< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"


  26 #include "ci/ciUtilities.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "ci/ciObjArray.hpp"
  29 #include "asm/register.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/c2/barrierSetC2.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/graphKit.hpp"
  39 #include "opto/idealKit.hpp"

  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/locknode.hpp"
  42 #include "opto/machnode.hpp"

  43 #include "opto/opaquenode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "opto/subtypenode.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "utilities/bitMap.inline.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 #include "utilities/growableArray.hpp"
  53 
  54 //----------------------------GraphKit-----------------------------------------
  55 // Main utility constructor.
  56 GraphKit::GraphKit(JVMState* jvms)
  57   : Phase(Phase::Parser),
  58     _env(C->env()),
  59     _gvn(*C->initial_gvn()),
  60     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  61 {

  62   _exceptions = jvms->map()->next_exception();
  63   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  64   set_jvms(jvms);







  65 }
  66 
  67 // Private constructor for parser.
  68 GraphKit::GraphKit()
  69   : Phase(Phase::Parser),
  70     _env(C->env()),
  71     _gvn(*C->initial_gvn()),
  72     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  73 {
  74   _exceptions = nullptr;
  75   set_map(nullptr);
  76   debug_only(_sp = -99);
  77   debug_only(set_bci(-99));
  78 }
  79 
  80 
  81 
  82 //---------------------------clean_stack---------------------------------------
  83 // Clear away rubbish from the stack area of the JVM state.
  84 // This destroys any arguments that may be waiting on the stack.

 840         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 841           tty->print_cr("Zombie local %d: ", local);
 842           jvms->dump();
 843         }
 844         return false;
 845       }
 846     }
 847   }
 848   return true;
 849 }
 850 
 851 #endif //ASSERT
 852 
 853 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 854 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 855   ciMethod* cur_method = jvms->method();
 856   int       cur_bci   = jvms->bci();
 857   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 858     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 859     return Interpreter::bytecode_should_reexecute(code) ||
 860            (is_anewarray && code == Bytecodes::_multianewarray);
 861     // Reexecute _multianewarray bytecode which was replaced with
 862     // sequence of [a]newarray. See Parse::do_multianewarray().
 863     //
 864     // Note: interpreter should not have it set since this optimization
 865     // is limited by dimensions and guarded by flag so in some cases
 866     // multianewarray() runtime calls will be generated and
 867     // the bytecode should not be reexecutes (stack will not be reset).
 868   } else {
 869     return false;
 870   }
 871 }
 872 
 873 // Helper function for adding JVMState and debug information to node
 874 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 875   // Add the safepoint edges to the call (or other safepoint).
 876 
 877   // Make sure dead locals are set to top.  This
 878   // should help register allocation time and cut down on the size
 879   // of the deoptimization information.
 880   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 931   }
 932 
 933   // Presize the call:
 934   DEBUG_ONLY(uint non_debug_edges = call->req());
 935   call->add_req_batch(top(), youngest_jvms->debug_depth());
 936   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 937 
 938   // Set up edges so that the call looks like this:
 939   //  Call [state:] ctl io mem fptr retadr
 940   //       [parms:] parm0 ... parmN
 941   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 942   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 943   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 944   // Note that caller debug info precedes callee debug info.
 945 
 946   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 947   uint debug_ptr = call->req();
 948 
 949   // Loop over the map input edges associated with jvms, add them
 950   // to the call node, & reset all offsets to match call node array.


 951   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 952     uint debug_end   = debug_ptr;
 953     uint debug_start = debug_ptr - in_jvms->debug_size();
 954     debug_ptr = debug_start;  // back up the ptr
 955 
 956     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 957     uint j, k, l;
 958     SafePointNode* in_map = in_jvms->map();
 959     out_jvms->set_map(call);
 960 
 961     if (can_prune_locals) {
 962       assert(in_jvms->method() == out_jvms->method(), "sanity");
 963       // If the current throw can reach an exception handler in this JVMS,
 964       // then we must keep everything live that can reach that handler.
 965       // As a quick and dirty approximation, we look for any handlers at all.
 966       if (in_jvms->method()->has_exception_handlers()) {
 967         can_prune_locals = false;
 968       }
 969     }
 970 
 971     // Add the Locals
 972     k = in_jvms->locoff();
 973     l = in_jvms->loc_size();
 974     out_jvms->set_locoff(p);
 975     if (!can_prune_locals) {
 976       for (j = 0; j < l; j++)
 977         call->set_req(p++, in_map->in(k+j));







 978     } else {
 979       p += l;  // already set to top above by add_req_batch
 980     }
 981 
 982     // Add the Expression Stack
 983     k = in_jvms->stkoff();
 984     l = in_jvms->sp();
 985     out_jvms->set_stkoff(p);
 986     if (!can_prune_locals) {
 987       for (j = 0; j < l; j++)
 988         call->set_req(p++, in_map->in(k+j));







 989     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 990       // Divide stack into {S0,...,S1}, where S0 is set to top.
 991       uint s1 = stack_slots_not_pruned;
 992       stack_slots_not_pruned = 0;  // for next iteration
 993       if (s1 > l)  s1 = l;
 994       uint s0 = l - s1;
 995       p += s0;  // skip the tops preinstalled by add_req_batch
 996       for (j = s0; j < l; j++)
 997         call->set_req(p++, in_map->in(k+j));
 998     } else {
 999       p += l;  // already set to top above by add_req_batch
1000     }
1001 
1002     // Add the Monitors
1003     k = in_jvms->monoff();
1004     l = in_jvms->mon_size();
1005     out_jvms->set_monoff(p);
1006     for (j = 0; j < l; j++)
1007       call->set_req(p++, in_map->in(k+j));
1008 
1009     // Copy any scalar object fields.
1010     k = in_jvms->scloff();
1011     l = in_jvms->scl_size();
1012     out_jvms->set_scloff(p);
1013     for (j = 0; j < l; j++)
1014       call->set_req(p++, in_map->in(k+j));
1015 
1016     // Finish the new jvms.
1017     out_jvms->set_endoff(p);
1018 
1019     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1020     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1021     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1022     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1023     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1024     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1025 
1026     // Update the two tail pointers in parallel.

1027     out_jvms = out_jvms->caller();
1028     in_jvms  = in_jvms->caller();
1029   }
1030 
1031   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1032 
1033   // Test the correctness of JVMState::debug_xxx accessors:
1034   assert(call->jvms()->debug_start() == non_debug_edges, "");
1035   assert(call->jvms()->debug_end()   == call->req(), "");
1036   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1037 }
1038 
1039 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1040   Bytecodes::Code code = java_bc();
1041   if (code == Bytecodes::_wide) {
1042     code = method()->java_code_at_bci(bci() + 1);
1043   }
1044 
1045   if (code != Bytecodes::_illegal) {
1046     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1182   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1183   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1184   return _gvn.transform( new AndLNode(conv, mask) );
1185 }
1186 
1187 Node* GraphKit::ConvL2I(Node* offset) {
1188   // short-circuit a common case
1189   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1190   if (offset_con != (jlong)Type::OffsetBot) {
1191     return intcon((int) offset_con);
1192   }
1193   return _gvn.transform( new ConvL2INode(offset));
1194 }
1195 
1196 //-------------------------load_object_klass-----------------------------------
1197 Node* GraphKit::load_object_klass(Node* obj) {
1198   // Special-case a fresh allocation to avoid building nodes:
1199   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1200   if (akls != nullptr)  return akls;
1201   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1202   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1203 }
1204 
1205 //-------------------------load_array_length-----------------------------------
1206 Node* GraphKit::load_array_length(Node* array) {
1207   // Special-case a fresh allocation to avoid building nodes:
1208   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1209   Node *alen;
1210   if (alloc == nullptr) {
1211     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1212     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1213   } else {
1214     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1215   }
1216   return alen;
1217 }
1218 
1219 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1220                                    const TypeOopPtr* oop_type,
1221                                    bool replace_length_in_map) {
1222   Node* length = alloc->Ideal_length();

1231         replace_in_map(length, ccast);
1232       }
1233       return ccast;
1234     }
1235   }
1236   return length;
1237 }
1238 
1239 //------------------------------do_null_check----------------------------------
1240 // Helper function to do a null pointer check.  Returned value is
1241 // the incoming address with null casted away.  You are allowed to use the
1242 // not-null value only if you are control dependent on the test.
1243 #ifndef PRODUCT
1244 extern uint explicit_null_checks_inserted,
1245             explicit_null_checks_elided;
1246 #endif
1247 Node* GraphKit::null_check_common(Node* value, BasicType type,
1248                                   // optional arguments for variations:
1249                                   bool assert_null,
1250                                   Node* *null_control,
1251                                   bool speculative) {

1252   assert(!assert_null || null_control == nullptr, "not both at once");
1253   if (stopped())  return top();
1254   NOT_PRODUCT(explicit_null_checks_inserted++);
1255 






















1256   // Construct null check
1257   Node *chk = nullptr;
1258   switch(type) {
1259     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1260     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1261     case T_ARRAY  : // fall through
1262       type = T_OBJECT;  // simplify further tests
1263     case T_OBJECT : {
1264       const Type *t = _gvn.type( value );
1265 
1266       const TypeOopPtr* tp = t->isa_oopptr();
1267       if (tp != nullptr && !tp->is_loaded()
1268           // Only for do_null_check, not any of its siblings:
1269           && !assert_null && null_control == nullptr) {
1270         // Usually, any field access or invocation on an unloaded oop type
1271         // will simply fail to link, since the statically linked class is
1272         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1273         // the static class is loaded but the sharper oop type is not.
1274         // Rather than checking for this obscure case in lots of places,
1275         // we simply observe that a null check on an unloaded class

1339         }
1340         Node *oldcontrol = control();
1341         set_control(cfg);
1342         Node *res = cast_not_null(value);
1343         set_control(oldcontrol);
1344         NOT_PRODUCT(explicit_null_checks_elided++);
1345         return res;
1346       }
1347       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1348       if (cfg == nullptr)  break;  // Quit at region nodes
1349       depth++;
1350     }
1351   }
1352 
1353   //-----------
1354   // Branch to failure if null
1355   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1356   Deoptimization::DeoptReason reason;
1357   if (assert_null) {
1358     reason = Deoptimization::reason_null_assert(speculative);
1359   } else if (type == T_OBJECT) {
1360     reason = Deoptimization::reason_null_check(speculative);
1361   } else {
1362     reason = Deoptimization::Reason_div0_check;
1363   }
1364   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1365   // ciMethodData::has_trap_at will return a conservative -1 if any
1366   // must-be-null assertion has failed.  This could cause performance
1367   // problems for a method after its first do_null_assert failure.
1368   // Consider using 'Reason_class_check' instead?
1369 
1370   // To cause an implicit null check, we set the not-null probability
1371   // to the maximum (PROB_MAX).  For an explicit check the probability
1372   // is set to a smaller value.
1373   if (null_control != nullptr || too_many_traps(reason)) {
1374     // probability is less likely
1375     ok_prob =  PROB_LIKELY_MAG(3);
1376   } else if (!assert_null &&
1377              (ImplicitNullCheckThreshold > 0) &&
1378              method() != nullptr &&
1379              (method()->method_data()->trap_count(reason)

1413   }
1414 
1415   if (assert_null) {
1416     // Cast obj to null on this path.
1417     replace_in_map(value, zerocon(type));
1418     return zerocon(type);
1419   }
1420 
1421   // Cast obj to not-null on this path, if there is no null_control.
1422   // (If there is a null_control, a non-null value may come back to haunt us.)
1423   if (type == T_OBJECT) {
1424     Node* cast = cast_not_null(value, false);
1425     if (null_control == nullptr || (*null_control) == top())
1426       replace_in_map(value, cast);
1427     value = cast;
1428   }
1429 
1430   return value;
1431 }
1432 
1433 
1434 //------------------------------cast_not_null----------------------------------
1435 // Cast obj to not-null on this path
1436 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {










1437   const Type *t = _gvn.type(obj);
1438   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1439   // Object is already not-null?
1440   if( t == t_not_null ) return obj;
1441 
1442   Node* cast = new CastPPNode(control(), obj,t_not_null);
1443   cast = _gvn.transform( cast );
1444 
1445   // Scan for instances of 'obj' in the current JVM mapping.
1446   // These instances are known to be not-null after the test.
1447   if (do_replace_in_map)
1448     replace_in_map(obj, cast);
1449 
1450   return cast;                  // Return casted value
1451 }
1452 
1453 // Sometimes in intrinsics, we implicitly know an object is not null
1454 // (there's no actual null check) so we can cast it to not null. In
1455 // the course of optimizations, the input to the cast can become null.
1456 // In that case that data path will die and we need the control path

1542 // These are layered on top of the factory methods in LoadNode and StoreNode,
1543 // and integrate with the parser's memory state and _gvn engine.
1544 //
1545 
1546 // factory methods in "int adr_idx"
1547 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1548                           int adr_idx,
1549                           MemNode::MemOrd mo,
1550                           LoadNode::ControlDependency control_dependency,
1551                           bool require_atomic_access,
1552                           bool unaligned,
1553                           bool mismatched,
1554                           bool unsafe,
1555                           uint8_t barrier_data) {
1556   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1557   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1558   debug_only(adr_type = C->get_adr_type(adr_idx));
1559   Node* mem = memory(adr_idx);
1560   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1561   ld = _gvn.transform(ld);

1562   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1563     // Improve graph before escape analysis and boxing elimination.
1564     record_for_igvn(ld);
1565     if (ld->is_DecodeN()) {
1566       // Also record the actual load (LoadN) in case ld is DecodeN
1567       assert(ld->in(1)->Opcode() == Op_LoadN, "Assumption invalid: input to DecodeN is not LoadN");
1568       record_for_igvn(ld->in(1));
1569     }
1570   }
1571   return ld;
1572 }
1573 
1574 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1575                                 int adr_idx,
1576                                 MemNode::MemOrd mo,
1577                                 bool require_atomic_access,
1578                                 bool unaligned,
1579                                 bool mismatched,
1580                                 bool unsafe,
1581                                 int barrier_data) {

1593   if (unsafe) {
1594     st->as_Store()->set_unsafe_access();
1595   }
1596   st->as_Store()->set_barrier_data(barrier_data);
1597   st = _gvn.transform(st);
1598   set_memory(st, adr_idx);
1599   // Back-to-back stores can only remove intermediate store with DU info
1600   // so push on worklist for optimizer.
1601   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1602     record_for_igvn(st);
1603 
1604   return st;
1605 }
1606 
1607 Node* GraphKit::access_store_at(Node* obj,
1608                                 Node* adr,
1609                                 const TypePtr* adr_type,
1610                                 Node* val,
1611                                 const Type* val_type,
1612                                 BasicType bt,
1613                                 DecoratorSet decorators) {

1614   // Transformation of a value which could be null pointer (CastPP #null)
1615   // could be delayed during Parse (for example, in adjust_map_after_if()).
1616   // Execute transformation here to avoid barrier generation in such case.
1617   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1618     val = _gvn.makecon(TypePtr::NULL_PTR);
1619   }
1620 
1621   if (stopped()) {
1622     return top(); // Dead path ?
1623   }
1624 
1625   assert(val != nullptr, "not dead path");







1626 
1627   C2AccessValuePtr addr(adr, adr_type);
1628   C2AccessValue value(val, val_type);
1629   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1630   if (access.is_raw()) {
1631     return _barrier_set->BarrierSetC2::store_at(access, value);
1632   } else {
1633     return _barrier_set->store_at(access, value);
1634   }
1635 }
1636 
1637 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1638                                Node* adr,   // actual address to store val at
1639                                const TypePtr* adr_type,
1640                                const Type* val_type,
1641                                BasicType bt,
1642                                DecoratorSet decorators) {

1643   if (stopped()) {
1644     return top(); // Dead path ?
1645   }
1646 
1647   C2AccessValuePtr addr(adr, adr_type);
1648   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1649   if (access.is_raw()) {
1650     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1651   } else {
1652     return _barrier_set->load_at(access, val_type);
1653   }
1654 }
1655 
1656 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1657                             const Type* val_type,
1658                             BasicType bt,
1659                             DecoratorSet decorators) {
1660   if (stopped()) {
1661     return top(); // Dead path ?
1662   }
1663 
1664   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1665   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1666   if (access.is_raw()) {
1667     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1668   } else {

1733                                      Node* new_val,
1734                                      const Type* value_type,
1735                                      BasicType bt,
1736                                      DecoratorSet decorators) {
1737   C2AccessValuePtr addr(adr, adr_type);
1738   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1739   if (access.is_raw()) {
1740     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1741   } else {
1742     return _barrier_set->atomic_add_at(access, new_val, value_type);
1743   }
1744 }
1745 
1746 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1747   return _barrier_set->clone(this, src, dst, size, is_array);
1748 }
1749 
1750 //-------------------------array_element_address-------------------------
1751 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1752                                       const TypeInt* sizetype, Node* ctrl) {
1753   uint shift  = exact_log2(type2aelembytes(elembt));

1754   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1755 
1756   // short-circuit a common case (saves lots of confusing waste motion)
1757   jint idx_con = find_int_con(idx, -1);
1758   if (idx_con >= 0) {
1759     intptr_t offset = header + ((intptr_t)idx_con << shift);
1760     return basic_plus_adr(ary, offset);
1761   }
1762 
1763   // must be correct type for alignment purposes
1764   Node* base  = basic_plus_adr(ary, header);
1765   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1766   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1767   return basic_plus_adr(ary, base, scale);
1768 }
1769 
1770 //-------------------------load_array_element-------------------------
1771 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1772   const Type* elemtype = arytype->elem();
1773   BasicType elembt = elemtype->array_element_basic_type();
1774   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1775   if (elembt == T_NARROWOOP) {
1776     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1777   }
1778   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1779                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1780   return ld;
1781 }
1782 
1783 //-------------------------set_arguments_for_java_call-------------------------
1784 // Arguments (pre-popped from the stack) are taken from the JVMS.
1785 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1786   // Add the call arguments:
1787   uint nargs = call->method()->arg_size();
1788   for (uint i = 0; i < nargs; i++) {
1789     Node* arg = argument(i);
1790     call->init_req(i + TypeFunc::Parms, arg);




































