< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 


  25 #include "ci/ciUtilities.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "ci/ciObjArray.hpp"
  28 #include "asm/register.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/idealKit.hpp"

  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"

  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subtypenode.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "utilities/bitMap.inline.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 #include "utilities/growableArray.hpp"
  52 
  53 //----------------------------GraphKit-----------------------------------------
  54 // Main utility constructor.
  55 GraphKit::GraphKit(JVMState* jvms)
  56   : Phase(Phase::Parser),
  57     _env(C->env()),
  58     _gvn(*C->initial_gvn()),
  59     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  60 {

  61   _exceptions = jvms->map()->next_exception();
  62   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  63   set_jvms(jvms);







  64 }
  65 
  66 // Private constructor for parser.
  67 GraphKit::GraphKit()
  68   : Phase(Phase::Parser),
  69     _env(C->env()),
  70     _gvn(*C->initial_gvn()),
  71     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  72 {
  73   _exceptions = nullptr;
  74   set_map(nullptr);
  75   debug_only(_sp = -99);
  76   debug_only(set_bci(-99));
  77 }
  78 
  79 
  80 
  81 //---------------------------clean_stack---------------------------------------
  82 // Clear away rubbish from the stack area of the JVM state.
  83 // This destroys any arguments that may be waiting on the stack.

 841         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 842           tty->print_cr("Zombie local %d: ", local);
 843           jvms->dump();
 844         }
 845         return false;
 846       }
 847     }
 848   }
 849   return true;
 850 }
 851 
 852 #endif //ASSERT
 853 
 854 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 855 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 856   ciMethod* cur_method = jvms->method();
 857   int       cur_bci   = jvms->bci();
 858   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 859     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 860     return Interpreter::bytecode_should_reexecute(code) ||
 861            (is_anewarray && code == Bytecodes::_multianewarray);
 862     // Reexecute _multianewarray bytecode which was replaced with
 863     // sequence of [a]newarray. See Parse::do_multianewarray().
 864     //
 865     // Note: interpreter should not have it set since this optimization
 866     // is limited by dimensions and guarded by flag so in some cases
 867     // multianewarray() runtime calls will be generated and
 868     // the bytecode should not be reexecutes (stack will not be reset).
 869   } else {
 870     return false;
 871   }
 872 }
 873 
 874 // Helper function for adding JVMState and debug information to node
 875 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 876   // Add the safepoint edges to the call (or other safepoint).
 877 
 878   // Make sure dead locals are set to top.  This
 879   // should help register allocation time and cut down on the size
 880   // of the deoptimization information.
 881   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 932   }
 933 
 934   // Presize the call:
 935   DEBUG_ONLY(uint non_debug_edges = call->req());
 936   call->add_req_batch(top(), youngest_jvms->debug_depth());
 937   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 938 
 939   // Set up edges so that the call looks like this:
 940   //  Call [state:] ctl io mem fptr retadr
 941   //       [parms:] parm0 ... parmN
 942   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 943   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 944   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 945   // Note that caller debug info precedes callee debug info.
 946 
 947   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 948   uint debug_ptr = call->req();
 949 
 950   // Loop over the map input edges associated with jvms, add them
 951   // to the call node, & reset all offsets to match call node array.


 952   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 953     uint debug_end   = debug_ptr;
 954     uint debug_start = debug_ptr - in_jvms->debug_size();
 955     debug_ptr = debug_start;  // back up the ptr
 956 
 957     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 958     uint j, k, l;
 959     SafePointNode* in_map = in_jvms->map();
 960     out_jvms->set_map(call);
 961 
 962     if (can_prune_locals) {
 963       assert(in_jvms->method() == out_jvms->method(), "sanity");
 964       // If the current throw can reach an exception handler in this JVMS,
 965       // then we must keep everything live that can reach that handler.
 966       // As a quick and dirty approximation, we look for any handlers at all.
 967       if (in_jvms->method()->has_exception_handlers()) {
 968         can_prune_locals = false;
 969       }
 970     }
 971 
 972     // Add the Locals
 973     k = in_jvms->locoff();
 974     l = in_jvms->loc_size();
 975     out_jvms->set_locoff(p);
 976     if (!can_prune_locals) {
 977       for (j = 0; j < l; j++)
 978         call->set_req(p++, in_map->in(k+j));








 979     } else {
 980       p += l;  // already set to top above by add_req_batch
 981     }
 982 
 983     // Add the Expression Stack
 984     k = in_jvms->stkoff();
 985     l = in_jvms->sp();
 986     out_jvms->set_stkoff(p);
 987     if (!can_prune_locals) {
 988       for (j = 0; j < l; j++)
 989         call->set_req(p++, in_map->in(k+j));








 990     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 991       // Divide stack into {S0,...,S1}, where S0 is set to top.
 992       uint s1 = stack_slots_not_pruned;
 993       stack_slots_not_pruned = 0;  // for next iteration
 994       if (s1 > l)  s1 = l;
 995       uint s0 = l - s1;
 996       p += s0;  // skip the tops preinstalled by add_req_batch
 997       for (j = s0; j < l; j++)
 998         call->set_req(p++, in_map->in(k+j));
 999     } else {
1000       p += l;  // already set to top above by add_req_batch
1001     }
1002 
1003     // Add the Monitors
1004     k = in_jvms->monoff();
1005     l = in_jvms->mon_size();
1006     out_jvms->set_monoff(p);
1007     for (j = 0; j < l; j++)
1008       call->set_req(p++, in_map->in(k+j));
1009 
1010     // Copy any scalar object fields.
1011     k = in_jvms->scloff();
1012     l = in_jvms->scl_size();
1013     out_jvms->set_scloff(p);
1014     for (j = 0; j < l; j++)
1015       call->set_req(p++, in_map->in(k+j));
1016 
1017     // Finish the new jvms.
1018     out_jvms->set_endoff(p);
1019 
1020     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1021     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1022     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1023     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1024     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1025     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1026 
1027     // Update the two tail pointers in parallel.

1028     out_jvms = out_jvms->caller();
1029     in_jvms  = in_jvms->caller();
1030   }
1031 
1032   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1033 
1034   // Test the correctness of JVMState::debug_xxx accessors:
1035   assert(call->jvms()->debug_start() == non_debug_edges, "");
1036   assert(call->jvms()->debug_end()   == call->req(), "");
1037   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1038 }
1039 
1040 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1041   Bytecodes::Code code = java_bc();
1042   if (code == Bytecodes::_wide) {
1043     code = method()->java_code_at_bci(bci() + 1);
1044   }
1045 
1046   if (code != Bytecodes::_illegal) {
1047     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1183   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1184   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1185   return _gvn.transform( new AndLNode(conv, mask) );
1186 }
1187 
1188 Node* GraphKit::ConvL2I(Node* offset) {
1189   // short-circuit a common case
1190   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1191   if (offset_con != (jlong)Type::OffsetBot) {
1192     return intcon((int) offset_con);
1193   }
1194   return _gvn.transform( new ConvL2INode(offset));
1195 }
1196 
1197 //-------------------------load_object_klass-----------------------------------
1198 Node* GraphKit::load_object_klass(Node* obj) {
1199   // Special-case a fresh allocation to avoid building nodes:
1200   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1201   if (akls != nullptr)  return akls;
1202   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1203   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1204 }
1205 
1206 //-------------------------load_array_length-----------------------------------
1207 Node* GraphKit::load_array_length(Node* array) {
1208   // Special-case a fresh allocation to avoid building nodes:
1209   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1210   Node *alen;
1211   if (alloc == nullptr) {
1212     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1213     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1214   } else {
1215     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1216   }
1217   return alen;
1218 }
1219 
1220 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1221                                    const TypeOopPtr* oop_type,
1222                                    bool replace_length_in_map) {
1223   Node* length = alloc->Ideal_length();

1232         replace_in_map(length, ccast);
1233       }
1234       return ccast;
1235     }
1236   }
1237   return length;
1238 }
1239 
1240 //------------------------------do_null_check----------------------------------
1241 // Helper function to do a null pointer check.  Returned value is
1242 // the incoming address with null casted away.  You are allowed to use the
1243 // not-null value only if you are control dependent on the test.
1244 #ifndef PRODUCT
1245 extern uint explicit_null_checks_inserted,
1246             explicit_null_checks_elided;
1247 #endif
1248 Node* GraphKit::null_check_common(Node* value, BasicType type,
1249                                   // optional arguments for variations:
1250                                   bool assert_null,
1251                                   Node* *null_control,
1252                                   bool speculative) {

1253   assert(!assert_null || null_control == nullptr, "not both at once");
1254   if (stopped())  return top();
1255   NOT_PRODUCT(explicit_null_checks_inserted++);
1256 























1257   // Construct null check
1258   Node *chk = nullptr;
1259   switch(type) {
1260     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1261     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1262     case T_ARRAY  : // fall through
1263       type = T_OBJECT;  // simplify further tests
1264     case T_OBJECT : {
1265       const Type *t = _gvn.type( value );
1266 
1267       const TypeOopPtr* tp = t->isa_oopptr();
1268       if (tp != nullptr && !tp->is_loaded()
1269           // Only for do_null_check, not any of its siblings:
1270           && !assert_null && null_control == nullptr) {
1271         // Usually, any field access or invocation on an unloaded oop type
1272         // will simply fail to link, since the statically linked class is
1273         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1274         // the static class is loaded but the sharper oop type is not.
1275         // Rather than checking for this obscure case in lots of places,
1276         // we simply observe that a null check on an unloaded class

1340         }
1341         Node *oldcontrol = control();
1342         set_control(cfg);
1343         Node *res = cast_not_null(value);
1344         set_control(oldcontrol);
1345         NOT_PRODUCT(explicit_null_checks_elided++);
1346         return res;
1347       }
1348       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1349       if (cfg == nullptr)  break;  // Quit at region nodes
1350       depth++;
1351     }
1352   }
1353 
1354   //-----------
1355   // Branch to failure if null
1356   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1357   Deoptimization::DeoptReason reason;
1358   if (assert_null) {
1359     reason = Deoptimization::reason_null_assert(speculative);
1360   } else if (type == T_OBJECT) {
1361     reason = Deoptimization::reason_null_check(speculative);
1362   } else {
1363     reason = Deoptimization::Reason_div0_check;
1364   }
1365   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1366   // ciMethodData::has_trap_at will return a conservative -1 if any
1367   // must-be-null assertion has failed.  This could cause performance
1368   // problems for a method after its first do_null_assert failure.
1369   // Consider using 'Reason_class_check' instead?
1370 
1371   // To cause an implicit null check, we set the not-null probability
1372   // to the maximum (PROB_MAX).  For an explicit check the probability
1373   // is set to a smaller value.
1374   if (null_control != nullptr || too_many_traps(reason)) {
1375     // probability is less likely
1376     ok_prob =  PROB_LIKELY_MAG(3);
1377   } else if (!assert_null &&
1378              (ImplicitNullCheckThreshold > 0) &&
1379              method() != nullptr &&
1380              (method()->method_data()->trap_count(reason)

1414   }
1415 
1416   if (assert_null) {
1417     // Cast obj to null on this path.
1418     replace_in_map(value, zerocon(type));
1419     return zerocon(type);
1420   }
1421 
1422   // Cast obj to not-null on this path, if there is no null_control.
1423   // (If there is a null_control, a non-null value may come back to haunt us.)
1424   if (type == T_OBJECT) {
1425     Node* cast = cast_not_null(value, false);
1426     if (null_control == nullptr || (*null_control) == top())
1427       replace_in_map(value, cast);
1428     value = cast;
1429   }
1430 
1431   return value;
1432 }
1433 
1434 
1435 //------------------------------cast_not_null----------------------------------
1436 // Cast obj to not-null on this path
1437 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {









1438   const Type *t = _gvn.type(obj);
1439   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1440   // Object is already not-null?
1441   if( t == t_not_null ) return obj;
1442 
1443   Node* cast = new CastPPNode(control(), obj,t_not_null);
1444   cast = _gvn.transform( cast );
1445 
1446   // Scan for instances of 'obj' in the current JVM mapping.
1447   // These instances are known to be not-null after the test.
1448   if (do_replace_in_map)
1449     replace_in_map(obj, cast);
1450 
1451   return cast;                  // Return casted value
1452 }
1453 
1454 // Sometimes in intrinsics, we implicitly know an object is not null
1455 // (there's no actual null check) so we can cast it to not null. In
1456 // the course of optimizations, the input to the cast can become null.
1457 // In that case that data path will die and we need the control path

1546 // These are layered on top of the factory methods in LoadNode and StoreNode,
1547 // and integrate with the parser's memory state and _gvn engine.
1548 //
1549 
1550 // factory methods in "int adr_idx"
1551 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1552                           MemNode::MemOrd mo,
1553                           LoadNode::ControlDependency control_dependency,
1554                           bool require_atomic_access,
1555                           bool unaligned,
1556                           bool mismatched,
1557                           bool unsafe,
1558                           uint8_t barrier_data) {
1559   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1560   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1561   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1562   debug_only(adr_type = C->get_adr_type(adr_idx));
1563   Node* mem = memory(adr_idx);
1564   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1565   ld = _gvn.transform(ld);

1566   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1567     // Improve graph before escape analysis and boxing elimination.
1568     record_for_igvn(ld);
1569     if (ld->is_DecodeN()) {
1570       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1571       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1572       // a Phi). Recording such cases is still perfectly sound, but may be
1573       // unnecessary and result in some minor IGVN overhead.
1574       record_for_igvn(ld->in(1));
1575     }
1576   }
1577   return ld;
1578 }
1579 
1580 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1581                                 MemNode::MemOrd mo,
1582                                 bool require_atomic_access,
1583                                 bool unaligned,
1584                                 bool mismatched,
1585                                 bool unsafe,

1599   if (unsafe) {
1600     st->as_Store()->set_unsafe_access();
1601   }
1602   st->as_Store()->set_barrier_data(barrier_data);
1603   st = _gvn.transform(st);
1604   set_memory(st, adr_idx);
1605   // Back-to-back stores can only remove intermediate store with DU info
1606   // so push on worklist for optimizer.
1607   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1608     record_for_igvn(st);
1609 
1610   return st;
1611 }
1612 
1613 Node* GraphKit::access_store_at(Node* obj,
1614                                 Node* adr,
1615                                 const TypePtr* adr_type,
1616                                 Node* val,
1617                                 const Type* val_type,
1618                                 BasicType bt,
1619                                 DecoratorSet decorators) {


1620   // Transformation of a value which could be null pointer (CastPP #null)
1621   // could be delayed during Parse (for example, in adjust_map_after_if()).
1622   // Execute transformation here to avoid barrier generation in such case.
1623   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1624     val = _gvn.makecon(TypePtr::NULL_PTR);
1625   }
1626 
1627   if (stopped()) {
1628     return top(); // Dead path ?
1629   }
1630 
1631   assert(val != nullptr, "not dead path");







1632 
1633   C2AccessValuePtr addr(adr, adr_type);
1634   C2AccessValue value(val, val_type);
1635   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1636   if (access.is_raw()) {
1637     return _barrier_set->BarrierSetC2::store_at(access, value);
1638   } else {
1639     return _barrier_set->store_at(access, value);
1640   }
1641 }
1642 
1643 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1644                                Node* adr,   // actual address to store val at
1645                                const TypePtr* adr_type,
1646                                const Type* val_type,
1647                                BasicType bt,
1648                                DecoratorSet decorators) {

1649   if (stopped()) {
1650     return top(); // Dead path ?
1651   }
1652 
1653   C2AccessValuePtr addr(adr, adr_type);
1654   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1655   if (access.is_raw()) {
1656     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1657   } else {
1658     return _barrier_set->load_at(access, val_type);
1659   }
1660 }
1661 
1662 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1663                             const Type* val_type,
1664                             BasicType bt,
1665                             DecoratorSet decorators) {
1666   if (stopped()) {
1667     return top(); // Dead path ?
1668   }
1669 
1670   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1671   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1672   if (access.is_raw()) {
1673     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1674   } else {

1739                                      Node* new_val,
1740                                      const Type* value_type,
1741                                      BasicType bt,
1742                                      DecoratorSet decorators) {
1743   C2AccessValuePtr addr(adr, adr_type);
1744   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1745   if (access.is_raw()) {
1746     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1747   } else {
1748     return _barrier_set->atomic_add_at(access, new_val, value_type);
1749   }
1750 }
1751 
1752 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1753   return _barrier_set->clone(this, src, dst, size, is_array);
1754 }
1755 
1756 //-------------------------array_element_address-------------------------
1757 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1758                                       const TypeInt* sizetype, Node* ctrl) {
1759   uint shift  = exact_log2(type2aelembytes(elembt));











1760   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1761 
1762   // short-circuit a common case (saves lots of confusing waste motion)
1763   jint idx_con = find_int_con(idx, -1);
1764   if (idx_con >= 0) {
1765     intptr_t offset = header + ((intptr_t)idx_con << shift);
1766     return basic_plus_adr(ary, offset);
1767   }
1768 
1769   // must be correct type for alignment purposes
1770   Node* base  = basic_plus_adr(ary, header);
1771   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1772   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1773   return basic_plus_adr(ary, base, scale);
1774 }
1775 










1776 //-------------------------load_array_element-------------------------
1777 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1778   const Type* elemtype = arytype->elem();
1779   BasicType elembt = elemtype->array_element_basic_type();
1780   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1781   if (elembt == T_NARROWOOP) {
1782     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1783   }
1784   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1785                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1786   return ld;
1787 }
1788 
1789 //-------------------------set_arguments_for_java_call-------------------------
1790 // Arguments (pre-popped from the stack) are taken from the JVMS.
1791 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1792   // Add the call arguments:
1793   uint nargs = call->method()->arg_size();
1794   for (uint i = 0; i < nargs; i++) {
1795     Node* arg = argument(i);
1796     call->init_req(i + TypeFunc::Parms, arg);

























































