< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 


  25 #include "ci/ciUtilities.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "ci/ciObjArray.hpp"
  28 #include "asm/register.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/idealKit.hpp"

  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"

  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subtypenode.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "utilities/bitMap.inline.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 #include "utilities/growableArray.hpp"
  52 
  53 //----------------------------GraphKit-----------------------------------------
  54 // Main utility constructor.
  55 GraphKit::GraphKit(JVMState* jvms)
  56   : Phase(Phase::Parser),
  57     _env(C->env()),
  58     _gvn(*C->initial_gvn()),
  59     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  60 {

  61   _exceptions = jvms->map()->next_exception();
  62   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  63   set_jvms(jvms);







  64 }
  65 
  66 // Private constructor for parser.
  67 GraphKit::GraphKit()
  68   : Phase(Phase::Parser),
  69     _env(C->env()),
  70     _gvn(*C->initial_gvn()),
  71     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  72 {
  73   _exceptions = nullptr;
  74   set_map(nullptr);
  75   debug_only(_sp = -99);
  76   debug_only(set_bci(-99));
  77 }
  78 
  79 
  80 
  81 //---------------------------clean_stack---------------------------------------
  82 // Clear away rubbish from the stack area of the JVM state.
  83 // This destroys any arguments that may be waiting on the stack.

 841         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 842           tty->print_cr("Zombie local %d: ", local);
 843           jvms->dump();
 844         }
 845         return false;
 846       }
 847     }
 848   }
 849   return true;
 850 }
 851 
 852 #endif //ASSERT
 853 
 854 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 855 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 856   ciMethod* cur_method = jvms->method();
 857   int       cur_bci   = jvms->bci();
 858   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 859     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 860     return Interpreter::bytecode_should_reexecute(code) ||
 861            (is_anewarray && code == Bytecodes::_multianewarray);
 862     // Reexecute _multianewarray bytecode which was replaced with
 863     // sequence of [a]newarray. See Parse::do_multianewarray().
 864     //
 865     // Note: interpreter should not have it set since this optimization
 866     // is limited by dimensions and guarded by flag so in some cases
 867     // multianewarray() runtime calls will be generated and
 868     // the bytecode should not be reexecutes (stack will not be reset).
 869   } else {
 870     return false;
 871   }
 872 }
 873 
 874 // Helper function for adding JVMState and debug information to node
 875 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 876   // Add the safepoint edges to the call (or other safepoint).
 877 
 878   // Make sure dead locals are set to top.  This
 879   // should help register allocation time and cut down on the size
 880   // of the deoptimization information.
 881   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 932   }
 933 
 934   // Presize the call:
 935   DEBUG_ONLY(uint non_debug_edges = call->req());
 936   call->add_req_batch(top(), youngest_jvms->debug_depth());
 937   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 938 
 939   // Set up edges so that the call looks like this:
 940   //  Call [state:] ctl io mem fptr retadr
 941   //       [parms:] parm0 ... parmN
 942   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 943   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 944   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 945   // Note that caller debug info precedes callee debug info.
 946 
 947   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 948   uint debug_ptr = call->req();
 949 
 950   // Loop over the map input edges associated with jvms, add them
 951   // to the call node, & reset all offsets to match call node array.


 952   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 953     uint debug_end   = debug_ptr;
 954     uint debug_start = debug_ptr - in_jvms->debug_size();
 955     debug_ptr = debug_start;  // back up the ptr
 956 
 957     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 958     uint j, k, l;
 959     SafePointNode* in_map = in_jvms->map();
 960     out_jvms->set_map(call);
 961 
 962     if (can_prune_locals) {
 963       assert(in_jvms->method() == out_jvms->method(), "sanity");
 964       // If the current throw can reach an exception handler in this JVMS,
 965       // then we must keep everything live that can reach that handler.
 966       // As a quick and dirty approximation, we look for any handlers at all.
 967       if (in_jvms->method()->has_exception_handlers()) {
 968         can_prune_locals = false;
 969       }
 970     }
 971 
 972     // Add the Locals
 973     k = in_jvms->locoff();
 974     l = in_jvms->loc_size();
 975     out_jvms->set_locoff(p);
 976     if (!can_prune_locals) {
 977       for (j = 0; j < l; j++)
 978         call->set_req(p++, in_map->in(k+j));








 979     } else {
 980       p += l;  // already set to top above by add_req_batch
 981     }
 982 
 983     // Add the Expression Stack
 984     k = in_jvms->stkoff();
 985     l = in_jvms->sp();
 986     out_jvms->set_stkoff(p);
 987     if (!can_prune_locals) {
 988       for (j = 0; j < l; j++)
 989         call->set_req(p++, in_map->in(k+j));








 990     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 991       // Divide stack into {S0,...,S1}, where S0 is set to top.
 992       uint s1 = stack_slots_not_pruned;
 993       stack_slots_not_pruned = 0;  // for next iteration
 994       if (s1 > l)  s1 = l;
 995       uint s0 = l - s1;
 996       p += s0;  // skip the tops preinstalled by add_req_batch
 997       for (j = s0; j < l; j++)
 998         call->set_req(p++, in_map->in(k+j));
 999     } else {
1000       p += l;  // already set to top above by add_req_batch
1001     }
1002 
1003     // Add the Monitors
1004     k = in_jvms->monoff();
1005     l = in_jvms->mon_size();
1006     out_jvms->set_monoff(p);
1007     for (j = 0; j < l; j++)
1008       call->set_req(p++, in_map->in(k+j));
1009 
1010     // Copy any scalar object fields.
1011     k = in_jvms->scloff();
1012     l = in_jvms->scl_size();
1013     out_jvms->set_scloff(p);
1014     for (j = 0; j < l; j++)
1015       call->set_req(p++, in_map->in(k+j));
1016 
1017     // Finish the new jvms.
1018     out_jvms->set_endoff(p);
1019 
1020     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1021     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1022     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1023     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1024     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1025     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1026 
1027     // Update the two tail pointers in parallel.

1028     out_jvms = out_jvms->caller();
1029     in_jvms  = in_jvms->caller();
1030   }
1031 
1032   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1033 
1034   // Test the correctness of JVMState::debug_xxx accessors:
1035   assert(call->jvms()->debug_start() == non_debug_edges, "");
1036   assert(call->jvms()->debug_end()   == call->req(), "");
1037   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1038 }
1039 
1040 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1041   Bytecodes::Code code = java_bc();
1042   if (code == Bytecodes::_wide) {
1043     code = method()->java_code_at_bci(bci() + 1);
1044   }
1045 
1046   if (code != Bytecodes::_illegal) {
1047     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1183   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1184   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1185   return _gvn.transform( new AndLNode(conv, mask) );
1186 }
1187 
1188 Node* GraphKit::ConvL2I(Node* offset) {
1189   // short-circuit a common case
1190   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1191   if (offset_con != (jlong)Type::OffsetBot) {
1192     return intcon((int) offset_con);
1193   }
1194   return _gvn.transform( new ConvL2INode(offset));
1195 }
1196 
1197 //-------------------------load_object_klass-----------------------------------
1198 Node* GraphKit::load_object_klass(Node* obj) {
1199   // Special-case a fresh allocation to avoid building nodes:
1200   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1201   if (akls != nullptr)  return akls;
1202   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1203   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1204 }
1205 
1206 //-------------------------load_array_length-----------------------------------
1207 Node* GraphKit::load_array_length(Node* array) {
1208   // Special-case a fresh allocation to avoid building nodes:
1209   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1210   Node *alen;
1211   if (alloc == nullptr) {
1212     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1213     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1214   } else {
1215     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1216   }
1217   return alen;
1218 }
1219 
1220 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1221                                    const TypeOopPtr* oop_type,
1222                                    bool replace_length_in_map) {
1223   Node* length = alloc->Ideal_length();

1232         replace_in_map(length, ccast);
1233       }
1234       return ccast;
1235     }
1236   }
1237   return length;
1238 }
1239 
1240 //------------------------------do_null_check----------------------------------
1241 // Helper function to do a null pointer check.  Returned value is
1242 // the incoming address with null casted away.  You are allowed to use the
1243 // not-null value only if you are control dependent on the test.
1244 #ifndef PRODUCT
1245 extern uint explicit_null_checks_inserted,
1246             explicit_null_checks_elided;
1247 #endif
1248 Node* GraphKit::null_check_common(Node* value, BasicType type,
1249                                   // optional arguments for variations:
1250                                   bool assert_null,
1251                                   Node* *null_control,
1252                                   bool speculative) {

1253   assert(!assert_null || null_control == nullptr, "not both at once");
1254   if (stopped())  return top();
1255   NOT_PRODUCT(explicit_null_checks_inserted++);
1256 























1257   // Construct null check
1258   Node *chk = nullptr;
1259   switch(type) {
1260     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1261     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1262     case T_ARRAY  : // fall through
1263       type = T_OBJECT;  // simplify further tests
1264     case T_OBJECT : {
1265       const Type *t = _gvn.type( value );
1266 
1267       const TypeOopPtr* tp = t->isa_oopptr();
1268       if (tp != nullptr && !tp->is_loaded()
1269           // Only for do_null_check, not any of its siblings:
1270           && !assert_null && null_control == nullptr) {
1271         // Usually, any field access or invocation on an unloaded oop type
1272         // will simply fail to link, since the statically linked class is
1273         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1274         // the static class is loaded but the sharper oop type is not.
1275         // Rather than checking for this obscure case in lots of places,
1276         // we simply observe that a null check on an unloaded class

1340         }
1341         Node *oldcontrol = control();
1342         set_control(cfg);
1343         Node *res = cast_not_null(value);
1344         set_control(oldcontrol);
1345         NOT_PRODUCT(explicit_null_checks_elided++);
1346         return res;
1347       }
1348       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1349       if (cfg == nullptr)  break;  // Quit at region nodes
1350       depth++;
1351     }
1352   }
1353 
1354   //-----------
1355   // Branch to failure if null
1356   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1357   Deoptimization::DeoptReason reason;
1358   if (assert_null) {
1359     reason = Deoptimization::reason_null_assert(speculative);
1360   } else if (type == T_OBJECT) {
1361     reason = Deoptimization::reason_null_check(speculative);
1362   } else {
1363     reason = Deoptimization::Reason_div0_check;
1364   }
1365   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1366   // ciMethodData::has_trap_at will return a conservative -1 if any
1367   // must-be-null assertion has failed.  This could cause performance
1368   // problems for a method after its first do_null_assert failure.
1369   // Consider using 'Reason_class_check' instead?
1370 
1371   // To cause an implicit null check, we set the not-null probability
1372   // to the maximum (PROB_MAX).  For an explicit check the probability
1373   // is set to a smaller value.
1374   if (null_control != nullptr || too_many_traps(reason)) {
1375     // probability is less likely
1376     ok_prob =  PROB_LIKELY_MAG(3);
1377   } else if (!assert_null &&
1378              (ImplicitNullCheckThreshold > 0) &&
1379              method() != nullptr &&
1380              (method()->method_data()->trap_count(reason)

1414   }
1415 
1416   if (assert_null) {
1417     // Cast obj to null on this path.
1418     replace_in_map(value, zerocon(type));
1419     return zerocon(type);
1420   }
1421 
1422   // Cast obj to not-null on this path, if there is no null_control.
1423   // (If there is a null_control, a non-null value may come back to haunt us.)
1424   if (type == T_OBJECT) {
1425     Node* cast = cast_not_null(value, false);
1426     if (null_control == nullptr || (*null_control) == top())
1427       replace_in_map(value, cast);
1428     value = cast;
1429   }
1430 
1431   return value;
1432 }
1433 
1434 
1435 //------------------------------cast_not_null----------------------------------
1436 // Cast obj to not-null on this path
1437 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {









1438   const Type *t = _gvn.type(obj);
1439   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1440   // Object is already not-null?
1441   if( t == t_not_null ) return obj;
1442 
1443   Node* cast = new CastPPNode(control(), obj,t_not_null);
1444   cast = _gvn.transform( cast );
1445 
1446   // Scan for instances of 'obj' in the current JVM mapping.
1447   // These instances are known to be not-null after the test.
1448   if (do_replace_in_map)
1449     replace_in_map(obj, cast);
1450 
1451   return cast;                  // Return casted value
1452 }
1453 
1454 // Sometimes in intrinsics, we implicitly know an object is not null
1455 // (there's no actual null check) so we can cast it to not null. In
1456 // the course of optimizations, the input to the cast can become null.
1457 // In that case that data path will die and we need the control path

1546 // These are layered on top of the factory methods in LoadNode and StoreNode,
1547 // and integrate with the parser's memory state and _gvn engine.
1548 //
1549 
1550 // factory methods in "int adr_idx"
1551 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1552                           MemNode::MemOrd mo,
1553                           LoadNode::ControlDependency control_dependency,
1554                           bool require_atomic_access,
1555                           bool unaligned,
1556                           bool mismatched,
1557                           bool unsafe,
1558                           uint8_t barrier_data) {
1559   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1560   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1561   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1562   debug_only(adr_type = C->get_adr_type(adr_idx));
1563   Node* mem = memory(adr_idx);
1564   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1565   ld = _gvn.transform(ld);

1566   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1567     // Improve graph before escape analysis and boxing elimination.
1568     record_for_igvn(ld);
1569     if (ld->is_DecodeN()) {
1570       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1571       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1572       // a Phi). Recording such cases is still perfectly sound, but may be
1573       // unnecessary and result in some minor IGVN overhead.
1574       record_for_igvn(ld->in(1));
1575     }
1576   }
1577   return ld;
1578 }
1579 
1580 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1581                                 MemNode::MemOrd mo,
1582                                 bool require_atomic_access,
1583                                 bool unaligned,
1584                                 bool mismatched,
1585                                 bool unsafe,

1599   if (unsafe) {
1600     st->as_Store()->set_unsafe_access();
1601   }
1602   st->as_Store()->set_barrier_data(barrier_data);
1603   st = _gvn.transform(st);
1604   set_memory(st, adr_idx);
1605   // Back-to-back stores can only remove intermediate store with DU info
1606   // so push on worklist for optimizer.
1607   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1608     record_for_igvn(st);
1609 
1610   return st;
1611 }
1612 
1613 Node* GraphKit::access_store_at(Node* obj,
1614                                 Node* adr,
1615                                 const TypePtr* adr_type,
1616                                 Node* val,
1617                                 const Type* val_type,
1618                                 BasicType bt,
1619                                 DecoratorSet decorators) {


1620   // Transformation of a value which could be null pointer (CastPP #null)
1621   // could be delayed during Parse (for example, in adjust_map_after_if()).
1622   // Execute transformation here to avoid barrier generation in such case.
1623   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1624     val = _gvn.makecon(TypePtr::NULL_PTR);
1625   }
1626 
1627   if (stopped()) {
1628     return top(); // Dead path ?
1629   }
1630 
1631   assert(val != nullptr, "not dead path");







1632 
1633   C2AccessValuePtr addr(adr, adr_type);
1634   C2AccessValue value(val, val_type);
1635   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1636   if (access.is_raw()) {
1637     return _barrier_set->BarrierSetC2::store_at(access, value);
1638   } else {
1639     return _barrier_set->store_at(access, value);
1640   }
1641 }
1642 
1643 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1644                                Node* adr,   // actual address to store val at
1645                                const TypePtr* adr_type,
1646                                const Type* val_type,
1647                                BasicType bt,
1648                                DecoratorSet decorators) {

1649   if (stopped()) {
1650     return top(); // Dead path ?
1651   }
1652 
1653   C2AccessValuePtr addr(adr, adr_type);
1654   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1655   if (access.is_raw()) {
1656     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1657   } else {
1658     return _barrier_set->load_at(access, val_type);
1659   }
1660 }
1661 
1662 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1663                             const Type* val_type,
1664                             BasicType bt,
1665                             DecoratorSet decorators) {
1666   if (stopped()) {
1667     return top(); // Dead path ?
1668   }
1669 
1670   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1671   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1672   if (access.is_raw()) {
1673     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1674   } else {

1739                                      Node* new_val,
1740                                      const Type* value_type,
1741                                      BasicType bt,
1742                                      DecoratorSet decorators) {
1743   C2AccessValuePtr addr(adr, adr_type);
1744   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1745   if (access.is_raw()) {
1746     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1747   } else {
1748     return _barrier_set->atomic_add_at(access, new_val, value_type);
1749   }
1750 }
1751 
1752 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1753   return _barrier_set->clone(this, src, dst, size, is_array);
1754 }
1755 
1756 //-------------------------array_element_address-------------------------
1757 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1758                                       const TypeInt* sizetype, Node* ctrl) {
1759   uint shift  = exact_log2(type2aelembytes(elembt));












1760   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1761 
1762   // short-circuit a common case (saves lots of confusing waste motion)
1763   jint idx_con = find_int_con(idx, -1);
1764   if (idx_con >= 0) {
1765     intptr_t offset = header + ((intptr_t)idx_con << shift);
1766     return basic_plus_adr(ary, offset);
1767   }
1768 
1769   // must be correct type for alignment purposes
1770   Node* base  = basic_plus_adr(ary, header);
1771   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1772   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1773   return basic_plus_adr(ary, base, scale);
1774 }
1775 
1776 //-------------------------load_array_element-------------------------
1777 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1778   const Type* elemtype = arytype->elem();
1779   BasicType elembt = elemtype->array_element_basic_type();
1780   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1781   if (elembt == T_NARROWOOP) {
1782     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1783   }
1784   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1785                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1786   return ld;
1787 }
1788 
1789 //-------------------------set_arguments_for_java_call-------------------------
1790 // Arguments (pre-popped from the stack) are taken from the JVMS.
1791 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1792   // Add the call arguments:
1793   uint nargs = call->method()->arg_size();
1794   for (uint i = 0; i < nargs; i++) {
1795     Node* arg = argument(i);
1796     call->init_req(i + TypeFunc::Parms, arg);

























































