< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 


  25 #include "ci/ciUtilities.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "ci/ciObjArray.hpp"
  28 #include "asm/register.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/idealKit.hpp"

  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"

  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subtypenode.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "utilities/bitMap.inline.hpp"
  50 #include "utilities/powerOfTwo.hpp"
  51 #include "utilities/growableArray.hpp"
  52 
  53 //----------------------------GraphKit-----------------------------------------
  54 // Main utility constructor.
  55 GraphKit::GraphKit(JVMState* jvms)
  56   : Phase(Phase::Parser),
  57     _env(C->env()),
  58     _gvn(*C->initial_gvn()),
  59     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  60 {

  61   _exceptions = jvms->map()->next_exception();
  62   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  63   set_jvms(jvms);







  64 }
  65 
  66 // Private constructor for parser.
  67 GraphKit::GraphKit()
  68   : Phase(Phase::Parser),
  69     _env(C->env()),
  70     _gvn(*C->initial_gvn()),
  71     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  72 {
  73   _exceptions = nullptr;
  74   set_map(nullptr);
  75   debug_only(_sp = -99);
  76   debug_only(set_bci(-99));
  77 }
  78 
  79 
  80 
  81 //---------------------------clean_stack---------------------------------------
  82 // Clear away rubbish from the stack area of the JVM state.
  83 // This destroys any arguments that may be waiting on the stack.

 328 }
 329 static inline void add_one_req(Node* dstphi, Node* src) {
 330   assert(is_hidden_merge(dstphi), "must be a special merge node");
 331   assert(!is_hidden_merge(src), "must not be a special merge node");
 332   dstphi->add_req(src);
 333 }
 334 
 335 //-----------------------combine_exception_states------------------------------
 336 // This helper function combines exception states by building phis on a
 337 // specially marked state-merging region.  These regions and phis are
 338 // untransformed, and can build up gradually.  The region is marked by
 339 // having a control input of its exception map, rather than null.  Such
 340 // regions do not appear except in this function, and in use_exception_state.
 341 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 342   if (failing_internal()) {
 343     return;  // dying anyway...
 344   }
 345   JVMState* ex_jvms = ex_map->_jvms;
 346   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 347   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 348   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");

 349   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 350   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 351   assert(ex_map->req() == phi_map->req(), "matching maps");
 352   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 353   Node*         hidden_merge_mark = root();
 354   Node*         region  = phi_map->control();
 355   MergeMemNode* phi_mem = phi_map->merged_memory();
 356   MergeMemNode* ex_mem  = ex_map->merged_memory();
 357   if (region->in(0) != hidden_merge_mark) {
 358     // The control input is not (yet) a specially-marked region in phi_map.
 359     // Make it so, and build some phis.
 360     region = new RegionNode(2);
 361     _gvn.set_type(region, Type::CONTROL);
 362     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 363     region->init_req(1, phi_map->control());
 364     phi_map->set_control(region);
 365     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 366     record_for_igvn(io_phi);
 367     _gvn.set_type(io_phi, Type::ABIO);
 368     phi_map->set_i_o(io_phi);

 856         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 857           tty->print_cr("Zombie local %d: ", local);
 858           jvms->dump();
 859         }
 860         return false;
 861       }
 862     }
 863   }
 864   return true;
 865 }
 866 
 867 #endif //ASSERT
 868 
 869 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 870 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 871   ciMethod* cur_method = jvms->method();
 872   int       cur_bci   = jvms->bci();
 873   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 874     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 875     return Interpreter::bytecode_should_reexecute(code) ||
 876            (is_anewarray && code == Bytecodes::_multianewarray);
 877     // Reexecute _multianewarray bytecode which was replaced with
 878     // sequence of [a]newarray. See Parse::do_multianewarray().
 879     //
 880     // Note: interpreter should not have it set since this optimization
 881     // is limited by dimensions and guarded by flag so in some cases
 882     // multianewarray() runtime calls will be generated and
 883     // the bytecode should not be reexecutes (stack will not be reset).
 884   } else {
 885     return false;
 886   }
 887 }
 888 
 889 // Helper function for adding JVMState and debug information to node
 890 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 891   // Add the safepoint edges to the call (or other safepoint).
 892 
 893   // Make sure dead locals are set to top.  This
 894   // should help register allocation time and cut down on the size
 895   // of the deoptimization information.
 896   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 947   }
 948 
 949   // Presize the call:
 950   DEBUG_ONLY(uint non_debug_edges = call->req());
 951   call->add_req_batch(top(), youngest_jvms->debug_depth());
 952   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 953 
 954   // Set up edges so that the call looks like this:
 955   //  Call [state:] ctl io mem fptr retadr
 956   //       [parms:] parm0 ... parmN
 957   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 958   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 959   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 960   // Note that caller debug info precedes callee debug info.
 961 
 962   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 963   uint debug_ptr = call->req();
 964 
 965   // Loop over the map input edges associated with jvms, add them
 966   // to the call node, & reset all offsets to match call node array.


 967   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 968     uint debug_end   = debug_ptr;
 969     uint debug_start = debug_ptr - in_jvms->debug_size();
 970     debug_ptr = debug_start;  // back up the ptr
 971 
 972     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 973     uint j, k, l;
 974     SafePointNode* in_map = in_jvms->map();
 975     out_jvms->set_map(call);
 976 
 977     if (can_prune_locals) {
 978       assert(in_jvms->method() == out_jvms->method(), "sanity");
 979       // If the current throw can reach an exception handler in this JVMS,
 980       // then we must keep everything live that can reach that handler.
 981       // As a quick and dirty approximation, we look for any handlers at all.
 982       if (in_jvms->method()->has_exception_handlers()) {
 983         can_prune_locals = false;
 984       }
 985     }
 986 
 987     // Add the Locals
 988     k = in_jvms->locoff();
 989     l = in_jvms->loc_size();
 990     out_jvms->set_locoff(p);
 991     if (!can_prune_locals) {
 992       for (j = 0; j < l; j++)
 993         call->set_req(p++, in_map->in(k+j));

 994     } else {
 995       p += l;  // already set to top above by add_req_batch
 996     }
 997 
 998     // Add the Expression Stack
 999     k = in_jvms->stkoff();
1000     l = in_jvms->sp();
1001     out_jvms->set_stkoff(p);
1002     if (!can_prune_locals) {
1003       for (j = 0; j < l; j++)
1004         call->set_req(p++, in_map->in(k+j));

1005     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1006       // Divide stack into {S0,...,S1}, where S0 is set to top.
1007       uint s1 = stack_slots_not_pruned;
1008       stack_slots_not_pruned = 0;  // for next iteration
1009       if (s1 > l)  s1 = l;
1010       uint s0 = l - s1;
1011       p += s0;  // skip the tops preinstalled by add_req_batch
1012       for (j = s0; j < l; j++)
1013         call->set_req(p++, in_map->in(k+j));
1014     } else {
1015       p += l;  // already set to top above by add_req_batch
1016     }
1017 
1018     // Add the Monitors
1019     k = in_jvms->monoff();
1020     l = in_jvms->mon_size();
1021     out_jvms->set_monoff(p);
1022     for (j = 0; j < l; j++)
1023       call->set_req(p++, in_map->in(k+j));
1024 
1025     // Copy any scalar object fields.
1026     k = in_jvms->scloff();
1027     l = in_jvms->scl_size();
1028     out_jvms->set_scloff(p);
1029     for (j = 0; j < l; j++)
1030       call->set_req(p++, in_map->in(k+j));
1031 
1032     // Finish the new jvms.
1033     out_jvms->set_endoff(p);
1034 
1035     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1036     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1037     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1038     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1039     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1040     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1041 
1042     // Update the two tail pointers in parallel.

1043     out_jvms = out_jvms->caller();
1044     in_jvms  = in_jvms->caller();
1045   }
1046 
1047   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1048 
1049   // Test the correctness of JVMState::debug_xxx accessors:
1050   assert(call->jvms()->debug_start() == non_debug_edges, "");
1051   assert(call->jvms()->debug_end()   == call->req(), "");
1052   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1053 }
1054 
1055 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1056   Bytecodes::Code code = java_bc();
1057   if (code == Bytecodes::_wide) {
1058     code = method()->java_code_at_bci(bci() + 1);
1059   }
1060 
1061   if (code != Bytecodes::_illegal) {
1062     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1193 Node* GraphKit::ConvI2UL(Node* offset) {
1194   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1195   if (offset_con != (juint) Type::OffsetBot) {
1196     return longcon((julong) offset_con);
1197   }
1198   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1199   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1200   return _gvn.transform( new AndLNode(conv, mask) );
1201 }
1202 
1203 Node* GraphKit::ConvL2I(Node* offset) {
1204   // short-circuit a common case
1205   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1206   if (offset_con != (jlong)Type::OffsetBot) {
1207     return intcon((int) offset_con);
1208   }
1209   return _gvn.transform( new ConvL2INode(offset));
1210 }
1211 
1212 //-------------------------load_object_klass-----------------------------------
1213 Node* GraphKit::load_object_klass(Node* obj) {
1214   // Special-case a fresh allocation to avoid building nodes:
1215   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1216   if (akls != nullptr)  return akls;
1217   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1218   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1219 }
1220 
1221 //-------------------------load_array_length-----------------------------------
1222 Node* GraphKit::load_array_length(Node* array) {
1223   // Special-case a fresh allocation to avoid building nodes:
1224   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1225   Node *alen;
1226   if (alloc == nullptr) {
1227     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1228     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1229   } else {
1230     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1231   }
1232   return alen;
1233 }
1234 
1235 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1236                                    const TypeOopPtr* oop_type,
1237                                    bool replace_length_in_map) {
1238   Node* length = alloc->Ideal_length();

1247         replace_in_map(length, ccast);
1248       }
1249       return ccast;
1250     }
1251   }
1252   return length;
1253 }
1254 
1255 //------------------------------do_null_check----------------------------------
1256 // Helper function to do a null pointer check.  Returned value is
1257 // the incoming address with null casted away.  You are allowed to use the
1258 // not-null value only if you are control dependent on the test.
1259 #ifndef PRODUCT
1260 extern uint explicit_null_checks_inserted,
1261             explicit_null_checks_elided;
1262 #endif
1263 Node* GraphKit::null_check_common(Node* value, BasicType type,
1264                                   // optional arguments for variations:
1265                                   bool assert_null,
1266                                   Node* *null_control,
1267                                   bool speculative) {

1268   assert(!assert_null || null_control == nullptr, "not both at once");
1269   if (stopped())  return top();
1270   NOT_PRODUCT(explicit_null_checks_inserted++);
1271 























1272   // Construct null check
1273   Node *chk = nullptr;
1274   switch(type) {
1275     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1276     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1277     case T_ARRAY  : // fall through
1278       type = T_OBJECT;  // simplify further tests
1279     case T_OBJECT : {
1280       const Type *t = _gvn.type( value );
1281 
1282       const TypeOopPtr* tp = t->isa_oopptr();
1283       if (tp != nullptr && !tp->is_loaded()
1284           // Only for do_null_check, not any of its siblings:
1285           && !assert_null && null_control == nullptr) {
1286         // Usually, any field access or invocation on an unloaded oop type
1287         // will simply fail to link, since the statically linked class is
1288         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1289         // the static class is loaded but the sharper oop type is not.
1290         // Rather than checking for this obscure case in lots of places,
1291         // we simply observe that a null check on an unloaded class

1355         }
1356         Node *oldcontrol = control();
1357         set_control(cfg);
1358         Node *res = cast_not_null(value);
1359         set_control(oldcontrol);
1360         NOT_PRODUCT(explicit_null_checks_elided++);
1361         return res;
1362       }
1363       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1364       if (cfg == nullptr)  break;  // Quit at region nodes
1365       depth++;
1366     }
1367   }
1368 
1369   //-----------
1370   // Branch to failure if null
1371   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1372   Deoptimization::DeoptReason reason;
1373   if (assert_null) {
1374     reason = Deoptimization::reason_null_assert(speculative);
1375   } else if (type == T_OBJECT) {
1376     reason = Deoptimization::reason_null_check(speculative);
1377   } else {
1378     reason = Deoptimization::Reason_div0_check;
1379   }
1380   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1381   // ciMethodData::has_trap_at will return a conservative -1 if any
1382   // must-be-null assertion has failed.  This could cause performance
1383   // problems for a method after its first do_null_assert failure.
1384   // Consider using 'Reason_class_check' instead?
1385 
1386   // To cause an implicit null check, we set the not-null probability
1387   // to the maximum (PROB_MAX).  For an explicit check the probability
1388   // is set to a smaller value.
1389   if (null_control != nullptr || too_many_traps(reason)) {
1390     // probability is less likely
1391     ok_prob =  PROB_LIKELY_MAG(3);
1392   } else if (!assert_null &&
1393              (ImplicitNullCheckThreshold > 0) &&
1394              method() != nullptr &&
1395              (method()->method_data()->trap_count(reason)

1429   }
1430 
1431   if (assert_null) {
1432     // Cast obj to null on this path.
1433     replace_in_map(value, zerocon(type));
1434     return zerocon(type);
1435   }
1436 
1437   // Cast obj to not-null on this path, if there is no null_control.
1438   // (If there is a null_control, a non-null value may come back to haunt us.)
1439   if (type == T_OBJECT) {
1440     Node* cast = cast_not_null(value, false);
1441     if (null_control == nullptr || (*null_control) == top())
1442       replace_in_map(value, cast);
1443     value = cast;
1444   }
1445 
1446   return value;
1447 }
1448 
1449 
1450 //------------------------------cast_not_null----------------------------------
1451 // Cast obj to not-null on this path
1452 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {









1453   const Type *t = _gvn.type(obj);
1454   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1455   // Object is already not-null?
1456   if( t == t_not_null ) return obj;
1457 
1458   Node* cast = new CastPPNode(control(), obj,t_not_null);
1459   cast = _gvn.transform( cast );
1460 
1461   // Scan for instances of 'obj' in the current JVM mapping.
1462   // These instances are known to be not-null after the test.
1463   if (do_replace_in_map)
1464     replace_in_map(obj, cast);
1465 
1466   return cast;                  // Return casted value
1467 }
1468 











1469 // Sometimes in intrinsics, we implicitly know an object is not null
1470 // (there's no actual null check) so we can cast it to not null. In
1471 // the course of optimizations, the input to the cast can become null.
1472 // In that case that data path will die and we need the control path
1473 // to become dead as well to keep the graph consistent. So we have to
1474 // add a check for null for which one branch can't be taken. It uses
1475 // an OpaqueNotNull node that will cause the check to be removed after loop
1476 // opts so the test goes away and the compiled code doesn't execute a
1477 // useless check.
1478 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1479   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1480     return value;
1481   }
1482   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1483   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1484   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1485   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1486   _gvn.set_type(iff, iff->Value(&_gvn));
1487   if (!tst->is_Con()) {
1488     record_for_igvn(iff);

1561 // These are layered on top of the factory methods in LoadNode and StoreNode,
1562 // and integrate with the parser's memory state and _gvn engine.
1563 //
1564 
1565 // factory methods in "int adr_idx"
1566 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1567                           MemNode::MemOrd mo,
1568                           LoadNode::ControlDependency control_dependency,
1569                           bool require_atomic_access,
1570                           bool unaligned,
1571                           bool mismatched,
1572                           bool unsafe,
1573                           uint8_t barrier_data) {
1574   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1575   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1576   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1577   debug_only(adr_type = C->get_adr_type(adr_idx));
1578   Node* mem = memory(adr_idx);
1579   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1580   ld = _gvn.transform(ld);

1581   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1582     // Improve graph before escape analysis and boxing elimination.
1583     record_for_igvn(ld);
1584     if (ld->is_DecodeN()) {
1585       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1586       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1587       // a Phi). Recording such cases is still perfectly sound, but may be
1588       // unnecessary and result in some minor IGVN overhead.
1589       record_for_igvn(ld->in(1));
1590     }
1591   }
1592   return ld;
1593 }
1594 
1595 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1596                                 MemNode::MemOrd mo,
1597                                 bool require_atomic_access,
1598                                 bool unaligned,
1599                                 bool mismatched,
1600                                 bool unsafe,

1614   if (unsafe) {
1615     st->as_Store()->set_unsafe_access();
1616   }
1617   st->as_Store()->set_barrier_data(barrier_data);
1618   st = _gvn.transform(st);
1619   set_memory(st, adr_idx);
1620   // Back-to-back stores can only remove intermediate store with DU info
1621   // so push on worklist for optimizer.
1622   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1623     record_for_igvn(st);
1624 
1625   return st;
1626 }
1627 
1628 Node* GraphKit::access_store_at(Node* obj,
1629                                 Node* adr,
1630                                 const TypePtr* adr_type,
1631                                 Node* val,
1632                                 const Type* val_type,
1633                                 BasicType bt,
1634                                 DecoratorSet decorators) {


1635   // Transformation of a value which could be null pointer (CastPP #null)
1636   // could be delayed during Parse (for example, in adjust_map_after_if()).
1637   // Execute transformation here to avoid barrier generation in such case.
1638   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1639     val = _gvn.makecon(TypePtr::NULL_PTR);
1640   }
1641 
1642   if (stopped()) {
1643     return top(); // Dead path ?
1644   }
1645 
1646   assert(val != nullptr, "not dead path");







1647 
1648   C2AccessValuePtr addr(adr, adr_type);
1649   C2AccessValue value(val, val_type);
1650   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1651   if (access.is_raw()) {
1652     return _barrier_set->BarrierSetC2::store_at(access, value);
1653   } else {
1654     return _barrier_set->store_at(access, value);
1655   }
1656 }
1657 
1658 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1659                                Node* adr,   // actual address to store val at
1660                                const TypePtr* adr_type,
1661                                const Type* val_type,
1662                                BasicType bt,
1663                                DecoratorSet decorators) {

