< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/register.hpp"



  26 #include "ci/ciObjArray.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/idealKit.hpp"

  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"


  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subtypenode.hpp"

  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"

  49 #include "utilities/bitMap.inline.hpp"
  50 #include "utilities/growableArray.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 
  53 //----------------------------GraphKit-----------------------------------------
  54 // Main utility constructor.
  55 GraphKit::GraphKit(JVMState* jvms)
  56   : Phase(Phase::Parser),
  57     _env(C->env()),
  58     _gvn(*C->initial_gvn()),
  59     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  60 {

  61   _exceptions = jvms->map()->next_exception();
  62   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  63   set_jvms(jvms);







  64 }
  65 
  66 // Private constructor for parser.
  67 GraphKit::GraphKit()
  68   : Phase(Phase::Parser),
  69     _env(C->env()),
  70     _gvn(*C->initial_gvn()),
  71     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  72 {
  73   _exceptions = nullptr;
  74   set_map(nullptr);
  75   DEBUG_ONLY(_sp = -99);
  76   DEBUG_ONLY(set_bci(-99));
  77 }
  78 
  79 
  80 
  81 //---------------------------clean_stack---------------------------------------
  82 // Clear away rubbish from the stack area of the JVM state.
  83 // This destroys any arguments that may be waiting on the stack.

 328 }
 329 static inline void add_one_req(Node* dstphi, Node* src) {
 330   assert(is_hidden_merge(dstphi), "must be a special merge node");
 331   assert(!is_hidden_merge(src), "must not be a special merge node");
 332   dstphi->add_req(src);
 333 }
 334 
 335 //-----------------------combine_exception_states------------------------------
 336 // This helper function combines exception states by building phis on a
 337 // specially marked state-merging region.  These regions and phis are
 338 // untransformed, and can build up gradually.  The region is marked by
 339 // having a control input of its exception map, rather than null.  Such
 340 // regions do not appear except in this function, and in use_exception_state.
 341 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 342   if (failing_internal()) {
 343     return;  // dying anyway...
 344   }
 345   JVMState* ex_jvms = ex_map->_jvms;
 346   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 347   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 348   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");

 349   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 350   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 351   assert(ex_map->req() == phi_map->req(), "matching maps");
 352   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 353   Node*         hidden_merge_mark = root();
 354   Node*         region  = phi_map->control();
 355   MergeMemNode* phi_mem = phi_map->merged_memory();
 356   MergeMemNode* ex_mem  = ex_map->merged_memory();
 357   if (region->in(0) != hidden_merge_mark) {
 358     // The control input is not (yet) a specially-marked region in phi_map.
 359     // Make it so, and build some phis.
 360     region = new RegionNode(2);
 361     _gvn.set_type(region, Type::CONTROL);
 362     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 363     region->init_req(1, phi_map->control());
 364     phi_map->set_control(region);
 365     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 366     record_for_igvn(io_phi);
 367     _gvn.set_type(io_phi, Type::ABIO);
 368     phi_map->set_i_o(io_phi);

 856         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 857           tty->print_cr("Zombie local %d: ", local);
 858           jvms->dump();
 859         }
 860         return false;
 861       }
 862     }
 863   }
 864   return true;
 865 }
 866 
 867 #endif //ASSERT
 868 
 869 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 870 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 871   ciMethod* cur_method = jvms->method();
 872   int       cur_bci   = jvms->bci();
 873   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 874     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 875     return Interpreter::bytecode_should_reexecute(code) ||
 876            (is_anewarray && code == Bytecodes::_multianewarray);
 877     // Reexecute _multianewarray bytecode which was replaced with
 878     // sequence of [a]newarray. See Parse::do_multianewarray().
 879     //
 880     // Note: interpreter should not have it set since this optimization
 881     // is limited by dimensions and guarded by flag so in some cases
 882     // multianewarray() runtime calls will be generated and
 883     // the bytecode should not be reexecutes (stack will not be reset).
 884   } else {
 885     return false;
 886   }
 887 }
 888 
 889 // Helper function for adding JVMState and debug information to node
 890 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 891   // Add the safepoint edges to the call (or other safepoint).
 892 
 893   // Make sure dead locals are set to top.  This
 894   // should help register allocation time and cut down on the size
 895   // of the deoptimization information.
 896   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 924 
 925   if (env()->should_retain_local_variables()) {
 926     // At any safepoint, this method can get breakpointed, which would
 927     // then require an immediate deoptimization.
 928     can_prune_locals = false;  // do not prune locals
 929     stack_slots_not_pruned = 0;
 930   }
 931 
 932   // do not scribble on the input jvms
 933   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 934   call->set_jvms(out_jvms); // Start jvms list for call node
 935 
 936   // For a known set of bytecodes, the interpreter should reexecute them if
 937   // deoptimization happens. We set the reexecute state for them here
 938   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 939       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 940 #ifdef ASSERT
 941     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 942     assert(method() == youngest_jvms->method(), "sanity");
 943     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 944     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");

 945 #endif // ASSERT
 946     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 947   }
 948 
 949   // Presize the call:
 950   DEBUG_ONLY(uint non_debug_edges = call->req());
 951   call->add_req_batch(top(), youngest_jvms->debug_depth());
 952   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 953 
 954   // Set up edges so that the call looks like this:
 955   //  Call [state:] ctl io mem fptr retadr
 956   //       [parms:] parm0 ... parmN
 957   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 958   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 959   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 960   // Note that caller debug info precedes callee debug info.
 961 
 962   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 963   uint debug_ptr = call->req();
 964 
 965   // Loop over the map input edges associated with jvms, add them
 966   // to the call node, & reset all offsets to match call node array.


 967   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 968     uint debug_end   = debug_ptr;
 969     uint debug_start = debug_ptr - in_jvms->debug_size();
 970     debug_ptr = debug_start;  // back up the ptr
 971 
 972     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 973     uint j, k, l;
 974     SafePointNode* in_map = in_jvms->map();
 975     out_jvms->set_map(call);
 976 
 977     if (can_prune_locals) {
 978       assert(in_jvms->method() == out_jvms->method(), "sanity");
 979       // If the current throw can reach an exception handler in this JVMS,
 980       // then we must keep everything live that can reach that handler.
 981       // As a quick and dirty approximation, we look for any handlers at all.
 982       if (in_jvms->method()->has_exception_handlers()) {
 983         can_prune_locals = false;
 984       }
 985     }
 986 
 987     // Add the Locals
 988     k = in_jvms->locoff();
 989     l = in_jvms->loc_size();
 990     out_jvms->set_locoff(p);
 991     if (!can_prune_locals) {
 992       for (j = 0; j < l; j++)
 993         call->set_req(p++, in_map->in(k+j));

 994     } else {
 995       p += l;  // already set to top above by add_req_batch
 996     }
 997 
 998     // Add the Expression Stack
 999     k = in_jvms->stkoff();
1000     l = in_jvms->sp();
1001     out_jvms->set_stkoff(p);
1002     if (!can_prune_locals) {
1003       for (j = 0; j < l; j++)
1004         call->set_req(p++, in_map->in(k+j));

1005     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1006       // Divide stack into {S0,...,S1}, where S0 is set to top.
1007       uint s1 = stack_slots_not_pruned;
1008       stack_slots_not_pruned = 0;  // for next iteration
1009       if (s1 > l)  s1 = l;
1010       uint s0 = l - s1;
1011       p += s0;  // skip the tops preinstalled by add_req_batch
1012       for (j = s0; j < l; j++)
1013         call->set_req(p++, in_map->in(k+j));
1014     } else {
1015       p += l;  // already set to top above by add_req_batch
1016     }
1017 
1018     // Add the Monitors
1019     k = in_jvms->monoff();
1020     l = in_jvms->mon_size();
1021     out_jvms->set_monoff(p);
1022     for (j = 0; j < l; j++)
1023       call->set_req(p++, in_map->in(k+j));
1024 
1025     // Copy any scalar object fields.
1026     k = in_jvms->scloff();
1027     l = in_jvms->scl_size();
1028     out_jvms->set_scloff(p);
1029     for (j = 0; j < l; j++)
1030       call->set_req(p++, in_map->in(k+j));
1031 
1032     // Finish the new jvms.
1033     out_jvms->set_endoff(p);
1034 
1035     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1036     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1037     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1038     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1039     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1040     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1041 
1042     // Update the two tail pointers in parallel.

1043     out_jvms = out_jvms->caller();
1044     in_jvms  = in_jvms->caller();
1045   }
1046 
1047   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1048 
1049   // Test the correctness of JVMState::debug_xxx accessors:
1050   assert(call->jvms()->debug_start() == non_debug_edges, "");
1051   assert(call->jvms()->debug_end()   == call->req(), "");
1052   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1053 }
1054 
1055 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1056   Bytecodes::Code code = java_bc();
1057   if (code == Bytecodes::_wide) {
1058     code = method()->java_code_at_bci(bci() + 1);
1059   }
1060 
1061   if (code != Bytecodes::_illegal) {
1062     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1198   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1199   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1200   return _gvn.transform( new AndLNode(conv, mask) );
1201 }
1202 
1203 Node* GraphKit::ConvL2I(Node* offset) {
1204   // short-circuit a common case
1205   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1206   if (offset_con != (jlong)Type::OffsetBot) {
1207     return intcon((int) offset_con);
1208   }
1209   return _gvn.transform( new ConvL2INode(offset));
1210 }
1211 
1212 //-------------------------load_object_klass-----------------------------------
1213 Node* GraphKit::load_object_klass(Node* obj) {
1214   // Special-case a fresh allocation to avoid building nodes:
1215   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1216   if (akls != nullptr)  return akls;
1217   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1218   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1219 }
1220 
1221 //-------------------------load_array_length-----------------------------------
1222 Node* GraphKit::load_array_length(Node* array) {
1223   // Special-case a fresh allocation to avoid building nodes:
1224   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1225   Node *alen;
1226   if (alloc == nullptr) {
1227     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1228     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1229   } else {
1230     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1231   }
1232   return alen;
1233 }
1234 
1235 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1236                                    const TypeOopPtr* oop_type,
1237                                    bool replace_length_in_map) {
1238   Node* length = alloc->Ideal_length();

1247         replace_in_map(length, ccast);
1248       }
1249       return ccast;
1250     }
1251   }
1252   return length;
1253 }
1254 
1255 //------------------------------do_null_check----------------------------------
1256 // Helper function to do a null pointer check.  Returned value is
1257 // the incoming address with null casted away.  You are allowed to use the
1258 // not-null value only if you are control dependent on the test.
1259 #ifndef PRODUCT
1260 extern uint explicit_null_checks_inserted,
1261             explicit_null_checks_elided;
1262 #endif
1263 Node* GraphKit::null_check_common(Node* value, BasicType type,
1264                                   // optional arguments for variations:
1265                                   bool assert_null,
1266                                   Node* *null_control,
1267                                   bool speculative) {

1268   assert(!assert_null || null_control == nullptr, "not both at once");
1269   if (stopped())  return top();
1270   NOT_PRODUCT(explicit_null_checks_inserted++);
1271 























1272   // Construct null check
1273   Node *chk = nullptr;
1274   switch(type) {
1275     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1276     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1277     case T_ARRAY  : // fall through
1278       type = T_OBJECT;  // simplify further tests
1279     case T_OBJECT : {
1280       const Type *t = _gvn.type( value );
1281 
1282       const TypeOopPtr* tp = t->isa_oopptr();
1283       if (tp != nullptr && !tp->is_loaded()
1284           // Only for do_null_check, not any of its siblings:
1285           && !assert_null && null_control == nullptr) {
1286         // Usually, any field access or invocation on an unloaded oop type
1287         // will simply fail to link, since the statically linked class is
1288         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1289         // the static class is loaded but the sharper oop type is not.
1290         // Rather than checking for this obscure case in lots of places,
1291         // we simply observe that a null check on an unloaded class

1355         }
1356         Node *oldcontrol = control();
1357         set_control(cfg);
1358         Node *res = cast_not_null(value);
1359         set_control(oldcontrol);
1360         NOT_PRODUCT(explicit_null_checks_elided++);
1361         return res;
1362       }
1363       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1364       if (cfg == nullptr)  break;  // Quit at region nodes
1365       depth++;
1366     }
1367   }
1368 
1369   //-----------
1370   // Branch to failure if null
1371   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1372   Deoptimization::DeoptReason reason;
1373   if (assert_null) {
1374     reason = Deoptimization::reason_null_assert(speculative);
1375   } else if (type == T_OBJECT) {
1376     reason = Deoptimization::reason_null_check(speculative);
1377   } else {
1378     reason = Deoptimization::Reason_div0_check;
1379   }
1380   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1381   // ciMethodData::has_trap_at will return a conservative -1 if any
1382   // must-be-null assertion has failed.  This could cause performance
1383   // problems for a method after its first do_null_assert failure.
1384   // Consider using 'Reason_class_check' instead?
1385 
1386   // To cause an implicit null check, we set the not-null probability
1387   // to the maximum (PROB_MAX).  For an explicit check the probability
1388   // is set to a smaller value.
1389   if (null_control != nullptr || too_many_traps(reason)) {
1390     // probability is less likely
1391     ok_prob =  PROB_LIKELY_MAG(3);
1392   } else if (!assert_null &&
1393              (ImplicitNullCheckThreshold > 0) &&
1394              method() != nullptr &&
1395              (method()->method_data()->trap_count(reason)

1429   }
1430 
1431   if (assert_null) {
1432     // Cast obj to null on this path.
1433     replace_in_map(value, zerocon(type));
1434     return zerocon(type);
1435   }
1436 
1437   // Cast obj to not-null on this path, if there is no null_control.
1438   // (If there is a null_control, a non-null value may come back to haunt us.)
1439   if (type == T_OBJECT) {
1440     Node* cast = cast_not_null(value, false);
1441     if (null_control == nullptr || (*null_control) == top())
1442       replace_in_map(value, cast);
1443     value = cast;
1444   }
1445 
1446   return value;
1447 }
1448 
1449 
1450 //------------------------------cast_not_null----------------------------------
1451 // Cast obj to not-null on this path
1452 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {









1453   const Type *t = _gvn.type(obj);
1454   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1455   // Object is already not-null?
1456   if( t == t_not_null ) return obj;
1457 
1458   Node* cast = new CastPPNode(control(), obj,t_not_null);
1459   cast = _gvn.transform( cast );
1460 
1461   // Scan for instances of 'obj' in the current JVM mapping.
1462   // These instances are known to be not-null after the test.
1463   if (do_replace_in_map)
1464     replace_in_map(obj, cast);
1465 
1466   return cast;                  // Return casted value
1467 }
1468 











1469 // Sometimes in intrinsics, we implicitly know an object is not null
1470 // (there's no actual null check) so we can cast it to not null. In
1471 // the course of optimizations, the input to the cast can become null.
1472 // In that case that data path will die and we need the control path
1473 // to become dead as well to keep the graph consistent. So we have to
1474 // add a check for null for which one branch can't be taken. It uses
1475 // an OpaqueNotNull node that will cause the check to be removed after loop
1476 // opts so the test goes away and the compiled code doesn't execute a
1477 // useless check.
1478 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1479   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1480     return value;
1481   }
1482   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1483   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1484   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1485   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1486   _gvn.set_type(iff, iff->Value(&_gvn));
1487   if (!tst->is_Con()) {
1488     record_for_igvn(iff);

1560 // These are layered on top of the factory methods in LoadNode and StoreNode,
1561 // and integrate with the parser's memory state and _gvn engine.
1562 //
1563 
1564 // factory methods in "int adr_idx"
1565 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1566                           MemNode::MemOrd mo,
1567                           LoadNode::ControlDependency control_dependency,
1568                           bool require_atomic_access,
1569                           bool unaligned,
1570                           bool mismatched,
1571                           bool unsafe,
1572                           uint8_t barrier_data) {
1573   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1574   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1575   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1576   DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx));
1577   Node* mem = memory(adr_idx);
1578   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1579   ld = _gvn.transform(ld);

1580   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1581     // Improve graph before escape analysis and boxing elimination.
1582     record_for_igvn(ld);
1583     if (ld->is_DecodeN()) {
1584       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1585       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1586       // a Phi). Recording such cases is still perfectly sound, but may be
1587       // unnecessary and result in some minor IGVN overhead.
1588       record_for_igvn(ld->in(1));
1589     }
1590   }
1591   return ld;
1592 }
1593 
1594 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1595                                 MemNode::MemOrd mo,
1596                                 bool require_atomic_access,
1597                                 bool unaligned,
1598                                 bool mismatched,
1599                                 bool unsafe,

1613   if (unsafe) {
1614     st->as_Store()->set_unsafe_access();
1615   }
1616   st->as_Store()->set_barrier_data(barrier_data);
1617   st = _gvn.transform(st);
1618   set_memory(st, adr_idx);
1619   // Back-to-back stores can only remove intermediate store with DU info
1620   // so push on worklist for optimizer.
1621   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1622     record_for_igvn(st);
1623 
1624   return st;
1625 }
1626 
1627 Node* GraphKit::access_store_at(Node* obj,
1628                                 Node* adr,
1629                                 const TypePtr* adr_type,
1630                                 Node* val,
1631                                 const Type* val_type,
1632                                 BasicType bt,
1633                                 DecoratorSet decorators) {


1634   // Transformation of a value which could be null pointer (CastPP #null)
1635   // could be delayed during Parse (for example, in adjust_map_after_if()).
1636   // Execute transformation here to avoid barrier generation in such case.
1637   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1638     val = _gvn.makecon(TypePtr::NULL_PTR);
1639   }
1640 
1641   if (stopped()) {
1642     return top(); // Dead path ?
1643   }
1644 
1645   assert(val != nullptr, "not dead path");







1646 
1647   C2AccessValuePtr addr(adr, adr_type);
1648   C2AccessValue value(val, val_type);
1649   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1650   if (access.is_raw()) {
1651     return _barrier_set->BarrierSetC2::store_at(access, value);
1652   } else {
1653     return _barrier_set->store_at(access, value);
1654   }
1655 }
1656 
1657 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1658                                Node* adr,   // actual address to store val at
1659                                const TypePtr* adr_type,
1660                                const Type* val_type,
1661                                BasicType bt,
1662                                DecoratorSet decorators) {

1663   if (stopped()) {
1664     return top(); // Dead path ?
1665   }
1666 
1667   C2AccessValuePtr addr(adr, adr_type);
1668   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1669   if (access.is_raw()) {
1670     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1671   } else {
1672     return _barrier_set->load_at(access, val_type);
1673   }
1674 }
1675 
1676 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1677                             const Type* val_type,
1678                             BasicType bt,
1679                             DecoratorSet decorators) {
1680   if (stopped()) {
1681     return top(); // Dead path ?
1682   }
1683 
1684   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1685   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1686   if (access.is_raw()) {
1687     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1688   } else {

1753                                      Node* new_val,
1754                                      const Type* value_type,
1755                                      BasicType bt,
1756                                      DecoratorSet decorators) {
1757   C2AccessValuePtr addr(adr, adr_type);
1758   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1759   if (access.is_raw()) {
1760     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1761   } else {
1762     return _barrier_set->atomic_add_at(access, new_val, value_type);
1763   }
1764 }
1765 
1766 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1767   return _barrier_set->clone(this, src, dst, size, is_array);
1768 }
1769 
1770 //-------------------------array_element_address-------------------------
1771 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1772                                       const TypeInt* sizetype, Node* ctrl) {
1773   uint shift  = exact_log2(type2aelembytes(elembt));
1774   uint header = arrayOopDesc::base_offset_in_bytes(elembt);













1775 
1776   // short-circuit a common case (saves lots of confusing waste motion)
1777   jint idx_con = find_int_con(idx, -1);
1778   if (idx_con >= 0) {
1779     intptr_t offset = header + ((intptr_t)idx_con << shift);
1780     return basic_plus_adr(ary, offset);
1781   }
1782 
1783   // must be correct type for alignment purposes
1784   Node* base  = basic_plus_adr(ary, header);
1785   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1786   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1787   return basic_plus_adr(ary, base, scale);
1788 }
1789 

































1790 //-------------------------load_array_element-------------------------
1791 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1792   const Type* elemtype = arytype->elem();
1793   BasicType elembt = elemtype->array_element_basic_type();
1794   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1795   if (elembt == T_NARROWOOP) {
1796     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1797   }
1798   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1799                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1800   return ld;
1801 }
1802 
1803 //-------------------------set_arguments_for_java_call-------------------------
1804 // Arguments (pre-popped from the stack) are taken from the JVMS.
1805 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1806   // Add the call arguments:
1807   uint nargs = call->method()->arg_size();
1808   for (uint i = 0; i < nargs; i++) {
1809     Node* arg = argument(i);
1810     call->init_req(i + TypeFunc::Parms, arg);
















