1791   }
1792 }
1793 
1794 //---------------------------set_edges_for_java_call---------------------------
1795 // Connect a newly created call into the current JVMS.
1796 // A return value node (if any) is returned from set_edges_for_java_call.
1797 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1798 
1799   // Add the predefined inputs:
1800   call->init_req( TypeFunc::Control, control() );
1801   call->init_req( TypeFunc::I_O    , i_o() );
1802   call->init_req( TypeFunc::Memory , reset_memory() );
1803   call->init_req( TypeFunc::FramePtr, frameptr() );
1804   call->init_req( TypeFunc::ReturnAdr, top() );
1805 
1806   add_safepoint_edges(call, must_throw);
1807 
1808   Node* xcall = _gvn.transform(call);
1809 
1810   if (xcall == top()) {
1811     set_control(top());
1812     return;
1813   }
1814   assert(xcall == call, "call identity is stable");
1815 
1816   // Re-use the current map to produce the result.
1817 
1818   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1819   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1820   set_all_memory_call(xcall, separate_io_proj);
1821 
1822   //return xcall;   // no need, caller already has it
1823 }
1824 
1825 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1826   if (stopped())  return top();  // maybe the call folded up?
1827 
1828   // Capture the return value, if any.
1829   Node* ret;
1830   if (call->method() == nullptr ||
1831       call->method()->return_type()->basic_type() == T_VOID)
1832         ret = top();
1833   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1834 
1835   // Note:  Since any out-of-line call can produce an exception,
1836   // we always insert an I_O projection from the call into the result.
1837 
1838   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1839 
1840   if (separate_io_proj) {
1841     // The caller requested separate projections be used by the fall
1842     // through and exceptional paths, so replace the projections for
1843     // the fall through path.
1844     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1845     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1846   }
































1847   return ret;
1848 }
1849 
1850 //--------------------set_predefined_input_for_runtime_call--------------------
1851 // Reading and setting the memory state is way conservative here.
1852 // The real problem is that I am not doing real Type analysis on memory,
1853 // so I cannot distinguish card mark stores from other stores.  Across a GC
1854 // point the Store Barrier and the card mark memory has to agree.  I cannot
1855 // have a card mark store and its barrier split across the GC point from
1856 // either above or below.  Here I get that to happen by reading ALL of memory.
1857 // A better answer would be to separate out card marks from other memory.
1858 // For now, return the input memory state, so that it can be reused
1859 // after the call, if this call has restricted memory effects.
1860 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1861   // Set fixed predefined input arguments
1862   Node* memory = reset_memory();
1863   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1864   call->init_req( TypeFunc::Control,   control()  );
1865   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1866   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

1917     if (use->is_MergeMem()) {
1918       wl.push(use);
1919     }
1920   }
1921 }
1922 
1923 // Replace the call with the current state of the kit.
1924 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1925   JVMState* ejvms = nullptr;
1926   if (has_exceptions()) {
1927     ejvms = transfer_exceptions_into_jvms();
1928   }
1929 
1930   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1931   ReplacedNodes replaced_nodes_exception;
1932   Node* ex_ctl = top();
1933 
1934   SafePointNode* final_state = stop();
1935 
1936   // Find all the needed outputs of this call
1937   CallProjections callprojs;
1938   call->extract_projections(&callprojs, true);
1939 
1940   Unique_Node_List wl;
1941   Node* init_mem = call->in(TypeFunc::Memory);
1942   Node* final_mem = final_state->in(TypeFunc::Memory);
1943   Node* final_ctl = final_state->in(TypeFunc::Control);
1944   Node* final_io = final_state->in(TypeFunc::I_O);
1945 
1946   // Replace all the old call edges with the edges from the inlining result
1947   if (callprojs.fallthrough_catchproj != nullptr) {
1948     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1949   }
1950   if (callprojs.fallthrough_memproj != nullptr) {
1951     if (final_mem->is_MergeMem()) {
1952       // Parser's exits MergeMem was not transformed but may be optimized
1953       final_mem = _gvn.transform(final_mem);
1954     }
1955     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1956     add_mergemem_users_to_worklist(wl, final_mem);
1957   }
1958   if (callprojs.fallthrough_ioproj != nullptr) {
1959     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1960   }
1961 
1962   // Replace the result with the new result if it exists and is used
1963   if (callprojs.resproj != nullptr && result != nullptr) {
1964     C->gvn_replace_by(callprojs.resproj, result);




1965   }
1966 
1967   if (ejvms == nullptr) {
1968     // No exception edges to simply kill off those paths
1969     if (callprojs.catchall_catchproj != nullptr) {
1970       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1971     }
1972     if (callprojs.catchall_memproj != nullptr) {
1973       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1974     }
1975     if (callprojs.catchall_ioproj != nullptr) {
1976       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1977     }
1978     // Replace the old exception object with top
1979     if (callprojs.exobj != nullptr) {
1980       C->gvn_replace_by(callprojs.exobj, C->top());
1981     }
1982   } else {
1983     GraphKit ekit(ejvms);
1984 
1985     // Load my combined exception state into the kit, with all phis transformed:
1986     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1987     replaced_nodes_exception = ex_map->replaced_nodes();
1988 
1989     Node* ex_oop = ekit.use_exception_state(ex_map);
1990 
1991     if (callprojs.catchall_catchproj != nullptr) {
1992       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1993       ex_ctl = ekit.control();
1994     }
1995     if (callprojs.catchall_memproj != nullptr) {
1996       Node* ex_mem = ekit.reset_memory();
1997       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
1998       add_mergemem_users_to_worklist(wl, ex_mem);
1999     }
2000     if (callprojs.catchall_ioproj != nullptr) {
2001       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
2002     }
2003 
2004     // Replace the old exception object with the newly created one
2005     if (callprojs.exobj != nullptr) {
2006       C->gvn_replace_by(callprojs.exobj, ex_oop);
2007     }
2008   }
2009 
2010   // Disconnect the call from the graph
2011   call->disconnect_inputs(C);
2012   C->gvn_replace_by(call, C->top());
2013 
2014   // Clean up any MergeMems that feed other MergeMems since the
2015   // optimizer doesn't like that.
2016   while (wl.size() > 0) {
2017     _gvn.transform(wl.pop());
2018   }
2019 
2020   if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2021     replaced_nodes.apply(C, final_ctl);
2022   }
2023   if (!ex_ctl->is_top() && do_replaced_nodes) {
2024     replaced_nodes_exception.apply(C, ex_ctl);
2025   }
2026 }
2027 
2028 
2029 //------------------------------increment_counter------------------------------
2030 // for statistics: increment a VM counter by 1
2031 
2032 void GraphKit::increment_counter(address counter_addr) {
2033   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2034   increment_counter(adr1);
2035 }
2036 
2037 void GraphKit::increment_counter(Node* counter_addr) {
2038   int adr_type = Compile::AliasIdxRaw;
2039   Node* ctrl = control();
2040   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);

2199  *
2200  * @param n          node that the type applies to
2201  * @param exact_kls  type from profiling
2202  * @param maybe_null did profiling see null?
2203  *
2204  * @return           node with improved type
2205  */
2206 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2207   const Type* current_type = _gvn.type(n);
2208   assert(UseTypeSpeculation, "type speculation must be on");
2209 
2210   const TypePtr* speculative = current_type->speculative();
2211 
2212   // Should the klass from the profile be recorded in the speculative type?
2213   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2214     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2215     const TypeOopPtr* xtype = tklass->as_instance_type();
2216     assert(xtype->klass_is_exact(), "Should be exact");
2217     // Any reason to believe n is not null (from this profiling or a previous one)?
2218     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2219     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2220     // record the new speculative type's depth
2221     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2222     speculative = speculative->with_inline_depth(jvms()->depth());
2223   } else if (current_type->would_improve_ptr(ptr_kind)) {
2224     // Profiling report that null was never seen so we can change the
2225     // speculative type to non null ptr.
2226     if (ptr_kind == ProfileAlwaysNull) {
2227       speculative = TypePtr::NULL_PTR;
2228     } else {
2229       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2230       const TypePtr* ptr = TypePtr::NOTNULL;
2231       if (speculative != nullptr) {
2232         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2233       } else {
2234         speculative = ptr;
2235       }
2236     }
2237   }
2238 
2239   if (speculative != current_type->speculative()) {
2240     // Build a type with a speculative type (what we think we know
2241     // about the type but will need a guard when we use it)
2242     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2243     // We're changing the type, we need a new CheckCast node to carry
2244     // the new type. The new type depends on the control: what
2245     // profiling tells us is only valid from here as far as we can
2246     // tell.
2247     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2248     cast = _gvn.transform(cast);
2249     replace_in_map(n, cast);
2250     n = cast;
2251   }
2252 
2253   return n;
2254 }
2255 
2256 /**
2257  * Record profiling data from receiver profiling at an invoke with the
2258  * type system so that it can propagate it (speculation)
2259  *
2260  * @param n  receiver node
2261  *
2262  * @return   node with improved type
2263  */
2264 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2265   if (!UseTypeSpeculation) {
2266     return n;
2267   }
2268   ciKlass* exact_kls = profile_has_unique_klass();
2269   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2270   if ((java_bc() == Bytecodes::_checkcast ||
2271        java_bc() == Bytecodes::_instanceof ||
2272        java_bc() == Bytecodes::_aastore) &&
2273       method()->method_data()->is_mature()) {
2274     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2275     if (data != nullptr) {
2276       if (!data->as_BitData()->null_seen()) {
2277         ptr_kind = ProfileNeverNull;







2278       } else {
2279         assert(data->is_ReceiverTypeData(), "bad profile data type");
2280         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2281         uint i = 0;
2282         for (; i < call->row_limit(); i++) {
2283           ciKlass* receiver = call->receiver(i);
2284           if (receiver != nullptr) {
2285             break;




2286           }

2287         }
2288         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2289       }
2290     }
2291   }
2292   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2293 }
2294 
2295 /**
2296  * Record profiling data from argument profiling at an invoke with the
2297  * type system so that it can propagate it (speculation)
2298  *
2299  * @param dest_method  target method for the call
2300  * @param bc           what invoke bytecode is this?
2301  */
2302 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2303   if (!UseTypeSpeculation) {
2304     return;
2305   }
2306   const TypeFunc* tf    = TypeFunc::make(dest_method);
2307   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2308   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2309   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2310     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2311     if (is_reference_type(targ->basic_type())) {
2312       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2313       ciKlass* better_type = nullptr;
2314       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2315         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2316       }
2317       i++;
2318     }
2319   }
2320 }
2321 
2322 /**
2323  * Record profiling data from parameter profiling at an invoke with
2324  * the type system so that it can propagate it (speculation)
2325  */
2326 void GraphKit::record_profiled_parameters_for_speculation() {
2327   if (!UseTypeSpeculation) {
2328     return;
2329   }
2330   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2344  * the type system so that it can propagate it (speculation)
2345  */
2346 void GraphKit::record_profiled_return_for_speculation() {
2347   if (!UseTypeSpeculation) {
2348     return;
2349   }
2350   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2351   ciKlass* better_type = nullptr;
2352   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2353     // If profiling reports a single type for the return value,
2354     // feed it to the type system so it can propagate it as a
2355     // speculative type
2356     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2357   }
2358 }
2359 
2360 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2361   if (Matcher::strict_fp_requires_explicit_rounding) {
2362     // (Note:  TypeFunc::make has a cache that makes this fast.)
2363     const TypeFunc* tf    = TypeFunc::make(dest_method);
2364     int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2365     for (int j = 0; j < nargs; j++) {
2366       const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2367       if (targ->basic_type() == T_DOUBLE) {
2368         // If any parameters are doubles, they must be rounded before
2369         // the call, dprecision_rounding does gvn.transform
2370         Node *arg = argument(j);
2371         arg = dprecision_rounding(arg);
2372         set_argument(j, arg);
2373       }
2374     }
2375   }
2376 }
2377 
2378 // rounding for strict float precision conformance
2379 Node* GraphKit::precision_rounding(Node* n) {
2380   if (Matcher::strict_fp_requires_explicit_rounding) {
2381 #ifdef IA32
2382     if (UseSSE == 0) {
2383       return _gvn.transform(new RoundFloatNode(0, n));
2384     }
2385 #else
2386     Unimplemented();

2495                                   // The first null ends the list.
2496                                   Node* parm0, Node* parm1,
2497                                   Node* parm2, Node* parm3,
2498                                   Node* parm4, Node* parm5,
2499                                   Node* parm6, Node* parm7) {
2500   assert(call_addr != nullptr, "must not call null targets");
2501 
2502   // Slow-path call
2503   bool is_leaf = !(flags & RC_NO_LEAF);
2504   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2505   if (call_name == nullptr) {
2506     assert(!is_leaf, "must supply name for leaf");
2507     call_name = OptoRuntime::stub_name(call_addr);
2508   }
2509   CallNode* call;
2510   if (!is_leaf) {
2511     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2512   } else if (flags & RC_NO_FP) {
2513     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2514   } else  if (flags & RC_VECTOR){
2515     uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2516     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2517   } else {
2518     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2519   }
2520 
2521   // The following is similar to set_edges_for_java_call,
2522   // except that the memory effects of the call are restricted to AliasIdxRaw.
2523 
2524   // Slow path call has no side-effects, uses few values
2525   bool wide_in  = !(flags & RC_NARROW_MEM);
2526   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2527 
2528   Node* prev_mem = nullptr;
2529   if (wide_in) {
2530     prev_mem = set_predefined_input_for_runtime_call(call);
2531   } else {
2532     assert(!wide_out, "narrow in => narrow out");
2533     Node* narrow_mem = memory(adr_type);
2534     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2535   }

2575 
2576   if (has_io) {
2577     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2578   }
2579   return call;
2580 
2581 }
2582 
2583 // i2b
2584 Node* GraphKit::sign_extend_byte(Node* in) {
2585   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2586   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2587 }
2588 
2589 // i2s
2590 Node* GraphKit::sign_extend_short(Node* in) {
2591   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2592   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2593 }
2594 

2595 //------------------------------merge_memory-----------------------------------
2596 // Merge memory from one path into the current memory state.
2597 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2598   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2599     Node* old_slice = mms.force_memory();
2600     Node* new_slice = mms.memory2();
2601     if (old_slice != new_slice) {
2602       PhiNode* phi;
2603       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2604         if (mms.is_empty()) {
2605           // clone base memory Phi's inputs for this memory slice
2606           assert(old_slice == mms.base_memory(), "sanity");
2607           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2608           _gvn.set_type(phi, Type::MEMORY);
2609           for (uint i = 1; i < phi->req(); i++) {
2610             phi->init_req(i, old_slice->in(i));
2611           }
2612         } else {
2613           phi = old_slice->as_Phi(); // Phi was generated already
2614         }

2690 
2691   // Fast check for identical types, perhaps identical constants.
2692   // The types can even be identical non-constants, in cases
2693   // involving Array.newInstance, Object.clone, etc.
2694   if (subklass == superklass)
2695     return C->top();             // false path is dead; no test needed.
2696 
2697   if (gvn.type(superklass)->singleton()) {
2698     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2699     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2700 
2701     // In the common case of an exact superklass, try to fold up the
2702     // test before generating code.  You may ask, why not just generate
2703     // the code and then let it fold up?  The answer is that the generated
2704     // code will necessarily include null checks, which do not always
2705     // completely fold away.  If they are also needless, then they turn
2706     // into a performance loss.  Example:
2707     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2708     // Here, the type of 'fa' is often exact, so the store check
2709     // of fa[1]=x will fold up, without testing the nullness of x.






