elem();
1918   BasicType elembt = elemtype->array_element_basic_type();
1919   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1920   if (elembt == T_NARROWOOP) {
1921     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1922   }
1923   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1924                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1925   return ld;
1926 }
1927 
1928 //-------------------------set_arguments_for_java_call-------------------------
1929 // Arguments (pre-popped from the stack) are taken from the JVMS.
1930 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1931   PreserveReexecuteState preexecs(this);
1932   if (Arguments::is_valhalla_enabled()) {
1933     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1934     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1935     jvms()->set_should_reexecute(true);
1936     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1937     inc_sp(arg_size);
1938   }
1939   // Add the call arguments
1940   const TypeTuple* domain = call->tf()->domain_sig();
1941   uint nargs = domain->cnt();
1942   int arg_num = 0;
1943   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1944     Node* arg = argument(i-TypeFunc::Parms);
1945     const Type* t = domain->field_at(i);
1946     // TODO 8284443 A static call to a mismatched method should still be scalarized
1947     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1948       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1949       if (!arg->is_InlineType()) {
1950         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1951         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass());
1952       }
1953       InlineTypeNode* vt = arg->as_InlineType();
1954       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1955       // If an inline type argument is passed as fields, attach the Method* to the call site
1956       // to be able to access the extended signature later via attached_method_before_pc().
1957       // For example, see CompiledMethod::preserve_callee_argument_oops().
1958       call->set_override_symbolic_info(true);
1959       // Register an calling convention dependency on the callee method to make sure that this method is deoptimized and
1960       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1961       C->dependencies()->assert_mismatch_calling_convention(call->method());
1962       arg_num++;
1963       continue;
1964     } else if (arg->is_InlineType()) {
1965       // Pass inline type argument via oop to callee
1966       arg = arg->as_InlineType()->buffer(this, true);
1967     }
1968     if (t != Type::HALF) {
1969       arg_num++;
1970     }
1971     call->init_req(idx++, arg);
1972   }
1973 }
1974 
1975 //---------------------------set_edges_for_java_call---------------------------
1976 // Connect a newly created call into the current JVMS.
1977 // A return value node (if any) is returned from set_edges_for_java_call.
1978 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1979 
1980   // Add the predefined inputs:
1981   call->init_req( TypeFunc::Control, control() );
1982   call->init_req( TypeFunc::I_O    , i_o() );
1983   call->init_req( TypeFunc::Memory , reset_memory() );
1984   call->init_req( TypeFunc::FramePtr, frameptr() );
1985   call->init_req( TypeFunc::ReturnAdr, top() );
1986 
1987   add_safepoint_edges(call, must_throw);
1988 
1989   Node* xcall = _gvn.transform(call);
1990 
1991   if (xcall == top()) {
1992     set_control(top());
1993     return;
1994   }
1995   assert(xcall == call, "call identity is stable");
1996 
1997   // Re-use the current map to produce the result.
1998 
1999   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
2000   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
2001   set_all_memory_call(xcall, separate_io_proj);
2002 
2003   //return xcall;   // no need, caller already has it
2004 }
2005 
2006 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
2007   if (stopped())  return top();  // maybe the call folded up?
2008 







2009   // Note:  Since any out-of-line call can produce an exception,
2010   // we always insert an I_O projection from the call into the result.
2011 
2012   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
2013 
2014   if (separate_io_proj) {
2015     // The caller requested separate projections be used by the fall
2016     // through and exceptional paths, so replace the projections for
2017     // the fall through path.
2018     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
2019     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
2020   }
2021 
2022   // Capture the return value, if any.
2023   Node* ret;
2024   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
2025     ret = top();
2026   } else if (call->tf()->returns_inline_type_as_fields()) {
2027     // Return of multiple values (inline type fields): we create a
2028     // InlineType node, each field is a projection from the call.
2029     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2030     uint base_input = TypeFunc::Parms;
2031     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2032   } else {
2033     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2034     ciType* t = call->method()->return_type();
2035     if (!t->is_loaded() && InlineTypeReturnedAsFields) {
2036       // The return type is unloaded but the callee might later be C2 compiled and then return
2037       // in scalarized form when the return type is loaded. Handle this similar to what we do in
2038       // PhaseMacroExpand::expand_mh_intrinsic_return by calling into the runtime to buffer.
2039       // It's a bit unfortunate because we will deopt anyway but the interpreter needs an oop.
2040       IdealKit ideal(this);
2041       IdealVariable res(ideal);
2042       ideal.declarations_done();
2043       // Change return type of call to scalarized return
2044       const TypeFunc* tf = call->_tf;
2045       const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc();
2046       const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2047       call->_tf = new_tf;
2048       _gvn.set_type(call, call->Value(&_gvn));
2049       _gvn.set_type(ret, ret->Value(&_gvn));
2050       // Don't add store to buffer call if we are strength reducing
2051       if (!C->strength_reduction()) {
2052         ideal.if_then(ret, BoolTest::eq, ideal.makecon(TypePtr::NULL_PTR)); {
2053           // Return value is null
2054           ideal.set(res, makecon(TypePtr::NULL_PTR));
2055         } ideal.else_(); {
2056           // Return value is non-null
2057           sync_kit(ideal);
2058 
2059           Node* store_to_buf_call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
2060                                                       OptoRuntime::store_inline_type_fields_Type(),
2061                                                       StubRoutines::store_inline_type_fields_to_buf(),
2062                                                       nullptr, TypePtr::BOTTOM, ret);
2063 
2064           // We don't know how many values are returned. This assumes the
2065           // worst case, that all available registers are used.
2066           for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2067             if (domain->field_at(i) == Type::HALF) {
2068               store_to_buf_call->init_req(i, top());
2069               continue;
2070             }
2071             Node* proj =_gvn.transform(new ProjNode(call, i));
2072             store_to_buf_call->init_req(i, proj);
2073           }
2074           make_slow_call_ex(store_to_buf_call, env()->Throwable_klass(), false);
2075 
2076           Node* buf = _gvn.transform(new ProjNode(store_to_buf_call, TypeFunc::Parms));
2077           const Type* buf_type = TypeOopPtr::make_from_klass(t->as_klass())->join_speculative(TypePtr::NOTNULL);
2078           buf = _gvn.transform(new CheckCastPPNode(control(), buf, buf_type));
2079 
2080           ideal.set(res, buf);
2081           ideal.sync_kit(this);
2082         } ideal.end_if();
2083       } else {
2084         for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2085           Node* proj =_gvn.transform(new ProjNode(call, i));
2086         }
2087         ideal.set(res, ret);
2088       }
2089       sync_kit(ideal);
2090       ret = _gvn.transform(ideal.value(res));
2091     }
2092     if (t->is_klass()) {
2093       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2094       if (type->is_inlinetypeptr()) {
2095         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass());
2096       }
2097     }
2098   }
2099 
2100   return ret;
2101 }
2102 
2103 //--------------------set_predefined_input_for_runtime_call--------------------
2104 // Reading and setting the memory state is way conservative here.
2105 // The real problem is that I am not doing real Type analysis on memory,
2106 // so I cannot distinguish card mark stores from other stores.  Across a GC
2107 // point the Store Barrier and the card mark memory has to agree.  I cannot
2108 // have a card mark store and its barrier split across the GC point from
2109 // either above or below.  Here I get that to happen by reading ALL of memory.
2110 // A better answer would be to separate out card marks from other memory.
2111 // For now, return the input memory state, so that it can be reused
2112 // after the call, if this call has restricted memory effects.
2113 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2114   // Set fixed predefined input arguments
2115   call->init_req(TypeFunc::Control, control());
2116   call->init_req(TypeFunc::I_O, top()); // does no i/o
2117   call->init_req(TypeFunc::ReturnAdr, top());
2118   if (call->is_CallLeafPure()) {
2119     call->init_req(TypeFunc::Memory, top());

2181     if (use->is_MergeMem()) {
2182       wl.push(use);
2183     }
2184   }
2185 }
2186 
2187 // Replace the call with the current state of the kit.
2188 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2189   JVMState* ejvms = nullptr;
2190   if (has_exceptions()) {
2191     ejvms = transfer_exceptions_into_jvms();
2192   }
2193 
2194   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2195   ReplacedNodes replaced_nodes_exception;
2196   Node* ex_ctl = top();
2197 
2198   SafePointNode* final_state = stop();
2199 
2200   // Find all the needed outputs of this call
2201   CallProjections* callprojs = call->extract_projections(true, do_asserts);