1664   if (stopped()) {
1665     return top(); // Dead path ?
1666   }
1667 
1668   C2AccessValuePtr addr(adr, adr_type);
1669   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1670   if (access.is_raw()) {
1671     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1672   } else {
1673     return _barrier_set->load_at(access, val_type);
1674   }
1675 }
1676 
1677 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1678                             const Type* val_type,
1679                             BasicType bt,
1680                             DecoratorSet decorators) {
1681   if (stopped()) {
1682     return top(); // Dead path ?
1683   }
1684 
1685   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1686   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1687   if (access.is_raw()) {
1688     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1689   } else {

1754                                      Node* new_val,
1755                                      const Type* value_type,
1756                                      BasicType bt,
1757                                      DecoratorSet decorators) {
1758   C2AccessValuePtr addr(adr, adr_type);
1759   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1760   if (access.is_raw()) {
1761     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1762   } else {
1763     return _barrier_set->atomic_add_at(access, new_val, value_type);
1764   }
1765 }
1766 
1767 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1768   return _barrier_set->clone(this, src, dst, size, is_array);
1769 }
1770 
1771 //-------------------------array_element_address-------------------------
1772 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1773                                       const TypeInt* sizetype, Node* ctrl) {
1774   uint shift  = exact_log2(type2aelembytes(elembt));











1775   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1776 
1777   // short-circuit a common case (saves lots of confusing waste motion)
1778   jint idx_con = find_int_con(idx, -1);
1779   if (idx_con >= 0) {
1780     intptr_t offset = header + ((intptr_t)idx_con << shift);
1781     return basic_plus_adr(ary, offset);
1782   }
1783 
1784   // must be correct type for alignment purposes
1785   Node* base  = basic_plus_adr(ary, header);
1786   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1787   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1788   return basic_plus_adr(ary, base, scale);
1789 }
1790 










1791 //-------------------------load_array_element-------------------------
1792 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1793   const Type* elemtype = arytype->elem();
1794   BasicType elembt = elemtype->array_element_basic_type();
1795   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1796   if (elembt == T_NARROWOOP) {
1797     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1798   }
1799   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1800                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1801   return ld;
1802 }
1803 
1804 //-------------------------set_arguments_for_java_call-------------------------
1805 // Arguments (pre-popped from the stack) are taken from the JVMS.
1806 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1807   // Add the call arguments:
1808   uint nargs = call->method()->arg_size();
1809   for (uint i = 0; i < nargs; i++) {
1810     Node* arg = argument(i);
1811     call->init_req(i + TypeFunc::Parms, arg);




































1812   }
1813 }
1814 
1815 //---------------------------set_edges_for_java_call---------------------------
1816 // Connect a newly created call into the current JVMS.
1817 // A return value node (if any) is returned from set_edges_for_java_call.
1818 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1819 
1820   // Add the predefined inputs:
1821   call->init_req( TypeFunc::Control, control() );
1822   call->init_req( TypeFunc::I_O    , i_o() );
1823   call->init_req( TypeFunc::Memory , reset_memory() );
1824   call->init_req( TypeFunc::FramePtr, frameptr() );
1825   call->init_req( TypeFunc::ReturnAdr, top() );
1826 
1827   add_safepoint_edges(call, must_throw);
1828 
1829   Node* xcall = _gvn.transform(call);
1830 
1831   if (xcall == top()) {
1832     set_control(top());
1833     return;
1834   }
1835   assert(xcall == call, "call identity is stable");
1836 
1837   // Re-use the current map to produce the result.
1838 
1839   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1840   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1841   set_all_memory_call(xcall, separate_io_proj);
1842 
1843   //return xcall;   // no need, caller already has it
1844 }
1845 
1846 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1847   if (stopped())  return top();  // maybe the call folded up?
1848 
1849   // Capture the return value, if any.
1850   Node* ret;
1851   if (call->method() == nullptr ||
1852       call->method()->return_type()->basic_type() == T_VOID)
1853         ret = top();
1854   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1855 
1856   // Note:  Since any out-of-line call can produce an exception,
1857   // we always insert an I_O projection from the call into the result.
1858 
1859   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1860 
1861   if (separate_io_proj) {
1862     // The caller requested separate projections be used by the fall
1863     // through and exceptional paths, so replace the projections for
1864     // the fall through path.
1865     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1866     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1867   }






















1868   return ret;
1869 }
1870 
1871 //--------------------set_predefined_input_for_runtime_call--------------------
1872 // Reading and setting the memory state is way conservative here.
1873 // The real problem is that I am not doing real Type analysis on memory,
1874 // so I cannot distinguish card mark stores from other stores.  Across a GC
1875 // point the Store Barrier and the card mark memory has to agree.  I cannot
1876 // have a card mark store and its barrier split across the GC point from
1877 // either above or below.  Here I get that to happen by reading ALL of memory.
1878 // A better answer would be to separate out card marks from other memory.
1879 // For now, return the input memory state, so that it can be reused
1880 // after the call, if this call has restricted memory effects.
1881 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1882   // Set fixed predefined input arguments
1883   Node* memory = reset_memory();
1884   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1885   call->init_req( TypeFunc::Control,   control()  );
1886   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1887   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

1938     if (use->is_MergeMem()) {
1939       wl.push(use);
1940     }
1941   }
1942 }
1943 
1944 // Replace the call with the current state of the kit.
1945 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
1946   JVMState* ejvms = nullptr;
1947   if (has_exceptions()) {
1948     ejvms = transfer_exceptions_into_jvms();
1949   }
1950 
1951   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1952   ReplacedNodes replaced_nodes_exception;
1953   Node* ex_ctl = top();
1954 
1955   SafePointNode* final_state = stop();
1956 
1957   // Find all the needed outputs of this call
1958   CallProjections callprojs;
1959   call->extract_projections(&callprojs, true, do_asserts);
1960 
1961   Unique_Node_List wl;
1962   Node* init_mem = call->in(TypeFunc::Memory);
1963   Node* final_mem = final_state->in(TypeFunc::Memory);
1964   Node* final_ctl = final_state->in(TypeFunc::Control);
1965   Node* final_io = final_state->in(TypeFunc::I_O);
1966 
1967   // Replace all the old call edges with the edges from the inlining result
1968   if (callprojs.fallthrough_catchproj != nullptr) {
1969     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1970   }
1971   if (callprojs.fallthrough_memproj != nullptr) {
1972     if (final_mem->is_MergeMem()) {
1973       // Parser's exits MergeMem was not transformed but may be optimized
1974       final_mem = _gvn.transform(final_mem);
1975     }
1976     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1977     add_mergemem_users_to_worklist(wl, final_mem);
1978   }
1979   if (callprojs.fallthrough_ioproj != nullptr) {
1980     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1981   }
1982 
1983   // Replace the result with the new result if it exists and is used
1984   if (callprojs.resproj != nullptr && result != nullptr) {
1985     C->gvn_replace_by(callprojs.resproj, result);




1986   }
1987 
1988   if (ejvms == nullptr) {
1989     // No exception edges to simply kill off those paths
1990     if (callprojs.catchall_catchproj != nullptr) {
1991       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1992     }
1993     if (callprojs.catchall_memproj != nullptr) {
1994       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1995     }
1996     if (callprojs.catchall_ioproj != nullptr) {
1997       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1998     }
1999     // Replace the old exception object with top
2000     if (callprojs.exobj != nullptr) {
2001       C->gvn_replace_by(callprojs.exobj, C->top());
2002     }
2003   } else {
2004     GraphKit ekit(ejvms);
2005 
2006     // Load my combined exception state into the kit, with all phis transformed:
2007     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2008     replaced_nodes_exception = ex_map->replaced_nodes();
2009 
2010     Node* ex_oop = ekit.use_exception_state(ex_map);
2011 
2012     if (callprojs.catchall_catchproj != nullptr) {
2013       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
2014       ex_ctl = ekit.control();
2015     }
2016     if (callprojs.catchall_memproj != nullptr) {
2017       Node* ex_mem = ekit.reset_memory();
2018       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
2019       add_mergemem_users_to_worklist(wl, ex_mem);
2020     }
2021     if (callprojs.catchall_ioproj != nullptr) {
2022       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
2023     }
2024 
2025     // Replace the old exception object with the newly created one
2026     if (callprojs.exobj != nullptr) {
2027       C->gvn_replace_by(callprojs.exobj, ex_oop);
2028     }
2029   }
2030 
2031   // Disconnect the call from the graph
2032   call->disconnect_inputs(C);
2033   C->gvn_replace_by(call, C->top());
2034 
2035   // Clean up any MergeMems that feed other MergeMems since the
2036   // optimizer doesn't like that.
2037   while (wl.size() > 0) {
2038     _gvn.transform(wl.pop());
2039   }
2040 
2041   if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2042     replaced_nodes.apply(C, final_ctl);
2043   }
2044   if (!ex_ctl->is_top() && do_replaced_nodes) {
2045     replaced_nodes_exception.apply(C, ex_ctl);
2046   }
2047 }
2048 
2049 
2050 //------------------------------increment_counter------------------------------
2051 // for statistics: increment a VM counter by 1
2052 
2053 void GraphKit::increment_counter(address counter_addr) {
2054   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2055   increment_counter(adr1);
2056 }
2057 
2058 void GraphKit::increment_counter(Node* counter_addr) {
2059   Node* ctrl = control();
2060   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2061   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2221  *
2222  * @param n          node that the type applies to
2223  * @param exact_kls  type from profiling
2224  * @param maybe_null did profiling see null?
2225  *
2226  * @return           node with improved type
2227  */
2228 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2229   const Type* current_type = _gvn.type(n);
2230   assert(UseTypeSpeculation, "type speculation must be on");
2231 
2232   const TypePtr* speculative = current_type->speculative();
2233 
2234   // Should the klass from the profile be recorded in the speculative type?
2235   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2236     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2237     const TypeOopPtr* xtype = tklass->as_instance_type();
2238     assert(xtype->klass_is_exact(), "Should be exact");
2239     // Any reason to believe n is not null (from this profiling or a previous one)?
2240     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2241     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2242     // record the new speculative type's depth
2243     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2244     speculative = speculative->with_inline_depth(jvms()->depth());
2245   } else if (current_type->would_improve_ptr(ptr_kind)) {
2246     // Profiling report that null was never seen so we can change the
2247     // speculative type to non null ptr.
2248     if (ptr_kind == ProfileAlwaysNull) {
2249       speculative = TypePtr::NULL_PTR;
2250     } else {
2251       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2252       const TypePtr* ptr = TypePtr::NOTNULL;
2253       if (speculative != nullptr) {
2254         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2255       } else {
2256         speculative = ptr;
2257       }
2258     }
2259   }
2260 
2261   if (speculative != current_type->speculative()) {
2262     // Build a type with a speculative type (what we think we know
2263     // about the type but will need a guard when we use it)
2264     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2265     // We're changing the type, we need a new CheckCast node to carry
2266     // the new type. The new type depends on the control: what
2267     // profiling tells us is only valid from here as far as we can
2268     // tell.
2269     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2270     cast = _gvn.transform(cast);
2271     replace_in_map(n, cast);
2272     n = cast;
2273   }
2274 
2275   return n;
2276 }
2277 
2278 /**
2279  * Record profiling data from receiver profiling at an invoke with the
2280  * type system so that it can propagate it (speculation)
2281  *
2282  * @param n  receiver node
2283  *
2284  * @return   node with improved type
2285  */
2286 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2287   if (!UseTypeSpeculation) {
2288     return n;
2289   }
2290   ciKlass* exact_kls = profile_has_unique_klass();
2291   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2292   if ((java_bc() == Bytecodes::_checkcast ||
2293        java_bc() == Bytecodes::_instanceof ||
2294        java_bc() == Bytecodes::_aastore) &&
2295       method()->method_data()->is_mature()) {
2296     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2297     if (data != nullptr) {
2298       if (!data->as_BitData()->null_seen()) {
2299         ptr_kind = ProfileNeverNull;







2300       } else {
2301         assert(data->is_ReceiverTypeData(), "bad profile data type");
2302         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2303         uint i = 0;
2304         for (; i < call->row_limit(); i++) {
2305           ciKlass* receiver = call->receiver(i);
2306           if (receiver != nullptr) {
2307             break;




2308           }

2309         }
2310         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2311       }
2312     }
2313   }
2314   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2315 }
2316 
2317 /**
2318  * Record profiling data from argument profiling at an invoke with the
2319  * type system so that it can propagate it (speculation)
2320  *
2321  * @param dest_method  target method for the call
2322  * @param bc           what invoke bytecode is this?
2323  */
2324 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2325   if (!UseTypeSpeculation) {
2326     return;
2327   }
2328   const TypeFunc* tf    = TypeFunc::make(dest_method);
2329   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2330   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2331   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2332     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2333     if (is_reference_type(targ->basic_type())) {
2334       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2335       ciKlass* better_type = nullptr;
2336       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2337         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2338       }
2339       i++;
2340     }
2341   }
2342 }
2343 
2344 /**
2345  * Record profiling data from parameter profiling at an invoke with
2346  * the type system so that it can propagate it (speculation)
2347  */
2348 void GraphKit::record_profiled_parameters_for_speculation() {
2349   if (!UseTypeSpeculation) {
2350     return;
2351   }
2352   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2472                                   // The first null ends the list.
2473                                   Node* parm0, Node* parm1,
2474                                   Node* parm2, Node* parm3,
2475                                   Node* parm4, Node* parm5,
2476                                   Node* parm6, Node* parm7) {
2477   assert(call_addr != nullptr, "must not call null targets");
2478 
2479   // Slow-path call
2480   bool is_leaf = !(flags & RC_NO_LEAF);
2481   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2482   if (call_name == nullptr) {
2483     assert(!is_leaf, "must supply name for leaf");
2484     call_name = OptoRuntime::stub_name(call_addr);
2485   }
2486   CallNode* call;
2487   if (!is_leaf) {
2488     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2489   } else if (flags & RC_NO_FP) {
2490     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2491   } else  if (flags & RC_VECTOR){
2492     uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2493     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2494   } else {
2495     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2496   }
2497 
2498   // The following is similar to set_edges_for_java_call,
2499   // except that the memory effects of the call are restricted to AliasIdxRaw.
2500 
2501   // Slow path call has no side-effects, uses few values
2502   bool wide_in  = !(flags & RC_NARROW_MEM);
2503   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2504 
2505   Node* prev_mem = nullptr;
2506   if (wide_in) {
2507     prev_mem = set_predefined_input_for_runtime_call(call);
2508   } else {
2509     assert(!wide_out, "narrow in => narrow out");
2510     Node* narrow_mem = memory(adr_type);
2511     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2512   }

2552 
2553   if (has_io) {
2554     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2555   }
2556   return call;
2557 
2558 }
2559 
2560 // i2b
2561 Node* GraphKit::sign_extend_byte(Node* in) {
2562   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2563   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2564 }
2565 
2566 // i2s
2567 Node* GraphKit::sign_extend_short(Node* in) {
2568   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2569   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2570 }
2571 

2572 //------------------------------merge_memory-----------------------------------
2573 // Merge memory from one path into the current memory state.
2574 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2575   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2576     Node* old_slice = mms.force_memory();
2577     Node* new_slice = mms.memory2();
2578     if (old_slice != new_slice) {
2579       PhiNode* phi;
2580       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2581         if (mms.is_empty()) {
2582           // clone base memory Phi's inputs for this memory slice
2583           assert(old_slice == mms.base_memory(), "sanity");
2584           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2585           _gvn.set_type(phi, Type::MEMORY);
2586           for (uint i = 1; i < phi->req(); i++) {
2587             phi->init_req(i, old_slice->in(i));
2588           }
2589         } else {
2590           phi = old_slice->as_Phi(); // Phi was generated already
2591         }

2854 
2855   // Now do a linear scan of the secondary super-klass array.  Again, no real
2856   // performance impact (too rare) but it's gotta be done.
2857   // Since the code is rarely used, there is no penalty for moving it
2858   // out of line, and it can only improve I-cache density.
2859   // The decision to inline or out-of-line this final check is platform
2860   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2861   Node* psc = gvn.transform(
2862     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2863 
2864   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2865   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2866   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2867 
2868   // Return false path; set default control to true path.
2869   *ctrl = gvn.transform(r_ok_subtype);
2870   return gvn.transform(r_not_subtype);
2871 }
2872 
2873 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {





2874   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
2875   if (expand_subtype_check) {
2876     MergeMemNode* mem = merged_memory();
2877     Node* ctrl = control();
2878     Node* subklass = obj_or_subklass;
2879     if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2880       subklass = load_object_klass(obj_or_subklass);
2881     }
2882 
2883     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
2884     set_control(ctrl);
2885     return n;
2886   }
2887 
2888   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
2889   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2890   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2891   set_control(_gvn.transform(new IfTrueNode(iff)));
2892   return _gvn.transform(new IfFalseNode(iff));
2893 }
2894 
2895 // Profile-driven exact type check:
2896 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2897                                     float prob,
2898                                     Node* *casted_receiver) {
2899   assert(!klass->is_interface(), "no exact type check on interfaces");
2900 











2901   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
2902   Node* recv_klass = load_object_klass(receiver);
2903   Node* want_klass = makecon(tklass);
2904   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2905   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2906   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2907   set_control( _gvn.transform(new IfTrueNode (iff)));
2908   Node* fail = _gvn.transform(new IfFalseNode(iff));
2909 
2910   if (!stopped()) {
2911     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2912     const TypeOopPtr* recvx_type = tklass->as_instance_type();
2913     assert(recvx_type->klass_is_exact(), "");
2914 
2915     if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2916       // Subsume downstream occurrences of receiver with a cast to
2917       // recv_xtype, since now we know what the type will be.
2918       Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2919       (*casted_receiver) = _gvn.transform(cast);





2920       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
2921       // (User must make the replace_in_map call.)
2922     }
2923   }
2924 
2925   return fail;
2926 }
2927 











2928 //------------------------------subtype_check_receiver-------------------------
2929 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2930                                        Node** casted_receiver) {
2931   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2932   Node* want_klass = makecon(tklass);
2933 
2934   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2935 
2936   // Ignore interface type information until interface types are properly tracked.
2937   if (!stopped() && !klass->is_interface()) {
2938     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2939     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2940     if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2941       Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2942       (*casted_receiver) = _gvn.transform(cast);