1811   }
1812 }
1813 
1814 //---------------------------set_edges_for_java_call---------------------------
1815 // Connect a newly created call into the current JVMS.
1816 // A return value node (if any) is returned from set_edges_for_java_call.
1817 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1818 
1819   // Add the predefined inputs:
1820   call->init_req( TypeFunc::Control, control() );
1821   call->init_req( TypeFunc::I_O    , i_o() );
1822   call->init_req( TypeFunc::Memory , reset_memory() );
1823   call->init_req( TypeFunc::FramePtr, frameptr() );
1824   call->init_req( TypeFunc::ReturnAdr, top() );
1825 
1826   add_safepoint_edges(call, must_throw);
1827 
1828   Node* xcall = _gvn.transform(call);
1829 
1830   if (xcall == top()) {
1831     set_control(top());
1832     return;
1833   }
1834   assert(xcall == call, "call identity is stable");
1835 
1836   // Re-use the current map to produce the result.
1837 
1838   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1839   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1840   set_all_memory_call(xcall, separate_io_proj);
1841 
1842   //return xcall;   // no need, caller already has it
1843 }
1844 
1845 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1846   if (stopped())  return top();  // maybe the call folded up?
1847 
1848   // Capture the return value, if any.
1849   Node* ret;
1850   if (call->method() == nullptr ||
1851       call->method()->return_type()->basic_type() == T_VOID)
1852         ret = top();
1853   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1854 
1855   // Note:  Since any out-of-line call can produce an exception,
1856   // we always insert an I_O projection from the call into the result.
1857 
1858   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1859 
1860   if (separate_io_proj) {
1861     // The caller requested separate projections be used by the fall
1862     // through and exceptional paths, so replace the projections for
1863     // the fall through path.
1864     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1865     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1866   }















































































1867   return ret;
1868 }
1869 
1870 //--------------------set_predefined_input_for_runtime_call--------------------
1871 // Reading and setting the memory state is way conservative here.
1872 // The real problem is that I am not doing real Type analysis on memory,
1873 // so I cannot distinguish card mark stores from other stores.  Across a GC
1874 // point the Store Barrier and the card mark memory has to agree.  I cannot
1875 // have a card mark store and its barrier split across the GC point from
1876 // either above or below.  Here I get that to happen by reading ALL of memory.
1877 // A better answer would be to separate out card marks from other memory.
1878 // For now, return the input memory state, so that it can be reused
1879 // after the call, if this call has restricted memory effects.
1880 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1881   // Set fixed predefined input arguments
1882   call->init_req(TypeFunc::Control, control());
1883   call->init_req(TypeFunc::I_O, top()); // does no i/o
1884   call->init_req(TypeFunc::ReturnAdr, top());
1885   if (call->is_CallLeafPure()) {
1886     call->init_req(TypeFunc::Memory, top());

1948     if (use->is_MergeMem()) {
1949       wl.push(use);
1950     }
1951   }
1952 }
1953 
1954 // Replace the call with the current state of the kit.
1955 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
1956   JVMState* ejvms = nullptr;
1957   if (has_exceptions()) {
1958     ejvms = transfer_exceptions_into_jvms();
1959   }
1960 
1961   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1962   ReplacedNodes replaced_nodes_exception;
1963   Node* ex_ctl = top();
1964 
1965   SafePointNode* final_state = stop();
1966 
1967   // Find all the needed outputs of this call
1968   CallProjections callprojs;
1969   call->extract_projections(&callprojs, true, do_asserts);
1970 
1971   Unique_Node_List wl;
1972   Node* init_mem = call->in(TypeFunc::Memory);
1973   Node* final_mem = final_state->in(TypeFunc::Memory);
1974   Node* final_ctl = final_state->in(TypeFunc::Control);
1975   Node* final_io = final_state->in(TypeFunc::I_O);
1976 
1977   // Replace all the old call edges with the edges from the inlining result
1978   if (callprojs.fallthrough_catchproj != nullptr) {
1979     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1980   }
1981   if (callprojs.fallthrough_memproj != nullptr) {
1982     if (final_mem->is_MergeMem()) {
1983       // Parser's exits MergeMem was not transformed but may be optimized
1984       final_mem = _gvn.transform(final_mem);
1985     }
1986     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1987     add_mergemem_users_to_worklist(wl, final_mem);
1988   }
1989   if (callprojs.fallthrough_ioproj != nullptr) {
1990     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1991   }
1992 
1993   // Replace the result with the new result if it exists and is used
1994   if (callprojs.resproj != nullptr && result != nullptr) {
1995     C->gvn_replace_by(callprojs.resproj, result);














1996   }
1997 
1998   if (ejvms == nullptr) {
1999     // No exception edges to simply kill off those paths
2000     if (callprojs.catchall_catchproj != nullptr) {
2001       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
2002     }
2003     if (callprojs.catchall_memproj != nullptr) {
2004       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
2005     }
2006     if (callprojs.catchall_ioproj != nullptr) {
2007       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
2008     }
2009     // Replace the old exception object with top
2010     if (callprojs.exobj != nullptr) {
2011       C->gvn_replace_by(callprojs.exobj, C->top());
2012     }
2013   } else {
2014     GraphKit ekit(ejvms);
2015 
2016     // Load my combined exception state into the kit, with all phis transformed:
2017     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2018     replaced_nodes_exception = ex_map->replaced_nodes();
2019 
2020     Node* ex_oop = ekit.use_exception_state(ex_map);
2021 
2022     if (callprojs.catchall_catchproj != nullptr) {
2023       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
2024       ex_ctl = ekit.control();
2025     }
2026     if (callprojs.catchall_memproj != nullptr) {
2027       Node* ex_mem = ekit.reset_memory();
2028       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
2029       add_mergemem_users_to_worklist(wl, ex_mem);
2030     }
2031     if (callprojs.catchall_ioproj != nullptr) {
2032       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
2033     }
2034 
2035     // Replace the old exception object with the newly created one
2036     if (callprojs.exobj != nullptr) {
2037       C->gvn_replace_by(callprojs.exobj, ex_oop);
2038     }
2039   }
2040 
2041   // Disconnect the call from the graph
2042   call->disconnect_inputs(C);
2043   C->gvn_replace_by(call, C->top());
2044 
2045   // Clean up any MergeMems that feed other MergeMems since the
2046   // optimizer doesn't like that.
2047   while (wl.size() > 0) {
2048     _gvn.transform(wl.pop());
2049   }
2050 
2051   if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2052     replaced_nodes.apply(C, final_ctl);
2053   }
2054   if (!ex_ctl->is_top() && do_replaced_nodes) {
2055     replaced_nodes_exception.apply(C, ex_ctl);
2056   }
2057 }
2058 
2059 
2060 //------------------------------increment_counter------------------------------
2061 // for statistics: increment a VM counter by 1
2062 
2063 void GraphKit::increment_counter(address counter_addr) {
2064   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2065   increment_counter(adr1);
2066 }
2067 
2068 void GraphKit::increment_counter(Node* counter_addr) {
2069   Node* ctrl = control();
2070   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2071   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2241  *
2242  * @param n          node that the type applies to
2243  * @param exact_kls  type from profiling
2244  * @param maybe_null did profiling see null?
2245  *
2246  * @return           node with improved type
2247  */
2248 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2249   const Type* current_type = _gvn.type(n);
2250   assert(UseTypeSpeculation, "type speculation must be on");
2251 
2252   const TypePtr* speculative = current_type->speculative();
2253 
2254   // Should the klass from the profile be recorded in the speculative type?
2255   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2256     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2257     const TypeOopPtr* xtype = tklass->as_instance_type();
2258     assert(xtype->klass_is_exact(), "Should be exact");
2259     // Any reason to believe n is not null (from this profiling or a previous one)?
2260     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2261     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2262     // record the new speculative type's depth
2263     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2264     speculative = speculative->with_inline_depth(jvms()->depth());
2265   } else if (current_type->would_improve_ptr(ptr_kind)) {
2266     // Profiling report that null was never seen so we can change the
2267     // speculative type to non null ptr.
2268     if (ptr_kind == ProfileAlwaysNull) {
2269       speculative = TypePtr::NULL_PTR;
2270     } else {
2271       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2272       const TypePtr* ptr = TypePtr::NOTNULL;
2273       if (speculative != nullptr) {
2274         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2275       } else {
2276         speculative = ptr;
2277       }
2278     }
2279   }
2280 
2281   if (speculative != current_type->speculative()) {
2282     // Build a type with a speculative type (what we think we know
2283     // about the type but will need a guard when we use it)
2284     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2285     // We're changing the type, we need a new CheckCast node to carry
2286     // the new type. The new type depends on the control: what
2287     // profiling tells us is only valid from here as far as we can
2288     // tell.
2289     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2290     cast = _gvn.transform(cast);
2291     replace_in_map(n, cast);
2292     n = cast;
2293   }
2294 
2295   return n;
2296 }
2297 
2298 /**
2299  * Record profiling data from receiver profiling at an invoke with the
2300  * type system so that it can propagate it (speculation)
2301  *
2302  * @param n  receiver node
2303  *
2304  * @return   node with improved type
2305  */
2306 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2307   if (!UseTypeSpeculation) {
2308     return n;
2309   }
2310   ciKlass* exact_kls = profile_has_unique_klass();
2311   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2312   if ((java_bc() == Bytecodes::_checkcast ||
2313        java_bc() == Bytecodes::_instanceof ||
2314        java_bc() == Bytecodes::_aastore) &&
2315       method()->method_data()->is_mature()) {
2316     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2317     if (data != nullptr) {
2318       if (!data->as_BitData()->null_seen()) {
2319         ptr_kind = ProfileNeverNull;







2320       } else {
2321         if (TypeProfileCasts) {
2322           assert(data->is_ReceiverTypeData(), "bad profile data type");
2323           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2324           uint i = 0;
2325           for (; i < call->row_limit(); i++) {
2326             ciKlass* receiver = call->receiver(i);
2327             if (receiver != nullptr) {
2328               break;




2329             }

2330           }
2331           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2332         }
2333       }
2334     }
2335   }
2336   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2337 }
2338 
2339 /**
2340  * Record profiling data from argument profiling at an invoke with the
2341  * type system so that it can propagate it (speculation)
2342  *
2343  * @param dest_method  target method for the call
2344  * @param bc           what invoke bytecode is this?
2345  */
2346 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2347   if (!UseTypeSpeculation) {
2348     return;
2349   }
2350   const TypeFunc* tf    = TypeFunc::make(dest_method);
2351   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2352   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2353   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2354     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2355     if (is_reference_type(targ->basic_type())) {
2356       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2357       ciKlass* better_type = nullptr;
2358       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2359         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2360       }
2361       i++;
2362     }
2363   }
2364 }
2365 
2366 /**
2367  * Record profiling data from parameter profiling at an invoke with
2368  * the type system so that it can propagate it (speculation)
2369  */
2370 void GraphKit::record_profiled_parameters_for_speculation() {
2371   if (!UseTypeSpeculation) {
2372     return;
2373   }
2374   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2494                                   // The first null ends the list.
2495                                   Node* parm0, Node* parm1,
2496                                   Node* parm2, Node* parm3,
2497                                   Node* parm4, Node* parm5,
2498                                   Node* parm6, Node* parm7) {
2499   assert(call_addr != nullptr, "must not call null targets");
2500 
2501   // Slow-path call
2502   bool is_leaf = !(flags & RC_NO_LEAF);
2503   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2504   if (call_name == nullptr) {
2505     assert(!is_leaf, "must supply name for leaf");
2506     call_name = OptoRuntime::stub_name(call_addr);
2507   }
2508   CallNode* call;
2509   if (!is_leaf) {
2510     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2511   } else if (flags & RC_NO_FP) {
2512     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2513   } else  if (flags & RC_VECTOR){
2514     uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2515     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2516   } else if (flags & RC_PURE) {
2517     assert(adr_type == nullptr, "pure call does not touch memory");
2518     call = new CallLeafPureNode(call_type, call_addr, call_name);
2519   } else {
2520     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2521   }
2522 
2523   // The following is similar to set_edges_for_java_call,
2524   // except that the memory effects of the call are restricted to AliasIdxRaw.
2525 
2526   // Slow path call has no side-effects, uses few values
2527   bool wide_in  = !(flags & RC_NARROW_MEM);
2528   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2529 
2530   Node* prev_mem = nullptr;
2531   if (wide_in) {
2532     prev_mem = set_predefined_input_for_runtime_call(call);
2533   } else {
2534     assert(!wide_out, "narrow in => narrow out");
2535     Node* narrow_mem = memory(adr_type);
2536     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2537   }
2538 
2539   // Hook each parm in order.  Stop looking at the first null.
2540   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2541   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2542   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2543   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2544   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2545   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2546   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2547   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2548   /* close each nested if ===> */  } } } } } } } }
2549   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2550 
2551   if (!is_leaf) {
2552     // Non-leaves can block and take safepoints:
2553     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2554   }
2555   // Non-leaves can throw exceptions:
2556   if (has_io) {
2557     call->set_req(TypeFunc::I_O, i_o());
2558   }
2559 
2560   if (flags & RC_UNCOMMON) {
2561     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2562     // (An "if" probability corresponds roughly to an unconditional count.
2563     // Sort of.)
2564     call->set_cnt(PROB_UNLIKELY_MAG(4));
2565   }
2566 
2567   Node* c = _gvn.transform(call);
2568   assert(c == call, "cannot disappear");
2569 

2577 
2578   if (has_io) {
2579     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2580   }
2581   return call;
2582 
2583 }
2584 
2585 // i2b
2586 Node* GraphKit::sign_extend_byte(Node* in) {
2587   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2588   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2589 }
2590 
2591 // i2s
2592 Node* GraphKit::sign_extend_short(Node* in) {
2593   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2594   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2595 }
2596 

2597 //------------------------------merge_memory-----------------------------------
2598 // Merge memory from one path into the current memory state.
2599 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2600   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2601     Node* old_slice = mms.force_memory();
2602     Node* new_slice = mms.memory2();
2603     if (old_slice != new_slice) {
2604       PhiNode* phi;
2605       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2606         if (mms.is_empty()) {
2607           // clone base memory Phi's inputs for this memory slice
2608           assert(old_slice == mms.base_memory(), "sanity");
2609           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2610           _gvn.set_type(phi, Type::MEMORY);
2611           for (uint i = 1; i < phi->req(); i++) {
2612             phi->init_req(i, old_slice->in(i));
2613           }
2614         } else {
2615           phi = old_slice->as_Phi(); // Phi was generated already
2616         }

2673   gvn.transform(iff);
2674   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2675   return iff;
2676 }
2677 
2678 //-------------------------------gen_subtype_check-----------------------------
2679 // Generate a subtyping check.  Takes as input the subtype and supertype.
2680 // Returns 2 values: sets the default control() to the true path and returns
2681 // the false path.  Only reads invariant memory; sets no (visible) memory.
2682 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2683 // but that's not exposed to the optimizer.  This call also doesn't take in an
2684 // Object; if you wish to check an Object you need to load the Object's class
2685 // prior to coming here.
2686 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2687                                ciMethod* method, int bci) {
2688   Compile* C = gvn.C;
2689   if ((*ctrl)->is_top()) {
2690     return C->top();
2691   }
2692 








2693   // Fast check for identical types, perhaps identical constants.
2694   // The types can even be identical non-constants, in cases
2695   // involving Array.newInstance, Object.clone, etc.
2696   if (subklass == superklass)
2697     return C->top();             // false path is dead; no test needed.
2698 
2699   if (gvn.type(superklass)->singleton()) {
2700     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2701     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2702 
2703     // In the common case of an exact superklass, try to fold up the
2704     // test before generating code.  You may ask, why not just generate
2705     // the code and then let it fold up?  The answer is that the generated
2706     // code will necessarily include null checks, which do not always
2707     // completely fold away.  If they are also needless, then they turn
2708     // into a performance loss.  Example:
2709     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2710     // Here, the type of 'fa' is often exact, so the store check
2711     // of fa[1]=x will fold up, without testing the nullness of x.
2712     //
2713     // At macro expansion, we would have already folded the SubTypeCheckNode
2714     // being expanded here because we always perform the static sub type
2715     // check in SubTypeCheckNode::sub() regardless of whether
2716     // StressReflectiveCode is set or not. We can therefore skip this
2717     // static check when StressReflectiveCode is on.
2718     switch (C->static_subtype_check(superk, subk)) {
2719     case Compile::SSC_always_false:
2720       {
2721         Node* always_fail = *ctrl;
2722         *ctrl = gvn.C->top();
2723         return always_fail;
2724       }
2725     case Compile::SSC_always_true:
2726       return C->top();
2727     case Compile::SSC_easy_test:
2728       {
2729         // Just do a direct pointer compare and be done.
2730         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2731         *ctrl = gvn.transform(new IfTrueNode(iff));
2732         return gvn.transform(new IfFalseNode(iff));
2733       }
2734     case Compile::SSC_full_test:
2735       break;
2736     default:
2737       ShouldNotReachHere();
2738     }
2739   }
2740 
2741   // %%% Possible further optimization:  Even if the superklass is not exact,
2742   // if the subklass is the unique subtype of the superklass, the check
2743   // will always succeed.  We could leave a dependency behind to ensure this.
2744 
2745   // First load the super-klass's check-offset
2746   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2747   Node* m = C->immutable_memory();
2748   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2749   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2750   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();

2788   gvn.record_for_igvn(r_ok_subtype);
2789 
2790   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2791   // SubTypeCheck node
2792   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2793     ciCallProfile profile = method->call_profile_at_bci(bci);
2794     float total_prob = 0;
2795     for (int i = 0; profile.has_receiver(i); ++i) {
2796       float prob = profile.receiver_prob(i);
2797       total_prob += prob;
2798     }
2799     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2800       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2801       for (int i = 0; profile.has_receiver(i); ++i) {
2802         ciKlass* klass = profile.receiver(i);
2803         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2804         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2805         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2806           continue;
2807         }




2808         float prob = profile.receiver_prob(i);
2809         ConNode* klass_node = gvn.makecon(klass_t);
2810         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2811         Node* iftrue = gvn.transform(new IfTrueNode(iff));
2812 
2813         if (result == Compile::SSC_always_true) {
2814           r_ok_subtype->add_req(iftrue);
2815         } else {
2816           assert(result == Compile::SSC_always_false, "");
2817           r_not_subtype->add_req(iftrue);
2818         }
2819         *ctrl = gvn.transform(new IfFalseNode(iff));
2820       }
2821     }
2822   }
2823 
2824   // See if we get an immediate positive hit.  Happens roughly 83% of the
2825   // time.  Test to see if the value loaded just previously from the subklass
2826   // is exactly the superklass.
2827   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);

2841       igvn->remove_globally_dead_node(r_not_subtype);
2842     }
2843     return not_subtype_ctrl;
2844   }
2845 
2846   r_ok_subtype->init_req(1, iftrue1);
2847 
2848   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2849   // is roughly 63% of the remaining cases).  Test to see if the loaded
2850   // check-offset points into the subklass display list or the 1-element
2851   // cache.  If it points to the display (and NOT the cache) and the display
2852   // missed then it's not a subtype.
2853   Node *cacheoff = gvn.intcon(cacheoff_con);
2854   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2855   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
2856   *ctrl = gvn.transform(new IfFalseNode(iff2));
2857 
2858   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2859   // No performance impact (too rare) but allows sharing of secondary arrays
2860   // which has some footprint reduction.
2861   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2862   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
2863   *ctrl = gvn.transform(new IfFalseNode(iff3));
2864 
2865   // -- Roads not taken here: --
2866   // We could also have chosen to perform the self-check at the beginning
2867   // of this code sequence, as the assembler does.  This would not pay off
2868   // the same way, since the optimizer, unlike the assembler, can perform
2869   // static type analysis to fold away many successful self-checks.
2870   // Non-foldable self checks work better here in second position, because
2871   // the initial primary superclass check subsumes a self-check for most
2872   // types.  An exception would be a secondary type like array-of-interface,
2873   // which does not appear in its own primary supertype display.
2874   // Finally, we could have chosen to move the self-check into the
2875   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2876   // dependent manner.  But it is worthwhile to have the check here,
2877   // where it can be perhaps be optimized.  The cost in code space is
2878   // small (register compare, branch).
2879 
2880   // Now do a linear scan of the secondary super-klass array.  Again, no real
2881   // performance impact (too rare) but it's gotta be done.
2882   // Since the code is rarely used, there is no penalty for moving it
2883   // out of line, and it can only improve I-cache density.
2884   // The decision to inline or out-of-line this final check is platform
2885   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2886   Node* psc = gvn.transform(
2887     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2888 
2889   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2890   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2891   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2892 
2893   // Return false path; set default control to true path.
2894   *ctrl = gvn.transform(r_ok_subtype);
2895   return gvn.transform(r_not_subtype);
2896 }
2897 
2898 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {





