6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "ci/ciUtilities.hpp"
27 #include "classfile/javaClasses.hpp"
28 #include "ci/ciObjArray.hpp"
29 #include "asm/register.hpp"
30 #include "compiler/compileLog.hpp"
31 #include "gc/shared/barrierSet.hpp"
32 #include "gc/shared/c2/barrierSetC2.hpp"
33 #include "interpreter/interpreter.hpp"
34 #include "memory/resourceArea.hpp"
35 #include "opto/addnode.hpp"
36 #include "opto/castnode.hpp"
37 #include "opto/convertnode.hpp"
38 #include "opto/graphKit.hpp"
39 #include "opto/idealKit.hpp"
40 #include "opto/intrinsicnode.hpp"
41 #include "opto/locknode.hpp"
42 #include "opto/machnode.hpp"
43 #include "opto/opaquenode.hpp"
44 #include "opto/parse.hpp"
45 #include "opto/rootnode.hpp"
46 #include "opto/runtime.hpp"
47 #include "opto/subtypenode.hpp"
48 #include "runtime/deoptimization.hpp"
49 #include "runtime/sharedRuntime.hpp"
50 #include "utilities/bitMap.inline.hpp"
51 #include "utilities/powerOfTwo.hpp"
52 #include "utilities/growableArray.hpp"
53
54 //----------------------------GraphKit-----------------------------------------
55 // Main utility constructor.
56 GraphKit::GraphKit(JVMState* jvms)
57 : Phase(Phase::Parser),
58 _env(C->env()),
59 _gvn(*C->initial_gvn()),
60 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
61 {
62 _exceptions = jvms->map()->next_exception();
63 if (_exceptions != NULL) jvms->map()->set_next_exception(NULL);
64 set_jvms(jvms);
65 }
66
67 // Private constructor for parser.
68 GraphKit::GraphKit()
69 : Phase(Phase::Parser),
70 _env(C->env()),
71 _gvn(*C->initial_gvn()),
72 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
73 {
74 _exceptions = NULL;
75 set_map(NULL);
76 debug_only(_sp = -99);
77 debug_only(set_bci(-99));
78 }
79
80
81
82 //---------------------------clean_stack---------------------------------------
83 // Clear away rubbish from the stack area of the JVM state.
84 // This destroys any arguments that may be waiting on the stack.
817 if (PrintMiscellaneous && (Verbose || WizardMode)) {
818 tty->print_cr("Zombie local %d: ", local);
819 jvms->dump();
820 }
821 return false;
822 }
823 }
824 }
825 return true;
826 }
827
828 #endif //ASSERT
829
830 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
831 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
832 ciMethod* cur_method = jvms->method();
833 int cur_bci = jvms->bci();
834 if (cur_method != NULL && cur_bci != InvocationEntryBci) {
835 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
836 return Interpreter::bytecode_should_reexecute(code) ||
837 (is_anewarray && code == Bytecodes::_multianewarray);
838 // Reexecute _multianewarray bytecode which was replaced with
839 // sequence of [a]newarray. See Parse::do_multianewarray().
840 //
841 // Note: interpreter should not have it set since this optimization
842 // is limited by dimensions and guarded by flag so in some cases
843 // multianewarray() runtime calls will be generated and
844 // the bytecode should not be reexecutes (stack will not be reset).
845 } else {
846 return false;
847 }
848 }
849
850 // Helper function for adding JVMState and debug information to node
851 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
852 // Add the safepoint edges to the call (or other safepoint).
853
854 // Make sure dead locals are set to top. This
855 // should help register allocation time and cut down on the size
856 // of the deoptimization information.