2943     }
2944   }
2945 
2946   return slow_ctl;
2947 }
2948 
2949 //------------------------------seems_never_null-------------------------------
2950 // Use null_seen information if it is available from the profile.
2951 // If we see an unexpected null at a type check we record it and force a
2952 // recompile; the offending check will be recompiled to handle nulls.
2953 // If we see several offending BCIs, then all checks in the
2954 // method will be recompiled.
2955 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2956   speculating = !_gvn.type(obj)->speculative_maybe_null();
2957   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2958   if (UncommonNullCast               // Cutout for this technique
2959       && obj != null()               // And not the -Xcomp stupid case?
2960       && !too_many_traps(reason)
2961       ) {
2962     if (speculating) {

3031 
3032 //------------------------maybe_cast_profiled_receiver-------------------------
3033 // If the profile has seen exactly one type, narrow to exactly that type.
3034 // Subsequent type checks will always fold up.
3035 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3036                                              const TypeKlassPtr* require_klass,
3037                                              ciKlass* spec_klass,
3038                                              bool safe_for_replace) {
3039   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3040 
3041   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3042 
3043   // Make sure we haven't already deoptimized from this tactic.
3044   if (too_many_traps_or_recompiles(reason))
3045     return nullptr;
3046 
3047   // (No, this isn't a call, but it's enough like a virtual call
3048   // to use the same ciMethod accessor to get the profile info...)
3049   // If we have a speculative type use it instead of profiling (which
3050   // may not help us)
3051   ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;













3052   if (exact_kls != nullptr) {// no cast failures here
3053     if (require_klass == nullptr ||
3054         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3055       // If we narrow the type to match what the type profile sees or
3056       // the speculative type, we can then remove the rest of the
3057       // cast.
3058       // This is a win, even if the exact_kls is very specific,
3059       // because downstream operations, such as method calls,
3060       // will often benefit from the sharper type.
3061       Node* exact_obj = not_null_obj; // will get updated in place...
3062       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3063                                             &exact_obj);
3064       { PreserveJVMState pjvms(this);
3065         set_control(slow_ctl);
3066         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3067       }
3068       if (safe_for_replace) {
3069         replace_in_map(not_null_obj, exact_obj);
3070       }
3071       return exact_obj;

3161   // If not_null_obj is dead, only null-path is taken
3162   if (stopped()) {              // Doing instance-of on a null?
3163     set_control(null_ctl);
3164     return intcon(0);
3165   }
3166   region->init_req(_null_path, null_ctl);
3167   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3168   if (null_ctl == top()) {
3169     // Do this eagerly, so that pattern matches like is_diamond_phi
3170     // will work even during parsing.
3171     assert(_null_path == PATH_LIMIT-1, "delete last");
3172     region->del_req(_null_path);
3173     phi   ->del_req(_null_path);
3174   }
3175 
3176   // Do we know the type check always succeed?
3177   bool known_statically = false;
3178   if (_gvn.type(superklass)->singleton()) {
3179     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3180     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3181     if (subk->is_loaded()) {
3182       int static_res = C->static_subtype_check(superk, subk);
3183       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3184     }
3185   }
3186 
3187   if (!known_statically) {
3188     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3189     // We may not have profiling here or it may not help us. If we
3190     // have a speculative type use it to perform an exact cast.
3191     ciKlass* spec_obj_type = obj_type->speculative_type();
3192     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3193       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3194       if (stopped()) {            // Profile disagrees with this path.
3195         set_control(null_ctl);    // Null is the only remaining possibility.
3196         return intcon(0);
3197       }
3198       if (cast_obj != nullptr) {
3199         not_null_obj = cast_obj;
3200       }
3201     }

3217   record_for_igvn(region);
3218 
3219   // If we know the type check always succeeds then we don't use the
3220   // profiling data at this bytecode. Don't lose it, feed it to the
3221   // type system as a speculative type.
3222   if (safe_for_replace) {
3223     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3224     replace_in_map(obj, casted_obj);
3225   }
3226 
3227   return _gvn.transform(phi);
3228 }
3229 
3230 //-------------------------------gen_checkcast---------------------------------
3231 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3232 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3233 // uncommon-trap paths work.  Adjust stack after this call.
3234 // If failure_control is supplied and not null, it is filled in with
3235 // the control edge for the cast failure.  Otherwise, an appropriate
3236 // uncommon trap or exception is thrown.
3237 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3238                               Node* *failure_control) {
3239   kill_dead_locals();           // Benefit all the uncommon traps
3240   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
















3241   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3242   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();


3243 
3244   // Fast cutout:  Check the case that the cast is vacuously true.
3245   // This detects the common cases where the test will short-circuit
3246   // away completely.  We do this before we perform the null check,
3247   // because if the test is going to turn into zero code, we don't
3248   // want a residual null check left around.  (Causes a slowdown,
3249   // for example, in some objArray manipulations, such as a[i]=a[j].)
3250   if (improved_klass_ptr_type->singleton()) {
3251     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3252     if (objtp != nullptr) {
3253       switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) {







3254       case Compile::SSC_always_true:
3255         // If we know the type check always succeed then we don't use
3256         // the profiling data at this bytecode. Don't lose it, feed it
3257         // to the type system as a speculative type.
3258         return record_profiled_receiver_for_speculation(obj);






3259       case Compile::SSC_always_false:




3260         // It needs a null check because a null will *pass* the cast check.
3261         // A non-null value will always produce an exception.
3262         if (!objtp->maybe_null()) {
3263           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3264           Deoptimization::DeoptReason reason = is_aastore ?
3265             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3266           builtin_throw(reason);
3267           return top();
3268         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3269           return null_assert(obj);
3270         }
3271         break; // Fall through to full check
3272       default:
3273         break;
3274       }
3275     }
3276   }
3277 
3278   ciProfileData* data = nullptr;
3279   bool safe_for_replace = false;
3280   if (failure_control == nullptr) {        // use MDO in regular case only
3281     assert(java_bc() == Bytecodes::_aastore ||
3282            java_bc() == Bytecodes::_checkcast,
3283            "interpreter profiles type checks only for these BCs");
3284     data = method()->method_data()->bci_to_data(bci());
3285     safe_for_replace = true;

3286   }
3287 
3288   // Make the merge point
3289   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3290   RegionNode* region = new RegionNode(PATH_LIMIT);
3291   Node*       phi    = new PhiNode(region, toop);



3292   C->set_has_split_ifs(true); // Has chance for split-if optimization
3293 
3294   // Use null-cast information if it is available
3295   bool speculative_not_null = false;
3296   bool never_see_null = ((failure_control == nullptr)  // regular case only
3297                          && seems_never_null(obj, data, speculative_not_null));
3298 







3299   // Null check; get casted pointer; set region slot 3
3300   Node* null_ctl = top();
3301   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);






3302 
3303   // If not_null_obj is dead, only null-path is taken
3304   if (stopped()) {              // Doing instance-of on a null?
3305     set_control(null_ctl);



3306     return null();
3307   }
3308   region->init_req(_null_path, null_ctl);
3309   phi   ->init_req(_null_path, null());  // Set null path value
3310   if (null_ctl == top()) {
3311     // Do this eagerly, so that pattern matches like is_diamond_phi
3312     // will work even during parsing.
3313     assert(_null_path == PATH_LIMIT-1, "delete last");
3314     region->del_req(_null_path);
3315     phi   ->del_req(_null_path);
3316   }
3317 
3318   Node* cast_obj = nullptr;
3319   if (improved_klass_ptr_type->klass_is_exact()) {
3320     // The following optimization tries to statically cast the speculative type of the object
3321     // (for example obtained during profiling) to the type of the superklass and then do a
3322     // dynamic check that the type of the object is what we expect. To work correctly
3323     // for checkcast and aastore the type of superklass should be exact.
3324     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3325     // We may not have profiling here or it may not help us. If we have
3326     // a speculative type use it to perform an exact cast.
3327     ciKlass* spec_obj_type = obj_type->speculative_type();
3328     if (spec_obj_type != nullptr || data != nullptr) {
3329       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3330       if (cast_obj != nullptr) {
3331         if (failure_control != nullptr) // failure is now impossible
3332           (*failure_control) = top();
3333         // adjust the type of the phi to the exact klass:
3334         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3335       }
3336     }
3337   }
3338 
3339   if (cast_obj == nullptr) {
3340     // Generate the subtype check
3341     Node* improved_superklass = superklass;
3342     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {



3343       improved_superklass = makecon(improved_klass_ptr_type);
3344     }
3345     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3346 
3347     // Plug in success path into the merge
3348     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3349     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3350     if (failure_control == nullptr) {
3351       if (not_subtype_ctrl != top()) { // If failure is possible
3352         PreserveJVMState pjvms(this);
3353         set_control(not_subtype_ctrl);






3354         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3355         Deoptimization::DeoptReason reason = is_aastore ?
3356           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3357         builtin_throw(reason);
3358       }
3359     } else {
3360       (*failure_control) = not_subtype_ctrl;
3361     }
3362   }
3363 
3364   region->init_req(_obj_path, control());
3365   phi   ->init_req(_obj_path, cast_obj);
3366 
3367   // A merge of null or Casted-NotNull obj
3368   Node* res = _gvn.transform(phi);
3369 
3370   // Note I do NOT always 'replace_in_map(obj,result)' here.
3371   //  if( tk->klass()->can_be_primary_super()  )
3372     // This means that if I successfully store an Object into an array-of-String
3373     // I 'forget' that the Object is really now known to be a String.  I have to
3374     // do this because we don't have true union types for interfaces - if I store
3375     // a Baz into an array-of-Interface and then tell the optimizer it's an
3376     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3377     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3378   //  replace_in_map( obj, res );
3379 
3380   // Return final merged results
3381   set_control( _gvn.transform(region) );
3382   record_for_igvn(region);
3383 
3384   return record_profiled_receiver_for_speculation(res);




































































































































































3385 }
3386 
3387 //------------------------------next_monitor-----------------------------------
3388 // What number should be given to the next monitor?
3389 int GraphKit::next_monitor() {
3390   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3391   int next = current + C->sync_stack_slots();
3392   // Keep the toplevel high water mark current:
3393   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3394   return current;
3395 }
3396 
3397 //------------------------------insert_mem_bar---------------------------------
3398 // Memory barrier to avoid floating things around
3399 // The membar serves as a pinch point between both control and all memory slices.
3400 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3401   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3402   mb->init_req(TypeFunc::Control, control());
3403   mb->init_req(TypeFunc::Memory,  reset_memory());
3404   Node* membar = _gvn.transform(mb);

3432   }
3433   Node* membar = _gvn.transform(mb);
3434   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3435   if (alias_idx == Compile::AliasIdxBot) {
3436     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3437   } else {
3438     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3439   }
3440   return membar;
3441 }
3442 
3443 //------------------------------shared_lock------------------------------------
3444 // Emit locking code.
3445 FastLockNode* GraphKit::shared_lock(Node* obj) {
3446   // bci is either a monitorenter bc or InvocationEntryBci
3447   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3448   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3449 
3450   if( !GenerateSynchronizationCode )
3451     return nullptr;                // Not locking things?

3452   if (stopped())                // Dead monitor?
3453     return nullptr;
3454 
3455   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3456 
3457   // Box the stack location
3458   Node* box = new BoxLockNode(next_monitor());
3459   // Check for bailout after new BoxLockNode
3460   if (failing()) { return nullptr; }
3461   box = _gvn.transform(box);
3462   Node* mem = reset_memory();
3463 
3464   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3465 
3466   // Add monitor to debug info for the slow path.  If we block inside the
3467   // slow path and de-opt, we need the monitor hanging around
3468   map()->push_monitor( flock );
3469 
3470   const TypeFunc *tf = LockNode::lock_type();
3471   LockNode *lock = new LockNode(C, tf);

3500   }
3501 #endif
3502 
3503   return flock;
3504 }
3505 
3506 
3507 //------------------------------shared_unlock----------------------------------
3508 // Emit unlocking code.
3509 void GraphKit::shared_unlock(Node* box, Node* obj) {
3510   // bci is either a monitorenter bc or InvocationEntryBci
3511   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3512   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3513 
3514   if( !GenerateSynchronizationCode )
3515     return;
3516   if (stopped()) {               // Dead monitor?
3517     map()->pop_monitor();        // Kill monitor from debug info
3518     return;
3519   }

3520 
3521   // Memory barrier to avoid floating things down past the locked region
3522   insert_mem_bar(Op_MemBarReleaseLock);
3523 
3524   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3525   UnlockNode *unlock = new UnlockNode(C, tf);
3526 #ifdef ASSERT
3527   unlock->set_dbg_jvms(sync_jvms());
3528 #endif
3529   uint raw_idx = Compile::AliasIdxRaw;
3530   unlock->init_req( TypeFunc::Control, control() );
3531   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3532   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3533   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3534   unlock->init_req( TypeFunc::ReturnAdr, top() );
3535 
3536   unlock->init_req(TypeFunc::Parms + 0, obj);
3537   unlock->init_req(TypeFunc::Parms + 1, box);
3538   unlock = _gvn.transform(unlock)->as_Unlock();
3539 
3540   Node* mem = reset_memory();
3541 
3542   // unlock has no side-effects, sets few values
3543   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3544 
3545   // Kill monitor from debug info
3546   map()->pop_monitor( );
3547 }
3548 
3549 //-------------------------------get_layout_helper-----------------------------
3550 // If the given klass is a constant or known to be an array,
3551 // fetch the constant layout helper value into constant_value
3552 // and return null.  Otherwise, load the non-constant
3553 // layout helper value, and return the node which represents it.
3554 // This two-faced routine is useful because allocation sites
3555 // almost always feature constant types.
3556 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3557   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3558   if (!StressReflectiveCode && klass_t != nullptr) {
3559     bool xklass = klass_t->klass_is_exact();
3560     if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) {







3561       jint lhelper;
3562       if (klass_t->isa_aryklassptr()) {
3563         BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();


3564         if (is_reference_type(elem, true)) {
3565           elem = T_OBJECT;
3566         }
3567         lhelper = Klass::array_layout_helper(elem);
3568       } else {
3569         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3570       }
3571       if (lhelper != Klass::_lh_neutral_value) {
3572         constant_value = lhelper;
3573         return (Node*) nullptr;
3574       }
3575     }
3576   }
3577   constant_value = Klass::_lh_neutral_value;  // put in a known value
3578   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3579   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3580 }
3581 
3582 // We just put in an allocate/initialize with a big raw-memory effect.
3583 // Hook selected additional alias categories on the initialization.
3584 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3585                                 MergeMemNode* init_in_merge,
3586                                 Node* init_out_raw) {
3587   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3588   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3589 
3590   Node* prevmem = kit.memory(alias_idx);
3591   init_in_merge->set_memory_at(alias_idx, prevmem);
3592   kit.set_memory(init_out_raw, alias_idx);


3593 }
3594 
3595 //---------------------------set_output_for_allocation-------------------------
3596 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3597                                           const TypeOopPtr* oop_type,
3598                                           bool deoptimize_on_exception) {
3599   int rawidx = Compile::AliasIdxRaw;
3600   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3601   add_safepoint_edges(alloc);
3602   Node* allocx = _gvn.transform(alloc);
3603   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3604   // create memory projection for i_o
3605   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3606   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3607 
3608   // create a memory projection as for the normal control path
3609   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3610   set_memory(malloc, rawidx);
3611 
3612   // a normal slow-call doesn't change i_o, but an allocation does
3613   // we create a separate i_o projection for the normal control path
3614   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3615   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3616 
3617   // put in an initialization barrier
3618   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3619                                                  rawoop)->as_Initialize();
3620   assert(alloc->initialization() == init,  "2-way macro link must work");
3621   assert(init ->allocation()     == alloc, "2-way macro link must work");
3622   {
3623     // Extract memory strands which may participate in the new object's
3624     // initialization, and source them from the new InitializeNode.
3625     // This will allow us to observe initializations when they occur,
3626     // and link them properly (as a group) to the InitializeNode.
3627     assert(init->in(InitializeNode::Memory) == malloc, "");
3628     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3629     init->set_req(InitializeNode::Memory, minit_in);
3630     record_for_igvn(minit_in); // fold it up later, if possible

3631     Node* minit_out = memory(rawidx);
3632     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3633     // Add an edge in the MergeMem for the header fields so an access
3634     // to one of those has correct memory state
3635     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3636     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3637     if (oop_type->isa_aryptr()) {
3638       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3639       int            elemidx  = C->get_alias_index(telemref);
3640       hook_memory_on_init(*this, elemidx, minit_in, minit_out);

























3641     } else if (oop_type->isa_instptr()) {

3642       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3643       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3644         ciField* field = ik->nonstatic_field_at(i);
3645         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3646           continue;  // do not bother to track really large numbers of fields
3647         // Find (or create) the alias category for this field:
3648         int fieldidx = C->alias_type(field)->index();
3649         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3650       }
3651     }
3652   }
3653 
3654   // Cast raw oop to the real thing...
3655   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3656   javaoop = _gvn.transform(javaoop);
3657   C->set_recent_alloc(control(), javaoop);
3658   assert(just_allocated_object(control()) == javaoop, "just allocated");
3659 
3660 #ifdef ASSERT
3661   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

3672       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3673     }
3674   }
3675 #endif //ASSERT
3676 
3677   return javaoop;
3678 }
3679 
3680 //---------------------------new_instance--------------------------------------
3681 // This routine takes a klass_node which may be constant (for a static type)
3682 // or may be non-constant (for reflective code).  It will work equally well
3683 // for either, and the graph will fold nicely if the optimizer later reduces
3684 // the type to a constant.
3685 // The optional arguments are for specialized use by intrinsics:
3686 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3687 //  - If 'return_size_val', report the total object size to the caller.
3688 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3689 Node* GraphKit::new_instance(Node* klass_node,
3690                              Node* extra_slow_test,
3691                              Node* *return_size_val,
3692                              bool deoptimize_on_exception) {

3693   // Compute size in doublewords
3694   // The size is always an integral number of doublewords, represented
3695   // as a positive bytewise size stored in the klass's layout_helper.
3696   // The layout_helper also encodes (in a low bit) the need for a slow path.
3697   jint  layout_con = Klass::_lh_neutral_value;
3698   Node* layout_val = get_layout_helper(klass_node, layout_con);
3699   int   layout_is_con = (layout_val == nullptr);
3700 
3701   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3702   // Generate the initial go-slow test.  It's either ALWAYS (return a
3703   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3704   // case) a computed value derived from the layout_helper.
3705   Node* initial_slow_test = nullptr;
3706   if (layout_is_con) {
3707     assert(!StressReflectiveCode, "stress mode does not use these paths");
3708     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3709     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3710   } else {   // reflective case
3711     // This reflective path is used by Unsafe.allocateInstance.
3712     // (It may be stress-tested by specifying StressReflectiveCode.)
3713     // Basically, we want to get into the VM is there's an illegal argument.
3714     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3715     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3716     if (extra_slow_test != intcon(0)) {
3717       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3718     }
3719     // (Macro-expander will further convert this to a Bool, if necessary.)