2202 
2203   Unique_Node_List wl;
2204   Node* init_mem = call->in(TypeFunc::Memory);
2205   Node* final_mem = final_state->in(TypeFunc::Memory);
2206   Node* final_ctl = final_state->in(TypeFunc::Control);
2207   Node* final_io = final_state->in(TypeFunc::I_O);
2208 
2209   // Replace all the old call edges with the edges from the inlining result
2210   if (callprojs->fallthrough_catchproj != nullptr) {
2211     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2212   }
2213   if (callprojs->fallthrough_memproj != nullptr) {
2214     if (final_mem->is_MergeMem()) {
2215       // Parser's exits MergeMem was not transformed but may be optimized
2216       final_mem = _gvn.transform(final_mem);
2217     }
2218     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2219     add_mergemem_users_to_worklist(wl, final_mem);
2220   }
2221   if (callprojs->fallthrough_ioproj != nullptr) {
2222     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2223   }
2224 
2225   // Replace the result with the new result if it exists and is used
2226   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2227     // If the inlined code is dead, the result projections for an inline type returned as
2228     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2229     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()) ||
2230            (C->strength_reduction() && InlineTypeReturnedAsFields && !call->as_CallJava()->method()->return_type()->is_loaded()),
2231            "unexpected number of results");
2232     // If we are doing strength reduction and the return type is not loaded we
2233     // need to rewire all projections since store_inline_type_fields_to_buf is already present
2234     if (C->strength_reduction() && InlineTypeReturnedAsFields && !call->as_CallJava()->method()->return_type()->is_loaded()) {
2235       const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc();
2236       for (uint i = TypeFunc::Parms; i < domain->cnt(); i++) {
2237         C->gvn_replace_by(callprojs->resproj[0], final_state->in(i));
2238       }
2239     } else {
2240       C->gvn_replace_by(callprojs->resproj[0], result);
2241     }
2242   }
2243 
2244   if (ejvms == nullptr) {
2245     // No exception edges to simply kill off those paths
2246     if (callprojs->catchall_catchproj != nullptr) {
2247       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2248     }
2249     if (callprojs->catchall_memproj != nullptr) {
2250       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2251     }
2252     if (callprojs->catchall_ioproj != nullptr) {
2253       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2254     }
2255     // Replace the old exception object with top
2256     if (callprojs->exobj != nullptr) {
2257       C->gvn_replace_by(callprojs->exobj, C->top());
2258     }
2259   } else {
2260     GraphKit ekit(ejvms);
2261 
2262     // Load my combined exception state into the kit, with all phis transformed:
2263     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2264     replaced_nodes_exception = ex_map->replaced_nodes();
2265 
2266     Node* ex_oop = ekit.use_exception_state(ex_map);
2267 
2268     if (callprojs->catchall_catchproj != nullptr) {
2269       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2270       ex_ctl = ekit.control();
2271     }
2272     if (callprojs->catchall_memproj != nullptr) {
2273       Node* ex_mem = ekit.reset_memory();
2274       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2275       add_mergemem_users_to_worklist(wl, ex_mem);
2276     }
2277     if (callprojs->catchall_ioproj != nullptr) {
2278       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2279     }
2280 
2281     // Replace the old exception object with the newly created one
2282     if (callprojs->exobj != nullptr) {
2283       C->gvn_replace_by(callprojs->exobj, ex_oop);
2284     }
2285   }
2286 
2287   // Disconnect the call from the graph
2288   call->disconnect_inputs(C);
2289   C->gvn_replace_by(call, C->top());
2290 
2291   // Clean up any MergeMems that feed other MergeMems since the
2292   // optimizer doesn't like that.
2293   while (wl.size() > 0) {
2294     _gvn.transform(wl.pop());
2295   }
2296 
2297   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2298     replaced_nodes.apply(C, final_ctl);
2299   }
2300   if (!ex_ctl->is_top() && do_replaced_nodes) {
2301     replaced_nodes_exception.apply(C, ex_ctl);
2302   }
2303 }
2304 
2305 
2306 //------------------------------increment_counter------------------------------
2307 // for statistics: increment a VM counter by 1
2308 
2309 void GraphKit::increment_counter(address counter_addr) {
2310   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2311   increment_counter(adr1);
2312 }
2313 
2314 void GraphKit::increment_counter(Node* counter_addr) {
2315   Node* ctrl = control();
2316   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2317   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2477  *
2478  * @param n          node that the type applies to
2479  * @param exact_kls  type from profiling
2480  * @param maybe_null did profiling see null?
2481  *
2482  * @return           node with improved type
2483  */
2484 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2485   const Type* current_type = _gvn.type(n);
2486   assert(UseTypeSpeculation, "type speculation must be on");
2487 
2488   const TypePtr* speculative = current_type->speculative();
2489 
2490   // Should the klass from the profile be recorded in the speculative type?
2491   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2492     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2493     const TypeOopPtr* xtype = tklass->as_instance_type();
2494     assert(xtype->klass_is_exact(), "Should be exact");
2495     // Any reason to believe n is not null (from this profiling or a previous one)?
2496     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2497     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2498     // record the new speculative type's depth
2499     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2500     speculative = speculative->with_inline_depth(jvms()->depth());
2501   } else if (current_type->would_improve_ptr(ptr_kind)) {
2502     // Profiling report that null was never seen so we can change the
2503     // speculative type to non null ptr.
2504     if (ptr_kind == ProfileAlwaysNull) {
2505       speculative = TypePtr::NULL_PTR;
2506     } else {
2507       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2508       const TypePtr* ptr = TypePtr::NOTNULL;
2509       if (speculative != nullptr) {
2510         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2511       } else {
2512         speculative = ptr;
2513       }
2514     }
2515   }
2516 
2517   if (speculative != current_type->speculative()) {
2518     // Build a type with a speculative type (what we think we know
2519     // about the type but will need a guard when we use it)
2520     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2521     // We're changing the type, we need a new CheckCast node to carry
2522     // the new type. The new type depends on the control: what
2523     // profiling tells us is only valid from here as far as we can
2524     // tell.
2525     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2526     cast = _gvn.transform(cast);
2527     replace_in_map(n, cast);
2528     n = cast;
2529   }
2530 
2531   return n;
2532 }
2533 
2534 /**
2535  * Record profiling data from receiver profiling at an invoke with the
2536  * type system so that it can propagate it (speculation)
2537  *
2538  * @param n  receiver node
2539  *
2540  * @return   node with improved type
2541  */
2542 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2543   if (!UseTypeSpeculation) {
2544     return n;
2545   }
2546   ciKlass* exact_kls = profile_has_unique_klass();
2547   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2548   if ((java_bc() == Bytecodes::_checkcast ||
2549        java_bc() == Bytecodes::_instanceof ||
2550        java_bc() == Bytecodes::_aastore) &&
2551       method()->method_data()->is_mature()) {
2552     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2553     if (data != nullptr) {
2554       if (java_bc() == Bytecodes::_aastore) {
2555         ciKlass* array_type = nullptr;
2556         ciKlass* element_type = nullptr;
2557         ProfilePtrKind element_ptr = ProfileMaybeNull;
2558         bool flat_array = true;
2559         bool null_free_array = true;
2560         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2561         exact_kls = element_type;
2562         ptr_kind = element_ptr;
2563       } else {
2564         if (!data->as_BitData()->null_seen()) {
2565           ptr_kind = ProfileNeverNull;
2566         } else {
2567           if (TypeProfileCasts) {
2568             assert(data->is_ReceiverTypeData(), "bad profile data type");
2569             ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2570             uint i = 0;
2571             for (; i < call->row_limit(); i++) {
2572               ciKlass* receiver = call->receiver(i);
2573               if (receiver != nullptr) {
2574                 break;
2575               }
2576             }
2577             ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2578           }