2899   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
2900   if (expand_subtype_check) {
2901     MergeMemNode* mem = merged_memory();
2902     Node* ctrl = control();
2903     Node* subklass = obj_or_subklass;
2904     if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2905       subklass = load_object_klass(obj_or_subklass);
2906     }
2907 
2908     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
2909     set_control(ctrl);
2910     return n;
2911   }
2912 
2913   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
2914   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2915   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2916   set_control(_gvn.transform(new IfTrueNode(iff)));
2917   return _gvn.transform(new IfFalseNode(iff));
2918 }
2919 
2920 // Profile-driven exact type check:
2921 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2922                                     float prob,
2923                                     Node* *casted_receiver) {
2924   assert(!klass->is_interface(), "no exact type check on interfaces");
2925 











2926   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);




2927   Node* recv_klass = load_object_klass(receiver);
2928   Node* want_klass = makecon(tklass);
2929   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2930   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2931   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2932   set_control( _gvn.transform(new IfTrueNode (iff)));
2933   Node* fail = _gvn.transform(new IfFalseNode(iff));
2934 
2935   if (!stopped()) {
2936     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2937     const TypeOopPtr* recvx_type = tklass->as_instance_type();
2938     assert(recvx_type->klass_is_exact(), "");
2939 
2940     if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2941       // Subsume downstream occurrences of receiver with a cast to
2942       // recv_xtype, since now we know what the type will be.
2943       Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2944       (*casted_receiver) = _gvn.transform(cast);





2945       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
2946       // (User must make the replace_in_map call.)
2947     }
2948   }
2949 
2950   return fail;
2951 }
2952 











2953 //------------------------------subtype_check_receiver-------------------------
2954 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2955                                        Node** casted_receiver) {
2956   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2957   Node* want_klass = makecon(tklass);
2958 
2959   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2960 
2961   // Ignore interface type information until interface types are properly tracked.
2962   if (!stopped() && !klass->is_interface()) {
2963     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2964     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2965     if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2966       Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2967       (*casted_receiver) = _gvn.transform(cast);



2968     }
2969   }
2970 
2971   return slow_ctl;
2972 }
2973 
2974 //------------------------------seems_never_null-------------------------------
2975 // Use null_seen information if it is available from the profile.
2976 // If we see an unexpected null at a type check we record it and force a
2977 // recompile; the offending check will be recompiled to handle nulls.
2978 // If we see several offending BCIs, then all checks in the
2979 // method will be recompiled.
2980 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2981   speculating = !_gvn.type(obj)->speculative_maybe_null();
2982   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2983   if (UncommonNullCast               // Cutout for this technique
2984       && obj != null()               // And not the -Xcomp stupid case?
2985       && !too_many_traps(reason)
2986       ) {
2987     if (speculating) {

3056 
3057 //------------------------maybe_cast_profiled_receiver-------------------------
3058 // If the profile has seen exactly one type, narrow to exactly that type.
3059 // Subsequent type checks will always fold up.
3060 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3061                                              const TypeKlassPtr* require_klass,
3062                                              ciKlass* spec_klass,
3063                                              bool safe_for_replace) {
3064   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3065 
3066   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3067 
3068   // Make sure we haven't already deoptimized from this tactic.
3069   if (too_many_traps_or_recompiles(reason))
3070     return nullptr;
3071 
3072   // (No, this isn't a call, but it's enough like a virtual call
3073   // to use the same ciMethod accessor to get the profile info...)
3074   // If we have a speculative type use it instead of profiling (which
3075   // may not help us)
3076   ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;













3077   if (exact_kls != nullptr) {// no cast failures here
3078     if (require_klass == nullptr ||
3079         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3080       // If we narrow the type to match what the type profile sees or
3081       // the speculative type, we can then remove the rest of the
3082       // cast.
3083       // This is a win, even if the exact_kls is very specific,
3084       // because downstream operations, such as method calls,
3085       // will often benefit from the sharper type.
3086       Node* exact_obj = not_null_obj; // will get updated in place...
3087       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3088                                             &exact_obj);
3089       { PreserveJVMState pjvms(this);
3090         set_control(slow_ctl);
3091         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3092       }
3093       if (safe_for_replace) {
3094         replace_in_map(not_null_obj, exact_obj);
3095       }
3096       return exact_obj;

3186   // If not_null_obj is dead, only null-path is taken
3187   if (stopped()) {              // Doing instance-of on a null?
3188     set_control(null_ctl);
3189     return intcon(0);
3190   }
3191   region->init_req(_null_path, null_ctl);
3192   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3193   if (null_ctl == top()) {
3194     // Do this eagerly, so that pattern matches like is_diamond_phi
3195     // will work even during parsing.
3196     assert(_null_path == PATH_LIMIT-1, "delete last");
3197     region->del_req(_null_path);
3198     phi   ->del_req(_null_path);
3199   }
3200 
3201   // Do we know the type check always succeed?
3202   bool known_statically = false;
3203   if (_gvn.type(superklass)->singleton()) {
3204     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3205     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3206     if (subk->is_loaded()) {
3207       int static_res = C->static_subtype_check(superk, subk);
3208       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3209     }
3210   }
3211 
3212   if (!known_statically) {
3213     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3214     // We may not have profiling here or it may not help us. If we
3215     // have a speculative type use it to perform an exact cast.
3216     ciKlass* spec_obj_type = obj_type->speculative_type();
3217     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3218       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3219       if (stopped()) {            // Profile disagrees with this path.
3220         set_control(null_ctl);    // Null is the only remaining possibility.
3221         return intcon(0);
3222       }
3223       if (cast_obj != nullptr) {
3224         not_null_obj = cast_obj;
3225       }
3226     }

3242   record_for_igvn(region);
3243 
3244   // If we know the type check always succeeds then we don't use the
3245   // profiling data at this bytecode. Don't lose it, feed it to the
3246   // type system as a speculative type.
3247   if (safe_for_replace) {
3248     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3249     replace_in_map(obj, casted_obj);
3250   }
3251 
3252   return _gvn.transform(phi);
3253 }
3254 
3255 //-------------------------------gen_checkcast---------------------------------
3256 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3257 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3258 // uncommon-trap paths work.  Adjust stack after this call.
3259 // If failure_control is supplied and not null, it is filled in with
3260 // the control edge for the cast failure.  Otherwise, an appropriate
3261 // uncommon trap or exception is thrown.
3262 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3263                               Node* *failure_control) {
3264   kill_dead_locals();           // Benefit all the uncommon traps
3265   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();



3266   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3267   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();


3268 
3269   // Fast cutout:  Check the case that the cast is vacuously true.
3270   // This detects the common cases where the test will short-circuit
3271   // away completely.  We do this before we perform the null check,
3272   // because if the test is going to turn into zero code, we don't
3273   // want a residual null check left around.  (Causes a slowdown,
3274   // for example, in some objArray manipulations, such as a[i]=a[j].)
3275   if (improved_klass_ptr_type->singleton()) {
3276     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3277     if (objtp != nullptr) {
3278       switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) {







3279       case Compile::SSC_always_true:
3280         // If we know the type check always succeed then we don't use
3281         // the profiling data at this bytecode. Don't lose it, feed it
3282         // to the type system as a speculative type.
3283         return record_profiled_receiver_for_speculation(obj);






3284       case Compile::SSC_always_false:




3285         // It needs a null check because a null will *pass* the cast check.
3286         // A non-null value will always produce an exception.
3287         if (!objtp->maybe_null()) {
3288           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3289           Deoptimization::DeoptReason reason = is_aastore ?
3290             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3291           builtin_throw(reason);
3292           return top();
3293         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3294           return null_assert(obj);
3295         }
3296         break; // Fall through to full check
3297       default:
3298         break;
3299       }
3300     }
3301   }
3302 
3303   ciProfileData* data = nullptr;
3304   bool safe_for_replace = false;
3305   if (failure_control == nullptr) {        // use MDO in regular case only
3306     assert(java_bc() == Bytecodes::_aastore ||
3307            java_bc() == Bytecodes::_checkcast,
3308            "interpreter profiles type checks only for these BCs");
3309     data = method()->method_data()->bci_to_data(bci());
3310     safe_for_replace = true;

3311   }
3312 
3313   // Make the merge point
3314   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3315   RegionNode* region = new RegionNode(PATH_LIMIT);
3316   Node*       phi    = new PhiNode(region, toop);



3317   C->set_has_split_ifs(true); // Has chance for split-if optimization
3318 
3319   // Use null-cast information if it is available
3320   bool speculative_not_null = false;
3321   bool never_see_null = ((failure_control == nullptr)  // regular case only
3322                          && seems_never_null(obj, data, speculative_not_null));
3323 







3324   // Null check; get casted pointer; set region slot 3
3325   Node* null_ctl = top();
3326   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);






3327 
3328   // If not_null_obj is dead, only null-path is taken
3329   if (stopped()) {              // Doing instance-of on a null?
3330     set_control(null_ctl);



3331     return null();
3332   }
3333   region->init_req(_null_path, null_ctl);
3334   phi   ->init_req(_null_path, null());  // Set null path value
3335   if (null_ctl == top()) {
3336     // Do this eagerly, so that pattern matches like is_diamond_phi
3337     // will work even during parsing.
3338     assert(_null_path == PATH_LIMIT-1, "delete last");
3339     region->del_req(_null_path);
3340     phi   ->del_req(_null_path);
3341   }
3342 
3343   Node* cast_obj = nullptr;
3344   if (improved_klass_ptr_type->klass_is_exact()) {
3345     // The following optimization tries to statically cast the speculative type of the object
3346     // (for example obtained during profiling) to the type of the superklass and then do a
3347     // dynamic check that the type of the object is what we expect. To work correctly
3348     // for checkcast and aastore the type of superklass should be exact.
3349     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3350     // We may not have profiling here or it may not help us. If we have
3351     // a speculative type use it to perform an exact cast.
3352     ciKlass* spec_obj_type = obj_type->speculative_type();
3353     if (spec_obj_type != nullptr || data != nullptr) {
3354       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3355       if (cast_obj != nullptr) {
3356         if (failure_control != nullptr) // failure is now impossible
3357           (*failure_control) = top();
3358         // adjust the type of the phi to the exact klass:
3359         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3360       }
3361     }
3362   }
3363 
3364   if (cast_obj == nullptr) {
3365     // Generate the subtype check
3366     Node* improved_superklass = superklass;
3367     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {



3368       improved_superklass = makecon(improved_klass_ptr_type);
3369     }
3370     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3371 
3372     // Plug in success path into the merge
3373     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3374     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3375     if (failure_control == nullptr) {
3376       if (not_subtype_ctrl != top()) { // If failure is possible
3377         PreserveJVMState pjvms(this);
3378         set_control(not_subtype_ctrl);
3379         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3380         Deoptimization::DeoptReason reason = is_aastore ?
3381           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3382         builtin_throw(reason);
3383       }
3384     } else {
3385       (*failure_control) = not_subtype_ctrl;
3386     }
3387   }
3388 
3389   region->init_req(_obj_path, control());
3390   phi   ->init_req(_obj_path, cast_obj);
3391 
3392   // A merge of null or Casted-NotNull obj
3393   Node* res = _gvn.transform(phi);
3394 
3395   // Note I do NOT always 'replace_in_map(obj,result)' here.
3396   //  if( tk->klass()->can_be_primary_super()  )
3397     // This means that if I successfully store an Object into an array-of-String
3398     // I 'forget' that the Object is really now known to be a String.  I have to
3399     // do this because we don't have true union types for interfaces - if I store
3400     // a Baz into an array-of-Interface and then tell the optimizer it's an
3401     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3402     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3403   //  replace_in_map( obj, res );
3404 
3405   // Return final merged results
3406   set_control( _gvn.transform(region) );
3407   record_for_igvn(region);
3408 
3409   return record_profiled_receiver_for_speculation(res);




































































































































































3410 }
3411 
3412 //------------------------------next_monitor-----------------------------------
3413 // What number should be given to the next monitor?
3414 int GraphKit::next_monitor() {
3415   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3416   int next = current + C->sync_stack_slots();
3417   // Keep the toplevel high water mark current:
3418   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3419   return current;
3420 }
3421 
3422 //------------------------------insert_mem_bar---------------------------------
3423 // Memory barrier to avoid floating things around
3424 // The membar serves as a pinch point between both control and all memory slices.
3425 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3426   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3427   mb->init_req(TypeFunc::Control, control());
3428   mb->init_req(TypeFunc::Memory,  reset_memory());
3429   Node* membar = _gvn.transform(mb);

3523     lock->create_lock_counter(map()->jvms());
3524     increment_counter(lock->counter()->addr());
3525   }
3526 #endif
3527 
3528   return flock;
3529 }
3530 
3531 
3532 //------------------------------shared_unlock----------------------------------
3533 // Emit unlocking code.
3534 void GraphKit::shared_unlock(Node* box, Node* obj) {
3535   // bci is either a monitorenter bc or InvocationEntryBci
3536   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3537   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3538 
3539   if (stopped()) {               // Dead monitor?
3540     map()->pop_monitor();        // Kill monitor from debug info
3541     return;
3542   }

3543 
3544   // Memory barrier to avoid floating things down past the locked region
3545   insert_mem_bar(Op_MemBarReleaseLock);
3546 
3547   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3548   UnlockNode *unlock = new UnlockNode(C, tf);
3549 #ifdef ASSERT
3550   unlock->set_dbg_jvms(sync_jvms());
3551 #endif
3552   uint raw_idx = Compile::AliasIdxRaw;
3553   unlock->init_req( TypeFunc::Control, control() );
3554   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3555   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3556   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3557   unlock->init_req( TypeFunc::ReturnAdr, top() );
3558 
3559   unlock->init_req(TypeFunc::Parms + 0, obj);
3560   unlock->init_req(TypeFunc::Parms + 1, box);
3561   unlock = _gvn.transform(unlock)->as_Unlock();
3562 
3563   Node* mem = reset_memory();
3564 
3565   // unlock has no side-effects, sets few values
3566   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3567 
3568   // Kill monitor from debug info
3569   map()->pop_monitor( );
3570 }
3571 
3572 //-------------------------------get_layout_helper-----------------------------
3573 // If the given klass is a constant or known to be an array,
3574 // fetch the constant layout helper value into constant_value
3575 // and return null.  Otherwise, load the non-constant
3576 // layout helper value, and return the node which represents it.
3577 // This two-faced routine is useful because allocation sites
3578 // almost always feature constant types.
3579 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3580   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3581   if (!StressReflectiveCode && klass_t != nullptr) {
3582     bool xklass = klass_t->klass_is_exact();
3583     if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) {







3584       jint lhelper;
3585       if (klass_t->isa_aryklassptr()) {
3586         BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();


3587         if (is_reference_type(elem, true)) {
3588           elem = T_OBJECT;
3589         }
3590         lhelper = Klass::array_layout_helper(elem);
3591       } else {
3592         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3593       }
3594       if (lhelper != Klass::_lh_neutral_value) {
3595         constant_value = lhelper;
3596         return (Node*) nullptr;
3597       }
3598     }
3599   }
3600   constant_value = Klass::_lh_neutral_value;  // put in a known value
3601   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3602   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3603 }
3604 
3605 // We just put in an allocate/initialize with a big raw-memory effect.
3606 // Hook selected additional alias categories on the initialization.
3607 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3608                                 MergeMemNode* init_in_merge,
3609                                 Node* init_out_raw) {
3610   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3611   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3612 
3613   Node* prevmem = kit.memory(alias_idx);
3614   init_in_merge->set_memory_at(alias_idx, prevmem);
3615   kit.set_memory(init_out_raw, alias_idx);


3616 }
3617 
3618 //---------------------------set_output_for_allocation-------------------------
3619 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3620                                           const TypeOopPtr* oop_type,
3621                                           bool deoptimize_on_exception) {
3622   int rawidx = Compile::AliasIdxRaw;
3623   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3624   add_safepoint_edges(alloc);
3625   Node* allocx = _gvn.transform(alloc);
3626   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3627   // create memory projection for i_o
3628   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3629   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3630 
3631   // create a memory projection as for the normal control path
3632   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3633   set_memory(malloc, rawidx);
3634 
3635   // a normal slow-call doesn't change i_o, but an allocation does
3636   // we create a separate i_o projection for the normal control path
3637   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3638   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3639 
3640   // put in an initialization barrier
3641   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3642                                                  rawoop)->as_Initialize();
3643   assert(alloc->initialization() == init,  "2-way macro link must work");
3644   assert(init ->allocation()     == alloc, "2-way macro link must work");
3645   {
3646     // Extract memory strands which may participate in the new object's
3647     // initialization, and source them from the new InitializeNode.
3648     // This will allow us to observe initializations when they occur,
3649     // and link them properly (as a group) to the InitializeNode.
3650     assert(init->in(InitializeNode::Memory) == malloc, "");
3651     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3652     init->set_req(InitializeNode::Memory, minit_in);
3653     record_for_igvn(minit_in); // fold it up later, if possible

3654     Node* minit_out = memory(rawidx);
3655     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3656     int mark_idx = C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()));
3657     // Add an edge in the MergeMem for the header fields so an access to one of those has correct memory state.
3658     // Use one NarrowMemProjNode per slice to properly record the adr type of each slice. The Initialize node will have
3659     // multiple projections as a result.
3660     set_memory(_gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(mark_idx))), mark_idx);
3661     int klass_idx = C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()));
3662     set_memory(_gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(klass_idx))), klass_idx);
3663     if (oop_type->isa_aryptr()) {





3664       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3665       int            elemidx  = C->get_alias_index(telemref);
3666       hook_memory_on_init(*this, elemidx, minit_in, _gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(elemidx))));




3667     } else if (oop_type->isa_instptr()) {
3668       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3669       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3670         ciField* field = ik->nonstatic_field_at(i);
3671         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3672           continue;  // do not bother to track really large numbers of fields
3673         // Find (or create) the alias category for this field:
3674         int fieldidx = C->alias_type(field)->index();
3675         hook_memory_on_init(*this, fieldidx, minit_in, _gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(fieldidx))));
3676       }
3677     }
3678   }
3679 
3680   // Cast raw oop to the real thing...
3681   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3682   javaoop = _gvn.transform(javaoop);
3683   C->set_recent_alloc(control(), javaoop);
3684   assert(just_allocated_object(control()) == javaoop, "just allocated");
3685 
3686 #ifdef ASSERT

3698       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3699     }
3700   }
3701 #endif //ASSERT
3702 
3703   return javaoop;
3704 }
3705 
3706 //---------------------------new_instance--------------------------------------
3707 // This routine takes a klass_node which may be constant (for a static type)
3708 // or may be non-constant (for reflective code).  It will work equally well
3709 // for either, and the graph will fold nicely if the optimizer later reduces
3710 // the type to a constant.
3711 // The optional arguments are for specialized use by intrinsics:
3712 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3713 //  - If 'return_size_val', report the total object size to the caller.
3714 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3715 Node* GraphKit::new_instance(Node* klass_node,
3716                              Node* extra_slow_test,
3717                              Node* *return_size_val,
3718                              bool deoptimize_on_exception) {

3719   // Compute size in doublewords
3720   // The size is always an integral number of doublewords, represented
3721   // as a positive bytewise size stored in the klass's layout_helper.
3722   // The layout_helper also encodes (in a low bit) the need for a slow path.
3723   jint  layout_con = Klass::_lh_neutral_value;
3724   Node* layout_val = get_layout_helper(klass_node, layout_con);
3725   int   layout_is_con = (layout_val == nullptr);
3726 
3727   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3728   // Generate the initial go-slow test.  It's either ALWAYS (return a
3729   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3730   // case) a computed value derived from the layout_helper.
3731   Node* initial_slow_test = nullptr;
3732   if (layout_is_con) {
3733     assert(!StressReflectiveCode, "stress mode does not use these paths");
3734     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3735     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3736   } else {   // reflective case
3737     // This reflective path is used by Unsafe.allocateInstance.
3738     // (It may be stress-tested by specifying StressReflectiveCode.)
3739     // Basically, we want to get into the VM is there's an illegal argument.
3740     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3741     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3742     if (extra_slow_test != intcon(0)) {
3743       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3744     }
3745     // (Macro-expander will further convert this to a Bool, if necessary.)