3730 
3731     // Clear the low bits to extract layout_helper_size_in_bytes:
3732     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3733     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3734     size = _gvn.transform( new AndXNode(size, mask) );
3735   }
3736   if (return_size_val != nullptr) {
3737     (*return_size_val) = size;
3738   }
3739 
3740   // This is a precise notnull oop of the klass.
3741   // (Actually, it need not be precise if this is a reflective allocation.)
3742   // It's what we cast the result to.
3743   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3744   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3745   const TypeOopPtr* oop_type = tklass->as_instance_type();
3746 
3747   // Now generate allocation code
3748 
3749   // The entire memory state is needed for slow path of the allocation
3750   // since GC and deoptimization can happened.
3751   Node *mem = reset_memory();
3752   set_all_memory(mem); // Create new memory state
3753 
3754   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3755                                          control(), mem, i_o(),
3756                                          size, klass_node,
3757                                          initial_slow_test);
3758 
3759   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3760 }
3761 
3762 //-------------------------------new_array-------------------------------------
3763 // helper for both newarray and anewarray
3764 // The 'length' parameter is (obviously) the length of the array.
3765 // The optional arguments are for specialized use by intrinsics:
3766 //  - If 'return_size_val', report the non-padded array size (sum of header size
3767 //    and array body) to the caller.
3768 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3769 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3770                           Node* length,         // number of array elements
3771                           int   nargs,          // number of arguments to push back for uncommon trap
3772                           Node* *return_size_val,
3773                           bool deoptimize_on_exception) {

3774   jint  layout_con = Klass::_lh_neutral_value;
3775   Node* layout_val = get_layout_helper(klass_node, layout_con);
3776   int   layout_is_con = (layout_val == nullptr);
3777 
3778   if (!layout_is_con && !StressReflectiveCode &&
3779       !too_many_traps(Deoptimization::Reason_class_check)) {
3780     // This is a reflective array creation site.
3781     // Optimistically assume that it is a subtype of Object[],
3782     // so that we can fold up all the address arithmetic.
3783     layout_con = Klass::array_layout_helper(T_OBJECT);
3784     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3785     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3786     { BuildCutout unless(this, bol_lh, PROB_MAX);
3787       inc_sp(nargs);
3788       uncommon_trap(Deoptimization::Reason_class_check,
3789                     Deoptimization::Action_maybe_recompile);
3790     }
3791     layout_val = nullptr;
3792     layout_is_con = true;
3793   }
3794 
3795   // Generate the initial go-slow test.  Make sure we do not overflow
3796   // if length is huge (near 2Gig) or negative!  We do not need
3797   // exact double-words here, just a close approximation of needed
3798   // double-words.  We can't add any offset or rounding bits, lest we
3799   // take a size -1 of bytes and make it positive.  Use an unsigned
3800   // compare, so negative sizes look hugely positive.
3801   int fast_size_limit = FastAllocateSizeLimit;
3802   if (layout_is_con) {
3803     assert(!StressReflectiveCode, "stress mode does not use these paths");
3804     // Increase the size limit if we have exact knowledge of array type.
3805     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3806     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3807   }
3808 
3809   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3810   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3811 
3812   // --- Size Computation ---
3813   // array_size = round_to_heap(array_header + (length << elem_shift));
3814   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3815   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3816   // The rounding mask is strength-reduced, if possible.
3817   int round_mask = MinObjAlignmentInBytes - 1;
3818   Node* header_size = nullptr;
3819   // (T_BYTE has the weakest alignment and size restrictions...)
3820   if (layout_is_con) {
3821     int       hsize  = Klass::layout_helper_header_size(layout_con);
3822     int       eshift = Klass::layout_helper_log2_element_size(layout_con);

3823     if ((round_mask & ~right_n_bits(eshift)) == 0)
3824       round_mask = 0;  // strength-reduce it if it goes away completely
3825     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3826     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3827     assert(header_size_min <= hsize, "generic minimum is smallest");
3828     header_size = intcon(hsize);
3829   } else {
3830     Node* hss   = intcon(Klass::_lh_header_size_shift);
3831     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3832     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3833     header_size = _gvn.transform(new AndINode(header_size, hsm));
3834   }
3835 
3836   Node* elem_shift = nullptr;
3837   if (layout_is_con) {
3838     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3839     if (eshift != 0)
3840       elem_shift = intcon(eshift);
3841   } else {
3842     // There is no need to mask or shift this value.
3843     // The semantics of LShiftINode include an implicit mask to 0x1F.
3844     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3845     elem_shift = layout_val;

3892   }
3893   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
3894 
3895   if (return_size_val != nullptr) {
3896     // This is the size
3897     (*return_size_val) = non_rounded_size;
3898   }
3899 
3900   Node* size = non_rounded_size;
3901   if (round_mask != 0) {
3902     Node* mask1 = MakeConX(round_mask);
3903     size = _gvn.transform(new AddXNode(size, mask1));
3904     Node* mask2 = MakeConX(~round_mask);
3905     size = _gvn.transform(new AndXNode(size, mask2));
3906   }
3907   // else if round_mask == 0, the size computation is self-rounding
3908 
3909   // Now generate allocation code
3910 
3911   // The entire memory state is needed for slow path of the allocation
3912   // since GC and deoptimization can happened.
3913   Node *mem = reset_memory();
3914   set_all_memory(mem); // Create new memory state
3915 
3916   if (initial_slow_test->is_Bool()) {
3917     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3918     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3919   }
3920 
3921   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();




















3922   Node* valid_length_test = _gvn.intcon(1);
3923   if (ary_type->isa_aryptr()) {
3924     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3925     jint max = TypeAryPtr::max_array_length(bt);
3926     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3927     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3928   }
3929 
3930   // Create the AllocateArrayNode and its result projections
3931   AllocateArrayNode* alloc
3932     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3933                             control(), mem, i_o(),
3934                             size, klass_node,
3935                             initial_slow_test,
3936                             length, valid_length_test);
3937 
3938   // Cast to correct type.  Note that the klass_node may be constant or not,
3939   // and in the latter case the actual array type will be inexact also.
3940   // (This happens via a non-constant argument to inline_native_newArray.)
3941   // In any case, the value of klass_node provides the desired array type.
3942   const TypeInt* length_type = _gvn.find_int_type(length);
3943   if (ary_type->isa_aryptr() && length_type != nullptr) {
3944     // Try to get a better type than POS for the size
3945     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3946   }
3947 
3948   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3949 
3950   array_ideal_length(alloc, ary_type, true);
3951   return javaoop;
3952 }
3953 
3954 // The following "Ideal_foo" functions are placed here because they recognize
3955 // the graph shapes created by the functions immediately above.
3956 
3957 //---------------------------Ideal_allocation----------------------------------

4065   set_all_memory(ideal.merged_memory());
4066   set_i_o(ideal.i_o());
4067   set_control(ideal.ctrl());
4068 }
4069 
4070 void GraphKit::final_sync(IdealKit& ideal) {
4071   // Final sync IdealKit and graphKit.
4072   sync_kit(ideal);
4073 }
4074 
4075 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4076   Node* len = load_array_length(load_String_value(str, set_ctrl));
4077   Node* coder = load_String_coder(str, set_ctrl);
4078   // Divide length by 2 if coder is UTF16
4079   return _gvn.transform(new RShiftINode(len, coder));
4080 }
4081 
4082 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4083   int value_offset = java_lang_String::value_offset();
4084   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4085                                                      false, nullptr, 0);
4086   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4087   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4088                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4089                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4090   Node* p = basic_plus_adr(str, str, value_offset);
4091   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4092                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4093   return load;
4094 }
4095 
4096 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4097   if (!CompactStrings) {
4098     return intcon(java_lang_String::CODER_UTF16);
4099   }
4100   int coder_offset = java_lang_String::coder_offset();
4101   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4102                                                      false, nullptr, 0);
4103   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4104 
4105   Node* p = basic_plus_adr(str, str, coder_offset);
4106   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4107                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4108   return load;
4109 }
4110 
4111 void GraphKit::store_String_value(Node* str, Node* value) {
4112   int value_offset = java_lang_String::value_offset();
4113   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4114                                                      false, nullptr, 0);
4115   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4116 
4117   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4118                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4119 }
4120 
4121 void GraphKit::store_String_coder(Node* str, Node* value) {
4122   int coder_offset = java_lang_String::coder_offset();
4123   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4124                                                      false, nullptr, 0);
4125   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4126 
4127   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4128                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4129 }
4130 
4131 // Capture src and dst memory state with a MergeMemNode
4132 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4133   if (src_type == dst_type) {
4134     // Types are equal, we don't need a MergeMemNode
4135     return memory(src_type);
4136   }
4137   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4138   record_for_igvn(merge); // fold it up later, if possible
4139   int src_idx = C->get_alias_index(src_type);
4140   int dst_idx = C->get_alias_index(dst_type);
4141   merge->set_memory_at(src_idx, memory(src_idx));
4142   merge->set_memory_at(dst_idx, memory(dst_idx));
4143   return merge;
4144 }

4217   i_char->init_req(2, AddI(i_char, intcon(2)));
4218 
4219   set_control(IfFalse(iff));
4220   set_memory(st, TypeAryPtr::BYTES);
4221 }
4222 
4223 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4224   if (!field->is_constant()) {
4225     return nullptr; // Field not marked as constant.
4226   }
4227   ciInstance* holder = nullptr;
4228   if (!field->is_static()) {
4229     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4230     if (const_oop != nullptr && const_oop->is_instance()) {
4231       holder = const_oop->as_instance();
4232     }
4233   }
4234   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4235                                                         /*is_unsigned_load=*/false);
4236   if (con_type != nullptr) {
4237     return makecon(con_type);






4238   }
4239   return nullptr;
4240 }
4241 









4242 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4243   const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr();
4244   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4245   if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4246     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4247     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4248     return casted_obj;



4249   }
4250   return obj;
4251 }

   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciFlatArrayKlass.hpp"
  26 #include "ci/ciInlineKlass.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "ci/ciObjArray.hpp"
  30 #include "asm/register.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/c2/barrierSetC2.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/flatArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->igvn_worklist()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.

 341 }
 342 static inline void add_one_req(Node* dstphi, Node* src) {
 343   assert(is_hidden_merge(dstphi), "must be a special merge node");
 344   assert(!is_hidden_merge(src), "must not be a special merge node");
 345   dstphi->add_req(src);
 346 }
 347 
 348 //-----------------------combine_exception_states------------------------------
 349 // This helper function combines exception states by building phis on a
 350 // specially marked state-merging region.  These regions and phis are
 351 // untransformed, and can build up gradually.  The region is marked by
 352 // having a control input of its exception map, rather than null.  Such
 353 // regions do not appear except in this function, and in use_exception_state.
 354 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 355   if (failing_internal()) {
 356     return;  // dying anyway...
 357   }
 358   JVMState* ex_jvms = ex_map->_jvms;
 359   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 360   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 361   // TODO 8325632 Re-enable
 362   // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 363   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 364   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 365   assert(ex_map->req() == phi_map->req(), "matching maps");
 366   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 367   Node*         hidden_merge_mark = root();
 368   Node*         region  = phi_map->control();
 369   MergeMemNode* phi_mem = phi_map->merged_memory();
 370   MergeMemNode* ex_mem  = ex_map->merged_memory();
 371   if (region->in(0) != hidden_merge_mark) {
 372     // The control input is not (yet) a specially-marked region in phi_map.
 373     // Make it so, and build some phis.
 374     region = new RegionNode(2);
 375     _gvn.set_type(region, Type::CONTROL);
 376     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 377     region->init_req(1, phi_map->control());
 378     phi_map->set_control(region);
 379     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 380     record_for_igvn(io_phi);
 381     _gvn.set_type(io_phi, Type::ABIO);
 382     phi_map->set_i_o(io_phi);

 870         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 871           tty->print_cr("Zombie local %d: ", local);
 872           jvms->dump();
 873         }
 874         return false;
 875       }
 876     }
 877   }
 878   return true;
 879 }
 880 
 881 #endif //ASSERT
 882 
 883 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 884 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 885   ciMethod* cur_method = jvms->method();
 886   int       cur_bci   = jvms->bci();
 887   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 888     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 889     return Interpreter::bytecode_should_reexecute(code) ||
 890            (is_anewarray && (code == Bytecodes::_multianewarray));
 891     // Reexecute _multianewarray bytecode which was replaced with
 892     // sequence of [a]newarray. See Parse::do_multianewarray().
 893     //
 894     // Note: interpreter should not have it set since this optimization
 895     // is limited by dimensions and guarded by flag so in some cases
 896     // multianewarray() runtime calls will be generated and
 897     // the bytecode should not be reexecutes (stack will not be reset).
 898   } else {
 899     return false;
 900   }
 901 }
 902 
 903 // Helper function for adding JVMState and debug information to node
 904 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 905   // Add the safepoint edges to the call (or other safepoint).
 906 
 907   // Make sure dead locals are set to top.  This
 908   // should help register allocation time and cut down on the size
 909   // of the deoptimization information.
 910   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 961   }
 962 
 963   // Presize the call:
 964   DEBUG_ONLY(uint non_debug_edges = call->req());
 965   call->add_req_batch(top(), youngest_jvms->debug_depth());
 966   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 967 
 968   // Set up edges so that the call looks like this:
 969   //  Call [state:] ctl io mem fptr retadr
 970   //       [parms:] parm0 ... parmN
 971   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 972   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 973   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 974   // Note that caller debug info precedes callee debug info.
 975 
 976   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 977   uint debug_ptr = call->req();
 978 
 979   // Loop over the map input edges associated with jvms, add them
 980   // to the call node, & reset all offsets to match call node array.
 981 
 982   JVMState* callee_jvms = nullptr;
 983   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 984     uint debug_end   = debug_ptr;
 985     uint debug_start = debug_ptr - in_jvms->debug_size();
 986     debug_ptr = debug_start;  // back up the ptr
 987 
 988     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 989     uint j, k, l;
 990     SafePointNode* in_map = in_jvms->map();
 991     out_jvms->set_map(call);
 992 
 993     if (can_prune_locals) {
 994       assert(in_jvms->method() == out_jvms->method(), "sanity");
 995       // If the current throw can reach an exception handler in this JVMS,
 996       // then we must keep everything live that can reach that handler.
 997       // As a quick and dirty approximation, we look for any handlers at all.
 998       if (in_jvms->method()->has_exception_handlers()) {
 999         can_prune_locals = false;
1000       }
1001     }
1002 
1003     // Add the Locals
1004     k = in_jvms->locoff();
1005     l = in_jvms->loc_size();
1006     out_jvms->set_locoff(p);
1007     if (!can_prune_locals) {
1008       for (j = 0; j < l; j++) {
1009         call->set_req(p++, in_map->in(k + j));
1010       }
1011     } else {
1012       p += l;  // already set to top above by add_req_batch
1013     }
1014 
1015     // Add the Expression Stack
1016     k = in_jvms->stkoff();
1017     l = in_jvms->sp();
1018     out_jvms->set_stkoff(p);
1019     if (!can_prune_locals) {
1020       for (j = 0; j < l; j++) {
1021         call->set_req(p++, in_map->in(k + j));
1022       }
1023     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1024       // Divide stack into {S0,...,S1}, where S0 is set to top.
1025       uint s1 = stack_slots_not_pruned;
1026       stack_slots_not_pruned = 0;  // for next iteration
1027       if (s1 > l)  s1 = l;
1028       uint s0 = l - s1;
1029       p += s0;  // skip the tops preinstalled by add_req_batch
1030       for (j = s0; j < l; j++)
1031         call->set_req(p++, in_map->in(k+j));
1032     } else {
1033       p += l;  // already set to top above by add_req_batch
1034     }
1035 
1036     // Add the Monitors
1037     k = in_jvms->monoff();
1038     l = in_jvms->mon_size();
1039     out_jvms->set_monoff(p);
1040     for (j = 0; j < l; j++)
1041       call->set_req(p++, in_map->in(k+j));
1042 
1043     // Copy any scalar object fields.
1044     k = in_jvms->scloff();
1045     l = in_jvms->scl_size();
1046     out_jvms->set_scloff(p);
1047     for (j = 0; j < l; j++)
1048       call->set_req(p++, in_map->in(k+j));
1049 
1050     // Finish the new jvms.
1051     out_jvms->set_endoff(p);
1052 
1053     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1054     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1055     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1056     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1057     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1058     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1059 
1060     // Update the two tail pointers in parallel.
1061     callee_jvms = out_jvms;
1062     out_jvms = out_jvms->caller();
1063     in_jvms  = in_jvms->caller();
1064   }
1065 
1066   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1067 
1068   // Test the correctness of JVMState::debug_xxx accessors:
1069   assert(call->jvms()->debug_start() == non_debug_edges, "");
1070   assert(call->jvms()->debug_end()   == call->req(), "");
1071   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1072 }
1073 
1074 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1075   Bytecodes::Code code = java_bc();
1076   if (code == Bytecodes::_wide) {
1077     code = method()->java_code_at_bci(bci() + 1);
1078   }
1079 
1080   if (code != Bytecodes::_illegal) {
1081     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1212 Node* GraphKit::ConvI2UL(Node* offset) {
1213   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1214   if (offset_con != (juint) Type::OffsetBot) {
1215     return longcon((julong) offset_con);
1216   }
1217   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1218   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1219   return _gvn.transform( new AndLNode(conv, mask) );
1220 }
1221 
1222 Node* GraphKit::ConvL2I(Node* offset) {
1223   // short-circuit a common case
1224   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1225   if (offset_con != (jlong)Type::OffsetBot) {
1226     return intcon((int) offset_con);
1227   }
1228   return _gvn.transform( new ConvL2INode(offset));
1229 }
1230 
1231 //-------------------------load_object_klass-----------------------------------
1232 Node* GraphKit::load_object_klass(Node* obj, bool fold_for_arrays) {
1233   // Special-case a fresh allocation to avoid building nodes:
1234   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1235   if (akls != nullptr)  return akls;
1236   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1237   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT, fold_for_arrays));
1238 }
1239 
1240 //-------------------------load_array_length-----------------------------------
1241 Node* GraphKit::load_array_length(Node* array) {
1242   // Special-case a fresh allocation to avoid building nodes:
1243   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1244   Node *alen;
1245   if (alloc == nullptr) {
1246     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1247     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1248   } else {
1249     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1250   }
1251   return alen;
1252 }
1253 
1254 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1255                                    const TypeOopPtr* oop_type,
1256                                    bool replace_length_in_map) {
1257   Node* length = alloc->Ideal_length();