2579         }
2580       }
2581     }
2582   }
2583   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2584 }
2585 
2586 /**
2587  * Record profiling data from argument profiling at an invoke with the
2588  * type system so that it can propagate it (speculation)
2589  *
2590  * @param dest_method  target method for the call
2591  * @param bc           what invoke bytecode is this?
2592  */
2593 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2594   if (!UseTypeSpeculation) {
2595     return;
2596   }
2597   const TypeFunc* tf    = TypeFunc::make(dest_method);
2598   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2599   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2600   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2601     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2602     if (is_reference_type(targ->basic_type())) {
2603       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2604       ciKlass* better_type = nullptr;
2605       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2606         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2607       }
2608       i++;
2609     }
2610   }
2611 }
2612 
2613 /**
2614  * Record profiling data from parameter profiling at an invoke with
2615  * the type system so that it can propagate it (speculation)
2616  */
2617 void GraphKit::record_profiled_parameters_for_speculation() {
2618   if (!UseTypeSpeculation) {
2619     return;
2620   }
2621   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2741                                   // The first null ends the list.
2742                                   Node* parm0, Node* parm1,
2743                                   Node* parm2, Node* parm3,
2744                                   Node* parm4, Node* parm5,
2745                                   Node* parm6, Node* parm7) {
2746   assert(call_addr != nullptr, "must not call null targets");
2747 
2748   // Slow-path call
2749   bool is_leaf = !(flags & RC_NO_LEAF);
2750   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2751   if (call_name == nullptr) {
2752     assert(!is_leaf, "must supply name for leaf");
2753     call_name = OptoRuntime::stub_name(call_addr);
2754   }
2755   CallNode* call;
2756   if (!is_leaf) {
2757     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2758   } else if (flags & RC_NO_FP) {
2759     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2760   } else  if (flags & RC_VECTOR){
2761     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2762     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2763   } else if (flags & RC_PURE) {
2764     assert(adr_type == nullptr, "pure call does not touch memory");
2765     call = new CallLeafPureNode(call_type, call_addr, call_name);
2766   } else {
2767     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2768   }
2769 
2770   // The following is similar to set_edges_for_java_call,
2771   // except that the memory effects of the call are restricted to AliasIdxRaw.
2772 
2773   // Slow path call has no side-effects, uses few values
2774   bool wide_in  = !(flags & RC_NARROW_MEM);
2775   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2776 
2777   Node* prev_mem = nullptr;
2778   if (wide_in) {
2779     prev_mem = set_predefined_input_for_runtime_call(call);
2780   } else {
2781     assert(!wide_out, "narrow in => narrow out");
2782     Node* narrow_mem = memory(adr_type);
2783     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2784   }
2785 
2786   // Hook each parm in order.  Stop looking at the first null.
2787   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2788   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2789   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2790   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2791   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2792   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2793   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2794   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2795   /* close each nested if ===> */  } } } } } } } }
2796   assert(call->in(call->req()-1) != nullptr || (call->req()-1) > (TypeFunc::Parms+7), "must initialize all parms");
2797 
2798   if (!is_leaf) {
2799     // Non-leaves can block and take safepoints:
2800     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2801   }
2802   // Non-leaves can throw exceptions:
2803   if (has_io) {
2804     call->set_req(TypeFunc::I_O, i_o());
2805   }
2806 
2807   if (flags & RC_UNCOMMON) {
2808     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2809     // (An "if" probability corresponds roughly to an unconditional count.
2810     // Sort of.)
2811     call->set_cnt(PROB_UNLIKELY_MAG(4));
2812   }
2813 
2814   Node* c = _gvn.transform(call);
2815   assert(c == call, "cannot disappear");
2816 

2824 
2825   if (has_io) {
2826     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2827   }
2828   return call;
2829 
2830 }
2831 
2832 // i2b
2833 Node* GraphKit::sign_extend_byte(Node* in) {
2834   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2835   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2836 }
2837 
2838 // i2s
2839 Node* GraphKit::sign_extend_short(Node* in) {
2840   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2841   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2842 }
2843 
2844 
2845 //------------------------------merge_memory-----------------------------------
2846 // Merge memory from one path into the current memory state.
2847 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2848   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2849     Node* old_slice = mms.force_memory();
2850     Node* new_slice = mms.memory2();
2851     if (old_slice != new_slice) {
2852       PhiNode* phi;
2853       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2854         if (mms.is_empty()) {
2855           // clone base memory Phi's inputs for this memory slice
2856           assert(old_slice == mms.base_memory(), "sanity");
2857           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2858           _gvn.set_type(phi, Type::MEMORY);
2859           for (uint i = 1; i < phi->req(); i++) {
2860             phi->init_req(i, old_slice->in(i));
2861           }
2862         } else {
2863           phi = old_slice->as_Phi(); // Phi was generated already
2864         }

2921   gvn.transform(iff);
2922   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2923   return iff;
2924 }
2925 
2926 //-------------------------------gen_subtype_check-----------------------------
2927 // Generate a subtyping check.  Takes as input the subtype and supertype.
2928 // Returns 2 values: sets the default control() to the true path and returns
2929 // the false path.  Only reads invariant memory; sets no (visible) memory.
2930 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2931 // but that's not exposed to the optimizer.  This call also doesn't take in an
2932 // Object; if you wish to check an Object you need to load the Object's class
2933 // prior to coming here.
2934 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2935                                ciMethod* method, int bci) {
2936   Compile* C = gvn.C;
2937   if ((*ctrl)->is_top()) {
2938     return C->top();
2939   }
2940 
2941   const TypeKlassPtr* klass_ptr_type = gvn.type(superklass)->is_klassptr();
2942   // For a direct pointer comparison, we need the refined array klass pointer
2943   Node* vm_superklass = superklass;
2944   if (klass_ptr_type->isa_aryklassptr() && klass_ptr_type->klass_is_exact()) {
2945     assert(!klass_ptr_type->is_aryklassptr()->is_refined_type(), "Unexpected refined array klass pointer");
2946     vm_superklass = gvn.makecon(klass_ptr_type->is_aryklassptr()->cast_to_refined_array_klass_ptr());
2947   }
2948 
2949   // Fast check for identical types, perhaps identical constants.
2950   // The types can even be identical non-constants, in cases
2951   // involving Array.newInstance, Object.clone, etc.
2952   if (subklass == superklass)
2953     return C->top();             // false path is dead; no test needed.
2954 
2955   if (gvn.type(superklass)->singleton()) {
2956     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2957     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2958 
2959     // In the common case of an exact superklass, try to fold up the
2960     // test before generating code.  You may ask, why not just generate
2961     // the code and then let it fold up?  The answer is that the generated
2962     // code will necessarily include null checks, which do not always
2963     // completely fold away.  If they are also needless, then they turn
2964     // into a performance loss.  Example:
2965     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2966     // Here, the type of 'fa' is often exact, so the store check
2967     // of fa[1]=x will fold up, without testing the nullness of x.
2968     //
2969     // At macro expansion, we would have already folded the SubTypeCheckNode
2970     // being expanded here because we always perform the static sub type
2971     // check in SubTypeCheckNode::sub() regardless of whether
2972     // StressReflectiveCode is set or not. We can therefore skip this
2973     // static check when StressReflectiveCode is on.
2974     switch (C->static_subtype_check(superk, subk)) {
2975     case Compile::SSC_always_false:
2976       {
2977         Node* always_fail = *ctrl;
2978         *ctrl = gvn.C->top();
2979         return always_fail;
2980       }
2981     case Compile::SSC_always_true:
2982       return C->top();
2983     case Compile::SSC_easy_test:
2984       {
2985         // Just do a direct pointer compare and be done.
2986         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2987         *ctrl = gvn.transform(new IfTrueNode(iff));
2988         return gvn.transform(new IfFalseNode(iff));
2989       }
2990     case Compile::SSC_full_test:
2991       break;
2992     default:
2993       ShouldNotReachHere();
2994     }
2995   }
2996 
2997   // %%% Possible further optimization:  Even if the superklass is not exact,
2998   // if the subklass is the unique subtype of the superklass, the check
2999   // will always succeed.  We could leave a dependency behind to ensure this.
3000 
3001   // First load the super-klass's check-offset
3002   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
3003   Node* m = C->immutable_memory();
3004   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
3005   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
3006   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();

3044   gvn.record_for_igvn(r_ok_subtype);
3045 
3046   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
3047   // SubTypeCheck node
3048   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
3049     ciCallProfile profile = method->call_profile_at_bci(bci);
3050     float total_prob = 0;
3051     for (int i = 0; profile.has_receiver(i); ++i) {
3052       float prob = profile.receiver_prob(i);
3053       total_prob += prob;
3054     }
3055     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
3056       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
3057       for (int i = 0; profile.has_receiver(i); ++i) {
3058         ciKlass* klass = profile.receiver(i);
3059         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
3060         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
3061         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
3062           continue;
3063         }
3064         if (klass_t->isa_aryklassptr()) {
3065           // For a direct pointer comparison, we need the refined array klass pointer
3066           klass_t = klass_t->is_aryklassptr()->cast_to_refined_array_klass_ptr();
3067         }
3068         float prob = profile.receiver_prob(i);
3069         ConNode* klass_node = gvn.makecon(klass_t);
3070         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
3071         Node* iftrue = gvn.transform(new IfTrueNode(iff));
3072 
3073         if (result == Compile::SSC_always_true) {
3074           r_ok_subtype->add_req(iftrue);
3075         } else {
3076           assert(result == Compile::SSC_always_false, "");
3077           r_not_subtype->add_req(iftrue);
3078         }
3079         *ctrl = gvn.transform(new IfFalseNode(iff));
3080       }
3081     }
3082   }
3083 
3084   // See if we get an immediate positive hit.  Happens roughly 83% of the
3085   // time.  Test to see if the value loaded just previously from the subklass
3086   // is exactly the superklass.
3087   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);