3756 
3757     // Clear the low bits to extract layout_helper_size_in_bytes:
3758     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3759     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3760     size = _gvn.transform( new AndXNode(size, mask) );
3761   }
3762   if (return_size_val != nullptr) {
3763     (*return_size_val) = size;
3764   }
3765 
3766   // This is a precise notnull oop of the klass.
3767   // (Actually, it need not be precise if this is a reflective allocation.)
3768   // It's what we cast the result to.
3769   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3770   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3771   const TypeOopPtr* oop_type = tklass->as_instance_type();
3772 
3773   // Now generate allocation code
3774 
3775   // The entire memory state is needed for slow path of the allocation
3776   // since GC and deoptimization can happened.
3777   Node *mem = reset_memory();
3778   set_all_memory(mem); // Create new memory state
3779 
3780   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3781                                          control(), mem, i_o(),
3782                                          size, klass_node,
3783                                          initial_slow_test);
3784 
3785   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3786 }
3787 
3788 //-------------------------------new_array-------------------------------------
3789 // helper for both newarray and anewarray
3790 // The 'length' parameter is (obviously) the length of the array.
3791 // The optional arguments are for specialized use by intrinsics:
3792 //  - If 'return_size_val', report the non-padded array size (sum of header size
3793 //    and array body) to the caller.
3794 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3795 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3796                           Node* length,         // number of array elements
3797                           int   nargs,          // number of arguments to push back for uncommon trap
3798                           Node* *return_size_val,
3799                           bool deoptimize_on_exception) {

3800   jint  layout_con = Klass::_lh_neutral_value;
3801   Node* layout_val = get_layout_helper(klass_node, layout_con);
3802   int   layout_is_con = (layout_val == nullptr);
3803 
3804   if (!layout_is_con && !StressReflectiveCode &&
3805       !too_many_traps(Deoptimization::Reason_class_check)) {
3806     // This is a reflective array creation site.
3807     // Optimistically assume that it is a subtype of Object[],
3808     // so that we can fold up all the address arithmetic.
3809     layout_con = Klass::array_layout_helper(T_OBJECT);
3810     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3811     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3812     { BuildCutout unless(this, bol_lh, PROB_MAX);
3813       inc_sp(nargs);
3814       uncommon_trap(Deoptimization::Reason_class_check,
3815                     Deoptimization::Action_maybe_recompile);
3816     }
3817     layout_val = nullptr;
3818     layout_is_con = true;
3819   }
3820 
3821   // Generate the initial go-slow test.  Make sure we do not overflow
3822   // if length is huge (near 2Gig) or negative!  We do not need
3823   // exact double-words here, just a close approximation of needed
3824   // double-words.  We can't add any offset or rounding bits, lest we
3825   // take a size -1 of bytes and make it positive.  Use an unsigned
3826   // compare, so negative sizes look hugely positive.
3827   int fast_size_limit = FastAllocateSizeLimit;
3828   if (layout_is_con) {
3829     assert(!StressReflectiveCode, "stress mode does not use these paths");
3830     // Increase the size limit if we have exact knowledge of array type.
3831     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3832     assert(fast_size_limit == 0 || count_leading_zeros(fast_size_limit) > static_cast<unsigned>(LogBytesPerLong - log2_esize),
3833            "fast_size_limit (%d) overflow when shifted left by %d", fast_size_limit, LogBytesPerLong - log2_esize);
3834     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3835   }
3836 
3837   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3838   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3839 
3840   // --- Size Computation ---
3841   // array_size = round_to_heap(array_header + (length << elem_shift));
3842   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3843   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3844   // The rounding mask is strength-reduced, if possible.
3845   int round_mask = MinObjAlignmentInBytes - 1;
3846   Node* header_size = nullptr;
3847   // (T_BYTE has the weakest alignment and size restrictions...)
3848   if (layout_is_con) {
3849     int       hsize  = Klass::layout_helper_header_size(layout_con);
3850     int       eshift = Klass::layout_helper_log2_element_size(layout_con);

3851     if ((round_mask & ~right_n_bits(eshift)) == 0)
3852       round_mask = 0;  // strength-reduce it if it goes away completely
3853     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3854     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3855     assert(header_size_min <= hsize, "generic minimum is smallest");
3856     header_size = intcon(hsize);
3857   } else {
3858     Node* hss   = intcon(Klass::_lh_header_size_shift);
3859     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3860     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3861     header_size = _gvn.transform(new AndINode(header_size, hsm));
3862   }
3863 
3864   Node* elem_shift = nullptr;
3865   if (layout_is_con) {
3866     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3867     if (eshift != 0)
3868       elem_shift = intcon(eshift);
3869   } else {
3870     // There is no need to mask or shift this value.
3871     // The semantics of LShiftINode include an implicit mask to 0x1F.
3872     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3873     elem_shift = layout_val;

3922   }
3923   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
3924 
3925   if (return_size_val != nullptr) {
3926     // This is the size
3927     (*return_size_val) = non_rounded_size;
3928   }
3929 
3930   Node* size = non_rounded_size;
3931   if (round_mask != 0) {
3932     Node* mask1 = MakeConX(round_mask);
3933     size = _gvn.transform(new AddXNode(size, mask1));
3934     Node* mask2 = MakeConX(~round_mask);
3935     size = _gvn.transform(new AndXNode(size, mask2));
3936   }
3937   // else if round_mask == 0, the size computation is self-rounding
3938 
3939   // Now generate allocation code
3940 
3941   // The entire memory state is needed for slow path of the allocation
3942   // since GC and deoptimization can happened.
3943   Node *mem = reset_memory();
3944   set_all_memory(mem); // Create new memory state
3945 
3946   if (initial_slow_test->is_Bool()) {
3947     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3948     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3949   }
3950 
3951   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();




















3952   Node* valid_length_test = _gvn.intcon(1);
3953   if (ary_type->isa_aryptr()) {
3954     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3955     jint max = TypeAryPtr::max_array_length(bt);
3956     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3957     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3958   }
3959 
3960   // Create the AllocateArrayNode and its result projections
3961   AllocateArrayNode* alloc
3962     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3963                             control(), mem, i_o(),
3964                             size, klass_node,
3965                             initial_slow_test,
3966                             length, valid_length_test);
3967 
3968   // Cast to correct type.  Note that the klass_node may be constant or not,
3969   // and in the latter case the actual array type will be inexact also.
3970   // (This happens via a non-constant argument to inline_native_newArray.)
3971   // In any case, the value of klass_node provides the desired array type.
3972   const TypeInt* length_type = _gvn.find_int_type(length);
3973   if (ary_type->isa_aryptr() && length_type != nullptr) {
3974     // Try to get a better type than POS for the size
3975     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3976   }
3977 
3978   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3979 
3980   array_ideal_length(alloc, ary_type, true);
3981   return javaoop;
3982 }
3983 
3984 // The following "Ideal_foo" functions are placed here because they recognize
3985 // the graph shapes created by the functions immediately above.
3986 
3987 //---------------------------Ideal_allocation----------------------------------

4082 void GraphKit::add_parse_predicates(int nargs) {
4083   if (ShortRunningLongLoop) {
4084     // Will narrow the limit down with a cast node. Predicates added later may depend on the cast so should be last when
4085     // walking up from the loop.
4086     add_parse_predicate(Deoptimization::Reason_short_running_long_loop, nargs);
4087   }
4088   if (UseLoopPredicate) {
4089     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4090     if (UseProfiledLoopPredicate) {
4091       add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4092     }
4093   }
4094   if (UseAutoVectorizationPredicate) {
4095     add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs);
4096   }
4097   // Loop Limit Check Predicate should be near the loop.
4098   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4099 }
4100 
4101 void GraphKit::sync_kit(IdealKit& ideal) {

4102   set_all_memory(ideal.merged_memory());
4103   set_i_o(ideal.i_o());
4104   set_control(ideal.ctrl());
4105 }
4106 
4107 void GraphKit::final_sync(IdealKit& ideal) {
4108   // Final sync IdealKit and graphKit.
4109   sync_kit(ideal);
4110 }
4111 
4112 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4113   Node* len = load_array_length(load_String_value(str, set_ctrl));
4114   Node* coder = load_String_coder(str, set_ctrl);
4115   // Divide length by 2 if coder is UTF16
4116   return _gvn.transform(new RShiftINode(len, coder));
4117 }
4118 
4119 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4120   int value_offset = java_lang_String::value_offset();
4121   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4122                                                      false, nullptr, 0);
4123   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4124   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4125                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4126                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4127   Node* p = basic_plus_adr(str, str, value_offset);
4128   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4129                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4130   return load;
4131 }
4132 
4133 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4134   if (!CompactStrings) {
4135     return intcon(java_lang_String::CODER_UTF16);
4136   }
4137   int coder_offset = java_lang_String::coder_offset();
4138   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4139                                                      false, nullptr, 0);
4140   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4141 
4142   Node* p = basic_plus_adr(str, str, coder_offset);
4143   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4144                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4145   return load;
4146 }
4147 
4148 void GraphKit::store_String_value(Node* str, Node* value) {
4149   int value_offset = java_lang_String::value_offset();
4150   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4151                                                      false, nullptr, 0);
4152   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4153 
4154   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4155                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4156 }
4157 
4158 void GraphKit::store_String_coder(Node* str, Node* value) {
4159   int coder_offset = java_lang_String::coder_offset();
4160   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4161                                                      false, nullptr, 0);
4162   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4163 
4164   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4165                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4166 }
4167 
4168 // Capture src and dst memory state with a MergeMemNode
4169 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4170   if (src_type == dst_type) {
4171     // Types are equal, we don't need a MergeMemNode
4172     return memory(src_type);
4173   }
4174   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4175   record_for_igvn(merge); // fold it up later, if possible
4176   int src_idx = C->get_alias_index(src_type);
4177   int dst_idx = C->get_alias_index(dst_type);
4178   merge->set_memory_at(src_idx, memory(src_idx));
4179   merge->set_memory_at(dst_idx, memory(dst_idx));
4180   return merge;
4181 }

4254   i_char->init_req(2, AddI(i_char, intcon(2)));
4255 
4256   set_control(IfFalse(iff));
4257   set_memory(st, TypeAryPtr::BYTES);
4258 }
4259 
4260 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4261   if (!field->is_constant()) {
4262     return nullptr; // Field not marked as constant.
4263   }
4264   ciInstance* holder = nullptr;
4265   if (!field->is_static()) {
4266     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4267     if (const_oop != nullptr && const_oop->is_instance()) {
4268       holder = const_oop->as_instance();
4269     }
4270   }
4271   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4272                                                         /*is_unsigned_load=*/false);
4273   if (con_type != nullptr) {
4274     return makecon(con_type);






4275   }
4276   return nullptr;
4277 }
4278 
4279 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4280   const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr();
4281   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4282   if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4283     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4284     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4285     return casted_obj;



4286   }
4287   return obj;
4288 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/register.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciMethod.hpp"
  29 #include "ci/ciObjArray.hpp"
  30 #include "ci/ciUtilities.hpp"
  31 #include "classfile/javaClasses.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/c2/barrierSetC2.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/flatArrayKlass.hpp"
  38 #include "opto/addnode.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/convertnode.hpp"
  41 #include "opto/graphKit.hpp"
  42 #include "opto/idealKit.hpp"
  43 #include "opto/inlinetypenode.hpp"
  44 #include "opto/intrinsicnode.hpp"
  45 #include "opto/locknode.hpp"
  46 #include "opto/machnode.hpp"
  47 #include "opto/multnode.hpp"
  48 #include "opto/narrowptrnode.hpp"
  49 #include "opto/opaquenode.hpp"
  50 #include "opto/parse.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/runtime.hpp"
  53 #include "opto/subtypenode.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/deoptimization.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "utilities/bitMap.inline.hpp"
  59 #include "utilities/growableArray.hpp"
  60 #include "utilities/powerOfTwo.hpp"
  61 
  62 //----------------------------GraphKit-----------------------------------------
  63 // Main utility constructor.
  64 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  65   : Phase(Phase::Parser),
  66     _env(C->env()),
  67     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  68     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  69 {
  70   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  71   _exceptions = jvms->map()->next_exception();
  72   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  73   set_jvms(jvms);
  74 #ifdef ASSERT
  75   if (_gvn.is_IterGVN() != nullptr) {
  76     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  77     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  78     _worklist_size = _gvn.C->igvn_worklist()->size();
  79   }
  80 #endif
  81 }
  82 
  83 // Private constructor for parser.
  84 GraphKit::GraphKit()
  85   : Phase(Phase::Parser),
  86     _env(C->env()),
  87     _gvn(*C->initial_gvn()),
  88     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  89 {
  90   _exceptions = nullptr;
  91   set_map(nullptr);
  92   DEBUG_ONLY(_sp = -99);
  93   DEBUG_ONLY(set_bci(-99));
  94 }
  95 
  96 
  97 
  98 //---------------------------clean_stack---------------------------------------
  99 // Clear away rubbish from the stack area of the JVM state.
 100 // This destroys any arguments that may be waiting on the stack.

 345 }
 346 static inline void add_one_req(Node* dstphi, Node* src) {
 347   assert(is_hidden_merge(dstphi), "must be a special merge node");
 348   assert(!is_hidden_merge(src), "must not be a special merge node");
 349   dstphi->add_req(src);
 350 }
 351 
 352 //-----------------------combine_exception_states------------------------------
 353 // This helper function combines exception states by building phis on a
 354 // specially marked state-merging region.  These regions and phis are
 355 // untransformed, and can build up gradually.  The region is marked by
 356 // having a control input of its exception map, rather than null.  Such
 357 // regions do not appear except in this function, and in use_exception_state.
 358 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 359   if (failing_internal()) {
 360     return;  // dying anyway...
 361   }
 362   JVMState* ex_jvms = ex_map->_jvms;
 363   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 364   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 365   // TODO 8325632 Re-enable
 366   // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 367   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 368   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 369   assert(ex_map->req() == phi_map->req(), "matching maps");
 370   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 371   Node*         hidden_merge_mark = root();
 372   Node*         region  = phi_map->control();
 373   MergeMemNode* phi_mem = phi_map->merged_memory();
 374   MergeMemNode* ex_mem  = ex_map->merged_memory();
 375   if (region->in(0) != hidden_merge_mark) {
 376     // The control input is not (yet) a specially-marked region in phi_map.
 377     // Make it so, and build some phis.
 378     region = new RegionNode(2);
 379     _gvn.set_type(region, Type::CONTROL);
 380     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 381     region->init_req(1, phi_map->control());
 382     phi_map->set_control(region);
 383     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 384     record_for_igvn(io_phi);
 385     _gvn.set_type(io_phi, Type::ABIO);
 386     phi_map->set_i_o(io_phi);

 874         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 875           tty->print_cr("Zombie local %d: ", local);
 876           jvms->dump();
 877         }
 878         return false;
 879       }
 880     }
 881   }
 882   return true;
 883 }
 884 
 885 #endif //ASSERT
 886 
 887 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 888 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 889   ciMethod* cur_method = jvms->method();
 890   int       cur_bci   = jvms->bci();
 891   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 892     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 893     return Interpreter::bytecode_should_reexecute(code) ||
 894            (is_anewarray && (code == Bytecodes::_multianewarray));
 895     // Reexecute _multianewarray bytecode which was replaced with
 896     // sequence of [a]newarray. See Parse::do_multianewarray().
 897     //
 898     // Note: interpreter should not have it set since this optimization
 899     // is limited by dimensions and guarded by flag so in some cases
 900     // multianewarray() runtime calls will be generated and
 901     // the bytecode should not be reexecutes (stack will not be reset).
 902   } else {
 903     return false;
 904   }
 905 }
 906 
 907 // Helper function for adding JVMState and debug information to node
 908 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 909   // Add the safepoint edges to the call (or other safepoint).
 910 
 911   // Make sure dead locals are set to top.  This
 912   // should help register allocation time and cut down on the size
 913   // of the deoptimization information.
 914   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 942 
 943   if (env()->should_retain_local_variables()) {
 944     // At any safepoint, this method can get breakpointed, which would
 945     // then require an immediate deoptimization.
 946     can_prune_locals = false;  // do not prune locals
 947     stack_slots_not_pruned = 0;
 948   }
 949 
 950   // do not scribble on the input jvms
 951   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 952   call->set_jvms(out_jvms); // Start jvms list for call node
 953 
 954   // For a known set of bytecodes, the interpreter should reexecute them if
 955   // deoptimization happens. We set the reexecute state for them here
 956   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 957       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 958 #ifdef ASSERT
 959     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 960     assert(method() == youngest_jvms->method(), "sanity");
 961     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 962     // TODO 8371125
 963     // assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 964 #endif // ASSERT
 965     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 966   }
 967 
 968   // Presize the call:
 969   DEBUG_ONLY(uint non_debug_edges = call->req());
 970   call->add_req_batch(top(), youngest_jvms->debug_depth());
 971   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 972 
 973   // Set up edges so that the call looks like this:
 974   //  Call [state:] ctl io mem fptr retadr
 975   //       [parms:] parm0 ... parmN
 976   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 977   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 978   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 979   // Note that caller debug info precedes callee debug info.
 980 
 981   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 982   uint debug_ptr = call->req();
 983 
 984   // Loop over the map input edges associated with jvms, add them
 985   // to the call node, & reset all offsets to match call node array.
 986 
 987   JVMState* callee_jvms = nullptr;
 988   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 989     uint debug_end   = debug_ptr;
 990     uint debug_start = debug_ptr - in_jvms->debug_size();
 991     debug_ptr = debug_start;  // back up the ptr
 992 
 993     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 994     uint j, k, l;
 995     SafePointNode* in_map = in_jvms->map();
 996     out_jvms->set_map(call);
 997 
 998     if (can_prune_locals) {
 999       assert(in_jvms->method() == out_jvms->method(), "sanity");
1000       // If the current throw can reach an exception handler in this JVMS,
1001       // then we must keep everything live that can reach that handler.
1002       // As a quick and dirty approximation, we look for any handlers at all.
1003       if (in_jvms->method()->has_exception_handlers()) {
1004         can_prune_locals = false;
1005       }
1006     }
1007 
1008     // Add the Locals
1009     k = in_jvms->locoff();
1010     l = in_jvms->loc_size();
1011     out_jvms->set_locoff(p);
1012     if (!can_prune_locals) {
1013       for (j = 0; j < l; j++) {
1014         call->set_req(p++, in_map->in(k + j));
1015       }
1016     } else {
1017       p += l;  // already set to top above by add_req_batch
1018     }
1019 
1020     // Add the Expression Stack
1021     k = in_jvms->stkoff();
1022     l = in_jvms->sp();
1023     out_jvms->set_stkoff(p);
1024     if (!can_prune_locals) {
1025       for (j = 0; j < l; j++) {
1026         call->set_req(p++, in_map->in(k + j));
1027       }
1028     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1029       // Divide stack into {S0,...,S1}, where S0 is set to top.
1030       uint s1 = stack_slots_not_pruned;
1031       stack_slots_not_pruned = 0;  // for next iteration
1032       if (s1 > l)  s1 = l;
1033       uint s0 = l - s1;
1034       p += s0;  // skip the tops preinstalled by add_req_batch
1035       for (j = s0; j < l; j++)
1036         call->set_req(p++, in_map->in(k+j));
1037     } else {
1038       p += l;  // already set to top above by add_req_batch
1039     }
1040 
1041     // Add the Monitors
1042     k = in_jvms->monoff();
1043     l = in_jvms->mon_size();
1044     out_jvms->set_monoff(p);
1045     for (j = 0; j < l; j++)
1046       call->set_req(p++, in_map->in(k+j));
1047 
1048     // Copy any scalar object fields.
1049     k = in_jvms->scloff();
1050     l = in_jvms->scl_size();
1051     out_jvms->set_scloff(p);
1052     for (j = 0; j < l; j++)
1053       call->set_req(p++, in_map->in(k+j));
1054 
1055     // Finish the new jvms.
1056     out_jvms->set_endoff(p);
1057 
1058     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1059     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1060     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1061     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1062     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1063     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1064 
1065     // Update the two tail pointers in parallel.
1066     callee_jvms = out_jvms;
1067     out_jvms = out_jvms->caller();
1068     in_jvms  = in_jvms->caller();
1069   }
1070 
1071   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1072 
1073   // Test the correctness of JVMState::debug_xxx accessors:
1074   assert(call->jvms()->debug_start() == non_debug_edges, "");
1075   assert(call->jvms()->debug_end()   == call->req(), "");
1076   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1077 }
1078 
1079 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1080   Bytecodes::Code code = java_bc();
1081   if (code == Bytecodes::_wide) {
1082     code = method()->java_code_at_bci(bci() + 1);
1083   }
1084 
1085   if (code != Bytecodes::_illegal) {
1086     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1222   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1223   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1224   return _gvn.transform( new AndLNode(conv, mask) );
1225 }
1226 
1227 Node* GraphKit::ConvL2I(Node* offset) {
1228   // short-circuit a common case
1229   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1230   if (offset_con != (jlong)Type::OffsetBot) {
1231     return intcon((int) offset_con);
1232   }
1233   return _gvn.transform( new ConvL2INode(offset));
1234 }
1235 
1236 //-------------------------load_object_klass-----------------------------------
1237 Node* GraphKit::load_object_klass(Node* obj) {
1238   // Special-case a fresh allocation to avoid building nodes:
1239   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1240   if (akls != nullptr)  return akls;
1241   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1242   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1243 }
1244 
1245 //-------------------------load_array_length-----------------------------------
1246 Node* GraphKit::load_array_length(Node* array) {
1247   // Special-case a fresh allocation to avoid building nodes:
1248   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1249   Node *alen;
1250   if (alloc == nullptr) {
1251     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1252     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1253   } else {
1254     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1255   }
1256   return alen;
1257 }
1258 
1259 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1260                                    const TypeOopPtr* oop_type,
1261                                    bool replace_length_in_map) {
1262   Node* length = alloc->Ideal_length();