1797   }
1798 }
1799 
1800 //---------------------------set_edges_for_java_call---------------------------
1801 // Connect a newly created call into the current JVMS.
1802 // A return value node (if any) is returned from set_edges_for_java_call.
1803 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1804 
1805   // Add the predefined inputs:
1806   call->init_req( TypeFunc::Control, control() );
1807   call->init_req( TypeFunc::I_O    , i_o() );
1808   call->init_req( TypeFunc::Memory , reset_memory() );
1809   call->init_req( TypeFunc::FramePtr, frameptr() );
1810   call->init_req( TypeFunc::ReturnAdr, top() );
1811 
1812   add_safepoint_edges(call, must_throw);
1813 
1814   Node* xcall = _gvn.transform(call);
1815 
1816   if (xcall == top()) {
1817     set_control(top());
1818     return;
1819   }
1820   assert(xcall == call, "call identity is stable");
1821 
1822   // Re-use the current map to produce the result.
1823 
1824   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1825   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1826   set_all_memory_call(xcall, separate_io_proj);
1827 
1828   //return xcall;   // no need, caller already has it
1829 }
1830 
1831 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1832   if (stopped())  return top();  // maybe the call folded up?
1833 
1834   // Capture the return value, if any.
1835   Node* ret;
1836   if (call->method() == nullptr ||
1837       call->method()->return_type()->basic_type() == T_VOID)
1838         ret = top();
1839   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1840 
1841   // Note:  Since any out-of-line call can produce an exception,
1842   // we always insert an I_O projection from the call into the result.
1843 
1844   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1845 
1846   if (separate_io_proj) {
1847     // The caller requested separate projections be used by the fall
1848     // through and exceptional paths, so replace the projections for
1849     // the fall through path.
1850     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1851     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1852   }




































1853   return ret;
1854 }
1855 
1856 //--------------------set_predefined_input_for_runtime_call--------------------
1857 // Reading and setting the memory state is way conservative here.
1858 // The real problem is that I am not doing real Type analysis on memory,
1859 // so I cannot distinguish card mark stores from other stores.  Across a GC
1860 // point the Store Barrier and the card mark memory has to agree.  I cannot
1861 // have a card mark store and its barrier split across the GC point from
1862 // either above or below.  Here I get that to happen by reading ALL of memory.
1863 // A better answer would be to separate out card marks from other memory.
1864 // For now, return the input memory state, so that it can be reused
1865 // after the call, if this call has restricted memory effects.
1866 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1867   // Set fixed predefined input arguments
1868   Node* memory = reset_memory();
1869   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1870   call->init_req( TypeFunc::Control,   control()  );
1871   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1872   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

1923     if (use->is_MergeMem()) {
1924       wl.push(use);
1925     }
1926   }
1927 }
1928 
1929 // Replace the call with the current state of the kit.
1930 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
1931   JVMState* ejvms = nullptr;
1932   if (has_exceptions()) {
1933     ejvms = transfer_exceptions_into_jvms();
1934   }
1935 
1936   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1937   ReplacedNodes replaced_nodes_exception;
1938   Node* ex_ctl = top();
1939 
1940   SafePointNode* final_state = stop();
1941 
1942   // Find all the needed outputs of this call
1943   CallProjections callprojs;
1944   call->extract_projections(&callprojs, true, do_asserts);
1945 
1946   Unique_Node_List wl;
1947   Node* init_mem = call->in(TypeFunc::Memory);
1948   Node* final_mem = final_state->in(TypeFunc::Memory);
1949   Node* final_ctl = final_state->in(TypeFunc::Control);
1950   Node* final_io = final_state->in(TypeFunc::I_O);
1951 
1952   // Replace all the old call edges with the edges from the inlining result
1953   if (callprojs.fallthrough_catchproj != nullptr) {
1954     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1955   }
1956   if (callprojs.fallthrough_memproj != nullptr) {
1957     if (final_mem->is_MergeMem()) {
1958       // Parser's exits MergeMem was not transformed but may be optimized
1959       final_mem = _gvn.transform(final_mem);
1960     }
1961     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1962     add_mergemem_users_to_worklist(wl, final_mem);
1963   }
1964   if (callprojs.fallthrough_ioproj != nullptr) {
1965     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1966   }
1967 
1968   // Replace the result with the new result if it exists and is used
1969   if (callprojs.resproj != nullptr && result != nullptr) {
1970     C->gvn_replace_by(callprojs.resproj, result);




1971   }
1972 
1973   if (ejvms == nullptr) {
1974     // No exception edges to simply kill off those paths
1975     if (callprojs.catchall_catchproj != nullptr) {
1976       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1977     }
1978     if (callprojs.catchall_memproj != nullptr) {
1979       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1980     }
1981     if (callprojs.catchall_ioproj != nullptr) {
1982       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1983     }
1984     // Replace the old exception object with top
1985     if (callprojs.exobj != nullptr) {
1986       C->gvn_replace_by(callprojs.exobj, C->top());
1987     }
1988   } else {
1989     GraphKit ekit(ejvms);
1990 
1991     // Load my combined exception state into the kit, with all phis transformed:
1992     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1993     replaced_nodes_exception = ex_map->replaced_nodes();
1994 
1995     Node* ex_oop = ekit.use_exception_state(ex_map);
1996 
1997     if (callprojs.catchall_catchproj != nullptr) {
1998       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1999       ex_ctl = ekit.control();
2000     }
2001     if (callprojs.catchall_memproj != nullptr) {
2002       Node* ex_mem = ekit.reset_memory();
2003       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
2004       add_mergemem_users_to_worklist(wl, ex_mem);
2005     }
2006     if (callprojs.catchall_ioproj != nullptr) {
2007       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
2008     }
2009 
2010     // Replace the old exception object with the newly created one
2011     if (callprojs.exobj != nullptr) {
2012       C->gvn_replace_by(callprojs.exobj, ex_oop);
2013     }
2014   }
2015 
2016   // Disconnect the call from the graph
2017   call->disconnect_inputs(C);
2018   C->gvn_replace_by(call, C->top());
2019 
2020   // Clean up any MergeMems that feed other MergeMems since the
2021   // optimizer doesn't like that.
2022   while (wl.size() > 0) {
2023     _gvn.transform(wl.pop());
2024   }
2025 
2026   if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2027     replaced_nodes.apply(C, final_ctl);
2028   }
2029   if (!ex_ctl->is_top() && do_replaced_nodes) {
2030     replaced_nodes_exception.apply(C, ex_ctl);
2031   }
2032 }
2033 
2034 
2035 //------------------------------increment_counter------------------------------
2036 // for statistics: increment a VM counter by 1
2037 
2038 void GraphKit::increment_counter(address counter_addr) {
2039   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2040   increment_counter(adr1);
2041 }
2042 
2043 void GraphKit::increment_counter(Node* counter_addr) {
2044   Node* ctrl = control();
2045   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2046   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2206  *
2207  * @param n          node that the type applies to
2208  * @param exact_kls  type from profiling
2209  * @param maybe_null did profiling see null?
2210  *
2211  * @return           node with improved type
2212  */
2213 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2214   const Type* current_type = _gvn.type(n);
2215   assert(UseTypeSpeculation, "type speculation must be on");
2216 
2217   const TypePtr* speculative = current_type->speculative();
2218 
2219   // Should the klass from the profile be recorded in the speculative type?
2220   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2221     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2222     const TypeOopPtr* xtype = tklass->as_instance_type();
2223     assert(xtype->klass_is_exact(), "Should be exact");
2224     // Any reason to believe n is not null (from this profiling or a previous one)?
2225     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2226     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2227     // record the new speculative type's depth
2228     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2229     speculative = speculative->with_inline_depth(jvms()->depth());
2230   } else if (current_type->would_improve_ptr(ptr_kind)) {
2231     // Profiling report that null was never seen so we can change the
2232     // speculative type to non null ptr.
2233     if (ptr_kind == ProfileAlwaysNull) {
2234       speculative = TypePtr::NULL_PTR;
2235     } else {
2236       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2237       const TypePtr* ptr = TypePtr::NOTNULL;
2238       if (speculative != nullptr) {
2239         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2240       } else {
2241         speculative = ptr;
2242       }
2243     }
2244   }
2245 
2246   if (speculative != current_type->speculative()) {
2247     // Build a type with a speculative type (what we think we know
2248     // about the type but will need a guard when we use it)
2249     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2250     // We're changing the type, we need a new CheckCast node to carry
2251     // the new type. The new type depends on the control: what
2252     // profiling tells us is only valid from here as far as we can
2253     // tell.
2254     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2255     cast = _gvn.transform(cast);
2256     replace_in_map(n, cast);
2257     n = cast;
2258   }
2259 
2260   return n;
2261 }
2262 
2263 /**
2264  * Record profiling data from receiver profiling at an invoke with the
2265  * type system so that it can propagate it (speculation)
2266  *
2267  * @param n  receiver node
2268  *
2269  * @return   node with improved type
2270  */
2271 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2272   if (!UseTypeSpeculation) {
2273     return n;
2274   }
2275   ciKlass* exact_kls = profile_has_unique_klass();
2276   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2277   if ((java_bc() == Bytecodes::_checkcast ||
2278        java_bc() == Bytecodes::_instanceof ||
2279        java_bc() == Bytecodes::_aastore) &&
2280       method()->method_data()->is_mature()) {
2281     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2282     if (data != nullptr) {
2283       if (!data->as_BitData()->null_seen()) {
2284         ptr_kind = ProfileNeverNull;







2285       } else {
2286         assert(data->is_ReceiverTypeData(), "bad profile data type");
2287         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2288         uint i = 0;
2289         for (; i < call->row_limit(); i++) {
2290           ciKlass* receiver = call->receiver(i);
2291           if (receiver != nullptr) {
2292             break;




2293           }

2294         }
2295         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2296       }
2297     }
2298   }
2299   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2300 }
2301 
2302 /**
2303  * Record profiling data from argument profiling at an invoke with the
2304  * type system so that it can propagate it (speculation)
2305  *
2306  * @param dest_method  target method for the call
2307  * @param bc           what invoke bytecode is this?
2308  */
2309 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2310   if (!UseTypeSpeculation) {
2311     return;
2312   }
2313   const TypeFunc* tf    = TypeFunc::make(dest_method);
2314   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2315   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2316   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2317     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2318     if (is_reference_type(targ->basic_type())) {
2319       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2320       ciKlass* better_type = nullptr;
2321       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2322         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2323       }
2324       i++;
2325     }
2326   }
2327 }
2328 
2329 /**
2330  * Record profiling data from parameter profiling at an invoke with
2331  * the type system so that it can propagate it (speculation)
2332  */
2333 void GraphKit::record_profiled_parameters_for_speculation() {
2334   if (!UseTypeSpeculation) {
2335     return;
2336   }
2337   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2351  * the type system so that it can propagate it (speculation)
2352  */
2353 void GraphKit::record_profiled_return_for_speculation() {
2354   if (!UseTypeSpeculation) {
2355     return;
2356   }
2357   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2358   ciKlass* better_type = nullptr;
2359   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2360     // If profiling reports a single type for the return value,
2361     // feed it to the type system so it can propagate it as a
2362     // speculative type
2363     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2364   }
2365 }
2366 
2367 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2368   if (Matcher::strict_fp_requires_explicit_rounding) {
2369     // (Note:  TypeFunc::make has a cache that makes this fast.)
2370     const TypeFunc* tf    = TypeFunc::make(dest_method);
2371     int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2372     for (int j = 0; j < nargs; j++) {
2373       const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2374       if (targ->basic_type() == T_DOUBLE) {
2375         // If any parameters are doubles, they must be rounded before
2376         // the call, dprecision_rounding does gvn.transform
2377         Node *arg = argument(j);
2378         arg = dprecision_rounding(arg);
2379         set_argument(j, arg);
2380       }
2381     }
2382   }
2383 }
2384 
2385 // rounding for strict float precision conformance
2386 Node* GraphKit::precision_rounding(Node* n) {
2387   if (Matcher::strict_fp_requires_explicit_rounding) {
2388 #ifdef IA32
2389     if (UseSSE == 0) {
2390       return _gvn.transform(new RoundFloatNode(nullptr, n));
2391     }
2392 #else
2393     Unimplemented();

2502                                   // The first null ends the list.
2503                                   Node* parm0, Node* parm1,
2504                                   Node* parm2, Node* parm3,
2505                                   Node* parm4, Node* parm5,
2506                                   Node* parm6, Node* parm7) {
2507   assert(call_addr != nullptr, "must not call null targets");
2508 
2509   // Slow-path call
2510   bool is_leaf = !(flags & RC_NO_LEAF);
2511   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2512   if (call_name == nullptr) {
2513     assert(!is_leaf, "must supply name for leaf");
2514     call_name = OptoRuntime::stub_name(call_addr);
2515   }
2516   CallNode* call;
2517   if (!is_leaf) {
2518     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2519   } else if (flags & RC_NO_FP) {
2520     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2521   } else  if (flags & RC_VECTOR){
2522     uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2523     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2524   } else {
2525     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2526   }
2527 
2528   // The following is similar to set_edges_for_java_call,
2529   // except that the memory effects of the call are restricted to AliasIdxRaw.
2530 
2531   // Slow path call has no side-effects, uses few values
2532   bool wide_in  = !(flags & RC_NARROW_MEM);
2533   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2534 
2535   Node* prev_mem = nullptr;
2536   if (wide_in) {
2537     prev_mem = set_predefined_input_for_runtime_call(call);
2538   } else {
2539     assert(!wide_out, "narrow in => narrow out");
2540     Node* narrow_mem = memory(adr_type);
2541     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2542   }

2582 
2583   if (has_io) {
2584     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2585   }
2586   return call;
2587 
2588 }
2589 
2590 // i2b
2591 Node* GraphKit::sign_extend_byte(Node* in) {
2592   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2593   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2594 }
2595 
2596 // i2s
2597 Node* GraphKit::sign_extend_short(Node* in) {
2598   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2599   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2600 }
2601 

2602 //------------------------------merge_memory-----------------------------------
2603 // Merge memory from one path into the current memory state.
2604 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2605   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2606     Node* old_slice = mms.force_memory();
2607     Node* new_slice = mms.memory2();
2608     if (old_slice != new_slice) {
2609       PhiNode* phi;
2610       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2611         if (mms.is_empty()) {
2612           // clone base memory Phi's inputs for this memory slice
2613           assert(old_slice == mms.base_memory(), "sanity");
2614           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2615           _gvn.set_type(phi, Type::MEMORY);
2616           for (uint i = 1; i < phi->req(); i++) {
2617             phi->init_req(i, old_slice->in(i));
2618           }
2619         } else {
2620           phi = old_slice->as_Phi(); // Phi was generated already
2621         }

2884 
2885   // Now do a linear scan of the secondary super-klass array.  Again, no real
2886   // performance impact (too rare) but it's gotta be done.
2887   // Since the code is rarely used, there is no penalty for moving it
2888   // out of line, and it can only improve I-cache density.
2889   // The decision to inline or out-of-line this final check is platform
2890   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2891   Node* psc = gvn.transform(
2892     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2893 
2894   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2895   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2896   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2897 
2898   // Return false path; set default control to true path.
2899   *ctrl = gvn.transform(r_ok_subtype);
2900   return gvn.transform(r_not_subtype);
2901 }
2902 
2903 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {





2904   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
2905   if (expand_subtype_check) {
2906     MergeMemNode* mem = merged_memory();
2907     Node* ctrl = control();
2908     Node* subklass = obj_or_subklass;
2909     if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2910       subklass = load_object_klass(obj_or_subklass);
2911     }
2912 
2913     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
2914     set_control(ctrl);
2915     return n;
2916   }
2917 
2918   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
2919   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2920   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2921   set_control(_gvn.transform(new IfTrueNode(iff)));
2922   return _gvn.transform(new IfFalseNode(iff));
2923 }
2924 
2925 // Profile-driven exact type check:
2926 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2927                                     float prob,
2928                                     Node* *casted_receiver) {
2929   assert(!klass->is_interface(), "no exact type check on interfaces");
2930 











2931   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
2932   Node* recv_klass = load_object_klass(receiver);
2933   Node* want_klass = makecon(tklass);
2934   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2935   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2936   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2937   set_control( _gvn.transform(new IfTrueNode (iff)));
2938   Node* fail = _gvn.transform(new IfFalseNode(iff));
2939 
2940   if (!stopped()) {
2941     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2942     const TypeOopPtr* recvx_type = tklass->as_instance_type();
2943     assert(recvx_type->klass_is_exact(), "");
2944 
2945     if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2946       // Subsume downstream occurrences of receiver with a cast to
2947       // recv_xtype, since now we know what the type will be.
2948       Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2949       (*casted_receiver) = _gvn.transform(cast);





2950       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
2951       // (User must make the replace_in_map call.)
2952     }
2953   }
2954 
2955   return fail;
2956 }
2957 











2958 //------------------------------subtype_check_receiver-------------------------
2959 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2960                                        Node** casted_receiver) {
2961   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2962   Node* want_klass = makecon(tklass);
2963 
2964   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2965 
2966   // Ignore interface type information until interface types are properly tracked.
2967   if (!stopped() && !klass->is_interface()) {
2968     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2969     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2970     if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2971       Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2972       (*casted_receiver) = _gvn.transform(cast);



2973     }
2974   }
2975 
2976   return slow_ctl;
2977 }
2978 
2979 //------------------------------seems_never_null-------------------------------
2980 // Use null_seen information if it is available from the profile.
2981 // If we see an unexpected null at a type check we record it and force a
2982 // recompile; the offending check will be recompiled to handle nulls.
2983 // If we see several offending BCIs, then all checks in the
2984 // method will be recompiled.
2985 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2986   speculating = !_gvn.type(obj)->speculative_maybe_null();
2987   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2988   if (UncommonNullCast               // Cutout for this technique
2989       && obj != null()               // And not the -Xcomp stupid case?
2990       && !too_many_traps(reason)
2991       ) {
2992     if (speculating) {