3101       igvn->remove_globally_dead_node(r_not_subtype);
3102     }
3103     return not_subtype_ctrl;
3104   }
3105 
3106   r_ok_subtype->init_req(1, iftrue1);
3107 
3108   // Check for immediate negative hit.  Happens roughly 11% of the time (which
3109   // is roughly 63% of the remaining cases).  Test to see if the loaded
3110   // check-offset points into the subklass display list or the 1-element
3111   // cache.  If it points to the display (and NOT the cache) and the display
3112   // missed then it's not a subtype.
3113   Node *cacheoff = gvn.intcon(cacheoff_con);
3114   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
3115   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
3116   *ctrl = gvn.transform(new IfFalseNode(iff2));
3117 
3118   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
3119   // No performance impact (too rare) but allows sharing of secondary arrays
3120   // which has some footprint reduction.
3121   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
3122   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
3123   *ctrl = gvn.transform(new IfFalseNode(iff3));
3124 
3125   // -- Roads not taken here: --
3126   // We could also have chosen to perform the self-check at the beginning
3127   // of this code sequence, as the assembler does.  This would not pay off
3128   // the same way, since the optimizer, unlike the assembler, can perform
3129   // static type analysis to fold away many successful self-checks.
3130   // Non-foldable self checks work better here in second position, because
3131   // the initial primary superclass check subsumes a self-check for most
3132   // types.  An exception would be a secondary type like array-of-interface,
3133   // which does not appear in its own primary supertype display.
3134   // Finally, we could have chosen to move the self-check into the
3135   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3136   // dependent manner.  But it is worthwhile to have the check here,
3137   // where it can be perhaps be optimized.  The cost in code space is
3138   // small (register compare, branch).
3139 
3140   // Now do a linear scan of the secondary super-klass array.  Again, no real
3141   // performance impact (too rare) but it's gotta be done.
3142   // Since the code is rarely used, there is no penalty for moving it
3143   // out of line, and it can only improve I-cache density.
3144   // The decision to inline or out-of-line this final check is platform
3145   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3146   Node* psc = gvn.transform(
3147     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3148 
3149   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3150   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3151   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3152 
3153   // Return false path; set default control to true path.
3154   *ctrl = gvn.transform(r_ok_subtype);
3155   return gvn.transform(r_not_subtype);
3156 }
3157 
3158 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3159   const Type* sub_t = _gvn.type(obj_or_subklass);
3160   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3161     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3162     obj_or_subklass = makecon(sub_t);
3163   }
3164   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3165   if (expand_subtype_check) {
3166     MergeMemNode* mem = merged_memory();
3167     Node* ctrl = control();
3168     Node* subklass = obj_or_subklass;
3169     if (!sub_t->isa_klassptr()) {
3170       subklass = load_object_klass(obj_or_subklass);
3171     }
3172 
3173     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3174     set_control(ctrl);
3175     return n;
3176   }
3177 
3178   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3179   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3180   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3181   set_control(_gvn.transform(new IfTrueNode(iff)));
3182   return _gvn.transform(new IfFalseNode(iff));
3183 }
3184 
3185 // Profile-driven exact type check:
3186 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3187                                     float prob, Node* *casted_receiver) {

3188   assert(!klass->is_interface(), "no exact type check on interfaces");
3189   Node* fail = top();
3190   const Type* rec_t = _gvn.type(receiver);
3191   if (rec_t->is_inlinetypeptr()) {
3192     if (klass->equals(rec_t->inline_klass())) {
3193       (*casted_receiver) = receiver; // Always passes
3194     } else {
3195       (*casted_receiver) = top();    // Always fails
3196       fail = control();
3197       set_control(top());
3198     }
3199     return fail;
3200   }
3201   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3202   if (tklass->isa_aryklassptr()) {
3203     // For a direct pointer comparison, we need the refined array klass pointer
3204     tklass = tklass->is_aryklassptr()->cast_to_refined_array_klass_ptr();
3205   }
3206   Node* recv_klass = load_object_klass(receiver);
3207   fail = type_check(recv_klass, tklass, prob);





3208 
3209   if (!stopped()) {
3210     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3211     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3212     assert(recv_xtype->klass_is_exact(), "");
3213 
3214     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3215       // Subsume downstream occurrences of receiver with a cast to
3216       // recv_xtype, since now we know what the type will be.
3217       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3218       Node* res = _gvn.transform(cast);
3219       if (recv_xtype->is_inlinetypeptr()) {
3220         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3221         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3222       }
3223       (*casted_receiver) = res;
3224       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3225       // (User must make the replace_in_map call.)
3226     }
3227   }
3228 
3229   return fail;
3230 }
3231 
3232 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3233                            float prob) {
3234   Node* want_klass = makecon(tklass);
3235   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3236   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3237   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3238   set_control(_gvn.transform(new IfTrueNode (iff)));
3239   Node* fail = _gvn.transform(new IfFalseNode(iff));
3240   return fail;
3241 }
3242 
3243 //------------------------------subtype_check_receiver-------------------------
3244 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3245                                        Node** casted_receiver) {
3246   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3247   Node* want_klass = makecon(tklass);
3248 
3249   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3250 
3251   // Ignore interface type information until interface types are properly tracked.
3252   if (!stopped() && !klass->is_interface()) {
3253     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3254     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3255     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3256       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3257       if (recv_type->is_inlinetypeptr()) {
3258         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3259       }
3260       (*casted_receiver) = cast;
3261     }
3262   }
3263 
3264   return slow_ctl;
3265 }
3266 
3267 //------------------------------seems_never_null-------------------------------
3268 // Use null_seen information if it is available from the profile.
3269 // If we see an unexpected null at a type check we record it and force a
3270 // recompile; the offending check will be recompiled to handle nulls.
3271 // If we see several offending BCIs, then all checks in the
3272 // method will be recompiled.
3273 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3274   speculating = !_gvn.type(obj)->speculative_maybe_null();
3275   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3276   if (UncommonNullCast               // Cutout for this technique
3277       && obj != null()               // And not the -Xcomp stupid case?
3278       && !too_many_traps(reason)
3279       ) {
3280     if (speculating) {

3349 
3350 //------------------------maybe_cast_profiled_receiver-------------------------
3351 // If the profile has seen exactly one type, narrow to exactly that type.
3352 // Subsequent type checks will always fold up.
3353 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3354                                              const TypeKlassPtr* require_klass,
3355                                              ciKlass* spec_klass,
3356                                              bool safe_for_replace) {
3357   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3358 
3359   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3360 
3361   // Make sure we haven't already deoptimized from this tactic.
3362   if (too_many_traps_or_recompiles(reason))
3363     return nullptr;
3364 
3365   // (No, this isn't a call, but it's enough like a virtual call
3366   // to use the same ciMethod accessor to get the profile info...)
3367   // If we have a speculative type use it instead of profiling (which
3368   // may not help us)
3369   ciKlass* exact_kls = spec_klass;
3370   if (exact_kls == nullptr) {
3371     if (java_bc() == Bytecodes::_aastore) {
3372       ciKlass* array_type = nullptr;
3373       ciKlass* element_type = nullptr;
3374       ProfilePtrKind element_ptr = ProfileMaybeNull;
3375       bool flat_array = true;
3376       bool null_free_array = true;
3377       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3378       exact_kls = element_type;
3379     } else {
3380       exact_kls = profile_has_unique_klass();
3381     }
3382   }
3383   if (exact_kls != nullptr) {// no cast failures here
3384     if (require_klass == nullptr ||
3385         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3386       // If we narrow the type to match what the type profile sees or
3387       // the speculative type, we can then remove the rest of the
3388       // cast.
3389       // This is a win, even if the exact_kls is very specific,
3390       // because downstream operations, such as method calls,
3391       // will often benefit from the sharper type.
3392       Node* exact_obj = not_null_obj; // will get updated in place...
3393       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3394                                             &exact_obj);
3395       { PreserveJVMState pjvms(this);
3396         set_control(slow_ctl);
3397         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3398       }
3399       if (safe_for_replace) {
3400         replace_in_map(not_null_obj, exact_obj);
3401       }
3402       return exact_obj;