1271         replace_in_map(length, ccast);
1272       }
1273       return ccast;
1274     }
1275   }
1276   return length;
1277 }
1278 
1279 //------------------------------do_null_check----------------------------------
1280 // Helper function to do a null pointer check.  Returned value is
1281 // the incoming address with null casted away.  You are allowed to use the
1282 // not-null value only if you are control dependent on the test.
1283 #ifndef PRODUCT
1284 extern uint explicit_null_checks_inserted,
1285             explicit_null_checks_elided;
1286 #endif
1287 Node* GraphKit::null_check_common(Node* value, BasicType type,
1288                                   // optional arguments for variations:
1289                                   bool assert_null,
1290                                   Node* *null_control,
1291                                   bool speculative,
1292                                   bool null_marker_check) {
1293   assert(!assert_null || null_control == nullptr, "not both at once");
1294   if (stopped())  return top();
1295   NOT_PRODUCT(explicit_null_checks_inserted++);
1296 
1297   if (value->is_InlineType()) {
1298     // Null checking a scalarized but nullable inline type. Check the null marker
1299     // input instead of the oop input to avoid keeping buffer allocations alive.
1300     InlineTypeNode* vtptr = value->as_InlineType();
1301     while (vtptr->get_oop()->is_InlineType()) {
1302       vtptr = vtptr->get_oop()->as_InlineType();
1303     }
1304     null_check_common(vtptr->get_null_marker(), T_INT, assert_null, null_control, speculative, true);
1305     if (stopped()) {
1306       return top();
1307     }
1308     if (assert_null) {
1309       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1310       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1311       // replace_in_map(value, vtptr);
1312       // return vtptr;
1313       replace_in_map(value, null());
1314       return null();
1315     }
1316     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1317     return cast_not_null(value, do_replace_in_map);
1318   }
1319 
1320   // Construct null check
1321   Node *chk = nullptr;
1322   switch(type) {
1323     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1324     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1325     case T_ARRAY  : // fall through
1326       type = T_OBJECT;  // simplify further tests
1327     case T_OBJECT : {
1328       const Type *t = _gvn.type( value );
1329 
1330       const TypeOopPtr* tp = t->isa_oopptr();
1331       if (tp != nullptr && !tp->is_loaded()
1332           // Only for do_null_check, not any of its siblings:
1333           && !assert_null && null_control == nullptr) {
1334         // Usually, any field access or invocation on an unloaded oop type
1335         // will simply fail to link, since the statically linked class is
1336         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1337         // the static class is loaded but the sharper oop type is not.
1338         // Rather than checking for this obscure case in lots of places,
1339         // we simply observe that a null check on an unloaded class

1403         }
1404         Node *oldcontrol = control();
1405         set_control(cfg);
1406         Node *res = cast_not_null(value);
1407         set_control(oldcontrol);
1408         NOT_PRODUCT(explicit_null_checks_elided++);
1409         return res;
1410       }
1411       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1412       if (cfg == nullptr)  break;  // Quit at region nodes
1413       depth++;
1414     }
1415   }
1416 
1417   //-----------
1418   // Branch to failure if null
1419   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1420   Deoptimization::DeoptReason reason;
1421   if (assert_null) {
1422     reason = Deoptimization::reason_null_assert(speculative);
1423   } else if (type == T_OBJECT || null_marker_check) {
1424     reason = Deoptimization::reason_null_check(speculative);
1425   } else {
1426     reason = Deoptimization::Reason_div0_check;
1427   }
1428   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1429   // ciMethodData::has_trap_at will return a conservative -1 if any
1430   // must-be-null assertion has failed.  This could cause performance
1431   // problems for a method after its first do_null_assert failure.
1432   // Consider using 'Reason_class_check' instead?
1433 
1434   // To cause an implicit null check, we set the not-null probability
1435   // to the maximum (PROB_MAX).  For an explicit check the probability
1436   // is set to a smaller value.
1437   if (null_control != nullptr || too_many_traps(reason)) {
1438     // probability is less likely
1439     ok_prob =  PROB_LIKELY_MAG(3);
1440   } else if (!assert_null &&
1441              (ImplicitNullCheckThreshold > 0) &&
1442              method() != nullptr &&
1443              (method()->method_data()->trap_count(reason)

1477   }
1478 
1479   if (assert_null) {
1480     // Cast obj to null on this path.
1481     replace_in_map(value, zerocon(type));
1482     return zerocon(type);
1483   }
1484 
1485   // Cast obj to not-null on this path, if there is no null_control.
1486   // (If there is a null_control, a non-null value may come back to haunt us.)
1487   if (type == T_OBJECT) {
1488     Node* cast = cast_not_null(value, false);
1489     if (null_control == nullptr || (*null_control) == top())
1490       replace_in_map(value, cast);
1491     value = cast;
1492   }
1493 
1494   return value;
1495 }
1496 

1497 //------------------------------cast_not_null----------------------------------
1498 // Cast obj to not-null on this path
1499 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1500   if (obj->is_InlineType()) {
1501     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1502     vt->as_InlineType()->set_null_marker(_gvn);
1503     vt = _gvn.transform(vt);
1504     if (do_replace_in_map) {
1505       replace_in_map(obj, vt);
1506     }
1507     return vt;
1508   }
1509   const Type *t = _gvn.type(obj);
1510   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1511   // Object is already not-null?
1512   if( t == t_not_null ) return obj;
1513 
1514   Node* cast = new CastPPNode(control(), obj,t_not_null);
1515   cast = _gvn.transform( cast );
1516 
1517   // Scan for instances of 'obj' in the current JVM mapping.
1518   // These instances are known to be not-null after the test.
1519   if (do_replace_in_map)
1520     replace_in_map(obj, cast);
1521 
1522   return cast;                  // Return casted value
1523 }
1524 
1525 Node* GraphKit::cast_to_non_larval(Node* obj) {
1526   const Type* obj_type = gvn().type(obj);
1527   if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) {
1528     return obj;
1529   }
1530 
1531   Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass());
1532   replace_in_map(obj, new_obj);
1533   return new_obj;
1534 }
1535 
1536 // Sometimes in intrinsics, we implicitly know an object is not null
1537 // (there's no actual null check) so we can cast it to not null. In
1538 // the course of optimizations, the input to the cast can become null.
1539 // In that case that data path will die and we need the control path
1540 // to become dead as well to keep the graph consistent. So we have to
1541 // add a check for null for which one branch can't be taken. It uses
1542 // an OpaqueNotNull node that will cause the check to be removed after loop
1543 // opts so the test goes away and the compiled code doesn't execute a
1544 // useless check.
1545 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1546   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1547     return value;
1548   }
1549   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1550   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1551   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1552   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1553   _gvn.set_type(iff, iff->Value(&_gvn));
1554   if (!tst->is_Con()) {
1555     record_for_igvn(iff);

1627 // These are layered on top of the factory methods in LoadNode and StoreNode,
1628 // and integrate with the parser's memory state and _gvn engine.
1629 //
1630 
1631 // factory methods in "int adr_idx"
1632 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1633                           MemNode::MemOrd mo,
1634                           LoadNode::ControlDependency control_dependency,
1635                           bool require_atomic_access,
1636                           bool unaligned,
1637                           bool mismatched,
1638                           bool unsafe,
1639                           uint8_t barrier_data) {
1640   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1641   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1642   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1643   DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx));
1644   Node* mem = memory(adr_idx);
1645   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1646   ld = _gvn.transform(ld);
1647 
1648   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1649     // Improve graph before escape analysis and boxing elimination.
1650     record_for_igvn(ld);
1651     if (ld->is_DecodeN()) {
1652       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1653       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1654       // a Phi). Recording such cases is still perfectly sound, but may be
1655       // unnecessary and result in some minor IGVN overhead.
1656       record_for_igvn(ld->in(1));
1657     }
1658   }
1659   return ld;
1660 }
1661 
1662 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1663                                 MemNode::MemOrd mo,
1664                                 bool require_atomic_access,
1665                                 bool unaligned,
1666                                 bool mismatched,
1667                                 bool unsafe,

1681   if (unsafe) {
1682     st->as_Store()->set_unsafe_access();
1683   }
1684   st->as_Store()->set_barrier_data(barrier_data);
1685   st = _gvn.transform(st);
1686   set_memory(st, adr_idx);
1687   // Back-to-back stores can only remove intermediate store with DU info
1688   // so push on worklist for optimizer.
1689   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1690     record_for_igvn(st);
1691 
1692   return st;
1693 }
1694 
1695 Node* GraphKit::access_store_at(Node* obj,
1696                                 Node* adr,
1697                                 const TypePtr* adr_type,
1698                                 Node* val,
1699                                 const Type* val_type,
1700                                 BasicType bt,
1701                                 DecoratorSet decorators,
1702                                 bool safe_for_replace,
1703                                 const InlineTypeNode* vt) {
1704   // Transformation of a value which could be null pointer (CastPP #null)
1705   // could be delayed during Parse (for example, in adjust_map_after_if()).
1706   // Execute transformation here to avoid barrier generation in such case.
1707   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1708     val = _gvn.makecon(TypePtr::NULL_PTR);
1709   }
1710 
1711   if (stopped()) {
1712     return top(); // Dead path ?
1713   }
1714 
1715   assert(val != nullptr, "not dead path");
1716   if (val->is_InlineType()) {
1717     // Store to non-flat field. Buffer the inline type and make sure
1718     // the store is re-executed if the allocation triggers deoptimization.
1719     PreserveReexecuteState preexecs(this);
1720     jvms()->set_should_reexecute(true);
1721     val = val->as_InlineType()->buffer(this, safe_for_replace);
1722   }
1723 
1724   C2AccessValuePtr addr(adr, adr_type);
1725   C2AccessValue value(val, val_type);
1726   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1727   if (access.is_raw()) {
1728     return _barrier_set->BarrierSetC2::store_at(access, value);
1729   } else {
1730     return _barrier_set->store_at(access, value);
1731   }
1732 }
1733 
1734 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1735                                Node* adr,   // actual address to store val at
1736                                const TypePtr* adr_type,
1737                                const Type* val_type,
1738                                BasicType bt,
1739                                DecoratorSet decorators,
1740                                Node* ctl) {
1741   if (stopped()) {
1742     return top(); // Dead path ?
1743   }
1744 
1745   C2AccessValuePtr addr(adr, adr_type);
1746   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1747   if (access.is_raw()) {
1748     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1749   } else {
1750     return _barrier_set->load_at(access, val_type);
1751   }
1752 }
1753 
1754 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1755                             const Type* val_type,
1756                             BasicType bt,
1757                             DecoratorSet decorators) {
1758   if (stopped()) {
1759     return top(); // Dead path ?
1760   }
1761 
1762   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1763   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1764   if (access.is_raw()) {
1765     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1766   } else {

1831                                      Node* new_val,
1832                                      const Type* value_type,
1833                                      BasicType bt,
1834                                      DecoratorSet decorators) {
1835   C2AccessValuePtr addr(adr, adr_type);
1836   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1837   if (access.is_raw()) {
1838     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1839   } else {
1840     return _barrier_set->atomic_add_at(access, new_val, value_type);
1841   }
1842 }
1843 
1844 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1845   return _barrier_set->clone(this, src, dst, size, is_array);
1846 }
1847 
1848 //-------------------------array_element_address-------------------------
1849 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1850                                       const TypeInt* sizetype, Node* ctrl) {
1851   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1852   uint shift;
1853   uint header;
1854   if (arytype->is_flat() && arytype->klass_is_exact()) {
1855     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1856     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1857     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1858     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1859     // though we don't need the address node in this case and throw it away again.
1860     shift = arytype->flat_log_elem_size();
1861     header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
1862   } else {
1863     shift = exact_log2(type2aelembytes(elembt));
1864     header = arrayOopDesc::base_offset_in_bytes(elembt);
1865   }
1866 
1867   // short-circuit a common case (saves lots of confusing waste motion)
1868   jint idx_con = find_int_con(idx, -1);
1869   if (idx_con >= 0) {
1870     intptr_t offset = header + ((intptr_t)idx_con << shift);
1871     return basic_plus_adr(ary, offset);
1872   }
1873 
1874   // must be correct type for alignment purposes
1875   Node* base  = basic_plus_adr(ary, header);
1876   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1877   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1878   return basic_plus_adr(ary, base, scale);
1879 }
1880 
1881 Node* GraphKit::cast_to_flat_array(Node* array, ciInlineKlass* elem_vk) {
1882   assert(elem_vk->maybe_flat_in_array(), "no flat array for %s", elem_vk->name()->as_utf8());
1883   if (!elem_vk->has_null_free_atomic_layout() && !elem_vk->has_nullable_atomic_layout()) {
1884     return cast_to_flat_array_exact(array, elem_vk, true, false);
1885   } else if (!elem_vk->has_nullable_atomic_layout() && !elem_vk->has_null_free_non_atomic_layout()) {
1886     return cast_to_flat_array_exact(array, elem_vk, true, true);
1887   } else if (!elem_vk->has_null_free_atomic_layout() && !elem_vk->has_null_free_non_atomic_layout()) {
1888     return cast_to_flat_array_exact(array, elem_vk, false, true);
1889   }
1890 
1891   bool is_null_free = false;
1892   if (!elem_vk->has_nullable_atomic_layout()) {
1893     // Element does not have a nullable flat layout, cannot be nullable
1894     is_null_free = true;
1895   }
1896 
1897   ciArrayKlass* array_klass = ciObjArrayKlass::make(elem_vk, false);
1898   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1899   arytype = arytype->cast_to_flat(true)->cast_to_null_free(is_null_free);
1900   return _gvn.transform(new CheckCastPPNode(control(), array, arytype, ConstraintCastNode::DependencyType::NonFloatingNarrowing));
1901 }
1902 
1903 Node* GraphKit::cast_to_flat_array_exact(Node* array, ciInlineKlass* elem_vk, bool is_null_free, bool is_atomic) {
1904   assert(is_null_free || is_atomic, "nullable arrays must be atomic");
1905   ciArrayKlass* array_klass = ciObjArrayKlass::make(elem_vk, true, is_null_free, is_atomic);
1906   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1907   assert(arytype->klass_is_exact(), "inconsistency");
1908   assert(arytype->is_flat(), "inconsistency");
1909   assert(arytype->is_null_free() == is_null_free, "inconsistency");
1910   assert(arytype->is_not_null_free() == !is_null_free, "inconsistency");
1911   return _gvn.transform(new CheckCastPPNode(control(), array, arytype, ConstraintCastNode::DependencyType::NonFloatingNarrowing));
1912 }
1913 
1914 //-------------------------load_array_element-------------------------
1915 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1916   const Type* elemtype = arytype->elem();
1917   BasicType elembt = elemtype->array_element_basic_type();
1918   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1919   if (elembt == T_NARROWOOP) {
1920     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1921   }
1922   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1923                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1924   return ld;
1925 }
1926 
1927 //-------------------------set_arguments_for_java_call-------------------------
1928 // Arguments (pre-popped from the stack) are taken from the JVMS.
1929 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1930   PreserveReexecuteState preexecs(this);
1931   if (Arguments::is_valhalla_enabled()) {
1932     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1933     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1934     jvms()->set_should_reexecute(true);
1935     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1936     inc_sp(arg_size);
1937   }
1938   // Add the call arguments
1939   const TypeTuple* domain = call->tf()->domain_sig();
1940   uint nargs = domain->cnt();
1941   int arg_num = 0;
1942   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1943     uint arg_idx = i - TypeFunc::Parms;
1944     Node* arg = argument(arg_idx);
1945     const Type* t = domain->field_at(i);
1946     // TODO 8284443 A static call to a mismatched method should still be scalarized
1947     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1948       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1949       if (!arg->is_InlineType()) {
1950         // There are 2 cases in which the argument has not been scalarized
1951         if (_gvn.type(arg)->is_zero_type()) {
1952           arg = InlineTypeNode::make_null(_gvn, t->inline_klass());
1953         } else {
1954           // During parsing, a method is called with an abstract (or j.l.Object) receiver, the
1955           // receiver is a non-scalarized oop. Later on, IGVN reveals that the receiver must be a
1956           // value object. The method is devirtualized, and replaced with a direct call with a
1957           // scalarized receiver instead.
1958           assert(arg_idx == 0 && !call->method()->is_static(), "must be the receiver");
1959           assert(C->inlining_incrementally() || C->strength_reduction(), "must be during devirtualization of calls");
1960           assert(!is_Parse(), "must be during devirtualization of calls");
1961           arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass());
1962         }
1963       }
1964       InlineTypeNode* vt = arg->as_InlineType();
1965       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1966       // If an inline type argument is passed as fields, attach the Method* to the call site
1967       // to be able to access the extended signature later via attached_method_before_pc().
1968       // For example, see CompiledMethod::preserve_callee_argument_oops().
1969       call->set_override_symbolic_info(true);
1970       // Register an calling convention dependency on the callee method to make sure that this method is deoptimized and
1971       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1972       C->dependencies()->assert_mismatch_calling_convention(call->method());
1973       arg_num++;
1974       continue;
1975     } else if (arg->is_InlineType()) {
1976       // Pass inline type argument via oop to callee
1977       arg = arg->as_InlineType()->buffer(this, true);
1978     }
1979     if (t != Type::HALF) {
1980       arg_num++;
1981     }
1982     call->init_req(idx++, arg);
1983   }
1984 }
1985 
1986 //---------------------------set_edges_for_java_call---------------------------
1987 // Connect a newly created call into the current JVMS.
1988 // A return value node (if any) is returned from set_edges_for_java_call.
1989 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1990 
1991   // Add the predefined inputs:
1992   call->init_req( TypeFunc::Control, control() );
1993   call->init_req( TypeFunc::I_O    , i_o() );
1994   call->init_req( TypeFunc::Memory , reset_memory() );
1995   call->init_req( TypeFunc::FramePtr, frameptr() );
1996   call->init_req( TypeFunc::ReturnAdr, top() );
1997 
1998   add_safepoint_edges(call, must_throw);
1999 
2000   Node* xcall = _gvn.transform(call);
2001 
2002   if (xcall == top()) {
2003     set_control(top());
2004     return;
2005   }
2006   assert(xcall == call, "call identity is stable");
2007 
2008   // Re-use the current map to produce the result.
2009 
2010   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
2011   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
2012   set_all_memory_call(xcall, separate_io_proj);
2013 
2014   //return xcall;   // no need, caller already has it
2015 }
2016 
2017 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
2018   if (stopped())  return top();  // maybe the call folded up?
2019 







2020   // Note:  Since any out-of-line call can produce an exception,
2021   // we always insert an I_O projection from the call into the result.
2022 
2023   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
2024 
2025   if (separate_io_proj) {
2026     // The caller requested separate projections be used by the fall
2027     // through and exceptional paths, so replace the projections for
2028     // the fall through path.
2029     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
2030     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
2031   }
2032 
2033   // Capture the return value, if any.
2034   Node* ret;
2035   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
2036     ret = top();
2037   } else if (call->tf()->returns_inline_type_as_fields()) {
2038     // Return of multiple values (inline type fields): we create a
2039     // InlineType node, each field is a projection from the call.
2040     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2041     uint base_input = TypeFunc::Parms;
2042     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2043   } else {
2044     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2045     ciType* t = call->method()->return_type();
2046     if (!t->is_loaded() && InlineTypeReturnedAsFields) {
2047       // The return type is unloaded but the callee might later be C2 compiled and then return
2048       // in scalarized form when the return type is loaded. Handle this similar to what we do in
2049       // PhaseMacroExpand::expand_mh_intrinsic_return by calling into the runtime to buffer.
2050       // It's a bit unfortunate because we will deopt anyway but the interpreter needs an oop.
2051       IdealKit ideal(this);
2052       IdealVariable res(ideal);
2053       ideal.declarations_done();
2054       // Change return type of call to scalarized return
2055       const TypeFunc* tf = call->_tf;
2056       const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc();
2057       const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2058       call->_tf = new_tf;
2059       _gvn.set_type(call, call->Value(&_gvn));
2060       _gvn.set_type(ret, ret->Value(&_gvn));
2061       // Don't add store to buffer call if we are strength reducing
2062       if (!C->strength_reduction()) {
2063         ideal.if_then(ret, BoolTest::eq, ideal.makecon(TypePtr::NULL_PTR)); {
2064           // Return value is null
2065           ideal.set(res, makecon(TypePtr::NULL_PTR));
2066         } ideal.else_(); {
2067           // Return value is non-null
2068           sync_kit(ideal);
2069 
2070           Node* store_to_buf_call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
2071                                                       OptoRuntime::store_inline_type_fields_Type(),
2072                                                       StubRoutines::store_inline_type_fields_to_buf(),
2073                                                       nullptr, TypePtr::BOTTOM, ret);
2074 
2075           // We don't know how many values are returned. This assumes the
2076           // worst case, that all available registers are used.
2077           for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2078             if (domain->field_at(i) == Type::HALF) {
2079               store_to_buf_call->init_req(i, top());
2080               continue;
2081             }
2082             Node* proj =_gvn.transform(new ProjNode(call, i));
2083             store_to_buf_call->init_req(i, proj);
2084           }
2085           make_slow_call_ex(store_to_buf_call, env()->Throwable_klass(), false);
2086 
2087           Node* buf = _gvn.transform(new ProjNode(store_to_buf_call, TypeFunc::Parms));
2088           const Type* buf_type = TypeOopPtr::make_from_klass(t->as_klass())->join_speculative(TypePtr::NOTNULL);
2089           buf = _gvn.transform(new CheckCastPPNode(control(), buf, buf_type));
2090 
2091           ideal.set(res, buf);
2092           ideal.sync_kit(this);
2093         } ideal.end_if();
2094       } else {
2095         for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2096           Node* proj =_gvn.transform(new ProjNode(call, i));
2097         }
2098         ideal.set(res, ret);
2099       }
2100       sync_kit(ideal);
2101       ret = _gvn.transform(ideal.value(res));
2102     }
2103     if (t->is_klass()) {
2104       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2105       if (type->is_inlinetypeptr()) {
2106         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass());
2107       }
2108     }
2109   }
2110 
2111   return ret;
2112 }
2113 
2114 //--------------------set_predefined_input_for_runtime_call--------------------
2115 // Reading and setting the memory state is way conservative here.
2116 // The real problem is that I am not doing real Type analysis on memory,
2117 // so I cannot distinguish card mark stores from other stores.  Across a GC
2118 // point the Store Barrier and the card mark memory has to agree.  I cannot
2119 // have a card mark store and its barrier split across the GC point from
2120 // either above or below.  Here I get that to happen by reading ALL of memory.
2121 // A better answer would be to separate out card marks from other memory.
2122 // For now, return the input memory state, so that it can be reused
2123 // after the call, if this call has restricted memory effects.
2124 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2125   // Set fixed predefined input arguments
2126   call->init_req(TypeFunc::Control, control());
2127   call->init_req(TypeFunc::I_O, top()); // does no i/o
2128   call->init_req(TypeFunc::ReturnAdr, top());
2129   if (call->is_CallLeafPure()) {
2130     call->init_req(TypeFunc::Memory, top());