3061 
3062 //------------------------maybe_cast_profiled_receiver-------------------------
3063 // If the profile has seen exactly one type, narrow to exactly that type.
3064 // Subsequent type checks will always fold up.
3065 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3066                                              const TypeKlassPtr* require_klass,
3067                                              ciKlass* spec_klass,
3068                                              bool safe_for_replace) {
3069   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3070 
3071   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3072 
3073   // Make sure we haven't already deoptimized from this tactic.
3074   if (too_many_traps_or_recompiles(reason))
3075     return nullptr;
3076 
3077   // (No, this isn't a call, but it's enough like a virtual call
3078   // to use the same ciMethod accessor to get the profile info...)
3079   // If we have a speculative type use it instead of profiling (which
3080   // may not help us)
3081   ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;













3082   if (exact_kls != nullptr) {// no cast failures here
3083     if (require_klass == nullptr ||
3084         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3085       // If we narrow the type to match what the type profile sees or
3086       // the speculative type, we can then remove the rest of the
3087       // cast.
3088       // This is a win, even if the exact_kls is very specific,
3089       // because downstream operations, such as method calls,
3090       // will often benefit from the sharper type.
3091       Node* exact_obj = not_null_obj; // will get updated in place...
3092       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3093                                             &exact_obj);
3094       { PreserveJVMState pjvms(this);
3095         set_control(slow_ctl);
3096         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3097       }
3098       if (safe_for_replace) {
3099         replace_in_map(not_null_obj, exact_obj);
3100       }
3101       return exact_obj;

3191   // If not_null_obj is dead, only null-path is taken
3192   if (stopped()) {              // Doing instance-of on a null?
3193     set_control(null_ctl);
3194     return intcon(0);
3195   }
3196   region->init_req(_null_path, null_ctl);
3197   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3198   if (null_ctl == top()) {
3199     // Do this eagerly, so that pattern matches like is_diamond_phi
3200     // will work even during parsing.
3201     assert(_null_path == PATH_LIMIT-1, "delete last");
3202     region->del_req(_null_path);
3203     phi   ->del_req(_null_path);
3204   }
3205 
3206   // Do we know the type check always succeed?
3207   bool known_statically = false;
3208   if (_gvn.type(superklass)->singleton()) {
3209     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3210     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3211     if (subk->is_loaded()) {
3212       int static_res = C->static_subtype_check(superk, subk);
3213       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3214     }
3215   }
3216 
3217   if (!known_statically) {
3218     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3219     // We may not have profiling here or it may not help us. If we
3220     // have a speculative type use it to perform an exact cast.
3221     ciKlass* spec_obj_type = obj_type->speculative_type();
3222     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3223       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3224       if (stopped()) {            // Profile disagrees with this path.
3225         set_control(null_ctl);    // Null is the only remaining possibility.
3226         return intcon(0);
3227       }
3228       if (cast_obj != nullptr) {
3229         not_null_obj = cast_obj;
3230       }
3231     }

3247   record_for_igvn(region);
3248 
3249   // If we know the type check always succeeds then we don't use the
3250   // profiling data at this bytecode. Don't lose it, feed it to the
3251   // type system as a speculative type.
3252   if (safe_for_replace) {
3253     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3254     replace_in_map(obj, casted_obj);
3255   }
3256 
3257   return _gvn.transform(phi);
3258 }
3259 
3260 //-------------------------------gen_checkcast---------------------------------
3261 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3262 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3263 // uncommon-trap paths work.  Adjust stack after this call.
3264 // If failure_control is supplied and not null, it is filled in with
3265 // the control edge for the cast failure.  Otherwise, an appropriate
3266 // uncommon trap or exception is thrown.
3267 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3268                               Node* *failure_control) {
3269   kill_dead_locals();           // Benefit all the uncommon traps
3270   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3271   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3272   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();


3273 
3274   // Fast cutout:  Check the case that the cast is vacuously true.
3275   // This detects the common cases where the test will short-circuit
3276   // away completely.  We do this before we perform the null check,
3277   // because if the test is going to turn into zero code, we don't
3278   // want a residual null check left around.  (Causes a slowdown,
3279   // for example, in some objArray manipulations, such as a[i]=a[j].)
3280   if (improved_klass_ptr_type->singleton()) {
3281     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3282     if (objtp != nullptr) {
3283       switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) {







3284       case Compile::SSC_always_true:
3285         // If we know the type check always succeed then we don't use
3286         // the profiling data at this bytecode. Don't lose it, feed it
3287         // to the type system as a speculative type.
3288         return record_profiled_receiver_for_speculation(obj);






3289       case Compile::SSC_always_false:




3290         // It needs a null check because a null will *pass* the cast check.
3291         // A non-null value will always produce an exception.
3292         if (!objtp->maybe_null()) {
3293           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3294           Deoptimization::DeoptReason reason = is_aastore ?
3295             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3296           builtin_throw(reason);
3297           return top();
3298         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3299           return null_assert(obj);
3300         }
3301         break; // Fall through to full check
3302       default:
3303         break;
3304       }
3305     }
3306   }
3307 
3308   ciProfileData* data = nullptr;
3309   bool safe_for_replace = false;
3310   if (failure_control == nullptr) {        // use MDO in regular case only
3311     assert(java_bc() == Bytecodes::_aastore ||
3312            java_bc() == Bytecodes::_checkcast,
3313            "interpreter profiles type checks only for these BCs");
3314     data = method()->method_data()->bci_to_data(bci());
3315     safe_for_replace = true;

3316   }
3317 
3318   // Make the merge point
3319   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3320   RegionNode* region = new RegionNode(PATH_LIMIT);
3321   Node*       phi    = new PhiNode(region, toop);



3322   C->set_has_split_ifs(true); // Has chance for split-if optimization
3323 
3324   // Use null-cast information if it is available
3325   bool speculative_not_null = false;
3326   bool never_see_null = ((failure_control == nullptr)  // regular case only
3327                          && seems_never_null(obj, data, speculative_not_null));
3328 







3329   // Null check; get casted pointer; set region slot 3
3330   Node* null_ctl = top();
3331   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);






3332 
3333   // If not_null_obj is dead, only null-path is taken
3334   if (stopped()) {              // Doing instance-of on a null?
3335     set_control(null_ctl);



3336     return null();
3337   }
3338   region->init_req(_null_path, null_ctl);
3339   phi   ->init_req(_null_path, null());  // Set null path value
3340   if (null_ctl == top()) {
3341     // Do this eagerly, so that pattern matches like is_diamond_phi
3342     // will work even during parsing.
3343     assert(_null_path == PATH_LIMIT-1, "delete last");
3344     region->del_req(_null_path);
3345     phi   ->del_req(_null_path);
3346   }
3347 
3348   Node* cast_obj = nullptr;
3349   if (improved_klass_ptr_type->klass_is_exact()) {
3350     // The following optimization tries to statically cast the speculative type of the object
3351     // (for example obtained during profiling) to the type of the superklass and then do a
3352     // dynamic check that the type of the object is what we expect. To work correctly
3353     // for checkcast and aastore the type of superklass should be exact.
3354     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3355     // We may not have profiling here or it may not help us. If we have
3356     // a speculative type use it to perform an exact cast.
3357     ciKlass* spec_obj_type = obj_type->speculative_type();
3358     if (spec_obj_type != nullptr || data != nullptr) {
3359       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3360       if (cast_obj != nullptr) {
3361         if (failure_control != nullptr) // failure is now impossible
3362           (*failure_control) = top();
3363         // adjust the type of the phi to the exact klass:
3364         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3365       }
3366     }
3367   }
3368 
3369   if (cast_obj == nullptr) {
3370     // Generate the subtype check
3371     Node* improved_superklass = superklass;
3372     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {



3373       improved_superklass = makecon(improved_klass_ptr_type);
3374     }
3375     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3376 
3377     // Plug in success path into the merge
3378     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3379     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3380     if (failure_control == nullptr) {
3381       if (not_subtype_ctrl != top()) { // If failure is possible
3382         PreserveJVMState pjvms(this);
3383         set_control(not_subtype_ctrl);






3384         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3385         Deoptimization::DeoptReason reason = is_aastore ?
3386           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3387         builtin_throw(reason);
3388       }
3389     } else {
3390       (*failure_control) = not_subtype_ctrl;
3391     }
3392   }
3393 
3394   region->init_req(_obj_path, control());
3395   phi   ->init_req(_obj_path, cast_obj);
3396 
3397   // A merge of null or Casted-NotNull obj
3398   Node* res = _gvn.transform(phi);
3399 
3400   // Note I do NOT always 'replace_in_map(obj,result)' here.
3401   //  if( tk->klass()->can_be_primary_super()  )
3402     // This means that if I successfully store an Object into an array-of-String
3403     // I 'forget' that the Object is really now known to be a String.  I have to
3404     // do this because we don't have true union types for interfaces - if I store
3405     // a Baz into an array-of-Interface and then tell the optimizer it's an
3406     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3407     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3408   //  replace_in_map( obj, res );
3409 
3410   // Return final merged results
3411   set_control( _gvn.transform(region) );
3412   record_for_igvn(region);
3413 
3414   return record_profiled_receiver_for_speculation(res);



































































































































































3415 }
3416 
3417 //------------------------------next_monitor-----------------------------------
3418 // What number should be given to the next monitor?
3419 int GraphKit::next_monitor() {
3420   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3421   int next = current + C->sync_stack_slots();
3422   // Keep the toplevel high water mark current:
3423   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3424   return current;
3425 }
3426 
3427 //------------------------------insert_mem_bar---------------------------------
3428 // Memory barrier to avoid floating things around
3429 // The membar serves as a pinch point between both control and all memory slices.
3430 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3431   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3432   mb->init_req(TypeFunc::Control, control());
3433   mb->init_req(TypeFunc::Memory,  reset_memory());
3434   Node* membar = _gvn.transform(mb);

3462   }
3463   Node* membar = _gvn.transform(mb);
3464   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3465   if (alias_idx == Compile::AliasIdxBot) {
3466     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3467   } else {
3468     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3469   }
3470   return membar;
3471 }
3472 
3473 //------------------------------shared_lock------------------------------------
3474 // Emit locking code.
3475 FastLockNode* GraphKit::shared_lock(Node* obj) {
3476   // bci is either a monitorenter bc or InvocationEntryBci
3477   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3478   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3479 
3480   if( !GenerateSynchronizationCode )
3481     return nullptr;                // Not locking things?

3482   if (stopped())                // Dead monitor?
3483     return nullptr;
3484 
3485   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3486 
3487   // Box the stack location
3488   Node* box = new BoxLockNode(next_monitor());
3489   // Check for bailout after new BoxLockNode
3490   if (failing()) { return nullptr; }
3491   box = _gvn.transform(box);
3492   Node* mem = reset_memory();
3493 
3494   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3495 
3496   // Add monitor to debug info for the slow path.  If we block inside the
3497   // slow path and de-opt, we need the monitor hanging around
3498   map()->push_monitor( flock );
3499 
3500   const TypeFunc *tf = LockNode::lock_type();
3501   LockNode *lock = new LockNode(C, tf);

3530   }
3531 #endif
3532 
3533   return flock;
3534 }
3535 
3536 
3537 //------------------------------shared_unlock----------------------------------
3538 // Emit unlocking code.
3539 void GraphKit::shared_unlock(Node* box, Node* obj) {
3540   // bci is either a monitorenter bc or InvocationEntryBci
3541   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3542   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3543 
3544   if( !GenerateSynchronizationCode )
3545     return;
3546   if (stopped()) {               // Dead monitor?
3547     map()->pop_monitor();        // Kill monitor from debug info
3548     return;
3549   }

3550 
3551   // Memory barrier to avoid floating things down past the locked region
3552   insert_mem_bar(Op_MemBarReleaseLock);
3553 
3554   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3555   UnlockNode *unlock = new UnlockNode(C, tf);
3556 #ifdef ASSERT
3557   unlock->set_dbg_jvms(sync_jvms());
3558 #endif
3559   uint raw_idx = Compile::AliasIdxRaw;
3560   unlock->init_req( TypeFunc::Control, control() );
3561   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3562   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3563   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3564   unlock->init_req( TypeFunc::ReturnAdr, top() );
3565 
3566   unlock->init_req(TypeFunc::Parms + 0, obj);
3567   unlock->init_req(TypeFunc::Parms + 1, box);
3568   unlock = _gvn.transform(unlock)->as_Unlock();
3569 
3570   Node* mem = reset_memory();
3571 
3572   // unlock has no side-effects, sets few values
3573   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3574 
3575   // Kill monitor from debug info
3576   map()->pop_monitor( );
3577 }
3578 
3579 //-------------------------------get_layout_helper-----------------------------
3580 // If the given klass is a constant or known to be an array,
3581 // fetch the constant layout helper value into constant_value
3582 // and return null.  Otherwise, load the non-constant
3583 // layout helper value, and return the node which represents it.
3584 // This two-faced routine is useful because allocation sites
3585 // almost always feature constant types.
3586 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3587   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3588   if (!StressReflectiveCode && klass_t != nullptr) {
3589     bool xklass = klass_t->klass_is_exact();
3590     if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) {







3591       jint lhelper;
3592       if (klass_t->isa_aryklassptr()) {
3593         BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();


3594         if (is_reference_type(elem, true)) {
3595           elem = T_OBJECT;
3596         }
3597         lhelper = Klass::array_layout_helper(elem);
3598       } else {
3599         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3600       }
3601       if (lhelper != Klass::_lh_neutral_value) {
3602         constant_value = lhelper;
3603         return (Node*) nullptr;
3604       }
3605     }
3606   }
3607   constant_value = Klass::_lh_neutral_value;  // put in a known value
3608   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3609   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3610 }
3611 
3612 // We just put in an allocate/initialize with a big raw-memory effect.
3613 // Hook selected additional alias categories on the initialization.
3614 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3615                                 MergeMemNode* init_in_merge,
3616                                 Node* init_out_raw) {
3617   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3618   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3619 
3620   Node* prevmem = kit.memory(alias_idx);
3621   init_in_merge->set_memory_at(alias_idx, prevmem);
3622   kit.set_memory(init_out_raw, alias_idx);


3623 }
3624 
3625 //---------------------------set_output_for_allocation-------------------------
3626 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3627                                           const TypeOopPtr* oop_type,
3628                                           bool deoptimize_on_exception) {
3629   int rawidx = Compile::AliasIdxRaw;
3630   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3631   add_safepoint_edges(alloc);
3632   Node* allocx = _gvn.transform(alloc);
3633   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3634   // create memory projection for i_o
3635   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3636   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3637 
3638   // create a memory projection as for the normal control path
3639   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3640   set_memory(malloc, rawidx);
3641 
3642   // a normal slow-call doesn't change i_o, but an allocation does
3643   // we create a separate i_o projection for the normal control path
3644   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3645   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3646 
3647   // put in an initialization barrier
3648   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3649                                                  rawoop)->as_Initialize();
3650   assert(alloc->initialization() == init,  "2-way macro link must work");
3651   assert(init ->allocation()     == alloc, "2-way macro link must work");
3652   {
3653     // Extract memory strands which may participate in the new object's
3654     // initialization, and source them from the new InitializeNode.
3655     // This will allow us to observe initializations when they occur,
3656     // and link them properly (as a group) to the InitializeNode.
3657     assert(init->in(InitializeNode::Memory) == malloc, "");
3658     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3659     init->set_req(InitializeNode::Memory, minit_in);
3660     record_for_igvn(minit_in); // fold it up later, if possible

3661     Node* minit_out = memory(rawidx);
3662     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3663     // Add an edge in the MergeMem for the header fields so an access
3664     // to one of those has correct memory state
3665     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3666     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3667     if (oop_type->isa_aryptr()) {
3668       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3669       int            elemidx  = C->get_alias_index(telemref);
3670       hook_memory_on_init(*this, elemidx, minit_in, minit_out);

























3671     } else if (oop_type->isa_instptr()) {

3672       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3673       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3674         ciField* field = ik->nonstatic_field_at(i);
3675         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3676           continue;  // do not bother to track really large numbers of fields
3677         // Find (or create) the alias category for this field:
3678         int fieldidx = C->alias_type(field)->index();
3679         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3680       }
3681     }
3682   }
3683 
3684   // Cast raw oop to the real thing...
3685   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3686   javaoop = _gvn.transform(javaoop);
3687   C->set_recent_alloc(control(), javaoop);
3688   assert(just_allocated_object(control()) == javaoop, "just allocated");
3689 
3690 #ifdef ASSERT
3691   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

3702       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3703     }
3704   }
3705 #endif //ASSERT
3706 
3707   return javaoop;
3708 }
3709 
3710 //---------------------------new_instance--------------------------------------
3711 // This routine takes a klass_node which may be constant (for a static type)
3712 // or may be non-constant (for reflective code).  It will work equally well
3713 // for either, and the graph will fold nicely if the optimizer later reduces
3714 // the type to a constant.
3715 // The optional arguments are for specialized use by intrinsics:
3716 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3717 //  - If 'return_size_val', report the total object size to the caller.
3718 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3719 Node* GraphKit::new_instance(Node* klass_node,
3720                              Node* extra_slow_test,
3721                              Node* *return_size_val,
3722                              bool deoptimize_on_exception) {

3723   // Compute size in doublewords
3724   // The size is always an integral number of doublewords, represented
3725   // as a positive bytewise size stored in the klass's layout_helper.
3726   // The layout_helper also encodes (in a low bit) the need for a slow path.
3727   jint  layout_con = Klass::_lh_neutral_value;
3728   Node* layout_val = get_layout_helper(klass_node, layout_con);
3729   int   layout_is_con = (layout_val == nullptr);
3730 
3731   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3732   // Generate the initial go-slow test.  It's either ALWAYS (return a
3733   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3734   // case) a computed value derived from the layout_helper.
3735   Node* initial_slow_test = nullptr;
3736   if (layout_is_con) {
3737     assert(!StressReflectiveCode, "stress mode does not use these paths");
3738     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3739     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3740   } else {   // reflective case
3741     // This reflective path is used by Unsafe.allocateInstance.
3742     // (It may be stress-tested by specifying StressReflectiveCode.)
3743     // Basically, we want to get into the VM is there's an illegal argument.
3744     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3745     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3746     if (extra_slow_test != intcon(0)) {
3747       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3748     }
3749     // (Macro-expander will further convert this to a Bool, if necessary.)