857 assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
1077 ciSignature* declared_signature = NULL;
1078 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1079 assert(declared_signature != NULL, "cannot be null");
1080 inputs = declared_signature->arg_size_for_bc(code);
1081 int size = declared_signature->return_type()->size();
1082 depth = size - inputs;
1083 }
1084 break;
1085
1086 case Bytecodes::_multianewarray:
1087 {
1088 ciBytecodeStream iter(method());
1089 iter.reset_to_bci(bci());
1090 iter.next();
1091 inputs = iter.get_dimensions();
1092 assert(rsize == 1, "");
1093 depth = rsize - inputs;
1094 }
1095 break;
1096
1097 case Bytecodes::_ireturn:
1098 case Bytecodes::_lreturn:
1099 case Bytecodes::_freturn:
1100 case Bytecodes::_dreturn:
1101 case Bytecodes::_areturn:
1102 assert(rsize == -depth, "");
1103 inputs = rsize;
1104 break;
1105
1106 case Bytecodes::_jsr:
1107 case Bytecodes::_jsr_w:
1108 inputs = 0;
1109 depth = 1; // S.B. depth=1, not zero
1110 break;
1111
1112 default:
1113 // bytecode produces a typed result
1114 inputs = rsize - depth;
1115 assert(inputs >= 0, "");
1116 break;
1159 Node* conv = _gvn.transform( new ConvI2LNode(offset));
1160 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1161 return _gvn.transform( new AndLNode(conv, mask) );
1162 }
1163
1164 Node* GraphKit::ConvL2I(Node* offset) {
1165 // short-circuit a common case
1166 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1167 if (offset_con != (jlong)Type::OffsetBot) {
1168 return intcon((int) offset_con);
1169 }
1170 return _gvn.transform( new ConvL2INode(offset));
1171 }
1172
1173 //-------------------------load_object_klass-----------------------------------
1174 Node* GraphKit::load_object_klass(Node* obj) {
1175 // Special-case a fresh allocation to avoid building nodes:
1176 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1177 if (akls != NULL) return akls;
1178 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1179 return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1180 }
1181
1182 //-------------------------load_array_length-----------------------------------
1183 Node* GraphKit::load_array_length(Node* array) {
1184 // Special-case a fresh allocation to avoid building nodes:
1185 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1186 Node *alen;
1187 if (alloc == NULL) {
1188 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1189 alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1190 } else {
1191 alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1192 }
1193 return alen;
1194 }
1195
1196 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1197 const TypeOopPtr* oop_type,
1198 bool replace_length_in_map) {
1199 Node* length = alloc->Ideal_length();
1208 replace_in_map(length, ccast);
1209 }
1210 return ccast;
1211 }
1212 }
1213 return length;
1214 }
1215
1216 //------------------------------do_null_check----------------------------------
1217 // Helper function to do a NULL pointer check. Returned value is
1218 // the incoming address with NULL casted away. You are allowed to use the
1219 // not-null value only if you are control dependent on the test.
1220 #ifndef PRODUCT
1221 extern int explicit_null_checks_inserted,
1222 explicit_null_checks_elided;
1223 #endif
1224 Node* GraphKit::null_check_common(Node* value, BasicType type,
1225 // optional arguments for variations:
1226 bool assert_null,
1227 Node* *null_control,
1228 bool speculative) {
1229 assert(!assert_null || null_control == NULL, "not both at once");
1230 if (stopped()) return top();
1231 NOT_PRODUCT(explicit_null_checks_inserted++);
1232
1233 // Construct NULL check
1234 Node *chk = NULL;
1235 switch(type) {
1236 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1237 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break;
1238 case T_ARRAY : // fall through
1239 type = T_OBJECT; // simplify further tests
1240 case T_OBJECT : {
1241 const Type *t = _gvn.type( value );
1242
1243 const TypeOopPtr* tp = t->isa_oopptr();
1244 if (tp != NULL && !tp->is_loaded()
1245 // Only for do_null_check, not any of its siblings:
1246 && !assert_null && null_control == NULL) {
1247 // Usually, any field access or invocation on an unloaded oop type
1248 // will simply fail to link, since the statically linked class is
1249 // likely also to be unloaded. However, in -Xcomp mode, sometimes
1250 // the static class is loaded but the sharper oop type is not.
1251 // Rather than checking for this obscure case in lots of places,
1252 // we simply observe that a null check on an unloaded class
1253 // will always be followed by a nonsense operation, so we
1254 // can just issue the uncommon trap here.
1255 // Our access to the unloaded class will only be correct
1256 // after it has been loaded and initialized, which requires
1257 // a trip through the interpreter.