2192     if (use->is_MergeMem()) {
2193       wl.push(use);
2194     }
2195   }
2196 }
2197 
2198 // Replace the call with the current state of the kit.
2199 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2200   JVMState* ejvms = nullptr;
2201   if (has_exceptions()) {
2202     ejvms = transfer_exceptions_into_jvms();
2203   }
2204 
2205   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2206   ReplacedNodes replaced_nodes_exception;
2207   Node* ex_ctl = top();
2208 
2209   SafePointNode* final_state = stop();
2210 
2211   // Find all the needed outputs of this call
2212   CallProjections* callprojs = call->extract_projections(true, do_asserts);

2213 
2214   Unique_Node_List wl;
2215   Node* init_mem = call->in(TypeFunc::Memory);
2216   Node* final_mem = final_state->in(TypeFunc::Memory);
2217   Node* final_ctl = final_state->in(TypeFunc::Control);
2218   Node* final_io = final_state->in(TypeFunc::I_O);
2219 
2220   // Replace all the old call edges with the edges from the inlining result
2221   if (callprojs->fallthrough_catchproj != nullptr) {
2222     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2223   }
2224   if (callprojs->fallthrough_memproj != nullptr) {
2225     if (final_mem->is_MergeMem()) {
2226       // Parser's exits MergeMem was not transformed but may be optimized
2227       final_mem = _gvn.transform(final_mem);
2228     }
2229     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2230     add_mergemem_users_to_worklist(wl, final_mem);
2231   }
2232   if (callprojs->fallthrough_ioproj != nullptr) {
2233     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2234   }
2235 
2236   // Replace the result with the new result if it exists and is used
2237   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2238     // If the inlined code is dead, the result projections for an inline type returned as
2239     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2240     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()) ||
2241            (C->strength_reduction() && InlineTypeReturnedAsFields && !call->as_CallJava()->method()->return_type()->is_loaded()),
2242            "unexpected number of results");
2243     // If we are doing strength reduction and the return type is not loaded we
2244     // need to rewire all projections since store_inline_type_fields_to_buf is already present
2245     if (C->strength_reduction() && InlineTypeReturnedAsFields && !call->as_CallJava()->method()->return_type()->is_loaded()) {
2246       const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc();
2247       for (uint i = TypeFunc::Parms; i < domain->cnt(); i++) {
2248         C->gvn_replace_by(callprojs->resproj[0], final_state->in(i));
2249       }
2250     } else {
2251       C->gvn_replace_by(callprojs->resproj[0], result);
2252     }
2253   }
2254 
2255   if (ejvms == nullptr) {
2256     // No exception edges to simply kill off those paths
2257     if (callprojs->catchall_catchproj != nullptr) {
2258       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2259     }
2260     if (callprojs->catchall_memproj != nullptr) {
2261       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2262     }
2263     if (callprojs->catchall_ioproj != nullptr) {
2264       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2265     }
2266     // Replace the old exception object with top
2267     if (callprojs->exobj != nullptr) {
2268       C->gvn_replace_by(callprojs->exobj, C->top());
2269     }
2270   } else {
2271     GraphKit ekit(ejvms);
2272 
2273     // Load my combined exception state into the kit, with all phis transformed:
2274     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2275     replaced_nodes_exception = ex_map->replaced_nodes();
2276 
2277     Node* ex_oop = ekit.use_exception_state(ex_map);
2278 
2279     if (callprojs->catchall_catchproj != nullptr) {
2280       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2281       ex_ctl = ekit.control();
2282     }
2283     if (callprojs->catchall_memproj != nullptr) {
2284       Node* ex_mem = ekit.reset_memory();
2285       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2286       add_mergemem_users_to_worklist(wl, ex_mem);
2287     }
2288     if (callprojs->catchall_ioproj != nullptr) {
2289       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2290     }
2291 
2292     // Replace the old exception object with the newly created one
2293     if (callprojs->exobj != nullptr) {
2294       C->gvn_replace_by(callprojs->exobj, ex_oop);
2295     }
2296   }
2297 
2298   // Disconnect the call from the graph
2299   call->disconnect_inputs(C);
2300   C->gvn_replace_by(call, C->top());
2301 
2302   // Clean up any MergeMems that feed other MergeMems since the
2303   // optimizer doesn't like that.
2304   while (wl.size() > 0) {
2305     _gvn.transform(wl.pop());
2306   }
2307 
2308   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2309     replaced_nodes.apply(C, final_ctl);
2310   }
2311   if (!ex_ctl->is_top() && do_replaced_nodes) {
2312     replaced_nodes_exception.apply(C, ex_ctl);
2313   }
2314 }
2315 
2316 
2317 //------------------------------increment_counter------------------------------
2318 // for statistics: increment a VM counter by 1
2319 
2320 void GraphKit::increment_counter(address counter_addr) {
2321   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2322   increment_counter(adr1);
2323 }
2324 
2325 void GraphKit::increment_counter(Node* counter_addr) {
2326   Node* ctrl = control();
2327   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2328   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2498  *
2499  * @param n          node that the type applies to
2500  * @param exact_kls  type from profiling
2501  * @param maybe_null did profiling see null?
2502  *
2503  * @return           node with improved type
2504  */
2505 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2506   const Type* current_type = _gvn.type(n);
2507   assert(UseTypeSpeculation, "type speculation must be on");
2508 
2509   const TypePtr* speculative = current_type->speculative();
2510 
2511   // Should the klass from the profile be recorded in the speculative type?
2512   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2513     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2514     const TypeOopPtr* xtype = tklass->as_instance_type();
2515     assert(xtype->klass_is_exact(), "Should be exact");
2516     // Any reason to believe n is not null (from this profiling or a previous one)?
2517     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2518     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2519     // record the new speculative type's depth
2520     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2521     speculative = speculative->with_inline_depth(jvms()->depth());
2522   } else if (current_type->would_improve_ptr(ptr_kind)) {
2523     // Profiling report that null was never seen so we can change the
2524     // speculative type to non null ptr.
2525     if (ptr_kind == ProfileAlwaysNull) {
2526       speculative = TypePtr::NULL_PTR;
2527     } else {
2528       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2529       const TypePtr* ptr = TypePtr::NOTNULL;
2530       if (speculative != nullptr) {
2531         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2532       } else {
2533         speculative = ptr;
2534       }
2535     }
2536   }
2537 
2538   if (speculative != current_type->speculative()) {
2539     // Build a type with a speculative type (what we think we know
2540     // about the type but will need a guard when we use it)
2541     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2542     // We're changing the type, we need a new CheckCast node to carry
2543     // the new type. The new type depends on the control: what
2544     // profiling tells us is only valid from here as far as we can
2545     // tell.
2546     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2547     cast = _gvn.transform(cast);
2548     replace_in_map(n, cast);
2549     n = cast;
2550   }
2551 
2552   return n;
2553 }
2554 
2555 /**
2556  * Record profiling data from receiver profiling at an invoke with the
2557  * type system so that it can propagate it (speculation)
2558  *
2559  * @param n  receiver node
2560  *
2561  * @return   node with improved type
2562  */
2563 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2564   if (!UseTypeSpeculation) {
2565     return n;
2566   }
2567   ciKlass* exact_kls = profile_has_unique_klass();
2568   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2569   if ((java_bc() == Bytecodes::_checkcast ||
2570        java_bc() == Bytecodes::_instanceof ||
2571        java_bc() == Bytecodes::_aastore) &&
2572       method()->method_data()->is_mature()) {
2573     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2574     if (data != nullptr) {
2575       if (java_bc() == Bytecodes::_aastore) {
2576         ciKlass* array_type = nullptr;
2577         ciKlass* element_type = nullptr;
2578         ProfilePtrKind element_ptr = ProfileMaybeNull;
2579         bool flat_array = true;
2580         bool null_free_array = true;
2581         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2582         exact_kls = element_type;
2583         ptr_kind = element_ptr;
2584       } else {
2585         if (!data->as_BitData()->null_seen()) {
2586           ptr_kind = ProfileNeverNull;
2587         } else {
2588           if (TypeProfileCasts) {
2589             assert(data->is_ReceiverTypeData(), "bad profile data type");
2590             ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2591             uint i = 0;
2592             for (; i < call->row_limit(); i++) {
2593               ciKlass* receiver = call->receiver(i);
2594               if (receiver != nullptr) {
2595                 break;
2596               }
2597             }
2598             ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2599           }

2600         }
2601       }
2602     }
2603   }
2604   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2605 }
2606 
2607 /**
2608  * Record profiling data from argument profiling at an invoke with the
2609  * type system so that it can propagate it (speculation)
2610  *
2611  * @param dest_method  target method for the call
2612  * @param bc           what invoke bytecode is this?
2613  */
2614 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2615   if (!UseTypeSpeculation) {
2616     return;
2617   }
2618   const TypeFunc* tf    = TypeFunc::make(dest_method);
2619   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2620   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2621   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2622     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2623     if (is_reference_type(targ->basic_type())) {
2624       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2625       ciKlass* better_type = nullptr;
2626       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2627         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2628       }
2629       i++;
2630     }
2631   }
2632 }
2633 
2634 /**
2635  * Record profiling data from parameter profiling at an invoke with
2636  * the type system so that it can propagate it (speculation)
2637  */
2638 void GraphKit::record_profiled_parameters_for_speculation() {
2639   if (!UseTypeSpeculation) {
2640     return;
2641   }
2642   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2762                                   // The first null ends the list.
2763                                   Node* parm0, Node* parm1,
2764                                   Node* parm2, Node* parm3,
2765                                   Node* parm4, Node* parm5,
2766                                   Node* parm6, Node* parm7) {
2767   assert(call_addr != nullptr, "must not call null targets");
2768 
2769   // Slow-path call
2770   bool is_leaf = !(flags & RC_NO_LEAF);
2771   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2772   if (call_name == nullptr) {
2773     assert(!is_leaf, "must supply name for leaf");
2774     call_name = OptoRuntime::stub_name(call_addr);
2775   }
2776   CallNode* call;
2777   if (!is_leaf) {
2778     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2779   } else if (flags & RC_NO_FP) {
2780     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2781   } else  if (flags & RC_VECTOR){
2782     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2783     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2784   } else if (flags & RC_PURE) {
2785     assert(adr_type == nullptr, "pure call does not touch memory");
2786     call = new CallLeafPureNode(call_type, call_addr, call_name);
2787   } else {
2788     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2789   }
2790 
2791   // The following is similar to set_edges_for_java_call,
2792   // except that the memory effects of the call are restricted to AliasIdxRaw.
2793 
2794   // Slow path call has no side-effects, uses few values
2795   bool wide_in  = !(flags & RC_NARROW_MEM);
2796   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2797 
2798   Node* prev_mem = nullptr;
2799   if (wide_in) {
2800     prev_mem = set_predefined_input_for_runtime_call(call);
2801   } else {
2802     assert(!wide_out, "narrow in => narrow out");
2803     Node* narrow_mem = memory(adr_type);
2804     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2805   }
2806 
2807   // Hook each parm in order.  Stop looking at the first null.
2808   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2809   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2810   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2811   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2812   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2813   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2814   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2815   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2816   /* close each nested if ===> */  } } } } } } } }
2817   assert(call->in(call->req()-1) != nullptr || (call->req()-1) > (TypeFunc::Parms+7), "must initialize all parms");
2818 
2819   if (!is_leaf) {
2820     // Non-leaves can block and take safepoints:
2821     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2822   }
2823   // Non-leaves can throw exceptions:
2824   if (has_io) {
2825     call->set_req(TypeFunc::I_O, i_o());
2826   }
2827 
2828   if (flags & RC_UNCOMMON) {
2829     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2830     // (An "if" probability corresponds roughly to an unconditional count.
2831     // Sort of.)
2832     call->set_cnt(PROB_UNLIKELY_MAG(4));
2833   }
2834 
2835   Node* c = _gvn.transform(call);
2836   assert(c == call, "cannot disappear");
2837 

2845 
2846   if (has_io) {
2847     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2848   }
2849   return call;
2850 
2851 }
2852 
2853 // i2b
2854 Node* GraphKit::sign_extend_byte(Node* in) {
2855   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2856   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2857 }
2858 
2859 // i2s
2860 Node* GraphKit::sign_extend_short(Node* in) {
2861   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2862   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2863 }
2864 
2865 
2866 //------------------------------merge_memory-----------------------------------
2867 // Merge memory from one path into the current memory state.
2868 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2869   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2870     Node* old_slice = mms.force_memory();
2871     Node* new_slice = mms.memory2();
2872     if (old_slice != new_slice) {
2873       PhiNode* phi;
2874       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2875         if (mms.is_empty()) {
2876           // clone base memory Phi's inputs for this memory slice
2877           assert(old_slice == mms.base_memory(), "sanity");
2878           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2879           _gvn.set_type(phi, Type::MEMORY);
2880           for (uint i = 1; i < phi->req(); i++) {
2881             phi->init_req(i, old_slice->in(i));
2882           }
2883         } else {
2884           phi = old_slice->as_Phi(); // Phi was generated already
2885         }

2942   gvn.transform(iff);
2943   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2944   return iff;
2945 }
2946 
2947 //-------------------------------gen_subtype_check-----------------------------
2948 // Generate a subtyping check.  Takes as input the subtype and supertype.
2949 // Returns 2 values: sets the default control() to the true path and returns
2950 // the false path.  Only reads invariant memory; sets no (visible) memory.
2951 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2952 // but that's not exposed to the optimizer.  This call also doesn't take in an
2953 // Object; if you wish to check an Object you need to load the Object's class
2954 // prior to coming here.
2955 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2956                                ciMethod* method, int bci) {
2957   Compile* C = gvn.C;
2958   if ((*ctrl)->is_top()) {
2959     return C->top();
2960   }
2961 
2962   const TypeKlassPtr* klass_ptr_type = gvn.type(superklass)->is_klassptr();
2963   // For a direct pointer comparison, we need the refined array klass pointer
2964   Node* vm_superklass = superklass;
2965   if (klass_ptr_type->isa_aryklassptr() && klass_ptr_type->klass_is_exact()) {
2966     assert(!klass_ptr_type->is_aryklassptr()->is_refined_type(), "Unexpected refined array klass pointer");
2967     vm_superklass = gvn.makecon(klass_ptr_type->is_aryklassptr()->cast_to_refined_array_klass_ptr());
2968   }
2969 
2970   // Fast check for identical types, perhaps identical constants.
2971   // The types can even be identical non-constants, in cases
2972   // involving Array.newInstance, Object.clone, etc.
2973   if (subklass == superklass)
2974     return C->top();             // false path is dead; no test needed.
2975 
2976   if (gvn.type(superklass)->singleton()) {
2977     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2978     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2979 
2980     // In the common case of an exact superklass, try to fold up the
2981     // test before generating code.  You may ask, why not just generate
2982     // the code and then let it fold up?  The answer is that the generated
2983     // code will necessarily include null checks, which do not always
2984     // completely fold away.  If they are also needless, then they turn
2985     // into a performance loss.  Example:
2986     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2987     // Here, the type of 'fa' is often exact, so the store check
2988     // of fa[1]=x will fold up, without testing the nullness of x.
2989     //
2990     // At macro expansion, we would have already folded the SubTypeCheckNode
2991     // being expanded here because we always perform the static sub type
2992     // check in SubTypeCheckNode::sub() regardless of whether
2993     // StressReflectiveCode is set or not. We can therefore skip this
2994     // static check when StressReflectiveCode is on.
2995     switch (C->static_subtype_check(superk, subk)) {
2996     case Compile::SSC_always_false:
2997       {
2998         Node* always_fail = *ctrl;
2999         *ctrl = gvn.C->top();
3000         return always_fail;
3001       }
3002     case Compile::SSC_always_true:
3003       return C->top();
3004     case Compile::SSC_easy_test:
3005       {
3006         // Just do a direct pointer compare and be done.
3007         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
3008         *ctrl = gvn.transform(new IfTrueNode(iff));
3009         return gvn.transform(new IfFalseNode(iff));
3010       }
3011     case Compile::SSC_full_test:
3012       break;
3013     default:
3014       ShouldNotReachHere();
3015     }
3016   }
3017 
3018   // %%% Possible further optimization:  Even if the superklass is not exact,
3019   // if the subklass is the unique subtype of the superklass, the check
3020   // will always succeed.  We could leave a dependency behind to ensure this.
3021 
3022   // First load the super-klass's check-offset
3023   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
3024   Node* m = C->immutable_memory();
3025   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
3026   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
3027   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();

3065   gvn.record_for_igvn(r_ok_subtype);
3066 
3067   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
3068   // SubTypeCheck node
3069   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
3070     ciCallProfile profile = method->call_profile_at_bci(bci);
3071     float total_prob = 0;
3072     for (int i = 0; profile.has_receiver(i); ++i) {
3073       float prob = profile.receiver_prob(i);
3074       total_prob += prob;
3075     }
3076     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
3077       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
3078       for (int i = 0; profile.has_receiver(i); ++i) {
3079         ciKlass* klass = profile.receiver(i);
3080         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
3081         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
3082         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
3083           continue;
3084         }
3085         if (klass_t->isa_aryklassptr()) {
3086           // For a direct pointer comparison, we need the refined array klass pointer
3087           klass_t = klass_t->is_aryklassptr()->cast_to_refined_array_klass_ptr();
3088         }
3089         float prob = profile.receiver_prob(i);
3090         ConNode* klass_node = gvn.makecon(klass_t);
3091         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
3092         Node* iftrue = gvn.transform(new IfTrueNode(iff));
3093 
3094         if (result == Compile::SSC_always_true) {
3095           r_ok_subtype->add_req(iftrue);
3096         } else {
3097           assert(result == Compile::SSC_always_false, "");
3098           r_not_subtype->add_req(iftrue);
3099         }
3100         *ctrl = gvn.transform(new IfFalseNode(iff));
3101       }
3102     }
3103   }
3104 
3105   // See if we get an immediate positive hit.  Happens roughly 83% of the
3106   // time.  Test to see if the value loaded just previously from the subklass
3107   // is exactly the superklass.
3108   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);