3760 
3761     // Clear the low bits to extract layout_helper_size_in_bytes:
3762     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3763     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3764     size = _gvn.transform( new AndXNode(size, mask) );
3765   }
3766   if (return_size_val != nullptr) {
3767     (*return_size_val) = size;
3768   }
3769 
3770   // This is a precise notnull oop of the klass.
3771   // (Actually, it need not be precise if this is a reflective allocation.)
3772   // It's what we cast the result to.
3773   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3774   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3775   const TypeOopPtr* oop_type = tklass->as_instance_type();
3776 
3777   // Now generate allocation code
3778 
3779   // The entire memory state is needed for slow path of the allocation
3780   // since GC and deoptimization can happened.
3781   Node *mem = reset_memory();
3782   set_all_memory(mem); // Create new memory state
3783 
3784   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3785                                          control(), mem, i_o(),
3786                                          size, klass_node,
3787                                          initial_slow_test);
3788 
3789   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3790 }
3791 
3792 //-------------------------------new_array-------------------------------------
3793 // helper for both newarray and anewarray
3794 // The 'length' parameter is (obviously) the length of the array.
3795 // The optional arguments are for specialized use by intrinsics:
3796 //  - If 'return_size_val', report the non-padded array size (sum of header size
3797 //    and array body) to the caller.
3798 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3799 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3800                           Node* length,         // number of array elements
3801                           int   nargs,          // number of arguments to push back for uncommon trap
3802                           Node* *return_size_val,
3803                           bool deoptimize_on_exception) {
3804   jint  layout_con = Klass::_lh_neutral_value;
3805   Node* layout_val = get_layout_helper(klass_node, layout_con);
3806   int   layout_is_con = (layout_val == nullptr);
3807 
3808   if (!layout_is_con && !StressReflectiveCode &&
3809       !too_many_traps(Deoptimization::Reason_class_check)) {
3810     // This is a reflective array creation site.
3811     // Optimistically assume that it is a subtype of Object[],
3812     // so that we can fold up all the address arithmetic.
3813     layout_con = Klass::array_layout_helper(T_OBJECT);
3814     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3815     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3816     { BuildCutout unless(this, bol_lh, PROB_MAX);
3817       inc_sp(nargs);
3818       uncommon_trap(Deoptimization::Reason_class_check,
3819                     Deoptimization::Action_maybe_recompile);
3820     }
3821     layout_val = nullptr;
3822     layout_is_con = true;
3823   }
3824 
3825   // Generate the initial go-slow test.  Make sure we do not overflow
3826   // if length is huge (near 2Gig) or negative!  We do not need
3827   // exact double-words here, just a close approximation of needed
3828   // double-words.  We can't add any offset or rounding bits, lest we
3829   // take a size -1 of bytes and make it positive.  Use an unsigned
3830   // compare, so negative sizes look hugely positive.
3831   int fast_size_limit = FastAllocateSizeLimit;
3832   if (layout_is_con) {
3833     assert(!StressReflectiveCode, "stress mode does not use these paths");
3834     // Increase the size limit if we have exact knowledge of array type.
3835     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3836     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3837   }
3838 
3839   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3840   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3841 
3842   // --- Size Computation ---
3843   // array_size = round_to_heap(array_header + (length << elem_shift));
3844   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3845   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3846   // The rounding mask is strength-reduced, if possible.
3847   int round_mask = MinObjAlignmentInBytes - 1;
3848   Node* header_size = nullptr;
3849   // (T_BYTE has the weakest alignment and size restrictions...)
3850   if (layout_is_con) {
3851     int       hsize  = Klass::layout_helper_header_size(layout_con);
3852     int       eshift = Klass::layout_helper_log2_element_size(layout_con);

3853     if ((round_mask & ~right_n_bits(eshift)) == 0)
3854       round_mask = 0;  // strength-reduce it if it goes away completely
3855     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3856     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3857     assert(header_size_min <= hsize, "generic minimum is smallest");
3858     header_size = intcon(hsize);
3859   } else {
3860     Node* hss   = intcon(Klass::_lh_header_size_shift);
3861     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3862     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3863     header_size = _gvn.transform(new AndINode(header_size, hsm));
3864   }
3865 
3866   Node* elem_shift = nullptr;
3867   if (layout_is_con) {
3868     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3869     if (eshift != 0)
3870       elem_shift = intcon(eshift);
3871   } else {
3872     // There is no need to mask or shift this value.
3873     // The semantics of LShiftINode include an implicit mask to 0x1F.
3874     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3875     elem_shift = layout_val;

3922   }
3923   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
3924 
3925   if (return_size_val != nullptr) {
3926     // This is the size
3927     (*return_size_val) = non_rounded_size;
3928   }
3929 
3930   Node* size = non_rounded_size;
3931   if (round_mask != 0) {
3932     Node* mask1 = MakeConX(round_mask);
3933     size = _gvn.transform(new AddXNode(size, mask1));
3934     Node* mask2 = MakeConX(~round_mask);
3935     size = _gvn.transform(new AndXNode(size, mask2));
3936   }
3937   // else if round_mask == 0, the size computation is self-rounding
3938 
3939   // Now generate allocation code
3940 
3941   // The entire memory state is needed for slow path of the allocation
3942   // since GC and deoptimization can happened.
3943   Node *mem = reset_memory();
3944   set_all_memory(mem); // Create new memory state
3945 
3946   if (initial_slow_test->is_Bool()) {
3947     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3948     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3949   }
3950 
3951   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();






















3952   Node* valid_length_test = _gvn.intcon(1);
3953   if (ary_type->isa_aryptr()) {
3954     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3955     jint max = TypeAryPtr::max_array_length(bt);
3956     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3957     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3958   }
3959 
3960   // Create the AllocateArrayNode and its result projections
3961   AllocateArrayNode* alloc
3962     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3963                             control(), mem, i_o(),
3964                             size, klass_node,
3965                             initial_slow_test,
3966                             length, valid_length_test);
3967 
3968   // Cast to correct type.  Note that the klass_node may be constant or not,
3969   // and in the latter case the actual array type will be inexact also.
3970   // (This happens via a non-constant argument to inline_native_newArray.)
3971   // In any case, the value of klass_node provides the desired array type.
3972   const TypeInt* length_type = _gvn.find_int_type(length);
3973   if (ary_type->isa_aryptr() && length_type != nullptr) {
3974     // Try to get a better type than POS for the size
3975     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3976   }
3977 
3978   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3979 
3980   array_ideal_length(alloc, ary_type, true);
3981   return javaoop;
3982 }
3983 
3984 // The following "Ideal_foo" functions are placed here because they recognize
3985 // the graph shapes created by the functions immediately above.
3986 
3987 //---------------------------Ideal_allocation----------------------------------

4095   set_all_memory(ideal.merged_memory());
4096   set_i_o(ideal.i_o());
4097   set_control(ideal.ctrl());
4098 }
4099 
4100 void GraphKit::final_sync(IdealKit& ideal) {
4101   // Final sync IdealKit and graphKit.
4102   sync_kit(ideal);
4103 }
4104 
4105 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4106   Node* len = load_array_length(load_String_value(str, set_ctrl));
4107   Node* coder = load_String_coder(str, set_ctrl);
4108   // Divide length by 2 if coder is UTF16
4109   return _gvn.transform(new RShiftINode(len, coder));
4110 }
4111 
4112 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4113   int value_offset = java_lang_String::value_offset();
4114   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4115                                                      false, nullptr, 0);
4116   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4117   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4118                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4119                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4120   Node* p = basic_plus_adr(str, str, value_offset);
4121   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4122                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4123   return load;
4124 }
4125 
4126 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4127   if (!CompactStrings) {
4128     return intcon(java_lang_String::CODER_UTF16);
4129   }
4130   int coder_offset = java_lang_String::coder_offset();
4131   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4132                                                      false, nullptr, 0);
4133   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4134 
4135   Node* p = basic_plus_adr(str, str, coder_offset);
4136   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4137                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4138   return load;
4139 }
4140 
4141 void GraphKit::store_String_value(Node* str, Node* value) {
4142   int value_offset = java_lang_String::value_offset();
4143   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4144                                                      false, nullptr, 0);
4145   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4146 
4147   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4148                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4149 }
4150 
4151 void GraphKit::store_String_coder(Node* str, Node* value) {
4152   int coder_offset = java_lang_String::coder_offset();
4153   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4154                                                      false, nullptr, 0);
4155   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4156 
4157   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4158                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4159 }
4160 
4161 // Capture src and dst memory state with a MergeMemNode
4162 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4163   if (src_type == dst_type) {
4164     // Types are equal, we don't need a MergeMemNode
4165     return memory(src_type);
4166   }
4167   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4168   record_for_igvn(merge); // fold it up later, if possible
4169   int src_idx = C->get_alias_index(src_type);
4170   int dst_idx = C->get_alias_index(dst_type);
4171   merge->set_memory_at(src_idx, memory(src_idx));
4172   merge->set_memory_at(dst_idx, memory(dst_idx));
4173   return merge;
4174 }

4247   i_char->init_req(2, AddI(i_char, intcon(2)));
4248 
4249   set_control(IfFalse(iff));
4250   set_memory(st, TypeAryPtr::BYTES);
4251 }
4252 
4253 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4254   if (!field->is_constant()) {
4255     return nullptr; // Field not marked as constant.
4256   }
4257   ciInstance* holder = nullptr;
4258   if (!field->is_static()) {
4259     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4260     if (const_oop != nullptr && const_oop->is_instance()) {
4261       holder = const_oop->as_instance();
4262     }
4263   }
4264   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4265                                                         /*is_unsigned_load=*/false);
4266   if (con_type != nullptr) {
4267     return makecon(con_type);






4268   }
4269   return nullptr;
4270 }
4271 









4272 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4273   const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr();
4274   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4275   if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4276     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4277     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4278     return casted_obj;



4279   }
4280   return obj;
4281 }

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciFlatArrayKlass.hpp"
  26 #include "ci/ciInlineKlass.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "ci/ciObjArray.hpp"
  30 #include "asm/register.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/c2/barrierSetC2.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/flatArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.

 854         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 855           tty->print_cr("Zombie local %d: ", local);
 856           jvms->dump();
 857         }
 858         return false;
 859       }
 860     }
 861   }
 862   return true;
 863 }
 864 
 865 #endif //ASSERT
 866 
 867 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 868 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 869   ciMethod* cur_method = jvms->method();
 870   int       cur_bci   = jvms->bci();
 871   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 872     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 873     return Interpreter::bytecode_should_reexecute(code) ||
 874            (is_anewarray && (code == Bytecodes::_multianewarray));
 875     // Reexecute _multianewarray bytecode which was replaced with
 876     // sequence of [a]newarray. See Parse::do_multianewarray().
 877     //
 878     // Note: interpreter should not have it set since this optimization
 879     // is limited by dimensions and guarded by flag so in some cases
 880     // multianewarray() runtime calls will be generated and
 881     // the bytecode should not be reexecutes (stack will not be reset).
 882   } else {
 883     return false;
 884   }
 885 }
 886 
 887 // Helper function for adding JVMState and debug information to node
 888 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 889   // Add the safepoint edges to the call (or other safepoint).
 890 
 891   // Make sure dead locals are set to top.  This
 892   // should help register allocation time and cut down on the size
 893   // of the deoptimization information.
 894   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 945   }
 946 
 947   // Presize the call:
 948   DEBUG_ONLY(uint non_debug_edges = call->req());
 949   call->add_req_batch(top(), youngest_jvms->debug_depth());
 950   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 951 
 952   // Set up edges so that the call looks like this:
 953   //  Call [state:] ctl io mem fptr retadr
 954   //       [parms:] parm0 ... parmN
 955   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 956   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 957   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 958   // Note that caller debug info precedes callee debug info.
 959 
 960   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 961   uint debug_ptr = call->req();
 962 
 963   // Loop over the map input edges associated with jvms, add them
 964   // to the call node, & reset all offsets to match call node array.
 965 
 966   JVMState* callee_jvms = nullptr;
 967   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 968     uint debug_end   = debug_ptr;
 969     uint debug_start = debug_ptr - in_jvms->debug_size();
 970     debug_ptr = debug_start;  // back up the ptr
 971 
 972     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 973     uint j, k, l;
 974     SafePointNode* in_map = in_jvms->map();
 975     out_jvms->set_map(call);
 976 
 977     if (can_prune_locals) {
 978       assert(in_jvms->method() == out_jvms->method(), "sanity");
 979       // If the current throw can reach an exception handler in this JVMS,
 980       // then we must keep everything live that can reach that handler.
 981       // As a quick and dirty approximation, we look for any handlers at all.
 982       if (in_jvms->method()->has_exception_handlers()) {
 983         can_prune_locals = false;
 984       }
 985     }
 986 
 987     // Add the Locals
 988     k = in_jvms->locoff();
 989     l = in_jvms->loc_size();
 990     out_jvms->set_locoff(p);
 991     if (!can_prune_locals) {
 992       for (j = 0; j < l; j++) {
 993         Node* val = in_map->in(k + j);
 994         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
 995         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
 996             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
 997             val->bottom_type()->is_inlinetypeptr()) {
 998           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
 999         }
1000         call->set_req(p++, val);
1001       }
1002     } else {
1003       p += l;  // already set to top above by add_req_batch
1004     }
1005 
1006     // Add the Expression Stack
1007     k = in_jvms->stkoff();
1008     l = in_jvms->sp();
1009     out_jvms->set_stkoff(p);
1010     if (!can_prune_locals) {
1011       for (j = 0; j < l; j++) {
1012         Node* val = in_map->in(k + j);
1013         // Check if there's a larval that has been written in the callee state (constructor) and update it in the caller state
1014         if (callee_jvms != nullptr && val->is_InlineType() && val->as_InlineType()->is_larval() &&
1015             callee_jvms->method()->is_object_constructor() && val == in_map->argument(in_jvms, 0) &&
1016             val->bottom_type()->is_inlinetypeptr()) {
1017           val = callee_jvms->map()->local(callee_jvms, 0); // Receiver
1018         }
1019         call->set_req(p++, val);
1020       }
1021     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1022       // Divide stack into {S0,...,S1}, where S0 is set to top.
1023       uint s1 = stack_slots_not_pruned;
1024       stack_slots_not_pruned = 0;  // for next iteration
1025       if (s1 > l)  s1 = l;
1026       uint s0 = l - s1;
1027       p += s0;  // skip the tops preinstalled by add_req_batch
1028       for (j = s0; j < l; j++)
1029         call->set_req(p++, in_map->in(k+j));
1030     } else {
1031       p += l;  // already set to top above by add_req_batch
1032     }
1033 
1034     // Add the Monitors
1035     k = in_jvms->monoff();
1036     l = in_jvms->mon_size();
1037     out_jvms->set_monoff(p);
1038     for (j = 0; j < l; j++)
1039       call->set_req(p++, in_map->in(k+j));
1040 
1041     // Copy any scalar object fields.
1042     k = in_jvms->scloff();
1043     l = in_jvms->scl_size();
1044     out_jvms->set_scloff(p);
1045     for (j = 0; j < l; j++)
1046       call->set_req(p++, in_map->in(k+j));
1047 
1048     // Finish the new jvms.
1049     out_jvms->set_endoff(p);
1050 
1051     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1052     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1053     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1054     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1055     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1056     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1057 
1058     // Update the two tail pointers in parallel.
1059     callee_jvms = out_jvms;
1060     out_jvms = out_jvms->caller();
1061     in_jvms  = in_jvms->caller();
1062   }
1063 
1064   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1065 
1066   // Test the correctness of JVMState::debug_xxx accessors:
1067   assert(call->jvms()->debug_start() == non_debug_edges, "");
1068   assert(call->jvms()->debug_end()   == call->req(), "");
1069   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1070 }
1071 
1072 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1073   Bytecodes::Code code = java_bc();
1074   if (code == Bytecodes::_wide) {
1075     code = method()->java_code_at_bci(bci() + 1);
1076   }
1077 
1078   if (code != Bytecodes::_illegal) {
1079     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1215   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1216   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1217   return _gvn.transform( new AndLNode(conv, mask) );
1218 }
1219 
1220 Node* GraphKit::ConvL2I(Node* offset) {
1221   // short-circuit a common case
1222   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1223   if (offset_con != (jlong)Type::OffsetBot) {
1224     return intcon((int) offset_con);
1225   }
1226   return _gvn.transform( new ConvL2INode(offset));
1227 }
1228 
1229 //-------------------------load_object_klass-----------------------------------
1230 Node* GraphKit::load_object_klass(Node* obj) {
1231   // Special-case a fresh allocation to avoid building nodes:
1232   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1233   if (akls != nullptr)  return akls;
1234   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1235   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1236 }
1237 
1238 //-------------------------load_array_length-----------------------------------
1239 Node* GraphKit::load_array_length(Node* array) {
1240   // Special-case a fresh allocation to avoid building nodes:
1241   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1242   Node *alen;
1243   if (alloc == nullptr) {
1244     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1245     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1246   } else {
1247     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1248   }
1249   return alen;
1250 }
1251 
1252 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1253                                    const TypeOopPtr* oop_type,
1254                                    bool replace_length_in_map) {
1255   Node* length = alloc->Ideal_length();