1266         replace_in_map(length, ccast);
1267       }
1268       return ccast;
1269     }
1270   }
1271   return length;
1272 }
1273 
1274 //------------------------------do_null_check----------------------------------
1275 // Helper function to do a null pointer check.  Returned value is
1276 // the incoming address with null casted away.  You are allowed to use the
1277 // not-null value only if you are control dependent on the test.
1278 #ifndef PRODUCT
1279 extern uint explicit_null_checks_inserted,
1280             explicit_null_checks_elided;
1281 #endif
1282 Node* GraphKit::null_check_common(Node* value, BasicType type,
1283                                   // optional arguments for variations:
1284                                   bool assert_null,
1285                                   Node* *null_control,
1286                                   bool speculative,
1287                                   bool is_init_check) {
1288   assert(!assert_null || null_control == nullptr, "not both at once");
1289   if (stopped())  return top();
1290   NOT_PRODUCT(explicit_null_checks_inserted++);
1291 
1292   if (value->is_InlineType()) {
1293     // Null checking a scalarized but nullable inline type. Check the IsInit
1294     // input instead of the oop input to avoid keeping buffer allocations alive.
1295     InlineTypeNode* vtptr = value->as_InlineType();
1296     while (vtptr->get_oop()->is_InlineType()) {
1297       vtptr = vtptr->get_oop()->as_InlineType();
1298     }
1299     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1300     if (stopped()) {
1301       return top();
1302     }
1303     if (assert_null) {
1304       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1305       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1306       // replace_in_map(value, vtptr);
1307       // return vtptr;
1308       replace_in_map(value, null());
1309       return null();
1310     }
1311     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1312     return cast_not_null(value, do_replace_in_map);
1313   }
1314 
1315   // Construct null check
1316   Node *chk = nullptr;
1317   switch(type) {
1318     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1319     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1320     case T_ARRAY  : // fall through
1321       type = T_OBJECT;  // simplify further tests
1322     case T_OBJECT : {
1323       const Type *t = _gvn.type( value );
1324 
1325       const TypeOopPtr* tp = t->isa_oopptr();
1326       if (tp != nullptr && !tp->is_loaded()
1327           // Only for do_null_check, not any of its siblings:
1328           && !assert_null && null_control == nullptr) {
1329         // Usually, any field access or invocation on an unloaded oop type
1330         // will simply fail to link, since the statically linked class is
1331         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1332         // the static class is loaded but the sharper oop type is not.
1333         // Rather than checking for this obscure case in lots of places,
1334         // we simply observe that a null check on an unloaded class

1398         }
1399         Node *oldcontrol = control();
1400         set_control(cfg);
1401         Node *res = cast_not_null(value);
1402         set_control(oldcontrol);
1403         NOT_PRODUCT(explicit_null_checks_elided++);
1404         return res;
1405       }
1406       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1407       if (cfg == nullptr)  break;  // Quit at region nodes
1408       depth++;
1409     }
1410   }
1411 
1412   //-----------
1413   // Branch to failure if null
1414   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1415   Deoptimization::DeoptReason reason;
1416   if (assert_null) {
1417     reason = Deoptimization::reason_null_assert(speculative);
1418   } else if (type == T_OBJECT || is_init_check) {
1419     reason = Deoptimization::reason_null_check(speculative);
1420   } else {
1421     reason = Deoptimization::Reason_div0_check;
1422   }
1423   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1424   // ciMethodData::has_trap_at will return a conservative -1 if any
1425   // must-be-null assertion has failed.  This could cause performance
1426   // problems for a method after its first do_null_assert failure.
1427   // Consider using 'Reason_class_check' instead?
1428 
1429   // To cause an implicit null check, we set the not-null probability
1430   // to the maximum (PROB_MAX).  For an explicit check the probability
1431   // is set to a smaller value.
1432   if (null_control != nullptr || too_many_traps(reason)) {
1433     // probability is less likely
1434     ok_prob =  PROB_LIKELY_MAG(3);
1435   } else if (!assert_null &&
1436              (ImplicitNullCheckThreshold > 0) &&
1437              method() != nullptr &&
1438              (method()->method_data()->trap_count(reason)

1472   }
1473 
1474   if (assert_null) {
1475     // Cast obj to null on this path.
1476     replace_in_map(value, zerocon(type));
1477     return zerocon(type);
1478   }
1479 
1480   // Cast obj to not-null on this path, if there is no null_control.
1481   // (If there is a null_control, a non-null value may come back to haunt us.)
1482   if (type == T_OBJECT) {
1483     Node* cast = cast_not_null(value, false);
1484     if (null_control == nullptr || (*null_control) == top())
1485       replace_in_map(value, cast);
1486     value = cast;
1487   }
1488 
1489   return value;
1490 }
1491 

1492 //------------------------------cast_not_null----------------------------------
1493 // Cast obj to not-null on this path
1494 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1495   if (obj->is_InlineType()) {
1496     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1497     vt->as_InlineType()->set_is_init(_gvn);
1498     vt = _gvn.transform(vt);
1499     if (do_replace_in_map) {
1500       replace_in_map(obj, vt);
1501     }
1502     return vt;
1503   }
1504   const Type *t = _gvn.type(obj);
1505   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1506   // Object is already not-null?
1507   if( t == t_not_null ) return obj;
1508 
1509   Node* cast = new CastPPNode(control(), obj,t_not_null);
1510   cast = _gvn.transform( cast );
1511 
1512   // Scan for instances of 'obj' in the current JVM mapping.
1513   // These instances are known to be not-null after the test.
1514   if (do_replace_in_map)
1515     replace_in_map(obj, cast);
1516 
1517   return cast;                  // Return casted value
1518 }
1519 
1520 Node* GraphKit::cast_to_non_larval(Node* obj) {
1521   const Type* obj_type = gvn().type(obj);
1522   if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) {
1523     return obj;
1524   }
1525 
1526   Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass());
1527   replace_in_map(obj, new_obj);
1528   return new_obj;
1529 }
1530 
1531 // Sometimes in intrinsics, we implicitly know an object is not null
1532 // (there's no actual null check) so we can cast it to not null. In
1533 // the course of optimizations, the input to the cast can become null.
1534 // In that case that data path will die and we need the control path
1535 // to become dead as well to keep the graph consistent. So we have to
1536 // add a check for null for which one branch can't be taken. It uses
1537 // an OpaqueNotNull node that will cause the check to be removed after loop
1538 // opts so the test goes away and the compiled code doesn't execute a
1539 // useless check.
1540 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1541   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1542     return value;
1543   }
1544   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1545   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1546   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1547   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1548   _gvn.set_type(iff, iff->Value(&_gvn));
1549   if (!tst->is_Con()) {
1550     record_for_igvn(iff);

1623 // These are layered on top of the factory methods in LoadNode and StoreNode,
1624 // and integrate with the parser's memory state and _gvn engine.
1625 //
1626 
1627 // factory methods in "int adr_idx"
1628 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1629                           MemNode::MemOrd mo,
1630                           LoadNode::ControlDependency control_dependency,
1631                           bool require_atomic_access,
1632                           bool unaligned,
1633                           bool mismatched,
1634                           bool unsafe,
1635                           uint8_t barrier_data) {
1636   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1637   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1638   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1639   debug_only(adr_type = C->get_adr_type(adr_idx));
1640   Node* mem = memory(adr_idx);
1641   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1642   ld = _gvn.transform(ld);
1643 
1644   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1645     // Improve graph before escape analysis and boxing elimination.
1646     record_for_igvn(ld);
1647     if (ld->is_DecodeN()) {
1648       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1649       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1650       // a Phi). Recording such cases is still perfectly sound, but may be
1651       // unnecessary and result in some minor IGVN overhead.
1652       record_for_igvn(ld->in(1));
1653     }
1654   }
1655   return ld;
1656 }
1657 
1658 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1659                                 MemNode::MemOrd mo,
1660                                 bool require_atomic_access,
1661                                 bool unaligned,
1662                                 bool mismatched,
1663                                 bool unsafe,

1677   if (unsafe) {
1678     st->as_Store()->set_unsafe_access();
1679   }
1680   st->as_Store()->set_barrier_data(barrier_data);
1681   st = _gvn.transform(st);
1682   set_memory(st, adr_idx);
1683   // Back-to-back stores can only remove intermediate store with DU info
1684   // so push on worklist for optimizer.
1685   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1686     record_for_igvn(st);
1687 
1688   return st;
1689 }
1690 
1691 Node* GraphKit::access_store_at(Node* obj,
1692                                 Node* adr,
1693                                 const TypePtr* adr_type,
1694                                 Node* val,
1695                                 const Type* val_type,
1696                                 BasicType bt,
1697                                 DecoratorSet decorators,
1698                                 bool safe_for_replace,
1699                                 const InlineTypeNode* vt) {
1700   // Transformation of a value which could be null pointer (CastPP #null)
1701   // could be delayed during Parse (for example, in adjust_map_after_if()).
1702   // Execute transformation here to avoid barrier generation in such case.
1703   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1704     val = _gvn.makecon(TypePtr::NULL_PTR);
1705   }
1706 
1707   if (stopped()) {
1708     return top(); // Dead path ?
1709   }
1710 
1711   assert(val != nullptr, "not dead path");
1712   if (val->is_InlineType()) {
1713     // Store to non-flat field. Buffer the inline type and make sure
1714     // the store is re-executed if the allocation triggers deoptimization.
1715     PreserveReexecuteState preexecs(this);
1716     jvms()->set_should_reexecute(true);
1717     val = val->as_InlineType()->buffer(this, safe_for_replace);
1718   }
1719 
1720   C2AccessValuePtr addr(adr, adr_type);
1721   C2AccessValue value(val, val_type);
1722   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1723   if (access.is_raw()) {
1724     return _barrier_set->BarrierSetC2::store_at(access, value);
1725   } else {
1726     return _barrier_set->store_at(access, value);
1727   }
1728 }
1729 
1730 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1731                                Node* adr,   // actual address to store val at
1732                                const TypePtr* adr_type,
1733                                const Type* val_type,
1734                                BasicType bt,
1735                                DecoratorSet decorators,
1736                                Node* ctl) {
1737   if (stopped()) {
1738     return top(); // Dead path ?
1739   }
1740 
1741   C2AccessValuePtr addr(adr, adr_type);
1742   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1743   if (access.is_raw()) {
1744     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1745   } else {
1746     return _barrier_set->load_at(access, val_type);
1747   }
1748 }
1749 
1750 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1751                             const Type* val_type,
1752                             BasicType bt,
1753                             DecoratorSet decorators) {
1754   if (stopped()) {
1755     return top(); // Dead path ?
1756   }
1757 
1758   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1759   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1760   if (access.is_raw()) {
1761     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1762   } else {

1827                                      Node* new_val,
1828                                      const Type* value_type,
1829                                      BasicType bt,
1830                                      DecoratorSet decorators) {
1831   C2AccessValuePtr addr(adr, adr_type);
1832   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1833   if (access.is_raw()) {
1834     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1835   } else {
1836     return _barrier_set->atomic_add_at(access, new_val, value_type);
1837   }
1838 }
1839 
1840 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1841   return _barrier_set->clone(this, src, dst, size, is_array);
1842 }
1843 
1844 //-------------------------array_element_address-------------------------
1845 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1846                                       const TypeInt* sizetype, Node* ctrl) {
1847   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1848   uint shift;
1849   if (arytype->is_flat() && arytype->klass_is_exact()) {
1850     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1851     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1852     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1853     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1854     // though we don't need the address node in this case and throw it away again.
1855     shift = arytype->flat_log_elem_size();
1856   } else {
1857     shift = exact_log2(type2aelembytes(elembt));
1858   }
1859   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1860 
1861   // short-circuit a common case (saves lots of confusing waste motion)
1862   jint idx_con = find_int_con(idx, -1);
1863   if (idx_con >= 0) {
1864     intptr_t offset = header + ((intptr_t)idx_con << shift);
1865     return basic_plus_adr(ary, offset);
1866   }
1867 
1868   // must be correct type for alignment purposes
1869   Node* base  = basic_plus_adr(ary, header);
1870   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1871   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1872   return basic_plus_adr(ary, base, scale);
1873 }
1874 
1875 Node* GraphKit::flat_array_element_address(Node*& array, Node* idx, ciInlineKlass* vk, bool is_null_free,
1876                                            bool is_not_null_free, bool is_atomic) {
1877   ciArrayKlass* array_klass = ciArrayKlass::make(vk, /* flat */ true, is_null_free, is_atomic);
1878   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1879   arytype = arytype->cast_to_exactness(true);
1880   arytype = arytype->cast_to_not_null_free(is_not_null_free);
1881   array = _gvn.transform(new CheckCastPPNode(control(), array, arytype));
1882   return array_element_address(array, idx, T_FLAT_ELEMENT, arytype->size(), control());
1883 }
1884 
1885 //-------------------------load_array_element-------------------------
1886 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1887   const Type* elemtype = arytype->elem();
1888   BasicType elembt = elemtype->array_element_basic_type();
1889   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1890   if (elembt == T_NARROWOOP) {
1891     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1892   }
1893   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1894                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1895   return ld;
1896 }
1897 
1898 //-------------------------set_arguments_for_java_call-------------------------
1899 // Arguments (pre-popped from the stack) are taken from the JVMS.
1900 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1901   PreserveReexecuteState preexecs(this);
1902   if (EnableValhalla) {
1903     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1904     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1905     jvms()->set_should_reexecute(true);
1906     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1907     inc_sp(arg_size);
1908   }
1909   // Add the call arguments
1910   const TypeTuple* domain = call->tf()->domain_sig();
1911   uint nargs = domain->cnt();
1912   int arg_num = 0;
1913   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1914     Node* arg = argument(i-TypeFunc::Parms);
1915     const Type* t = domain->field_at(i);
1916     // TODO 8284443 A static call to a mismatched method should still be scalarized
1917     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1918       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1919       if (!arg->is_InlineType()) {
1920         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1921         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass());
1922       }
1923       InlineTypeNode* vt = arg->as_InlineType();
1924       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1925       // If an inline type argument is passed as fields, attach the Method* to the call site
1926       // to be able to access the extended signature later via attached_method_before_pc().
1927       // For example, see CompiledMethod::preserve_callee_argument_oops().
1928       call->set_override_symbolic_info(true);
1929       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1930       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1931       C->dependencies()->assert_evol_method(call->method());
1932       arg_num++;
1933       continue;
1934     } else if (arg->is_InlineType()) {
1935       // Pass inline type argument via oop to callee
1936       arg = arg->as_InlineType()->buffer(this, true);
1937     }
1938     if (t != Type::HALF) {
1939       arg_num++;
1940     }
1941     call->init_req(idx++, arg);
1942   }
1943 }
1944 
1945 //---------------------------set_edges_for_java_call---------------------------
1946 // Connect a newly created call into the current JVMS.
1947 // A return value node (if any) is returned from set_edges_for_java_call.
1948 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1949 
1950   // Add the predefined inputs:
1951   call->init_req( TypeFunc::Control, control() );
1952   call->init_req( TypeFunc::I_O    , i_o() );
1953   call->init_req( TypeFunc::Memory , reset_memory() );
1954   call->init_req( TypeFunc::FramePtr, frameptr() );
1955   call->init_req( TypeFunc::ReturnAdr, top() );
1956 
1957   add_safepoint_edges(call, must_throw);
1958 
1959   Node* xcall = _gvn.transform(call);
1960 
1961   if (xcall == top()) {
1962     set_control(top());
1963     return;
1964   }
1965   assert(xcall == call, "call identity is stable");
1966 
1967   // Re-use the current map to produce the result.
1968 
1969   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1970   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1971   set_all_memory_call(xcall, separate_io_proj);
1972 
1973   //return xcall;   // no need, caller already has it
1974 }
1975 
1976 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1977   if (stopped())  return top();  // maybe the call folded up?
1978 