3122       igvn->remove_globally_dead_node(r_not_subtype);
3123     }
3124     return not_subtype_ctrl;
3125   }
3126 
3127   r_ok_subtype->init_req(1, iftrue1);
3128 
3129   // Check for immediate negative hit.  Happens roughly 11% of the time (which
3130   // is roughly 63% of the remaining cases).  Test to see if the loaded
3131   // check-offset points into the subklass display list or the 1-element
3132   // cache.  If it points to the display (and NOT the cache) and the display
3133   // missed then it's not a subtype.
3134   Node *cacheoff = gvn.intcon(cacheoff_con);
3135   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
3136   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
3137   *ctrl = gvn.transform(new IfFalseNode(iff2));
3138 
3139   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
3140   // No performance impact (too rare) but allows sharing of secondary arrays
3141   // which has some footprint reduction.
3142   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
3143   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
3144   *ctrl = gvn.transform(new IfFalseNode(iff3));
3145 
3146   // -- Roads not taken here: --
3147   // We could also have chosen to perform the self-check at the beginning
3148   // of this code sequence, as the assembler does.  This would not pay off
3149   // the same way, since the optimizer, unlike the assembler, can perform
3150   // static type analysis to fold away many successful self-checks.
3151   // Non-foldable self checks work better here in second position, because
3152   // the initial primary superclass check subsumes a self-check for most
3153   // types.  An exception would be a secondary type like array-of-interface,
3154   // which does not appear in its own primary supertype display.
3155   // Finally, we could have chosen to move the self-check into the
3156   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3157   // dependent manner.  But it is worthwhile to have the check here,
3158   // where it can be perhaps be optimized.  The cost in code space is
3159   // small (register compare, branch).
3160 
3161   // Now do a linear scan of the secondary super-klass array.  Again, no real
3162   // performance impact (too rare) but it's gotta be done.
3163   // Since the code is rarely used, there is no penalty for moving it
3164   // out of line, and it can only improve I-cache density.
3165   // The decision to inline or out-of-line this final check is platform
3166   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3167   Node* psc = gvn.transform(
3168     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3169 
3170   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3171   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3172   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3173 
3174   // Return false path; set default control to true path.
3175   *ctrl = gvn.transform(r_ok_subtype);
3176   return gvn.transform(r_not_subtype);
3177 }
3178 
3179 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3180   const Type* sub_t = _gvn.type(obj_or_subklass);
3181   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3182     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3183     obj_or_subklass = makecon(sub_t);
3184   }
3185   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3186   if (expand_subtype_check) {
3187     MergeMemNode* mem = merged_memory();
3188     Node* ctrl = control();
3189     Node* subklass = obj_or_subklass;
3190     if (!sub_t->isa_klassptr()) {
3191       subklass = load_object_klass(obj_or_subklass);
3192     }
3193 
3194     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3195     set_control(ctrl);
3196     return n;
3197   }
3198 
3199   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3200   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3201   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3202   set_control(_gvn.transform(new IfTrueNode(iff)));
3203   return _gvn.transform(new IfFalseNode(iff));
3204 }
3205 
3206 // Profile-driven exact type check:
3207 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3208                                     float prob, Node* *casted_receiver) {

3209   assert(!klass->is_interface(), "no exact type check on interfaces");
3210   Node* fail = top();
3211   const Type* rec_t = _gvn.type(receiver);
3212   if (rec_t->is_inlinetypeptr()) {
3213     if (klass->equals(rec_t->inline_klass())) {
3214       (*casted_receiver) = receiver; // Always passes
3215     } else {
3216       (*casted_receiver) = top();    // Always fails
3217       fail = control();
3218       set_control(top());
3219     }
3220     return fail;
3221   }
3222   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3223   if (tklass->isa_aryklassptr()) {
3224     // For a direct pointer comparison, we need the refined array klass pointer
3225     tklass = tklass->is_aryklassptr()->cast_to_refined_array_klass_ptr();
3226   }
3227   Node* recv_klass = load_object_klass(receiver);
3228   fail = type_check(recv_klass, tklass, prob);





3229 
3230   if (!stopped()) {
3231     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3232     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3233     assert(recv_xtype->klass_is_exact(), "");
3234 
3235     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3236       // Subsume downstream occurrences of receiver with a cast to
3237       // recv_xtype, since now we know what the type will be.
3238       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3239       Node* res = _gvn.transform(cast);
3240       if (recv_xtype->is_inlinetypeptr()) {
3241         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3242         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3243       }
3244       (*casted_receiver) = res;
3245       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3246       // (User must make the replace_in_map call.)
3247     }
3248   }
3249 
3250   return fail;
3251 }
3252 
3253 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3254                            float prob) {
3255   Node* want_klass = makecon(tklass);
3256   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3257   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3258   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3259   set_control(_gvn.transform(new IfTrueNode (iff)));
3260   Node* fail = _gvn.transform(new IfFalseNode(iff));
3261   return fail;
3262 }
3263 
3264 //------------------------------subtype_check_receiver-------------------------
3265 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3266                                        Node** casted_receiver) {
3267   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3268   Node* want_klass = makecon(tklass);
3269 
3270   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3271 
3272   // Ignore interface type information until interface types are properly tracked.
3273   if (!stopped() && !klass->is_interface()) {
3274     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3275     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3276     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3277       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3278       if (recv_type->is_inlinetypeptr()) {
3279         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3280       }
3281       (*casted_receiver) = cast;
3282     }
3283   }
3284 
3285   return slow_ctl;
3286 }
3287 
3288 //------------------------------seems_never_null-------------------------------
3289 // Use null_seen information if it is available from the profile.
3290 // If we see an unexpected null at a type check we record it and force a
3291 // recompile; the offending check will be recompiled to handle nulls.
3292 // If we see several offending BCIs, then all checks in the
3293 // method will be recompiled.
3294 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3295   speculating = !_gvn.type(obj)->speculative_maybe_null();
3296   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3297   if (UncommonNullCast               // Cutout for this technique
3298       && obj != null()               // And not the -Xcomp stupid case?
3299       && !too_many_traps(reason)
3300       ) {
3301     if (speculating) {

3370 
3371 //------------------------maybe_cast_profiled_receiver-------------------------
3372 // If the profile has seen exactly one type, narrow to exactly that type.
3373 // Subsequent type checks will always fold up.
3374 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3375                                              const TypeKlassPtr* require_klass,
3376                                              ciKlass* spec_klass,
3377                                              bool safe_for_replace) {
3378   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3379 
3380   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3381 
3382   // Make sure we haven't already deoptimized from this tactic.
3383   if (too_many_traps_or_recompiles(reason))
3384     return nullptr;
3385 
3386   // (No, this isn't a call, but it's enough like a virtual call
3387   // to use the same ciMethod accessor to get the profile info...)
3388   // If we have a speculative type use it instead of profiling (which
3389   // may not help us)
3390   ciKlass* exact_kls = spec_klass;
3391   if (exact_kls == nullptr) {
3392     if (java_bc() == Bytecodes::_aastore) {
3393       ciKlass* array_type = nullptr;
3394       ciKlass* element_type = nullptr;
3395       ProfilePtrKind element_ptr = ProfileMaybeNull;
3396       bool flat_array = true;
3397       bool null_free_array = true;
3398       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3399       exact_kls = element_type;
3400     } else {
3401       exact_kls = profile_has_unique_klass();
3402     }
3403   }
3404   if (exact_kls != nullptr) {// no cast failures here
3405     if (require_klass == nullptr ||
3406         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3407       // If we narrow the type to match what the type profile sees or
3408       // the speculative type, we can then remove the rest of the
3409       // cast.
3410       // This is a win, even if the exact_kls is very specific,
3411       // because downstream operations, such as method calls,
3412       // will often benefit from the sharper type.
3413       Node* exact_obj = not_null_obj; // will get updated in place...
3414       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3415                                             &exact_obj);
3416       { PreserveJVMState pjvms(this);
3417         set_control(slow_ctl);
3418         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3419       }
3420       if (safe_for_replace) {
3421         replace_in_map(not_null_obj, exact_obj);
3422       }
3423       return exact_obj;

3513   // If not_null_obj is dead, only null-path is taken
3514   if (stopped()) {              // Doing instance-of on a null?
3515     set_control(null_ctl);
3516     return intcon(0);
3517   }
3518   region->init_req(_null_path, null_ctl);
3519   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3520   if (null_ctl == top()) {
3521     // Do this eagerly, so that pattern matches like is_diamond_phi
3522     // will work even during parsing.
3523     assert(_null_path == PATH_LIMIT-1, "delete last");
3524     region->del_req(_null_path);
3525     phi   ->del_req(_null_path);
3526   }
3527 
3528   // Do we know the type check always succeed?
3529   bool known_statically = false;
3530   if (_gvn.type(superklass)->singleton()) {
3531     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3532     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3533     if (subk != nullptr && subk->is_loaded()) {
3534       int static_res = C->static_subtype_check(superk, subk);
3535       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3536     }
3537   }
3538 
3539   if (!known_statically) {
3540     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3541     // We may not have profiling here or it may not help us. If we
3542     // have a speculative type use it to perform an exact cast.
3543     ciKlass* spec_obj_type = obj_type->speculative_type();
3544     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3545       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3546       if (stopped()) {            // Profile disagrees with this path.
3547         set_control(null_ctl);    // Null is the only remaining possibility.
3548         return intcon(0);
3549       }
3550       if (cast_obj != nullptr) {
3551         not_null_obj = cast_obj;
3552       }
3553     }

3569   record_for_igvn(region);
3570 
3571   // If we know the type check always succeeds then we don't use the
3572   // profiling data at this bytecode. Don't lose it, feed it to the
3573   // type system as a speculative type.
3574   if (safe_for_replace) {
3575     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3576     replace_in_map(obj, casted_obj);
3577   }
3578 
3579   return _gvn.transform(phi);
3580 }
3581 
3582 //-------------------------------gen_checkcast---------------------------------
3583 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3584 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3585 // uncommon-trap paths work.  Adjust stack after this call.
3586 // If failure_control is supplied and not null, it is filled in with
3587 // the control edge for the cast failure.  Otherwise, an appropriate
3588 // uncommon trap or exception is thrown.
3589 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) {

3590   kill_dead_locals();           // Benefit all the uncommon traps
3591   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3592   const Type* obj_type = _gvn.type(obj);
3593   obj = cast_to_non_larval(obj);
3594 
3595   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3596   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3597   bool safe_for_replace = (failure_control == nullptr);
3598   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3599 
3600   // Fast cutout:  Check the case that the cast is vacuously true.
3601   // This detects the common cases where the test will short-circuit
3602   // away completely.  We do this before we perform the null check,
3603   // because if the test is going to turn into zero code, we don't
3604   // want a residual null check left around.  (Causes a slowdown,
3605   // for example, in some objArray manipulations, such as a[i]=a[j].)
3606   if (improved_klass_ptr_type->singleton()) {
3607     const TypeKlassPtr* kptr = nullptr;
3608     if (obj_type->isa_oop_ptr()) {
3609       kptr = obj_type->is_oopptr()->as_klass_type();
3610     } else if (obj->is_InlineType()) {
3611       ciInlineKlass* vk = obj_type->inline_klass();
3612       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3613     }
3614 
3615     if (kptr != nullptr) {
3616       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3617       case Compile::SSC_always_true:
3618         // If we know the type check always succeed then we don't use
3619         // the profiling data at this bytecode. Don't lose it, feed it
3620         // to the type system as a speculative type.
3621         obj = record_profiled_receiver_for_speculation(obj);
3622         if (null_free) {
3623           assert(safe_for_replace, "must be");
3624           obj = null_check(obj);
3625         }
3626         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3627         return obj;
3628       case Compile::SSC_always_false:
3629         if (null_free) {
3630           assert(safe_for_replace, "must be");
3631           obj = null_check(obj);
3632         }
3633         // It needs a null check because a null will *pass* the cast check.
3634         if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) {

3635           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3636           Deoptimization::DeoptReason reason = is_aastore ?
3637             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3638           builtin_throw(reason);
3639           return top();
3640         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3641           return null_assert(obj);
3642         }
3643         break; // Fall through to full check
3644       default:
3645         break;
3646       }
3647     }
3648   }
3649 
3650   ciProfileData* data = nullptr;

3651   if (failure_control == nullptr) {        // use MDO in regular case only
3652     assert(java_bc() == Bytecodes::_aastore ||
3653            java_bc() == Bytecodes::_checkcast,
3654            "interpreter profiles type checks only for these BCs");
3655     if (method()->method_data()->is_mature()) {
3656       data = method()->method_data()->bci_to_data(bci());
3657     }
3658   }
3659 
3660   // Make the merge point
3661   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3662   RegionNode* region = new RegionNode(PATH_LIMIT);
3663   Node*       phi    = new PhiNode(region, toop);
3664   _gvn.set_type(region, Type::CONTROL);
3665   _gvn.set_type(phi, toop);
3666 
3667   C->set_has_split_ifs(true); // Has chance for split-if optimization
3668 
3669   // Use null-cast information if it is available
3670   bool speculative_not_null = false;
3671   bool never_see_null = ((failure_control == nullptr)  // regular case only
3672                          && seems_never_null(obj, data, speculative_not_null));
3673 
3674   if (obj->is_InlineType()) {
3675     // Re-execute if buffering during triggers deoptimization
3676     PreserveReexecuteState preexecs(this);
3677     jvms()->set_should_reexecute(true);
3678     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3679   }
3680 
3681   // Null check; get casted pointer; set region slot 3
3682   Node* null_ctl = top();
3683   Node* not_null_obj = nullptr;
3684   if (null_free) {
3685     assert(safe_for_replace, "must be");
3686     not_null_obj = null_check(obj);
3687   } else {
3688     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3689   }
3690 
3691   // If not_null_obj is dead, only null-path is taken
3692   if (stopped()) {              // Doing instance-of on a null?
3693     set_control(null_ctl);
3694     if (toop->is_inlinetypeptr()) {
3695       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3696     }
3697     return null();
3698   }
3699   region->init_req(_null_path, null_ctl);
3700   phi   ->init_req(_null_path, null());  // Set null path value
3701   if (null_ctl == top()) {
3702     // Do this eagerly, so that pattern matches like is_diamond_phi
3703     // will work even during parsing.
3704     assert(_null_path == PATH_LIMIT-1, "delete last");
3705     region->del_req(_null_path);
3706     phi   ->del_req(_null_path);
3707   }
3708 
3709   Node* cast_obj = nullptr;
3710   if (improved_klass_ptr_type->klass_is_exact()) {
3711     // The following optimization tries to statically cast the speculative type of the object
3712     // (for example obtained during profiling) to the type of the superklass and then do a
3713     // dynamic check that the type of the object is what we expect. To work correctly
3714     // for checkcast and aastore the type of superklass should be exact.
3715     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3716     // We may not have profiling here or it may not help us. If we have
3717     // a speculative type use it to perform an exact cast.
3718     ciKlass* spec_obj_type = obj_type->speculative_type();
3719     if (spec_obj_type != nullptr || data != nullptr) {
3720       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3721       if (cast_obj != nullptr) {
3722         if (failure_control != nullptr) // failure is now impossible
3723           (*failure_control) = top();
3724         // adjust the type of the phi to the exact klass:
3725         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3726       }
3727     }
3728   }
3729 
3730   if (cast_obj == nullptr) {
3731     // Generate the subtype check
3732     Node* improved_superklass = superklass;
3733     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3734       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3735       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3736       // Additionally, the benefit would only be minor in non-constant cases.
3737       improved_superklass = makecon(improved_klass_ptr_type);
3738     }
3739     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);

3740     // Plug in success path into the merge
3741     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3742     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3743     if (failure_control == nullptr) {
3744       if (not_subtype_ctrl != top()) { // If failure is possible
3745         PreserveJVMState pjvms(this);
3746         set_control(not_subtype_ctrl);
3747         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3748         Deoptimization::DeoptReason reason = is_aastore ?
3749           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3750         builtin_throw(reason);
3751       }
3752     } else {
3753       (*failure_control) = not_subtype_ctrl;
3754     }
3755   }
3756 
3757   region->init_req(_obj_path, control());
3758   phi   ->init_req(_obj_path, cast_obj);
3759 
3760   // A merge of null or Casted-NotNull obj
3761   Node* res = _gvn.transform(phi);
3762 
3763   // Note I do NOT always 'replace_in_map(obj,result)' here.
3764   //  if( tk->klass()->can_be_primary_super()  )
3765     // This means that if I successfully store an Object into an array-of-String
3766     // I 'forget' that the Object is really now known to be a String.  I have to
3767     // do this because we don't have true union types for interfaces - if I store
3768     // a Baz into an array-of-Interface and then tell the optimizer it's an
3769     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3770     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3771   //  replace_in_map( obj, res );
3772 
3773   // Return final merged results
3774   set_control( _gvn.transform(region) );
3775   record_for_igvn(region);
3776 
3777   bool not_inline = !toop->can_be_inline_type();
3778   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array());
3779   if (Arguments::is_valhalla_enabled() && (not_inline || not_flat_in_array)) {
3780     // Check if obj has been loaded from an array
3781     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3782     Node* array = nullptr;
3783     if (obj->isa_Load()) {
3784       Node* address = obj->in(MemNode::Address);
3785       if (address->isa_AddP()) {
3786         array = address->as_AddP()->in(AddPNode::Base);
3787       }
3788     } else if (obj->is_Phi()) {
3789       Node* region = obj->in(0);
3790       // TODO make this more robust (see JDK-8231346)
3791       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3792         IfNode* iff = region->in(2)->in(0)->isa_If();
3793         if (iff != nullptr) {
3794           iff->is_flat_array_check(&_gvn, &array);
3795         }
3796       }
3797     }
3798     if (array != nullptr) {
3799       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3800       if (ary_t != nullptr) {
3801         if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) {
3802           // Casting array element to a non-inline-type, mark array as not null-free.
3803           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3804           replace_in_map(array, cast);
3805           array = cast;
3806         }
3807         if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) {
3808           // Casting array element to a non-flat-in-array type, mark array as not flat.
3809           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3810           replace_in_map(array, cast);
3811           array = cast;
3812         }
3813       }
3814     }
3815   }
3816 
3817   if (!stopped() && !res->is_InlineType()) {
3818     res = record_profiled_receiver_for_speculation(res);
3819     if (toop->is_inlinetypeptr() && !maybe_larval) {
3820       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass());
3821       res = vt;
3822       if (safe_for_replace) {
3823         replace_in_map(obj, vt);
3824         replace_in_map(not_null_obj, vt);
3825         replace_in_map(res, vt);
3826       }
3827     }
3828   }
3829   return res;
3830 }
3831 
3832 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3833   // Load markword
3834   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3835   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3836   if (check_lock && !UseCompactObjectHeaders) {
3837     // COH: Locking does not override the markword with a tagged pointer. We can directly read from the markword.
3838     // Check if obj is locked
3839     Node* locked_bit = MakeConX(markWord::unlocked_value);
3840     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3841     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3842     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3843     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3844     _gvn.transform(iff);
3845     Node* locked_region = new RegionNode(3);
3846     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3847 
3848     // Unlocked: Use bits from mark word
3849     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3850     mark_phi->init_req(1, mark);
3851 
3852     // Locked: Load prototype header from klass
3853     set_control(_gvn.transform(new IfFalseNode(iff)));
3854     // Make loads control dependent to make sure they are only executed if array is locked
3855     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3856     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3857     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3858     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3859 
3860     locked_region->init_req(2, control());
3861     mark_phi->init_req(2, proto);
3862     set_control(_gvn.transform(locked_region));
3863     record_for_igvn(locked_region);
3864 
3865     mark = mark_phi;
3866   }
3867 
3868   // Now check if mark word bits are set
3869   Node* mask = MakeConX(mask_val);
3870   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3871   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3872   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3873   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3874 }
3875 
3876 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3877   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3878 }
3879 
3880 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3881   // We can't use immutable memory here because the mark word is mutable.
3882   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3883   // check is moved out of loops (mainly to enable loop unswitching).
3884   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3885   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3886   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3887 }
3888 
3889 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3890   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3891 }
3892 
3893 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) {
3894   assert(vk->has_null_free_atomic_layout() || vk->has_null_free_non_atomic_layout(), "Can't be null-free and flat");
3895 
3896   // TODO 8350865 Add a stress flag to always access atomic if layout exists?
3897   if (!vk->has_null_free_non_atomic_layout()) {
3898     return intcon(1); // Always atomic
3899   } else if (!vk->has_null_free_atomic_layout()) {
3900     return intcon(0); // Never atomic
3901   }
3902 
3903   Node* array_klass = load_object_klass(array);
3904   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3905   Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset);
3906   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
3907   Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::NULL_FREE_ATOMIC_FLAT)));
3908   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3909 }
3910 
3911 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3912 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3913   RegionNode* region = new RegionNode(3);
3914   Node* null_ctl = top();
3915   null_check_oop(val, &null_ctl);
3916   if (null_ctl != top()) {
3917     PreserveJVMState pjvms(this);
3918     set_control(null_ctl);
3919     {
3920       // Deoptimize if null-free array
3921       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3922       inc_sp(nargs);
3923       uncommon_trap(Deoptimization::Reason_null_check,
3924                     Deoptimization::Action_none);
3925     }
3926     region->init_req(1, control());
3927   }
3928   region->init_req(2, control());
3929   set_control(_gvn.transform(region));
3930   record_for_igvn(region);
3931   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3932     // Since we were just successfully storing null, the array can't be null free.
3933     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3934     ary_t = ary_t->cast_to_not_null_free();
3935     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3936     if (safe_for_replace) {
3937       replace_in_map(ary, cast);
3938     }
3939     ary = cast;
3940   }
3941   return ary;
3942 }
3943 
3944 //------------------------------next_monitor-----------------------------------
3945 // What number should be given to the next monitor?
3946 int GraphKit::next_monitor() {
3947   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3948   int next = current + C->sync_stack_slots();
3949   // Keep the toplevel high water mark current:
3950   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3951   return current;
3952 }
3953 
3954 //------------------------------insert_mem_bar---------------------------------
3955 // Memory barrier to avoid floating things around
3956 // The membar serves as a pinch point between both control and all memory slices.
3957 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3958   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3959   mb->init_req(TypeFunc::Control, control());
3960   mb->init_req(TypeFunc::Memory,  reset_memory());
3961   Node* membar = _gvn.transform(mb);