1264         replace_in_map(length, ccast);
1265       }
1266       return ccast;
1267     }
1268   }
1269   return length;
1270 }
1271 
1272 //------------------------------do_null_check----------------------------------
1273 // Helper function to do a null pointer check.  Returned value is
1274 // the incoming address with null casted away.  You are allowed to use the
1275 // not-null value only if you are control dependent on the test.
1276 #ifndef PRODUCT
1277 extern uint explicit_null_checks_inserted,
1278             explicit_null_checks_elided;
1279 #endif
1280 Node* GraphKit::null_check_common(Node* value, BasicType type,
1281                                   // optional arguments for variations:
1282                                   bool assert_null,
1283                                   Node* *null_control,
1284                                   bool speculative,
1285                                   bool is_init_check) {
1286   assert(!assert_null || null_control == nullptr, "not both at once");
1287   if (stopped())  return top();
1288   NOT_PRODUCT(explicit_null_checks_inserted++);
1289 
1290   if (value->is_InlineType()) {
1291     // Null checking a scalarized but nullable inline type. Check the IsInit
1292     // input instead of the oop input to avoid keeping buffer allocations alive.
1293     InlineTypeNode* vtptr = value->as_InlineType();
1294     while (vtptr->get_oop()->is_InlineType()) {
1295       vtptr = vtptr->get_oop()->as_InlineType();
1296     }
1297     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1298     if (stopped()) {
1299       return top();
1300     }
1301     if (assert_null) {
1302       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1303       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1304       // replace_in_map(value, vtptr);
1305       // return vtptr;
1306       replace_in_map(value, null());
1307       return null();
1308     }
1309     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1310     return cast_not_null(value, do_replace_in_map);
1311   }
1312 
1313   // Construct null check
1314   Node *chk = nullptr;
1315   switch(type) {
1316     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1317     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1318     case T_ARRAY  : // fall through
1319       type = T_OBJECT;  // simplify further tests
1320     case T_OBJECT : {
1321       const Type *t = _gvn.type( value );
1322 
1323       const TypeOopPtr* tp = t->isa_oopptr();
1324       if (tp != nullptr && !tp->is_loaded()
1325           // Only for do_null_check, not any of its siblings:
1326           && !assert_null && null_control == nullptr) {
1327         // Usually, any field access or invocation on an unloaded oop type
1328         // will simply fail to link, since the statically linked class is
1329         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1330         // the static class is loaded but the sharper oop type is not.
1331         // Rather than checking for this obscure case in lots of places,
1332         // we simply observe that a null check on an unloaded class

1396         }
1397         Node *oldcontrol = control();
1398         set_control(cfg);
1399         Node *res = cast_not_null(value);
1400         set_control(oldcontrol);
1401         NOT_PRODUCT(explicit_null_checks_elided++);
1402         return res;
1403       }
1404       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1405       if (cfg == nullptr)  break;  // Quit at region nodes
1406       depth++;
1407     }
1408   }
1409 
1410   //-----------
1411   // Branch to failure if null
1412   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1413   Deoptimization::DeoptReason reason;
1414   if (assert_null) {
1415     reason = Deoptimization::reason_null_assert(speculative);
1416   } else if (type == T_OBJECT || is_init_check) {
1417     reason = Deoptimization::reason_null_check(speculative);
1418   } else {
1419     reason = Deoptimization::Reason_div0_check;
1420   }
1421   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1422   // ciMethodData::has_trap_at will return a conservative -1 if any
1423   // must-be-null assertion has failed.  This could cause performance
1424   // problems for a method after its first do_null_assert failure.
1425   // Consider using 'Reason_class_check' instead?
1426 
1427   // To cause an implicit null check, we set the not-null probability
1428   // to the maximum (PROB_MAX).  For an explicit check the probability
1429   // is set to a smaller value.
1430   if (null_control != nullptr || too_many_traps(reason)) {
1431     // probability is less likely
1432     ok_prob =  PROB_LIKELY_MAG(3);
1433   } else if (!assert_null &&
1434              (ImplicitNullCheckThreshold > 0) &&
1435              method() != nullptr &&
1436              (method()->method_data()->trap_count(reason)

1470   }
1471 
1472   if (assert_null) {
1473     // Cast obj to null on this path.
1474     replace_in_map(value, zerocon(type));
1475     return zerocon(type);
1476   }
1477 
1478   // Cast obj to not-null on this path, if there is no null_control.
1479   // (If there is a null_control, a non-null value may come back to haunt us.)
1480   if (type == T_OBJECT) {
1481     Node* cast = cast_not_null(value, false);
1482     if (null_control == nullptr || (*null_control) == top())
1483       replace_in_map(value, cast);
1484     value = cast;
1485   }
1486 
1487   return value;
1488 }
1489 

1490 //------------------------------cast_not_null----------------------------------
1491 // Cast obj to not-null on this path
1492 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1493   if (obj->is_InlineType()) {
1494     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1495     vt->as_InlineType()->set_is_init(_gvn);
1496     vt = _gvn.transform(vt);
1497     if (do_replace_in_map) {
1498       replace_in_map(obj, vt);
1499     }
1500     return vt;
1501   }
1502   const Type *t = _gvn.type(obj);
1503   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1504   // Object is already not-null?
1505   if( t == t_not_null ) return obj;
1506 
1507   Node* cast = new CastPPNode(control(), obj,t_not_null);
1508   cast = _gvn.transform( cast );
1509 
1510   // Scan for instances of 'obj' in the current JVM mapping.
1511   // These instances are known to be not-null after the test.
1512   if (do_replace_in_map)
1513     replace_in_map(obj, cast);
1514 
1515   return cast;                  // Return casted value
1516 }
1517 
1518 // Sometimes in intrinsics, we implicitly know an object is not null
1519 // (there's no actual null check) so we can cast it to not null. In
1520 // the course of optimizations, the input to the cast can become null.
1521 // In that case that data path will die and we need the control path

1610 // These are layered on top of the factory methods in LoadNode and StoreNode,
1611 // and integrate with the parser's memory state and _gvn engine.
1612 //
1613 
1614 // factory methods in "int adr_idx"
1615 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1616                           MemNode::MemOrd mo,
1617                           LoadNode::ControlDependency control_dependency,
1618                           bool require_atomic_access,
1619                           bool unaligned,
1620                           bool mismatched,
1621                           bool unsafe,
1622                           uint8_t barrier_data) {
1623   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1624   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1625   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1626   debug_only(adr_type = C->get_adr_type(adr_idx));
1627   Node* mem = memory(adr_idx);
1628   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1629   ld = _gvn.transform(ld);
1630 
1631   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1632     // Improve graph before escape analysis and boxing elimination.
1633     record_for_igvn(ld);
1634     if (ld->is_DecodeN()) {
1635       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1636       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1637       // a Phi). Recording such cases is still perfectly sound, but may be
1638       // unnecessary and result in some minor IGVN overhead.
1639       record_for_igvn(ld->in(1));
1640     }
1641   }
1642   return ld;
1643 }
1644 
1645 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1646                                 MemNode::MemOrd mo,
1647                                 bool require_atomic_access,
1648                                 bool unaligned,
1649                                 bool mismatched,
1650                                 bool unsafe,

1664   if (unsafe) {
1665     st->as_Store()->set_unsafe_access();
1666   }
1667   st->as_Store()->set_barrier_data(barrier_data);
1668   st = _gvn.transform(st);
1669   set_memory(st, adr_idx);
1670   // Back-to-back stores can only remove intermediate store with DU info
1671   // so push on worklist for optimizer.
1672   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1673     record_for_igvn(st);
1674 
1675   return st;
1676 }
1677 
1678 Node* GraphKit::access_store_at(Node* obj,
1679                                 Node* adr,
1680                                 const TypePtr* adr_type,
1681                                 Node* val,
1682                                 const Type* val_type,
1683                                 BasicType bt,
1684                                 DecoratorSet decorators,
1685                                 bool safe_for_replace,
1686                                 const InlineTypeNode* vt) {
1687   // Transformation of a value which could be null pointer (CastPP #null)
1688   // could be delayed during Parse (for example, in adjust_map_after_if()).
1689   // Execute transformation here to avoid barrier generation in such case.
1690   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1691     val = _gvn.makecon(TypePtr::NULL_PTR);
1692   }
1693 
1694   if (stopped()) {
1695     return top(); // Dead path ?
1696   }
1697 
1698   assert(val != nullptr, "not dead path");
1699   if (val->is_InlineType()) {
1700     // Store to non-flat field. Buffer the inline type and make sure
1701     // the store is re-executed if the allocation triggers deoptimization.
1702     PreserveReexecuteState preexecs(this);
1703     jvms()->set_should_reexecute(true);
1704     val = val->as_InlineType()->buffer(this, safe_for_replace);
1705   }
1706 
1707   C2AccessValuePtr addr(adr, adr_type);
1708   C2AccessValue value(val, val_type);
1709   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1710   if (access.is_raw()) {
1711     return _barrier_set->BarrierSetC2::store_at(access, value);
1712   } else {
1713     return _barrier_set->store_at(access, value);
1714   }
1715 }
1716 
1717 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1718                                Node* adr,   // actual address to store val at
1719                                const TypePtr* adr_type,
1720                                const Type* val_type,
1721                                BasicType bt,
1722                                DecoratorSet decorators,
1723                                Node* ctl) {
1724   if (stopped()) {
1725     return top(); // Dead path ?
1726   }
1727 
1728   C2AccessValuePtr addr(adr, adr_type);
1729   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1730   if (access.is_raw()) {
1731     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1732   } else {
1733     return _barrier_set->load_at(access, val_type);
1734   }
1735 }
1736 
1737 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1738                             const Type* val_type,
1739                             BasicType bt,
1740                             DecoratorSet decorators) {
1741   if (stopped()) {
1742     return top(); // Dead path ?
1743   }
1744 
1745   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1746   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1747   if (access.is_raw()) {
1748     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1749   } else {

1814                                      Node* new_val,
1815                                      const Type* value_type,
1816                                      BasicType bt,
1817                                      DecoratorSet decorators) {
1818   C2AccessValuePtr addr(adr, adr_type);
1819   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1820   if (access.is_raw()) {
1821     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1822   } else {
1823     return _barrier_set->atomic_add_at(access, new_val, value_type);
1824   }
1825 }
1826 
1827 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1828   return _barrier_set->clone(this, src, dst, size, is_array);
1829 }
1830 
1831 //-------------------------array_element_address-------------------------
1832 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1833                                       const TypeInt* sizetype, Node* ctrl) {
1834   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1835   uint shift;
1836   if (arytype->is_flat() && arytype->klass_is_exact()) {
1837     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1838     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1839     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1840     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1841     // though we don't need the address node in this case and throw it away again.
1842     shift = arytype->flat_log_elem_size();
1843   } else {
1844     shift = exact_log2(type2aelembytes(elembt));
1845   }
1846   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1847 
1848   // short-circuit a common case (saves lots of confusing waste motion)
1849   jint idx_con = find_int_con(idx, -1);
1850   if (idx_con >= 0) {
1851     intptr_t offset = header + ((intptr_t)idx_con << shift);
1852     return basic_plus_adr(ary, offset);
1853   }
1854 
1855   // must be correct type for alignment purposes
1856   Node* base  = basic_plus_adr(ary, header);
1857   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1858   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1859   return basic_plus_adr(ary, base, scale);
1860 }
1861 
1862 Node* GraphKit::flat_array_element_address(Node*& array, Node* idx, ciInlineKlass* vk, bool is_null_free,
1863                                            bool is_not_null_free, bool is_atomic) {
1864   ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* flat */ true, is_null_free, is_atomic);
1865   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1866   arytype = arytype->cast_to_exactness(true);
1867   arytype = arytype->cast_to_not_null_free(is_not_null_free);
1868   array = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
1869   return array_element_address(array, idx, T_FLAT_ELEMENT, arytype->size(), control());
1870 }
1871 
1872 //-------------------------load_array_element-------------------------
1873 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1874   const Type* elemtype = arytype->elem();
1875   BasicType elembt = elemtype->array_element_basic_type();
1876   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1877   if (elembt == T_NARROWOOP) {
1878     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1879   }
1880   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1881                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1882   return ld;
1883 }
1884 
1885 //-------------------------set_arguments_for_java_call-------------------------
1886 // Arguments (pre-popped from the stack) are taken from the JVMS.
1887 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1888   PreserveReexecuteState preexecs(this);
1889   if (EnableValhalla) {
1890     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1891     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1892     jvms()->set_should_reexecute(true);
1893     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1894     inc_sp(arg_size);
1895   }
1896   // Add the call arguments
1897   const TypeTuple* domain = call->tf()->domain_sig();
1898   uint nargs = domain->cnt();
1899   int arg_num = 0;
1900   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1901     Node* arg = argument(i-TypeFunc::Parms);
1902     const Type* t = domain->field_at(i);
1903     // TODO 8284443 A static call to a mismatched method should still be scalarized
1904     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1905       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1906       if (!arg->is_InlineType()) {
1907         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1908         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1909       }
1910       InlineTypeNode* vt = arg->as_InlineType();
1911       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1912       // If an inline type argument is passed as fields, attach the Method* to the call site
1913       // to be able to access the extended signature later via attached_method_before_pc().
1914       // For example, see CompiledMethod::preserve_callee_argument_oops().
1915       call->set_override_symbolic_info(true);
1916       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1917       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1918       C->dependencies()->assert_evol_method(call->method());
1919       arg_num++;
1920       continue;
1921     } else if (arg->is_InlineType()) {
1922       // Pass inline type argument via oop to callee
1923       InlineTypeNode* inline_type = arg->as_InlineType();
1924       const ciMethod* method = call->method();
1925       ciInstanceKlass* holder = method->holder();
1926       const bool is_receiver = (i == TypeFunc::Parms);
1927       const bool is_abstract_or_object_klass_constructor = method->is_object_constructor() &&
1928                                                            (holder->is_abstract() || holder->is_java_lang_Object());
1929       const bool is_larval_receiver_on_super_constructor = is_receiver && is_abstract_or_object_klass_constructor;
1930       bool must_init_buffer = true;
1931       // We always need to buffer inline types when they are escaping. However, we can skip the actual initialization
1932       // of the buffer if the inline type is a larval because we are going to update the buffer anyway which requires
1933       // us to create a new one. But there is one special case where we are still required to initialize the buffer:
1934       // When we have a larval receiver invoked on an abstract (value class) constructor or the Object constructor (that
1935       // is not going to be inlined). After this call, the larval is completely initialized and thus not a larval anymore.
1936       // We therefore need to force an initialization of the buffer to not lose all the field writes so far in case the
1937       // buffer needs to be used (e.g. to read from when deoptimizing at runtime) or further updated in abstract super
1938       // value class constructors which could have more fields to be initialized. Note that we do not need to
1939       // initialize the buffer when invoking another constructor in the same class on a larval receiver because we
1940       // have not initialized any fields, yet (this is done completely by the other constructor call).
1941       if (inline_type->is_larval() && !is_larval_receiver_on_super_constructor) {
1942         must_init_buffer = false;
1943       }
1944       arg = inline_type->buffer(this, true, must_init_buffer);
1945     }
1946     if (t != Type::HALF) {
1947       arg_num++;
1948     }
1949     call->init_req(idx++, arg);
1950   }
1951 }
1952 
1953 //---------------------------set_edges_for_java_call---------------------------
1954 // Connect a newly created call into the current JVMS.
1955 // A return value node (if any) is returned from set_edges_for_java_call.
1956 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1957 
1958   // Add the predefined inputs:
1959   call->init_req( TypeFunc::Control, control() );
1960   call->init_req( TypeFunc::I_O    , i_o() );
1961   call->init_req( TypeFunc::Memory , reset_memory() );
1962   call->init_req( TypeFunc::FramePtr, frameptr() );
1963   call->init_req( TypeFunc::ReturnAdr, top() );
1964 
1965   add_safepoint_edges(call, must_throw);
1966 
1967   Node* xcall = _gvn.transform(call);
1968 
1969   if (xcall == top()) {
1970     set_control(top());
1971     return;
1972   }
1973   assert(xcall == call, "call identity is stable");
1974 
1975   // Re-use the current map to produce the result.
1976 
1977   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1978   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1979   set_all_memory_call(xcall, separate_io_proj);
1980 
1981   //return xcall;   // no need, caller already has it
1982 }
1983 
1984 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1985   if (stopped())  return top();  // maybe the call folded up?
1986 







1987   // Note:  Since any out-of-line call can produce an exception,
1988   // we always insert an I_O projection from the call into the result.
1989 
1990   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1991 
1992   if (separate_io_proj) {
1993     // The caller requested separate projections be used by the fall
1994     // through and exceptional paths, so replace the projections for
1995     // the fall through path.
1996     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1997     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1998   }
1999 
2000   // Capture the return value, if any.
2001   Node* ret;
2002   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
2003     ret = top();
2004   } else if (call->tf()->returns_inline_type_as_fields()) {
2005     // Return of multiple values (inline type fields): we create a
2006     // InlineType node, each field is a projection from the call.
2007     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2008     uint base_input = TypeFunc::Parms;
2009     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2010   } else {
2011     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2012     ciType* t = call->method()->return_type();
2013     if (t->is_klass()) {
2014       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2015       if (type->is_inlinetypeptr()) {
2016         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass(), type->inline_klass()->is_null_free());
2017       }
2018     }
2019   }
2020 
2021   // We just called the constructor on a value type receiver. Reload it from the buffer
2022   ciMethod* method = call->method();
2023   if (method->is_object_constructor() && !method->holder()->is_java_lang_Object()) {
2024     InlineTypeNode* inline_type_receiver = call->in(TypeFunc::Parms)->isa_InlineType();
2025     if (inline_type_receiver != nullptr) {
2026       assert(inline_type_receiver->is_larval(), "must be larval");
2027       assert(inline_type_receiver->is_allocated(&gvn()), "larval must be buffered");
2028       InlineTypeNode* reloaded = InlineTypeNode::make_from_oop(this, inline_type_receiver->get_oop(),
2029                                                                inline_type_receiver->bottom_type()->inline_klass(), true);
2030       assert(!reloaded->is_larval(), "should not be larval anymore");
2031       replace_in_map(inline_type_receiver, reloaded);
2032     }
2033   }
2034 
2035   return ret;
2036 }
2037 
2038 //--------------------set_predefined_input_for_runtime_call--------------------
2039 // Reading and setting the memory state is way conservative here.
2040 // The real problem is that I am not doing real Type analysis on memory,
2041 // so I cannot distinguish card mark stores from other stores.  Across a GC
2042 // point the Store Barrier and the card mark memory has to agree.  I cannot
2043 // have a card mark store and its barrier split across the GC point from
2044 // either above or below.  Here I get that to happen by reading ALL of memory.
2045 // A better answer would be to separate out card marks from other memory.
2046 // For now, return the input memory state, so that it can be reused
2047 // after the call, if this call has restricted memory effects.
2048 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2049   // Set fixed predefined input arguments
2050   Node* memory = reset_memory();
2051   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
2052   call->init_req( TypeFunc::Control,   control()  );
2053   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
2054   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