1979   // Note:  Since any out-of-line call can produce an exception,
1980   // we always insert an I_O projection from the call into the result.
1981 
1982   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1983 
1984   if (separate_io_proj) {
1985     // The caller requested separate projections be used by the fall
1986     // through and exceptional paths, so replace the projections for
1987     // the fall through path.
1988     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1989     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1990   }
1991 
1992   // Capture the return value, if any.
1993   Node* ret;
1994   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1995     ret = top();
1996   } else if (call->tf()->returns_inline_type_as_fields()) {
1997     // Return of multiple values (inline type fields): we create a
1998     // InlineType node, each field is a projection from the call.
1999     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2000     uint base_input = TypeFunc::Parms;
2001     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2002   } else {
2003     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2004     ciType* t = call->method()->return_type();
2005     if (t->is_klass()) {
2006       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2007       if (type->is_inlinetypeptr()) {
2008         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass());
2009       }
2010     }
2011   }
2012 
2013   return ret;
2014 }
2015 
2016 //--------------------set_predefined_input_for_runtime_call--------------------
2017 // Reading and setting the memory state is way conservative here.
2018 // The real problem is that I am not doing real Type analysis on memory,
2019 // so I cannot distinguish card mark stores from other stores.  Across a GC
2020 // point the Store Barrier and the card mark memory has to agree.  I cannot
2021 // have a card mark store and its barrier split across the GC point from
2022 // either above or below.  Here I get that to happen by reading ALL of memory.
2023 // A better answer would be to separate out card marks from other memory.
2024 // For now, return the input memory state, so that it can be reused
2025 // after the call, if this call has restricted memory effects.
2026 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2027   // Set fixed predefined input arguments
2028   Node* memory = reset_memory();
2029   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
2030   call->init_req( TypeFunc::Control,   control()  );
2031   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
2032   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

2083     if (use->is_MergeMem()) {
2084       wl.push(use);
2085     }
2086   }
2087 }
2088 
2089 // Replace the call with the current state of the kit.
2090 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2091   JVMState* ejvms = nullptr;
2092   if (has_exceptions()) {
2093     ejvms = transfer_exceptions_into_jvms();
2094   }
2095 
2096   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2097   ReplacedNodes replaced_nodes_exception;
2098   Node* ex_ctl = top();
2099 
2100   SafePointNode* final_state = stop();
2101 
2102   // Find all the needed outputs of this call
2103   CallProjections* callprojs = call->extract_projections(true, do_asserts);

2104 
2105   Unique_Node_List wl;
2106   Node* init_mem = call->in(TypeFunc::Memory);
2107   Node* final_mem = final_state->in(TypeFunc::Memory);
2108   Node* final_ctl = final_state->in(TypeFunc::Control);
2109   Node* final_io = final_state->in(TypeFunc::I_O);
2110 
2111   // Replace all the old call edges with the edges from the inlining result
2112   if (callprojs->fallthrough_catchproj != nullptr) {
2113     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2114   }
2115   if (callprojs->fallthrough_memproj != nullptr) {
2116     if (final_mem->is_MergeMem()) {
2117       // Parser's exits MergeMem was not transformed but may be optimized
2118       final_mem = _gvn.transform(final_mem);
2119     }
2120     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2121     add_mergemem_users_to_worklist(wl, final_mem);
2122   }
2123   if (callprojs->fallthrough_ioproj != nullptr) {
2124     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2125   }
2126 
2127   // Replace the result with the new result if it exists and is used
2128   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2129     // If the inlined code is dead, the result projections for an inline type returned as
2130     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2131     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2132            "unexpected number of results");
2133     C->gvn_replace_by(callprojs->resproj[0], result);
2134   }
2135 
2136   if (ejvms == nullptr) {
2137     // No exception edges to simply kill off those paths
2138     if (callprojs->catchall_catchproj != nullptr) {
2139       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2140     }
2141     if (callprojs->catchall_memproj != nullptr) {
2142       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2143     }
2144     if (callprojs->catchall_ioproj != nullptr) {
2145       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2146     }
2147     // Replace the old exception object with top
2148     if (callprojs->exobj != nullptr) {
2149       C->gvn_replace_by(callprojs->exobj, C->top());
2150     }
2151   } else {
2152     GraphKit ekit(ejvms);
2153 
2154     // Load my combined exception state into the kit, with all phis transformed:
2155     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2156     replaced_nodes_exception = ex_map->replaced_nodes();
2157 
2158     Node* ex_oop = ekit.use_exception_state(ex_map);
2159 
2160     if (callprojs->catchall_catchproj != nullptr) {
2161       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2162       ex_ctl = ekit.control();
2163     }
2164     if (callprojs->catchall_memproj != nullptr) {
2165       Node* ex_mem = ekit.reset_memory();
2166       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2167       add_mergemem_users_to_worklist(wl, ex_mem);
2168     }
2169     if (callprojs->catchall_ioproj != nullptr) {
2170       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2171     }
2172 
2173     // Replace the old exception object with the newly created one
2174     if (callprojs->exobj != nullptr) {
2175       C->gvn_replace_by(callprojs->exobj, ex_oop);
2176     }
2177   }
2178 
2179   // Disconnect the call from the graph
2180   call->disconnect_inputs(C);
2181   C->gvn_replace_by(call, C->top());
2182 
2183   // Clean up any MergeMems that feed other MergeMems since the
2184   // optimizer doesn't like that.
2185   while (wl.size() > 0) {
2186     _gvn.transform(wl.pop());
2187   }
2188 
2189   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2190     replaced_nodes.apply(C, final_ctl);
2191   }
2192   if (!ex_ctl->is_top() && do_replaced_nodes) {
2193     replaced_nodes_exception.apply(C, ex_ctl);
2194   }
2195 }
2196 
2197 
2198 //------------------------------increment_counter------------------------------
2199 // for statistics: increment a VM counter by 1
2200 
2201 void GraphKit::increment_counter(address counter_addr) {
2202   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2203   increment_counter(adr1);
2204 }
2205 
2206 void GraphKit::increment_counter(Node* counter_addr) {
2207   Node* ctrl = control();
2208   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2209   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2369  *
2370  * @param n          node that the type applies to
2371  * @param exact_kls  type from profiling
2372  * @param maybe_null did profiling see null?
2373  *
2374  * @return           node with improved type
2375  */
2376 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2377   const Type* current_type = _gvn.type(n);
2378   assert(UseTypeSpeculation, "type speculation must be on");
2379 
2380   const TypePtr* speculative = current_type->speculative();
2381 
2382   // Should the klass from the profile be recorded in the speculative type?
2383   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2384     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2385     const TypeOopPtr* xtype = tklass->as_instance_type();
2386     assert(xtype->klass_is_exact(), "Should be exact");
2387     // Any reason to believe n is not null (from this profiling or a previous one)?
2388     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2389     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2390     // record the new speculative type's depth
2391     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2392     speculative = speculative->with_inline_depth(jvms()->depth());
2393   } else if (current_type->would_improve_ptr(ptr_kind)) {
2394     // Profiling report that null was never seen so we can change the
2395     // speculative type to non null ptr.
2396     if (ptr_kind == ProfileAlwaysNull) {
2397       speculative = TypePtr::NULL_PTR;
2398     } else {
2399       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2400       const TypePtr* ptr = TypePtr::NOTNULL;
2401       if (speculative != nullptr) {
2402         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2403       } else {
2404         speculative = ptr;
2405       }
2406     }
2407   }
2408 
2409   if (speculative != current_type->speculative()) {
2410     // Build a type with a speculative type (what we think we know
2411     // about the type but will need a guard when we use it)
2412     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2413     // We're changing the type, we need a new CheckCast node to carry
2414     // the new type. The new type depends on the control: what
2415     // profiling tells us is only valid from here as far as we can
2416     // tell.
2417     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2418     cast = _gvn.transform(cast);
2419     replace_in_map(n, cast);
2420     n = cast;
2421   }
2422 
2423   return n;
2424 }
2425 
2426 /**
2427  * Record profiling data from receiver profiling at an invoke with the
2428  * type system so that it can propagate it (speculation)
2429  *
2430  * @param n  receiver node
2431  *
2432  * @return   node with improved type
2433  */
2434 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2435   if (!UseTypeSpeculation) {
2436     return n;
2437   }
2438   ciKlass* exact_kls = profile_has_unique_klass();
2439   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2440   if ((java_bc() == Bytecodes::_checkcast ||
2441        java_bc() == Bytecodes::_instanceof ||
2442        java_bc() == Bytecodes::_aastore) &&
2443       method()->method_data()->is_mature()) {
2444     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2445     if (data != nullptr) {
2446       if (java_bc() == Bytecodes::_aastore) {
2447         ciKlass* array_type = nullptr;
2448         ciKlass* element_type = nullptr;
2449         ProfilePtrKind element_ptr = ProfileMaybeNull;
2450         bool flat_array = true;
2451         bool null_free_array = true;
2452         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2453         exact_kls = element_type;
2454         ptr_kind = element_ptr;
2455       } else {
2456         if (!data->as_BitData()->null_seen()) {
2457           ptr_kind = ProfileNeverNull;
2458         } else {
2459           assert(data->is_ReceiverTypeData(), "bad profile data type");
2460           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2461           uint i = 0;
2462           for (; i < call->row_limit(); i++) {
2463             ciKlass* receiver = call->receiver(i);
2464             if (receiver != nullptr) {
2465               break;
2466             }
2467           }
2468           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2469         }

2470       }
2471     }
2472   }
2473   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2474 }
2475 
2476 /**
2477  * Record profiling data from argument profiling at an invoke with the
2478  * type system so that it can propagate it (speculation)
2479  *
2480  * @param dest_method  target method for the call
2481  * @param bc           what invoke bytecode is this?
2482  */
2483 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2484   if (!UseTypeSpeculation) {
2485     return;
2486   }
2487   const TypeFunc* tf    = TypeFunc::make(dest_method);
2488   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2489   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2490   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2491     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2492     if (is_reference_type(targ->basic_type())) {
2493       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2494       ciKlass* better_type = nullptr;
2495       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2496         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2497       }
2498       i++;
2499     }
2500   }
2501 }
2502 
2503 /**
2504  * Record profiling data from parameter profiling at an invoke with
2505  * the type system so that it can propagate it (speculation)
2506  */
2507 void GraphKit::record_profiled_parameters_for_speculation() {
2508   if (!UseTypeSpeculation) {
2509     return;
2510   }
2511   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2631                                   // The first null ends the list.
2632                                   Node* parm0, Node* parm1,
2633                                   Node* parm2, Node* parm3,
2634                                   Node* parm4, Node* parm5,
2635                                   Node* parm6, Node* parm7) {
2636   assert(call_addr != nullptr, "must not call null targets");
2637 
2638   // Slow-path call
2639   bool is_leaf = !(flags & RC_NO_LEAF);
2640   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2641   if (call_name == nullptr) {
2642     assert(!is_leaf, "must supply name for leaf");
2643     call_name = OptoRuntime::stub_name(call_addr);
2644   }
2645   CallNode* call;
2646   if (!is_leaf) {
2647     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2648   } else if (flags & RC_NO_FP) {
2649     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2650   } else  if (flags & RC_VECTOR){
2651     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2652     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2653   } else {
2654     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2655   }
2656 
2657   // The following is similar to set_edges_for_java_call,
2658   // except that the memory effects of the call are restricted to AliasIdxRaw.
2659 
2660   // Slow path call has no side-effects, uses few values
2661   bool wide_in  = !(flags & RC_NARROW_MEM);
2662   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2663 
2664   Node* prev_mem = nullptr;
2665   if (wide_in) {
2666     prev_mem = set_predefined_input_for_runtime_call(call);
2667   } else {
2668     assert(!wide_out, "narrow in => narrow out");
2669     Node* narrow_mem = memory(adr_type);
2670     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2671   }

2711 
2712   if (has_io) {
2713     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2714   }
2715   return call;
2716 
2717 }
2718 
2719 // i2b
2720 Node* GraphKit::sign_extend_byte(Node* in) {
2721   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2722   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2723 }
2724 
2725 // i2s
2726 Node* GraphKit::sign_extend_short(Node* in) {
2727   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2728   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2729 }
2730 
2731 
2732 //------------------------------merge_memory-----------------------------------
2733 // Merge memory from one path into the current memory state.
2734 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2735   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2736     Node* old_slice = mms.force_memory();
2737     Node* new_slice = mms.memory2();
2738     if (old_slice != new_slice) {
2739       PhiNode* phi;
2740       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2741         if (mms.is_empty()) {
2742           // clone base memory Phi's inputs for this memory slice
2743           assert(old_slice == mms.base_memory(), "sanity");
2744           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2745           _gvn.set_type(phi, Type::MEMORY);
2746           for (uint i = 1; i < phi->req(); i++) {
2747             phi->init_req(i, old_slice->in(i));
2748           }
2749         } else {
2750           phi = old_slice->as_Phi(); // Phi was generated already
2751         }

3014 
3015   // Now do a linear scan of the secondary super-klass array.  Again, no real
3016   // performance impact (too rare) but it's gotta be done.
3017   // Since the code is rarely used, there is no penalty for moving it
3018   // out of line, and it can only improve I-cache density.
3019   // The decision to inline or out-of-line this final check is platform
3020   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3021   Node* psc = gvn.transform(
3022     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3023 
3024   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3025   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3026   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3027 
3028   // Return false path; set default control to true path.
3029   *ctrl = gvn.transform(r_ok_subtype);
3030   return gvn.transform(r_not_subtype);
3031 }
3032 
3033 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3034   const Type* sub_t = _gvn.type(obj_or_subklass);
3035   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3036     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3037     obj_or_subklass = makecon(sub_t);
3038   }
3039   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3040   if (expand_subtype_check) {
3041     MergeMemNode* mem = merged_memory();
3042     Node* ctrl = control();
3043     Node* subklass = obj_or_subklass;
3044     if (!sub_t->isa_klassptr()) {
3045       subklass = load_object_klass(obj_or_subklass);
3046     }
3047 
3048     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3049     set_control(ctrl);
3050     return n;
3051   }
3052 
3053   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3054   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3055   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3056   set_control(_gvn.transform(new IfTrueNode(iff)));
3057   return _gvn.transform(new IfFalseNode(iff));
3058 }
3059 
3060 // Profile-driven exact type check:
3061 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3062                                     float prob, Node* *casted_receiver) {

3063   assert(!klass->is_interface(), "no exact type check on interfaces");
3064   Node* fail = top();
3065   const Type* rec_t = _gvn.type(receiver);
3066   if (rec_t->is_inlinetypeptr()) {
3067     if (klass->equals(rec_t->inline_klass())) {
3068       (*casted_receiver) = receiver; // Always passes
3069     } else {
3070       (*casted_receiver) = top();    // Always fails
3071       fail = control();
3072       set_control(top());
3073     }
3074     return fail;
3075   }
3076   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3077   Node* recv_klass = load_object_klass(receiver);
3078   fail = type_check(recv_klass, tklass, prob);





3079 
3080   if (!stopped()) {
3081     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3082     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3083     assert(recv_xtype->klass_is_exact(), "");
3084 
3085     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3086       // Subsume downstream occurrences of receiver with a cast to
3087       // recv_xtype, since now we know what the type will be.
3088       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3089       Node* res = _gvn.transform(cast);
3090       if (recv_xtype->is_inlinetypeptr()) {
3091         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3092         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3093       }
3094       (*casted_receiver) = res;
3095       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3096       // (User must make the replace_in_map call.)
3097     }
3098   }
3099 
3100   return fail;
3101 }
3102 
3103 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3104                            float prob) {
3105   Node* want_klass = makecon(tklass);
3106   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3107   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3108   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3109   set_control(_gvn.transform(new IfTrueNode (iff)));
3110   Node* fail = _gvn.transform(new IfFalseNode(iff));
3111   return fail;
3112 }
3113 
3114 //------------------------------subtype_check_receiver-------------------------
3115 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3116                                        Node** casted_receiver) {
3117   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3118   Node* want_klass = makecon(tklass);
3119 
3120   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3121 
3122   // Ignore interface type information until interface types are properly tracked.
3123   if (!stopped() && !klass->is_interface()) {
3124     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3125     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3126     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3127       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3128       if (recv_type->is_inlinetypeptr()) {
3129         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3130       }
3131       (*casted_receiver) = cast;
3132     }
3133   }
3134 
3135   return slow_ctl;
3136 }
3137 
3138 //------------------------------seems_never_null-------------------------------
3139 // Use null_seen information if it is available from the profile.
3140 // If we see an unexpected null at a type check we record it and force a
3141 // recompile; the offending check will be recompiled to handle nulls.
3142 // If we see several offending BCIs, then all checks in the
3143 // method will be recompiled.
3144 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3145   speculating = !_gvn.type(obj)->speculative_maybe_null();
3146   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3147   if (UncommonNullCast               // Cutout for this technique
3148       && obj != null()               // And not the -Xcomp stupid case?
3149       && !too_many_traps(reason)
3150       ) {
3151     if (speculating) {

3220 
3221 //------------------------maybe_cast_profiled_receiver-------------------------
3222 // If the profile has seen exactly one type, narrow to exactly that type.
3223 // Subsequent type checks will always fold up.
3224 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3225                                              const TypeKlassPtr* require_klass,
3226                                              ciKlass* spec_klass,
3227                                              bool safe_for_replace) {
3228   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3229 
3230   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3231 
3232   // Make sure we haven't already deoptimized from this tactic.
3233   if (too_many_traps_or_recompiles(reason))
3234     return nullptr;
3235 
3236   // (No, this isn't a call, but it's enough like a virtual call
3237   // to use the same ciMethod accessor to get the profile info...)
3238   // If we have a speculative type use it instead of profiling (which
3239   // may not help us)
3240   ciKlass* exact_kls = spec_klass;
3241   if (exact_kls == nullptr) {
3242     if (java_bc() == Bytecodes::_aastore) {
3243       ciKlass* array_type = nullptr;
3244       ciKlass* element_type = nullptr;
3245       ProfilePtrKind element_ptr = ProfileMaybeNull;
3246       bool flat_array = true;
3247       bool null_free_array = true;
3248       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3249       exact_kls = element_type;
3250     } else {
3251       exact_kls = profile_has_unique_klass();
3252     }
3253   }
3254   if (exact_kls != nullptr) {// no cast failures here
3255     if (require_klass == nullptr ||
3256         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3257       // If we narrow the type to match what the type profile sees or
3258       // the speculative type, we can then remove the rest of the
3259       // cast.
3260       // This is a win, even if the exact_kls is very specific,
3261       // because downstream operations, such as method calls,
3262       // will often benefit from the sharper type.
3263       Node* exact_obj = not_null_obj; // will get updated in place...
3264       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3265                                             &exact_obj);
3266       { PreserveJVMState pjvms(this);
3267         set_control(slow_ctl);
3268         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3269       }
3270       if (safe_for_replace) {
3271         replace_in_map(not_null_obj, exact_obj);
3272       }
3273       return exact_obj;