1797   }
1798 }
1799 
1800 //---------------------------set_edges_for_java_call---------------------------
1801 // Connect a newly created call into the current JVMS.
1802 // A return value node (if any) is returned from set_edges_for_java_call.
1803 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1804 
1805   // Add the predefined inputs:
1806   call->init_req( TypeFunc::Control, control() );
1807   call->init_req( TypeFunc::I_O    , i_o() );
1808   call->init_req( TypeFunc::Memory , reset_memory() );
1809   call->init_req( TypeFunc::FramePtr, frameptr() );
1810   call->init_req( TypeFunc::ReturnAdr, top() );
1811 
1812   add_safepoint_edges(call, must_throw);
1813 
1814   Node* xcall = _gvn.transform(call);
1815 
1816   if (xcall == top()) {
1817     set_control(top());
1818     return;
1819   }
1820   assert(xcall == call, "call identity is stable");
1821 
1822   // Re-use the current map to produce the result.
1823 
1824   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1825   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1826   set_all_memory_call(xcall, separate_io_proj);
1827 
1828   //return xcall;   // no need, caller already has it
1829 }
1830 
1831 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1832   if (stopped())  return top();  // maybe the call folded up?
1833 
1834   // Capture the return value, if any.
1835   Node* ret;
1836   if (call->method() == nullptr ||
1837       call->method()->return_type()->basic_type() == T_VOID)
1838         ret = top();
1839   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1840 
1841   // Note:  Since any out-of-line call can produce an exception,
1842   // we always insert an I_O projection from the call into the result.
1843 
1844   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1845 
1846   if (separate_io_proj) {
1847     // The caller requested separate projections be used by the fall
1848     // through and exceptional paths, so replace the projections for
1849     // the fall through path.
1850     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1851     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1852   }




































1853   return ret;
1854 }
1855 
1856 //--------------------set_predefined_input_for_runtime_call--------------------
1857 // Reading and setting the memory state is way conservative here.
1858 // The real problem is that I am not doing real Type analysis on memory,
1859 // so I cannot distinguish card mark stores from other stores.  Across a GC
1860 // point the Store Barrier and the card mark memory has to agree.  I cannot
1861 // have a card mark store and its barrier split across the GC point from
1862 // either above or below.  Here I get that to happen by reading ALL of memory.
1863 // A better answer would be to separate out card marks from other memory.
1864 // For now, return the input memory state, so that it can be reused
1865 // after the call, if this call has restricted memory effects.
1866 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1867   // Set fixed predefined input arguments
1868   Node* memory = reset_memory();
1869   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1870   call->init_req( TypeFunc::Control,   control()  );
1871   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1872   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

1923     if (use->is_MergeMem()) {
1924       wl.push(use);
1925     }
1926   }
1927 }
1928 
1929 // Replace the call with the current state of the kit.
1930 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
1931   JVMState* ejvms = nullptr;
1932   if (has_exceptions()) {
1933     ejvms = transfer_exceptions_into_jvms();
1934   }
1935 
1936   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1937   ReplacedNodes replaced_nodes_exception;
1938   Node* ex_ctl = top();
1939 
1940   SafePointNode* final_state = stop();
1941 
1942   // Find all the needed outputs of this call
1943   CallProjections callprojs;
1944   call->extract_projections(&callprojs, true, do_asserts);
1945 
1946   Unique_Node_List wl;
1947   Node* init_mem = call->in(TypeFunc::Memory);
1948   Node* final_mem = final_state->in(TypeFunc::Memory);
1949   Node* final_ctl = final_state->in(TypeFunc::Control);
1950   Node* final_io = final_state->in(TypeFunc::I_O);
1951 
1952   // Replace all the old call edges with the edges from the inlining result
1953   if (callprojs.fallthrough_catchproj != nullptr) {
1954     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1955   }
1956   if (callprojs.fallthrough_memproj != nullptr) {
1957     if (final_mem->is_MergeMem()) {
1958       // Parser's exits MergeMem was not transformed but may be optimized
1959       final_mem = _gvn.transform(final_mem);
1960     }
1961     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1962     add_mergemem_users_to_worklist(wl, final_mem);
1963   }
1964   if (callprojs.fallthrough_ioproj != nullptr) {
1965     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1966   }
1967 
1968   // Replace the result with the new result if it exists and is used
1969   if (callprojs.resproj != nullptr && result != nullptr) {
1970     C->gvn_replace_by(callprojs.resproj, result);




1971   }
1972 
1973   if (ejvms == nullptr) {
1974     // No exception edges to simply kill off those paths
1975     if (callprojs.catchall_catchproj != nullptr) {
1976       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1977     }
1978     if (callprojs.catchall_memproj != nullptr) {
1979       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1980     }
1981     if (callprojs.catchall_ioproj != nullptr) {
1982       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1983     }
1984     // Replace the old exception object with top
1985     if (callprojs.exobj != nullptr) {
1986       C->gvn_replace_by(callprojs.exobj, C->top());
1987     }
1988   } else {
1989     GraphKit ekit(ejvms);
1990 
1991     // Load my combined exception state into the kit, with all phis transformed:
1992     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1993     replaced_nodes_exception = ex_map->replaced_nodes();
1994 
1995     Node* ex_oop = ekit.use_exception_state(ex_map);
1996 
1997     if (callprojs.catchall_catchproj != nullptr) {
1998       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1999       ex_ctl = ekit.control();
2000     }
2001     if (callprojs.catchall_memproj != nullptr) {
2002       Node* ex_mem = ekit.reset_memory();
2003       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
2004       add_mergemem_users_to_worklist(wl, ex_mem);
2005     }
2006     if (callprojs.catchall_ioproj != nullptr) {
2007       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
2008     }
2009 
2010     // Replace the old exception object with the newly created one
2011     if (callprojs.exobj != nullptr) {
2012       C->gvn_replace_by(callprojs.exobj, ex_oop);
2013     }
2014   }
2015 
2016   // Disconnect the call from the graph
2017   call->disconnect_inputs(C);
2018   C->gvn_replace_by(call, C->top());
2019 
2020   // Clean up any MergeMems that feed other MergeMems since the
2021   // optimizer doesn't like that.
2022   while (wl.size() > 0) {
2023     _gvn.transform(wl.pop());
2024   }
2025 
2026   if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2027     replaced_nodes.apply(C, final_ctl);
2028   }
2029   if (!ex_ctl->is_top() && do_replaced_nodes) {
2030     replaced_nodes_exception.apply(C, ex_ctl);
2031   }
2032 }
2033 
2034 
2035 //------------------------------increment_counter------------------------------
2036 // for statistics: increment a VM counter by 1
2037 
2038 void GraphKit::increment_counter(address counter_addr) {
2039   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2040   increment_counter(adr1);
2041 }
2042 
2043 void GraphKit::increment_counter(Node* counter_addr) {
2044   Node* ctrl = control();
2045   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2046   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2206  *
2207  * @param n          node that the type applies to
2208  * @param exact_kls  type from profiling
2209  * @param maybe_null did profiling see null?
2210  *
2211  * @return           node with improved type
2212  */
2213 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2214   const Type* current_type = _gvn.type(n);
2215   assert(UseTypeSpeculation, "type speculation must be on");
2216 
2217   const TypePtr* speculative = current_type->speculative();
2218 
2219   // Should the klass from the profile be recorded in the speculative type?
2220   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2221     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2222     const TypeOopPtr* xtype = tklass->as_instance_type();
2223     assert(xtype->klass_is_exact(), "Should be exact");
2224     // Any reason to believe n is not null (from this profiling or a previous one)?
2225     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2226     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2227     // record the new speculative type's depth
2228     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2229     speculative = speculative->with_inline_depth(jvms()->depth());
2230   } else if (current_type->would_improve_ptr(ptr_kind)) {
2231     // Profiling report that null was never seen so we can change the
2232     // speculative type to non null ptr.
2233     if (ptr_kind == ProfileAlwaysNull) {
2234       speculative = TypePtr::NULL_PTR;
2235     } else {
2236       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2237       const TypePtr* ptr = TypePtr::NOTNULL;
2238       if (speculative != nullptr) {
2239         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2240       } else {
2241         speculative = ptr;
2242       }
2243     }
2244   }
2245 
2246   if (speculative != current_type->speculative()) {
2247     // Build a type with a speculative type (what we think we know
2248     // about the type but will need a guard when we use it)
2249     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2250     // We're changing the type, we need a new CheckCast node to carry
2251     // the new type. The new type depends on the control: what
2252     // profiling tells us is only valid from here as far as we can
2253     // tell.
2254     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2255     cast = _gvn.transform(cast);
2256     replace_in_map(n, cast);
2257     n = cast;
2258   }
2259 
2260   return n;
2261 }
2262 
2263 /**
2264  * Record profiling data from receiver profiling at an invoke with the
2265  * type system so that it can propagate it (speculation)
2266  *
2267  * @param n  receiver node
2268  *
2269  * @return   node with improved type
2270  */
2271 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2272   if (!UseTypeSpeculation) {
2273     return n;
2274   }
2275   ciKlass* exact_kls = profile_has_unique_klass();
2276   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2277   if ((java_bc() == Bytecodes::_checkcast ||
2278        java_bc() == Bytecodes::_instanceof ||
2279        java_bc() == Bytecodes::_aastore) &&
2280       method()->method_data()->is_mature()) {
2281     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2282     if (data != nullptr) {
2283       if (!data->as_BitData()->null_seen()) {
2284         ptr_kind = ProfileNeverNull;







2285       } else {
2286         assert(data->is_ReceiverTypeData(), "bad profile data type");
2287         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2288         uint i = 0;
2289         for (; i < call->row_limit(); i++) {
2290           ciKlass* receiver = call->receiver(i);
2291           if (receiver != nullptr) {
2292             break;




2293           }

2294         }
2295         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2296       }
2297     }
2298   }
2299   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2300 }
2301 
2302 /**
2303  * Record profiling data from argument profiling at an invoke with the
2304  * type system so that it can propagate it (speculation)
2305  *
2306  * @param dest_method  target method for the call
2307  * @param bc           what invoke bytecode is this?
2308  */
2309 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2310   if (!UseTypeSpeculation) {
2311     return;
2312   }
2313   const TypeFunc* tf    = TypeFunc::make(dest_method);
2314   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2315   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2316   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2317     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2318     if (is_reference_type(targ->basic_type())) {
2319       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2320       ciKlass* better_type = nullptr;
2321       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2322         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2323       }
2324       i++;
2325     }
2326   }
2327 }
2328 
2329 /**
2330  * Record profiling data from parameter profiling at an invoke with
2331  * the type system so that it can propagate it (speculation)
2332  */
2333 void GraphKit::record_profiled_parameters_for_speculation() {
2334   if (!UseTypeSpeculation) {
2335     return;
2336   }
2337   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2351  * the type system so that it can propagate it (speculation)
2352  */
2353 void GraphKit::record_profiled_return_for_speculation() {
2354   if (!UseTypeSpeculation) {
2355     return;
2356   }
2357   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2358   ciKlass* better_type = nullptr;
2359   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2360     // If profiling reports a single type for the return value,
2361     // feed it to the type system so it can propagate it as a
2362     // speculative type
2363     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2364   }
2365 }
2366 
2367 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2368   if (Matcher::strict_fp_requires_explicit_rounding) {
2369     // (Note:  TypeFunc::make has a cache that makes this fast.)
2370     const TypeFunc* tf    = TypeFunc::make(dest_method);
2371     int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2372     for (int j = 0; j < nargs; j++) {
2373       const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2374       if (targ->basic_type() == T_DOUBLE) {
2375         // If any parameters are doubles, they must be rounded before
2376         // the call, dprecision_rounding does gvn.transform
2377         Node *arg = argument(j);
2378         arg = dprecision_rounding(arg);
2379         set_argument(j, arg);
2380       }
2381     }
2382   }
2383 }
2384 
2385 // rounding for strict float precision conformance
2386 Node* GraphKit::precision_rounding(Node* n) {
2387   if (Matcher::strict_fp_requires_explicit_rounding) {
2388 #ifdef IA32
2389     if (UseSSE == 0) {
2390       return _gvn.transform(new RoundFloatNode(nullptr, n));
2391     }
2392 #else
2393     Unimplemented();

2502                                   // The first null ends the list.
2503                                   Node* parm0, Node* parm1,
2504                                   Node* parm2, Node* parm3,
2505                                   Node* parm4, Node* parm5,
2506                                   Node* parm6, Node* parm7) {
2507   assert(call_addr != nullptr, "must not call null targets");
2508 
2509   // Slow-path call
2510   bool is_leaf = !(flags & RC_NO_LEAF);
2511   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2512   if (call_name == nullptr) {
2513     assert(!is_leaf, "must supply name for leaf");
2514     call_name = OptoRuntime::stub_name(call_addr);
2515   }
2516   CallNode* call;
2517   if (!is_leaf) {
2518     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2519   } else if (flags & RC_NO_FP) {
2520     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2521   } else  if (flags & RC_VECTOR){
2522     uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2523     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2524   } else {
2525     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2526   }
2527 
2528   // The following is similar to set_edges_for_java_call,
2529   // except that the memory effects of the call are restricted to AliasIdxRaw.
2530 
2531   // Slow path call has no side-effects, uses few values
2532   bool wide_in  = !(flags & RC_NARROW_MEM);
2533   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2534 
2535   Node* prev_mem = nullptr;
2536   if (wide_in) {
2537     prev_mem = set_predefined_input_for_runtime_call(call);
2538   } else {
2539     assert(!wide_out, "narrow in => narrow out");
2540     Node* narrow_mem = memory(adr_type);
2541     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2542   }

2582 
2583   if (has_io) {
2584     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2585   }
2586   return call;
2587 
2588 }
2589 
2590 // i2b
2591 Node* GraphKit::sign_extend_byte(Node* in) {
2592   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2593   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2594 }
2595 
2596 // i2s
2597 Node* GraphKit::sign_extend_short(Node* in) {
2598   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2599   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2600 }
2601 

2602 //------------------------------merge_memory-----------------------------------
2603 // Merge memory from one path into the current memory state.
2604 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2605   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2606     Node* old_slice = mms.force_memory();
2607     Node* new_slice = mms.memory2();
2608     if (old_slice != new_slice) {
2609       PhiNode* phi;
2610       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2611         if (mms.is_empty()) {
2612           // clone base memory Phi's inputs for this memory slice
2613           assert(old_slice == mms.base_memory(), "sanity");
2614           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2615           _gvn.set_type(phi, Type::MEMORY);
2616           for (uint i = 1; i < phi->req(); i++) {
2617             phi->init_req(i, old_slice->in(i));
2618           }
2619         } else {
2620           phi = old_slice->as_Phi(); // Phi was generated already
2621         }

2884 
2885   // Now do a linear scan of the secondary super-klass array.  Again, no real
2886   // performance impact (too rare) but it's gotta be done.
2887   // Since the code is rarely used, there is no penalty for moving it
2888   // out of line, and it can only improve I-cache density.
2889   // The decision to inline or out-of-line this final check is platform
2890   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2891   Node* psc = gvn.transform(
2892     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2893 
2894   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2895   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2896   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2897 
2898   // Return false path; set default control to true path.
2899   *ctrl = gvn.transform(r_ok_subtype);
2900   return gvn.transform(r_not_subtype);
2901 }
2902 
2903 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {





2904   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
2905   if (expand_subtype_check) {
2906     MergeMemNode* mem = merged_memory();
2907     Node* ctrl = control();
2908     Node* subklass = obj_or_subklass;
2909     if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2910       subklass = load_object_klass(obj_or_subklass);
2911     }
2912 
2913     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
2914     set_control(ctrl);
2915     return n;
2916   }
2917 
2918   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
2919   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2920   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2921   set_control(_gvn.transform(new IfTrueNode(iff)));
2922   return _gvn.transform(new IfFalseNode(iff));
2923 }
2924 
2925 // Profile-driven exact type check:
2926 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2927                                     float prob,
2928                                     Node* *casted_receiver) {
2929   assert(!klass->is_interface(), "no exact type check on interfaces");
2930 











2931   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
2932   Node* recv_klass = load_object_klass(receiver);
2933   Node* want_klass = makecon(tklass);
2934   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2935   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2936   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2937   set_control( _gvn.transform(new IfTrueNode (iff)));
2938   Node* fail = _gvn.transform(new IfFalseNode(iff));
2939 
2940   if (!stopped()) {
2941     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2942     const TypeOopPtr* recvx_type = tklass->as_instance_type();
2943     assert(recvx_type->klass_is_exact(), "");
2944 
2945     if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2946       // Subsume downstream occurrences of receiver with a cast to
2947       // recv_xtype, since now we know what the type will be.
2948       Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2949       (*casted_receiver) = _gvn.transform(cast);





2950       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
2951       // (User must make the replace_in_map call.)
2952     }
2953   }
2954 
2955   return fail;
2956 }
2957 











2958 //------------------------------subtype_check_receiver-------------------------
2959 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2960                                        Node** casted_receiver) {
2961   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2962   Node* want_klass = makecon(tklass);
2963 
2964   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2965 
2966   // Ignore interface type information until interface types are properly tracked.
2967   if (!stopped() && !klass->is_interface()) {
2968     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2969     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2970     if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2971       Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2972       (*casted_receiver) = _gvn.transform(cast);



2973     }
2974   }
2975 
2976   return slow_ctl;
2977 }
2978 
2979 //------------------------------seems_never_null-------------------------------
2980 // Use null_seen information if it is available from the profile.
2981 // If we see an unexpected null at a type check we record it and force a
2982 // recompile; the offending check will be recompiled to handle nulls.
2983 // If we see several offending BCIs, then all checks in the
2984 // method will be recompiled.
2985 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2986   speculating = !_gvn.type(obj)->speculative_maybe_null();
2987   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2988   if (UncommonNullCast               // Cutout for this technique
2989       && obj != null()               // And not the -Xcomp stupid case?
2990       && !too_many_traps(reason)
2991       ) {
2992     if (speculating) {

3061 
3062 //------------------------maybe_cast_profiled_receiver-------------------------
3063 // If the profile has seen exactly one type, narrow to exactly that type.
3064 // Subsequent type checks will always fold up.
3065 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3066                                              const TypeKlassPtr* require_klass,
3067                                              ciKlass* spec_klass,
3068                                              bool safe_for_replace) {
3069   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3070 
3071   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3072 
3073   // Make sure we haven't already deoptimized from this tactic.
3074   if (too_many_traps_or_recompiles(reason))
3075     return nullptr;
3076 
3077   // (No, this isn't a call, but it's enough like a virtual call
3078   // to use the same ciMethod accessor to get the profile info...)
3079   // If we have a speculative type use it instead of profiling (which
3080   // may not help us)
3081   ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;