2105     if (use->is_MergeMem()) {
2106       wl.push(use);
2107     }
2108   }
2109 }
2110 
2111 // Replace the call with the current state of the kit.
2112 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2113   JVMState* ejvms = nullptr;
2114   if (has_exceptions()) {
2115     ejvms = transfer_exceptions_into_jvms();
2116   }
2117 
2118   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2119   ReplacedNodes replaced_nodes_exception;
2120   Node* ex_ctl = top();
2121 
2122   SafePointNode* final_state = stop();
2123 
2124   // Find all the needed outputs of this call
2125   CallProjections* callprojs = call->extract_projections(true, do_asserts);

2126 
2127   Unique_Node_List wl;
2128   Node* init_mem = call->in(TypeFunc::Memory);
2129   Node* final_mem = final_state->in(TypeFunc::Memory);
2130   Node* final_ctl = final_state->in(TypeFunc::Control);
2131   Node* final_io = final_state->in(TypeFunc::I_O);
2132 
2133   // Replace all the old call edges with the edges from the inlining result
2134   if (callprojs->fallthrough_catchproj != nullptr) {
2135     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2136   }
2137   if (callprojs->fallthrough_memproj != nullptr) {
2138     if (final_mem->is_MergeMem()) {
2139       // Parser's exits MergeMem was not transformed but may be optimized
2140       final_mem = _gvn.transform(final_mem);
2141     }
2142     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2143     add_mergemem_users_to_worklist(wl, final_mem);
2144   }
2145   if (callprojs->fallthrough_ioproj != nullptr) {
2146     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2147   }
2148 
2149   // Replace the result with the new result if it exists and is used
2150   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2151     // If the inlined code is dead, the result projections for an inline type returned as
2152     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2153     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2154            "unexpected number of results");
2155     C->gvn_replace_by(callprojs->resproj[0], result);
2156   }
2157 
2158   if (ejvms == nullptr) {
2159     // No exception edges to simply kill off those paths
2160     if (callprojs->catchall_catchproj != nullptr) {
2161       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2162     }
2163     if (callprojs->catchall_memproj != nullptr) {
2164       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2165     }
2166     if (callprojs->catchall_ioproj != nullptr) {
2167       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2168     }
2169     // Replace the old exception object with top
2170     if (callprojs->exobj != nullptr) {
2171       C->gvn_replace_by(callprojs->exobj, C->top());
2172     }
2173   } else {
2174     GraphKit ekit(ejvms);
2175 
2176     // Load my combined exception state into the kit, with all phis transformed:
2177     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2178     replaced_nodes_exception = ex_map->replaced_nodes();
2179 
2180     Node* ex_oop = ekit.use_exception_state(ex_map);
2181 
2182     if (callprojs->catchall_catchproj != nullptr) {
2183       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2184       ex_ctl = ekit.control();
2185     }
2186     if (callprojs->catchall_memproj != nullptr) {
2187       Node* ex_mem = ekit.reset_memory();
2188       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2189       add_mergemem_users_to_worklist(wl, ex_mem);
2190     }
2191     if (callprojs->catchall_ioproj != nullptr) {
2192       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2193     }
2194 
2195     // Replace the old exception object with the newly created one
2196     if (callprojs->exobj != nullptr) {
2197       C->gvn_replace_by(callprojs->exobj, ex_oop);
2198     }
2199   }
2200 
2201   // Disconnect the call from the graph
2202   call->disconnect_inputs(C);
2203   C->gvn_replace_by(call, C->top());
2204 
2205   // Clean up any MergeMems that feed other MergeMems since the
2206   // optimizer doesn't like that.
2207   while (wl.size() > 0) {
2208     _gvn.transform(wl.pop());
2209   }
2210 
2211   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2212     replaced_nodes.apply(C, final_ctl);
2213   }
2214   if (!ex_ctl->is_top() && do_replaced_nodes) {
2215     replaced_nodes_exception.apply(C, ex_ctl);
2216   }
2217 }
2218 
2219 
2220 //------------------------------increment_counter------------------------------
2221 // for statistics: increment a VM counter by 1
2222 
2223 void GraphKit::increment_counter(address counter_addr) {
2224   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2225   increment_counter(adr1);
2226 }
2227 
2228 void GraphKit::increment_counter(Node* counter_addr) {
2229   Node* ctrl = control();
2230   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2231   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2391  *
2392  * @param n          node that the type applies to
2393  * @param exact_kls  type from profiling
2394  * @param maybe_null did profiling see null?
2395  *
2396  * @return           node with improved type
2397  */
2398 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2399   const Type* current_type = _gvn.type(n);
2400   assert(UseTypeSpeculation, "type speculation must be on");
2401 
2402   const TypePtr* speculative = current_type->speculative();
2403 
2404   // Should the klass from the profile be recorded in the speculative type?
2405   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2406     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2407     const TypeOopPtr* xtype = tklass->as_instance_type();
2408     assert(xtype->klass_is_exact(), "Should be exact");
2409     // Any reason to believe n is not null (from this profiling or a previous one)?
2410     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2411     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2412     // record the new speculative type's depth
2413     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2414     speculative = speculative->with_inline_depth(jvms()->depth());
2415   } else if (current_type->would_improve_ptr(ptr_kind)) {
2416     // Profiling report that null was never seen so we can change the
2417     // speculative type to non null ptr.
2418     if (ptr_kind == ProfileAlwaysNull) {
2419       speculative = TypePtr::NULL_PTR;
2420     } else {
2421       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2422       const TypePtr* ptr = TypePtr::NOTNULL;
2423       if (speculative != nullptr) {
2424         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2425       } else {
2426         speculative = ptr;
2427       }
2428     }
2429   }
2430 
2431   if (speculative != current_type->speculative()) {
2432     // Build a type with a speculative type (what we think we know
2433     // about the type but will need a guard when we use it)
2434     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2435     // We're changing the type, we need a new CheckCast node to carry
2436     // the new type. The new type depends on the control: what
2437     // profiling tells us is only valid from here as far as we can
2438     // tell.
2439     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2440     cast = _gvn.transform(cast);
2441     replace_in_map(n, cast);
2442     n = cast;
2443   }
2444 
2445   return n;
2446 }
2447 
2448 /**
2449  * Record profiling data from receiver profiling at an invoke with the
2450  * type system so that it can propagate it (speculation)
2451  *
2452  * @param n  receiver node
2453  *
2454  * @return   node with improved type
2455  */
2456 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2457   if (!UseTypeSpeculation) {
2458     return n;
2459   }
2460   ciKlass* exact_kls = profile_has_unique_klass();
2461   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2462   if ((java_bc() == Bytecodes::_checkcast ||
2463        java_bc() == Bytecodes::_instanceof ||
2464        java_bc() == Bytecodes::_aastore) &&
2465       method()->method_data()->is_mature()) {
2466     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2467     if (data != nullptr) {
2468       if (java_bc() == Bytecodes::_aastore) {
2469         ciKlass* array_type = nullptr;
2470         ciKlass* element_type = nullptr;
2471         ProfilePtrKind element_ptr = ProfileMaybeNull;
2472         bool flat_array = true;
2473         bool null_free_array = true;
2474         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2475         exact_kls = element_type;
2476         ptr_kind = element_ptr;
2477       } else {
2478         if (!data->as_BitData()->null_seen()) {
2479           ptr_kind = ProfileNeverNull;
2480         } else {
2481           assert(data->is_ReceiverTypeData(), "bad profile data type");
2482           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2483           uint i = 0;
2484           for (; i < call->row_limit(); i++) {
2485             ciKlass* receiver = call->receiver(i);
2486             if (receiver != nullptr) {
2487               break;
2488             }
2489           }
2490           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2491         }

2492       }
2493     }
2494   }
2495   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2496 }
2497 
2498 /**
2499  * Record profiling data from argument profiling at an invoke with the
2500  * type system so that it can propagate it (speculation)
2501  *
2502  * @param dest_method  target method for the call
2503  * @param bc           what invoke bytecode is this?
2504  */
2505 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2506   if (!UseTypeSpeculation) {
2507     return;
2508   }
2509   const TypeFunc* tf    = TypeFunc::make(dest_method);
2510   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2511   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2512   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2513     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2514     if (is_reference_type(targ->basic_type())) {
2515       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2516       ciKlass* better_type = nullptr;
2517       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2518         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2519       }
2520       i++;
2521     }
2522   }
2523 }
2524 
2525 /**
2526  * Record profiling data from parameter profiling at an invoke with
2527  * the type system so that it can propagate it (speculation)
2528  */
2529 void GraphKit::record_profiled_parameters_for_speculation() {
2530   if (!UseTypeSpeculation) {
2531     return;
2532   }
2533   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2547  * the type system so that it can propagate it (speculation)
2548  */
2549 void GraphKit::record_profiled_return_for_speculation() {
2550   if (!UseTypeSpeculation) {
2551     return;
2552   }
2553   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2554   ciKlass* better_type = nullptr;
2555   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2556     // If profiling reports a single type for the return value,
2557     // feed it to the type system so it can propagate it as a
2558     // speculative type
2559     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2560   }
2561 }
2562 
2563 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2564   if (Matcher::strict_fp_requires_explicit_rounding) {
2565     // (Note:  TypeFunc::make has a cache that makes this fast.)
2566     const TypeFunc* tf    = TypeFunc::make(dest_method);
2567     int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2568     for (int j = 0; j < nargs; j++) {
2569       const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2570       if (targ->basic_type() == T_DOUBLE) {
2571         // If any parameters are doubles, they must be rounded before
2572         // the call, dprecision_rounding does gvn.transform
2573         Node *arg = argument(j);
2574         arg = dprecision_rounding(arg);
2575         set_argument(j, arg);
2576       }
2577     }
2578   }
2579 }
2580 
2581 // rounding for strict float precision conformance
2582 Node* GraphKit::precision_rounding(Node* n) {
2583   if (Matcher::strict_fp_requires_explicit_rounding) {
2584 #ifdef IA32
2585     if (UseSSE == 0) {
2586       return _gvn.transform(new RoundFloatNode(nullptr, n));
2587     }
2588 #else
2589     Unimplemented();

2698                                   // The first null ends the list.
2699                                   Node* parm0, Node* parm1,
2700                                   Node* parm2, Node* parm3,
2701                                   Node* parm4, Node* parm5,
2702                                   Node* parm6, Node* parm7) {
2703   assert(call_addr != nullptr, "must not call null targets");
2704 
2705   // Slow-path call
2706   bool is_leaf = !(flags & RC_NO_LEAF);
2707   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2708   if (call_name == nullptr) {
2709     assert(!is_leaf, "must supply name for leaf");
2710     call_name = OptoRuntime::stub_name(call_addr);
2711   }
2712   CallNode* call;
2713   if (!is_leaf) {
2714     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2715   } else if (flags & RC_NO_FP) {
2716     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2717   } else  if (flags & RC_VECTOR){
2718     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2719     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2720   } else {
2721     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2722   }
2723 
2724   // The following is similar to set_edges_for_java_call,
2725   // except that the memory effects of the call are restricted to AliasIdxRaw.
2726 
2727   // Slow path call has no side-effects, uses few values
2728   bool wide_in  = !(flags & RC_NARROW_MEM);
2729   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2730 
2731   Node* prev_mem = nullptr;
2732   if (wide_in) {
2733     prev_mem = set_predefined_input_for_runtime_call(call);
2734   } else {
2735     assert(!wide_out, "narrow in => narrow out");
2736     Node* narrow_mem = memory(adr_type);
2737     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2738   }

2778 
2779   if (has_io) {
2780     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2781   }
2782   return call;
2783 
2784 }
2785 
2786 // i2b
2787 Node* GraphKit::sign_extend_byte(Node* in) {
2788   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2789   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2790 }
2791 
2792 // i2s
2793 Node* GraphKit::sign_extend_short(Node* in) {
2794   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2795   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2796 }
2797 
2798 
2799 //------------------------------merge_memory-----------------------------------
2800 // Merge memory from one path into the current memory state.
2801 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2802   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2803     Node* old_slice = mms.force_memory();
2804     Node* new_slice = mms.memory2();
2805     if (old_slice != new_slice) {
2806       PhiNode* phi;
2807       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2808         if (mms.is_empty()) {
2809           // clone base memory Phi's inputs for this memory slice
2810           assert(old_slice == mms.base_memory(), "sanity");
2811           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2812           _gvn.set_type(phi, Type::MEMORY);
2813           for (uint i = 1; i < phi->req(); i++) {
2814             phi->init_req(i, old_slice->in(i));
2815           }
2816         } else {
2817           phi = old_slice->as_Phi(); // Phi was generated already
2818         }

3081 
3082   // Now do a linear scan of the secondary super-klass array.  Again, no real
3083   // performance impact (too rare) but it's gotta be done.
3084   // Since the code is rarely used, there is no penalty for moving it
3085   // out of line, and it can only improve I-cache density.
3086   // The decision to inline or out-of-line this final check is platform
3087   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3088   Node* psc = gvn.transform(
3089     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3090 
3091   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3092   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3093   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3094 
3095   // Return false path; set default control to true path.
3096   *ctrl = gvn.transform(r_ok_subtype);
3097   return gvn.transform(r_not_subtype);
3098 }
3099 
3100 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3101   const Type* sub_t = _gvn.type(obj_or_subklass);
3102   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3103     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3104     obj_or_subklass = makecon(sub_t);
3105   }
3106   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3107   if (expand_subtype_check) {
3108     MergeMemNode* mem = merged_memory();
3109     Node* ctrl = control();
3110     Node* subklass = obj_or_subklass;
3111     if (!sub_t->isa_klassptr()) {
3112       subklass = load_object_klass(obj_or_subklass);
3113     }
3114 
3115     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3116     set_control(ctrl);
3117     return n;
3118   }
3119 
3120   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3121   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3122   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3123   set_control(_gvn.transform(new IfTrueNode(iff)));
3124   return _gvn.transform(new IfFalseNode(iff));
3125 }
3126 
3127 // Profile-driven exact type check:
3128 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3129                                     float prob, Node* *casted_receiver) {

3130   assert(!klass->is_interface(), "no exact type check on interfaces");
3131   Node* fail = top();
3132   const Type* rec_t = _gvn.type(receiver);
3133   if (rec_t->is_inlinetypeptr()) {
3134     if (klass->equals(rec_t->inline_klass())) {
3135       (*casted_receiver) = receiver; // Always passes
3136     } else {
3137       (*casted_receiver) = top();    // Always fails
3138       fail = control();
3139       set_control(top());
3140     }
3141     return fail;
3142   }
3143   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3144   Node* recv_klass = load_object_klass(receiver);
3145   fail = type_check(recv_klass, tklass, prob);





3146 
3147   if (!stopped()) {
3148     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3149     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3150     assert(recv_xtype->klass_is_exact(), "");
3151 
3152     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3153       // Subsume downstream occurrences of receiver with a cast to
3154       // recv_xtype, since now we know what the type will be.
3155       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3156       Node* res = _gvn.transform(cast);
3157       if (recv_xtype->is_inlinetypeptr()) {
3158         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3159         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3160       }
3161       (*casted_receiver) = res;
3162       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3163       // (User must make the replace_in_map call.)
3164     }
3165   }
3166 
3167   return fail;
3168 }
3169 
3170 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3171                            float prob) {
3172   Node* want_klass = makecon(tklass);
3173   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3174   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3175   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3176   set_control(_gvn.transform(new IfTrueNode (iff)));
3177   Node* fail = _gvn.transform(new IfFalseNode(iff));
3178   return fail;
3179 }
3180 
3181 //------------------------------subtype_check_receiver-------------------------
3182 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3183                                        Node** casted_receiver) {
3184   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3185   Node* want_klass = makecon(tklass);
3186 
3187   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3188 
3189   // Ignore interface type information until interface types are properly tracked.
3190   if (!stopped() && !klass->is_interface()) {
3191     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3192     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3193     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3194       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3195       if (recv_type->is_inlinetypeptr()) {
3196         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3197       }
3198       (*casted_receiver) = cast;
3199     }
3200   }
3201 
3202   return slow_ctl;
3203 }
3204 
3205 //------------------------------seems_never_null-------------------------------
3206 // Use null_seen information if it is available from the profile.
3207 // If we see an unexpected null at a type check we record it and force a
3208 // recompile; the offending check will be recompiled to handle nulls.
3209 // If we see several offending BCIs, then all checks in the
3210 // method will be recompiled.
3211 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3212   speculating = !_gvn.type(obj)->speculative_maybe_null();
3213   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3214   if (UncommonNullCast               // Cutout for this technique
3215       && obj != null()               // And not the -Xcomp stupid case?
3216       && !too_many_traps(reason)
3217       ) {
3218     if (speculating) {

3287 
3288 //------------------------maybe_cast_profiled_receiver-------------------------
3289 // If the profile has seen exactly one type, narrow to exactly that type.
3290 // Subsequent type checks will always fold up.
3291 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3292                                              const TypeKlassPtr* require_klass,
3293                                              ciKlass* spec_klass,
3294                                              bool safe_for_replace) {
3295   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3296 
3297   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3298 
3299   // Make sure we haven't already deoptimized from this tactic.
3300   if (too_many_traps_or_recompiles(reason))
3301     return nullptr;
3302 
3303   // (No, this isn't a call, but it's enough like a virtual call
3304   // to use the same ciMethod accessor to get the profile info...)
3305   // If we have a speculative type use it instead of profiling (which
3306   // may not help us)
3307   ciKlass* exact_kls = spec_klass;
3308   if (exact_kls == nullptr) {
3309     if (java_bc() == Bytecodes::_aastore) {
3310       ciKlass* array_type = nullptr;
3311       ciKlass* element_type = nullptr;
3312       ProfilePtrKind element_ptr = ProfileMaybeNull;
3313       bool flat_array = true;
3314       bool null_free_array = true;
3315       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3316       exact_kls = element_type;
3317     } else {
3318       exact_kls = profile_has_unique_klass();
3319     }
3320   }
3321   if (exact_kls != nullptr) {// no cast failures here
3322     if (require_klass == nullptr ||
3323         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3324       // If we narrow the type to match what the type profile sees or
3325       // the speculative type, we can then remove the rest of the
3326       // cast.
3327       // This is a win, even if the exact_kls is very specific,
3328       // because downstream operations, such as method calls,
3329       // will often benefit from the sharper type.
3330       Node* exact_obj = not_null_obj; // will get updated in place...
3331       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3332                                             &exact_obj);
3333       { PreserveJVMState pjvms(this);
3334         set_control(slow_ctl);
3335         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3336       }
3337       if (safe_for_replace) {
3338         replace_in_map(not_null_obj, exact_obj);
3339       }
3340       return exact_obj;