3363   // If not_null_obj is dead, only null-path is taken
3364   if (stopped()) {              // Doing instance-of on a null?
3365     set_control(null_ctl);
3366     return intcon(0);
3367   }
3368   region->init_req(_null_path, null_ctl);
3369   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3370   if (null_ctl == top()) {
3371     // Do this eagerly, so that pattern matches like is_diamond_phi
3372     // will work even during parsing.
3373     assert(_null_path == PATH_LIMIT-1, "delete last");
3374     region->del_req(_null_path);
3375     phi   ->del_req(_null_path);
3376   }
3377 
3378   // Do we know the type check always succeed?
3379   bool known_statically = false;
3380   if (_gvn.type(superklass)->singleton()) {
3381     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3382     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3383     if (subk != nullptr && subk->is_loaded()) {
3384       int static_res = C->static_subtype_check(superk, subk);
3385       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3386     }
3387   }
3388 
3389   if (!known_statically) {
3390     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3391     // We may not have profiling here or it may not help us. If we
3392     // have a speculative type use it to perform an exact cast.
3393     ciKlass* spec_obj_type = obj_type->speculative_type();
3394     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3395       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3396       if (stopped()) {            // Profile disagrees with this path.
3397         set_control(null_ctl);    // Null is the only remaining possibility.
3398         return intcon(0);
3399       }
3400       if (cast_obj != nullptr) {
3401         not_null_obj = cast_obj;
3402       }
3403     }

3419   record_for_igvn(region);
3420 
3421   // If we know the type check always succeeds then we don't use the
3422   // profiling data at this bytecode. Don't lose it, feed it to the
3423   // type system as a speculative type.
3424   if (safe_for_replace) {
3425     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3426     replace_in_map(obj, casted_obj);
3427   }
3428 
3429   return _gvn.transform(phi);
3430 }
3431 
3432 //-------------------------------gen_checkcast---------------------------------
3433 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3434 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3435 // uncommon-trap paths work.  Adjust stack after this call.
3436 // If failure_control is supplied and not null, it is filled in with
3437 // the control edge for the cast failure.  Otherwise, an appropriate
3438 // uncommon trap or exception is thrown.
3439 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) {

3440   kill_dead_locals();           // Benefit all the uncommon traps
3441   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3442   const Type* obj_type = _gvn.type(obj);
3443   if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) {
3444     // Special case: larval inline objects must not be scalarized. They are also generally not
3445     // allowed to participate in most operations except as the first operand of putfield, or as an
3446     // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being
3447     // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize
3448     // value objects in all other places. This special case comes from the limitation of the Java
3449     // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete
3450     // value type. We must do this first because C->static_subtype_check may do nothing when
3451     // StressReflectiveCode is set.
3452     return obj;
3453   }
3454 
3455   // Else it must be a non-larval object
3456   obj = cast_to_non_larval(obj);
3457 
3458   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3459   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3460   bool safe_for_replace = (failure_control == nullptr);
3461   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3462 
3463   // Fast cutout:  Check the case that the cast is vacuously true.
3464   // This detects the common cases where the test will short-circuit
3465   // away completely.  We do this before we perform the null check,
3466   // because if the test is going to turn into zero code, we don't
3467   // want a residual null check left around.  (Causes a slowdown,
3468   // for example, in some objArray manipulations, such as a[i]=a[j].)
3469   if (improved_klass_ptr_type->singleton()) {
3470     const TypeKlassPtr* kptr = nullptr;
3471     if (obj_type->isa_oop_ptr()) {
3472       kptr = obj_type->is_oopptr()->as_klass_type();
3473     } else if (obj->is_InlineType()) {
3474       ciInlineKlass* vk = obj_type->inline_klass();
3475       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3476     }
3477 
3478     if (kptr != nullptr) {
3479       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3480       case Compile::SSC_always_true:
3481         // If we know the type check always succeed then we don't use
3482         // the profiling data at this bytecode. Don't lose it, feed it
3483         // to the type system as a speculative type.
3484         obj = record_profiled_receiver_for_speculation(obj);
3485         if (null_free) {
3486           assert(safe_for_replace, "must be");
3487           obj = null_check(obj);
3488         }
3489         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3490         return obj;
3491       case Compile::SSC_always_false:
3492         if (null_free) {
3493           assert(safe_for_replace, "must be");
3494           obj = null_check(obj);
3495         }
3496         // It needs a null check because a null will *pass* the cast check.
3497         if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) {

3498           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3499           Deoptimization::DeoptReason reason = is_aastore ?
3500             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3501           builtin_throw(reason);
3502           return top();
3503         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3504           return null_assert(obj);
3505         }
3506         break; // Fall through to full check
3507       default:
3508         break;
3509       }
3510     }
3511   }
3512 
3513   ciProfileData* data = nullptr;

3514   if (failure_control == nullptr) {        // use MDO in regular case only
3515     assert(java_bc() == Bytecodes::_aastore ||
3516            java_bc() == Bytecodes::_checkcast,
3517            "interpreter profiles type checks only for these BCs");
3518     if (method()->method_data()->is_mature()) {
3519       data = method()->method_data()->bci_to_data(bci());
3520     }
3521   }
3522 
3523   // Make the merge point
3524   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3525   RegionNode* region = new RegionNode(PATH_LIMIT);
3526   Node*       phi    = new PhiNode(region, toop);
3527   _gvn.set_type(region, Type::CONTROL);
3528   _gvn.set_type(phi, toop);
3529 
3530   C->set_has_split_ifs(true); // Has chance for split-if optimization
3531 
3532   // Use null-cast information if it is available
3533   bool speculative_not_null = false;
3534   bool never_see_null = ((failure_control == nullptr)  // regular case only
3535                          && seems_never_null(obj, data, speculative_not_null));
3536 
3537   if (obj->is_InlineType()) {
3538     // Re-execute if buffering during triggers deoptimization
3539     PreserveReexecuteState preexecs(this);
3540     jvms()->set_should_reexecute(true);
3541     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3542   }
3543 
3544   // Null check; get casted pointer; set region slot 3
3545   Node* null_ctl = top();
3546   Node* not_null_obj = nullptr;
3547   if (null_free) {
3548     assert(safe_for_replace, "must be");
3549     not_null_obj = null_check(obj);
3550   } else {
3551     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3552   }
3553 
3554   // If not_null_obj is dead, only null-path is taken
3555   if (stopped()) {              // Doing instance-of on a null?
3556     set_control(null_ctl);
3557     if (toop->is_inlinetypeptr()) {
3558       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3559     }
3560     return null();
3561   }
3562   region->init_req(_null_path, null_ctl);
3563   phi   ->init_req(_null_path, null());  // Set null path value
3564   if (null_ctl == top()) {
3565     // Do this eagerly, so that pattern matches like is_diamond_phi
3566     // will work even during parsing.
3567     assert(_null_path == PATH_LIMIT-1, "delete last");
3568     region->del_req(_null_path);
3569     phi   ->del_req(_null_path);
3570   }
3571 
3572   Node* cast_obj = nullptr;
3573   if (improved_klass_ptr_type->klass_is_exact()) {
3574     // The following optimization tries to statically cast the speculative type of the object
3575     // (for example obtained during profiling) to the type of the superklass and then do a
3576     // dynamic check that the type of the object is what we expect. To work correctly
3577     // for checkcast and aastore the type of superklass should be exact.
3578     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3579     // We may not have profiling here or it may not help us. If we have
3580     // a speculative type use it to perform an exact cast.
3581     ciKlass* spec_obj_type = obj_type->speculative_type();
3582     if (spec_obj_type != nullptr || data != nullptr) {
3583       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3584       if (cast_obj != nullptr) {
3585         if (failure_control != nullptr) // failure is now impossible
3586           (*failure_control) = top();
3587         // adjust the type of the phi to the exact klass:
3588         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3589       }
3590     }
3591   }
3592 
3593   if (cast_obj == nullptr) {
3594     // Generate the subtype check
3595     Node* improved_superklass = superklass;
3596     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3597       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3598       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3599       // Additionally, the benefit would only be minor in non-constant cases.
3600       improved_superklass = makecon(improved_klass_ptr_type);
3601     }
3602     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);

3603     // Plug in success path into the merge
3604     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3605     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3606     if (failure_control == nullptr) {
3607       if (not_subtype_ctrl != top()) { // If failure is possible
3608         PreserveJVMState pjvms(this);
3609         set_control(not_subtype_ctrl);
3610         Node* obj_klass = nullptr;
3611         if (not_null_obj->is_InlineType()) {
3612           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3613         } else {
3614           obj_klass = load_object_klass(not_null_obj);
3615         }
3616         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3617         Deoptimization::DeoptReason reason = is_aastore ?
3618           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3619         builtin_throw(reason);
3620       }
3621     } else {
3622       (*failure_control) = not_subtype_ctrl;
3623     }
3624   }
3625 
3626   region->init_req(_obj_path, control());
3627   phi   ->init_req(_obj_path, cast_obj);
3628 
3629   // A merge of null or Casted-NotNull obj
3630   Node* res = _gvn.transform(phi);
3631 
3632   // Note I do NOT always 'replace_in_map(obj,result)' here.
3633   //  if( tk->klass()->can_be_primary_super()  )
3634     // This means that if I successfully store an Object into an array-of-String
3635     // I 'forget' that the Object is really now known to be a String.  I have to
3636     // do this because we don't have true union types for interfaces - if I store
3637     // a Baz into an array-of-Interface and then tell the optimizer it's an
3638     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3639     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3640   //  replace_in_map( obj, res );
3641 
3642   // Return final merged results
3643   set_control( _gvn.transform(region) );
3644   record_for_igvn(region);
3645 
3646   bool not_inline = !toop->can_be_inline_type();
3647   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array());
3648   if (EnableValhalla && (not_inline || not_flat_in_array)) {
3649     // Check if obj has been loaded from an array
3650     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3651     Node* array = nullptr;
3652     if (obj->isa_Load()) {
3653       Node* address = obj->in(MemNode::Address);
3654       if (address->isa_AddP()) {
3655         array = address->as_AddP()->in(AddPNode::Base);
3656       }
3657     } else if (obj->is_Phi()) {
3658       Node* region = obj->in(0);
3659       // TODO make this more robust (see JDK-8231346)
3660       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3661         IfNode* iff = region->in(2)->in(0)->isa_If();
3662         if (iff != nullptr) {
3663           iff->is_flat_array_check(&_gvn, &array);
3664         }
3665       }
3666     }
3667     if (array != nullptr) {
3668       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3669       if (ary_t != nullptr) {
3670         if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) {
3671           // Casting array element to a non-inline-type, mark array as not null-free.
3672           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3673           replace_in_map(array, cast);
3674           array = cast;
3675         }
3676         if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) {
3677           // Casting array element to a non-flat-in-array type, mark array as not flat.
3678           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3679           replace_in_map(array, cast);
3680           array = cast;
3681         }
3682       }
3683     }
3684   }
3685 
3686   if (!stopped() && !res->is_InlineType()) {
3687     res = record_profiled_receiver_for_speculation(res);
3688     if (toop->is_inlinetypeptr() && !maybe_larval) {
3689       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass());
3690       res = vt;
3691       if (safe_for_replace) {
3692         replace_in_map(obj, vt);
3693         replace_in_map(not_null_obj, vt);
3694         replace_in_map(res, vt);
3695       }
3696     }
3697   }
3698   return res;
3699 }
3700 
3701 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3702   // Load markword
3703   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3704   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3705   if (check_lock) {
3706     // Check if obj is locked
3707     Node* locked_bit = MakeConX(markWord::unlocked_value);
3708     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3709     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3710     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3711     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3712     _gvn.transform(iff);
3713     Node* locked_region = new RegionNode(3);
3714     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3715 
3716     // Unlocked: Use bits from mark word
3717     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3718     mark_phi->init_req(1, mark);
3719 
3720     // Locked: Load prototype header from klass
3721     set_control(_gvn.transform(new IfFalseNode(iff)));
3722     // Make loads control dependent to make sure they are only executed if array is locked
3723     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3724     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3725     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3726     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3727 
3728     locked_region->init_req(2, control());
3729     mark_phi->init_req(2, proto);
3730     set_control(_gvn.transform(locked_region));
3731     record_for_igvn(locked_region);
3732 
3733     mark = mark_phi;
3734   }
3735 
3736   // Now check if mark word bits are set
3737   Node* mask = MakeConX(mask_val);
3738   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3739   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3740   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3741   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3742 }
3743 
3744 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3745   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3746 }
3747 
3748 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3749   // We can't use immutable memory here because the mark word is mutable.
3750   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3751   // check is moved out of loops (mainly to enable loop unswitching).
3752   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3753   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3754   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3755 }
3756 
3757 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3758   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3759 }
3760 
3761 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) {
3762   assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat");
3763 
3764   // TODO 8350865 Add a stress flag to always access atomic if layout exists?
3765   if (!vk->has_non_atomic_layout()) {
3766     return intcon(1); // Always atomic
3767   } else if (!vk->has_atomic_layout()) {
3768     return intcon(0); // Never atomic
3769   }
3770 
3771   // TODO 8350865 Don't fold this klass load because atomicity is currently not included in the typesystem
3772   Node* array_klass = load_object_klass(array, /* fold_for_arrays = */ false);
3773   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3774   Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset);
3775   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
3776   Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT)));
3777   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3778 }
3779 
3780 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3781 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3782   RegionNode* region = new RegionNode(3);
3783   Node* null_ctl = top();
3784   null_check_oop(val, &null_ctl);
3785   if (null_ctl != top()) {
3786     PreserveJVMState pjvms(this);
3787     set_control(null_ctl);
3788     {
3789       // Deoptimize if null-free array
3790       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3791       inc_sp(nargs);
3792       uncommon_trap(Deoptimization::Reason_null_check,
3793                     Deoptimization::Action_none);
3794     }
3795     region->init_req(1, control());
3796   }
3797   region->init_req(2, control());
3798   set_control(_gvn.transform(region));
3799   record_for_igvn(region);
3800   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3801     // Since we were just successfully storing null, the array can't be null free.
3802     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3803     ary_t = ary_t->cast_to_not_null_free();
3804     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3805     if (safe_for_replace) {
3806       replace_in_map(ary, cast);
3807     }
3808     ary = cast;
3809   }
3810   return ary;
3811 }
3812 
3813 //------------------------------next_monitor-----------------------------------
3814 // What number should be given to the next monitor?
3815 int GraphKit::next_monitor() {
3816   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3817   int next = current + C->sync_stack_slots();
3818   // Keep the toplevel high water mark current:
3819   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3820   return current;
3821 }
3822 
3823 //------------------------------insert_mem_bar---------------------------------
3824 // Memory barrier to avoid floating things around
3825 // The membar serves as a pinch point between both control and all memory slices.
3826 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3827   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3828   mb->init_req(TypeFunc::Control, control());
3829   mb->init_req(TypeFunc::Memory,  reset_memory());
3830   Node* membar = _gvn.transform(mb);

3858   }
3859   Node* membar = _gvn.transform(mb);
3860   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3861   if (alias_idx == Compile::AliasIdxBot) {
3862     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3863   } else {
3864     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3865   }
3866   return membar;
3867 }
3868 
3869 //------------------------------shared_lock------------------------------------
3870 // Emit locking code.
3871 FastLockNode* GraphKit::shared_lock(Node* obj) {
3872   // bci is either a monitorenter bc or InvocationEntryBci
3873   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3874   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3875 
3876   if( !GenerateSynchronizationCode )
3877     return nullptr;                // Not locking things?
3878 
3879   if (stopped())                // Dead monitor?
3880     return nullptr;
3881 
3882   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3883 
3884   // Box the stack location
3885   Node* box = new BoxLockNode(next_monitor());
3886   // Check for bailout after new BoxLockNode
3887   if (failing()) { return nullptr; }
3888   box = _gvn.transform(box);
3889   Node* mem = reset_memory();
3890 
3891   FastLockNode * flock = _gvn.transform(new FastLockNode(nullptr, obj, box) )->as_FastLock();
3892 
3893   // Add monitor to debug info for the slow path.  If we block inside the
3894   // slow path and de-opt, we need the monitor hanging around
3895   map()->push_monitor( flock );
3896 
3897   const TypeFunc *tf = LockNode::lock_type();
3898   LockNode *lock = new LockNode(C, tf);