3082   if (exact_kls != nullptr) {// no cast failures here
3083     if (require_klass == nullptr ||
3084         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3085       // If we narrow the type to match what the type profile sees or
3086       // the speculative type, we can then remove the rest of the
3087       // cast.
3088       // This is a win, even if the exact_kls is very specific,
3089       // because downstream operations, such as method calls,
3090       // will often benefit from the sharper type.
3091       Node* exact_obj = not_null_obj; // will get updated in place...
3092       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3093                                             &exact_obj);
3094       { PreserveJVMState pjvms(this);
3095         set_control(slow_ctl);
3096         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3097       }
3098       if (safe_for_replace) {
3099         replace_in_map(not_null_obj, exact_obj);
3100       }
3101       return exact_obj;

3191   // If not_null_obj is dead, only null-path is taken
3192   if (stopped()) {              // Doing instance-of on a null?
3193     set_control(null_ctl);
3194     return intcon(0);
3195   }
3196   region->init_req(_null_path, null_ctl);
3197   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3198   if (null_ctl == top()) {
3199     // Do this eagerly, so that pattern matches like is_diamond_phi
3200     // will work even during parsing.
3201     assert(_null_path == PATH_LIMIT-1, "delete last");
3202     region->del_req(_null_path);
3203     phi   ->del_req(_null_path);
3204   }
3205 
3206   // Do we know the type check always succeed?
3207   bool known_statically = false;
3208   if (_gvn.type(superklass)->singleton()) {
3209     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3210     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3211     if (subk->is_loaded()) {
3212       int static_res = C->static_subtype_check(superk, subk);
3213       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3214     }
3215   }
3216 
3217   if (!known_statically) {
3218     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3219     // We may not have profiling here or it may not help us. If we
3220     // have a speculative type use it to perform an exact cast.
3221     ciKlass* spec_obj_type = obj_type->speculative_type();
3222     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3223       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3224       if (stopped()) {            // Profile disagrees with this path.
3225         set_control(null_ctl);    // Null is the only remaining possibility.
3226         return intcon(0);
3227       }
3228       if (cast_obj != nullptr) {
3229         not_null_obj = cast_obj;
3230       }
3231     }

3247   record_for_igvn(region);
3248 
3249   // If we know the type check always succeeds then we don't use the
3250   // profiling data at this bytecode. Don't lose it, feed it to the
3251   // type system as a speculative type.
3252   if (safe_for_replace) {
3253     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3254     replace_in_map(obj, casted_obj);
3255   }
3256 
3257   return _gvn.transform(phi);
3258 }
3259 
3260 //-------------------------------gen_checkcast---------------------------------
3261 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3262 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3263 // uncommon-trap paths work.  Adjust stack after this call.
3264 // If failure_control is supplied and not null, it is filled in with
3265 // the control edge for the cast failure.  Otherwise, an appropriate
3266 // uncommon trap or exception is thrown.
3267 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3268                               Node* *failure_control) {
3269   kill_dead_locals();           // Benefit all the uncommon traps
3270   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3271   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3272   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();


3273 
3274   // Fast cutout:  Check the case that the cast is vacuously true.
3275   // This detects the common cases where the test will short-circuit
3276   // away completely.  We do this before we perform the null check,
3277   // because if the test is going to turn into zero code, we don't
3278   // want a residual null check left around.  (Causes a slowdown,
3279   // for example, in some objArray manipulations, such as a[i]=a[j].)
3280   if (improved_klass_ptr_type->singleton()) {
3281     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3282     if (objtp != nullptr) {
3283       switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) {







3284       case Compile::SSC_always_true:
3285         // If we know the type check always succeed then we don't use
3286         // the profiling data at this bytecode. Don't lose it, feed it
3287         // to the type system as a speculative type.
3288         return record_profiled_receiver_for_speculation(obj);






3289       case Compile::SSC_always_false:




3290         // It needs a null check because a null will *pass* the cast check.
3291         // A non-null value will always produce an exception.
3292         if (!objtp->maybe_null()) {
3293           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3294           Deoptimization::DeoptReason reason = is_aastore ?
3295             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3296           builtin_throw(reason);
3297           return top();
3298         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3299           return null_assert(obj);
3300         }
3301         break; // Fall through to full check
3302       default:
3303         break;
3304       }
3305     }
3306   }
3307 
3308   ciProfileData* data = nullptr;
3309   bool safe_for_replace = false;
3310   if (failure_control == nullptr) {        // use MDO in regular case only
3311     assert(java_bc() == Bytecodes::_aastore ||
3312            java_bc() == Bytecodes::_checkcast,
3313            "interpreter profiles type checks only for these BCs");
3314     data = method()->method_data()->bci_to_data(bci());
3315     safe_for_replace = true;

3316   }
3317 
3318   // Make the merge point
3319   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3320   RegionNode* region = new RegionNode(PATH_LIMIT);
3321   Node*       phi    = new PhiNode(region, toop);



3322   C->set_has_split_ifs(true); // Has chance for split-if optimization
3323 
3324   // Use null-cast information if it is available
3325   bool speculative_not_null = false;
3326   bool never_see_null = ((failure_control == nullptr)  // regular case only
3327                          && seems_never_null(obj, data, speculative_not_null));
3328 







3329   // Null check; get casted pointer; set region slot 3
3330   Node* null_ctl = top();
3331   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);






3332 
3333   // If not_null_obj is dead, only null-path is taken
3334   if (stopped()) {              // Doing instance-of on a null?
3335     set_control(null_ctl);



3336     return null();
3337   }
3338   region->init_req(_null_path, null_ctl);
3339   phi   ->init_req(_null_path, null());  // Set null path value
3340   if (null_ctl == top()) {
3341     // Do this eagerly, so that pattern matches like is_diamond_phi
3342     // will work even during parsing.
3343     assert(_null_path == PATH_LIMIT-1, "delete last");
3344     region->del_req(_null_path);
3345     phi   ->del_req(_null_path);
3346   }
3347 
3348   Node* cast_obj = nullptr;
3349   if (improved_klass_ptr_type->klass_is_exact()) {
3350     // The following optimization tries to statically cast the speculative type of the object
3351     // (for example obtained during profiling) to the type of the superklass and then do a
3352     // dynamic check that the type of the object is what we expect. To work correctly
3353     // for checkcast and aastore the type of superklass should be exact.
3354     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3355     // We may not have profiling here or it may not help us. If we have
3356     // a speculative type use it to perform an exact cast.
3357     ciKlass* spec_obj_type = obj_type->speculative_type();
3358     if (spec_obj_type != nullptr || data != nullptr) {
3359       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3360       if (cast_obj != nullptr) {
3361         if (failure_control != nullptr) // failure is now impossible
3362           (*failure_control) = top();
3363         // adjust the type of the phi to the exact klass:
3364         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3365       }
3366     }
3367   }
3368 
3369   if (cast_obj == nullptr) {
3370     // Generate the subtype check
3371     Node* improved_superklass = superklass;
3372     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {



3373       improved_superklass = makecon(improved_klass_ptr_type);
3374     }
3375     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3376 
3377     // Plug in success path into the merge
3378     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3379     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3380     if (failure_control == nullptr) {
3381       if (not_subtype_ctrl != top()) { // If failure is possible
3382         PreserveJVMState pjvms(this);
3383         set_control(not_subtype_ctrl);






3384         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3385         Deoptimization::DeoptReason reason = is_aastore ?
3386           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3387         builtin_throw(reason);
3388       }
3389     } else {
3390       (*failure_control) = not_subtype_ctrl;
3391     }
3392   }
3393 
3394   region->init_req(_obj_path, control());
3395   phi   ->init_req(_obj_path, cast_obj);
3396 
3397   // A merge of null or Casted-NotNull obj
3398   Node* res = _gvn.transform(phi);
3399 
3400   // Note I do NOT always 'replace_in_map(obj,result)' here.
3401   //  if( tk->klass()->can_be_primary_super()  )
3402     // This means that if I successfully store an Object into an array-of-String
3403     // I 'forget' that the Object is really now known to be a String.  I have to
3404     // do this because we don't have true union types for interfaces - if I store
3405     // a Baz into an array-of-Interface and then tell the optimizer it's an
3406     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3407     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3408   //  replace_in_map( obj, res );
3409 
3410   // Return final merged results
3411   set_control( _gvn.transform(region) );
3412   record_for_igvn(region);
3413 
3414   return record_profiled_receiver_for_speculation(res);














































































































































3415 }
3416 
3417 //------------------------------next_monitor-----------------------------------
3418 // What number should be given to the next monitor?
3419 int GraphKit::next_monitor() {
3420   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3421   int next = current + C->sync_stack_slots();
3422   // Keep the toplevel high water mark current:
3423   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3424   return current;
3425 }
3426 
3427 //------------------------------insert_mem_bar---------------------------------
3428 // Memory barrier to avoid floating things around
3429 // The membar serves as a pinch point between both control and all memory slices.
3430 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3431   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3432   mb->init_req(TypeFunc::Control, control());
3433   mb->init_req(TypeFunc::Memory,  reset_memory());
3434   Node* membar = _gvn.transform(mb);

3462   }
3463   Node* membar = _gvn.transform(mb);
3464   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3465   if (alias_idx == Compile::AliasIdxBot) {
3466     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3467   } else {
3468     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3469   }
3470   return membar;
3471 }
3472 
3473 //------------------------------shared_lock------------------------------------
3474 // Emit locking code.
3475 FastLockNode* GraphKit::shared_lock(Node* obj) {
3476   // bci is either a monitorenter bc or InvocationEntryBci
3477   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3478   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3479 
3480   if( !GenerateSynchronizationCode )
3481     return nullptr;                // Not locking things?

3482   if (stopped())                // Dead monitor?
3483     return nullptr;
3484 
3485   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3486 
3487   // Box the stack location
3488   Node* box = new BoxLockNode(next_monitor());
3489   // Check for bailout after new BoxLockNode
3490   if (failing()) { return nullptr; }
3491   box = _gvn.transform(box);
3492   Node* mem = reset_memory();
3493 
3494   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3495 
3496   // Add monitor to debug info for the slow path.  If we block inside the
3497   // slow path and de-opt, we need the monitor hanging around
3498   map()->push_monitor( flock );
3499 
3500   const TypeFunc *tf = LockNode::lock_type();
3501   LockNode *lock = new LockNode(C, tf);

3530   }
3531 #endif
3532 
3533   return flock;
3534 }
3535 
3536 
3537 //------------------------------shared_unlock----------------------------------
3538 // Emit unlocking code.
3539 void GraphKit::shared_unlock(Node* box, Node* obj) {
3540   // bci is either a monitorenter bc or InvocationEntryBci
3541   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3542   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3543 
3544   if( !GenerateSynchronizationCode )
3545     return;
3546   if (stopped()) {               // Dead monitor?
3547     map()->pop_monitor();        // Kill monitor from debug info
3548     return;
3549   }

3550 
3551   // Memory barrier to avoid floating things down past the locked region
3552   insert_mem_bar(Op_MemBarReleaseLock);
3553 
3554   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3555   UnlockNode *unlock = new UnlockNode(C, tf);
3556 #ifdef ASSERT
3557   unlock->set_dbg_jvms(sync_jvms());
3558 #endif
3559   uint raw_idx = Compile::AliasIdxRaw;
3560   unlock->init_req( TypeFunc::Control, control() );
3561   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3562   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3563   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3564   unlock->init_req( TypeFunc::ReturnAdr, top() );
3565 
3566   unlock->init_req(TypeFunc::Parms + 0, obj);
3567   unlock->init_req(TypeFunc::Parms + 1, box);
3568   unlock = _gvn.transform(unlock)->as_Unlock();
3569 
3570   Node* mem = reset_memory();
3571 
3572   // unlock has no side-effects, sets few values
3573   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3574 
3575   // Kill monitor from debug info
3576   map()->pop_monitor( );
3577 }
3578 
3579 //-------------------------------get_layout_helper-----------------------------
3580 // If the given klass is a constant or known to be an array,
3581 // fetch the constant layout helper value into constant_value
3582 // and return null.  Otherwise, load the non-constant
3583 // layout helper value, and return the node which represents it.
3584 // This two-faced routine is useful because allocation sites
3585 // almost always feature constant types.
3586 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3587   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3588   if (!StressReflectiveCode && klass_t != nullptr) {
3589     bool xklass = klass_t->klass_is_exact();
3590     if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) {







3591       jint lhelper;
3592       if (klass_t->isa_aryklassptr()) {
3593         BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();


3594         if (is_reference_type(elem, true)) {
3595           elem = T_OBJECT;
3596         }
3597         lhelper = Klass::array_layout_helper(elem);
3598       } else {
3599         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3600       }
3601       if (lhelper != Klass::_lh_neutral_value) {
3602         constant_value = lhelper;
3603         return (Node*) nullptr;
3604       }
3605     }
3606   }
3607   constant_value = Klass::_lh_neutral_value;  // put in a known value
3608   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3609   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3610 }
3611 
3612 // We just put in an allocate/initialize with a big raw-memory effect.
3613 // Hook selected additional alias categories on the initialization.
3614 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3615                                 MergeMemNode* init_in_merge,
3616                                 Node* init_out_raw) {
3617   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3618   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3619 
3620   Node* prevmem = kit.memory(alias_idx);
3621   init_in_merge->set_memory_at(alias_idx, prevmem);
3622   kit.set_memory(init_out_raw, alias_idx);


3623 }
3624 
3625 //---------------------------set_output_for_allocation-------------------------
3626 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3627                                           const TypeOopPtr* oop_type,
3628                                           bool deoptimize_on_exception) {
3629   int rawidx = Compile::AliasIdxRaw;
3630   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3631   add_safepoint_edges(alloc);
3632   Node* allocx = _gvn.transform(alloc);
3633   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3634   // create memory projection for i_o
3635   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3636   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3637 
3638   // create a memory projection as for the normal control path
3639   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3640   set_memory(malloc, rawidx);
3641 
3642   // a normal slow-call doesn't change i_o, but an allocation does
3643   // we create a separate i_o projection for the normal control path
3644   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3645   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3646 
3647   // put in an initialization barrier
3648   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3649                                                  rawoop)->as_Initialize();
3650   assert(alloc->initialization() == init,  "2-way macro link must work");
3651   assert(init ->allocation()     == alloc, "2-way macro link must work");
3652   {
3653     // Extract memory strands which may participate in the new object's
3654     // initialization, and source them from the new InitializeNode.
3655     // This will allow us to observe initializations when they occur,
3656     // and link them properly (as a group) to the InitializeNode.
3657     assert(init->in(InitializeNode::Memory) == malloc, "");
3658     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3659     init->set_req(InitializeNode::Memory, minit_in);
3660     record_for_igvn(minit_in); // fold it up later, if possible

3661     Node* minit_out = memory(rawidx);
3662     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3663     // Add an edge in the MergeMem for the header fields so an access
3664     // to one of those has correct memory state
3665     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3666     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3667     if (oop_type->isa_aryptr()) {
3668       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3669       int            elemidx  = C->get_alias_index(telemref);
3670       hook_memory_on_init(*this, elemidx, minit_in, minit_out);

























3671     } else if (oop_type->isa_instptr()) {

3672       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3673       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3674         ciField* field = ik->nonstatic_field_at(i);
3675         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3676           continue;  // do not bother to track really large numbers of fields
3677         // Find (or create) the alias category for this field:
3678         int fieldidx = C->alias_type(field)->index();
3679         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3680       }
3681     }
3682   }
3683 
3684   // Cast raw oop to the real thing...
3685   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3686   javaoop = _gvn.transform(javaoop);
3687   C->set_recent_alloc(control(), javaoop);
3688   assert(just_allocated_object(control()) == javaoop, "just allocated");
3689 
3690 #ifdef ASSERT
3691   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

3702       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3703     }
3704   }
3705 #endif //ASSERT
3706 
3707   return javaoop;
3708 }
3709 
3710 //---------------------------new_instance--------------------------------------
3711 // This routine takes a klass_node which may be constant (for a static type)
3712 // or may be non-constant (for reflective code).  It will work equally well
3713 // for either, and the graph will fold nicely if the optimizer later reduces
3714 // the type to a constant.
3715 // The optional arguments are for specialized use by intrinsics:
3716 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3717 //  - If 'return_size_val', report the total object size to the caller.
3718 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3719 Node* GraphKit::new_instance(Node* klass_node,
3720                              Node* extra_slow_test,
3721                              Node* *return_size_val,
3722                              bool deoptimize_on_exception) {

3723   // Compute size in doublewords
3724   // The size is always an integral number of doublewords, represented
3725   // as a positive bytewise size stored in the klass's layout_helper.
3726   // The layout_helper also encodes (in a low bit) the need for a slow path.
3727   jint  layout_con = Klass::_lh_neutral_value;
3728   Node* layout_val = get_layout_helper(klass_node, layout_con);
3729   int   layout_is_con = (layout_val == nullptr);
3730 
3731   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3732   // Generate the initial go-slow test.  It's either ALWAYS (return a
3733   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3734   // case) a computed value derived from the layout_helper.
3735   Node* initial_slow_test = nullptr;
3736   if (layout_is_con) {
3737     assert(!StressReflectiveCode, "stress mode does not use these paths");
3738     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3739     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3740   } else {   // reflective case
3741     // This reflective path is used by Unsafe.allocateInstance.
3742     // (It may be stress-tested by specifying StressReflectiveCode.)
3743     // Basically, we want to get into the VM is there's an illegal argument.
3744     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3745     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3746     if (extra_slow_test != intcon(0)) {
3747       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3748     }
3749     // (Macro-expander will further convert this to a Bool, if necessary.)