3492   // If not_null_obj is dead, only null-path is taken
3493   if (stopped()) {              // Doing instance-of on a null?
3494     set_control(null_ctl);
3495     return intcon(0);
3496   }
3497   region->init_req(_null_path, null_ctl);
3498   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3499   if (null_ctl == top()) {
3500     // Do this eagerly, so that pattern matches like is_diamond_phi
3501     // will work even during parsing.
3502     assert(_null_path == PATH_LIMIT-1, "delete last");
3503     region->del_req(_null_path);
3504     phi   ->del_req(_null_path);
3505   }
3506 
3507   // Do we know the type check always succeed?
3508   bool known_statically = false;
3509   if (_gvn.type(superklass)->singleton()) {
3510     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3511     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3512     if (subk != nullptr && subk->is_loaded()) {
3513       int static_res = C->static_subtype_check(superk, subk);
3514       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3515     }
3516   }
3517 
3518   if (!known_statically) {
3519     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3520     // We may not have profiling here or it may not help us. If we
3521     // have a speculative type use it to perform an exact cast.
3522     ciKlass* spec_obj_type = obj_type->speculative_type();
3523     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3524       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3525       if (stopped()) {            // Profile disagrees with this path.
3526         set_control(null_ctl);    // Null is the only remaining possibility.
3527         return intcon(0);
3528       }
3529       if (cast_obj != nullptr) {
3530         not_null_obj = cast_obj;
3531       }
3532     }

3548   record_for_igvn(region);
3549 
3550   // If we know the type check always succeeds then we don't use the
3551   // profiling data at this bytecode. Don't lose it, feed it to the
3552   // type system as a speculative type.
3553   if (safe_for_replace) {
3554     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3555     replace_in_map(obj, casted_obj);
3556   }
3557 
3558   return _gvn.transform(phi);
3559 }
3560 
3561 //-------------------------------gen_checkcast---------------------------------
3562 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3563 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3564 // uncommon-trap paths work.  Adjust stack after this call.
3565 // If failure_control is supplied and not null, it is filled in with
3566 // the control edge for the cast failure.  Otherwise, an appropriate
3567 // uncommon trap or exception is thrown.
3568 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) {

3569   kill_dead_locals();           // Benefit all the uncommon traps
3570   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3571   const Type* obj_type = _gvn.type(obj);
3572   if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) {
3573     // Special case: larval inline objects must not be scalarized. They are also generally not
3574     // allowed to participate in most operations except as the first operand of putfield, or as an
3575     // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being
3576     // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize
3577     // value objects in all other places. This special case comes from the limitation of the Java
3578     // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete
3579     // value type. We must do this first because C->static_subtype_check may do nothing when
3580     // StressReflectiveCode is set.
3581     return obj;
3582   }
3583 
3584   // Else it must be a non-larval object
3585   obj = cast_to_non_larval(obj);
3586 
3587   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3588   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3589   bool safe_for_replace = (failure_control == nullptr);
3590   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3591 
3592   // Fast cutout:  Check the case that the cast is vacuously true.
3593   // This detects the common cases where the test will short-circuit
3594   // away completely.  We do this before we perform the null check,
3595   // because if the test is going to turn into zero code, we don't
3596   // want a residual null check left around.  (Causes a slowdown,
3597   // for example, in some objArray manipulations, such as a[i]=a[j].)
3598   if (improved_klass_ptr_type->singleton()) {
3599     const TypeKlassPtr* kptr = nullptr;
3600     if (obj_type->isa_oop_ptr()) {
3601       kptr = obj_type->is_oopptr()->as_klass_type();
3602     } else if (obj->is_InlineType()) {
3603       ciInlineKlass* vk = obj_type->inline_klass();
3604       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3605     }
3606 
3607     if (kptr != nullptr) {
3608       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3609       case Compile::SSC_always_true:
3610         // If we know the type check always succeed then we don't use
3611         // the profiling data at this bytecode. Don't lose it, feed it
3612         // to the type system as a speculative type.
3613         obj = record_profiled_receiver_for_speculation(obj);
3614         if (null_free) {
3615           assert(safe_for_replace, "must be");
3616           obj = null_check(obj);
3617         }
3618         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3619         return obj;
3620       case Compile::SSC_always_false:
3621         if (null_free) {
3622           assert(safe_for_replace, "must be");
3623           obj = null_check(obj);
3624         }
3625         // It needs a null check because a null will *pass* the cast check.
3626         if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) {

3627           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3628           Deoptimization::DeoptReason reason = is_aastore ?
3629             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3630           builtin_throw(reason);
3631           return top();
3632         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3633           return null_assert(obj);
3634         }
3635         break; // Fall through to full check
3636       default:
3637         break;
3638       }
3639     }
3640   }
3641 
3642   ciProfileData* data = nullptr;

3643   if (failure_control == nullptr) {        // use MDO in regular case only
3644     assert(java_bc() == Bytecodes::_aastore ||
3645            java_bc() == Bytecodes::_checkcast,
3646            "interpreter profiles type checks only for these BCs");
3647     if (method()->method_data()->is_mature()) {
3648       data = method()->method_data()->bci_to_data(bci());
3649     }
3650   }
3651 
3652   // Make the merge point
3653   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3654   RegionNode* region = new RegionNode(PATH_LIMIT);
3655   Node*       phi    = new PhiNode(region, toop);
3656   _gvn.set_type(region, Type::CONTROL);
3657   _gvn.set_type(phi, toop);
3658 
3659   C->set_has_split_ifs(true); // Has chance for split-if optimization
3660 
3661   // Use null-cast information if it is available
3662   bool speculative_not_null = false;
3663   bool never_see_null = ((failure_control == nullptr)  // regular case only
3664                          && seems_never_null(obj, data, speculative_not_null));
3665 
3666   if (obj->is_InlineType()) {
3667     // Re-execute if buffering during triggers deoptimization
3668     PreserveReexecuteState preexecs(this);
3669     jvms()->set_should_reexecute(true);
3670     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3671   }
3672 
3673   // Null check; get casted pointer; set region slot 3
3674   Node* null_ctl = top();
3675   Node* not_null_obj = nullptr;
3676   if (null_free) {
3677     assert(safe_for_replace, "must be");
3678     not_null_obj = null_check(obj);
3679   } else {
3680     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3681   }
3682 
3683   // If not_null_obj is dead, only null-path is taken
3684   if (stopped()) {              // Doing instance-of on a null?
3685     set_control(null_ctl);
3686     if (toop->is_inlinetypeptr()) {
3687       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3688     }
3689     return null();
3690   }
3691   region->init_req(_null_path, null_ctl);
3692   phi   ->init_req(_null_path, null());  // Set null path value
3693   if (null_ctl == top()) {
3694     // Do this eagerly, so that pattern matches like is_diamond_phi
3695     // will work even during parsing.
3696     assert(_null_path == PATH_LIMIT-1, "delete last");
3697     region->del_req(_null_path);
3698     phi   ->del_req(_null_path);
3699   }
3700 
3701   Node* cast_obj = nullptr;
3702   if (improved_klass_ptr_type->klass_is_exact()) {
3703     // The following optimization tries to statically cast the speculative type of the object
3704     // (for example obtained during profiling) to the type of the superklass and then do a
3705     // dynamic check that the type of the object is what we expect. To work correctly
3706     // for checkcast and aastore the type of superklass should be exact.
3707     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3708     // We may not have profiling here or it may not help us. If we have
3709     // a speculative type use it to perform an exact cast.
3710     ciKlass* spec_obj_type = obj_type->speculative_type();
3711     if (spec_obj_type != nullptr || data != nullptr) {
3712       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3713       if (cast_obj != nullptr) {
3714         if (failure_control != nullptr) // failure is now impossible
3715           (*failure_control) = top();
3716         // adjust the type of the phi to the exact klass:
3717         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3718       }
3719     }
3720   }
3721 
3722   if (cast_obj == nullptr) {
3723     // Generate the subtype check
3724     Node* improved_superklass = superklass;
3725     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3726       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3727       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3728       // Additionally, the benefit would only be minor in non-constant cases.
3729       improved_superklass = makecon(improved_klass_ptr_type);
3730     }
3731     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);