2710     switch (C->static_subtype_check(superk, subk)) {
2711     case Compile::SSC_always_false:
2712       {
2713         Node* always_fail = *ctrl;
2714         *ctrl = gvn.C->top();
2715         return always_fail;
2716       }
2717     case Compile::SSC_always_true:
2718       return C->top();
2719     case Compile::SSC_easy_test:
2720       {
2721         // Just do a direct pointer compare and be done.
2722         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2723         *ctrl = gvn.transform(new IfTrueNode(iff));
2724         return gvn.transform(new IfFalseNode(iff));
2725       }
2726     case Compile::SSC_full_test:
2727       break;
2728     default:
2729       ShouldNotReachHere();

2871 
2872   // Now do a linear scan of the secondary super-klass array.  Again, no real
2873   // performance impact (too rare) but it's gotta be done.
2874   // Since the code is rarely used, there is no penalty for moving it
2875   // out of line, and it can only improve I-cache density.
2876   // The decision to inline or out-of-line this final check is platform
2877   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2878   Node* psc = gvn.transform(
2879     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2880 
2881   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2882   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2883   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2884 
2885   // Return false path; set default control to true path.
2886   *ctrl = gvn.transform(r_ok_subtype);
2887   return gvn.transform(r_not_subtype);
2888 }
2889 
2890 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
2891   bool expand_subtype_check = C->post_loop_opts_phase() ||   // macro node expansion is over
2892                               ExpandSubTypeCheckAtParseTime; // forced expansion




2893   if (expand_subtype_check) {
2894     MergeMemNode* mem = merged_memory();
2895     Node* ctrl = control();
2896     Node* subklass = obj_or_subklass;
2897     if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2898       subklass = load_object_klass(obj_or_subklass);
2899     }
2900 
2901     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
2902     set_control(ctrl);
2903     return n;
2904   }
2905 
2906   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
2907   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2908   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2909   set_control(_gvn.transform(new IfTrueNode(iff)));
2910   return _gvn.transform(new IfFalseNode(iff));
2911 }
2912 
2913 // Profile-driven exact type check:
2914 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2915                                     float prob,
2916                                     Node* *casted_receiver) {
2917   assert(!klass->is_interface(), "no exact type check on interfaces");
2918 











2919   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
2920   Node* recv_klass = load_object_klass(receiver);
2921   Node* want_klass = makecon(tklass);
2922   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2923   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2924   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2925   set_control( _gvn.transform(new IfTrueNode (iff)));
2926   Node* fail = _gvn.transform(new IfFalseNode(iff));
2927 
2928   if (!stopped()) {
2929     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2930     const TypeOopPtr* recvx_type = tklass->as_instance_type();
2931     assert(recvx_type->klass_is_exact(), "");
2932 
2933     if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2934       // Subsume downstream occurrences of receiver with a cast to
2935       // recv_xtype, since now we know what the type will be.
2936       Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2937       (*casted_receiver) = _gvn.transform(cast);





2938       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
2939       // (User must make the replace_in_map call.)
2940     }
2941   }
2942 
2943   return fail;
2944 }
2945 











2946 //------------------------------subtype_check_receiver-------------------------
2947 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2948                                        Node** casted_receiver) {
2949   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2950   Node* want_klass = makecon(tklass);
2951 
2952   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2953 
2954   // Ignore interface type information until interface types are properly tracked.
2955   if (!stopped() && !klass->is_interface()) {
2956     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2957     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2958     if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2959       Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2960       (*casted_receiver) = _gvn.transform(cast);



2961     }
2962   }
2963 
2964   return slow_ctl;
2965 }
2966 
2967 //------------------------------seems_never_null-------------------------------
2968 // Use null_seen information if it is available from the profile.
2969 // If we see an unexpected null at a type check we record it and force a
2970 // recompile; the offending check will be recompiled to handle nulls.
2971 // If we see several offending BCIs, then all checks in the
2972 // method will be recompiled.
2973 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2974   speculating = !_gvn.type(obj)->speculative_maybe_null();
2975   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2976   if (UncommonNullCast               // Cutout for this technique
2977       && obj != null()               // And not the -Xcomp stupid case?
2978       && !too_many_traps(reason)
2979       ) {
2980     if (speculating) {

3049 
3050 //------------------------maybe_cast_profiled_receiver-------------------------
3051 // If the profile has seen exactly one type, narrow to exactly that type.
3052 // Subsequent type checks will always fold up.
3053 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3054                                              const TypeKlassPtr* require_klass,
3055                                              ciKlass* spec_klass,
3056                                              bool safe_for_replace) {
3057   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3058 
3059   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3060 
3061   // Make sure we haven't already deoptimized from this tactic.
3062   if (too_many_traps_or_recompiles(reason))
3063     return nullptr;
3064 
3065   // (No, this isn't a call, but it's enough like a virtual call
3066   // to use the same ciMethod accessor to get the profile info...)
3067   // If we have a speculative type use it instead of profiling (which
3068   // may not help us)
3069   ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;













3070   if (exact_kls != nullptr) {// no cast failures here
3071     if (require_klass == nullptr ||
3072         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3073       // If we narrow the type to match what the type profile sees or
3074       // the speculative type, we can then remove the rest of the
3075       // cast.
3076       // This is a win, even if the exact_kls is very specific,
3077       // because downstream operations, such as method calls,
3078       // will often benefit from the sharper type.
3079       Node* exact_obj = not_null_obj; // will get updated in place...
3080       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3081                                             &exact_obj);
3082       { PreserveJVMState pjvms(this);
3083         set_control(slow_ctl);
3084         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3085       }
3086       if (safe_for_replace) {
3087         replace_in_map(not_null_obj, exact_obj);
3088       }
3089       return exact_obj;

3179   // If not_null_obj is dead, only null-path is taken
3180   if (stopped()) {              // Doing instance-of on a null?
3181     set_control(null_ctl);
3182     return intcon(0);
3183   }
3184   region->init_req(_null_path, null_ctl);
3185   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3186   if (null_ctl == top()) {
3187     // Do this eagerly, so that pattern matches like is_diamond_phi
3188     // will work even during parsing.
3189     assert(_null_path == PATH_LIMIT-1, "delete last");
3190     region->del_req(_null_path);
3191     phi   ->del_req(_null_path);
3192   }
3193 
3194   // Do we know the type check always succeed?
3195   bool known_statically = false;
3196   if (_gvn.type(superklass)->singleton()) {
3197     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3198     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3199     if (subk->is_loaded()) {
3200       int static_res = C->static_subtype_check(superk, subk);
3201       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3202     }
3203   }
3204 
3205   if (!known_statically) {
3206     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3207     // We may not have profiling here or it may not help us. If we
3208     // have a speculative type use it to perform an exact cast.
3209     ciKlass* spec_obj_type = obj_type->speculative_type();
3210     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3211       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3212       if (stopped()) {            // Profile disagrees with this path.
3213         set_control(null_ctl);    // Null is the only remaining possibility.
3214         return intcon(0);
3215       }
3216       if (cast_obj != nullptr) {
3217         not_null_obj = cast_obj;
3218       }
3219     }

3235   record_for_igvn(region);
3236 
3237   // If we know the type check always succeeds then we don't use the
3238   // profiling data at this bytecode. Don't lose it, feed it to the
3239   // type system as a speculative type.
3240   if (safe_for_replace) {
3241     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3242     replace_in_map(obj, casted_obj);
3243   }
3244 
3245   return _gvn.transform(phi);
3246 }
3247 
3248 //-------------------------------gen_checkcast---------------------------------
3249 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3250 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3251 // uncommon-trap paths work.  Adjust stack after this call.
3252 // If failure_control is supplied and not null, it is filled in with
3253 // the control edge for the cast failure.  Otherwise, an appropriate
3254 // uncommon trap or exception is thrown.
3255 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3256                               Node* *failure_control) {
3257   kill_dead_locals();           // Benefit all the uncommon traps
3258   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr()->try_improve();
3259   const TypeOopPtr *toop = tk->cast_to_exactness(false)->as_instance_type();



3260 
3261   // Fast cutout:  Check the case that the cast is vacuously true.
3262   // This detects the common cases where the test will short-circuit
3263   // away completely.  We do this before we perform the null check,
3264   // because if the test is going to turn into zero code, we don't
3265   // want a residual null check left around.  (Causes a slowdown,
3266   // for example, in some objArray manipulations, such as a[i]=a[j].)
3267   if (tk->singleton()) {
3268     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3269     if (objtp != nullptr) {
3270       switch (C->static_subtype_check(tk, objtp->as_klass_type())) {







3271       case Compile::SSC_always_true:
3272         // If we know the type check always succeed then we don't use
3273         // the profiling data at this bytecode. Don't lose it, feed it
3274         // to the type system as a speculative type.
3275         return record_profiled_receiver_for_speculation(obj);






3276       case Compile::SSC_always_false:




3277         // It needs a null check because a null will *pass* the cast check.
3278         // A non-null value will always produce an exception.
3279         if (!objtp->maybe_null()) {
3280           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3281           Deoptimization::DeoptReason reason = is_aastore ?
3282             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3283           builtin_throw(reason);
3284           return top();
3285         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3286           return null_assert(obj);
3287         }
3288         break; // Fall through to full check
3289       default:
3290         break;
3291       }
3292     }
3293   }
3294 
3295   ciProfileData* data = nullptr;
3296   bool safe_for_replace = false;
3297   if (failure_control == nullptr) {        // use MDO in regular case only
3298     assert(java_bc() == Bytecodes::_aastore ||
3299            java_bc() == Bytecodes::_checkcast,
3300            "interpreter profiles type checks only for these BCs");
3301     data = method()->method_data()->bci_to_data(bci());
3302     safe_for_replace = true;

3303   }
3304 
3305   // Make the merge point
3306   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3307   RegionNode* region = new RegionNode(PATH_LIMIT);
3308   Node*       phi    = new PhiNode(region, toop);



3309   C->set_has_split_ifs(true); // Has chance for split-if optimization
3310 
3311   // Use null-cast information if it is available
3312   bool speculative_not_null = false;
3313   bool never_see_null = ((failure_control == nullptr)  // regular case only
3314                          && seems_never_null(obj, data, speculative_not_null));
3315 







3316   // Null check; get casted pointer; set region slot 3
3317   Node* null_ctl = top();
3318   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);






3319 
3320   // If not_null_obj is dead, only null-path is taken
3321   if (stopped()) {              // Doing instance-of on a null?
3322     set_control(null_ctl);



3323     return null();
3324   }
3325   region->init_req(_null_path, null_ctl);
3326   phi   ->init_req(_null_path, null());  // Set null path value
3327   if (null_ctl == top()) {
3328     // Do this eagerly, so that pattern matches like is_diamond_phi
3329     // will work even during parsing.
3330     assert(_null_path == PATH_LIMIT-1, "delete last");
3331     region->del_req(_null_path);
3332     phi   ->del_req(_null_path);
3333   }
3334 
3335   Node* cast_obj = nullptr;
3336   if (tk->klass_is_exact()) {
3337     // The following optimization tries to statically cast the speculative type of the object
3338     // (for example obtained during profiling) to the type of the superklass and then do a
3339     // dynamic check that the type of the object is what we expect. To work correctly
3340     // for checkcast and aastore the type of superklass should be exact.
3341     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3342     // We may not have profiling here or it may not help us. If we have
3343     // a speculative type use it to perform an exact cast.
3344     ciKlass* spec_obj_type = obj_type->speculative_type();
3345     if (spec_obj_type != nullptr || data != nullptr) {
3346       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk, spec_obj_type, safe_for_replace);
3347       if (cast_obj != nullptr) {
3348         if (failure_control != nullptr) // failure is now impossible
3349           (*failure_control) = top();
3350         // adjust the type of the phi to the exact klass:
3351         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3352       }
3353     }
3354   }
3355 
3356   if (cast_obj == nullptr) {
3357     // Generate the subtype check
3358     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass );
3359 






3360     // Plug in success path into the merge
3361     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3362     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3363     if (failure_control == nullptr) {
3364       if (not_subtype_ctrl != top()) { // If failure is possible
3365         PreserveJVMState pjvms(this);
3366         set_control(not_subtype_ctrl);






3367         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3368         Deoptimization::DeoptReason reason = is_aastore ?
3369           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3370         builtin_throw(reason);
3371       }
3372     } else {
3373       (*failure_control) = not_subtype_ctrl;
3374     }
3375   }
3376 
3377   region->init_req(_obj_path, control());
3378   phi   ->init_req(_obj_path, cast_obj);
3379 
3380   // A merge of null or Casted-NotNull obj
3381   Node* res = _gvn.transform(phi);
3382 
3383   // Note I do NOT always 'replace_in_map(obj,result)' here.
3384   //  if( tk->klass()->can_be_primary_super()  )
3385     // This means that if I successfully store an Object into an array-of-String
3386     // I 'forget' that the Object is really now known to be a String.  I have to
3387     // do this because we don't have true union types for interfaces - if I store
3388     // a Baz into an array-of-Interface and then tell the optimizer it's an
3389     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3390     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3391   //  replace_in_map( obj, res );
3392 
3393   // Return final merged results
3394   set_control( _gvn.transform(region) );
3395   record_for_igvn(region);
3396 
3397   return record_profiled_receiver_for_speculation(res);














































































































































3398 }
3399 
3400 //------------------------------next_monitor-----------------------------------
3401 // What number should be given to the next monitor?
3402 int GraphKit::next_monitor() {
3403   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3404   int next = current + C->sync_stack_slots();
3405   // Keep the toplevel high water mark current:
3406   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3407   return current;
3408 }
3409 
3410 //------------------------------insert_mem_bar---------------------------------
3411 // Memory barrier to avoid floating things around
3412 // The membar serves as a pinch point between both control and all memory slices.
3413 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3414   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3415   mb->init_req(TypeFunc::Control, control());
3416   mb->init_req(TypeFunc::Memory,  reset_memory());
3417   Node* membar = _gvn.transform(mb);

3445   }
3446   Node* membar = _gvn.transform(mb);
3447   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3448   if (alias_idx == Compile::AliasIdxBot) {
3449     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3450   } else {
3451     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3452   }
3453   return membar;
3454 }
3455 
3456 //------------------------------shared_lock------------------------------------
3457 // Emit locking code.
3458 FastLockNode* GraphKit::shared_lock(Node* obj) {
3459   // bci is either a monitorenter bc or InvocationEntryBci
3460   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3461   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3462 
3463   if( !GenerateSynchronizationCode )
3464     return nullptr;                // Not locking things?

3465   if (stopped())                // Dead monitor?
3466     return nullptr;
3467 
3468   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3469 
3470   // Box the stack location
3471   Node* box = new BoxLockNode(next_monitor());
3472   // Check for bailout after new BoxLockNode
3473   if (failing()) { return nullptr; }
3474   box = _gvn.transform(box);
3475   Node* mem = reset_memory();
3476 
3477   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3478 
3479   // Create the rtm counters for this fast lock if needed.
3480   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3481 
3482   // Add monitor to debug info for the slow path.  If we block inside the
3483   // slow path and de-opt, we need the monitor hanging around
3484   map()->push_monitor( flock );

3516   }
3517 #endif
3518 
3519   return flock;
3520 }
3521 
3522 
3523 //------------------------------shared_unlock----------------------------------
3524 // Emit unlocking code.
3525 void GraphKit::shared_unlock(Node* box, Node* obj) {
3526   // bci is either a monitorenter bc or InvocationEntryBci
3527   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3528   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3529 
3530   if( !GenerateSynchronizationCode )
3531     return;
3532   if (stopped()) {               // Dead monitor?
3533     map()->pop_monitor();        // Kill monitor from debug info
3534     return;
3535   }

3536 
3537   // Memory barrier to avoid floating things down past the locked region
3538   insert_mem_bar(Op_MemBarReleaseLock);
3539 
3540   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3541   UnlockNode *unlock = new UnlockNode(C, tf);
3542 #ifdef ASSERT
3543   unlock->set_dbg_jvms(sync_jvms());
3544 #endif
3545   uint raw_idx = Compile::AliasIdxRaw;
3546   unlock->init_req( TypeFunc::Control, control() );
3547   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3548   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3549   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3550   unlock->init_req( TypeFunc::ReturnAdr, top() );
3551 
3552   unlock->init_req(TypeFunc::Parms + 0, obj);
3553   unlock->init_req(TypeFunc::Parms + 1, box);
3554   unlock = _gvn.transform(unlock)->as_Unlock();
3555 
3556   Node* mem = reset_memory();
3557 
3558   // unlock has no side-effects, sets few values
3559   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3560 
3561   // Kill monitor from debug info
3562   map()->pop_monitor( );
3563 }
3564 
3565 //-------------------------------get_layout_helper-----------------------------
3566 // If the given klass is a constant or known to be an array,
3567 // fetch the constant layout helper value into constant_value
3568 // and return null.  Otherwise, load the non-constant
3569 // layout helper value, and return the node which represents it.
3570 // This two-faced routine is useful because allocation sites
3571 // almost always feature constant types.
3572 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3573   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3574   if (!StressReflectiveCode && klass_t != nullptr) {
3575     bool xklass = klass_t->klass_is_exact();
3576     if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) {








3577       jint lhelper;
3578       if (klass_t->isa_aryklassptr()) {
3579         BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();


3580         if (is_reference_type(elem, true)) {
3581           elem = T_OBJECT;
3582         }
3583         lhelper = Klass::array_layout_helper(elem);
3584       } else {
3585         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3586       }
3587       if (lhelper != Klass::_lh_neutral_value) {
3588         constant_value = lhelper;
3589         return (Node*) nullptr;
3590       }
3591     }
3592   }
3593   constant_value = Klass::_lh_neutral_value;  // put in a known value
3594   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3595   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3596 }
3597 
3598 // We just put in an allocate/initialize with a big raw-memory effect.
3599 // Hook selected additional alias categories on the initialization.
3600 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3601                                 MergeMemNode* init_in_merge,
3602                                 Node* init_out_raw) {
3603   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3604   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3605 
3606   Node* prevmem = kit.memory(alias_idx);
3607   init_in_merge->set_memory_at(alias_idx, prevmem);
3608   kit.set_memory(init_out_raw, alias_idx);


3609 }
3610 
3611 //---------------------------set_output_for_allocation-------------------------
3612 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3613                                           const TypeOopPtr* oop_type,
3614                                           bool deoptimize_on_exception) {
3615   int rawidx = Compile::AliasIdxRaw;
3616   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3617   add_safepoint_edges(alloc);
3618   Node* allocx = _gvn.transform(alloc);
3619   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3620   // create memory projection for i_o
3621   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3622   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3623 
3624   // create a memory projection as for the normal control path
3625   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3626   set_memory(malloc, rawidx);
3627 
3628   // a normal slow-call doesn't change i_o, but an allocation does
3629   // we create a separate i_o projection for the normal control path
3630   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3631   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3632 
3633   // put in an initialization barrier
3634   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3635                                                  rawoop)->as_Initialize();
3636   assert(alloc->initialization() == init,  "2-way macro link must work");
3637   assert(init ->allocation()     == alloc, "2-way macro link must work");
3638   {
3639     // Extract memory strands which may participate in the new object's
3640     // initialization, and source them from the new InitializeNode.
3641     // This will allow us to observe initializations when they occur,
3642     // and link them properly (as a group) to the InitializeNode.
3643     assert(init->in(InitializeNode::Memory) == malloc, "");
3644     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3645     init->set_req(InitializeNode::Memory, minit_in);
3646     record_for_igvn(minit_in); // fold it up later, if possible

3647     Node* minit_out = memory(rawidx);
3648     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3649     // Add an edge in the MergeMem for the header fields so an access
3650     // to one of those has correct memory state
3651     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3652     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3653     if (oop_type->isa_aryptr()) {
3654       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3655       int            elemidx  = C->get_alias_index(telemref);
3656       hook_memory_on_init(*this, elemidx, minit_in, minit_out);

























3657     } else if (oop_type->isa_instptr()) {

3658       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3659       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3660         ciField* field = ik->nonstatic_field_at(i);
3661         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3662           continue;  // do not bother to track really large numbers of fields
3663         // Find (or create) the alias category for this field:
3664         int fieldidx = C->alias_type(field)->index();
3665         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3666       }
3667     }
3668   }
3669 
3670   // Cast raw oop to the real thing...
3671   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3672   javaoop = _gvn.transform(javaoop);
3673   C->set_recent_alloc(control(), javaoop);
3674   assert(just_allocated_object(control()) == javaoop, "just allocated");
3675 
3676 #ifdef ASSERT
3677   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

3688       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3689     }
3690   }
3691 #endif //ASSERT
3692 
3693   return javaoop;
3694 }
3695 
3696 //---------------------------new_instance--------------------------------------
3697 // This routine takes a klass_node which may be constant (for a static type)
3698 // or may be non-constant (for reflective code).  It will work equally well
3699 // for either, and the graph will fold nicely if the optimizer later reduces
3700 // the type to a constant.
3701 // The optional arguments are for specialized use by intrinsics:
3702 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3703 //  - If 'return_size_val', report the total object size to the caller.
3704 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3705 Node* GraphKit::new_instance(Node* klass_node,
3706                              Node* extra_slow_test,
3707                              Node* *return_size_val,
3708                              bool deoptimize_on_exception) {

3709   // Compute size in doublewords
3710   // The size is always an integral number of doublewords, represented
3711   // as a positive bytewise size stored in the klass's layout_helper.
3712   // The layout_helper also encodes (in a low bit) the need for a slow path.
3713   jint  layout_con = Klass::_lh_neutral_value;
3714   Node* layout_val = get_layout_helper(klass_node, layout_con);
3715   int   layout_is_con = (layout_val == nullptr);
3716 
3717   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3718   // Generate the initial go-slow test.  It's either ALWAYS (return a
3719   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3720   // case) a computed value derived from the layout_helper.
3721   Node* initial_slow_test = nullptr;
3722   if (layout_is_con) {
3723     assert(!StressReflectiveCode, "stress mode does not use these paths");
3724     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3725     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3726   } else {   // reflective case
3727     // This reflective path is used by Unsafe.allocateInstance.
3728     // (It may be stress-tested by specifying StressReflectiveCode.)
3729     // Basically, we want to get into the VM is there's an illegal argument.
3730     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3731     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3732     if (extra_slow_test != intcon(0)) {
3733       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3734     }
3735     // (Macro-expander will further convert this to a Bool, if necessary.)