3760 
3761     // Clear the low bits to extract layout_helper_size_in_bytes:
3762     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3763     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3764     size = _gvn.transform( new AndXNode(size, mask) );
3765   }
3766   if (return_size_val != nullptr) {
3767     (*return_size_val) = size;
3768   }
3769 
3770   // This is a precise notnull oop of the klass.
3771   // (Actually, it need not be precise if this is a reflective allocation.)
3772   // It's what we cast the result to.
3773   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3774   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3775   const TypeOopPtr* oop_type = tklass->as_instance_type();
3776 
3777   // Now generate allocation code
3778 
3779   // The entire memory state is needed for slow path of the allocation
3780   // since GC and deoptimization can happened.
3781   Node *mem = reset_memory();
3782   set_all_memory(mem); // Create new memory state
3783 
3784   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3785                                          control(), mem, i_o(),
3786                                          size, klass_node,
3787                                          initial_slow_test);
3788 
3789   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3790 }
3791 
3792 //-------------------------------new_array-------------------------------------
3793 // helper for both newarray and anewarray
3794 // The 'length' parameter is (obviously) the length of the array.
3795 // The optional arguments are for specialized use by intrinsics:
3796 //  - If 'return_size_val', report the non-padded array size (sum of header size
3797 //    and array body) to the caller.
3798 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3799 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3800                           Node* length,         // number of array elements
3801                           int   nargs,          // number of arguments to push back for uncommon trap
3802                           Node* *return_size_val,
3803                           bool deoptimize_on_exception) {
3804   jint  layout_con = Klass::_lh_neutral_value;
3805   Node* layout_val = get_layout_helper(klass_node, layout_con);
3806   int   layout_is_con = (layout_val == nullptr);
3807 
3808   if (!layout_is_con && !StressReflectiveCode &&
3809       !too_many_traps(Deoptimization::Reason_class_check)) {
3810     // This is a reflective array creation site.
3811     // Optimistically assume that it is a subtype of Object[],
3812     // so that we can fold up all the address arithmetic.
3813     layout_con = Klass::array_layout_helper(T_OBJECT);
3814     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3815     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3816     { BuildCutout unless(this, bol_lh, PROB_MAX);
3817       inc_sp(nargs);
3818       uncommon_trap(Deoptimization::Reason_class_check,
3819                     Deoptimization::Action_maybe_recompile);
3820     }
3821     layout_val = nullptr;
3822     layout_is_con = true;
3823   }
3824 
3825   // Generate the initial go-slow test.  Make sure we do not overflow
3826   // if length is huge (near 2Gig) or negative!  We do not need
3827   // exact double-words here, just a close approximation of needed
3828   // double-words.  We can't add any offset or rounding bits, lest we
3829   // take a size -1 of bytes and make it positive.  Use an unsigned
3830   // compare, so negative sizes look hugely positive.
3831   int fast_size_limit = FastAllocateSizeLimit;
3832   if (layout_is_con) {
3833     assert(!StressReflectiveCode, "stress mode does not use these paths");
3834     // Increase the size limit if we have exact knowledge of array type.
3835     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3836     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3837   }
3838 
3839   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3840   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3841 
3842   // --- Size Computation ---
3843   // array_size = round_to_heap(array_header + (length << elem_shift));
3844   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3845   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3846   // The rounding mask is strength-reduced, if possible.
3847   int round_mask = MinObjAlignmentInBytes - 1;
3848   Node* header_size = nullptr;
3849   // (T_BYTE has the weakest alignment and size restrictions...)
3850   if (layout_is_con) {
3851     int       hsize  = Klass::layout_helper_header_size(layout_con);
3852     int       eshift = Klass::layout_helper_log2_element_size(layout_con);

3853     if ((round_mask & ~right_n_bits(eshift)) == 0)
3854       round_mask = 0;  // strength-reduce it if it goes away completely
3855     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3856     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3857     assert(header_size_min <= hsize, "generic minimum is smallest");
3858     header_size = intcon(hsize);
3859   } else {
3860     Node* hss   = intcon(Klass::_lh_header_size_shift);
3861     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3862     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3863     header_size = _gvn.transform(new AndINode(header_size, hsm));
3864   }
3865 
3866   Node* elem_shift = nullptr;
3867   if (layout_is_con) {
3868     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3869     if (eshift != 0)
3870       elem_shift = intcon(eshift);
3871   } else {
3872     // There is no need to mask or shift this value.
3873     // The semantics of LShiftINode include an implicit mask to 0x1F.
3874     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3875     elem_shift = layout_val;

3922   }
3923   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
3924 
3925   if (return_size_val != nullptr) {
3926     // This is the size
3927     (*return_size_val) = non_rounded_size;
3928   }
3929 
3930   Node* size = non_rounded_size;
3931   if (round_mask != 0) {
3932     Node* mask1 = MakeConX(round_mask);
3933     size = _gvn.transform(new AddXNode(size, mask1));
3934     Node* mask2 = MakeConX(~round_mask);
3935     size = _gvn.transform(new AndXNode(size, mask2));
3936   }
3937   // else if round_mask == 0, the size computation is self-rounding
3938 
3939   // Now generate allocation code
3940 
3941   // The entire memory state is needed for slow path of the allocation
3942   // since GC and deoptimization can happened.
3943   Node *mem = reset_memory();
3944   set_all_memory(mem); // Create new memory state
3945 
3946   if (initial_slow_test->is_Bool()) {
3947     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3948     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3949   }
3950 
3951   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();




























3952   Node* valid_length_test = _gvn.intcon(1);
3953   if (ary_type->isa_aryptr()) {
3954     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3955     jint max = TypeAryPtr::max_array_length(bt);
3956     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3957     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3958   }
3959 
3960   // Create the AllocateArrayNode and its result projections
3961   AllocateArrayNode* alloc
3962     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3963                             control(), mem, i_o(),
3964                             size, klass_node,
3965                             initial_slow_test,
3966                             length, valid_length_test);
3967 
3968   // Cast to correct type.  Note that the klass_node may be constant or not,
3969   // and in the latter case the actual array type will be inexact also.
3970   // (This happens via a non-constant argument to inline_native_newArray.)
3971   // In any case, the value of klass_node provides the desired array type.
3972   const TypeInt* length_type = _gvn.find_int_type(length);
3973   if (ary_type->isa_aryptr() && length_type != nullptr) {
3974     // Try to get a better type than POS for the size
3975     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3976   }
3977 
3978   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3979 
3980   array_ideal_length(alloc, ary_type, true);
3981   return javaoop;
3982 }
3983 
3984 // The following "Ideal_foo" functions are placed here because they recognize
3985 // the graph shapes created by the functions immediately above.
3986 
3987 //---------------------------Ideal_allocation----------------------------------

4095   set_all_memory(ideal.merged_memory());
4096   set_i_o(ideal.i_o());
4097   set_control(ideal.ctrl());
4098 }
4099 
4100 void GraphKit::final_sync(IdealKit& ideal) {
4101   // Final sync IdealKit and graphKit.
4102   sync_kit(ideal);
4103 }
4104 
4105 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4106   Node* len = load_array_length(load_String_value(str, set_ctrl));
4107   Node* coder = load_String_coder(str, set_ctrl);
4108   // Divide length by 2 if coder is UTF16
4109   return _gvn.transform(new RShiftINode(len, coder));
4110 }
4111 
4112 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4113   int value_offset = java_lang_String::value_offset();
4114   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4115                                                      false, nullptr, 0);
4116   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4117   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4118                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4119                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4120   Node* p = basic_plus_adr(str, str, value_offset);
4121   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4122                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4123   return load;
4124 }
4125 
4126 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4127   if (!CompactStrings) {
4128     return intcon(java_lang_String::CODER_UTF16);
4129   }
4130   int coder_offset = java_lang_String::coder_offset();
4131   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4132                                                      false, nullptr, 0);
4133   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4134 
4135   Node* p = basic_plus_adr(str, str, coder_offset);
4136   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4137                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4138   return load;
4139 }
4140 
4141 void GraphKit::store_String_value(Node* str, Node* value) {
4142   int value_offset = java_lang_String::value_offset();
4143   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4144                                                      false, nullptr, 0);
4145   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4146 
4147   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4148                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4149 }
4150 
4151 void GraphKit::store_String_coder(Node* str, Node* value) {
4152   int coder_offset = java_lang_String::coder_offset();
4153   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4154                                                      false, nullptr, 0);
4155   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4156 
4157   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4158                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4159 }
4160 
4161 // Capture src and dst memory state with a MergeMemNode
4162 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4163   if (src_type == dst_type) {
4164     // Types are equal, we don't need a MergeMemNode
4165     return memory(src_type);
4166   }
4167   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4168   record_for_igvn(merge); // fold it up later, if possible
4169   int src_idx = C->get_alias_index(src_type);
4170   int dst_idx = C->get_alias_index(dst_type);
4171   merge->set_memory_at(src_idx, memory(src_idx));
4172   merge->set_memory_at(dst_idx, memory(dst_idx));
4173   return merge;
4174 }

4247   i_char->init_req(2, AddI(i_char, intcon(2)));
4248 
4249   set_control(IfFalse(iff));
4250   set_memory(st, TypeAryPtr::BYTES);
4251 }
4252 
4253 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4254   if (!field->is_constant()) {
4255     return nullptr; // Field not marked as constant.
4256   }
4257   ciInstance* holder = nullptr;
4258   if (!field->is_static()) {
4259     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4260     if (const_oop != nullptr && const_oop->is_instance()) {
4261       holder = const_oop->as_instance();
4262     }
4263   }
4264   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4265                                                         /*is_unsigned_load=*/false);
4266   if (con_type != nullptr) {
4267     return makecon(con_type);






4268   }
4269   return nullptr;
4270 }
4271 









4272 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4273   const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr();
4274   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4275   if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4276     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4277     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4278     return casted_obj;



4279   }
4280   return obj;
4281 }

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciFlatArrayKlass.hpp"
  26 #include "ci/ciInlineKlass.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "ci/ciObjArray.hpp"
  30 #include "asm/register.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/c2/barrierSetC2.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/castnode.hpp"
  38 #include "opto/convertnode.hpp"
  39 #include "opto/graphKit.hpp"
  40 #include "opto/idealKit.hpp"
  41 #include "opto/inlinetypenode.hpp"
  42 #include "opto/intrinsicnode.hpp"
  43 #include "opto/locknode.hpp"
  44 #include "opto/machnode.hpp"
  45 #include "opto/narrowptrnode.hpp"
  46 #include "opto/opaquenode.hpp"
  47 #include "opto/parse.hpp"
  48 #include "opto/rootnode.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/subtypenode.hpp"
  51 #include "runtime/deoptimization.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "utilities/bitMap.inline.hpp"
  54 #include "utilities/powerOfTwo.hpp"
  55 #include "utilities/growableArray.hpp"
  56 
  57 //----------------------------GraphKit-----------------------------------------
  58 // Main utility constructor.
  59 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  60   : Phase(Phase::Parser),
  61     _env(C->env()),
  62     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  63     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  64 {
  65   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  66   _exceptions = jvms->map()->next_exception();
  67   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  68   set_jvms(jvms);
  69 #ifdef ASSERT
  70   if (_gvn.is_IterGVN() != nullptr) {
  71     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  72     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  73     _worklist_size = _gvn.C->igvn_worklist()->size();
  74   }
  75 #endif
  76 }
  77 
  78 // Private constructor for parser.
  79 GraphKit::GraphKit()
  80   : Phase(Phase::Parser),
  81     _env(C->env()),
  82     _gvn(*C->initial_gvn()),
  83     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  84 {
  85   _exceptions = nullptr;
  86   set_map(nullptr);
  87   debug_only(_sp = -99);
  88   debug_only(set_bci(-99));
  89 }
  90 
  91 
  92 
  93 //---------------------------clean_stack---------------------------------------
  94 // Clear away rubbish from the stack area of the JVM state.
  95 // This destroys any arguments that may be waiting on the stack.

 853         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 854           tty->print_cr("Zombie local %d: ", local);
 855           jvms->dump();
 856         }
 857         return false;
 858       }
 859     }
 860   }
 861   return true;
 862 }
 863 
 864 #endif //ASSERT
 865 
 866 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 867 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 868   ciMethod* cur_method = jvms->method();
 869   int       cur_bci   = jvms->bci();
 870   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 871     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 872     return Interpreter::bytecode_should_reexecute(code) ||
 873            (is_anewarray && (code == Bytecodes::_multianewarray));
 874     // Reexecute _multianewarray bytecode which was replaced with
 875     // sequence of [a]newarray. See Parse::do_multianewarray().
 876     //
 877     // Note: interpreter should not have it set since this optimization
 878     // is limited by dimensions and guarded by flag so in some cases
 879     // multianewarray() runtime calls will be generated and
 880     // the bytecode should not be reexecutes (stack will not be reset).
 881   } else {
 882     return false;
 883   }
 884 }
 885 
 886 // Helper function for adding JVMState and debug information to node
 887 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 888   // Add the safepoint edges to the call (or other safepoint).
 889 
 890   // Make sure dead locals are set to top.  This
 891   // should help register allocation time and cut down on the size
 892   // of the deoptimization information.
 893   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 944   }
 945 
 946   // Presize the call:
 947   DEBUG_ONLY(uint non_debug_edges = call->req());
 948   call->add_req_batch(top(), youngest_jvms->debug_depth());
 949   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 950 
 951   // Set up edges so that the call looks like this:
 952   //  Call [state:] ctl io mem fptr retadr
 953   //       [parms:] parm0 ... parmN
 954   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 955   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 956   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 957   // Note that caller debug info precedes callee debug info.
 958 
 959   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 960   uint debug_ptr = call->req();
 961 
 962   // Loop over the map input edges associated with jvms, add them
 963   // to the call node, & reset all offsets to match call node array.
 964 
 965   JVMState* callee_jvms = nullptr;
 966   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 967     uint debug_end   = debug_ptr;
 968     uint debug_start = debug_ptr - in_jvms->debug_size();
 969     debug_ptr = debug_start;  // back up the ptr
 970 
 971     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 972     uint j, k, l;
 973     SafePointNode* in_map = in_jvms->map();
 974     out_jvms->set_map(call);
 975 
 976     if (can_prune_locals) {
 977       assert(in_jvms->method() == out_jvms->method(), "sanity");
 978       // If the current throw can reach an exception handler in this JVMS,
 979       // then we must keep everything live that can reach that handler.
 980       // As a quick and dirty approximation, we look for any handlers at all.
 981       if (in_jvms->method()->has_exception_handlers()) {
 982         can_prune_locals = false;
 983       }
 984     }
 985 
 986     // Add the Locals
 987     k = in_jvms->locoff();
 988     l = in_jvms->loc_size();
 989     out_jvms->set_locoff(p);
 990     if (!can_prune_locals) {
 991       for (j = 0; j < l; j++) {
 992         Node* val = in_map->in(k + j);
 993         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
 994         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
 995             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
 996             val->bottom_type()->is_inlinetypeptr()) {
 997           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
 998         }
 999         call->set_req(p++, val);
1000       }
1001     } else {
1002       p += l;  // already set to top above by add_req_batch
1003     }
1004 
1005     // Add the Expression Stack
1006     k = in_jvms->stkoff();
1007     l = in_jvms->sp();
1008     out_jvms->set_stkoff(p);
1009     if (!can_prune_locals) {
1010       for (j = 0; j < l; j++) {
1011         Node* val = in_map->in(k + j);
1012         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
1013         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
1014             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
1015             val->bottom_type()->is_inlinetypeptr()) {
1016           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
1017         }
1018         call->set_req(p++, val);
1019       }
1020     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1021       // Divide stack into {S0,...,S1}, where S0 is set to top.
1022       uint s1 = stack_slots_not_pruned;
1023       stack_slots_not_pruned = 0;  // for next iteration
1024       if (s1 > l)  s1 = l;
1025       uint s0 = l - s1;
1026       p += s0;  // skip the tops preinstalled by add_req_batch
1027       for (j = s0; j < l; j++)
1028         call->set_req(p++, in_map->in(k+j));
1029     } else {
1030       p += l;  // already set to top above by add_req_batch
1031     }
1032 
1033     // Add the Monitors
1034     k = in_jvms->monoff();
1035     l = in_jvms->mon_size();
1036     out_jvms->set_monoff(p);
1037     for (j = 0; j < l; j++)
1038       call->set_req(p++, in_map->in(k+j));
1039 
1040     // Copy any scalar object fields.
1041     k = in_jvms->scloff();
1042     l = in_jvms->scl_size();
1043     out_jvms->set_scloff(p);
1044     for (j = 0; j < l; j++)
1045       call->set_req(p++, in_map->in(k+j));
1046 
1047     // Finish the new jvms.
1048     out_jvms->set_endoff(p);
1049 
1050     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1051     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1052     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1053     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1054     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1055     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1056 
1057     // Update the two tail pointers in parallel.
1058     callee_jvms = out_jvms;
1059     out_jvms = out_jvms->caller();
1060     in_jvms  = in_jvms->caller();
1061   }
1062 
1063   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1064 
1065   // Test the correctness of JVMState::debug_xxx accessors:
1066   assert(call->jvms()->debug_start() == non_debug_edges, "");
1067   assert(call->jvms()->debug_end()   == call->req(), "");
1068   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1069 }
1070 
1071 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1072   Bytecodes::Code code = java_bc();
1073   if (code == Bytecodes::_wide) {
1074     code = method()->java_code_at_bci(bci() + 1);
1075   }
1076 
1077   if (code != Bytecodes::_illegal) {
1078     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1214   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1215   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1216   return _gvn.transform( new AndLNode(conv, mask) );
1217 }
1218 
1219 Node* GraphKit::ConvL2I(Node* offset) {
1220   // short-circuit a common case
1221   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1222   if (offset_con != (jlong)Type::OffsetBot) {
1223     return intcon((int) offset_con);
1224   }
1225   return _gvn.transform( new ConvL2INode(offset));
1226 }
1227 
1228 //-------------------------load_object_klass-----------------------------------
1229 Node* GraphKit::load_object_klass(Node* obj) {
1230   // Special-case a fresh allocation to avoid building nodes:
1231   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1232   if (akls != nullptr)  return akls;
1233   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1234   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1235 }
1236 
1237 //-------------------------load_array_length-----------------------------------
1238 Node* GraphKit::load_array_length(Node* array) {
1239   // Special-case a fresh allocation to avoid building nodes:
1240   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1241   Node *alen;
1242   if (alloc == nullptr) {
1243     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1244     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1245   } else {
1246     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1247   }
1248   return alen;
1249 }
1250 
1251 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1252                                    const TypeOopPtr* oop_type,
1253                                    bool replace_length_in_map) {
1254   Node* length = alloc->Ideal_length();