3732     // Plug in success path into the merge
3733     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3734     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3735     if (failure_control == nullptr) {
3736       if (not_subtype_ctrl != top()) { // If failure is possible
3737         PreserveJVMState pjvms(this);
3738         set_control(not_subtype_ctrl);
3739         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3740         Deoptimization::DeoptReason reason = is_aastore ?
3741           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3742         builtin_throw(reason);
3743       }
3744     } else {
3745       (*failure_control) = not_subtype_ctrl;
3746     }
3747   }
3748 
3749   region->init_req(_obj_path, control());
3750   phi   ->init_req(_obj_path, cast_obj);
3751 
3752   // A merge of null or Casted-NotNull obj
3753   Node* res = _gvn.transform(phi);
3754 
3755   // Note I do NOT always 'replace_in_map(obj,result)' here.
3756   //  if( tk->klass()->can_be_primary_super()  )
3757     // This means that if I successfully store an Object into an array-of-String
3758     // I 'forget' that the Object is really now known to be a String.  I have to
3759     // do this because we don't have true union types for interfaces - if I store
3760     // a Baz into an array-of-Interface and then tell the optimizer it's an
3761     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3762     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3763   //  replace_in_map( obj, res );
3764 
3765   // Return final merged results
3766   set_control( _gvn.transform(region) );
3767   record_for_igvn(region);
3768 
3769   bool not_inline = !toop->can_be_inline_type();
3770   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array());
3771   if (Arguments::is_valhalla_enabled() && (not_inline || not_flat_in_array)) {
3772     // Check if obj has been loaded from an array
3773     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3774     Node* array = nullptr;
3775     if (obj->isa_Load()) {
3776       Node* address = obj->in(MemNode::Address);
3777       if (address->isa_AddP()) {
3778         array = address->as_AddP()->in(AddPNode::Base);
3779       }
3780     } else if (obj->is_Phi()) {
3781       Node* region = obj->in(0);
3782       // TODO make this more robust (see JDK-8231346)
3783       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3784         IfNode* iff = region->in(2)->in(0)->isa_If();
3785         if (iff != nullptr) {
3786           iff->is_flat_array_check(&_gvn, &array);
3787         }
3788       }
3789     }
3790     if (array != nullptr) {
3791       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3792       if (ary_t != nullptr) {
3793         if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) {
3794           // Casting array element to a non-inline-type, mark array as not null-free.
3795           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3796           replace_in_map(array, cast);
3797           array = cast;
3798         }
3799         if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) {
3800           // Casting array element to a non-flat-in-array type, mark array as not flat.
3801           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3802           replace_in_map(array, cast);
3803           array = cast;
3804         }
3805       }
3806     }
3807   }
3808 
3809   if (!stopped() && !res->is_InlineType()) {
3810     res = record_profiled_receiver_for_speculation(res);
3811     if (toop->is_inlinetypeptr() && !maybe_larval) {
3812       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass());
3813       res = vt;
3814       if (safe_for_replace) {
3815         replace_in_map(obj, vt);
3816         replace_in_map(not_null_obj, vt);
3817         replace_in_map(res, vt);
3818       }
3819     }
3820   }
3821   return res;
3822 }
3823 
3824 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3825   // Load markword
3826   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3827   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3828   if (check_lock && !UseCompactObjectHeaders) {
3829     // COH: Locking does not override the markword with a tagged pointer. We can directly read from the markword.
3830     // Check if obj is locked
3831     Node* locked_bit = MakeConX(markWord::unlocked_value);
3832     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3833     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3834     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3835     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3836     _gvn.transform(iff);
3837     Node* locked_region = new RegionNode(3);
3838     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3839 
3840     // Unlocked: Use bits from mark word
3841     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3842     mark_phi->init_req(1, mark);
3843 
3844     // Locked: Load prototype header from klass
3845     set_control(_gvn.transform(new IfFalseNode(iff)));
3846     // Make loads control dependent to make sure they are only executed if array is locked
3847     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3848     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3849     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3850     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3851 
3852     locked_region->init_req(2, control());
3853     mark_phi->init_req(2, proto);
3854     set_control(_gvn.transform(locked_region));
3855     record_for_igvn(locked_region);
3856 
3857     mark = mark_phi;
3858   }
3859 
3860   // Now check if mark word bits are set
3861   Node* mask = MakeConX(mask_val);
3862   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3863   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3864   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3865   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3866 }
3867 
3868 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3869   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3870 }
3871 
3872 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3873   // We can't use immutable memory here because the mark word is mutable.
3874   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3875   // check is moved out of loops (mainly to enable loop unswitching).
3876   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3877   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3878   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3879 }
3880 
3881 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3882   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3883 }
3884 
3885 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) {
3886   assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat");
3887 
3888   // TODO 8350865 Add a stress flag to always access atomic if layout exists?
3889   if (!vk->has_non_atomic_layout()) {
3890     return intcon(1); // Always atomic
3891   } else if (!vk->has_atomic_layout()) {
3892     return intcon(0); // Never atomic
3893   }
3894 
3895   Node* array_klass = load_object_klass(array);
3896   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3897   Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset);
3898   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
3899   Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::NULL_FREE_ATOMIC_FLAT)));
3900   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3901 }
3902 
3903 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3904 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3905   RegionNode* region = new RegionNode(3);
3906   Node* null_ctl = top();
3907   null_check_oop(val, &null_ctl);
3908   if (null_ctl != top()) {
3909     PreserveJVMState pjvms(this);
3910     set_control(null_ctl);
3911     {
3912       // Deoptimize if null-free array
3913       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3914       inc_sp(nargs);
3915       uncommon_trap(Deoptimization::Reason_null_check,
3916                     Deoptimization::Action_none);
3917     }
3918     region->init_req(1, control());
3919   }
3920   region->init_req(2, control());
3921   set_control(_gvn.transform(region));
3922   record_for_igvn(region);
3923   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3924     // Since we were just successfully storing null, the array can't be null free.
3925     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3926     ary_t = ary_t->cast_to_not_null_free();
3927     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3928     if (safe_for_replace) {
3929       replace_in_map(ary, cast);
3930     }
3931     ary = cast;
3932   }
3933   return ary;
3934 }
3935 
3936 //------------------------------next_monitor-----------------------------------
3937 // What number should be given to the next monitor?
3938 int GraphKit::next_monitor() {
3939   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3940   int next = current + C->sync_stack_slots();
3941   // Keep the toplevel high water mark current:
3942   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3943   return current;
3944 }
3945 
3946 //------------------------------insert_mem_bar---------------------------------
3947 // Memory barrier to avoid floating things around
3948 // The membar serves as a pinch point between both control and all memory slices.
3949 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3950   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3951   mb->init_req(TypeFunc::Control, control());
3952   mb->init_req(TypeFunc::Memory,  reset_memory());
3953   Node* membar = _gvn.transform(mb);