4055     lock->create_lock_counter(map()->jvms());
4056     increment_counter(lock->counter()->addr());
4057   }
4058 #endif
4059 
4060   return flock;
4061 }
4062 
4063 
4064 //------------------------------shared_unlock----------------------------------
4065 // Emit unlocking code.
4066 void GraphKit::shared_unlock(Node* box, Node* obj) {
4067   // bci is either a monitorenter bc or InvocationEntryBci
4068   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
4069   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
4070 
4071   if (stopped()) {               // Dead monitor?
4072     map()->pop_monitor();        // Kill monitor from debug info
4073     return;
4074   }
4075   assert(!obj->is_InlineType(), "should not unlock on inline type");
4076 
4077   // Memory barrier to avoid floating things down past the locked region
4078   insert_mem_bar(Op_MemBarReleaseLock);
4079 
4080   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
4081   UnlockNode *unlock = new UnlockNode(C, tf);
4082 #ifdef ASSERT
4083   unlock->set_dbg_jvms(sync_jvms());
4084 #endif
4085   uint raw_idx = Compile::AliasIdxRaw;
4086   unlock->init_req( TypeFunc::Control, control() );
4087   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
4088   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
4089   unlock->init_req( TypeFunc::FramePtr, frameptr() );
4090   unlock->init_req( TypeFunc::ReturnAdr, top() );
4091 
4092   unlock->init_req(TypeFunc::Parms + 0, obj);
4093   unlock->init_req(TypeFunc::Parms + 1, box);
4094   unlock = _gvn.transform(unlock)->as_Unlock();
4095 
4096   Node* mem = reset_memory();
4097 
4098   // unlock has no side-effects, sets few values
4099   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
4100 
4101   // Kill monitor from debug info
4102   map()->pop_monitor( );
4103 }
4104 
4105 //-------------------------------get_layout_helper-----------------------------
4106 // If the given klass is a constant or known to be an array,
4107 // fetch the constant layout helper value into constant_value
4108 // and return null.  Otherwise, load the non-constant
4109 // layout helper value, and return the node which represents it.
4110 // This two-faced routine is useful because allocation sites
4111 // almost always feature constant types.
4112 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
4113   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
4114   if (!StressReflectiveCode && klass_t != nullptr) {
4115     bool xklass = klass_t->klass_is_exact();
4116     bool can_be_flat = false;
4117     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4118     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4119       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4120       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4121       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array());
4122     }
4123     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4124       jint lhelper;
4125       if (klass_t->is_flat()) {
4126         lhelper = ary_type->flat_layout_helper();
4127       } else if (klass_t->isa_aryklassptr()) {
4128         BasicType elem = ary_type->elem()->array_element_basic_type();
4129         if (is_reference_type(elem, true)) {
4130           elem = T_OBJECT;
4131         }
4132         lhelper = Klass::array_layout_helper(elem);
4133       } else {
4134         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4135       }
4136       if (lhelper != Klass::_lh_neutral_value) {
4137         constant_value = lhelper;
4138         return (Node*) nullptr;
4139       }
4140     }
4141   }
4142   constant_value = Klass::_lh_neutral_value;  // put in a known value
4143   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4144   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4145 }
4146 
4147 // We just put in an allocate/initialize with a big raw-memory effect.
4148 // Hook selected additional alias categories on the initialization.
4149 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4150                                 MergeMemNode* init_in_merge,
4151                                 Node* init_out_raw) {
4152   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4153   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4154 
4155   Node* prevmem = kit.memory(alias_idx);
4156   init_in_merge->set_memory_at(alias_idx, prevmem);
4157   if (init_out_raw != nullptr) {
4158     kit.set_memory(init_out_raw, alias_idx);
4159   }
4160 }
4161 
4162 //---------------------------set_output_for_allocation-------------------------
4163 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4164                                           const TypeOopPtr* oop_type,
4165                                           bool deoptimize_on_exception) {
4166   int rawidx = Compile::AliasIdxRaw;
4167   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4168   add_safepoint_edges(alloc);
4169   Node* allocx = _gvn.transform(alloc);
4170   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4171   // create memory projection for i_o
4172   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4173   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4174 
4175   // create a memory projection as for the normal control path
4176   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4177   set_memory(malloc, rawidx);
4178 
4179   // a normal slow-call doesn't change i_o, but an allocation does
4180   // we create a separate i_o projection for the normal control path
4181   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4182   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4183 
4184   // put in an initialization barrier
4185   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4186                                                  rawoop)->as_Initialize();
4187   assert(alloc->initialization() == init,  "2-way macro link must work");
4188   assert(init ->allocation()     == alloc, "2-way macro link must work");
4189   {
4190     // Extract memory strands which may participate in the new object's
4191     // initialization, and source them from the new InitializeNode.
4192     // This will allow us to observe initializations when they occur,
4193     // and link them properly (as a group) to the InitializeNode.
4194     assert(init->in(InitializeNode::Memory) == malloc, "");
4195     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4196     init->set_req(InitializeNode::Memory, minit_in);
4197     record_for_igvn(minit_in); // fold it up later, if possible
4198     _gvn.set_type(minit_in, Type::MEMORY);
4199     Node* minit_out = memory(rawidx);
4200     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4201     int mark_idx = C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes()));
4202     // Add an edge in the MergeMem for the header fields so an access to one of those has correct memory state.
4203     // Use one NarrowMemProjNode per slice to properly record the adr type of each slice. The Initialize node will have
4204     // multiple projections as a result.
4205     set_memory(_gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(mark_idx))), mark_idx);
4206     int klass_idx = C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes()));
4207     set_memory(_gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(klass_idx))), klass_idx);
4208     if (oop_type->isa_aryptr()) {
4209       // Initially all flat array accesses share a single slice
4210       // but that changes after parsing. Prepare the memory graph so
4211       // it can optimize flat array accesses properly once they
4212       // don't share a single slice.
4213       assert(C->flat_accesses_share_alias(), "should be set at parse time");
4214       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4215       int            elemidx  = C->get_alias_index(telemref);
4216       const TypePtr* alias_adr_type = C->get_adr_type(elemidx);
4217       if (alias_adr_type->is_flat()) {
4218         C->set_flat_accesses();
4219       }
4220       hook_memory_on_init(*this, elemidx, minit_in, _gvn.transform(new NarrowMemProjNode(init, alias_adr_type)));
4221     } else if (oop_type->isa_instptr()) {
4222       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4223       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4224         ciField* field = ik->nonstatic_field_at(i);
4225         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4226           continue;  // do not bother to track really large numbers of fields
4227         // Find (or create) the alias category for this field:
4228         int fieldidx = C->alias_type(field)->index();
4229         hook_memory_on_init(*this, fieldidx, minit_in, _gvn.transform(new NarrowMemProjNode(init, C->get_adr_type(fieldidx))));
4230       }
4231     }
4232   }
4233 
4234   // Cast raw oop to the real thing...
4235   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4236   javaoop = _gvn.transform(javaoop);
4237   C->set_recent_alloc(control(), javaoop);
4238   assert(just_allocated_object(control()) == javaoop, "just allocated");
4239 
4240 #ifdef ASSERT

4252       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4253     }
4254   }
4255 #endif //ASSERT
4256 
4257   return javaoop;
4258 }
4259 
4260 //---------------------------new_instance--------------------------------------
4261 // This routine takes a klass_node which may be constant (for a static type)
4262 // or may be non-constant (for reflective code).  It will work equally well
4263 // for either, and the graph will fold nicely if the optimizer later reduces
4264 // the type to a constant.
4265 // The optional arguments are for specialized use by intrinsics:
4266 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4267 //  - If 'return_size_val', report the total object size to the caller.
4268 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4269 Node* GraphKit::new_instance(Node* klass_node,
4270                              Node* extra_slow_test,
4271                              Node* *return_size_val,
4272                              bool deoptimize_on_exception,
4273                              InlineTypeNode* inline_type_node) {
4274   // Compute size in doublewords
4275   // The size is always an integral number of doublewords, represented
4276   // as a positive bytewise size stored in the klass's layout_helper.
4277   // The layout_helper also encodes (in a low bit) the need for a slow path.
4278   jint  layout_con = Klass::_lh_neutral_value;
4279   Node* layout_val = get_layout_helper(klass_node, layout_con);
4280   bool  layout_is_con = (layout_val == nullptr);
4281 
4282   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4283   // Generate the initial go-slow test.  It's either ALWAYS (return a
4284   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4285   // case) a computed value derived from the layout_helper.
4286   Node* initial_slow_test = nullptr;
4287   if (layout_is_con) {
4288     assert(!StressReflectiveCode, "stress mode does not use these paths");
4289     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4290     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4291   } else {   // reflective case
4292     // This reflective path is used by Unsafe.allocateInstance.
4293     // (It may be stress-tested by specifying StressReflectiveCode.)
4294     // Basically, we want to get into the VM is there's an illegal argument.
4295     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4296     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4297     if (extra_slow_test != intcon(0)) {
4298       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4299     }
4300     // (Macro-expander will further convert this to a Bool, if necessary.)

4311 
4312     // Clear the low bits to extract layout_helper_size_in_bytes:
4313     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4314     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4315     size = _gvn.transform( new AndXNode(size, mask) );
4316   }
4317   if (return_size_val != nullptr) {
4318     (*return_size_val) = size;
4319   }
4320 
4321   // This is a precise notnull oop of the klass.
4322   // (Actually, it need not be precise if this is a reflective allocation.)
4323   // It's what we cast the result to.
4324   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4325   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4326   const TypeOopPtr* oop_type = tklass->as_instance_type();
4327 
4328   // Now generate allocation code
4329 
4330   // The entire memory state is needed for slow path of the allocation
4331   // since GC and deoptimization can happen.
4332   Node *mem = reset_memory();
4333   set_all_memory(mem); // Create new memory state
4334 
4335   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4336                                          control(), mem, i_o(),
4337                                          size, klass_node,
4338                                          initial_slow_test, inline_type_node);
4339 
4340   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4341 }
4342 
4343 //-------------------------------new_array-------------------------------------
4344 // helper for newarray and anewarray
4345 // The 'length' parameter is (obviously) the length of the array.
4346 // The optional arguments are for specialized use by intrinsics:
4347 //  - If 'return_size_val', report the non-padded array size (sum of header size
4348 //    and array body) to the caller.
4349 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4350 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4351                           Node* length,         // number of array elements
4352                           int   nargs,          // number of arguments to push back for uncommon trap
4353                           Node* *return_size_val,
4354                           bool deoptimize_on_exception,
4355                           Node* init_val) {
4356   jint  layout_con = Klass::_lh_neutral_value;
4357   Node* layout_val = get_layout_helper(klass_node, layout_con);
4358   bool  layout_is_con = (layout_val == nullptr);
4359 
4360   if (!layout_is_con && !StressReflectiveCode &&
4361       !too_many_traps(Deoptimization::Reason_class_check)) {
4362     // This is a reflective array creation site.
4363     // Optimistically assume that it is a subtype of Object[],
4364     // so that we can fold up all the address arithmetic.
4365     layout_con = Klass::array_layout_helper(T_OBJECT);
4366     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4367     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4368     { BuildCutout unless(this, bol_lh, PROB_MAX);
4369       inc_sp(nargs);
4370       uncommon_trap(Deoptimization::Reason_class_check,
4371                     Deoptimization::Action_maybe_recompile);
4372     }
4373     layout_val = nullptr;
4374     layout_is_con = true;
4375   }
4376 
4377   // Generate the initial go-slow test.  Make sure we do not overflow
4378   // if length is huge (near 2Gig) or negative!  We do not need
4379   // exact double-words here, just a close approximation of needed
4380   // double-words.  We can't add any offset or rounding bits, lest we
4381   // take a size -1 of bytes and make it positive.  Use an unsigned
4382   // compare, so negative sizes look hugely positive.
4383   int fast_size_limit = FastAllocateSizeLimit;
4384   if (layout_is_con) {
4385     assert(!StressReflectiveCode, "stress mode does not use these paths");
4386     // Increase the size limit if we have exact knowledge of array type.
4387     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4388     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);


4389   }
4390 
4391   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4392   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4393 
4394   // --- Size Computation ---
4395   // array_size = round_to_heap(array_header + (length << elem_shift));
4396   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4397   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4398   // The rounding mask is strength-reduced, if possible.
4399   int round_mask = MinObjAlignmentInBytes - 1;
4400   Node* header_size = nullptr;
4401   // (T_BYTE has the weakest alignment and size restrictions...)
4402   if (layout_is_con) {
4403     int       hsize  = Klass::layout_helper_header_size(layout_con);
4404     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4405     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4406     if ((round_mask & ~right_n_bits(eshift)) == 0)
4407       round_mask = 0;  // strength-reduce it if it goes away completely
4408     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4409     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4410     assert(header_size_min <= hsize, "generic minimum is smallest");
4411     header_size = intcon(hsize);
4412   } else {
4413     Node* hss   = intcon(Klass::_lh_header_size_shift);
4414     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4415     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4416     header_size = _gvn.transform(new AndINode(header_size, hsm));
4417   }
4418 
4419   Node* elem_shift = nullptr;
4420   if (layout_is_con) {
4421     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4422     if (eshift != 0)
4423       elem_shift = intcon(eshift);
4424   } else {
4425     // There is no need to mask or shift this value.
4426     // The semantics of LShiftINode include an implicit mask to 0x1F.
4427     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4428     elem_shift = layout_val;

4477   }
4478   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4479 
4480   if (return_size_val != nullptr) {
4481     // This is the size
4482     (*return_size_val) = non_rounded_size;
4483   }
4484 
4485   Node* size = non_rounded_size;
4486   if (round_mask != 0) {
4487     Node* mask1 = MakeConX(round_mask);
4488     size = _gvn.transform(new AddXNode(size, mask1));
4489     Node* mask2 = MakeConX(~round_mask);
4490     size = _gvn.transform(new AndXNode(size, mask2));
4491   }
4492   // else if round_mask == 0, the size computation is self-rounding
4493 
4494   // Now generate allocation code
4495 
4496   // The entire memory state is needed for slow path of the allocation
4497   // since GC and deoptimization can happen.
4498   Node *mem = reset_memory();
4499   set_all_memory(mem); // Create new memory state
4500 
4501   if (initial_slow_test->is_Bool()) {
4502     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4503     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4504   }
4505 
4506   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4507   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4508 
4509   Node* raw_init_value = nullptr;
4510   if (init_val != nullptr) {
4511     // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays
4512     if (ary_type->is_flat()) {
4513       initial_slow_test = intcon(1);
4514     }
4515 
4516     if (UseCompressedOops) {
4517       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4518       init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop()));
4519       Node* lower = _gvn.transform(new CastP2XNode(control(), init_val));
4520       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4521       raw_init_value = _gvn.transform(new OrLNode(lower, upper));
4522     } else {
4523       raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val));
4524     }
4525   }
4526 
4527   Node* valid_length_test = _gvn.intcon(1);
4528   if (ary_type->isa_aryptr()) {
4529     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4530     jint max = TypeAryPtr::max_array_length(bt);
4531     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4532     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4533   }
4534 
4535   // Create the AllocateArrayNode and its result projections
4536   AllocateArrayNode* alloc
4537     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4538                             control(), mem, i_o(),
4539                             size, klass_node,
4540                             initial_slow_test,
4541                             length, valid_length_test,
4542                             init_val, raw_init_value);
4543   // Cast to correct type.  Note that the klass_node may be constant or not,
4544   // and in the latter case the actual array type will be inexact also.
4545   // (This happens via a non-constant argument to inline_native_newArray.)
4546   // In any case, the value of klass_node provides the desired array type.
4547   const TypeInt* length_type = _gvn.find_int_type(length);
4548   if (ary_type->isa_aryptr() && length_type != nullptr) {
4549     // Try to get a better type than POS for the size
4550     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4551   }
4552 
4553   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4554 
4555   array_ideal_length(alloc, ary_type, true);
4556   return javaoop;
4557 }
4558 
4559 // The following "Ideal_foo" functions are placed here because they recognize
4560 // the graph shapes created by the functions immediately above.
4561 
4562 //---------------------------Ideal_allocation----------------------------------

4657 void GraphKit::add_parse_predicates(int nargs) {
4658   if (ShortRunningLongLoop) {
4659     // Will narrow the limit down with a cast node. Predicates added later may depend on the cast so should be last when
4660     // walking up from the loop.
4661     add_parse_predicate(Deoptimization::Reason_short_running_long_loop, nargs);
4662   }
4663   if (UseLoopPredicate) {
4664     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4665     if (UseProfiledLoopPredicate) {
4666       add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4667     }
4668   }
4669   if (UseAutoVectorizationPredicate) {
4670     add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs);
4671   }
4672   // Loop Limit Check Predicate should be near the loop.
4673   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4674 }
4675 
4676 void GraphKit::sync_kit(IdealKit& ideal) {
4677   reset_memory();
4678   set_all_memory(ideal.merged_memory());
4679   set_i_o(ideal.i_o());
4680   set_control(ideal.ctrl());
4681 }
4682 
4683 void GraphKit::final_sync(IdealKit& ideal) {
4684   // Final sync IdealKit and graphKit.
4685   sync_kit(ideal);
4686 }
4687 
4688 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4689   Node* len = load_array_length(load_String_value(str, set_ctrl));
4690   Node* coder = load_String_coder(str, set_ctrl);
4691   // Divide length by 2 if coder is UTF16
4692   return _gvn.transform(new RShiftINode(len, coder));
4693 }
4694 
4695 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4696   int value_offset = java_lang_String::value_offset();
4697   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4698                                                      false, nullptr, Type::Offset(0));
4699   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4700   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4701                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true, true),
4702                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4703   Node* p = basic_plus_adr(str, str, value_offset);
4704   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4705                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4706   return load;
4707 }
4708 
4709 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4710   if (!CompactStrings) {
4711     return intcon(java_lang_String::CODER_UTF16);
4712   }
4713   int coder_offset = java_lang_String::coder_offset();
4714   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4715                                                      false, nullptr, Type::Offset(0));
4716   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4717 
4718   Node* p = basic_plus_adr(str, str, coder_offset);
4719   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4720                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4721   return load;
4722 }
4723 
4724 void GraphKit::store_String_value(Node* str, Node* value) {
4725   int value_offset = java_lang_String::value_offset();
4726   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4727                                                      false, nullptr, Type::Offset(0));
4728   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4729 
4730   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4731                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4732 }
4733 
4734 void GraphKit::store_String_coder(Node* str, Node* value) {
4735   int coder_offset = java_lang_String::coder_offset();
4736   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4737                                                      false, nullptr, Type::Offset(0));
4738   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4739 
4740   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4741                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4742 }
4743 
4744 // Capture src and dst memory state with a MergeMemNode
4745 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4746   if (src_type == dst_type) {
4747     // Types are equal, we don't need a MergeMemNode
4748     return memory(src_type);
4749   }
4750   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4751   record_for_igvn(merge); // fold it up later, if possible
4752   int src_idx = C->get_alias_index(src_type);
4753   int dst_idx = C->get_alias_index(dst_type);
4754   merge->set_memory_at(src_idx, memory(src_idx));
4755   merge->set_memory_at(dst_idx, memory(dst_idx));
4756   return merge;
4757 }

4830   i_char->init_req(2, AddI(i_char, intcon(2)));
4831 
4832   set_control(IfFalse(iff));
4833   set_memory(st, TypeAryPtr::BYTES);
4834 }
4835 
4836 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4837   if (!field->is_constant()) {
4838     return nullptr; // Field not marked as constant.
4839   }
4840   ciInstance* holder = nullptr;
4841   if (!field->is_static()) {
4842     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4843     if (const_oop != nullptr && const_oop->is_instance()) {
4844       holder = const_oop->as_instance();
4845     }
4846   }
4847   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4848                                                         /*is_unsigned_load=*/false);
4849   if (con_type != nullptr) {
4850     Node* con = makecon(con_type);
4851     if (field->type()->is_inlinetype()) {
4852       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass());
4853     } else if (con_type->is_inlinetypeptr()) {
4854       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass());
4855     }
4856     return con;
4857   }
4858   return nullptr;
4859 }
4860 
4861 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4862   const Type* obj_type = obj->bottom_type();
4863   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4864   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4865     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4866     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4867     obj = casted_obj;
4868   }
4869   if (sig_type->is_inlinetypeptr()) {
4870     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass());
4871   }
4872   return obj;
4873 }
< prev index next >