3927   }
3928 #endif
3929 
3930   return flock;
3931 }
3932 
3933 
3934 //------------------------------shared_unlock----------------------------------
3935 // Emit unlocking code.
3936 void GraphKit::shared_unlock(Node* box, Node* obj) {
3937   // bci is either a monitorenter bc or InvocationEntryBci
3938   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3939   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3940 
3941   if( !GenerateSynchronizationCode )
3942     return;
3943   if (stopped()) {               // Dead monitor?
3944     map()->pop_monitor();        // Kill monitor from debug info
3945     return;
3946   }
3947   assert(!obj->is_InlineType(), "should not unlock on inline type");
3948 
3949   // Memory barrier to avoid floating things down past the locked region
3950   insert_mem_bar(Op_MemBarReleaseLock);
3951 
3952   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3953   UnlockNode *unlock = new UnlockNode(C, tf);
3954 #ifdef ASSERT
3955   unlock->set_dbg_jvms(sync_jvms());
3956 #endif
3957   uint raw_idx = Compile::AliasIdxRaw;
3958   unlock->init_req( TypeFunc::Control, control() );
3959   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3960   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3961   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3962   unlock->init_req( TypeFunc::ReturnAdr, top() );
3963 
3964   unlock->init_req(TypeFunc::Parms + 0, obj);
3965   unlock->init_req(TypeFunc::Parms + 1, box);
3966   unlock = _gvn.transform(unlock)->as_Unlock();
3967 
3968   Node* mem = reset_memory();
3969 
3970   // unlock has no side-effects, sets few values
3971   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3972 
3973   // Kill monitor from debug info
3974   map()->pop_monitor( );
3975 }
3976 
3977 //-------------------------------get_layout_helper-----------------------------
3978 // If the given klass is a constant or known to be an array,
3979 // fetch the constant layout helper value into constant_value
3980 // and return null.  Otherwise, load the non-constant
3981 // layout helper value, and return the node which represents it.
3982 // This two-faced routine is useful because allocation sites
3983 // almost always feature constant types.
3984 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3985   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3986   if (!StressReflectiveCode && klass_t != nullptr) {
3987     bool xklass = klass_t->klass_is_exact();
3988     bool can_be_flat = false;
3989     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
3990     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
3991       // Don't constant fold if the runtime type might be a flat array but the static type is not.
3992       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
3993       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array());
3994     }
3995     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
3996       jint lhelper;
3997       if (klass_t->is_flat()) {
3998         lhelper = ary_type->flat_layout_helper();
3999       } else if (klass_t->isa_aryklassptr()) {
4000         BasicType elem = ary_type->elem()->array_element_basic_type();
4001         if (is_reference_type(elem, true)) {
4002           elem = T_OBJECT;
4003         }
4004         lhelper = Klass::array_layout_helper(elem);
4005       } else {
4006         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4007       }
4008       if (lhelper != Klass::_lh_neutral_value) {
4009         constant_value = lhelper;
4010         return (Node*) nullptr;
4011       }
4012     }
4013   }
4014   constant_value = Klass::_lh_neutral_value;  // put in a known value
4015   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4016   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4017 }
4018 
4019 // We just put in an allocate/initialize with a big raw-memory effect.
4020 // Hook selected additional alias categories on the initialization.
4021 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4022                                 MergeMemNode* init_in_merge,
4023                                 Node* init_out_raw) {
4024   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4025   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4026 
4027   Node* prevmem = kit.memory(alias_idx);
4028   init_in_merge->set_memory_at(alias_idx, prevmem);
4029   if (init_out_raw != nullptr) {
4030     kit.set_memory(init_out_raw, alias_idx);
4031   }
4032 }
4033 
4034 //---------------------------set_output_for_allocation-------------------------
4035 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4036                                           const TypeOopPtr* oop_type,
4037                                           bool deoptimize_on_exception) {
4038   int rawidx = Compile::AliasIdxRaw;
4039   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4040   add_safepoint_edges(alloc);
4041   Node* allocx = _gvn.transform(alloc);
4042   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4043   // create memory projection for i_o
4044   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4045   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4046 
4047   // create a memory projection as for the normal control path
4048   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4049   set_memory(malloc, rawidx);
4050 
4051   // a normal slow-call doesn't change i_o, but an allocation does
4052   // we create a separate i_o projection for the normal control path
4053   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4054   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4055 
4056   // put in an initialization barrier
4057   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4058                                                  rawoop)->as_Initialize();
4059   assert(alloc->initialization() == init,  "2-way macro link must work");
4060   assert(init ->allocation()     == alloc, "2-way macro link must work");
4061   {
4062     // Extract memory strands which may participate in the new object's
4063     // initialization, and source them from the new InitializeNode.
4064     // This will allow us to observe initializations when they occur,
4065     // and link them properly (as a group) to the InitializeNode.
4066     assert(init->in(InitializeNode::Memory) == malloc, "");
4067     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4068     init->set_req(InitializeNode::Memory, minit_in);
4069     record_for_igvn(minit_in); // fold it up later, if possible
4070     _gvn.set_type(minit_in, Type::MEMORY);
4071     Node* minit_out = memory(rawidx);
4072     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4073     // Add an edge in the MergeMem for the header fields so an access
4074     // to one of those has correct memory state
4075     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4076     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4077     if (oop_type->isa_aryptr()) {
4078       const TypeAryPtr* arytype = oop_type->is_aryptr();
4079       if (arytype->is_flat()) {
4080         // Initially all flat array accesses share a single slice
4081         // but that changes after parsing. Prepare the memory graph so
4082         // it can optimize flat array accesses properly once they
4083         // don't share a single slice.
4084         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4085         C->set_flat_accesses_share_alias(false);
4086         ciInlineKlass* vk = arytype->elem()->inline_klass();
4087         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4088           ciField* field = vk->nonstatic_field_at(i);
4089           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4090             continue;  // do not bother to track really large numbers of fields
4091           int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
4092           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4093           int fieldidx = C->get_alias_index(adr_type, true);
4094           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4095           // can result in per flat array field Phis to be created which confuses the logic of
4096           // Compile::adjust_flat_array_access_aliases().
4097           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4098         }
4099         C->set_flat_accesses_share_alias(true);
4100         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4101       } else {
4102         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4103         int            elemidx  = C->get_alias_index(telemref);
4104         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4105       }
4106     } else if (oop_type->isa_instptr()) {
4107       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4108       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4109       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4110         ciField* field = ik->nonstatic_field_at(i);
4111         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4112           continue;  // do not bother to track really large numbers of fields
4113         // Find (or create) the alias category for this field:
4114         int fieldidx = C->alias_type(field)->index();
4115         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4116       }
4117     }
4118   }
4119 
4120   // Cast raw oop to the real thing...
4121   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4122   javaoop = _gvn.transform(javaoop);
4123   C->set_recent_alloc(control(), javaoop);
4124   assert(just_allocated_object(control()) == javaoop, "just allocated");
4125 
4126 #ifdef ASSERT
4127   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

4138       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4139     }
4140   }
4141 #endif //ASSERT
4142 
4143   return javaoop;
4144 }
4145 
4146 //---------------------------new_instance--------------------------------------
4147 // This routine takes a klass_node which may be constant (for a static type)
4148 // or may be non-constant (for reflective code).  It will work equally well
4149 // for either, and the graph will fold nicely if the optimizer later reduces
4150 // the type to a constant.
4151 // The optional arguments are for specialized use by intrinsics:
4152 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4153 //  - If 'return_size_val', report the total object size to the caller.
4154 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4155 Node* GraphKit::new_instance(Node* klass_node,
4156                              Node* extra_slow_test,
4157                              Node* *return_size_val,
4158                              bool deoptimize_on_exception,
4159                              InlineTypeNode* inline_type_node) {
4160   // Compute size in doublewords
4161   // The size is always an integral number of doublewords, represented
4162   // as a positive bytewise size stored in the klass's layout_helper.
4163   // The layout_helper also encodes (in a low bit) the need for a slow path.
4164   jint  layout_con = Klass::_lh_neutral_value;
4165   Node* layout_val = get_layout_helper(klass_node, layout_con);
4166   bool  layout_is_con = (layout_val == nullptr);
4167 
4168   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4169   // Generate the initial go-slow test.  It's either ALWAYS (return a
4170   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4171   // case) a computed value derived from the layout_helper.
4172   Node* initial_slow_test = nullptr;
4173   if (layout_is_con) {
4174     assert(!StressReflectiveCode, "stress mode does not use these paths");
4175     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4176     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4177   } else {   // reflective case
4178     // This reflective path is used by Unsafe.allocateInstance.
4179     // (It may be stress-tested by specifying StressReflectiveCode.)
4180     // Basically, we want to get into the VM is there's an illegal argument.
4181     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4182     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4183     if (extra_slow_test != intcon(0)) {
4184       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4185     }
4186     // (Macro-expander will further convert this to a Bool, if necessary.)

4197 
4198     // Clear the low bits to extract layout_helper_size_in_bytes:
4199     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4200     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4201     size = _gvn.transform( new AndXNode(size, mask) );
4202   }
4203   if (return_size_val != nullptr) {
4204     (*return_size_val) = size;
4205   }
4206 
4207   // This is a precise notnull oop of the klass.
4208   // (Actually, it need not be precise if this is a reflective allocation.)
4209   // It's what we cast the result to.
4210   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4211   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4212   const TypeOopPtr* oop_type = tklass->as_instance_type();
4213 
4214   // Now generate allocation code
4215 
4216   // The entire memory state is needed for slow path of the allocation
4217   // since GC and deoptimization can happen.
4218   Node *mem = reset_memory();
4219   set_all_memory(mem); // Create new memory state
4220 
4221   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4222                                          control(), mem, i_o(),
4223                                          size, klass_node,
4224                                          initial_slow_test, inline_type_node);
4225 
4226   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4227 }
4228 
4229 //-------------------------------new_array-------------------------------------
4230 // helper for newarray and anewarray
4231 // The 'length' parameter is (obviously) the length of the array.
4232 // The optional arguments are for specialized use by intrinsics:
4233 //  - If 'return_size_val', report the non-padded array size (sum of header size
4234 //    and array body) to the caller.
4235 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4236 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4237                           Node* length,         // number of array elements
4238                           int   nargs,          // number of arguments to push back for uncommon trap
4239                           Node* *return_size_val,
4240                           bool deoptimize_on_exception,
4241                           Node* init_val) {
4242   jint  layout_con = Klass::_lh_neutral_value;
4243   Node* layout_val = get_layout_helper(klass_node, layout_con);
4244   bool  layout_is_con = (layout_val == nullptr);
4245 
4246   if (!layout_is_con && !StressReflectiveCode &&
4247       !too_many_traps(Deoptimization::Reason_class_check)) {
4248     // This is a reflective array creation site.
4249     // Optimistically assume that it is a subtype of Object[],
4250     // so that we can fold up all the address arithmetic.
4251     layout_con = Klass::array_layout_helper(T_OBJECT);
4252     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4253     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4254     { BuildCutout unless(this, bol_lh, PROB_MAX);
4255       inc_sp(nargs);
4256       uncommon_trap(Deoptimization::Reason_class_check,
4257                     Deoptimization::Action_maybe_recompile);
4258     }
4259     layout_val = nullptr;
4260     layout_is_con = true;
4261   }
4262 
4263   // Generate the initial go-slow test.  Make sure we do not overflow
4264   // if length is huge (near 2Gig) or negative!  We do not need
4265   // exact double-words here, just a close approximation of needed
4266   // double-words.  We can't add any offset or rounding bits, lest we
4267   // take a size -1 of bytes and make it positive.  Use an unsigned
4268   // compare, so negative sizes look hugely positive.
4269   int fast_size_limit = FastAllocateSizeLimit;
4270   if (layout_is_con) {
4271     assert(!StressReflectiveCode, "stress mode does not use these paths");
4272     // Increase the size limit if we have exact knowledge of array type.
4273     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4274     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4275   }
4276 
4277   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4278   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4279 
4280   // --- Size Computation ---
4281   // array_size = round_to_heap(array_header + (length << elem_shift));
4282   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4283   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4284   // The rounding mask is strength-reduced, if possible.
4285   int round_mask = MinObjAlignmentInBytes - 1;
4286   Node* header_size = nullptr;
4287   // (T_BYTE has the weakest alignment and size restrictions...)
4288   if (layout_is_con) {
4289     int       hsize  = Klass::layout_helper_header_size(layout_con);
4290     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4291     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4292     if ((round_mask & ~right_n_bits(eshift)) == 0)
4293       round_mask = 0;  // strength-reduce it if it goes away completely
4294     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4295     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4296     assert(header_size_min <= hsize, "generic minimum is smallest");
4297     header_size = intcon(hsize);
4298   } else {
4299     Node* hss   = intcon(Klass::_lh_header_size_shift);
4300     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4301     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4302     header_size = _gvn.transform(new AndINode(header_size, hsm));
4303   }
4304 
4305   Node* elem_shift = nullptr;
4306   if (layout_is_con) {
4307     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4308     if (eshift != 0)
4309       elem_shift = intcon(eshift);
4310   } else {
4311     // There is no need to mask or shift this value.
4312     // The semantics of LShiftINode include an implicit mask to 0x1F.
4313     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4314     elem_shift = layout_val;

4361   }
4362   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4363 
4364   if (return_size_val != nullptr) {
4365     // This is the size
4366     (*return_size_val) = non_rounded_size;
4367   }
4368 
4369   Node* size = non_rounded_size;
4370   if (round_mask != 0) {
4371     Node* mask1 = MakeConX(round_mask);
4372     size = _gvn.transform(new AddXNode(size, mask1));
4373     Node* mask2 = MakeConX(~round_mask);
4374     size = _gvn.transform(new AndXNode(size, mask2));
4375   }
4376   // else if round_mask == 0, the size computation is self-rounding
4377 
4378   // Now generate allocation code
4379 
4380   // The entire memory state is needed for slow path of the allocation
4381   // since GC and deoptimization can happen.
4382   Node *mem = reset_memory();
4383   set_all_memory(mem); // Create new memory state
4384 
4385   if (initial_slow_test->is_Bool()) {
4386     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4387     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4388   }
4389 
4390   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4391   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4392 
4393   Node* raw_init_value = nullptr;
4394   if (init_val != nullptr) {
4395     // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays
4396     if (ary_type->is_flat()) {
4397       initial_slow_test = intcon(1);
4398     }
4399 
4400     if (UseCompressedOops) {
4401       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4402       init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop()));
4403       Node* lower = _gvn.transform(new CastP2XNode(control(), init_val));
4404       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4405       raw_init_value = _gvn.transform(new OrLNode(lower, upper));
4406     } else {
4407       raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val));
4408     }
4409   }
4410 
4411   Node* valid_length_test = _gvn.intcon(1);
4412   if (ary_type->isa_aryptr()) {
4413     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4414     jint max = TypeAryPtr::max_array_length(bt);
4415     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4416     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4417   }
4418 
4419   // Create the AllocateArrayNode and its result projections
4420   AllocateArrayNode* alloc
4421     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4422                             control(), mem, i_o(),
4423                             size, klass_node,
4424                             initial_slow_test,
4425                             length, valid_length_test,
4426                             init_val, raw_init_value);
4427   // Cast to correct type.  Note that the klass_node may be constant or not,
4428   // and in the latter case the actual array type will be inexact also.
4429   // (This happens via a non-constant argument to inline_native_newArray.)
4430   // In any case, the value of klass_node provides the desired array type.
4431   const TypeInt* length_type = _gvn.find_int_type(length);
4432   if (ary_type->isa_aryptr() && length_type != nullptr) {
4433     // Try to get a better type than POS for the size
4434     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4435   }
4436 
4437   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4438 
4439   array_ideal_length(alloc, ary_type, true);
4440   return javaoop;
4441 }
4442 
4443 // The following "Ideal_foo" functions are placed here because they recognize
4444 // the graph shapes created by the functions immediately above.
4445 
4446 //---------------------------Ideal_allocation----------------------------------

4554   set_all_memory(ideal.merged_memory());
4555   set_i_o(ideal.i_o());
4556   set_control(ideal.ctrl());
4557 }
4558 
4559 void GraphKit::final_sync(IdealKit& ideal) {
4560   // Final sync IdealKit and graphKit.
4561   sync_kit(ideal);
4562 }
4563 
4564 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4565   Node* len = load_array_length(load_String_value(str, set_ctrl));
4566   Node* coder = load_String_coder(str, set_ctrl);
4567   // Divide length by 2 if coder is UTF16
4568   return _gvn.transform(new RShiftINode(len, coder));
4569 }
4570 
4571 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4572   int value_offset = java_lang_String::value_offset();
4573   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4574                                                      false, nullptr, Type::Offset(0));
4575   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4576   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4577                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4578                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4579   Node* p = basic_plus_adr(str, str, value_offset);
4580   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4581                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4582   return load;
4583 }
4584 
4585 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4586   if (!CompactStrings) {
4587     return intcon(java_lang_String::CODER_UTF16);
4588   }
4589   int coder_offset = java_lang_String::coder_offset();
4590   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4591                                                      false, nullptr, Type::Offset(0));
4592   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4593 
4594   Node* p = basic_plus_adr(str, str, coder_offset);
4595   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4596                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4597   return load;
4598 }
4599 
4600 void GraphKit::store_String_value(Node* str, Node* value) {
4601   int value_offset = java_lang_String::value_offset();
4602   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4603                                                      false, nullptr, Type::Offset(0));
4604   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4605 
4606   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4607                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4608 }
4609 
4610 void GraphKit::store_String_coder(Node* str, Node* value) {
4611   int coder_offset = java_lang_String::coder_offset();
4612   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4613                                                      false, nullptr, Type::Offset(0));
4614   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4615 
4616   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4617                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4618 }
4619 
4620 // Capture src and dst memory state with a MergeMemNode
4621 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4622   if (src_type == dst_type) {
4623     // Types are equal, we don't need a MergeMemNode
4624     return memory(src_type);
4625   }
4626   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4627   record_for_igvn(merge); // fold it up later, if possible
4628   int src_idx = C->get_alias_index(src_type);
4629   int dst_idx = C->get_alias_index(dst_type);
4630   merge->set_memory_at(src_idx, memory(src_idx));
4631   merge->set_memory_at(dst_idx, memory(dst_idx));
4632   return merge;
4633 }

4706   i_char->init_req(2, AddI(i_char, intcon(2)));
4707 
4708   set_control(IfFalse(iff));
4709   set_memory(st, TypeAryPtr::BYTES);
4710 }
4711 
4712 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4713   if (!field->is_constant()) {
4714     return nullptr; // Field not marked as constant.
4715   }
4716   ciInstance* holder = nullptr;
4717   if (!field->is_static()) {
4718     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4719     if (const_oop != nullptr && const_oop->is_instance()) {
4720       holder = const_oop->as_instance();
4721     }
4722   }
4723   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4724                                                         /*is_unsigned_load=*/false);
4725   if (con_type != nullptr) {
4726     Node* con = makecon(con_type);
4727     if (field->type()->is_inlinetype()) {
4728       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass());
4729     } else if (con_type->is_inlinetypeptr()) {
4730       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass());
4731     }
4732     return con;
4733   }
4734   return nullptr;
4735 }
4736 
4737 //---------------------------load_mirror_from_klass----------------------------
4738 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4739 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4740   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4741   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4742   // mirror = ((OopHandle)mirror)->resolve();
4743   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4744 }
4745 
4746 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4747   const Type* obj_type = obj->bottom_type();
4748   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4749   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4750     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4751     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4752     obj = casted_obj;
4753   }
4754   if (sig_type->is_inlinetypeptr()) {
4755     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass());
4756   }
4757   return obj;
4758 }
< prev index next >