4047     lock->create_lock_counter(map()->jvms());
4048     increment_counter(lock->counter()->addr());
4049   }
4050 #endif
4051 
4052   return flock;
4053 }
4054 
4055 
4056 //------------------------------shared_unlock----------------------------------
4057 // Emit unlocking code.
4058 void GraphKit::shared_unlock(Node* box, Node* obj) {
4059   // bci is either a monitorenter bc or InvocationEntryBci
4060   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
4061   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
4062 
4063   if (stopped()) {               // Dead monitor?
4064     map()->pop_monitor();        // Kill monitor from debug info
4065     return;
4066   }
4067   assert(!obj->is_InlineType(), "should not unlock on inline type");
4068 
4069   // Memory barrier to avoid floating things down past the locked region
4070   insert_mem_bar(Op_MemBarReleaseLock);
4071 
4072   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
4073   UnlockNode *unlock = new UnlockNode(C, tf);
4074 #ifdef ASSERT
4075   unlock->set_dbg_jvms(sync_jvms());
4076 #endif
4077   uint raw_idx = Compile::AliasIdxRaw;
4078   unlock->init_req( TypeFunc::Control, control() );
4079   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
4080   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
4081   unlock->init_req( TypeFunc::FramePtr, frameptr() );
4082   unlock->init_req( TypeFunc::ReturnAdr, top() );
4083 
4084   unlock->init_req(TypeFunc::Parms + 0, obj);
4085   unlock->init_req(TypeFunc::Parms + 1, box);
4086   unlock = _gvn.transform(unlock)->as_Unlock();
4087 
4088   Node* mem = reset_memory();
4089 
4090   // unlock has no side-effects, sets few values
4091   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
4092 
4093   // Kill monitor from debug info
4094   map()->pop_monitor( );
4095 }
4096 
4097 //-------------------------------get_layout_helper-----------------------------
4098 // If the given klass is a constant or known to be an array,
4099 // fetch the constant layout helper value into constant_value
4100 // and return null.  Otherwise, load the non-constant
4101 // layout helper value, and return the node which represents it.
4102 // This two-faced routine is useful because allocation sites
4103 // almost always feature constant types.
4104 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
4105   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
4106   if (!StressReflectiveCode && klass_t != nullptr) {
4107     bool xklass = klass_t->klass_is_exact();
4108     bool can_be_flat = false;
4109     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4110     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4111       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4112       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4113       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array());
4114     }
4115     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4116       jint lhelper;
4117       if (klass_t->is_flat()) {
4118         lhelper = ary_type->flat_layout_helper();
4119       } else if (klass_t->isa_aryklassptr()) {
4120         BasicType elem = ary_type->elem()->array_element_basic_type();
4121         if (is_reference_type(elem, true)) {
4122           elem = T_OBJECT;
4123         }
4124         lhelper = Klass::array_layout_helper(elem);
4125       } else {
4126         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4127       }
4128       if (lhelper != Klass::_lh_neutral_value) {
4129         constant_value = lhelper;
4130         return (Node*) nullptr;
4131       }
4132     }
4133   }
4134   constant_value = Klass::_lh_neutral_value;  // put in a known value
4135   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4136   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4137 }
4138 
4139 // We just put in an allocate/initialize with a big raw-memory effect.
4140 // Hook selected additional alias categories on the initialization.
4141 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4142                                 MergeMemNode* init_in_merge,
4143                                 Node* init_out_raw) {
4144   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4145   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4146 
4147   Node* prevmem = kit.memory(alias_idx);
4148   init_in_merge->set_memory_at(alias_idx, prevmem);
4149   if (init_out_raw != nullptr) {
4150     kit.set_memory(init_out_raw, alias_idx);
4151   }
4152 }
4153 
4154 //---------------------------set_output_for_allocation-------------------------
4155 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4156                                           const TypeOopPtr* oop_type,
4157                                           bool deoptimize_on_exception) {
4158   int rawidx = Compile::AliasIdxRaw;
4159   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4160   add_safepoint_edges(alloc);
4161   Node* allocx = _gvn.transform(alloc);
4162   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4163   // create memory projection for i_o
4164   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4165   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4166 
4167   // create a memory projection as for the normal control path
4168   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4169   set_memory(malloc, rawidx);
4170 
4171   // a normal slow-call doesn't change i_o, but an allocation does
4172   // we create a separate i_o projection for the normal control path
4173   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4174   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4175 
4176   // put in an initialization barrier
4177   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4178                                                  rawoop)->as_Initialize();
4179   assert(alloc->initialization() == init,  "2-way macro link must work");
4180   assert(init ->allocation()     == alloc, "2-way macro link must work");
4181   {
4182     // Extract memory strands which may participate in the new object's
4183     // initialization, and source them from the new InitializeNode.
4184     // This will allow us to observe initializations when they occur,
4185     // and link them properly (as a group) to the InitializeNode.
4186     assert(init->in(InitializeNode::Memory) == malloc, "");
4187     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4188     init->set_req(InitializeNode::Memory, minit_in);
4189     record_for_igvn(minit_in); // fold it up later, if possible
4190     _gvn.set_type(minit_in, Type::MEMORY);
4191     Node* minit_out = memory(rawidx);
4192     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4193     int mark_idx = C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()));
4194     // Add an edge in the MergeMem for the header fields so an access to one of those has correct memory state.
4195     // Use one NarrowMemProjNode per slice to properly record the adr type of each slice. The Initialize node will have
4196     // multiple projections as a result.
4197     set_memory(_gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(mark_idx))), mark_idx);
4198     int klass_idx = C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()));
4199     set_memory(_gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(klass_idx))), klass_idx);
4200     if (oop_type->isa_aryptr()) {
4201       // Initially all flat array accesses share a single slice
4202       // but that changes after parsing. Prepare the memory graph so
4203       // it can optimize flat array accesses properly once they
4204       // don't share a single slice.
4205       assert(C->flat_accesses_share_alias(), "should be set at parse time");
4206       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4207       int            elemidx  = C->get_alias_index(telemref);
4208       const TypePtr* alias_adr_type = C->get_adr_type(elemidx);
4209       if (alias_adr_type->is_flat()) {
4210         C->set_flat_accesses();
4211       }
4212       hook_memory_on_init(*this, elemidx, minit_in, _gvn.transform(new NarrowMemProjNode(init, alias_adr_type)));
4213     } else if (oop_type->isa_instptr()) {
4214       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4215       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4216         ciField* field = ik->nonstatic_field_at(i);
4217         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4218           continue;  // do not bother to track really large numbers of fields
4219         // Find (or create) the alias category for this field:
4220         int fieldidx = C->alias_type(field)->index();
4221         hook_memory_on_init(*this, fieldidx, minit_in, _gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(fieldidx))));
4222       }
4223     }
4224   }
4225 
4226   // Cast raw oop to the real thing...
4227   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4228   javaoop = _gvn.transform(javaoop);
4229   C->set_recent_alloc(control(), javaoop);
4230   assert(just_allocated_object(control()) == javaoop, "just allocated");
4231 
4232 #ifdef ASSERT

4244       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4245     }
4246   }
4247 #endif //ASSERT
4248 
4249   return javaoop;
4250 }
4251 
4252 //---------------------------new_instance--------------------------------------
4253 // This routine takes a klass_node which may be constant (for a static type)
4254 // or may be non-constant (for reflective code).  It will work equally well
4255 // for either, and the graph will fold nicely if the optimizer later reduces
4256 // the type to a constant.
4257 // The optional arguments are for specialized use by intrinsics:
4258 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4259 //  - If 'return_size_val', report the total object size to the caller.
4260 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4261 Node* GraphKit::new_instance(Node* klass_node,
4262                              Node* extra_slow_test,
4263                              Node* *return_size_val,
4264                              bool deoptimize_on_exception,
4265                              InlineTypeNode* inline_type_node) {
4266   // Compute size in doublewords
4267   // The size is always an integral number of doublewords, represented
4268   // as a positive bytewise size stored in the klass's layout_helper.
4269   // The layout_helper also encodes (in a low bit) the need for a slow path.
4270   jint  layout_con = Klass::_lh_neutral_value;
4271   Node* layout_val = get_layout_helper(klass_node, layout_con);
4272   bool  layout_is_con = (layout_val == nullptr);
4273 
4274   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4275   // Generate the initial go-slow test.  It's either ALWAYS (return a
4276   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4277   // case) a computed value derived from the layout_helper.
4278   Node* initial_slow_test = nullptr;
4279   if (layout_is_con) {
4280     assert(!StressReflectiveCode, "stress mode does not use these paths");
4281     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4282     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4283   } else {   // reflective case
4284     // This reflective path is used by Unsafe.allocateInstance.
4285     // (It may be stress-tested by specifying StressReflectiveCode.)
4286     // Basically, we want to get into the VM is there's an illegal argument.
4287     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4288     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4289     if (extra_slow_test != intcon(0)) {
4290       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4291     }
4292     // (Macro-expander will further convert this to a Bool, if necessary.)

4303 
4304     // Clear the low bits to extract layout_helper_size_in_bytes:
4305     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4306     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4307     size = _gvn.transform( new AndXNode(size, mask) );
4308   }
4309   if (return_size_val != nullptr) {
4310     (*return_size_val) = size;
4311   }
4312 
4313   // This is a precise notnull oop of the klass.
4314   // (Actually, it need not be precise if this is a reflective allocation.)
4315   // It's what we cast the result to.
4316   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4317   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4318   const TypeOopPtr* oop_type = tklass->as_instance_type();
4319 
4320   // Now generate allocation code
4321 
4322   // The entire memory state is needed for slow path of the allocation
4323   // since GC and deoptimization can happen.
4324   Node *mem = reset_memory();
4325   set_all_memory(mem); // Create new memory state
4326 
4327   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4328                                          control(), mem, i_o(),
4329                                          size, klass_node,
4330                                          initial_slow_test, inline_type_node);
4331 
4332   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4333 }
4334 
4335 //-------------------------------new_array-------------------------------------
4336 // helper for newarray and anewarray
4337 // The 'length' parameter is (obviously) the length of the array.
4338 // The optional arguments are for specialized use by intrinsics:
4339 //  - If 'return_size_val', report the non-padded array size (sum of header size
4340 //    and array body) to the caller.
4341 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4342 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4343                           Node* length,         // number of array elements
4344                           int   nargs,          // number of arguments to push back for uncommon trap
4345                           Node* *return_size_val,
4346                           bool deoptimize_on_exception,
4347                           Node* init_val) {
4348   jint  layout_con = Klass::_lh_neutral_value;
4349   Node* layout_val = get_layout_helper(klass_node, layout_con);
4350   bool  layout_is_con = (layout_val == nullptr);
4351 
4352   if (!layout_is_con && !StressReflectiveCode &&
4353       !too_many_traps(Deoptimization::Reason_class_check)) {
4354     // This is a reflective array creation site.
4355     // Optimistically assume that it is a subtype of Object[],
4356     // so that we can fold up all the address arithmetic.
4357     layout_con = Klass::array_layout_helper(T_OBJECT);
4358     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4359     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4360     { BuildCutout unless(this, bol_lh, PROB_MAX);
4361       inc_sp(nargs);
4362       uncommon_trap(Deoptimization::Reason_class_check,
4363                     Deoptimization::Action_maybe_recompile);
4364     }
4365     layout_val = nullptr;
4366     layout_is_con = true;
4367   }
4368 
4369   // Generate the initial go-slow test.  Make sure we do not overflow
4370   // if length is huge (near 2Gig) or negative!  We do not need
4371   // exact double-words here, just a close approximation of needed
4372   // double-words.  We can't add any offset or rounding bits, lest we
4373   // take a size -1 of bytes and make it positive.  Use an unsigned
4374   // compare, so negative sizes look hugely positive.
4375   int fast_size_limit = FastAllocateSizeLimit;
4376   if (layout_is_con) {
4377     assert(!StressReflectiveCode, "stress mode does not use these paths");
4378     // Increase the size limit if we have exact knowledge of array type.
4379     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4380     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);