3746 
3747     // Clear the low bits to extract layout_helper_size_in_bytes:
3748     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3749     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3750     size = _gvn.transform( new AndXNode(size, mask) );
3751   }
3752   if (return_size_val != nullptr) {
3753     (*return_size_val) = size;
3754   }
3755 
3756   // This is a precise notnull oop of the klass.
3757   // (Actually, it need not be precise if this is a reflective allocation.)
3758   // It's what we cast the result to.
3759   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3760   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3761   const TypeOopPtr* oop_type = tklass->as_instance_type();
3762 
3763   // Now generate allocation code
3764 
3765   // The entire memory state is needed for slow path of the allocation
3766   // since GC and deoptimization can happened.
3767   Node *mem = reset_memory();
3768   set_all_memory(mem); // Create new memory state
3769 
3770   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3771                                          control(), mem, i_o(),
3772                                          size, klass_node,
3773                                          initial_slow_test);
3774 
3775   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3776 }
3777 
3778 //-------------------------------new_array-------------------------------------
3779 // helper for both newarray and anewarray
3780 // The 'length' parameter is (obviously) the length of the array.
3781 // The optional arguments are for specialized use by intrinsics:
3782 //  - If 'return_size_val', report the non-padded array size (sum of header size
3783 //    and array body) to the caller.
3784 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3785 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3786                           Node* length,         // number of array elements
3787                           int   nargs,          // number of arguments to push back for uncommon trap
3788                           Node* *return_size_val,
3789                           bool deoptimize_on_exception) {
3790   jint  layout_con = Klass::_lh_neutral_value;
3791   Node* layout_val = get_layout_helper(klass_node, layout_con);
3792   int   layout_is_con = (layout_val == nullptr);
3793 
3794   if (!layout_is_con && !StressReflectiveCode &&
3795       !too_many_traps(Deoptimization::Reason_class_check)) {
3796     // This is a reflective array creation site.
3797     // Optimistically assume that it is a subtype of Object[],
3798     // so that we can fold up all the address arithmetic.
3799     layout_con = Klass::array_layout_helper(T_OBJECT);
3800     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3801     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3802     { BuildCutout unless(this, bol_lh, PROB_MAX);
3803       inc_sp(nargs);
3804       uncommon_trap(Deoptimization::Reason_class_check,
3805                     Deoptimization::Action_maybe_recompile);
3806     }
3807     layout_val = nullptr;
3808     layout_is_con = true;
3809   }
3810 
3811   // Generate the initial go-slow test.  Make sure we do not overflow
3812   // if length is huge (near 2Gig) or negative!  We do not need
3813   // exact double-words here, just a close approximation of needed
3814   // double-words.  We can't add any offset or rounding bits, lest we
3815   // take a size -1 of bytes and make it positive.  Use an unsigned
3816   // compare, so negative sizes look hugely positive.
3817   int fast_size_limit = FastAllocateSizeLimit;
3818   if (layout_is_con) {
3819     assert(!StressReflectiveCode, "stress mode does not use these paths");
3820     // Increase the size limit if we have exact knowledge of array type.
3821     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3822     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3823   }
3824 
3825   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3826   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3827 
3828   // --- Size Computation ---
3829   // array_size = round_to_heap(array_header + (length << elem_shift));
3830   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3831   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3832   // The rounding mask is strength-reduced, if possible.
3833   int round_mask = MinObjAlignmentInBytes - 1;
3834   Node* header_size = nullptr;
3835   // (T_BYTE has the weakest alignment and size restrictions...)
3836   if (layout_is_con) {
3837     int       hsize  = Klass::layout_helper_header_size(layout_con);
3838     int       eshift = Klass::layout_helper_log2_element_size(layout_con);

3839     if ((round_mask & ~right_n_bits(eshift)) == 0)
3840       round_mask = 0;  // strength-reduce it if it goes away completely
3841     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3842     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3843     assert(header_size_min <= hsize, "generic minimum is smallest");
3844     header_size = intcon(hsize);
3845   } else {
3846     Node* hss   = intcon(Klass::_lh_header_size_shift);
3847     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3848     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3849     header_size = _gvn.transform(new AndINode(header_size, hsm));
3850   }
3851 
3852   Node* elem_shift = nullptr;
3853   if (layout_is_con) {
3854     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3855     if (eshift != 0)
3856       elem_shift = intcon(eshift);
3857   } else {
3858     // There is no need to mask or shift this value.
3859     // The semantics of LShiftINode include an implicit mask to 0x1F.
3860     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3861     elem_shift = layout_val;

3908   }
3909   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
3910 
3911   if (return_size_val != nullptr) {
3912     // This is the size
3913     (*return_size_val) = non_rounded_size;
3914   }
3915 
3916   Node* size = non_rounded_size;
3917   if (round_mask != 0) {
3918     Node* mask1 = MakeConX(round_mask);
3919     size = _gvn.transform(new AddXNode(size, mask1));
3920     Node* mask2 = MakeConX(~round_mask);
3921     size = _gvn.transform(new AndXNode(size, mask2));
3922   }
3923   // else if round_mask == 0, the size computation is self-rounding
3924 
3925   // Now generate allocation code
3926 
3927   // The entire memory state is needed for slow path of the allocation
3928   // since GC and deoptimization can happened.
3929   Node *mem = reset_memory();
3930   set_all_memory(mem); // Create new memory state
3931 
3932   if (initial_slow_test->is_Bool()) {
3933     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3934     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3935   }
3936 
3937   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();





























3938   Node* valid_length_test = _gvn.intcon(1);
3939   if (ary_type->isa_aryptr()) {
3940     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3941     jint max = TypeAryPtr::max_array_length(bt);
3942     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3943     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3944   }
3945 
3946   // Create the AllocateArrayNode and its result projections
3947   AllocateArrayNode* alloc
3948     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3949                             control(), mem, i_o(),
3950                             size, klass_node,
3951                             initial_slow_test,
3952                             length, valid_length_test);
3953 
3954   // Cast to correct type.  Note that the klass_node may be constant or not,
3955   // and in the latter case the actual array type will be inexact also.
3956   // (This happens via a non-constant argument to inline_native_newArray.)
3957   // In any case, the value of klass_node provides the desired array type.
3958   const TypeInt* length_type = _gvn.find_int_type(length);
3959   if (ary_type->isa_aryptr() && length_type != nullptr) {
3960     // Try to get a better type than POS for the size
3961     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3962   }
3963 
3964   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3965 
3966   array_ideal_length(alloc, ary_type, true);
3967   return javaoop;
3968 }
3969 
3970 // The following "Ideal_foo" functions are placed here because they recognize
3971 // the graph shapes created by the functions immediately above.
3972 
3973 //---------------------------Ideal_allocation----------------------------------

4080   set_all_memory(ideal.merged_memory());
4081   set_i_o(ideal.i_o());
4082   set_control(ideal.ctrl());
4083 }
4084 
4085 void GraphKit::final_sync(IdealKit& ideal) {
4086   // Final sync IdealKit and graphKit.
4087   sync_kit(ideal);
4088 }
4089 
4090 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4091   Node* len = load_array_length(load_String_value(str, set_ctrl));
4092   Node* coder = load_String_coder(str, set_ctrl);
4093   // Divide length by 2 if coder is UTF16
4094   return _gvn.transform(new RShiftINode(len, coder));
4095 }
4096 
4097 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4098   int value_offset = java_lang_String::value_offset();
4099   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4100                                                      false, nullptr, 0);
4101   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4102   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4103                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4104                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4105   Node* p = basic_plus_adr(str, str, value_offset);
4106   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4107                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4108   return load;
4109 }
4110 
4111 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4112   if (!CompactStrings) {
4113     return intcon(java_lang_String::CODER_UTF16);
4114   }
4115   int coder_offset = java_lang_String::coder_offset();
4116   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4117                                                      false, nullptr, 0);
4118   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4119 
4120   Node* p = basic_plus_adr(str, str, coder_offset);
4121   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4122                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4123   return load;
4124 }
4125 
4126 void GraphKit::store_String_value(Node* str, Node* value) {
4127   int value_offset = java_lang_String::value_offset();
4128   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4129                                                      false, nullptr, 0);
4130   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4131 
4132   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4133                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4134 }
4135 
4136 void GraphKit::store_String_coder(Node* str, Node* value) {
4137   int coder_offset = java_lang_String::coder_offset();
4138   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4139                                                      false, nullptr, 0);
4140   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4141 
4142   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4143                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4144 }
4145 
4146 // Capture src and dst memory state with a MergeMemNode
4147 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4148   if (src_type == dst_type) {
4149     // Types are equal, we don't need a MergeMemNode
4150     return memory(src_type);
4151   }
4152   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4153   record_for_igvn(merge); // fold it up later, if possible
4154   int src_idx = C->get_alias_index(src_type);
4155   int dst_idx = C->get_alias_index(dst_type);
4156   merge->set_memory_at(src_idx, memory(src_idx));
4157   merge->set_memory_at(dst_idx, memory(dst_idx));
4158   return merge;
4159 }

4232   i_char->init_req(2, AddI(i_char, intcon(2)));
4233 
4234   set_control(IfFalse(iff));
4235   set_memory(st, TypeAryPtr::BYTES);
4236 }
4237 
4238 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4239   if (!field->is_constant()) {
4240     return nullptr; // Field not marked as constant.
4241   }
4242   ciInstance* holder = nullptr;
4243   if (!field->is_static()) {
4244     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4245     if (const_oop != nullptr && const_oop->is_instance()) {
4246       holder = const_oop->as_instance();
4247     }
4248   }
4249   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4250                                                         /*is_unsigned_load=*/false);
4251   if (con_type != nullptr) {
4252     return makecon(con_type);






4253   }
4254   return nullptr;
4255 }










   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciUtilities.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "ci/ciObjArray.hpp"
  31 #include "asm/register.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/c2/barrierSetC2.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.

 852         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 853           tty->print_cr("Zombie local %d: ", local);
 854           jvms->dump();
 855         }
 856         return false;
 857       }
 858     }
 859   }
 860   return true;
 861 }
 862 
 863 #endif //ASSERT
 864 
 865 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 866 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 867   ciMethod* cur_method = jvms->method();
 868   int       cur_bci   = jvms->bci();
 869   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 870     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 871     return Interpreter::bytecode_should_reexecute(code) ||
 872            (is_anewarray && (code == Bytecodes::_multianewarray));
 873     // Reexecute _multianewarray bytecode which was replaced with
 874     // sequence of [a]newarray. See Parse::do_multianewarray().
 875     //
 876     // Note: interpreter should not have it set since this optimization
 877     // is limited by dimensions and guarded by flag so in some cases
 878     // multianewarray() runtime calls will be generated and
 879     // the bytecode should not be reexecutes (stack will not be reset).
 880   } else {
 881     return false;
 882   }
 883 }
 884 
 885 // Helper function for adding JVMState and debug information to node
 886 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 887   // Add the safepoint edges to the call (or other safepoint).
 888 
 889   // Make sure dead locals are set to top.  This
 890   // should help register allocation time and cut down on the size
 891   // of the deoptimization information.
 892   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 943   }
 944 
 945   // Presize the call:
 946   DEBUG_ONLY(uint non_debug_edges = call->req());
 947   call->add_req_batch(top(), youngest_jvms->debug_depth());
 948   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 949 
 950   // Set up edges so that the call looks like this:
 951   //  Call [state:] ctl io mem fptr retadr
 952   //       [parms:] parm0 ... parmN
 953   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 954   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 955   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 956   // Note that caller debug info precedes callee debug info.
 957 
 958   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 959   uint debug_ptr = call->req();
 960 
 961   // Loop over the map input edges associated with jvms, add them
 962   // to the call node, & reset all offsets to match call node array.
 963 
 964   JVMState* callee_jvms = nullptr;
 965   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 966     uint debug_end   = debug_ptr;
 967     uint debug_start = debug_ptr - in_jvms->debug_size();
 968     debug_ptr = debug_start;  // back up the ptr
 969 
 970     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 971     uint j, k, l;
 972     SafePointNode* in_map = in_jvms->map();
 973     out_jvms->set_map(call);
 974 
 975     if (can_prune_locals) {
 976       assert(in_jvms->method() == out_jvms->method(), "sanity");
 977       // If the current throw can reach an exception handler in this JVMS,
 978       // then we must keep everything live that can reach that handler.
 979       // As a quick and dirty approximation, we look for any handlers at all.
 980       if (in_jvms->method()->has_exception_handlers()) {
 981         can_prune_locals = false;
 982       }
 983     }
 984 
 985     // Add the Locals
 986     k = in_jvms->locoff();
 987     l = in_jvms->loc_size();
 988     out_jvms->set_locoff(p);
 989     if (!can_prune_locals) {
 990       for (j = 0; j < l; j++) {
 991         Node* val = in_map->in(k + j);
 992         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
 993         if (val->is_InlineType() && val->isa_InlineType()->is_larval() && callee_jvms != nullptr &&
 994             callee_jvms->method()->is_object_constructor() && callee_jvms->method()->holder()->is_inlinetype() && val == in_map->argument(in_jvms, 0)) {
 995           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
 996         }
 997         call->set_req(p++, val);
 998       }
 999     } else {
1000       p += l;  // already set to top above by add_req_batch
1001     }
1002 
1003     // Add the Expression Stack
1004     k = in_jvms->stkoff();
1005     l = in_jvms->sp();
1006     out_jvms->set_stkoff(p);
1007     if (!can_prune_locals) {
1008       for (j = 0; j < l; j++) {
1009         Node* val = in_map->in(k + j);
1010         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
1011         if (val->is_InlineType() && val->isa_InlineType()->is_larval() && callee_jvms != nullptr &&
1012             callee_jvms->method()->is_object_constructor() && callee_jvms->method()->holder()->is_inlinetype() && val == in_map->argument(in_jvms, 0)) {
1013           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
1014         }
1015         call->set_req(p++, val);
1016       }
1017     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1018       // Divide stack into {S0,...,S1}, where S0 is set to top.
1019       uint s1 = stack_slots_not_pruned;
1020       stack_slots_not_pruned = 0;  // for next iteration
1021       if (s1 > l)  s1 = l;
1022       uint s0 = l - s1;
1023       p += s0;  // skip the tops preinstalled by add_req_batch
1024       for (j = s0; j < l; j++)
1025         call->set_req(p++, in_map->in(k+j));
1026     } else {
1027       p += l;  // already set to top above by add_req_batch
1028     }
1029 
1030     // Add the Monitors
1031     k = in_jvms->monoff();
1032     l = in_jvms->mon_size();
1033     out_jvms->set_monoff(p);
1034     for (j = 0; j < l; j++)
1035       call->set_req(p++, in_map->in(k+j));
1036 
1037     // Copy any scalar object fields.
1038     k = in_jvms->scloff();
1039     l = in_jvms->scl_size();
1040     out_jvms->set_scloff(p);
1041     for (j = 0; j < l; j++)
1042       call->set_req(p++, in_map->in(k+j));
1043 
1044     // Finish the new jvms.
1045     out_jvms->set_endoff(p);
1046 
1047     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1048     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1049     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1050     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1051     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1052     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1053 
1054     // Update the two tail pointers in parallel.
1055     callee_jvms = out_jvms;
1056     out_jvms = out_jvms->caller();
1057     in_jvms  = in_jvms->caller();
1058   }
1059 
1060   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1061 
1062   // Test the correctness of JVMState::debug_xxx accessors:
1063   assert(call->jvms()->debug_start() == non_debug_edges, "");
1064   assert(call->jvms()->debug_end()   == call->req(), "");
1065   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1066 }
1067 
1068 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1069   Bytecodes::Code code = java_bc();
1070   if (code == Bytecodes::_wide) {
1071     code = method()->java_code_at_bci(bci() + 1);
1072   }
1073 
1074   if (code != Bytecodes::_illegal) {
1075     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1211   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1212   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1213   return _gvn.transform( new AndLNode(conv, mask) );
1214 }
1215 
1216 Node* GraphKit::ConvL2I(Node* offset) {
1217   // short-circuit a common case
1218   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1219   if (offset_con != (jlong)Type::OffsetBot) {
1220     return intcon((int) offset_con);
1221   }
1222   return _gvn.transform( new ConvL2INode(offset));
1223 }
1224 
1225 //-------------------------load_object_klass-----------------------------------
1226 Node* GraphKit::load_object_klass(Node* obj) {
1227   // Special-case a fresh allocation to avoid building nodes:
1228   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1229   if (akls != nullptr)  return akls;
1230   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1231   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1232 }
1233 
1234 //-------------------------load_array_length-----------------------------------
1235 Node* GraphKit::load_array_length(Node* array) {
1236   // Special-case a fresh allocation to avoid building nodes:
1237   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1238   Node *alen;
1239   if (alloc == nullptr) {
1240     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1241     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1242   } else {
1243     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1244   }
1245   return alen;
1246 }
1247 
1248 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1249                                    const TypeOopPtr* oop_type,
1250                                    bool replace_length_in_map) {
1251   Node* length = alloc->Ideal_length();