1263         replace_in_map(length, ccast);
1264       }
1265       return ccast;
1266     }
1267   }
1268   return length;
1269 }
1270 
1271 //------------------------------do_null_check----------------------------------
1272 // Helper function to do a null pointer check.  Returned value is
1273 // the incoming address with null casted away.  You are allowed to use the
1274 // not-null value only if you are control dependent on the test.
1275 #ifndef PRODUCT
1276 extern uint explicit_null_checks_inserted,
1277             explicit_null_checks_elided;
1278 #endif
1279 Node* GraphKit::null_check_common(Node* value, BasicType type,
1280                                   // optional arguments for variations:
1281                                   bool assert_null,
1282                                   Node* *null_control,
1283                                   bool speculative,
1284                                   bool is_init_check) {
1285   assert(!assert_null || null_control == nullptr, "not both at once");
1286   if (stopped())  return top();
1287   NOT_PRODUCT(explicit_null_checks_inserted++);
1288 
1289   if (value->is_InlineType()) {
1290     // Null checking a scalarized but nullable inline type. Check the IsInit
1291     // input instead of the oop input to avoid keeping buffer allocations alive.
1292     InlineTypeNode* vtptr = value->as_InlineType();
1293     while (vtptr->get_oop()->is_InlineType()) {
1294       vtptr = vtptr->get_oop()->as_InlineType();
1295     }
1296     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1297     if (stopped()) {
1298       return top();
1299     }
1300     if (assert_null) {
1301       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1302       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1303       // replace_in_map(value, vtptr);
1304       // return vtptr;
1305       replace_in_map(value, null());
1306       return null();
1307     }
1308     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1309     return cast_not_null(value, do_replace_in_map);
1310   }
1311 
1312   // Construct null check
1313   Node *chk = nullptr;
1314   switch(type) {
1315     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1316     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1317     case T_ARRAY  : // fall through
1318       type = T_OBJECT;  // simplify further tests
1319     case T_OBJECT : {
1320       const Type *t = _gvn.type( value );
1321 
1322       const TypeOopPtr* tp = t->isa_oopptr();
1323       if (tp != nullptr && !tp->is_loaded()
1324           // Only for do_null_check, not any of its siblings:
1325           && !assert_null && null_control == nullptr) {
1326         // Usually, any field access or invocation on an unloaded oop type
1327         // will simply fail to link, since the statically linked class is
1328         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1329         // the static class is loaded but the sharper oop type is not.
1330         // Rather than checking for this obscure case in lots of places,
1331         // we simply observe that a null check on an unloaded class

1395         }
1396         Node *oldcontrol = control();
1397         set_control(cfg);
1398         Node *res = cast_not_null(value);
1399         set_control(oldcontrol);
1400         NOT_PRODUCT(explicit_null_checks_elided++);
1401         return res;
1402       }
1403       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1404       if (cfg == nullptr)  break;  // Quit at region nodes
1405       depth++;
1406     }
1407   }
1408 
1409   //-----------
1410   // Branch to failure if null
1411   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1412   Deoptimization::DeoptReason reason;
1413   if (assert_null) {
1414     reason = Deoptimization::reason_null_assert(speculative);
1415   } else if (type == T_OBJECT || is_init_check) {
1416     reason = Deoptimization::reason_null_check(speculative);
1417   } else {
1418     reason = Deoptimization::Reason_div0_check;
1419   }
1420   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1421   // ciMethodData::has_trap_at will return a conservative -1 if any
1422   // must-be-null assertion has failed.  This could cause performance
1423   // problems for a method after its first do_null_assert failure.
1424   // Consider using 'Reason_class_check' instead?
1425 
1426   // To cause an implicit null check, we set the not-null probability
1427   // to the maximum (PROB_MAX).  For an explicit check the probability
1428   // is set to a smaller value.
1429   if (null_control != nullptr || too_many_traps(reason)) {
1430     // probability is less likely
1431     ok_prob =  PROB_LIKELY_MAG(3);
1432   } else if (!assert_null &&
1433              (ImplicitNullCheckThreshold > 0) &&
1434              method() != nullptr &&
1435              (method()->method_data()->trap_count(reason)

1469   }
1470 
1471   if (assert_null) {
1472     // Cast obj to null on this path.
1473     replace_in_map(value, zerocon(type));
1474     return zerocon(type);
1475   }
1476 
1477   // Cast obj to not-null on this path, if there is no null_control.
1478   // (If there is a null_control, a non-null value may come back to haunt us.)
1479   if (type == T_OBJECT) {
1480     Node* cast = cast_not_null(value, false);
1481     if (null_control == nullptr || (*null_control) == top())
1482       replace_in_map(value, cast);
1483     value = cast;
1484   }
1485 
1486   return value;
1487 }
1488 

1489 //------------------------------cast_not_null----------------------------------
1490 // Cast obj to not-null on this path
1491 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1492   if (obj->is_InlineType()) {
1493     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1494     vt->as_InlineType()->set_is_init(_gvn);
1495     vt = _gvn.transform(vt);
1496     if (do_replace_in_map) {
1497       replace_in_map(obj, vt);
1498     }
1499     return vt;
1500   }
1501   const Type *t = _gvn.type(obj);
1502   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1503   // Object is already not-null?
1504   if( t == t_not_null ) return obj;
1505 
1506   Node* cast = new CastPPNode(control(), obj,t_not_null);
1507   cast = _gvn.transform( cast );
1508 
1509   // Scan for instances of 'obj' in the current JVM mapping.
1510   // These instances are known to be not-null after the test.
1511   if (do_replace_in_map)
1512     replace_in_map(obj, cast);
1513 
1514   return cast;                  // Return casted value
1515 }
1516 
1517 // Sometimes in intrinsics, we implicitly know an object is not null
1518 // (there's no actual null check) so we can cast it to not null. In
1519 // the course of optimizations, the input to the cast can become null.
1520 // In that case that data path will die and we need the control path

1609 // These are layered on top of the factory methods in LoadNode and StoreNode,
1610 // and integrate with the parser's memory state and _gvn engine.
1611 //
1612 
1613 // factory methods in "int adr_idx"
1614 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1615                           MemNode::MemOrd mo,
1616                           LoadNode::ControlDependency control_dependency,
1617                           bool require_atomic_access,
1618                           bool unaligned,
1619                           bool mismatched,
1620                           bool unsafe,
1621                           uint8_t barrier_data) {
1622   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1623   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1624   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1625   debug_only(adr_type = C->get_adr_type(adr_idx));
1626   Node* mem = memory(adr_idx);
1627   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1628   ld = _gvn.transform(ld);
1629 
1630   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1631     // Improve graph before escape analysis and boxing elimination.
1632     record_for_igvn(ld);
1633     if (ld->is_DecodeN()) {
1634       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1635       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1636       // a Phi). Recording such cases is still perfectly sound, but may be
1637       // unnecessary and result in some minor IGVN overhead.
1638       record_for_igvn(ld->in(1));
1639     }
1640   }
1641   return ld;
1642 }
1643 
1644 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1645                                 MemNode::MemOrd mo,
1646                                 bool require_atomic_access,
1647                                 bool unaligned,
1648                                 bool mismatched,
1649                                 bool unsafe,

1663   if (unsafe) {
1664     st->as_Store()->set_unsafe_access();
1665   }
1666   st->as_Store()->set_barrier_data(barrier_data);
1667   st = _gvn.transform(st);
1668   set_memory(st, adr_idx);
1669   // Back-to-back stores can only remove intermediate store with DU info
1670   // so push on worklist for optimizer.
1671   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1672     record_for_igvn(st);
1673 
1674   return st;
1675 }
1676 
1677 Node* GraphKit::access_store_at(Node* obj,
1678                                 Node* adr,
1679                                 const TypePtr* adr_type,
1680                                 Node* val,
1681                                 const Type* val_type,
1682                                 BasicType bt,
1683                                 DecoratorSet decorators,
1684                                 bool safe_for_replace,
1685                                 const InlineTypeNode* vt) {
1686   // Transformation of a value which could be null pointer (CastPP #null)
1687   // could be delayed during Parse (for example, in adjust_map_after_if()).
1688   // Execute transformation here to avoid barrier generation in such case.
1689   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1690     val = _gvn.makecon(TypePtr::NULL_PTR);
1691   }
1692 
1693   if (stopped()) {
1694     return top(); // Dead path ?
1695   }
1696 
1697   assert(val != nullptr, "not dead path");
1698   if (val->is_InlineType()) {
1699     // Store to non-flat field. Buffer the inline type and make sure
1700     // the store is re-executed if the allocation triggers deoptimization.
1701     PreserveReexecuteState preexecs(this);
1702     jvms()->set_should_reexecute(true);
1703     val = val->as_InlineType()->buffer(this, safe_for_replace);
1704   }
1705 
1706   C2AccessValuePtr addr(adr, adr_type);
1707   C2AccessValue value(val, val_type);
1708   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1709   if (access.is_raw()) {
1710     return _barrier_set->BarrierSetC2::store_at(access, value);
1711   } else {
1712     return _barrier_set->store_at(access, value);
1713   }
1714 }
1715 
1716 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1717                                Node* adr,   // actual address to store val at
1718                                const TypePtr* adr_type,
1719                                const Type* val_type,
1720                                BasicType bt,
1721                                DecoratorSet decorators,
1722                                Node* ctl) {
1723   if (stopped()) {
1724     return top(); // Dead path ?
1725   }
1726 
1727   C2AccessValuePtr addr(adr, adr_type);
1728   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1729   if (access.is_raw()) {
1730     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1731   } else {
1732     return _barrier_set->load_at(access, val_type);
1733   }
1734 }
1735 
1736 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1737                             const Type* val_type,
1738                             BasicType bt,
1739                             DecoratorSet decorators) {
1740   if (stopped()) {
1741     return top(); // Dead path ?
1742   }
1743 
1744   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1745   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1746   if (access.is_raw()) {
1747     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1748   } else {

1813                                      Node* new_val,
1814                                      const Type* value_type,
1815                                      BasicType bt,
1816                                      DecoratorSet decorators) {
1817   C2AccessValuePtr addr(adr, adr_type);
1818   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1819   if (access.is_raw()) {
1820     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1821   } else {
1822     return _barrier_set->atomic_add_at(access, new_val, value_type);
1823   }
1824 }
1825 
1826 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1827   return _barrier_set->clone(this, src, dst, size, is_array);
1828 }
1829 
1830 //-------------------------array_element_address-------------------------
1831 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1832                                       const TypeInt* sizetype, Node* ctrl) {
1833   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1834   assert(!arytype->is_flat() || elembt == T_OBJECT, "element type of flat arrays are T_OBJECT");
1835   uint shift;
1836   if (arytype->is_flat() && arytype->klass_is_exact()) {
1837     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1838     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1839     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1840     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1841     // though we don't need the address node in this case and throw it away again.
1842     shift = arytype->flat_log_elem_size();
1843   } else {
1844     shift = exact_log2(type2aelembytes(elembt));
1845   }
1846   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1847 
1848   // short-circuit a common case (saves lots of confusing waste motion)
1849   jint idx_con = find_int_con(idx, -1);
1850   if (idx_con >= 0) {
1851     intptr_t offset = header + ((intptr_t)idx_con << shift);
1852     return basic_plus_adr(ary, offset);
1853   }
1854 
1855   // must be correct type for alignment purposes
1856   Node* base  = basic_plus_adr(ary, header);
1857   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1858   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1859   return basic_plus_adr(ary, base, scale);
1860 }
1861 
1862 //-------------------------load_array_element-------------------------
1863 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1864   const Type* elemtype = arytype->elem();
1865   BasicType elembt = elemtype->array_element_basic_type();
1866   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1867   if (elembt == T_NARROWOOP) {
1868     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1869   }
1870   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1871                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1872   return ld;
1873 }
1874 
1875 //-------------------------set_arguments_for_java_call-------------------------
1876 // Arguments (pre-popped from the stack) are taken from the JVMS.
1877 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1878   PreserveReexecuteState preexecs(this);
1879   if (EnableValhalla) {
1880     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1881     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1882     jvms()->set_should_reexecute(true);
1883     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1884     inc_sp(arg_size);
1885   }
1886   // Add the call arguments
1887   const TypeTuple* domain = call->tf()->domain_sig();
1888   uint nargs = domain->cnt();
1889   int arg_num = 0;
1890   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1891     Node* arg = argument(i-TypeFunc::Parms);
1892     const Type* t = domain->field_at(i);
1893     // TODO 8284443 A static call to a mismatched method should still be scalarized
1894     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1895       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1896       if (!arg->is_InlineType()) {
1897         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1898         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1899       }
1900       InlineTypeNode* vt = arg->as_InlineType();
1901       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1902       // If an inline type argument is passed as fields, attach the Method* to the call site
1903       // to be able to access the extended signature later via attached_method_before_pc().
1904       // For example, see CompiledMethod::preserve_callee_argument_oops().
1905       call->set_override_symbolic_info(true);
1906       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1907       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1908       C->dependencies()->assert_evol_method(call->method());
1909       arg_num++;
1910       continue;
1911     } else if (arg->is_InlineType()) {
1912       // Pass inline type argument via oop to callee
1913       InlineTypeNode* inline_type = arg->as_InlineType();
1914       const ciMethod* method = call->method();
1915       ciInstanceKlass* holder = method->holder();
1916       const bool is_receiver = (i == TypeFunc::Parms);
1917       const bool is_abstract_or_object_klass_constructor = method->is_object_constructor() &&
1918                                                            (holder->is_abstract() || holder->is_java_lang_Object());
1919       const bool is_larval_receiver_on_super_constructor = is_receiver && is_abstract_or_object_klass_constructor;
1920       bool must_init_buffer = true;
1921       // We always need to buffer inline types when they are escaping. However, we can skip the actual initialization
1922       // of the buffer if the inline type is a larval because we are going to update the buffer anyway which requires
1923       // us to create a new one. But there is one special case where we are still required to initialize the buffer:
1924       // When we have a larval receiver invoked on an abstract (value class) constructor or the Object constructor (that
1925       // is not going to be inlined). After this call, the larval is completely initialized and thus not a larval anymore.
1926       // We therefore need to force an initialization of the buffer to not lose all the field writes so far in case the
1927       // buffer needs to be used (e.g. to read from when deoptimizing at runtime) or further updated in abstract super
1928       // value class constructors which could have more fields to be initialized. Note that we do not need to
1929       // initialize the buffer when invoking another constructor in the same class on a larval receiver because we
1930       // have not initialized any fields, yet (this is done completely by the other constructor call).
1931       if (inline_type->is_larval() && !is_larval_receiver_on_super_constructor) {
1932         must_init_buffer = false;
1933       }
1934       arg = inline_type->buffer(this, true, must_init_buffer);
1935     }
1936     if (t != Type::HALF) {
1937       arg_num++;
1938     }
1939     call->init_req(idx++, arg);
1940   }
1941 }
1942 
1943 //---------------------------set_edges_for_java_call---------------------------
1944 // Connect a newly created call into the current JVMS.
1945 // A return value node (if any) is returned from set_edges_for_java_call.
1946 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1947 
1948   // Add the predefined inputs:
1949   call->init_req( TypeFunc::Control, control() );
1950   call->init_req( TypeFunc::I_O    , i_o() );
1951   call->init_req( TypeFunc::Memory , reset_memory() );
1952   call->init_req( TypeFunc::FramePtr, frameptr() );
1953   call->init_req( TypeFunc::ReturnAdr, top() );
1954 
1955   add_safepoint_edges(call, must_throw);
1956 
1957   Node* xcall = _gvn.transform(call);
1958 
1959   if (xcall == top()) {
1960     set_control(top());
1961     return;
1962   }
1963   assert(xcall == call, "call identity is stable");
1964 
1965   // Re-use the current map to produce the result.
1966 
1967   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1968   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1969   set_all_memory_call(xcall, separate_io_proj);
1970 
1971   //return xcall;   // no need, caller already has it
1972 }
1973 
1974 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1975   if (stopped())  return top();  // maybe the call folded up?
1976 







1977   // Note:  Since any out-of-line call can produce an exception,
1978   // we always insert an I_O projection from the call into the result.
1979 
1980   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1981 
1982   if (separate_io_proj) {
1983     // The caller requested separate projections be used by the fall
1984     // through and exceptional paths, so replace the projections for
1985     // the fall through path.
1986     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1987     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1988   }
1989 
1990   // Capture the return value, if any.
1991   Node* ret;
1992   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1993     ret = top();
1994   } else if (call->tf()->returns_inline_type_as_fields()) {
1995     // Return of multiple values (inline type fields): we create a
1996     // InlineType node, each field is a projection from the call.
1997     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
1998     uint base_input = TypeFunc::Parms;
1999     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2000   } else {
2001     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2002     ciType* t = call->method()->return_type();
2003     if (t->is_klass()) {
2004       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2005       if (type->is_inlinetypeptr()) {
2006         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass(), type->inline_klass()->is_null_free());
2007       }
2008     }
2009   }
2010 
2011   // We just called the constructor on a value type receiver. Reload it from the buffer
2012   ciMethod* method = call->method();
2013   if (method->is_object_constructor() && !method->holder()->is_java_lang_Object()) {
2014     InlineTypeNode* inline_type_receiver = call->in(TypeFunc::Parms)->isa_InlineType();
2015     if (inline_type_receiver != nullptr) {
2016       assert(inline_type_receiver->is_larval(), "must be larval");
2017       assert(inline_type_receiver->is_allocated(&gvn()), "larval must be buffered");
2018       InlineTypeNode* reloaded = InlineTypeNode::make_from_oop(this, inline_type_receiver->get_oop(),
2019                                                                inline_type_receiver->bottom_type()->inline_klass(), true);
2020       assert(!reloaded->is_larval(), "should not be larval anymore");
2021       replace_in_map(inline_type_receiver, reloaded);
2022     }
2023   }
2024 
2025   return ret;
2026 }
2027 
2028 //--------------------set_predefined_input_for_runtime_call--------------------
2029 // Reading and setting the memory state is way conservative here.
2030 // The real problem is that I am not doing real Type analysis on memory,
2031 // so I cannot distinguish card mark stores from other stores.  Across a GC
2032 // point the Store Barrier and the card mark memory has to agree.  I cannot
2033 // have a card mark store and its barrier split across the GC point from
2034 // either above or below.  Here I get that to happen by reading ALL of memory.
2035 // A better answer would be to separate out card marks from other memory.
2036 // For now, return the input memory state, so that it can be reused
2037 // after the call, if this call has restricted memory effects.
2038 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2039   // Set fixed predefined input arguments
2040   Node* memory = reset_memory();
2041   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
2042   call->init_req( TypeFunc::Control,   control()  );
2043   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
2044   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