4381   }
4382 
4383   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4384   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4385 
4386   // --- Size Computation ---
4387   // array_size = round_to_heap(array_header + (length << elem_shift));
4388   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4389   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4390   // The rounding mask is strength-reduced, if possible.
4391   int round_mask = MinObjAlignmentInBytes - 1;
4392   Node* header_size = nullptr;
4393   // (T_BYTE has the weakest alignment and size restrictions...)
4394   if (layout_is_con) {
4395     int       hsize  = Klass::layout_helper_header_size(layout_con);
4396     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4397     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4398     if ((round_mask & ~right_n_bits(eshift)) == 0)
4399       round_mask = 0;  // strength-reduce it if it goes away completely
4400     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4401     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4402     assert(header_size_min <= hsize, "generic minimum is smallest");
4403     header_size = intcon(hsize);
4404   } else {
4405     Node* hss   = intcon(Klass::_lh_header_size_shift);
4406     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4407     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4408     header_size = _gvn.transform(new AndINode(header_size, hsm));
4409   }
4410 
4411   Node* elem_shift = nullptr;
4412   if (layout_is_con) {
4413     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4414     if (eshift != 0)
4415       elem_shift = intcon(eshift);
4416   } else {
4417     // There is no need to mask or shift this value.
4418     // The semantics of LShiftINode include an implicit mask to 0x1F.
4419     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4420     elem_shift = layout_val;

4469   }
4470   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4471 
4472   if (return_size_val != nullptr) {
4473     // This is the size
4474     (*return_size_val) = non_rounded_size;
4475   }
4476 
4477   Node* size = non_rounded_size;
4478   if (round_mask != 0) {
4479     Node* mask1 = MakeConX(round_mask);
4480     size = _gvn.transform(new AddXNode(size, mask1));
4481     Node* mask2 = MakeConX(~round_mask);
4482     size = _gvn.transform(new AndXNode(size, mask2));
4483   }
4484   // else if round_mask == 0, the size computation is self-rounding
4485 
4486   // Now generate allocation code
4487 
4488   // The entire memory state is needed for slow path of the allocation
4489   // since GC and deoptimization can happen.
4490   Node *mem = reset_memory();
4491   set_all_memory(mem); // Create new memory state
4492 
4493   if (initial_slow_test->is_Bool()) {
4494     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4495     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4496   }
4497 
4498   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4499   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4500 
4501   Node* raw_init_value = nullptr;
4502   if (init_val != nullptr) {
4503     // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays
4504     if (ary_type->is_flat()) {
4505       initial_slow_test = intcon(1);
4506     }
4507 
4508     if (UseCompressedOops) {
4509       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4510       init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop()));
4511       Node* lower = _gvn.transform(new CastP2XNode(control(), init_val));
4512       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4513       raw_init_value = _gvn.transform(new OrLNode(lower, upper));
4514     } else {
4515       raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val));
4516     }
4517   }
4518 
4519   Node* valid_length_test = _gvn.intcon(1);
4520   if (ary_type->isa_aryptr()) {
4521     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4522     jint max = TypeAryPtr::max_array_length(bt);
4523     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4524     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4525   }
4526 
4527   // Create the AllocateArrayNode and its result projections
4528   AllocateArrayNode* alloc
4529     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4530                             control(), mem, i_o(),
4531                             size, klass_node,
4532                             initial_slow_test,
4533                             length, valid_length_test,
4534                             init_val, raw_init_value);
4535   // Cast to correct type.  Note that the klass_node may be constant or not,
4536   // and in the latter case the actual array type will be inexact also.
4537   // (This happens via a non-constant argument to inline_native_newArray.)
4538   // In any case, the value of klass_node provides the desired array type.
4539   const TypeInt* length_type = _gvn.find_int_type(length);
4540   if (ary_type->isa_aryptr() && length_type != nullptr) {
4541     // Try to get a better type than POS for the size
4542     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4543   }
4544 
4545   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4546 
4547   array_ideal_length(alloc, ary_type, true);
4548   return javaoop;
4549 }
4550 
4551 // The following "Ideal_foo" functions are placed here because they recognize
4552 // the graph shapes created by the functions immediately above.
4553 
4554 //---------------------------Ideal_allocation----------------------------------

4649 void GraphKit::add_parse_predicates(int nargs) {
4650   if (ShortRunningLongLoop) {
4651     // Will narrow the limit down with a cast node. Predicates added later may depend on the cast so should be last when
4652     // walking up from the loop.
4653     add_parse_predicate(Deoptimization::Reason_short_running_long_loop, nargs);
4654   }
4655   if (UseLoopPredicate) {
4656     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4657     if (UseProfiledLoopPredicate) {
4658       add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4659     }
4660   }
4661   if (UseAutoVectorizationPredicate) {
4662     add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs);
4663   }
4664   // Loop Limit Check Predicate should be near the loop.
4665   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4666 }
4667 
4668 void GraphKit::sync_kit(IdealKit& ideal) {
4669   reset_memory();
4670   set_all_memory(ideal.merged_memory());
4671   set_i_o(ideal.i_o());
4672   set_control(ideal.ctrl());
4673 }
4674 
4675 void GraphKit::final_sync(IdealKit& ideal) {
4676   // Final sync IdealKit and graphKit.
4677   sync_kit(ideal);
4678 }
4679 
4680 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4681   Node* len = load_array_length(load_String_value(str, set_ctrl));
4682   Node* coder = load_String_coder(str, set_ctrl);
4683   // Divide length by 2 if coder is UTF16
4684   return _gvn.transform(new RShiftINode(len, coder));
4685 }
4686 
4687 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4688   int value_offset = java_lang_String::value_offset();
4689   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4690                                                      false, nullptr, Type::Offset(0));
4691   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4692   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4693                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true, true),
4694                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4695   Node* p = basic_plus_adr(str, str, value_offset);
4696   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4697                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4698   return load;
4699 }
4700 
4701 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4702   if (!CompactStrings) {
4703     return intcon(java_lang_String::CODER_UTF16);
4704   }
4705   int coder_offset = java_lang_String::coder_offset();
4706   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4707                                                      false, nullptr, Type::Offset(0));
4708   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4709 
4710   Node* p = basic_plus_adr(str, str, coder_offset);
4711   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4712                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4713   return load;
4714 }
4715 
4716 void GraphKit::store_String_value(Node* str, Node* value) {
4717   int value_offset = java_lang_String::value_offset();
4718   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4719                                                      false, nullptr, Type::Offset(0));
4720   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4721 
4722   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4723                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4724 }
4725 
4726 void GraphKit::store_String_coder(Node* str, Node* value) {
4727   int coder_offset = java_lang_String::coder_offset();
4728   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4729                                                      false, nullptr, Type::Offset(0));
4730   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4731 
4732   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4733                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4734 }
4735 
4736 // Capture src and dst memory state with a MergeMemNode
4737 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4738   if (src_type == dst_type) {
4739     // Types are equal, we don't need a MergeMemNode
4740     return memory(src_type);
4741   }
4742   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4743   record_for_igvn(merge); // fold it up later, if possible
4744   int src_idx = C->get_alias_index(src_type);
4745   int dst_idx = C->get_alias_index(dst_type);
4746   merge->set_memory_at(src_idx, memory(src_idx));
4747   merge->set_memory_at(dst_idx, memory(dst_idx));
4748   return merge;
4749 }

4822   i_char->init_req(2, AddI(i_char, intcon(2)));
4823 
4824   set_control(IfFalse(iff));
4825   set_memory(st, TypeAryPtr::BYTES);
4826 }
4827 
4828 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4829   if (!field->is_constant()) {
4830     return nullptr; // Field not marked as constant.
4831   }
4832   ciInstance* holder = nullptr;
4833   if (!field->is_static()) {
4834     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4835     if (const_oop != nullptr && const_oop->is_instance()) {
4836       holder = const_oop->as_instance();
4837     }
4838   }
4839   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4840                                                         /*is_unsigned_load=*/false);
4841   if (con_type != nullptr) {
4842     Node* con = makecon(con_type);
4843     if (field->type()->is_inlinetype()) {
4844       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass());
4845     } else if (con_type->is_inlinetypeptr()) {
4846       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass());
4847     }
4848     return con;
4849   }
4850   return nullptr;
4851 }
4852 
4853 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4854   const Type* obj_type = obj->bottom_type();
4855   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4856   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4857     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4858     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4859     obj = casted_obj;
4860   }
4861   if (sig_type->is_inlinetypeptr()) {
4862     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass());
4863   }
4864   return obj;
4865 }
< prev index next >