1260         replace_in_map(length, ccast);
1261       }
1262       return ccast;
1263     }
1264   }
1265   return length;
1266 }
1267 
1268 //------------------------------do_null_check----------------------------------
1269 // Helper function to do a null pointer check.  Returned value is
1270 // the incoming address with null casted away.  You are allowed to use the
1271 // not-null value only if you are control dependent on the test.
1272 #ifndef PRODUCT
1273 extern uint explicit_null_checks_inserted,
1274             explicit_null_checks_elided;
1275 #endif
1276 Node* GraphKit::null_check_common(Node* value, BasicType type,
1277                                   // optional arguments for variations:
1278                                   bool assert_null,
1279                                   Node* *null_control,
1280                                   bool speculative,
1281                                   bool is_init_check) {
1282   assert(!assert_null || null_control == nullptr, "not both at once");
1283   if (stopped())  return top();
1284   NOT_PRODUCT(explicit_null_checks_inserted++);
1285 
1286   if (value->is_InlineType()) {
1287     // Null checking a scalarized but nullable inline type. Check the IsInit
1288     // input instead of the oop input to avoid keeping buffer allocations alive.
1289     InlineTypeNode* vtptr = value->as_InlineType();
1290     while (vtptr->get_oop()->is_InlineType()) {
1291       vtptr = vtptr->get_oop()->as_InlineType();
1292     }
1293     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1294     if (stopped()) {
1295       return top();
1296     }
1297     if (assert_null) {
1298       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1299       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1300       // replace_in_map(value, vtptr);
1301       // return vtptr;
1302       return null();
1303     }
1304     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1305     return cast_not_null(value, do_replace_in_map);
1306   }
1307 
1308   // Construct null check
1309   Node *chk = nullptr;
1310   switch(type) {
1311     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1312     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1313     case T_ARRAY  : // fall through
1314       type = T_OBJECT;  // simplify further tests
1315     case T_OBJECT : {
1316       const Type *t = _gvn.type( value );
1317 
1318       const TypeOopPtr* tp = t->isa_oopptr();
1319       if (tp != nullptr && !tp->is_loaded()
1320           // Only for do_null_check, not any of its siblings:
1321           && !assert_null && null_control == nullptr) {
1322         // Usually, any field access or invocation on an unloaded oop type
1323         // will simply fail to link, since the statically linked class is
1324         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1325         // the static class is loaded but the sharper oop type is not.
1326         // Rather than checking for this obscure case in lots of places,
1327         // we simply observe that a null check on an unloaded class

1391         }
1392         Node *oldcontrol = control();
1393         set_control(cfg);
1394         Node *res = cast_not_null(value);
1395         set_control(oldcontrol);
1396         NOT_PRODUCT(explicit_null_checks_elided++);
1397         return res;
1398       }
1399       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1400       if (cfg == nullptr)  break;  // Quit at region nodes
1401       depth++;
1402     }
1403   }
1404 
1405   //-----------
1406   // Branch to failure if null
1407   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1408   Deoptimization::DeoptReason reason;
1409   if (assert_null) {
1410     reason = Deoptimization::reason_null_assert(speculative);
1411   } else if (type == T_OBJECT || is_init_check) {
1412     reason = Deoptimization::reason_null_check(speculative);
1413   } else {
1414     reason = Deoptimization::Reason_div0_check;
1415   }
1416   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1417   // ciMethodData::has_trap_at will return a conservative -1 if any
1418   // must-be-null assertion has failed.  This could cause performance
1419   // problems for a method after its first do_null_assert failure.
1420   // Consider using 'Reason_class_check' instead?
1421 
1422   // To cause an implicit null check, we set the not-null probability
1423   // to the maximum (PROB_MAX).  For an explicit check the probability
1424   // is set to a smaller value.
1425   if (null_control != nullptr || too_many_traps(reason)) {
1426     // probability is less likely
1427     ok_prob =  PROB_LIKELY_MAG(3);
1428   } else if (!assert_null &&
1429              (ImplicitNullCheckThreshold > 0) &&
1430              method() != nullptr &&
1431              (method()->method_data()->trap_count(reason)

1465   }
1466 
1467   if (assert_null) {
1468     // Cast obj to null on this path.
1469     replace_in_map(value, zerocon(type));
1470     return zerocon(type);
1471   }
1472 
1473   // Cast obj to not-null on this path, if there is no null_control.
1474   // (If there is a null_control, a non-null value may come back to haunt us.)
1475   if (type == T_OBJECT) {
1476     Node* cast = cast_not_null(value, false);
1477     if (null_control == nullptr || (*null_control) == top())
1478       replace_in_map(value, cast);
1479     value = cast;
1480   }
1481 
1482   return value;
1483 }
1484 

1485 //------------------------------cast_not_null----------------------------------
1486 // Cast obj to not-null on this path
1487 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1488   if (obj->is_InlineType()) {
1489     // TODO 8325106 Can we avoid cloning?
1490     Node* vt = obj->clone();
1491     vt->as_InlineType()->set_is_init(_gvn);
1492     vt = _gvn.transform(vt);
1493     if (do_replace_in_map) {
1494       replace_in_map(obj, vt);
1495     }
1496     return vt;
1497   }
1498   const Type *t = _gvn.type(obj);
1499   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1500   // Object is already not-null?
1501   if( t == t_not_null ) return obj;
1502 
1503   Node* cast = new CastPPNode(control(), obj,t_not_null);
1504   cast = _gvn.transform( cast );
1505 
1506   // Scan for instances of 'obj' in the current JVM mapping.
1507   // These instances are known to be not-null after the test.
1508   if (do_replace_in_map)
1509     replace_in_map(obj, cast);
1510 
1511   return cast;                  // Return casted value
1512 }
1513 
1514 // Sometimes in intrinsics, we implicitly know an object is not null
1515 // (there's no actual null check) so we can cast it to not null. In
1516 // the course of optimizations, the input to the cast can become null.
1517 // In that case that data path will die and we need the control path

1603 // These are layered on top of the factory methods in LoadNode and StoreNode,
1604 // and integrate with the parser's memory state and _gvn engine.
1605 //
1606 
1607 // factory methods in "int adr_idx"
1608 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1609                           int adr_idx,
1610                           MemNode::MemOrd mo,
1611                           LoadNode::ControlDependency control_dependency,
1612                           bool require_atomic_access,
1613                           bool unaligned,
1614                           bool mismatched,
1615                           bool unsafe,
1616                           uint8_t barrier_data) {
1617   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1618   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1619   debug_only(adr_type = C->get_adr_type(adr_idx));
1620   Node* mem = memory(adr_idx);
1621   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1622   ld = _gvn.transform(ld);
1623 
1624   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1625     // Improve graph before escape analysis and boxing elimination.
1626     record_for_igvn(ld);
1627     if (ld->is_DecodeN()) {
1628       // Also record the actual load (LoadN) in case ld is DecodeN
1629       assert(ld->in(1)->Opcode() == Op_LoadN, "Assumption invalid: input to DecodeN is not LoadN");
1630       record_for_igvn(ld->in(1));
1631     }
1632   }
1633   return ld;
1634 }
1635 
1636 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1637                                 int adr_idx,
1638                                 MemNode::MemOrd mo,
1639                                 bool require_atomic_access,
1640                                 bool unaligned,
1641                                 bool mismatched,
1642                                 bool unsafe,
1643                                 int barrier_data) {

1655   if (unsafe) {
1656     st->as_Store()->set_unsafe_access();
1657   }
1658   st->as_Store()->set_barrier_data(barrier_data);
1659   st = _gvn.transform(st);
1660   set_memory(st, adr_idx);
1661   // Back-to-back stores can only remove intermediate store with DU info
1662   // so push on worklist for optimizer.
1663   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1664     record_for_igvn(st);
1665 
1666   return st;
1667 }
1668 
1669 Node* GraphKit::access_store_at(Node* obj,
1670                                 Node* adr,
1671                                 const TypePtr* adr_type,
1672                                 Node* val,
1673                                 const Type* val_type,
1674                                 BasicType bt,
1675                                 DecoratorSet decorators,
1676                                 bool safe_for_replace) {
1677   // Transformation of a value which could be null pointer (CastPP #null)
1678   // could be delayed during Parse (for example, in adjust_map_after_if()).
1679   // Execute transformation here to avoid barrier generation in such case.
1680   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1681     val = _gvn.makecon(TypePtr::NULL_PTR);
1682   }
1683 
1684   if (stopped()) {
1685     return top(); // Dead path ?
1686   }
1687 
1688   assert(val != nullptr, "not dead path");
1689   if (val->is_InlineType()) {
1690     // Store to non-flat field. Buffer the inline type and make sure
1691     // the store is re-executed if the allocation triggers deoptimization.
1692     PreserveReexecuteState preexecs(this);
1693     jvms()->set_should_reexecute(true);
1694     val = val->as_InlineType()->buffer(this, safe_for_replace);
1695   }
1696 
1697   C2AccessValuePtr addr(adr, adr_type);
1698   C2AccessValue value(val, val_type);
1699   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1700   if (access.is_raw()) {
1701     return _barrier_set->BarrierSetC2::store_at(access, value);
1702   } else {
1703     return _barrier_set->store_at(access, value);
1704   }
1705 }
1706 
1707 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1708                                Node* adr,   // actual address to store val at
1709                                const TypePtr* adr_type,
1710                                const Type* val_type,
1711                                BasicType bt,
1712                                DecoratorSet decorators,
1713                                Node* ctl) {
1714   if (stopped()) {
1715     return top(); // Dead path ?
1716   }
1717 
1718   C2AccessValuePtr addr(adr, adr_type);
1719   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1720   if (access.is_raw()) {
1721     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1722   } else {
1723     return _barrier_set->load_at(access, val_type);
1724   }
1725 }
1726 
1727 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1728                             const Type* val_type,
1729                             BasicType bt,
1730                             DecoratorSet decorators) {
1731   if (stopped()) {
1732     return top(); // Dead path ?
1733   }
1734 
1735   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1736   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1737   if (access.is_raw()) {
1738     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1739   } else {

1804                                      Node* new_val,
1805                                      const Type* value_type,
1806                                      BasicType bt,
1807                                      DecoratorSet decorators) {
1808   C2AccessValuePtr addr(adr, adr_type);
1809   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1810   if (access.is_raw()) {
1811     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1812   } else {
1813     return _barrier_set->atomic_add_at(access, new_val, value_type);
1814   }
1815 }
1816 
1817 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1818   return _barrier_set->clone(this, src, dst, size, is_array);
1819 }
1820 
1821 //-------------------------array_element_address-------------------------
1822 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1823                                       const TypeInt* sizetype, Node* ctrl) {
1824   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1825   uint shift = arytype->is_flat() ? arytype->flat_log_elem_size() : exact_log2(type2aelembytes(elembt));
1826   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1827 
1828   // short-circuit a common case (saves lots of confusing waste motion)
1829   jint idx_con = find_int_con(idx, -1);
1830   if (idx_con >= 0) {
1831     intptr_t offset = header + ((intptr_t)idx_con << shift);
1832     return basic_plus_adr(ary, offset);
1833   }
1834 
1835   // must be correct type for alignment purposes
1836   Node* base  = basic_plus_adr(ary, header);
1837   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1838   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1839   return basic_plus_adr(ary, base, scale);
1840 }
1841 
1842 //-------------------------load_array_element-------------------------
1843 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1844   const Type* elemtype = arytype->elem();
1845   BasicType elembt = elemtype->array_element_basic_type();
1846   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1847   if (elembt == T_NARROWOOP) {
1848     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1849   }
1850   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1851                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1852   return ld;
1853 }
1854 
1855 //-------------------------set_arguments_for_java_call-------------------------
1856 // Arguments (pre-popped from the stack) are taken from the JVMS.
1857 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1858   PreserveReexecuteState preexecs(this);
1859   if (EnableValhalla) {
1860     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1861     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1862     jvms()->set_should_reexecute(true);
1863     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1864     inc_sp(arg_size);
1865   }
1866   // Add the call arguments
1867   const TypeTuple* domain = call->tf()->domain_sig();
1868   uint nargs = domain->cnt();
1869   int arg_num = 0;
1870   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1871     Node* arg = argument(i-TypeFunc::Parms);
1872     const Type* t = domain->field_at(i);
1873     // TODO 8284443 A static call to a mismatched method should still be scalarized
1874     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1875       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1876       if (!arg->is_InlineType()) {
1877         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1878         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1879       }
1880       InlineTypeNode* vt = arg->as_InlineType();
1881       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1882       // If an inline type argument is passed as fields, attach the Method* to the call site
1883       // to be able to access the extended signature later via attached_method_before_pc().
1884       // For example, see CompiledMethod::preserve_callee_argument_oops().
1885       call->set_override_symbolic_info(true);
1886       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1887       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1888       C->dependencies()->assert_evol_method(call->method());
1889       arg_num++;
1890       continue;
1891     } else if (arg->is_InlineType()) {
1892       // Pass inline type argument via oop to callee
1893       arg = arg->as_InlineType()->buffer(this);
1894     }
1895     if (t != Type::HALF) {
1896       arg_num++;
1897     }
1898     call->init_req(idx++, arg);
1899   }
1900 }
1901 
1902 //---------------------------set_edges_for_java_call---------------------------
1903 // Connect a newly created call into the current JVMS.
1904 // A return value node (if any) is returned from set_edges_for_java_call.
1905 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1906 
1907   // Add the predefined inputs:
1908   call->init_req( TypeFunc::Control, control() );
1909   call->init_req( TypeFunc::I_O    , i_o() );
1910   call->init_req( TypeFunc::Memory , reset_memory() );
1911   call->init_req( TypeFunc::FramePtr, frameptr() );
1912   call->init_req( TypeFunc::ReturnAdr, top() );
1913 
1914   add_safepoint_edges(call, must_throw);
1915 
1916   Node* xcall = _gvn.transform(call);
1917 
1918   if (xcall == top()) {
1919     set_control(top());
1920     return;
1921   }
1922   assert(xcall == call, "call identity is stable");
1923 
1924   // Re-use the current map to produce the result.
1925 
1926   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1927   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1928   set_all_memory_call(xcall, separate_io_proj);
1929 
1930   //return xcall;   // no need, caller already has it
1931 }
1932 
1933 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1934   if (stopped())  return top();  // maybe the call folded up?
1935 







1936   // Note:  Since any out-of-line call can produce an exception,
1937   // we always insert an I_O projection from the call into the result.
1938 
1939   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1940 
1941   if (separate_io_proj) {
1942     // The caller requested separate projections be used by the fall
1943     // through and exceptional paths, so replace the projections for
1944     // the fall through path.
1945     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1946     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1947   }
1948 
1949   // Capture the return value, if any.
1950   Node* ret;
1951   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1952     ret = top();
1953   } else if (call->tf()->returns_inline_type_as_fields()) {
1954     // Return of multiple values (inline type fields): we create a
1955     // InlineType node, each field is a projection from the call.
1956     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
1957     uint base_input = TypeFunc::Parms;
1958     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
1959   } else {
1960     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1961     ciType* t = call->method()->return_type();
1962     if (t->is_klass()) {
1963       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
1964       if (type->is_inlinetypeptr()) {
1965         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass(), type->inline_klass()->is_null_free());
1966       }
1967     }
1968   }
1969 
1970   // We just called the constructor on a value type receiver. Reload it from the buffer
1971   if (call->method()->is_object_constructor() && call->method()->holder()->is_inlinetype()) {
1972     InlineTypeNode* receiver = call->in(TypeFunc::Parms)->as_InlineType();
1973     assert(receiver->is_larval(), "must be larval");
1974     assert(receiver->is_allocated(&gvn()), "larval must be buffered");
1975     InlineTypeNode* reloaded = InlineTypeNode::make_from_oop(this, receiver->get_oop(), receiver->bottom_type()->inline_klass(), true);
1976     assert(!reloaded->is_larval(), "should not be larval anymore");
1977     replace_in_map(receiver, reloaded);
1978   }
1979 
1980   return ret;
1981 }
1982 
1983 //--------------------set_predefined_input_for_runtime_call--------------------
1984 // Reading and setting the memory state is way conservative here.
1985 // The real problem is that I am not doing real Type analysis on memory,
1986 // so I cannot distinguish card mark stores from other stores.  Across a GC
1987 // point the Store Barrier and the card mark memory has to agree.  I cannot
1988 // have a card mark store and its barrier split across the GC point from
1989 // either above or below.  Here I get that to happen by reading ALL of memory.
1990 // A better answer would be to separate out card marks from other memory.
1991 // For now, return the input memory state, so that it can be reused
1992 // after the call, if this call has restricted memory effects.
1993 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1994   // Set fixed predefined input arguments
1995   Node* memory = reset_memory();
1996   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1997   call->init_req( TypeFunc::Control,   control()  );
1998   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1999   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

2050     if (use->is_MergeMem()) {
2051       wl.push(use);
2052     }
2053   }
2054 }
2055 
2056 // Replace the call with the current state of the kit.
2057 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
2058   JVMState* ejvms = nullptr;
2059   if (has_exceptions()) {
2060     ejvms = transfer_exceptions_into_jvms();
2061   }
2062 
2063   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2064   ReplacedNodes replaced_nodes_exception;
2065   Node* ex_ctl = top();
2066 
2067   SafePointNode* final_state = stop();
2068 
2069   // Find all the needed outputs of this call
2070   CallProjections* callprojs = call->extract_projections(true);