2095     if (use->is_MergeMem()) {
2096       wl.push(use);
2097     }
2098   }
2099 }
2100 
2101 // Replace the call with the current state of the kit.
2102 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2103   JVMState* ejvms = nullptr;
2104   if (has_exceptions()) {
2105     ejvms = transfer_exceptions_into_jvms();
2106   }
2107 
2108   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2109   ReplacedNodes replaced_nodes_exception;
2110   Node* ex_ctl = top();
2111 
2112   SafePointNode* final_state = stop();
2113 
2114   // Find all the needed outputs of this call
2115   CallProjections* callprojs = call->extract_projections(true, do_asserts);

2116 
2117   Unique_Node_List wl;
2118   Node* init_mem = call->in(TypeFunc::Memory);
2119   Node* final_mem = final_state->in(TypeFunc::Memory);
2120   Node* final_ctl = final_state->in(TypeFunc::Control);
2121   Node* final_io = final_state->in(TypeFunc::I_O);
2122 
2123   // Replace all the old call edges with the edges from the inlining result
2124   if (callprojs->fallthrough_catchproj != nullptr) {
2125     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2126   }
2127   if (callprojs->fallthrough_memproj != nullptr) {
2128     if (final_mem->is_MergeMem()) {
2129       // Parser's exits MergeMem was not transformed but may be optimized
2130       final_mem = _gvn.transform(final_mem);
2131     }
2132     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2133     add_mergemem_users_to_worklist(wl, final_mem);
2134   }
2135   if (callprojs->fallthrough_ioproj != nullptr) {
2136     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2137   }
2138 
2139   // Replace the result with the new result if it exists and is used
2140   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2141     // If the inlined code is dead, the result projections for an inline type returned as
2142     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2143     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2144            "unexpected number of results");
2145     C->gvn_replace_by(callprojs->resproj[0], result);
2146   }
2147 
2148   if (ejvms == nullptr) {
2149     // No exception edges to simply kill off those paths
2150     if (callprojs->catchall_catchproj != nullptr) {
2151       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2152     }
2153     if (callprojs->catchall_memproj != nullptr) {
2154       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2155     }
2156     if (callprojs->catchall_ioproj != nullptr) {
2157       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2158     }
2159     // Replace the old exception object with top
2160     if (callprojs->exobj != nullptr) {
2161       C->gvn_replace_by(callprojs->exobj, C->top());
2162     }
2163   } else {
2164     GraphKit ekit(ejvms);
2165 
2166     // Load my combined exception state into the kit, with all phis transformed:
2167     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2168     replaced_nodes_exception = ex_map->replaced_nodes();
2169 
2170     Node* ex_oop = ekit.use_exception_state(ex_map);
2171 
2172     if (callprojs->catchall_catchproj != nullptr) {
2173       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2174       ex_ctl = ekit.control();
2175     }
2176     if (callprojs->catchall_memproj != nullptr) {
2177       Node* ex_mem = ekit.reset_memory();
2178       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2179       add_mergemem_users_to_worklist(wl, ex_mem);
2180     }
2181     if (callprojs->catchall_ioproj != nullptr) {
2182       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2183     }
2184 
2185     // Replace the old exception object with the newly created one
2186     if (callprojs->exobj != nullptr) {
2187       C->gvn_replace_by(callprojs->exobj, ex_oop);
2188     }
2189   }
2190 
2191   // Disconnect the call from the graph
2192   call->disconnect_inputs(C);
2193   C->gvn_replace_by(call, C->top());
2194 
2195   // Clean up any MergeMems that feed other MergeMems since the
2196   // optimizer doesn't like that.
2197   while (wl.size() > 0) {
2198     _gvn.transform(wl.pop());
2199   }
2200 
2201   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2202     replaced_nodes.apply(C, final_ctl);
2203   }
2204   if (!ex_ctl->is_top() && do_replaced_nodes) {
2205     replaced_nodes_exception.apply(C, ex_ctl);
2206   }
2207 }
2208 
2209 
2210 //------------------------------increment_counter------------------------------
2211 // for statistics: increment a VM counter by 1
2212 
2213 void GraphKit::increment_counter(address counter_addr) {
2214   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2215   increment_counter(adr1);
2216 }
2217 
2218 void GraphKit::increment_counter(Node* counter_addr) {
2219   Node* ctrl = control();
2220   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2221   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2381  *
2382  * @param n          node that the type applies to
2383  * @param exact_kls  type from profiling
2384  * @param maybe_null did profiling see null?
2385  *
2386  * @return           node with improved type
2387  */
2388 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2389   const Type* current_type = _gvn.type(n);
2390   assert(UseTypeSpeculation, "type speculation must be on");
2391 
2392   const TypePtr* speculative = current_type->speculative();
2393 
2394   // Should the klass from the profile be recorded in the speculative type?
2395   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2396     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2397     const TypeOopPtr* xtype = tklass->as_instance_type();
2398     assert(xtype->klass_is_exact(), "Should be exact");
2399     // Any reason to believe n is not null (from this profiling or a previous one)?
2400     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2401     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2402     // record the new speculative type's depth
2403     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2404     speculative = speculative->with_inline_depth(jvms()->depth());
2405   } else if (current_type->would_improve_ptr(ptr_kind)) {
2406     // Profiling report that null was never seen so we can change the
2407     // speculative type to non null ptr.
2408     if (ptr_kind == ProfileAlwaysNull) {
2409       speculative = TypePtr::NULL_PTR;
2410     } else {
2411       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2412       const TypePtr* ptr = TypePtr::NOTNULL;
2413       if (speculative != nullptr) {
2414         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2415       } else {
2416         speculative = ptr;
2417       }
2418     }
2419   }
2420 
2421   if (speculative != current_type->speculative()) {
2422     // Build a type with a speculative type (what we think we know
2423     // about the type but will need a guard when we use it)
2424     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2425     // We're changing the type, we need a new CheckCast node to carry
2426     // the new type. The new type depends on the control: what
2427     // profiling tells us is only valid from here as far as we can
2428     // tell.
2429     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2430     cast = _gvn.transform(cast);
2431     replace_in_map(n, cast);
2432     n = cast;
2433   }
2434 
2435   return n;
2436 }
2437 
2438 /**
2439  * Record profiling data from receiver profiling at an invoke with the
2440  * type system so that it can propagate it (speculation)
2441  *
2442  * @param n  receiver node
2443  *
2444  * @return   node with improved type
2445  */
2446 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2447   if (!UseTypeSpeculation) {
2448     return n;
2449   }
2450   ciKlass* exact_kls = profile_has_unique_klass();
2451   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2452   if ((java_bc() == Bytecodes::_checkcast ||
2453        java_bc() == Bytecodes::_instanceof ||
2454        java_bc() == Bytecodes::_aastore) &&
2455       method()->method_data()->is_mature()) {
2456     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2457     if (data != nullptr) {
2458       if (java_bc() == Bytecodes::_aastore) {
2459         ciKlass* array_type = nullptr;
2460         ciKlass* element_type = nullptr;
2461         ProfilePtrKind element_ptr = ProfileMaybeNull;
2462         bool flat_array = true;
2463         bool null_free_array = true;
2464         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2465         exact_kls = element_type;
2466         ptr_kind = element_ptr;
2467       } else {
2468         if (!data->as_BitData()->null_seen()) {
2469           ptr_kind = ProfileNeverNull;
2470         } else {
2471           assert(data->is_ReceiverTypeData(), "bad profile data type");
2472           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2473           uint i = 0;
2474           for (; i < call->row_limit(); i++) {
2475             ciKlass* receiver = call->receiver(i);
2476             if (receiver != nullptr) {
2477               break;
2478             }
2479           }
2480           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2481         }

2482       }
2483     }
2484   }
2485   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2486 }
2487 
2488 /**
2489  * Record profiling data from argument profiling at an invoke with the
2490  * type system so that it can propagate it (speculation)
2491  *
2492  * @param dest_method  target method for the call
2493  * @param bc           what invoke bytecode is this?
2494  */
2495 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2496   if (!UseTypeSpeculation) {
2497     return;
2498   }
2499   const TypeFunc* tf    = TypeFunc::make(dest_method);
2500   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2501   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2502   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2503     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2504     if (is_reference_type(targ->basic_type())) {
2505       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2506       ciKlass* better_type = nullptr;
2507       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2508         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2509       }
2510       i++;
2511     }
2512   }
2513 }
2514 
2515 /**
2516  * Record profiling data from parameter profiling at an invoke with
2517  * the type system so that it can propagate it (speculation)
2518  */
2519 void GraphKit::record_profiled_parameters_for_speculation() {
2520   if (!UseTypeSpeculation) {
2521     return;
2522   }
2523   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2537  * the type system so that it can propagate it (speculation)
2538  */
2539 void GraphKit::record_profiled_return_for_speculation() {
2540   if (!UseTypeSpeculation) {
2541     return;
2542   }
2543   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2544   ciKlass* better_type = nullptr;
2545   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2546     // If profiling reports a single type for the return value,
2547     // feed it to the type system so it can propagate it as a
2548     // speculative type
2549     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2550   }
2551 }
2552 
2553 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2554   if (Matcher::strict_fp_requires_explicit_rounding) {
2555     // (Note:  TypeFunc::make has a cache that makes this fast.)
2556     const TypeFunc* tf    = TypeFunc::make(dest_method);
2557     int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2558     for (int j = 0; j < nargs; j++) {
2559       const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2560       if (targ->basic_type() == T_DOUBLE) {
2561         // If any parameters are doubles, they must be rounded before
2562         // the call, dprecision_rounding does gvn.transform
2563         Node *arg = argument(j);
2564         arg = dprecision_rounding(arg);
2565         set_argument(j, arg);
2566       }
2567     }
2568   }
2569 }
2570 
2571 // rounding for strict float precision conformance
2572 Node* GraphKit::precision_rounding(Node* n) {
2573   if (Matcher::strict_fp_requires_explicit_rounding) {
2574 #ifdef IA32
2575     if (UseSSE == 0) {
2576       return _gvn.transform(new RoundFloatNode(nullptr, n));
2577     }
2578 #else
2579     Unimplemented();

2688                                   // The first null ends the list.
2689                                   Node* parm0, Node* parm1,
2690                                   Node* parm2, Node* parm3,
2691                                   Node* parm4, Node* parm5,
2692                                   Node* parm6, Node* parm7) {
2693   assert(call_addr != nullptr, "must not call null targets");
2694 
2695   // Slow-path call
2696   bool is_leaf = !(flags & RC_NO_LEAF);
2697   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2698   if (call_name == nullptr) {
2699     assert(!is_leaf, "must supply name for leaf");
2700     call_name = OptoRuntime::stub_name(call_addr);
2701   }
2702   CallNode* call;
2703   if (!is_leaf) {
2704     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2705   } else if (flags & RC_NO_FP) {
2706     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2707   } else  if (flags & RC_VECTOR){
2708     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2709     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2710   } else {
2711     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2712   }
2713 
2714   // The following is similar to set_edges_for_java_call,
2715   // except that the memory effects of the call are restricted to AliasIdxRaw.
2716 
2717   // Slow path call has no side-effects, uses few values
2718   bool wide_in  = !(flags & RC_NARROW_MEM);
2719   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2720 
2721   Node* prev_mem = nullptr;
2722   if (wide_in) {
2723     prev_mem = set_predefined_input_for_runtime_call(call);
2724   } else {
2725     assert(!wide_out, "narrow in => narrow out");
2726     Node* narrow_mem = memory(adr_type);
2727     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2728   }

2768 
2769   if (has_io) {
2770     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2771   }
2772   return call;
2773 
2774 }
2775 
2776 // i2b
2777 Node* GraphKit::sign_extend_byte(Node* in) {
2778   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2779   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2780 }
2781 
2782 // i2s
2783 Node* GraphKit::sign_extend_short(Node* in) {
2784   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2785   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2786 }
2787 
2788 
2789 //------------------------------merge_memory-----------------------------------
2790 // Merge memory from one path into the current memory state.
2791 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2792   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2793     Node* old_slice = mms.force_memory();
2794     Node* new_slice = mms.memory2();
2795     if (old_slice != new_slice) {
2796       PhiNode* phi;
2797       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2798         if (mms.is_empty()) {
2799           // clone base memory Phi's inputs for this memory slice
2800           assert(old_slice == mms.base_memory(), "sanity");
2801           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2802           _gvn.set_type(phi, Type::MEMORY);
2803           for (uint i = 1; i < phi->req(); i++) {
2804             phi->init_req(i, old_slice->in(i));
2805           }
2806         } else {
2807           phi = old_slice->as_Phi(); // Phi was generated already
2808         }

3071 
3072   // Now do a linear scan of the secondary super-klass array.  Again, no real
3073   // performance impact (too rare) but it's gotta be done.
3074   // Since the code is rarely used, there is no penalty for moving it
3075   // out of line, and it can only improve I-cache density.
3076   // The decision to inline or out-of-line this final check is platform
3077   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3078   Node* psc = gvn.transform(
3079     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3080 
3081   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3082   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3083   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3084 
3085   // Return false path; set default control to true path.
3086   *ctrl = gvn.transform(r_ok_subtype);
3087   return gvn.transform(r_not_subtype);
3088 }
3089 
3090 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3091   const Type* sub_t = _gvn.type(obj_or_subklass);
3092   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3093     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3094     obj_or_subklass = makecon(sub_t);
3095   }
3096   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3097   if (expand_subtype_check) {
3098     MergeMemNode* mem = merged_memory();
3099     Node* ctrl = control();
3100     Node* subklass = obj_or_subklass;
3101     if (!sub_t->isa_klassptr()) {
3102       subklass = load_object_klass(obj_or_subklass);
3103     }
3104 
3105     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3106     set_control(ctrl);
3107     return n;
3108   }
3109 
3110   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3111   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3112   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3113   set_control(_gvn.transform(new IfTrueNode(iff)));
3114   return _gvn.transform(new IfFalseNode(iff));
3115 }
3116 
3117 // Profile-driven exact type check:
3118 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3119                                     float prob, Node* *casted_receiver) {

3120   assert(!klass->is_interface(), "no exact type check on interfaces");
3121   Node* fail = top();
3122   const Type* rec_t = _gvn.type(receiver);
3123   if (rec_t->is_inlinetypeptr()) {
3124     if (klass->equals(rec_t->inline_klass())) {
3125       (*casted_receiver) = receiver; // Always passes
3126     } else {
3127       (*casted_receiver) = top();    // Always fails
3128       fail = control();
3129       set_control(top());
3130     }
3131     return fail;
3132   }
3133   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3134   Node* recv_klass = load_object_klass(receiver);
3135   fail = type_check(recv_klass, tklass, prob);





3136 
3137   if (!stopped()) {
3138     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3139     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3140     assert(recv_xtype->klass_is_exact(), "");
3141 
3142     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3143       // Subsume downstream occurrences of receiver with a cast to
3144       // recv_xtype, since now we know what the type will be.
3145       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3146       Node* res = _gvn.transform(cast);
3147       if (recv_xtype->is_inlinetypeptr()) {
3148         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3149         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3150       }
3151       (*casted_receiver) = res;
3152       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3153       // (User must make the replace_in_map call.)
3154     }
3155   }
3156 
3157   return fail;
3158 }
3159 
3160 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3161                            float prob) {
3162   Node* want_klass = makecon(tklass);
3163   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3164   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3165   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3166   set_control(_gvn.transform(new IfTrueNode (iff)));
3167   Node* fail = _gvn.transform(new IfFalseNode(iff));
3168   return fail;
3169 }
3170 
3171 //------------------------------subtype_check_receiver-------------------------
3172 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3173                                        Node** casted_receiver) {
3174   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3175   Node* want_klass = makecon(tklass);
3176 
3177   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3178 
3179   // Ignore interface type information until interface types are properly tracked.
3180   if (!stopped() && !klass->is_interface()) {
3181     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3182     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3183     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3184       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3185       if (recv_type->is_inlinetypeptr()) {
3186         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3187       }
3188       (*casted_receiver) = cast;
3189     }
3190   }
3191 
3192   return slow_ctl;
3193 }
3194 
3195 //------------------------------seems_never_null-------------------------------
3196 // Use null_seen information if it is available from the profile.
3197 // If we see an unexpected null at a type check we record it and force a
3198 // recompile; the offending check will be recompiled to handle nulls.
3199 // If we see several offending BCIs, then all checks in the
3200 // method will be recompiled.
3201 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3202   speculating = !_gvn.type(obj)->speculative_maybe_null();
3203   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3204   if (UncommonNullCast               // Cutout for this technique
3205       && obj != null()               // And not the -Xcomp stupid case?
3206       && !too_many_traps(reason)
3207       ) {
3208     if (speculating) {