3430   // If not_null_obj is dead, only null-path is taken
3431   if (stopped()) {              // Doing instance-of on a null?
3432     set_control(null_ctl);
3433     return intcon(0);
3434   }
3435   region->init_req(_null_path, null_ctl);
3436   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3437   if (null_ctl == top()) {
3438     // Do this eagerly, so that pattern matches like is_diamond_phi
3439     // will work even during parsing.
3440     assert(_null_path == PATH_LIMIT-1, "delete last");
3441     region->del_req(_null_path);
3442     phi   ->del_req(_null_path);
3443   }
3444 
3445   // Do we know the type check always succeed?
3446   bool known_statically = false;
3447   if (_gvn.type(superklass)->singleton()) {
3448     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3449     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3450     if (subk != nullptr && subk->is_loaded()) {
3451       int static_res = C->static_subtype_check(superk, subk);
3452       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3453     }
3454   }
3455 
3456   if (!known_statically) {
3457     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3458     // We may not have profiling here or it may not help us. If we
3459     // have a speculative type use it to perform an exact cast.
3460     ciKlass* spec_obj_type = obj_type->speculative_type();
3461     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3462       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3463       if (stopped()) {            // Profile disagrees with this path.
3464         set_control(null_ctl);    // Null is the only remaining possibility.
3465         return intcon(0);
3466       }
3467       if (cast_obj != nullptr) {
3468         not_null_obj = cast_obj;
3469       }
3470     }

3486   record_for_igvn(region);
3487 
3488   // If we know the type check always succeeds then we don't use the
3489   // profiling data at this bytecode. Don't lose it, feed it to the
3490   // type system as a speculative type.
3491   if (safe_for_replace) {
3492     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3493     replace_in_map(obj, casted_obj);
3494   }
3495 
3496   return _gvn.transform(phi);
3497 }
3498 
3499 //-------------------------------gen_checkcast---------------------------------
3500 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3501 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3502 // uncommon-trap paths work.  Adjust stack after this call.
3503 // If failure_control is supplied and not null, it is filled in with
3504 // the control edge for the cast failure.  Otherwise, an appropriate
3505 // uncommon trap or exception is thrown.
3506 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {

3507   kill_dead_locals();           // Benefit all the uncommon traps
3508   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3509   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3510   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3511   bool safe_for_replace = (failure_control == nullptr);
3512   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3513 
3514   // Fast cutout:  Check the case that the cast is vacuously true.
3515   // This detects the common cases where the test will short-circuit
3516   // away completely.  We do this before we perform the null check,
3517   // because if the test is going to turn into zero code, we don't
3518   // want a residual null check left around.  (Causes a slowdown,
3519   // for example, in some objArray manipulations, such as a[i]=a[j].)
3520   if (improved_klass_ptr_type->singleton()) {
3521     const TypeKlassPtr* kptr = nullptr;
3522     const Type* t = _gvn.type(obj);
3523     if (t->isa_oop_ptr()) {
3524       kptr = t->is_oopptr()->as_klass_type();
3525     } else if (obj->is_InlineType()) {
3526       ciInlineKlass* vk = t->inline_klass();
3527       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3528     }
3529     if (kptr != nullptr) {
3530       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3531       case Compile::SSC_always_true:
3532         // If we know the type check always succeed then we don't use
3533         // the profiling data at this bytecode. Don't lose it, feed it
3534         // to the type system as a speculative type.
3535         obj = record_profiled_receiver_for_speculation(obj);
3536         if (null_free) {
3537           assert(safe_for_replace, "must be");
3538           obj = null_check(obj);
3539         }
3540         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3541         return obj;
3542       case Compile::SSC_always_false:
3543         if (null_free) {
3544           assert(safe_for_replace, "must be");
3545           obj = null_check(obj);
3546         }
3547         // It needs a null check because a null will *pass* the cast check.
3548         if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) {

3549           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3550           Deoptimization::DeoptReason reason = is_aastore ?
3551             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3552           builtin_throw(reason);
3553           return top();
3554         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3555           return null_assert(obj);
3556         }
3557         break; // Fall through to full check
3558       default:
3559         break;
3560       }
3561     }
3562   }
3563 
3564   ciProfileData* data = nullptr;

3565   if (failure_control == nullptr) {        // use MDO in regular case only
3566     assert(java_bc() == Bytecodes::_aastore ||
3567            java_bc() == Bytecodes::_checkcast,
3568            "interpreter profiles type checks only for these BCs");
3569     if (method()->method_data()->is_mature()) {
3570       data = method()->method_data()->bci_to_data(bci());
3571     }
3572   }
3573 
3574   // Make the merge point
3575   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3576   RegionNode* region = new RegionNode(PATH_LIMIT);
3577   Node*       phi    = new PhiNode(region, toop);
3578   _gvn.set_type(region, Type::CONTROL);
3579   _gvn.set_type(phi, toop);
3580 
3581   C->set_has_split_ifs(true); // Has chance for split-if optimization
3582 
3583   // Use null-cast information if it is available
3584   bool speculative_not_null = false;
3585   bool never_see_null = ((failure_control == nullptr)  // regular case only
3586                          && seems_never_null(obj, data, speculative_not_null));
3587 
3588   if (obj->is_InlineType()) {
3589     // Re-execute if buffering during triggers deoptimization
3590     PreserveReexecuteState preexecs(this);
3591     jvms()->set_should_reexecute(true);
3592     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3593   }
3594 
3595   // Null check; get casted pointer; set region slot 3
3596   Node* null_ctl = top();
3597   Node* not_null_obj = nullptr;
3598   if (null_free) {
3599     assert(safe_for_replace, "must be");
3600     not_null_obj = null_check(obj);
3601   } else {
3602     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3603   }
3604 
3605   // If not_null_obj is dead, only null-path is taken
3606   if (stopped()) {              // Doing instance-of on a null?
3607     set_control(null_ctl);
3608     if (toop->is_inlinetypeptr()) {
3609       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3610     }
3611     return null();
3612   }
3613   region->init_req(_null_path, null_ctl);
3614   phi   ->init_req(_null_path, null());  // Set null path value
3615   if (null_ctl == top()) {
3616     // Do this eagerly, so that pattern matches like is_diamond_phi
3617     // will work even during parsing.
3618     assert(_null_path == PATH_LIMIT-1, "delete last");
3619     region->del_req(_null_path);
3620     phi   ->del_req(_null_path);
3621   }
3622 
3623   Node* cast_obj = nullptr;
3624   if (improved_klass_ptr_type->klass_is_exact()) {
3625     // The following optimization tries to statically cast the speculative type of the object
3626     // (for example obtained during profiling) to the type of the superklass and then do a
3627     // dynamic check that the type of the object is what we expect. To work correctly
3628     // for checkcast and aastore the type of superklass should be exact.
3629     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3630     // We may not have profiling here or it may not help us. If we have
3631     // a speculative type use it to perform an exact cast.
3632     ciKlass* spec_obj_type = obj_type->speculative_type();
3633     if (spec_obj_type != nullptr || data != nullptr) {
3634       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3635       if (cast_obj != nullptr) {
3636         if (failure_control != nullptr) // failure is now impossible
3637           (*failure_control) = top();
3638         // adjust the type of the phi to the exact klass:
3639         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3640       }
3641     }
3642   }
3643 
3644   if (cast_obj == nullptr) {
3645     // Generate the subtype check
3646     Node* improved_superklass = superklass;
3647     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3648       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3649       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3650       // Additionally, the benefit would only be minor in non-constant cases.
3651       improved_superklass = makecon(improved_klass_ptr_type);
3652     }
3653     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);

3654     // Plug in success path into the merge
3655     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3656     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3657     if (failure_control == nullptr) {
3658       if (not_subtype_ctrl != top()) { // If failure is possible
3659         PreserveJVMState pjvms(this);
3660         set_control(not_subtype_ctrl);
3661         Node* obj_klass = nullptr;
3662         if (not_null_obj->is_InlineType()) {
3663           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3664         } else {
3665           obj_klass = load_object_klass(not_null_obj);
3666         }
3667         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3668         Deoptimization::DeoptReason reason = is_aastore ?
3669           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3670         builtin_throw(reason);
3671       }
3672     } else {
3673       (*failure_control) = not_subtype_ctrl;
3674     }
3675   }
3676 
3677   region->init_req(_obj_path, control());
3678   phi   ->init_req(_obj_path, cast_obj);
3679 
3680   // A merge of null or Casted-NotNull obj
3681   Node* res = _gvn.transform(phi);
3682 
3683   // Note I do NOT always 'replace_in_map(obj,result)' here.
3684   //  if( tk->klass()->can_be_primary_super()  )
3685     // This means that if I successfully store an Object into an array-of-String
3686     // I 'forget' that the Object is really now known to be a String.  I have to
3687     // do this because we don't have true union types for interfaces - if I store
3688     // a Baz into an array-of-Interface and then tell the optimizer it's an
3689     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3690     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3691   //  replace_in_map( obj, res );
3692 
3693   // Return final merged results
3694   set_control( _gvn.transform(region) );
3695   record_for_igvn(region);
3696 
3697   bool not_inline = !toop->can_be_inline_type();
3698   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flat_in_array());
3699   if (EnableValhalla && (not_inline || not_flat_in_array)) {
3700     // Check if obj has been loaded from an array
3701     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3702     Node* array = nullptr;
3703     if (obj->isa_Load()) {
3704       Node* address = obj->in(MemNode::Address);
3705       if (address->isa_AddP()) {
3706         array = address->as_AddP()->in(AddPNode::Base);
3707       }
3708     } else if (obj->is_Phi()) {
3709       Node* region = obj->in(0);
3710       // TODO make this more robust (see JDK-8231346)
3711       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3712         IfNode* iff = region->in(2)->in(0)->isa_If();
3713         if (iff != nullptr) {
3714           iff->is_flat_array_check(&_gvn, &array);
3715         }
3716       }
3717     }
3718     if (array != nullptr) {
3719       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3720       if (ary_t != nullptr) {
3721         if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) {
3722           // Casting array element to a non-inline-type, mark array as not null-free.
3723           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3724           replace_in_map(array, cast);
3725           array = cast;
3726         }
3727         if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) {
3728           // Casting array element to a non-flat-in-array type, mark array as not flat.
3729           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3730           replace_in_map(array, cast);
3731           array = cast;
3732         }
3733       }
3734     }
3735   }
3736 
3737   if (!stopped() && !res->is_InlineType()) {
3738     res = record_profiled_receiver_for_speculation(res);
3739     if (toop->is_inlinetypeptr()) {
3740       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3741       res = vt;
3742       if (safe_for_replace) {
3743         replace_in_map(obj, vt);
3744         replace_in_map(not_null_obj, vt);
3745         replace_in_map(res, vt);
3746       }
3747     }
3748   }
3749   return res;
3750 }
3751 
3752 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3753   // Load markword
3754   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3755   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3756   if (check_lock) {
3757     // Check if obj is locked
3758     Node* locked_bit = MakeConX(markWord::unlocked_value);
3759     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3760     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3761     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3762     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3763     _gvn.transform(iff);
3764     Node* locked_region = new RegionNode(3);
3765     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3766 
3767     // Unlocked: Use bits from mark word
3768     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3769     mark_phi->init_req(1, mark);
3770 
3771     // Locked: Load prototype header from klass
3772     set_control(_gvn.transform(new IfFalseNode(iff)));
3773     // Make loads control dependent to make sure they are only executed if array is locked
3774     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3775     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3776     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3777     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3778 
3779     locked_region->init_req(2, control());
3780     mark_phi->init_req(2, proto);
3781     set_control(_gvn.transform(locked_region));
3782     record_for_igvn(locked_region);
3783 
3784     mark = mark_phi;
3785   }
3786 
3787   // Now check if mark word bits are set
3788   Node* mask = MakeConX(mask_val);
3789   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3790   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3791   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3792   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3793 }
3794 
3795 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3796   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3797 }
3798 
3799 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3800   // We can't use immutable memory here because the mark word is mutable.
3801   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3802   // check is moved out of loops (mainly to enable loop unswitching).
3803   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3804   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3805   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3806 }
3807 
3808 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3809   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3810 }
3811 
3812 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) {
3813   assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat");
3814 
3815   // TODO 8350865 Add a stress flag to always access atomic if layout exists?
3816   if (!vk->has_non_atomic_layout()) {
3817     return intcon(1); // Always atomic
3818   } else if (!vk->has_atomic_layout()) {
3819     return intcon(0); // Never atomic
3820   }
3821 
3822   Node* array_klass = load_object_klass(array);
3823   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3824   Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset);
3825   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
3826   Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT)));
3827   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3828 }
3829 
3830 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3831 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3832   RegionNode* region = new RegionNode(3);
3833   Node* null_ctl = top();
3834   null_check_oop(val, &null_ctl);
3835   if (null_ctl != top()) {
3836     PreserveJVMState pjvms(this);
3837     set_control(null_ctl);
3838     {
3839       // Deoptimize if null-free array
3840       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3841       inc_sp(nargs);
3842       uncommon_trap(Deoptimization::Reason_null_check,
3843                     Deoptimization::Action_none);
3844     }
3845     region->init_req(1, control());
3846   }
3847   region->init_req(2, control());
3848   set_control(_gvn.transform(region));
3849   record_for_igvn(region);
3850   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3851     // Since we were just successfully storing null, the array can't be null free.
3852     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3853     ary_t = ary_t->cast_to_not_null_free();
3854     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3855     if (safe_for_replace) {
3856       replace_in_map(ary, cast);
3857     }
3858     ary = cast;
3859   }
3860   return ary;
3861 }
3862 
3863 //------------------------------next_monitor-----------------------------------
3864 // What number should be given to the next monitor?
3865 int GraphKit::next_monitor() {
3866   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3867   int next = current + C->sync_stack_slots();
3868   // Keep the toplevel high water mark current:
3869   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3870   return current;
3871 }
3872 
3873 //------------------------------insert_mem_bar---------------------------------
3874 // Memory barrier to avoid floating things around
3875 // The membar serves as a pinch point between both control and all memory slices.
3876 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3877   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3878   mb->init_req(TypeFunc::Control, control());
3879   mb->init_req(TypeFunc::Memory,  reset_memory());
3880   Node* membar = _gvn.transform(mb);

3908   }
3909   Node* membar = _gvn.transform(mb);
3910   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3911   if (alias_idx == Compile::AliasIdxBot) {
3912     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3913   } else {
3914     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3915   }
3916   return membar;
3917 }
3918 
3919 //------------------------------shared_lock------------------------------------
3920 // Emit locking code.
3921 FastLockNode* GraphKit::shared_lock(Node* obj) {
3922   // bci is either a monitorenter bc or InvocationEntryBci
3923   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3924   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3925 
3926   if( !GenerateSynchronizationCode )
3927     return nullptr;                // Not locking things?
3928 
3929   if (stopped())                // Dead monitor?
3930     return nullptr;
3931 
3932   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3933 
3934   // Box the stack location
3935   Node* box = new BoxLockNode(next_monitor());
3936   // Check for bailout after new BoxLockNode
3937   if (failing()) { return nullptr; }
3938   box = _gvn.transform(box);
3939   Node* mem = reset_memory();
3940 
3941   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3942 
3943   // Add monitor to debug info for the slow path.  If we block inside the
3944   // slow path and de-opt, we need the monitor hanging around
3945   map()->push_monitor( flock );
3946 
3947   const TypeFunc *tf = LockNode::lock_type();
3948   LockNode *lock = new LockNode(C, tf);