2071 
2072   Unique_Node_List wl;
2073   Node* init_mem = call->in(TypeFunc::Memory);
2074   Node* final_mem = final_state->in(TypeFunc::Memory);
2075   Node* final_ctl = final_state->in(TypeFunc::Control);
2076   Node* final_io = final_state->in(TypeFunc::I_O);
2077 
2078   // Replace all the old call edges with the edges from the inlining result
2079   if (callprojs->fallthrough_catchproj != nullptr) {
2080     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2081   }
2082   if (callprojs->fallthrough_memproj != nullptr) {
2083     if (final_mem->is_MergeMem()) {
2084       // Parser's exits MergeMem was not transformed but may be optimized
2085       final_mem = _gvn.transform(final_mem);
2086     }
2087     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2088     add_mergemem_users_to_worklist(wl, final_mem);
2089   }
2090   if (callprojs->fallthrough_ioproj != nullptr) {
2091     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2092   }
2093 
2094   // Replace the result with the new result if it exists and is used
2095   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2096     // If the inlined code is dead, the result projections for an inline type returned as
2097     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2098     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2099            "unexpected number of results");
2100     C->gvn_replace_by(callprojs->resproj[0], result);
2101   }
2102 
2103   if (ejvms == nullptr) {
2104     // No exception edges to simply kill off those paths
2105     if (callprojs->catchall_catchproj != nullptr) {
2106       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2107     }
2108     if (callprojs->catchall_memproj != nullptr) {
2109       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2110     }
2111     if (callprojs->catchall_ioproj != nullptr) {
2112       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2113     }
2114     // Replace the old exception object with top
2115     if (callprojs->exobj != nullptr) {
2116       C->gvn_replace_by(callprojs->exobj, C->top());
2117     }
2118   } else {
2119     GraphKit ekit(ejvms);
2120 
2121     // Load my combined exception state into the kit, with all phis transformed:
2122     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2123     replaced_nodes_exception = ex_map->replaced_nodes();
2124 
2125     Node* ex_oop = ekit.use_exception_state(ex_map);
2126 
2127     if (callprojs->catchall_catchproj != nullptr) {
2128       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2129       ex_ctl = ekit.control();
2130     }
2131     if (callprojs->catchall_memproj != nullptr) {
2132       Node* ex_mem = ekit.reset_memory();
2133       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2134       add_mergemem_users_to_worklist(wl, ex_mem);
2135     }
2136     if (callprojs->catchall_ioproj != nullptr) {
2137       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2138     }
2139 
2140     // Replace the old exception object with the newly created one
2141     if (callprojs->exobj != nullptr) {
2142       C->gvn_replace_by(callprojs->exobj, ex_oop);
2143     }
2144   }
2145 
2146   // Disconnect the call from the graph
2147   call->disconnect_inputs(C);
2148   C->gvn_replace_by(call, C->top());
2149 
2150   // Clean up any MergeMems that feed other MergeMems since the
2151   // optimizer doesn't like that.
2152   while (wl.size() > 0) {
2153     _gvn.transform(wl.pop());
2154   }
2155 
2156   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2157     replaced_nodes.apply(C, final_ctl);
2158   }
2159   if (!ex_ctl->is_top() && do_replaced_nodes) {
2160     replaced_nodes_exception.apply(C, ex_ctl);
2161   }
2162 }
2163 
2164 
2165 //------------------------------increment_counter------------------------------
2166 // for statistics: increment a VM counter by 1
2167 
2168 void GraphKit::increment_counter(address counter_addr) {
2169   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2170   increment_counter(adr1);
2171 }
2172 
2173 void GraphKit::increment_counter(Node* counter_addr) {
2174   int adr_type = Compile::AliasIdxRaw;
2175   Node* ctrl = control();
2176   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);

2335  *
2336  * @param n          node that the type applies to
2337  * @param exact_kls  type from profiling
2338  * @param maybe_null did profiling see null?
2339  *
2340  * @return           node with improved type
2341  */
2342 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2343   const Type* current_type = _gvn.type(n);
2344   assert(UseTypeSpeculation, "type speculation must be on");
2345 
2346   const TypePtr* speculative = current_type->speculative();
2347 
2348   // Should the klass from the profile be recorded in the speculative type?
2349   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2350     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2351     const TypeOopPtr* xtype = tklass->as_instance_type();
2352     assert(xtype->klass_is_exact(), "Should be exact");
2353     // Any reason to believe n is not null (from this profiling or a previous one)?
2354     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2355     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2356     // record the new speculative type's depth
2357     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2358     speculative = speculative->with_inline_depth(jvms()->depth());
2359   } else if (current_type->would_improve_ptr(ptr_kind)) {
2360     // Profiling report that null was never seen so we can change the
2361     // speculative type to non null ptr.
2362     if (ptr_kind == ProfileAlwaysNull) {
2363       speculative = TypePtr::NULL_PTR;
2364     } else {
2365       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2366       const TypePtr* ptr = TypePtr::NOTNULL;
2367       if (speculative != nullptr) {
2368         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2369       } else {
2370         speculative = ptr;
2371       }
2372     }
2373   }
2374 
2375   if (speculative != current_type->speculative()) {
2376     // Build a type with a speculative type (what we think we know
2377     // about the type but will need a guard when we use it)
2378     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2379     // We're changing the type, we need a new CheckCast node to carry
2380     // the new type. The new type depends on the control: what
2381     // profiling tells us is only valid from here as far as we can
2382     // tell.
2383     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2384     cast = _gvn.transform(cast);
2385     replace_in_map(n, cast);
2386     n = cast;
2387   }
2388 
2389   return n;
2390 }
2391 
2392 /**
2393  * Record profiling data from receiver profiling at an invoke with the
2394  * type system so that it can propagate it (speculation)
2395  *
2396  * @param n  receiver node
2397  *
2398  * @return   node with improved type
2399  */
2400 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2401   if (!UseTypeSpeculation) {
2402     return n;
2403   }
2404   ciKlass* exact_kls = profile_has_unique_klass();
2405   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2406   if ((java_bc() == Bytecodes::_checkcast ||
2407        java_bc() == Bytecodes::_instanceof ||
2408        java_bc() == Bytecodes::_aastore) &&
2409       method()->method_data()->is_mature()) {
2410     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2411     if (data != nullptr) {
2412       if (java_bc() == Bytecodes::_aastore) {
2413         ciKlass* array_type = nullptr;
2414         ciKlass* element_type = nullptr;
2415         ProfilePtrKind element_ptr = ProfileMaybeNull;
2416         bool flat_array = true;
2417         bool null_free_array = true;
2418         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2419         exact_kls = element_type;
2420         ptr_kind = element_ptr;
2421       } else {
2422         if (!data->as_BitData()->null_seen()) {
2423           ptr_kind = ProfileNeverNull;
2424         } else {
2425           assert(data->is_ReceiverTypeData(), "bad profile data type");
2426           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2427           uint i = 0;
2428           for (; i < call->row_limit(); i++) {
2429             ciKlass* receiver = call->receiver(i);
2430             if (receiver != nullptr) {
2431               break;
2432             }
2433           }
2434           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2435         }

2436       }
2437     }
2438   }
2439   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2440 }
2441 
2442 /**
2443  * Record profiling data from argument profiling at an invoke with the
2444  * type system so that it can propagate it (speculation)
2445  *
2446  * @param dest_method  target method for the call
2447  * @param bc           what invoke bytecode is this?
2448  */
2449 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2450   if (!UseTypeSpeculation) {
2451     return;
2452   }
2453   const TypeFunc* tf    = TypeFunc::make(dest_method);
2454   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2455   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2456   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2457     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2458     if (is_reference_type(targ->basic_type())) {
2459       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2460       ciKlass* better_type = nullptr;
2461       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2462         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2463       }
2464       i++;
2465     }
2466   }
2467 }
2468 
2469 /**
2470  * Record profiling data from parameter profiling at an invoke with
2471  * the type system so that it can propagate it (speculation)
2472  */
2473 void GraphKit::record_profiled_parameters_for_speculation() {
2474   if (!UseTypeSpeculation) {
2475     return;
2476   }
2477   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2491  * the type system so that it can propagate it (speculation)
2492  */
2493 void GraphKit::record_profiled_return_for_speculation() {
2494   if (!UseTypeSpeculation) {
2495     return;
2496   }
2497   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2498   ciKlass* better_type = nullptr;
2499   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2500     // If profiling reports a single type for the return value,
2501     // feed it to the type system so it can propagate it as a
2502     // speculative type
2503     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2504   }
2505 }
2506 
2507 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2508   if (Matcher::strict_fp_requires_explicit_rounding) {
2509     // (Note:  TypeFunc::make has a cache that makes this fast.)
2510     const TypeFunc* tf    = TypeFunc::make(dest_method);
2511     int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2512     for (int j = 0; j < nargs; j++) {
2513       const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2514       if (targ->basic_type() == T_DOUBLE) {
2515         // If any parameters are doubles, they must be rounded before
2516         // the call, dprecision_rounding does gvn.transform
2517         Node *arg = argument(j);
2518         arg = dprecision_rounding(arg);
2519         set_argument(j, arg);
2520       }
2521     }
2522   }
2523 }
2524 
2525 // rounding for strict float precision conformance
2526 Node* GraphKit::precision_rounding(Node* n) {
2527   if (Matcher::strict_fp_requires_explicit_rounding) {
2528 #ifdef IA32
2529     if (UseSSE == 0) {
2530       return _gvn.transform(new RoundFloatNode(0, n));
2531     }
2532 #else
2533     Unimplemented();

2642                                   // The first null ends the list.
2643                                   Node* parm0, Node* parm1,
2644                                   Node* parm2, Node* parm3,
2645                                   Node* parm4, Node* parm5,
2646                                   Node* parm6, Node* parm7) {
2647   assert(call_addr != nullptr, "must not call null targets");
2648 
2649   // Slow-path call
2650   bool is_leaf = !(flags & RC_NO_LEAF);
2651   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2652   if (call_name == nullptr) {
2653     assert(!is_leaf, "must supply name for leaf");
2654     call_name = OptoRuntime::stub_name(call_addr);
2655   }
2656   CallNode* call;
2657   if (!is_leaf) {
2658     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2659   } else if (flags & RC_NO_FP) {
2660     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2661   } else  if (flags & RC_VECTOR){
2662     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2663     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2664   } else {
2665     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2666   }
2667 
2668   // The following is similar to set_edges_for_java_call,
2669   // except that the memory effects of the call are restricted to AliasIdxRaw.
2670 
2671   // Slow path call has no side-effects, uses few values
2672   bool wide_in  = !(flags & RC_NARROW_MEM);
2673   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2674 
2675   Node* prev_mem = nullptr;
2676   if (wide_in) {
2677     prev_mem = set_predefined_input_for_runtime_call(call);
2678   } else {
2679     assert(!wide_out, "narrow in => narrow out");
2680     Node* narrow_mem = memory(adr_type);
2681     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2682   }

2722 
2723   if (has_io) {
2724     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2725   }
2726   return call;
2727 
2728 }
2729 
2730 // i2b
2731 Node* GraphKit::sign_extend_byte(Node* in) {
2732   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2733   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2734 }
2735 
2736 // i2s
2737 Node* GraphKit::sign_extend_short(Node* in) {
2738   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2739   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2740 }
2741 
2742 
2743 //------------------------------merge_memory-----------------------------------
2744 // Merge memory from one path into the current memory state.
2745 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2746   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2747     Node* old_slice = mms.force_memory();
2748     Node* new_slice = mms.memory2();
2749     if (old_slice != new_slice) {
2750       PhiNode* phi;
2751       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2752         if (mms.is_empty()) {
2753           // clone base memory Phi's inputs for this memory slice
2754           assert(old_slice == mms.base_memory(), "sanity");
2755           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2756           _gvn.set_type(phi, Type::MEMORY);
2757           for (uint i = 1; i < phi->req(); i++) {
2758             phi->init_req(i, old_slice->in(i));
2759           }
2760         } else {
2761           phi = old_slice->as_Phi(); // Phi was generated already
2762         }

2838 
2839   // Fast check for identical types, perhaps identical constants.
2840   // The types can even be identical non-constants, in cases
2841   // involving Array.newInstance, Object.clone, etc.
2842   if (subklass == superklass)
2843     return C->top();             // false path is dead; no test needed.
2844 
2845   if (gvn.type(superklass)->singleton()) {
2846     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2847     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2848 
2849     // In the common case of an exact superklass, try to fold up the
2850     // test before generating code.  You may ask, why not just generate
2851     // the code and then let it fold up?  The answer is that the generated
2852     // code will necessarily include null checks, which do not always
2853     // completely fold away.  If they are also needless, then they turn
2854     // into a performance loss.  Example:
2855     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2856     // Here, the type of 'fa' is often exact, so the store check
2857     // of fa[1]=x will fold up, without testing the nullness of x.
2858 
2859     // At macro expansion, we would have already folded the SubTypeCheckNode
2860     // being expanded here because we always perform the static sub type
2861     // check in SubTypeCheckNode::sub() regardless of whether
2862     // StressReflectiveCode is set or not. We can therefore skip this
2863     // static check when StressReflectiveCode is on.
2864     switch (C->static_subtype_check(superk, subk)) {
2865     case Compile::SSC_always_false:
2866       {
2867         Node* always_fail = *ctrl;
2868         *ctrl = gvn.C->top();
2869         return always_fail;
2870       }
2871     case Compile::SSC_always_true:
2872       return C->top();
2873     case Compile::SSC_easy_test:
2874       {
2875         // Just do a direct pointer compare and be done.
2876         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2877         *ctrl = gvn.transform(new IfTrueNode(iff));
2878         return gvn.transform(new IfFalseNode(iff));
2879       }
2880     case Compile::SSC_full_test:
2881       break;
2882     default:
2883       ShouldNotReachHere();

3025 
3026   // Now do a linear scan of the secondary super-klass array.  Again, no real
3027   // performance impact (too rare) but it's gotta be done.
3028   // Since the code is rarely used, there is no penalty for moving it
3029   // out of line, and it can only improve I-cache density.
3030   // The decision to inline or out-of-line this final check is platform
3031   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3032   Node* psc = gvn.transform(
3033     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3034 
3035   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3036   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3037   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3038 
3039   // Return false path; set default control to true path.
3040   *ctrl = gvn.transform(r_ok_subtype);
3041   return gvn.transform(r_not_subtype);
3042 }
3043 
3044 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3045   const Type* sub_t = _gvn.type(obj_or_subklass);
3046   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3047     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3048     obj_or_subklass = makecon(sub_t);
3049   }
3050   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3051   if (expand_subtype_check) {
3052     MergeMemNode* mem = merged_memory();
3053     Node* ctrl = control();
3054     Node* subklass = obj_or_subklass;
3055     if (!sub_t->isa_klassptr()) {
3056       subklass = load_object_klass(obj_or_subklass);
3057     }
3058 
3059     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3060     set_control(ctrl);
3061     return n;
3062   }
3063 
3064   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3065   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3066   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3067   set_control(_gvn.transform(new IfTrueNode(iff)));
3068   return _gvn.transform(new IfFalseNode(iff));
3069 }
3070 
3071 // Profile-driven exact type check:
3072 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3073                                     float prob, Node* *casted_receiver) {

3074   assert(!klass->is_interface(), "no exact type check on interfaces");
3075   Node* fail = top();
3076   const Type* rec_t = _gvn.type(receiver);
3077   if (rec_t->is_inlinetypeptr()) {
3078     if (klass->equals(rec_t->inline_klass())) {
3079       (*casted_receiver) = receiver; // Always passes
3080     } else {
3081       (*casted_receiver) = top();    // Always fails
3082       fail = control();
3083       set_control(top());
3084     }
3085     return fail;
3086   }
3087   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3088   Node* recv_klass = load_object_klass(receiver);
3089   fail = type_check(recv_klass, tklass, prob);





3090 
3091   if (!stopped()) {
3092     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3093     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3094     assert(recv_xtype->klass_is_exact(), "");
3095 
3096     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3097       // Subsume downstream occurrences of receiver with a cast to
3098       // recv_xtype, since now we know what the type will be.
3099       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3100       Node* res = _gvn.transform(cast);
3101       if (recv_xtype->is_inlinetypeptr()) {
3102         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3103         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3104       }
3105       (*casted_receiver) = res;
3106       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3107       // (User must make the replace_in_map call.)
3108     }
3109   }
3110 
3111   return fail;
3112 }
3113 
3114 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3115                            float prob) {
3116   Node* want_klass = makecon(tklass);
3117   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3118   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3119   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3120   set_control(_gvn.transform(new IfTrueNode (iff)));
3121   Node* fail = _gvn.transform(new IfFalseNode(iff));
3122   return fail;
3123 }
3124 
3125 //------------------------------subtype_check_receiver-------------------------
3126 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3127                                        Node** casted_receiver) {
3128   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3129   Node* want_klass = makecon(tklass);
3130 
3131   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3132 
3133   // Ignore interface type information until interface types are properly tracked.
3134   if (!stopped() && !klass->is_interface()) {
3135     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3136     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3137     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3138       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3139       if (recv_type->is_inlinetypeptr()) {
3140         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3141       }
3142       (*casted_receiver) = cast;
3143     }
3144   }
3145 
3146   return slow_ctl;
3147 }
3148 
3149 //------------------------------seems_never_null-------------------------------
3150 // Use null_seen information if it is available from the profile.
3151 // If we see an unexpected null at a type check we record it and force a
3152 // recompile; the offending check will be recompiled to handle nulls.
3153 // If we see several offending BCIs, then all checks in the
3154 // method will be recompiled.
3155 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3156   speculating = !_gvn.type(obj)->speculative_maybe_null();
3157   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3158   if (UncommonNullCast               // Cutout for this technique
3159       && obj != null()               // And not the -Xcomp stupid case?
3160       && !too_many_traps(reason)
3161       ) {
3162     if (speculating) {