3277 
3278 //------------------------maybe_cast_profiled_receiver-------------------------
3279 // If the profile has seen exactly one type, narrow to exactly that type.
3280 // Subsequent type checks will always fold up.
3281 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3282                                              const TypeKlassPtr* require_klass,
3283                                              ciKlass* spec_klass,
3284                                              bool safe_for_replace) {
3285   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3286 
3287   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3288 
3289   // Make sure we haven't already deoptimized from this tactic.
3290   if (too_many_traps_or_recompiles(reason))
3291     return nullptr;
3292 
3293   // (No, this isn't a call, but it's enough like a virtual call
3294   // to use the same ciMethod accessor to get the profile info...)
3295   // If we have a speculative type use it instead of profiling (which
3296   // may not help us)
3297   ciKlass* exact_kls = spec_klass;
3298   if (exact_kls == nullptr) {
3299     if (java_bc() == Bytecodes::_aastore) {
3300       ciKlass* array_type = nullptr;
3301       ciKlass* element_type = nullptr;
3302       ProfilePtrKind element_ptr = ProfileMaybeNull;
3303       bool flat_array = true;
3304       bool null_free_array = true;
3305       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3306       exact_kls = element_type;
3307     } else {
3308       exact_kls = profile_has_unique_klass();
3309     }
3310   }
3311   if (exact_kls != nullptr) {// no cast failures here
3312     if (require_klass == nullptr ||
3313         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3314       // If we narrow the type to match what the type profile sees or
3315       // the speculative type, we can then remove the rest of the
3316       // cast.
3317       // This is a win, even if the exact_kls is very specific,
3318       // because downstream operations, such as method calls,
3319       // will often benefit from the sharper type.
3320       Node* exact_obj = not_null_obj; // will get updated in place...
3321       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3322                                             &exact_obj);
3323       { PreserveJVMState pjvms(this);
3324         set_control(slow_ctl);
3325         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3326       }
3327       if (safe_for_replace) {
3328         replace_in_map(not_null_obj, exact_obj);
3329       }
3330       return exact_obj;

3420   // If not_null_obj is dead, only null-path is taken
3421   if (stopped()) {              // Doing instance-of on a null?
3422     set_control(null_ctl);
3423     return intcon(0);
3424   }
3425   region->init_req(_null_path, null_ctl);
3426   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3427   if (null_ctl == top()) {
3428     // Do this eagerly, so that pattern matches like is_diamond_phi
3429     // will work even during parsing.
3430     assert(_null_path == PATH_LIMIT-1, "delete last");
3431     region->del_req(_null_path);
3432     phi   ->del_req(_null_path);
3433   }
3434 
3435   // Do we know the type check always succeed?
3436   bool known_statically = false;
3437   if (_gvn.type(superklass)->singleton()) {
3438     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3439     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3440     if (subk != nullptr && subk->is_loaded()) {
3441       int static_res = C->static_subtype_check(superk, subk);
3442       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3443     }
3444   }
3445 
3446   if (!known_statically) {
3447     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3448     // We may not have profiling here or it may not help us. If we
3449     // have a speculative type use it to perform an exact cast.
3450     ciKlass* spec_obj_type = obj_type->speculative_type();
3451     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3452       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3453       if (stopped()) {            // Profile disagrees with this path.
3454         set_control(null_ctl);    // Null is the only remaining possibility.
3455         return intcon(0);
3456       }
3457       if (cast_obj != nullptr) {
3458         not_null_obj = cast_obj;
3459       }
3460     }

3476   record_for_igvn(region);
3477 
3478   // If we know the type check always succeeds then we don't use the
3479   // profiling data at this bytecode. Don't lose it, feed it to the
3480   // type system as a speculative type.
3481   if (safe_for_replace) {
3482     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3483     replace_in_map(obj, casted_obj);
3484   }
3485 
3486   return _gvn.transform(phi);
3487 }
3488 
3489 //-------------------------------gen_checkcast---------------------------------
3490 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3491 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3492 // uncommon-trap paths work.  Adjust stack after this call.
3493 // If failure_control is supplied and not null, it is filled in with
3494 // the control edge for the cast failure.  Otherwise, an appropriate
3495 // uncommon trap or exception is thrown.
3496 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {

3497   kill_dead_locals();           // Benefit all the uncommon traps
3498   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3499   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3500   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3501   bool safe_for_replace = (failure_control == nullptr);
3502   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3503 
3504   // Fast cutout:  Check the case that the cast is vacuously true.
3505   // This detects the common cases where the test will short-circuit
3506   // away completely.  We do this before we perform the null check,
3507   // because if the test is going to turn into zero code, we don't
3508   // want a residual null check left around.  (Causes a slowdown,
3509   // for example, in some objArray manipulations, such as a[i]=a[j].)
3510   if (improved_klass_ptr_type->singleton()) {
3511     const TypeKlassPtr* kptr = nullptr;
3512     const Type* t = _gvn.type(obj);
3513     if (t->isa_oop_ptr()) {
3514       kptr = t->is_oopptr()->as_klass_type();
3515     } else if (obj->is_InlineType()) {
3516       ciInlineKlass* vk = t->inline_klass();
3517       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3518     }
3519     if (kptr != nullptr) {
3520       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3521       case Compile::SSC_always_true:
3522         // If we know the type check always succeed then we don't use
3523         // the profiling data at this bytecode. Don't lose it, feed it
3524         // to the type system as a speculative type.
3525         obj = record_profiled_receiver_for_speculation(obj);
3526         if (null_free) {
3527           assert(safe_for_replace, "must be");
3528           obj = null_check(obj);
3529         }
3530         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3531         return obj;
3532       case Compile::SSC_always_false:
3533         if (null_free) {
3534           assert(safe_for_replace, "must be");
3535           obj = null_check(obj);
3536         }
3537         // It needs a null check because a null will *pass* the cast check.
3538         if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) {

3539           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3540           Deoptimization::DeoptReason reason = is_aastore ?
3541             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3542           builtin_throw(reason);
3543           return top();
3544         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3545           return null_assert(obj);
3546         }
3547         break; // Fall through to full check
3548       default:
3549         break;
3550       }
3551     }
3552   }
3553 
3554   ciProfileData* data = nullptr;

3555   if (failure_control == nullptr) {        // use MDO in regular case only
3556     assert(java_bc() == Bytecodes::_aastore ||
3557            java_bc() == Bytecodes::_checkcast,
3558            "interpreter profiles type checks only for these BCs");
3559     if (method()->method_data()->is_mature()) {
3560       data = method()->method_data()->bci_to_data(bci());
3561     }
3562   }
3563 
3564   // Make the merge point
3565   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3566   RegionNode* region = new RegionNode(PATH_LIMIT);
3567   Node*       phi    = new PhiNode(region, toop);
3568   _gvn.set_type(region, Type::CONTROL);
3569   _gvn.set_type(phi, toop);
3570 
3571   C->set_has_split_ifs(true); // Has chance for split-if optimization
3572 
3573   // Use null-cast information if it is available
3574   bool speculative_not_null = false;
3575   bool never_see_null = ((failure_control == nullptr)  // regular case only
3576                          && seems_never_null(obj, data, speculative_not_null));
3577 
3578   if (obj->is_InlineType()) {
3579     // Re-execute if buffering during triggers deoptimization
3580     PreserveReexecuteState preexecs(this);
3581     jvms()->set_should_reexecute(true);
3582     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3583   }
3584 
3585   // Null check; get casted pointer; set region slot 3
3586   Node* null_ctl = top();
3587   Node* not_null_obj = nullptr;
3588   if (null_free) {
3589     assert(safe_for_replace, "must be");
3590     not_null_obj = null_check(obj);
3591   } else {
3592     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3593   }
3594 
3595   // If not_null_obj is dead, only null-path is taken
3596   if (stopped()) {              // Doing instance-of on a null?
3597     set_control(null_ctl);
3598     if (toop->is_inlinetypeptr()) {
3599       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3600     }
3601     return null();
3602   }
3603   region->init_req(_null_path, null_ctl);
3604   phi   ->init_req(_null_path, null());  // Set null path value
3605   if (null_ctl == top()) {
3606     // Do this eagerly, so that pattern matches like is_diamond_phi
3607     // will work even during parsing.
3608     assert(_null_path == PATH_LIMIT-1, "delete last");
3609     region->del_req(_null_path);
3610     phi   ->del_req(_null_path);
3611   }
3612 
3613   Node* cast_obj = nullptr;
3614   if (improved_klass_ptr_type->klass_is_exact()) {
3615     // The following optimization tries to statically cast the speculative type of the object
3616     // (for example obtained during profiling) to the type of the superklass and then do a
3617     // dynamic check that the type of the object is what we expect. To work correctly
3618     // for checkcast and aastore the type of superklass should be exact.
3619     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3620     // We may not have profiling here or it may not help us. If we have
3621     // a speculative type use it to perform an exact cast.
3622     ciKlass* spec_obj_type = obj_type->speculative_type();
3623     if (spec_obj_type != nullptr || data != nullptr) {
3624       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3625       if (cast_obj != nullptr) {
3626         if (failure_control != nullptr) // failure is now impossible
3627           (*failure_control) = top();
3628         // adjust the type of the phi to the exact klass:
3629         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3630       }
3631     }
3632   }
3633 
3634   if (cast_obj == nullptr) {
3635     // Generate the subtype check
3636     Node* improved_superklass = superklass;
3637     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3638       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3639       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3640       // Additionally, the benefit would only be minor in non-constant cases.
3641       improved_superklass = makecon(improved_klass_ptr_type);
3642     }
3643     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);

3644     // Plug in success path into the merge
3645     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3646     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3647     if (failure_control == nullptr) {
3648       if (not_subtype_ctrl != top()) { // If failure is possible
3649         PreserveJVMState pjvms(this);
3650         set_control(not_subtype_ctrl);
3651         Node* obj_klass = nullptr;
3652         if (not_null_obj->is_InlineType()) {
3653           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3654         } else {
3655           obj_klass = load_object_klass(not_null_obj);
3656         }
3657         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3658         Deoptimization::DeoptReason reason = is_aastore ?
3659           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3660         builtin_throw(reason);
3661       }
3662     } else {
3663       (*failure_control) = not_subtype_ctrl;
3664     }
3665   }
3666 
3667   region->init_req(_obj_path, control());
3668   phi   ->init_req(_obj_path, cast_obj);
3669 
3670   // A merge of null or Casted-NotNull obj
3671   Node* res = _gvn.transform(phi);
3672 
3673   // Note I do NOT always 'replace_in_map(obj,result)' here.
3674   //  if( tk->klass()->can_be_primary_super()  )
3675     // This means that if I successfully store an Object into an array-of-String
3676     // I 'forget' that the Object is really now known to be a String.  I have to
3677     // do this because we don't have true union types for interfaces - if I store
3678     // a Baz into an array-of-Interface and then tell the optimizer it's an
3679     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3680     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3681   //  replace_in_map( obj, res );
3682 
3683   // Return final merged results
3684   set_control( _gvn.transform(region) );
3685   record_for_igvn(region);
3686 
3687   bool not_inline = !toop->can_be_inline_type();
3688   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_in_array());
3689   if (EnableValhalla && not_flat_in_array) {
3690     // Check if obj has been loaded from an array
3691     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3692     Node* array = nullptr;
3693     if (obj->isa_Load()) {
3694       Node* address = obj->in(MemNode::Address);
3695       if (address->isa_AddP()) {
3696         array = address->as_AddP()->in(AddPNode::Base);
3697       }
3698     } else if (obj->is_Phi()) {
3699       Node* region = obj->in(0);
3700       // TODO make this more robust (see JDK-8231346)
3701       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3702         IfNode* iff = region->in(2)->in(0)->isa_If();
3703         if (iff != nullptr) {
3704           iff->is_flat_array_check(&_gvn, &array);
3705         }
3706       }
3707     }
3708     if (array != nullptr) {
3709       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3710       if (ary_t != nullptr && !ary_t->is_flat()) {
3711         if (!ary_t->is_not_null_free() && not_inline) {
3712           // Casting array element to a non-inline-type, mark array as not null-free.
3713           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3714           replace_in_map(array, cast);
3715         } else if (!ary_t->is_not_flat()) {
3716           // Casting array element to a non-flat type, mark array as not flat.
3717           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3718           replace_in_map(array, cast);
3719         }
3720       }
3721     }
3722   }
3723 
3724   if (!stopped() && !res->is_InlineType()) {
3725     res = record_profiled_receiver_for_speculation(res);
3726     if (toop->is_inlinetypeptr()) {
3727       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3728       res = vt;
3729       if (safe_for_replace) {
3730         replace_in_map(obj, vt);
3731         replace_in_map(not_null_obj, vt);
3732         replace_in_map(res, vt);
3733       }
3734     }
3735   }
3736   return res;
3737 }
3738 
3739 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3740   // Load markword
3741   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3742   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3743   if (check_lock) {
3744     // Check if obj is locked
3745     Node* locked_bit = MakeConX(markWord::unlocked_value);
3746     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3747     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3748     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3749     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3750     _gvn.transform(iff);
3751     Node* locked_region = new RegionNode(3);
3752     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3753 
3754     // Unlocked: Use bits from mark word
3755     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3756     mark_phi->init_req(1, mark);
3757 
3758     // Locked: Load prototype header from klass
3759     set_control(_gvn.transform(new IfFalseNode(iff)));
3760     // Make loads control dependent to make sure they are only executed if array is locked
3761     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3762     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3763     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3764     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3765 
3766     locked_region->init_req(2, control());
3767     mark_phi->init_req(2, proto);
3768     set_control(_gvn.transform(locked_region));
3769     record_for_igvn(locked_region);
3770 
3771     mark = mark_phi;
3772   }
3773 
3774   // Now check if mark word bits are set
3775   Node* mask = MakeConX(mask_val);
3776   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3777   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3778   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3779   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3780 }
3781 
3782 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3783   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3784 }
3785 
3786 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3787   // We can't use immutable memory here because the mark word is mutable.
3788   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3789   // check is moved out of loops (mainly to enable loop unswitching).
3790   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3791   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3792   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3793 }
3794 
3795 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3796   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3797 }
3798 
3799 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3800 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3801   RegionNode* region = new RegionNode(3);
3802   Node* null_ctl = top();
3803   null_check_oop(val, &null_ctl);
3804   if (null_ctl != top()) {
3805     PreserveJVMState pjvms(this);
3806     set_control(null_ctl);
3807     {
3808       // Deoptimize if null-free array
3809       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3810       inc_sp(nargs);
3811       uncommon_trap(Deoptimization::Reason_null_check,
3812                     Deoptimization::Action_none);
3813     }
3814     region->init_req(1, control());
3815   }
3816   region->init_req(2, control());
3817   set_control(_gvn.transform(region));
3818   record_for_igvn(region);
3819   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3820     // Since we were just successfully storing null, the array can't be null free.
3821     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3822     ary_t = ary_t->cast_to_not_null_free();
3823     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3824     if (safe_for_replace) {
3825       replace_in_map(ary, cast);
3826     }
3827     ary = cast;
3828   }
3829   return ary;
3830 }
3831 
3832 //------------------------------next_monitor-----------------------------------
3833 // What number should be given to the next monitor?
3834 int GraphKit::next_monitor() {
3835   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3836   int next = current + C->sync_stack_slots();
3837   // Keep the toplevel high water mark current:
3838   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3839   return current;
3840 }
3841 
3842 //------------------------------insert_mem_bar---------------------------------
3843 // Memory barrier to avoid floating things around
3844 // The membar serves as a pinch point between both control and all memory slices.
3845 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3846   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3847   mb->init_req(TypeFunc::Control, control());
3848   mb->init_req(TypeFunc::Memory,  reset_memory());
3849   Node* membar = _gvn.transform(mb);

3877   }
3878   Node* membar = _gvn.transform(mb);
3879   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3880   if (alias_idx == Compile::AliasIdxBot) {
3881     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3882   } else {
3883     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3884   }
3885   return membar;
3886 }
3887 
3888 //------------------------------shared_lock------------------------------------
3889 // Emit locking code.
3890 FastLockNode* GraphKit::shared_lock(Node* obj) {
3891   // bci is either a monitorenter bc or InvocationEntryBci
3892   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3893   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3894 
3895   if( !GenerateSynchronizationCode )
3896     return nullptr;                // Not locking things?
3897 
3898   if (stopped())                // Dead monitor?
3899     return nullptr;
3900 
3901   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3902 
3903   // Box the stack location
3904   Node* box = new BoxLockNode(next_monitor());
3905   // Check for bailout after new BoxLockNode
3906   if (failing()) { return nullptr; }
3907   box = _gvn.transform(box);
3908   Node* mem = reset_memory();
3909 
3910   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3911 
3912   // Add monitor to debug info for the slow path.  If we block inside the
3913   // slow path and de-opt, we need the monitor hanging around
3914   map()->push_monitor( flock );
3915 
3916   const TypeFunc *tf = LockNode::lock_type();
3917   LockNode *lock = new LockNode(C, tf);