3977   }
3978 #endif
3979 
3980   return flock;
3981 }
3982 
3983 
3984 //------------------------------shared_unlock----------------------------------
3985 // Emit unlocking code.
3986 void GraphKit::shared_unlock(Node* box, Node* obj) {
3987   // bci is either a monitorenter bc or InvocationEntryBci
3988   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3989   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3990 
3991   if( !GenerateSynchronizationCode )
3992     return;
3993   if (stopped()) {               // Dead monitor?
3994     map()->pop_monitor();        // Kill monitor from debug info
3995     return;
3996   }
3997   assert(!obj->is_InlineType(), "should not unlock on inline type");
3998 
3999   // Memory barrier to avoid floating things down past the locked region
4000   insert_mem_bar(Op_MemBarReleaseLock);
4001 
4002   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
4003   UnlockNode *unlock = new UnlockNode(C, tf);
4004 #ifdef ASSERT
4005   unlock->set_dbg_jvms(sync_jvms());
4006 #endif
4007   uint raw_idx = Compile::AliasIdxRaw;
4008   unlock->init_req( TypeFunc::Control, control() );
4009   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
4010   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
4011   unlock->init_req( TypeFunc::FramePtr, frameptr() );
4012   unlock->init_req( TypeFunc::ReturnAdr, top() );
4013 
4014   unlock->init_req(TypeFunc::Parms + 0, obj);
4015   unlock->init_req(TypeFunc::Parms + 1, box);
4016   unlock = _gvn.transform(unlock)->as_Unlock();
4017 
4018   Node* mem = reset_memory();
4019 
4020   // unlock has no side-effects, sets few values
4021   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
4022 
4023   // Kill monitor from debug info
4024   map()->pop_monitor( );
4025 }
4026 
4027 //-------------------------------get_layout_helper-----------------------------
4028 // If the given klass is a constant or known to be an array,
4029 // fetch the constant layout helper value into constant_value
4030 // and return null.  Otherwise, load the non-constant
4031 // layout helper value, and return the node which represents it.
4032 // This two-faced routine is useful because allocation sites
4033 // almost always feature constant types.
4034 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
4035   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
4036   if (!StressReflectiveCode && klass_t != nullptr) {
4037     bool xklass = klass_t->klass_is_exact();
4038     bool can_be_flat = false;
4039     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4040     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4041       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4042       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4043       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flat_in_array());
4044     }
4045     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4046       jint lhelper;
4047       if (klass_t->is_flat()) {
4048         lhelper = ary_type->flat_layout_helper();
4049       } else if (klass_t->isa_aryklassptr()) {
4050         BasicType elem = ary_type->elem()->array_element_basic_type();
4051         if (is_reference_type(elem, true)) {
4052           elem = T_OBJECT;
4053         }
4054         lhelper = Klass::array_layout_helper(elem);
4055       } else {
4056         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4057       }
4058       if (lhelper != Klass::_lh_neutral_value) {
4059         constant_value = lhelper;
4060         return (Node*) nullptr;
4061       }
4062     }
4063   }
4064   constant_value = Klass::_lh_neutral_value;  // put in a known value
4065   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4066   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4067 }
4068 
4069 // We just put in an allocate/initialize with a big raw-memory effect.
4070 // Hook selected additional alias categories on the initialization.
4071 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4072                                 MergeMemNode* init_in_merge,
4073                                 Node* init_out_raw) {
4074   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4075   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4076 
4077   Node* prevmem = kit.memory(alias_idx);
4078   init_in_merge->set_memory_at(alias_idx, prevmem);
4079   if (init_out_raw != nullptr) {
4080     kit.set_memory(init_out_raw, alias_idx);
4081   }
4082 }
4083 
4084 //---------------------------set_output_for_allocation-------------------------
4085 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4086                                           const TypeOopPtr* oop_type,
4087                                           bool deoptimize_on_exception) {
4088   int rawidx = Compile::AliasIdxRaw;
4089   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4090   add_safepoint_edges(alloc);
4091   Node* allocx = _gvn.transform(alloc);
4092   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4093   // create memory projection for i_o
4094   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4095   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4096 
4097   // create a memory projection as for the normal control path
4098   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4099   set_memory(malloc, rawidx);
4100 
4101   // a normal slow-call doesn't change i_o, but an allocation does
4102   // we create a separate i_o projection for the normal control path
4103   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4104   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4105 
4106   // put in an initialization barrier
4107   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4108                                                  rawoop)->as_Initialize();
4109   assert(alloc->initialization() == init,  "2-way macro link must work");
4110   assert(init ->allocation()     == alloc, "2-way macro link must work");
4111   {
4112     // Extract memory strands which may participate in the new object's
4113     // initialization, and source them from the new InitializeNode.
4114     // This will allow us to observe initializations when they occur,
4115     // and link them properly (as a group) to the InitializeNode.
4116     assert(init->in(InitializeNode::Memory) == malloc, "");
4117     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4118     init->set_req(InitializeNode::Memory, minit_in);
4119     record_for_igvn(minit_in); // fold it up later, if possible
4120     _gvn.set_type(minit_in, Type::MEMORY);
4121     Node* minit_out = memory(rawidx);
4122     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4123     // Add an edge in the MergeMem for the header fields so an access
4124     // to one of those has correct memory state
4125     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4126     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4127     if (oop_type->isa_aryptr()) {
4128       const TypeAryPtr* arytype = oop_type->is_aryptr();
4129       if (arytype->is_flat()) {
4130         // Initially all flat array accesses share a single slice
4131         // but that changes after parsing. Prepare the memory graph so
4132         // it can optimize flat array accesses properly once they
4133         // don't share a single slice.
4134         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4135         C->set_flat_accesses_share_alias(false);
4136         ciInlineKlass* vk = arytype->elem()->inline_klass();
4137         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4138           ciField* field = vk->nonstatic_field_at(i);
4139           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4140             continue;  // do not bother to track really large numbers of fields
4141           int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
4142           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4143           int fieldidx = C->get_alias_index(adr_type, true);
4144           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4145           // can result in per flat array field Phis to be created which confuses the logic of
4146           // Compile::adjust_flat_array_access_aliases().
4147           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4148         }
4149         C->set_flat_accesses_share_alias(true);
4150         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4151       } else {
4152         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4153         int            elemidx  = C->get_alias_index(telemref);
4154         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4155       }
4156     } else if (oop_type->isa_instptr()) {
4157       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4158       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4159       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4160         ciField* field = ik->nonstatic_field_at(i);
4161         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4162           continue;  // do not bother to track really large numbers of fields
4163         // Find (or create) the alias category for this field:
4164         int fieldidx = C->alias_type(field)->index();
4165         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4166       }
4167     }
4168   }
4169 
4170   // Cast raw oop to the real thing...
4171   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4172   javaoop = _gvn.transform(javaoop);
4173   C->set_recent_alloc(control(), javaoop);
4174   assert(just_allocated_object(control()) == javaoop, "just allocated");
4175 
4176 #ifdef ASSERT
4177   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

4188       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4189     }
4190   }
4191 #endif //ASSERT
4192 
4193   return javaoop;
4194 }
4195 
4196 //---------------------------new_instance--------------------------------------
4197 // This routine takes a klass_node which may be constant (for a static type)
4198 // or may be non-constant (for reflective code).  It will work equally well
4199 // for either, and the graph will fold nicely if the optimizer later reduces
4200 // the type to a constant.
4201 // The optional arguments are for specialized use by intrinsics:
4202 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4203 //  - If 'return_size_val', report the total object size to the caller.
4204 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4205 Node* GraphKit::new_instance(Node* klass_node,
4206                              Node* extra_slow_test,
4207                              Node* *return_size_val,
4208                              bool deoptimize_on_exception,
4209                              InlineTypeNode* inline_type_node) {
4210   // Compute size in doublewords
4211   // The size is always an integral number of doublewords, represented
4212   // as a positive bytewise size stored in the klass's layout_helper.
4213   // The layout_helper also encodes (in a low bit) the need for a slow path.
4214   jint  layout_con = Klass::_lh_neutral_value;
4215   Node* layout_val = get_layout_helper(klass_node, layout_con);
4216   bool  layout_is_con = (layout_val == nullptr);
4217 
4218   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4219   // Generate the initial go-slow test.  It's either ALWAYS (return a
4220   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4221   // case) a computed value derived from the layout_helper.
4222   Node* initial_slow_test = nullptr;
4223   if (layout_is_con) {
4224     assert(!StressReflectiveCode, "stress mode does not use these paths");
4225     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4226     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4227   } else {   // reflective case
4228     // This reflective path is used by Unsafe.allocateInstance.
4229     // (It may be stress-tested by specifying StressReflectiveCode.)
4230     // Basically, we want to get into the VM is there's an illegal argument.
4231     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4232     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4233     if (extra_slow_test != intcon(0)) {
4234       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4235     }
4236     // (Macro-expander will further convert this to a Bool, if necessary.)

4247 
4248     // Clear the low bits to extract layout_helper_size_in_bytes:
4249     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4250     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4251     size = _gvn.transform( new AndXNode(size, mask) );
4252   }
4253   if (return_size_val != nullptr) {
4254     (*return_size_val) = size;
4255   }
4256 
4257   // This is a precise notnull oop of the klass.
4258   // (Actually, it need not be precise if this is a reflective allocation.)
4259   // It's what we cast the result to.
4260   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4261   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4262   const TypeOopPtr* oop_type = tklass->as_instance_type();
4263 
4264   // Now generate allocation code
4265 
4266   // The entire memory state is needed for slow path of the allocation
4267   // since GC and deoptimization can happen.
4268   Node *mem = reset_memory();
4269   set_all_memory(mem); // Create new memory state
4270 
4271   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4272                                          control(), mem, i_o(),
4273                                          size, klass_node,
4274                                          initial_slow_test, inline_type_node);
4275 
4276   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4277 }
4278 
4279 //-------------------------------new_array-------------------------------------
4280 // helper for newarray and anewarray
4281 // The 'length' parameter is (obviously) the length of the array.
4282 // The optional arguments are for specialized use by intrinsics:
4283 //  - If 'return_size_val', report the non-padded array size (sum of header size
4284 //    and array body) to the caller.
4285 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4286 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4287                           Node* length,         // number of array elements
4288                           int   nargs,          // number of arguments to push back for uncommon trap
4289                           Node* *return_size_val,
4290                           bool deoptimize_on_exception) {
4291   jint  layout_con = Klass::_lh_neutral_value;
4292   Node* layout_val = get_layout_helper(klass_node, layout_con);
4293   bool  layout_is_con = (layout_val == nullptr);
4294 
4295   if (!layout_is_con && !StressReflectiveCode &&
4296       !too_many_traps(Deoptimization::Reason_class_check)) {
4297     // This is a reflective array creation site.
4298     // Optimistically assume that it is a subtype of Object[],
4299     // so that we can fold up all the address arithmetic.
4300     layout_con = Klass::array_layout_helper(T_OBJECT);
4301     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4302     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4303     { BuildCutout unless(this, bol_lh, PROB_MAX);
4304       inc_sp(nargs);
4305       uncommon_trap(Deoptimization::Reason_class_check,
4306                     Deoptimization::Action_maybe_recompile);
4307     }
4308     layout_val = nullptr;
4309     layout_is_con = true;
4310   }
4311 
4312   // Generate the initial go-slow test.  Make sure we do not overflow
4313   // if length is huge (near 2Gig) or negative!  We do not need
4314   // exact double-words here, just a close approximation of needed
4315   // double-words.  We can't add any offset or rounding bits, lest we
4316   // take a size -1 of bytes and make it positive.  Use an unsigned
4317   // compare, so negative sizes look hugely positive.
4318   int fast_size_limit = FastAllocateSizeLimit;
4319   if (layout_is_con) {
4320     assert(!StressReflectiveCode, "stress mode does not use these paths");
4321     // Increase the size limit if we have exact knowledge of array type.
4322     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4323     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4324   }
4325 
4326   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4327   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4328 
4329   // --- Size Computation ---
4330   // array_size = round_to_heap(array_header + (length << elem_shift));
4331   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4332   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4333   // The rounding mask is strength-reduced, if possible.
4334   int round_mask = MinObjAlignmentInBytes - 1;
4335   Node* header_size = nullptr;
4336   // (T_BYTE has the weakest alignment and size restrictions...)
4337   if (layout_is_con) {
4338     int       hsize  = Klass::layout_helper_header_size(layout_con);
4339     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4340     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4341     if ((round_mask & ~right_n_bits(eshift)) == 0)
4342       round_mask = 0;  // strength-reduce it if it goes away completely
4343     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4344     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4345     assert(header_size_min <= hsize, "generic minimum is smallest");
4346     header_size = intcon(hsize);
4347   } else {
4348     Node* hss   = intcon(Klass::_lh_header_size_shift);
4349     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4350     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4351     header_size = _gvn.transform(new AndINode(header_size, hsm));
4352   }
4353 
4354   Node* elem_shift = nullptr;
4355   if (layout_is_con) {
4356     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4357     if (eshift != 0)
4358       elem_shift = intcon(eshift);
4359   } else {
4360     // There is no need to mask or shift this value.
4361     // The semantics of LShiftINode include an implicit mask to 0x1F.
4362     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4363     elem_shift = layout_val;

4410   }
4411   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4412 
4413   if (return_size_val != nullptr) {
4414     // This is the size
4415     (*return_size_val) = non_rounded_size;
4416   }
4417 
4418   Node* size = non_rounded_size;
4419   if (round_mask != 0) {
4420     Node* mask1 = MakeConX(round_mask);
4421     size = _gvn.transform(new AddXNode(size, mask1));
4422     Node* mask2 = MakeConX(~round_mask);
4423     size = _gvn.transform(new AndXNode(size, mask2));
4424   }
4425   // else if round_mask == 0, the size computation is self-rounding
4426 
4427   // Now generate allocation code
4428 
4429   // The entire memory state is needed for slow path of the allocation
4430   // since GC and deoptimization can happen.
4431   Node *mem = reset_memory();
4432   set_all_memory(mem); // Create new memory state
4433 
4434   if (initial_slow_test->is_Bool()) {
4435     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4436     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4437   }
4438 
4439   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4440   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4441   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4442 
4443   // Check if the array is a null-free, non-flat inline type array
4444   // that needs to be initialized with the default inline type.
4445   Node* default_value = nullptr;
4446   Node* raw_default_value = nullptr;
4447   if (ary_ptr != nullptr && ary_ptr->klass_is_exact() &&
4448       ary_ptr->is_null_free() && !ary_ptr->is_flat() && ary_ptr->elem()->make_ptr()->is_inlinetypeptr()) {
4449     ciInlineKlass* vk = ary_ptr->elem()->inline_klass();
4450     default_value = InlineTypeNode::default_oop(gvn(), vk);
4451     if (UseCompressedOops) {
4452       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4453       default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4454       Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4455       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4456       raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4457     } else {
4458       raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4459     }
4460   }
4461 
4462   Node* valid_length_test = _gvn.intcon(1);
4463   if (ary_type->isa_aryptr()) {
4464     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4465     jint max = TypeAryPtr::max_array_length(bt);
4466     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4467     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4468   }
4469 
4470   // Create the AllocateArrayNode and its result projections
4471   AllocateArrayNode* alloc
4472     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4473                             control(), mem, i_o(),
4474                             size, klass_node,
4475                             initial_slow_test,
4476                             length, valid_length_test,
4477                             default_value, raw_default_value);
4478   // Cast to correct type.  Note that the klass_node may be constant or not,
4479   // and in the latter case the actual array type will be inexact also.
4480   // (This happens via a non-constant argument to inline_native_newArray.)
4481   // In any case, the value of klass_node provides the desired array type.
4482   const TypeInt* length_type = _gvn.find_int_type(length);
4483   if (ary_type->isa_aryptr() && length_type != nullptr) {
4484     // Try to get a better type than POS for the size
4485     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4486   }
4487 
4488   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4489 
4490   array_ideal_length(alloc, ary_type, true);
4491   return javaoop;
4492 }
4493 
4494 // The following "Ideal_foo" functions are placed here because they recognize
4495 // the graph shapes created by the functions immediately above.
4496 
4497 //---------------------------Ideal_allocation----------------------------------

4605   set_all_memory(ideal.merged_memory());
4606   set_i_o(ideal.i_o());
4607   set_control(ideal.ctrl());
4608 }
4609 
4610 void GraphKit::final_sync(IdealKit& ideal) {
4611   // Final sync IdealKit and graphKit.
4612   sync_kit(ideal);
4613 }
4614 
4615 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4616   Node* len = load_array_length(load_String_value(str, set_ctrl));
4617   Node* coder = load_String_coder(str, set_ctrl);
4618   // Divide length by 2 if coder is UTF16
4619   return _gvn.transform(new RShiftINode(len, coder));
4620 }
4621 
4622 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4623   int value_offset = java_lang_String::value_offset();
4624   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4625                                                      false, nullptr, Type::Offset(0));
4626   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4627   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4628                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4629                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4630   Node* p = basic_plus_adr(str, str, value_offset);
4631   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4632                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4633   return load;
4634 }
4635 
4636 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4637   if (!CompactStrings) {
4638     return intcon(java_lang_String::CODER_UTF16);
4639   }
4640   int coder_offset = java_lang_String::coder_offset();
4641   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4642                                                      false, nullptr, Type::Offset(0));
4643   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4644 
4645   Node* p = basic_plus_adr(str, str, coder_offset);
4646   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4647                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4648   return load;
4649 }
4650 
4651 void GraphKit::store_String_value(Node* str, Node* value) {
4652   int value_offset = java_lang_String::value_offset();
4653   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4654                                                      false, nullptr, Type::Offset(0));
4655   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4656 
4657   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4658                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4659 }
4660 
4661 void GraphKit::store_String_coder(Node* str, Node* value) {
4662   int coder_offset = java_lang_String::coder_offset();
4663   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4664                                                      false, nullptr, Type::Offset(0));
4665   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4666 
4667   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4668                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4669 }
4670 
4671 // Capture src and dst memory state with a MergeMemNode
4672 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4673   if (src_type == dst_type) {
4674     // Types are equal, we don't need a MergeMemNode
4675     return memory(src_type);
4676   }
4677   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4678   record_for_igvn(merge); // fold it up later, if possible
4679   int src_idx = C->get_alias_index(src_type);
4680   int dst_idx = C->get_alias_index(dst_type);
4681   merge->set_memory_at(src_idx, memory(src_idx));
4682   merge->set_memory_at(dst_idx, memory(dst_idx));
4683   return merge;
4684 }

4757   i_char->init_req(2, AddI(i_char, intcon(2)));
4758 
4759   set_control(IfFalse(iff));
4760   set_memory(st, TypeAryPtr::BYTES);
4761 }
4762 
4763 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4764   if (!field->is_constant()) {
4765     return nullptr; // Field not marked as constant.
4766   }
4767   ciInstance* holder = nullptr;
4768   if (!field->is_static()) {
4769     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4770     if (const_oop != nullptr && const_oop->is_instance()) {
4771       holder = const_oop->as_instance();
4772     }
4773   }
4774   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4775                                                         /*is_unsigned_load=*/false);
4776   if (con_type != nullptr) {
4777     Node* con = makecon(con_type);
4778     if (field->type()->is_inlinetype()) {
4779       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4780     } else if (con_type->is_inlinetypeptr()) {
4781       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4782     }
4783     return con;
4784   }
4785   return nullptr;
4786 }
4787 
4788 //---------------------------load_mirror_from_klass----------------------------
4789 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4790 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4791   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4792   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4793   // mirror = ((OopHandle)mirror)->resolve();
4794   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4795 }
4796 
4797 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4798   const Type* obj_type = obj->bottom_type();
4799   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4800   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4801     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4802     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4803     obj = casted_obj;
4804   }
4805   if (sig_type->is_inlinetypeptr()) {
4806     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass(), !gvn().type(obj)->maybe_null());
4807   }
4808   return obj;
4809 }
< prev index next >