3231 
3232 //------------------------maybe_cast_profiled_receiver-------------------------
3233 // If the profile has seen exactly one type, narrow to exactly that type.
3234 // Subsequent type checks will always fold up.
3235 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3236                                              const TypeKlassPtr* require_klass,
3237                                              ciKlass* spec_klass,
3238                                              bool safe_for_replace) {
3239   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3240 
3241   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3242 
3243   // Make sure we haven't already deoptimized from this tactic.
3244   if (too_many_traps_or_recompiles(reason))
3245     return nullptr;
3246 
3247   // (No, this isn't a call, but it's enough like a virtual call
3248   // to use the same ciMethod accessor to get the profile info...)
3249   // If we have a speculative type use it instead of profiling (which
3250   // may not help us)
3251   ciKlass* exact_kls = spec_klass;
3252   if (exact_kls == nullptr) {
3253     if (java_bc() == Bytecodes::_aastore) {
3254       ciKlass* array_type = nullptr;
3255       ciKlass* element_type = nullptr;
3256       ProfilePtrKind element_ptr = ProfileMaybeNull;
3257       bool flat_array = true;
3258       bool null_free_array = true;
3259       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3260       exact_kls = element_type;
3261     } else {
3262       exact_kls = profile_has_unique_klass();
3263     }
3264   }
3265   if (exact_kls != nullptr) {// no cast failures here
3266     if (require_klass == nullptr ||
3267         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3268       // If we narrow the type to match what the type profile sees or
3269       // the speculative type, we can then remove the rest of the
3270       // cast.
3271       // This is a win, even if the exact_kls is very specific,
3272       // because downstream operations, such as method calls,
3273       // will often benefit from the sharper type.
3274       Node* exact_obj = not_null_obj; // will get updated in place...
3275       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3276                                             &exact_obj);
3277       { PreserveJVMState pjvms(this);
3278         set_control(slow_ctl);
3279         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3280       }
3281       if (safe_for_replace) {
3282         replace_in_map(not_null_obj, exact_obj);
3283       }
3284       return exact_obj;

3374   // If not_null_obj is dead, only null-path is taken
3375   if (stopped()) {              // Doing instance-of on a null?
3376     set_control(null_ctl);
3377     return intcon(0);
3378   }
3379   region->init_req(_null_path, null_ctl);
3380   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3381   if (null_ctl == top()) {
3382     // Do this eagerly, so that pattern matches like is_diamond_phi
3383     // will work even during parsing.
3384     assert(_null_path == PATH_LIMIT-1, "delete last");
3385     region->del_req(_null_path);
3386     phi   ->del_req(_null_path);
3387   }
3388 
3389   // Do we know the type check always succeed?
3390   bool known_statically = false;
3391   if (_gvn.type(superklass)->singleton()) {
3392     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3393     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3394     if (subk != nullptr && subk->is_loaded()) {
3395       int static_res = C->static_subtype_check(superk, subk);
3396       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3397     }
3398   }
3399 
3400   if (!known_statically) {
3401     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3402     // We may not have profiling here or it may not help us. If we
3403     // have a speculative type use it to perform an exact cast.
3404     ciKlass* spec_obj_type = obj_type->speculative_type();
3405     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3406       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3407       if (stopped()) {            // Profile disagrees with this path.
3408         set_control(null_ctl);    // Null is the only remaining possibility.
3409         return intcon(0);
3410       }
3411       if (cast_obj != nullptr) {
3412         not_null_obj = cast_obj;
3413       }
3414     }

3430   record_for_igvn(region);
3431 
3432   // If we know the type check always succeeds then we don't use the
3433   // profiling data at this bytecode. Don't lose it, feed it to the
3434   // type system as a speculative type.
3435   if (safe_for_replace) {
3436     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3437     replace_in_map(obj, casted_obj);
3438   }
3439 
3440   return _gvn.transform(phi);
3441 }
3442 
3443 //-------------------------------gen_checkcast---------------------------------
3444 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3445 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3446 // uncommon-trap paths work.  Adjust stack after this call.
3447 // If failure_control is supplied and not null, it is filled in with
3448 // the control edge for the cast failure.  Otherwise, an appropriate
3449 // uncommon trap or exception is thrown.
3450 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {

3451   kill_dead_locals();           // Benefit all the uncommon traps
3452   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3453   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3454   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3455   bool safe_for_replace = (failure_control == nullptr);
3456   assert(!null_free || toop->is_inlinetypeptr(), "must be an inline type pointer");
3457 
3458   // Fast cutout:  Check the case that the cast is vacuously true.
3459   // This detects the common cases where the test will short-circuit
3460   // away completely.  We do this before we perform the null check,
3461   // because if the test is going to turn into zero code, we don't
3462   // want a residual null check left around.  (Causes a slowdown,
3463   // for example, in some objArray manipulations, such as a[i]=a[j].)
3464   if (improved_klass_ptr_type->singleton()) {
3465     const TypeKlassPtr* kptr = nullptr;
3466     const Type* t = _gvn.type(obj);
3467     if (t->isa_oop_ptr()) {
3468       kptr = t->is_oopptr()->as_klass_type();
3469     } else if (obj->is_InlineType()) {
3470       ciInlineKlass* vk = t->inline_klass();
3471       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3472     }
3473     if (kptr != nullptr) {
3474       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3475       case Compile::SSC_always_true:
3476         // If we know the type check always succeed then we don't use
3477         // the profiling data at this bytecode. Don't lose it, feed it
3478         // to the type system as a speculative type.
3479         obj = record_profiled_receiver_for_speculation(obj);
3480         if (null_free) {
3481           assert(safe_for_replace, "must be");
3482           obj = null_check(obj);
3483         }
3484         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3485         return obj;
3486       case Compile::SSC_always_false:
3487         if (null_free) {
3488           assert(safe_for_replace, "must be");
3489           obj = null_check(obj);
3490         }
3491         // It needs a null check because a null will *pass* the cast check.
3492         if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) {

3493           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3494           Deoptimization::DeoptReason reason = is_aastore ?
3495             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3496           builtin_throw(reason);
3497           return top();
3498         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3499           return null_assert(obj);
3500         }
3501         break; // Fall through to full check
3502       default:
3503         break;
3504       }
3505     }
3506   }
3507 
3508   ciProfileData* data = nullptr;

3509   if (failure_control == nullptr) {        // use MDO in regular case only
3510     assert(java_bc() == Bytecodes::_aastore ||
3511            java_bc() == Bytecodes::_checkcast,
3512            "interpreter profiles type checks only for these BCs");
3513     if (method()->method_data()->is_mature()) {
3514       data = method()->method_data()->bci_to_data(bci());
3515     }
3516   }
3517 
3518   // Make the merge point
3519   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3520   RegionNode* region = new RegionNode(PATH_LIMIT);
3521   Node*       phi    = new PhiNode(region, toop);
3522   _gvn.set_type(region, Type::CONTROL);
3523   _gvn.set_type(phi, toop);
3524 
3525   C->set_has_split_ifs(true); // Has chance for split-if optimization
3526 
3527   // Use null-cast information if it is available
3528   bool speculative_not_null = false;
3529   bool never_see_null = ((failure_control == nullptr)  // regular case only
3530                          && seems_never_null(obj, data, speculative_not_null));
3531 
3532   if (obj->is_InlineType()) {
3533     // Re-execute if buffering during triggers deoptimization
3534     PreserveReexecuteState preexecs(this);
3535     jvms()->set_should_reexecute(true);
3536     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3537   }
3538 
3539   // Null check; get casted pointer; set region slot 3
3540   Node* null_ctl = top();
3541   Node* not_null_obj = nullptr;
3542   if (null_free) {
3543     assert(safe_for_replace, "must be");
3544     not_null_obj = null_check(obj);
3545   } else {
3546     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3547   }
3548 
3549   // If not_null_obj is dead, only null-path is taken
3550   if (stopped()) {              // Doing instance-of on a null?
3551     set_control(null_ctl);
3552     if (toop->is_inlinetypeptr()) {
3553       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3554     }
3555     return null();
3556   }
3557   region->init_req(_null_path, null_ctl);
3558   phi   ->init_req(_null_path, null());  // Set null path value
3559   if (null_ctl == top()) {
3560     // Do this eagerly, so that pattern matches like is_diamond_phi
3561     // will work even during parsing.
3562     assert(_null_path == PATH_LIMIT-1, "delete last");
3563     region->del_req(_null_path);
3564     phi   ->del_req(_null_path);
3565   }
3566 
3567   Node* cast_obj = nullptr;
3568   if (improved_klass_ptr_type->klass_is_exact()) {
3569     // The following optimization tries to statically cast the speculative type of the object
3570     // (for example obtained during profiling) to the type of the superklass and then do a
3571     // dynamic check that the type of the object is what we expect. To work correctly
3572     // for checkcast and aastore the type of superklass should be exact.
3573     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3574     // We may not have profiling here or it may not help us. If we have
3575     // a speculative type use it to perform an exact cast.
3576     ciKlass* spec_obj_type = obj_type->speculative_type();
3577     if (spec_obj_type != nullptr || data != nullptr) {
3578       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3579       if (cast_obj != nullptr) {
3580         if (failure_control != nullptr) // failure is now impossible
3581           (*failure_control) = top();
3582         // adjust the type of the phi to the exact klass:
3583         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3584       }
3585     }
3586   }
3587 
3588   if (cast_obj == nullptr) {
3589     // Generate the subtype check
3590     Node* improved_superklass = superklass;
3591     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3592       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3593       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3594       // Additionally, the benefit would only be minor in non-constant cases.
3595       improved_superklass = makecon(improved_klass_ptr_type);
3596     }
3597     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3598     // Plug in success path into the merge
3599     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3600     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3601     if (failure_control == nullptr) {
3602       if (not_subtype_ctrl != top()) { // If failure is possible
3603         PreserveJVMState pjvms(this);
3604         set_control(not_subtype_ctrl);
3605         Node* obj_klass = nullptr;
3606         if (not_null_obj->is_InlineType()) {
3607           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3608         } else {
3609           obj_klass = load_object_klass(not_null_obj);
3610         }
3611         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3612         Deoptimization::DeoptReason reason = is_aastore ?
3613           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3614         builtin_throw(reason);
3615       }
3616     } else {
3617       (*failure_control) = not_subtype_ctrl;
3618     }
3619   }
3620 
3621   region->init_req(_obj_path, control());
3622   phi   ->init_req(_obj_path, cast_obj);
3623 
3624   // A merge of null or Casted-NotNull obj
3625   Node* res = _gvn.transform(phi);
3626 
3627   // Note I do NOT always 'replace_in_map(obj,result)' here.
3628   //  if( tk->klass()->can_be_primary_super()  )
3629     // This means that if I successfully store an Object into an array-of-String
3630     // I 'forget' that the Object is really now known to be a String.  I have to
3631     // do this because we don't have true union types for interfaces - if I store
3632     // a Baz into an array-of-Interface and then tell the optimizer it's an
3633     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3634     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3635   //  replace_in_map( obj, res );
3636 
3637   // Return final merged results
3638   set_control( _gvn.transform(region) );
3639   record_for_igvn(region);
3640 
3641   bool not_inline = !toop->can_be_inline_type();
3642   bool not_flat_in_array = !UseFlatArray || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_in_array());
3643   if (EnableValhalla && not_flat_in_array) {
3644     // Check if obj has been loaded from an array
3645     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3646     Node* array = nullptr;
3647     if (obj->isa_Load()) {
3648       Node* address = obj->in(MemNode::Address);
3649       if (address->isa_AddP()) {
3650         array = address->as_AddP()->in(AddPNode::Base);
3651       }
3652     } else if (obj->is_Phi()) {
3653       Node* region = obj->in(0);
3654       // TODO make this more robust (see JDK-8231346)
3655       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3656         IfNode* iff = region->in(2)->in(0)->isa_If();
3657         if (iff != nullptr) {
3658           iff->is_flat_array_check(&_gvn, &array);
3659         }
3660       }
3661     }
3662     if (array != nullptr) {
3663       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3664       if (ary_t != nullptr && !ary_t->is_flat()) {
3665         if (!ary_t->is_not_null_free() && not_inline) {
3666           // Casting array element to a non-inline-type, mark array as not null-free.
3667           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3668           replace_in_map(array, cast);
3669         } else if (!ary_t->is_not_flat()) {
3670           // Casting array element to a non-flat type, mark array as not flat.
3671           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3672           replace_in_map(array, cast);
3673         }
3674       }
3675     }
3676   }
3677 
3678   if (!stopped() && !res->is_InlineType()) {
3679     res = record_profiled_receiver_for_speculation(res);
3680     if (toop->is_inlinetypeptr()) {
3681       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3682       res = vt;
3683       if (safe_for_replace) {
3684         replace_in_map(obj, vt);
3685         replace_in_map(not_null_obj, vt);
3686         replace_in_map(res, vt);
3687       }
3688     }
3689   }
3690   return res;
3691 }
3692 
3693 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3694   // Load markword
3695   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3696   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3697   if (check_lock) {
3698     // Check if obj is locked
3699     Node* locked_bit = MakeConX(markWord::unlocked_value);
3700     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3701     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3702     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3703     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3704     _gvn.transform(iff);
3705     Node* locked_region = new RegionNode(3);
3706     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3707 
3708     // Unlocked: Use bits from mark word
3709     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3710     mark_phi->init_req(1, mark);
3711 
3712     // Locked: Load prototype header from klass
3713     set_control(_gvn.transform(new IfFalseNode(iff)));
3714     // Make loads control dependent to make sure they are only executed if array is locked
3715     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3716     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, control(), C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3717     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3718     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3719 
3720     locked_region->init_req(2, control());
3721     mark_phi->init_req(2, proto);
3722     set_control(_gvn.transform(locked_region));
3723     record_for_igvn(locked_region);
3724 
3725     mark = mark_phi;
3726   }
3727 
3728   // Now check if mark word bits are set
3729   Node* mask = MakeConX(mask_val);
3730   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3731   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3732   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3733   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3734 }
3735 
3736 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3737   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3738 }
3739 
3740 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3741   // We can't use immutable memory here because the mark word is mutable.
3742   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3743   // check is moved out of loops (mainly to enable loop unswitching).
3744   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3745   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3746   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3747 }
3748 
3749 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3750   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3751 }
3752 
3753 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3754 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3755   RegionNode* region = new RegionNode(3);
3756   Node* null_ctl = top();
3757   null_check_oop(val, &null_ctl);
3758   if (null_ctl != top()) {
3759     PreserveJVMState pjvms(this);
3760     set_control(null_ctl);
3761     {
3762       // Deoptimize if null-free array
3763       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3764       inc_sp(nargs);
3765       uncommon_trap(Deoptimization::Reason_null_check,
3766                     Deoptimization::Action_none);
3767     }
3768     region->init_req(1, control());
3769   }
3770   region->init_req(2, control());
3771   set_control(_gvn.transform(region));
3772   record_for_igvn(region);
3773   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3774     // Since we were just successfully storing null, the array can't be null free.
3775     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3776     ary_t = ary_t->cast_to_not_null_free();
3777     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3778     if (safe_for_replace) {
3779       replace_in_map(ary, cast);
3780     }
3781     ary = cast;
3782   }
3783   return ary;
3784 }
3785 
3786 //------------------------------next_monitor-----------------------------------
3787 // What number should be given to the next monitor?
3788 int GraphKit::next_monitor() {
3789   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3790   int next = current + C->sync_stack_slots();
3791   // Keep the toplevel high water mark current:
3792   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3793   return current;
3794 }
3795 
3796 //------------------------------insert_mem_bar---------------------------------
3797 // Memory barrier to avoid floating things around
3798 // The membar serves as a pinch point between both control and all memory slices.
3799 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3800   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3801   mb->init_req(TypeFunc::Control, control());
3802   mb->init_req(TypeFunc::Memory,  reset_memory());
3803   Node* membar = _gvn.transform(mb);

3831   }
3832   Node* membar = _gvn.transform(mb);
3833   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3834   if (alias_idx == Compile::AliasIdxBot) {
3835     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3836   } else {
3837     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3838   }
3839   return membar;
3840 }
3841 
3842 //------------------------------shared_lock------------------------------------
3843 // Emit locking code.
3844 FastLockNode* GraphKit::shared_lock(Node* obj) {
3845   // bci is either a monitorenter bc or InvocationEntryBci
3846   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3847   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3848 
3849   if( !GenerateSynchronizationCode )
3850     return nullptr;                // Not locking things?
3851 
3852   if (stopped())                // Dead monitor?
3853     return nullptr;
3854 
3855   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3856 
3857   // Box the stack location
3858   Node* box = new BoxLockNode(next_monitor());
3859   // Check for bailout after new BoxLockNode
3860   if (failing()) { return nullptr; }
3861   box = _gvn.transform(box);
3862   Node* mem = reset_memory();
3863 
3864   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3865 
3866   // Create the rtm counters for this fast lock if needed.
3867   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3868 
3869   // Add monitor to debug info for the slow path.  If we block inside the
3870   // slow path and de-opt, we need the monitor hanging around
3871   map()->push_monitor( flock );