3946   }
3947 #endif
3948 
3949   return flock;
3950 }
3951 
3952 
3953 //------------------------------shared_unlock----------------------------------
3954 // Emit unlocking code.
3955 void GraphKit::shared_unlock(Node* box, Node* obj) {
3956   // bci is either a monitorenter bc or InvocationEntryBci
3957   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3958   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3959 
3960   if( !GenerateSynchronizationCode )
3961     return;
3962   if (stopped()) {               // Dead monitor?
3963     map()->pop_monitor();        // Kill monitor from debug info
3964     return;
3965   }
3966   assert(!obj->is_InlineType(), "should not unlock on inline type");
3967 
3968   // Memory barrier to avoid floating things down past the locked region
3969   insert_mem_bar(Op_MemBarReleaseLock);
3970 
3971   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3972   UnlockNode *unlock = new UnlockNode(C, tf);
3973 #ifdef ASSERT
3974   unlock->set_dbg_jvms(sync_jvms());
3975 #endif
3976   uint raw_idx = Compile::AliasIdxRaw;
3977   unlock->init_req( TypeFunc::Control, control() );
3978   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3979   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3980   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3981   unlock->init_req( TypeFunc::ReturnAdr, top() );
3982 
3983   unlock->init_req(TypeFunc::Parms + 0, obj);
3984   unlock->init_req(TypeFunc::Parms + 1, box);
3985   unlock = _gvn.transform(unlock)->as_Unlock();
3986 
3987   Node* mem = reset_memory();
3988 
3989   // unlock has no side-effects, sets few values
3990   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3991 
3992   // Kill monitor from debug info
3993   map()->pop_monitor( );
3994 }
3995 
3996 //-------------------------------get_layout_helper-----------------------------
3997 // If the given klass is a constant or known to be an array,
3998 // fetch the constant layout helper value into constant_value
3999 // and return null.  Otherwise, load the non-constant
4000 // layout helper value, and return the node which represents it.
4001 // This two-faced routine is useful because allocation sites
4002 // almost always feature constant types.
4003 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
4004   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
4005   if (!StressReflectiveCode && klass_t != nullptr) {
4006     bool xklass = klass_t->klass_is_exact();
4007     bool can_be_flat = false;
4008     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4009     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4010       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4011       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4012       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_in_array());
4013     }
4014     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4015       jint lhelper;
4016       if (klass_t->is_flat()) {
4017         lhelper = ary_type->flat_layout_helper();
4018       } else if (klass_t->isa_aryklassptr()) {
4019         BasicType elem = ary_type->elem()->array_element_basic_type();
4020         if (is_reference_type(elem, true)) {
4021           elem = T_OBJECT;
4022         }
4023         lhelper = Klass::array_layout_helper(elem);
4024       } else {
4025         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4026       }
4027       if (lhelper != Klass::_lh_neutral_value) {
4028         constant_value = lhelper;
4029         return (Node*) nullptr;
4030       }
4031     }
4032   }
4033   constant_value = Klass::_lh_neutral_value;  // put in a known value
4034   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4035   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4036 }
4037 
4038 // We just put in an allocate/initialize with a big raw-memory effect.
4039 // Hook selected additional alias categories on the initialization.
4040 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4041                                 MergeMemNode* init_in_merge,
4042                                 Node* init_out_raw) {
4043   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4044   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4045 
4046   Node* prevmem = kit.memory(alias_idx);
4047   init_in_merge->set_memory_at(alias_idx, prevmem);
4048   if (init_out_raw != nullptr) {
4049     kit.set_memory(init_out_raw, alias_idx);
4050   }
4051 }
4052 
4053 //---------------------------set_output_for_allocation-------------------------
4054 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4055                                           const TypeOopPtr* oop_type,
4056                                           bool deoptimize_on_exception) {
4057   int rawidx = Compile::AliasIdxRaw;
4058   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4059   add_safepoint_edges(alloc);
4060   Node* allocx = _gvn.transform(alloc);
4061   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4062   // create memory projection for i_o
4063   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4064   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4065 
4066   // create a memory projection as for the normal control path
4067   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4068   set_memory(malloc, rawidx);
4069 
4070   // a normal slow-call doesn't change i_o, but an allocation does
4071   // we create a separate i_o projection for the normal control path
4072   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4073   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4074 
4075   // put in an initialization barrier
4076   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4077                                                  rawoop)->as_Initialize();
4078   assert(alloc->initialization() == init,  "2-way macro link must work");
4079   assert(init ->allocation()     == alloc, "2-way macro link must work");
4080   {
4081     // Extract memory strands which may participate in the new object's
4082     // initialization, and source them from the new InitializeNode.
4083     // This will allow us to observe initializations when they occur,
4084     // and link them properly (as a group) to the InitializeNode.
4085     assert(init->in(InitializeNode::Memory) == malloc, "");
4086     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4087     init->set_req(InitializeNode::Memory, minit_in);
4088     record_for_igvn(minit_in); // fold it up later, if possible
4089     _gvn.set_type(minit_in, Type::MEMORY);
4090     Node* minit_out = memory(rawidx);
4091     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4092     // Add an edge in the MergeMem for the header fields so an access
4093     // to one of those has correct memory state
4094     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4095     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4096     if (oop_type->isa_aryptr()) {
4097       const TypeAryPtr* arytype = oop_type->is_aryptr();
4098       if (arytype->is_flat()) {
4099         // Initially all flat array accesses share a single slice
4100         // but that changes after parsing. Prepare the memory graph so
4101         // it can optimize flat array accesses properly once they
4102         // don't share a single slice.
4103         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4104         C->set_flat_accesses_share_alias(false);
4105         ciInlineKlass* vk = arytype->elem()->inline_klass();
4106         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4107           ciField* field = vk->nonstatic_field_at(i);
4108           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4109             continue;  // do not bother to track really large numbers of fields
4110           int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
4111           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4112           int fieldidx = C->get_alias_index(adr_type, true);
4113           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4114           // can result in per flat array field Phis to be created which confuses the logic of
4115           // Compile::adjust_flat_array_access_aliases().
4116           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4117         }
4118         C->set_flat_accesses_share_alias(true);
4119         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4120       } else {
4121         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4122         int            elemidx  = C->get_alias_index(telemref);
4123         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4124       }
4125     } else if (oop_type->isa_instptr()) {
4126       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4127       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4128       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4129         ciField* field = ik->nonstatic_field_at(i);
4130         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4131           continue;  // do not bother to track really large numbers of fields
4132         // Find (or create) the alias category for this field:
4133         int fieldidx = C->alias_type(field)->index();
4134         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4135       }
4136     }
4137   }
4138 
4139   // Cast raw oop to the real thing...
4140   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4141   javaoop = _gvn.transform(javaoop);
4142   C->set_recent_alloc(control(), javaoop);
4143   assert(just_allocated_object(control()) == javaoop, "just allocated");
4144 
4145 #ifdef ASSERT
4146   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

4157       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4158     }
4159   }
4160 #endif //ASSERT
4161 
4162   return javaoop;
4163 }
4164 
4165 //---------------------------new_instance--------------------------------------
4166 // This routine takes a klass_node which may be constant (for a static type)
4167 // or may be non-constant (for reflective code).  It will work equally well
4168 // for either, and the graph will fold nicely if the optimizer later reduces
4169 // the type to a constant.
4170 // The optional arguments are for specialized use by intrinsics:
4171 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4172 //  - If 'return_size_val', report the total object size to the caller.
4173 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4174 Node* GraphKit::new_instance(Node* klass_node,
4175                              Node* extra_slow_test,
4176                              Node* *return_size_val,
4177                              bool deoptimize_on_exception,
4178                              InlineTypeNode* inline_type_node) {
4179   // Compute size in doublewords
4180   // The size is always an integral number of doublewords, represented
4181   // as a positive bytewise size stored in the klass's layout_helper.
4182   // The layout_helper also encodes (in a low bit) the need for a slow path.
4183   jint  layout_con = Klass::_lh_neutral_value;
4184   Node* layout_val = get_layout_helper(klass_node, layout_con);
4185   bool  layout_is_con = (layout_val == nullptr);
4186 
4187   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4188   // Generate the initial go-slow test.  It's either ALWAYS (return a
4189   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4190   // case) a computed value derived from the layout_helper.
4191   Node* initial_slow_test = nullptr;
4192   if (layout_is_con) {
4193     assert(!StressReflectiveCode, "stress mode does not use these paths");
4194     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4195     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4196   } else {   // reflective case
4197     // This reflective path is used by Unsafe.allocateInstance.
4198     // (It may be stress-tested by specifying StressReflectiveCode.)
4199     // Basically, we want to get into the VM is there's an illegal argument.
4200     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4201     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4202     if (extra_slow_test != intcon(0)) {
4203       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4204     }
4205     // (Macro-expander will further convert this to a Bool, if necessary.)

4216 
4217     // Clear the low bits to extract layout_helper_size_in_bytes:
4218     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4219     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4220     size = _gvn.transform( new AndXNode(size, mask) );
4221   }
4222   if (return_size_val != nullptr) {
4223     (*return_size_val) = size;
4224   }
4225 
4226   // This is a precise notnull oop of the klass.
4227   // (Actually, it need not be precise if this is a reflective allocation.)
4228   // It's what we cast the result to.
4229   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4230   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4231   const TypeOopPtr* oop_type = tklass->as_instance_type();
4232 
4233   // Now generate allocation code
4234 
4235   // The entire memory state is needed for slow path of the allocation
4236   // since GC and deoptimization can happen.
4237   Node *mem = reset_memory();
4238   set_all_memory(mem); // Create new memory state
4239 
4240   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4241                                          control(), mem, i_o(),
4242                                          size, klass_node,
4243                                          initial_slow_test, inline_type_node);
4244 
4245   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4246 }
4247 
4248 //-------------------------------new_array-------------------------------------
4249 // helper for newarray and anewarray
4250 // The 'length' parameter is (obviously) the length of the array.
4251 // The optional arguments are for specialized use by intrinsics:
4252 //  - If 'return_size_val', report the non-padded array size (sum of header size
4253 //    and array body) to the caller.
4254 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4255 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4256                           Node* length,         // number of array elements
4257                           int   nargs,          // number of arguments to push back for uncommon trap
4258                           Node* *return_size_val,
4259                           bool deoptimize_on_exception) {
4260   jint  layout_con = Klass::_lh_neutral_value;
4261   Node* layout_val = get_layout_helper(klass_node, layout_con);
4262   bool  layout_is_con = (layout_val == nullptr);
4263 
4264   if (!layout_is_con && !StressReflectiveCode &&
4265       !too_many_traps(Deoptimization::Reason_class_check)) {
4266     // This is a reflective array creation site.
4267     // Optimistically assume that it is a subtype of Object[],
4268     // so that we can fold up all the address arithmetic.
4269     layout_con = Klass::array_layout_helper(T_OBJECT);
4270     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4271     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4272     { BuildCutout unless(this, bol_lh, PROB_MAX);
4273       inc_sp(nargs);
4274       uncommon_trap(Deoptimization::Reason_class_check,
4275                     Deoptimization::Action_maybe_recompile);
4276     }
4277     layout_val = nullptr;
4278     layout_is_con = true;
4279   }
4280 
4281   // Generate the initial go-slow test.  Make sure we do not overflow
4282   // if length is huge (near 2Gig) or negative!  We do not need
4283   // exact double-words here, just a close approximation of needed
4284   // double-words.  We can't add any offset or rounding bits, lest we
4285   // take a size -1 of bytes and make it positive.  Use an unsigned
4286   // compare, so negative sizes look hugely positive.
4287   int fast_size_limit = FastAllocateSizeLimit;
4288   if (layout_is_con) {
4289     assert(!StressReflectiveCode, "stress mode does not use these paths");
4290     // Increase the size limit if we have exact knowledge of array type.
4291     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4292     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4293   }
4294 
4295   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4296   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4297 
4298   // --- Size Computation ---
4299   // array_size = round_to_heap(array_header + (length << elem_shift));
4300   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4301   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4302   // The rounding mask is strength-reduced, if possible.
4303   int round_mask = MinObjAlignmentInBytes - 1;
4304   Node* header_size = nullptr;
4305   // (T_BYTE has the weakest alignment and size restrictions...)
4306   if (layout_is_con) {
4307     int       hsize  = Klass::layout_helper_header_size(layout_con);
4308     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4309     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4310     if ((round_mask & ~right_n_bits(eshift)) == 0)
4311       round_mask = 0;  // strength-reduce it if it goes away completely
4312     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4313     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4314     assert(header_size_min <= hsize, "generic minimum is smallest");
4315     header_size = intcon(hsize);
4316   } else {
4317     Node* hss   = intcon(Klass::_lh_header_size_shift);
4318     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4319     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4320     header_size = _gvn.transform(new AndINode(header_size, hsm));
4321   }
4322 
4323   Node* elem_shift = nullptr;
4324   if (layout_is_con) {
4325     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4326     if (eshift != 0)
4327       elem_shift = intcon(eshift);
4328   } else {
4329     // There is no need to mask or shift this value.
4330     // The semantics of LShiftINode include an implicit mask to 0x1F.
4331     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4332     elem_shift = layout_val;

4379   }
4380   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4381 
4382   if (return_size_val != nullptr) {
4383     // This is the size
4384     (*return_size_val) = non_rounded_size;
4385   }
4386 
4387   Node* size = non_rounded_size;
4388   if (round_mask != 0) {
4389     Node* mask1 = MakeConX(round_mask);
4390     size = _gvn.transform(new AddXNode(size, mask1));
4391     Node* mask2 = MakeConX(~round_mask);
4392     size = _gvn.transform(new AndXNode(size, mask2));
4393   }
4394   // else if round_mask == 0, the size computation is self-rounding
4395 
4396   // Now generate allocation code
4397 
4398   // The entire memory state is needed for slow path of the allocation
4399   // since GC and deoptimization can happen.
4400   Node *mem = reset_memory();
4401   set_all_memory(mem); // Create new memory state
4402 
4403   if (initial_slow_test->is_Bool()) {
4404     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4405     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4406   }
4407 
4408   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4409   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4410   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4411 
4412   // Inline type array variants:
4413   // - null-ok:         ciObjArrayKlass  with is_elem_null_free() = false
4414   // - null-free:       ciObjArrayKlass  with is_elem_null_free() = true
4415   // - null-free, flat: ciFlatArrayKlass with is_elem_null_free() = true
4416   // Check if array is a null-free, non-flat inline type array
4417   // that needs to be initialized with the default inline type.
4418   Node* default_value = nullptr;
4419   Node* raw_default_value = nullptr;
4420   if (ary_ptr != nullptr && ary_ptr->klass_is_exact()) {
4421     // Array type is known
4422     if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) {
4423       ciInlineKlass* vk = ary_ptr->elem()->inline_klass();
4424       default_value = InlineTypeNode::default_oop(gvn(), vk);
4425       if (UseCompressedOops) {
4426         // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4427         default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4428         Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4429         Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4430         raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4431       } else {
4432         raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4433       }
4434     }
4435   }
4436 
4437   Node* valid_length_test = _gvn.intcon(1);
4438   if (ary_type->isa_aryptr()) {
4439     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4440     jint max = TypeAryPtr::max_array_length(bt);
4441     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4442     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4443   }
4444 
4445   // Create the AllocateArrayNode and its result projections
4446   AllocateArrayNode* alloc
4447     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4448                             control(), mem, i_o(),
4449                             size, klass_node,
4450                             initial_slow_test,
4451                             length, valid_length_test,
4452                             default_value, raw_default_value);
4453   // Cast to correct type.  Note that the klass_node may be constant or not,
4454   // and in the latter case the actual array type will be inexact also.
4455   // (This happens via a non-constant argument to inline_native_newArray.)
4456   // In any case, the value of klass_node provides the desired array type.
4457   const TypeInt* length_type = _gvn.find_int_type(length);
4458   if (ary_type->isa_aryptr() && length_type != nullptr) {
4459     // Try to get a better type than POS for the size
4460     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4461   }
4462 
4463   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4464 
4465   array_ideal_length(alloc, ary_type, true);
4466   return javaoop;
4467 }
4468 
4469 // The following "Ideal_foo" functions are placed here because they recognize
4470 // the graph shapes created by the functions immediately above.
4471 
4472 //---------------------------Ideal_allocation----------------------------------

4580   set_all_memory(ideal.merged_memory());
4581   set_i_o(ideal.i_o());
4582   set_control(ideal.ctrl());
4583 }
4584 
4585 void GraphKit::final_sync(IdealKit& ideal) {
4586   // Final sync IdealKit and graphKit.
4587   sync_kit(ideal);
4588 }
4589 
4590 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4591   Node* len = load_array_length(load_String_value(str, set_ctrl));
4592   Node* coder = load_String_coder(str, set_ctrl);
4593   // Divide length by 2 if coder is UTF16
4594   return _gvn.transform(new RShiftINode(len, coder));
4595 }
4596 
4597 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4598   int value_offset = java_lang_String::value_offset();
4599   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4600                                                      false, nullptr, Type::Offset(0));
4601   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4602   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4603                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4604                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4605   Node* p = basic_plus_adr(str, str, value_offset);
4606   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4607                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4608   return load;
4609 }
4610 
4611 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4612   if (!CompactStrings) {
4613     return intcon(java_lang_String::CODER_UTF16);
4614   }
4615   int coder_offset = java_lang_String::coder_offset();
4616   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4617                                                      false, nullptr, Type::Offset(0));
4618   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4619 
4620   Node* p = basic_plus_adr(str, str, coder_offset);
4621   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4622                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4623   return load;
4624 }
4625 
4626 void GraphKit::store_String_value(Node* str, Node* value) {
4627   int value_offset = java_lang_String::value_offset();
4628   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4629                                                      false, nullptr, Type::Offset(0));
4630   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4631 
4632   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4633                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4634 }
4635 
4636 void GraphKit::store_String_coder(Node* str, Node* value) {
4637   int coder_offset = java_lang_String::coder_offset();
4638   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4639                                                      false, nullptr, Type::Offset(0));
4640   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4641 
4642   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4643                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4644 }
4645 
4646 // Capture src and dst memory state with a MergeMemNode
4647 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4648   if (src_type == dst_type) {
4649     // Types are equal, we don't need a MergeMemNode
4650     return memory(src_type);
4651   }
4652   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4653   record_for_igvn(merge); // fold it up later, if possible
4654   int src_idx = C->get_alias_index(src_type);
4655   int dst_idx = C->get_alias_index(dst_type);
4656   merge->set_memory_at(src_idx, memory(src_idx));
4657   merge->set_memory_at(dst_idx, memory(dst_idx));
4658   return merge;
4659 }

4732   i_char->init_req(2, AddI(i_char, intcon(2)));
4733 
4734   set_control(IfFalse(iff));
4735   set_memory(st, TypeAryPtr::BYTES);
4736 }
4737 
4738 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4739   if (!field->is_constant()) {
4740     return nullptr; // Field not marked as constant.
4741   }
4742   ciInstance* holder = nullptr;
4743   if (!field->is_static()) {
4744     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4745     if (const_oop != nullptr && const_oop->is_instance()) {
4746       holder = const_oop->as_instance();
4747     }
4748   }
4749   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4750                                                         /*is_unsigned_load=*/false);
4751   if (con_type != nullptr) {
4752     Node* con = makecon(con_type);
4753     if (field->type()->is_inlinetype()) {
4754       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4755     } else if (con_type->is_inlinetypeptr()) {
4756       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4757     }
4758     return con;
4759   }
4760   return nullptr;
4761 }
4762 
4763 //---------------------------load_mirror_from_klass----------------------------
4764 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4765 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4766   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4767   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4768   // mirror = ((OopHandle)mirror)->resolve();
4769   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4770 }
4771 
4772 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4773   const Type* obj_type = obj->bottom_type();
4774   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4775   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4776     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4777     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4778     obj = casted_obj;
4779   }
4780   if (sig_type->is_inlinetypeptr()) {
4781     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass(), !gvn().type(obj)->maybe_null());
4782   }
4783   return obj;
4784 }
< prev index next >