3903   }
3904 #endif
3905 
3906   return flock;
3907 }
3908 
3909 
3910 //------------------------------shared_unlock----------------------------------
3911 // Emit unlocking code.
3912 void GraphKit::shared_unlock(Node* box, Node* obj) {
3913   // bci is either a monitorenter bc or InvocationEntryBci
3914   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3915   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3916 
3917   if( !GenerateSynchronizationCode )
3918     return;
3919   if (stopped()) {               // Dead monitor?
3920     map()->pop_monitor();        // Kill monitor from debug info
3921     return;
3922   }
3923   assert(!obj->is_InlineType(), "should not unlock on inline type");
3924 
3925   // Memory barrier to avoid floating things down past the locked region
3926   insert_mem_bar(Op_MemBarReleaseLock);
3927 
3928   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3929   UnlockNode *unlock = new UnlockNode(C, tf);
3930 #ifdef ASSERT
3931   unlock->set_dbg_jvms(sync_jvms());
3932 #endif
3933   uint raw_idx = Compile::AliasIdxRaw;
3934   unlock->init_req( TypeFunc::Control, control() );
3935   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3936   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3937   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3938   unlock->init_req( TypeFunc::ReturnAdr, top() );
3939 
3940   unlock->init_req(TypeFunc::Parms + 0, obj);
3941   unlock->init_req(TypeFunc::Parms + 1, box);
3942   unlock = _gvn.transform(unlock)->as_Unlock();
3943 
3944   Node* mem = reset_memory();
3945 
3946   // unlock has no side-effects, sets few values
3947   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3948 
3949   // Kill monitor from debug info
3950   map()->pop_monitor( );
3951 }
3952 
3953 //-------------------------------get_layout_helper-----------------------------
3954 // If the given klass is a constant or known to be an array,
3955 // fetch the constant layout helper value into constant_value
3956 // and return null.  Otherwise, load the non-constant
3957 // layout helper value, and return the node which represents it.
3958 // This two-faced routine is useful because allocation sites
3959 // almost always feature constant types.
3960 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3961   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3962   if (!StressReflectiveCode && klass_t != nullptr) {
3963     bool xklass = klass_t->klass_is_exact();
3964     bool can_be_flat = false;
3965     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
3966     if (UseFlatArray && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
3967       // TODO 8325106 Fix comment
3968       // The runtime type of [LMyValue might be [QMyValue due to [QMyValue <: [LMyValue. Don't constant fold.
3969       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
3970       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_in_array());
3971     }
3972     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
3973       jint lhelper;
3974       if (klass_t->is_flat()) {
3975         lhelper = ary_type->flat_layout_helper();
3976       } else if (klass_t->isa_aryklassptr()) {
3977         BasicType elem = ary_type->elem()->array_element_basic_type();
3978         if (is_reference_type(elem, true)) {
3979           elem = T_OBJECT;
3980         }
3981         lhelper = Klass::array_layout_helper(elem);
3982       } else {
3983         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3984       }
3985       if (lhelper != Klass::_lh_neutral_value) {
3986         constant_value = lhelper;
3987         return (Node*) nullptr;
3988       }
3989     }
3990   }
3991   constant_value = Klass::_lh_neutral_value;  // put in a known value
3992   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3993   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3994 }
3995 
3996 // We just put in an allocate/initialize with a big raw-memory effect.
3997 // Hook selected additional alias categories on the initialization.
3998 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3999                                 MergeMemNode* init_in_merge,
4000                                 Node* init_out_raw) {
4001   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4002   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4003 
4004   Node* prevmem = kit.memory(alias_idx);
4005   init_in_merge->set_memory_at(alias_idx, prevmem);
4006   if (init_out_raw != nullptr) {
4007     kit.set_memory(init_out_raw, alias_idx);
4008   }
4009 }
4010 
4011 //---------------------------set_output_for_allocation-------------------------
4012 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4013                                           const TypeOopPtr* oop_type,
4014                                           bool deoptimize_on_exception) {
4015   int rawidx = Compile::AliasIdxRaw;
4016   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4017   add_safepoint_edges(alloc);
4018   Node* allocx = _gvn.transform(alloc);
4019   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4020   // create memory projection for i_o
4021   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4022   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4023 
4024   // create a memory projection as for the normal control path
4025   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4026   set_memory(malloc, rawidx);
4027 
4028   // a normal slow-call doesn't change i_o, but an allocation does
4029   // we create a separate i_o projection for the normal control path
4030   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4031   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4032 
4033   // put in an initialization barrier
4034   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4035                                                  rawoop)->as_Initialize();
4036   assert(alloc->initialization() == init,  "2-way macro link must work");
4037   assert(init ->allocation()     == alloc, "2-way macro link must work");
4038   {
4039     // Extract memory strands which may participate in the new object's
4040     // initialization, and source them from the new InitializeNode.
4041     // This will allow us to observe initializations when they occur,
4042     // and link them properly (as a group) to the InitializeNode.
4043     assert(init->in(InitializeNode::Memory) == malloc, "");
4044     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4045     init->set_req(InitializeNode::Memory, minit_in);
4046     record_for_igvn(minit_in); // fold it up later, if possible
4047     _gvn.set_type(minit_in, Type::MEMORY);
4048     Node* minit_out = memory(rawidx);
4049     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4050     // Add an edge in the MergeMem for the header fields so an access
4051     // to one of those has correct memory state
4052     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4053     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4054     if (oop_type->isa_aryptr()) {
4055       const TypeAryPtr* arytype = oop_type->is_aryptr();
4056       if (arytype->is_flat()) {
4057         // Initially all flat array accesses share a single slice
4058         // but that changes after parsing. Prepare the memory graph so
4059         // it can optimize flat array accesses properly once they
4060         // don't share a single slice.
4061         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4062         C->set_flat_accesses_share_alias(false);
4063         ciInlineKlass* vk = arytype->elem()->inline_klass();
4064         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4065           ciField* field = vk->nonstatic_field_at(i);
4066           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4067             continue;  // do not bother to track really large numbers of fields
4068           int off_in_vt = field->offset_in_bytes() - vk->first_field_offset();
4069           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4070           int fieldidx = C->get_alias_index(adr_type, true);
4071           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4072           // can result in per flat array field Phis to be created which confuses the logic of
4073           // Compile::adjust_flat_array_access_aliases().
4074           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4075         }
4076         C->set_flat_accesses_share_alias(true);
4077         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4078       } else {
4079         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4080         int            elemidx  = C->get_alias_index(telemref);
4081         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4082       }
4083     } else if (oop_type->isa_instptr()) {
4084       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4085       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4086       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4087         ciField* field = ik->nonstatic_field_at(i);
4088         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4089           continue;  // do not bother to track really large numbers of fields
4090         // Find (or create) the alias category for this field:
4091         int fieldidx = C->alias_type(field)->index();
4092         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4093       }
4094     }
4095   }
4096 
4097   // Cast raw oop to the real thing...
4098   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4099   javaoop = _gvn.transform(javaoop);
4100   C->set_recent_alloc(control(), javaoop);
4101   assert(just_allocated_object(control()) == javaoop, "just allocated");
4102 
4103 #ifdef ASSERT
4104   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

4115       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4116     }
4117   }
4118 #endif //ASSERT
4119 
4120   return javaoop;
4121 }
4122 
4123 //---------------------------new_instance--------------------------------------
4124 // This routine takes a klass_node which may be constant (for a static type)
4125 // or may be non-constant (for reflective code).  It will work equally well
4126 // for either, and the graph will fold nicely if the optimizer later reduces
4127 // the type to a constant.
4128 // The optional arguments are for specialized use by intrinsics:
4129 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4130 //  - If 'return_size_val', report the total object size to the caller.
4131 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4132 Node* GraphKit::new_instance(Node* klass_node,
4133                              Node* extra_slow_test,
4134                              Node* *return_size_val,
4135                              bool deoptimize_on_exception,
4136                              InlineTypeNode* inline_type_node) {
4137   // Compute size in doublewords
4138   // The size is always an integral number of doublewords, represented
4139   // as a positive bytewise size stored in the klass's layout_helper.
4140   // The layout_helper also encodes (in a low bit) the need for a slow path.
4141   jint  layout_con = Klass::_lh_neutral_value;
4142   Node* layout_val = get_layout_helper(klass_node, layout_con);
4143   bool  layout_is_con = (layout_val == nullptr);
4144 
4145   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4146   // Generate the initial go-slow test.  It's either ALWAYS (return a
4147   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4148   // case) a computed value derived from the layout_helper.
4149   Node* initial_slow_test = nullptr;
4150   if (layout_is_con) {
4151     assert(!StressReflectiveCode, "stress mode does not use these paths");
4152     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4153     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4154   } else {   // reflective case
4155     // This reflective path is used by Unsafe.allocateInstance.
4156     // (It may be stress-tested by specifying StressReflectiveCode.)
4157     // Basically, we want to get into the VM is there's an illegal argument.
4158     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4159     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4160     if (extra_slow_test != intcon(0)) {
4161       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4162     }
4163     // (Macro-expander will further convert this to a Bool, if necessary.)

4174 
4175     // Clear the low bits to extract layout_helper_size_in_bytes:
4176     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4177     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4178     size = _gvn.transform( new AndXNode(size, mask) );
4179   }
4180   if (return_size_val != nullptr) {
4181     (*return_size_val) = size;
4182   }
4183 
4184   // This is a precise notnull oop of the klass.
4185   // (Actually, it need not be precise if this is a reflective allocation.)
4186   // It's what we cast the result to.
4187   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4188   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4189   const TypeOopPtr* oop_type = tklass->as_instance_type();
4190 
4191   // Now generate allocation code
4192 
4193   // The entire memory state is needed for slow path of the allocation
4194   // since GC and deoptimization can happen.
4195   Node *mem = reset_memory();
4196   set_all_memory(mem); // Create new memory state
4197 
4198   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4199                                          control(), mem, i_o(),
4200                                          size, klass_node,
4201                                          initial_slow_test, inline_type_node);
4202 
4203   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4204 }
4205 
4206 //-------------------------------new_array-------------------------------------
4207 // helper for newarray and anewarray
4208 // The 'length' parameter is (obviously) the length of the array.
4209 // The optional arguments are for specialized use by intrinsics:
4210 //  - If 'return_size_val', report the non-padded array size (sum of header size
4211 //    and array body) to the caller.
4212 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4213 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4214                           Node* length,         // number of array elements
4215                           int   nargs,          // number of arguments to push back for uncommon trap
4216                           Node* *return_size_val,
4217                           bool deoptimize_on_exception) {
4218   jint  layout_con = Klass::_lh_neutral_value;
4219   Node* layout_val = get_layout_helper(klass_node, layout_con);
4220   bool  layout_is_con = (layout_val == nullptr);
4221 
4222   if (!layout_is_con && !StressReflectiveCode &&
4223       !too_many_traps(Deoptimization::Reason_class_check)) {
4224     // This is a reflective array creation site.
4225     // Optimistically assume that it is a subtype of Object[],
4226     // so that we can fold up all the address arithmetic.
4227     layout_con = Klass::array_layout_helper(T_OBJECT);
4228     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4229     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4230     { BuildCutout unless(this, bol_lh, PROB_MAX);
4231       inc_sp(nargs);
4232       uncommon_trap(Deoptimization::Reason_class_check,
4233                     Deoptimization::Action_maybe_recompile);
4234     }
4235     layout_val = nullptr;
4236     layout_is_con = true;
4237   }
4238 
4239   // Generate the initial go-slow test.  Make sure we do not overflow
4240   // if length is huge (near 2Gig) or negative!  We do not need
4241   // exact double-words here, just a close approximation of needed
4242   // double-words.  We can't add any offset or rounding bits, lest we
4243   // take a size -1 of bytes and make it positive.  Use an unsigned
4244   // compare, so negative sizes look hugely positive.
4245   int fast_size_limit = FastAllocateSizeLimit;
4246   if (layout_is_con) {
4247     assert(!StressReflectiveCode, "stress mode does not use these paths");
4248     // Increase the size limit if we have exact knowledge of array type.
4249     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4250     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4251   }
4252 
4253   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4254   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4255 
4256   // --- Size Computation ---
4257   // array_size = round_to_heap(array_header + (length << elem_shift));
4258   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4259   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4260   // The rounding mask is strength-reduced, if possible.
4261   int round_mask = MinObjAlignmentInBytes - 1;
4262   Node* header_size = nullptr;
4263   // (T_BYTE has the weakest alignment and size restrictions...)
4264   if (layout_is_con) {
4265     int       hsize  = Klass::layout_helper_header_size(layout_con);
4266     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4267     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4268     if ((round_mask & ~right_n_bits(eshift)) == 0)
4269       round_mask = 0;  // strength-reduce it if it goes away completely
4270     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4271     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4272     assert(header_size_min <= hsize, "generic minimum is smallest");
4273     header_size = intcon(hsize);
4274   } else {
4275     Node* hss   = intcon(Klass::_lh_header_size_shift);
4276     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4277     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4278     header_size = _gvn.transform(new AndINode(header_size, hsm));
4279   }
4280 
4281   Node* elem_shift = nullptr;
4282   if (layout_is_con) {
4283     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4284     if (eshift != 0)
4285       elem_shift = intcon(eshift);
4286   } else {
4287     // There is no need to mask or shift this value.
4288     // The semantics of LShiftINode include an implicit mask to 0x1F.
4289     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4290     elem_shift = layout_val;

4337   }
4338   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4339 
4340   if (return_size_val != nullptr) {
4341     // This is the size
4342     (*return_size_val) = non_rounded_size;
4343   }
4344 
4345   Node* size = non_rounded_size;
4346   if (round_mask != 0) {
4347     Node* mask1 = MakeConX(round_mask);
4348     size = _gvn.transform(new AddXNode(size, mask1));
4349     Node* mask2 = MakeConX(~round_mask);
4350     size = _gvn.transform(new AndXNode(size, mask2));
4351   }
4352   // else if round_mask == 0, the size computation is self-rounding
4353 
4354   // Now generate allocation code
4355 
4356   // The entire memory state is needed for slow path of the allocation
4357   // since GC and deoptimization can happen.
4358   Node *mem = reset_memory();
4359   set_all_memory(mem); // Create new memory state
4360 
4361   if (initial_slow_test->is_Bool()) {
4362     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4363     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4364   }
4365 
4366   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4367   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4368   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4369 
4370   // TODO 8325106 Fix comment
4371   // Inline type array variants:
4372   // - null-ok:              MyValue.ref[] (ciObjArrayKlass "[LMyValue")
4373   // - null-free:            MyValue.val[] (ciObjArrayKlass "[QMyValue")
4374   // - null-free, flat     : MyValue.val[] (ciFlatArrayKlass "[QMyValue")
4375   // Check if array is a null-free, non-flat inline type array
4376   // that needs to be initialized with the default inline type.
4377   Node* default_value = nullptr;
4378   Node* raw_default_value = nullptr;
4379   if (ary_ptr != nullptr && ary_ptr->klass_is_exact()) {
4380     // Array type is known
4381     if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) {
4382       ciInlineKlass* vk = ary_ptr->elem()->inline_klass();
4383       default_value = InlineTypeNode::default_oop(gvn(), vk);
4384       if (UseCompressedOops) {
4385         // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4386         default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4387         Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4388         Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4389         raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4390       } else {
4391         raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4392       }
4393     }
4394   }
4395 
4396   Node* valid_length_test = _gvn.intcon(1);
4397   if (ary_type->isa_aryptr()) {
4398     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4399     jint max = TypeAryPtr::max_array_length(bt);
4400     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4401     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4402   }
4403 
4404   // Create the AllocateArrayNode and its result projections
4405   AllocateArrayNode* alloc
4406     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4407                             control(), mem, i_o(),
4408                             size, klass_node,
4409                             initial_slow_test,
4410                             length, valid_length_test,
4411                             default_value, raw_default_value);
4412   // Cast to correct type.  Note that the klass_node may be constant or not,
4413   // and in the latter case the actual array type will be inexact also.
4414   // (This happens via a non-constant argument to inline_native_newArray.)
4415   // In any case, the value of klass_node provides the desired array type.
4416   const TypeInt* length_type = _gvn.find_int_type(length);
4417   if (ary_type->isa_aryptr() && length_type != nullptr) {
4418     // Try to get a better type than POS for the size
4419     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4420   }
4421 
4422   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4423 
4424   array_ideal_length(alloc, ary_type, true);
4425   return javaoop;
4426 }
4427 
4428 // The following "Ideal_foo" functions are placed here because they recognize
4429 // the graph shapes created by the functions immediately above.
4430 
4431 //---------------------------Ideal_allocation----------------------------------

4538   set_all_memory(ideal.merged_memory());
4539   set_i_o(ideal.i_o());
4540   set_control(ideal.ctrl());
4541 }
4542 
4543 void GraphKit::final_sync(IdealKit& ideal) {
4544   // Final sync IdealKit and graphKit.
4545   sync_kit(ideal);
4546 }
4547 
4548 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4549   Node* len = load_array_length(load_String_value(str, set_ctrl));
4550   Node* coder = load_String_coder(str, set_ctrl);
4551   // Divide length by 2 if coder is UTF16
4552   return _gvn.transform(new RShiftINode(len, coder));
4553 }
4554 
4555 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4556   int value_offset = java_lang_String::value_offset();
4557   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4558                                                      false, nullptr, Type::Offset(0));
4559   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4560   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4561                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4562                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4563   Node* p = basic_plus_adr(str, str, value_offset);
4564   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4565                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4566   return load;
4567 }
4568 
4569 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4570   if (!CompactStrings) {
4571     return intcon(java_lang_String::CODER_UTF16);
4572   }
4573   int coder_offset = java_lang_String::coder_offset();
4574   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4575                                                      false, nullptr, Type::Offset(0));
4576   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4577 
4578   Node* p = basic_plus_adr(str, str, coder_offset);
4579   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4580                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4581   return load;
4582 }
4583 
4584 void GraphKit::store_String_value(Node* str, Node* value) {
4585   int value_offset = java_lang_String::value_offset();
4586   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4587                                                      false, nullptr, Type::Offset(0));
4588   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4589 
4590   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4591                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4592 }
4593 
4594 void GraphKit::store_String_coder(Node* str, Node* value) {
4595   int coder_offset = java_lang_String::coder_offset();
4596   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4597                                                      false, nullptr, Type::Offset(0));
4598   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4599 
4600   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4601                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4602 }
4603 
4604 // Capture src and dst memory state with a MergeMemNode
4605 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4606   if (src_type == dst_type) {
4607     // Types are equal, we don't need a MergeMemNode
4608     return memory(src_type);
4609   }
4610   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4611   record_for_igvn(merge); // fold it up later, if possible
4612   int src_idx = C->get_alias_index(src_type);
4613   int dst_idx = C->get_alias_index(dst_type);
4614   merge->set_memory_at(src_idx, memory(src_idx));
4615   merge->set_memory_at(dst_idx, memory(dst_idx));
4616   return merge;
4617 }

4690   i_char->init_req(2, AddI(i_char, intcon(2)));
4691 
4692   set_control(IfFalse(iff));
4693   set_memory(st, TypeAryPtr::BYTES);
4694 }
4695 
4696 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4697   if (!field->is_constant()) {
4698     return nullptr; // Field not marked as constant.
4699   }
4700   ciInstance* holder = nullptr;
4701   if (!field->is_static()) {
4702     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4703     if (const_oop != nullptr && const_oop->is_instance()) {
4704       holder = const_oop->as_instance();
4705     }
4706   }
4707   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4708                                                         /*is_unsigned_load=*/false);
4709   if (con_type != nullptr) {
4710     Node* con = makecon(con_type);
4711     if (field->type()->is_inlinetype()) {
4712       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4713     } else if (con_type->is_inlinetypeptr()) {
4714       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4715     }
4716     return con;
4717   }
4718   return nullptr;
4719 }
4720 
4721 //---------------------------load_mirror_from_klass----------------------------
4722 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4723 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4724   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4725   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4726   // mirror = ((OopHandle)mirror)->resolve();
4727   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4728 }
< prev index next >