1316 }
1317 Node *oldcontrol = control();
1318 set_control(cfg);
1319 Node *res = cast_not_null(value);
1320 set_control(oldcontrol);
1321 NOT_PRODUCT(explicit_null_checks_elided++);
1322 return res;
1323 }
1324 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1325 if (cfg == NULL) break; // Quit at region nodes
1326 depth++;
1327 }
1328 }
1329
1330 //-----------
1331 // Branch to failure if null
1332 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen
1333 Deoptimization::DeoptReason reason;
1334 if (assert_null) {
1335 reason = Deoptimization::reason_null_assert(speculative);
1336 } else if (type == T_OBJECT) {
1337 reason = Deoptimization::reason_null_check(speculative);
1338 } else {
1339 reason = Deoptimization::Reason_div0_check;
1340 }
1341 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1342 // ciMethodData::has_trap_at will return a conservative -1 if any
1343 // must-be-null assertion has failed. This could cause performance
1344 // problems for a method after its first do_null_assert failure.
1345 // Consider using 'Reason_class_check' instead?
1346
1347 // To cause an implicit null check, we set the not-null probability
1348 // to the maximum (PROB_MAX). For an explicit check the probability
1349 // is set to a smaller value.
1350 if (null_control != NULL || too_many_traps(reason)) {
1351 // probability is less likely
1352 ok_prob = PROB_LIKELY_MAG(3);
1353 } else if (!assert_null &&
1354 (ImplicitNullCheckThreshold > 0) &&
1355 method() != NULL &&
1356 (method()->method_data()->trap_count(reason)
1390 }
1391
1392 if (assert_null) {
1393 // Cast obj to null on this path.
1394 replace_in_map(value, zerocon(type));
1395 return zerocon(type);
1396 }
1397
1398 // Cast obj to not-null on this path, if there is no null_control.
1399 // (If there is a null_control, a non-null value may come back to haunt us.)
1400 if (type == T_OBJECT) {
1401 Node* cast = cast_not_null(value, false);
1402 if (null_control == NULL || (*null_control) == top())
1403 replace_in_map(value, cast);
1404 value = cast;
1405 }
1406
1407 return value;
1408 }
1409
1410
1411 //------------------------------cast_not_null----------------------------------
1412 // Cast obj to not-null on this path
1413 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1414 const Type *t = _gvn.type(obj);
1415 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1416 // Object is already not-null?
1417 if( t == t_not_null ) return obj;
1418
1419 Node *cast = new CastPPNode(obj,t_not_null);
1420 cast->init_req(0, control());
1421 cast = _gvn.transform( cast );
1422
1423 // Scan for instances of 'obj' in the current JVM mapping.
1424 // These instances are known to be not-null after the test.
1425 if (do_replace_in_map)
1426 replace_in_map(obj, cast);
1427
1428 return cast; // Return casted value
1429 }
1430
1431 // Sometimes in intrinsics, we implicitly know an object is not null
1432 // (there's no actual null check) so we can cast it to not null. In
1433 // the course of optimizations, the input to the cast can become null.
1520 // These are layered on top of the factory methods in LoadNode and StoreNode,
1521 // and integrate with the parser's memory state and _gvn engine.
1522 //
1523
1524 // factory methods in "int adr_idx"
1525 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1526 int adr_idx,
1527 MemNode::MemOrd mo,
1528 LoadNode::ControlDependency control_dependency,
1529 bool require_atomic_access,
1530 bool unaligned,
1531 bool mismatched,
1532 bool unsafe,
1533 uint8_t barrier_data) {
1534 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1535 const TypePtr* adr_type = NULL; // debug-mode-only argument
1536 debug_only(adr_type = C->get_adr_type(adr_idx));
1537 Node* mem = memory(adr_idx);
1538 Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1539 ld = _gvn.transform(ld);
1540 if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1541 // Improve graph before escape analysis and boxing elimination.
1542 record_for_igvn(ld);
1543 }
1544 return ld;
1545 }
1546
1547 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1548 int adr_idx,
1549 MemNode::MemOrd mo,
1550 bool require_atomic_access,
1551 bool unaligned,
1552 bool mismatched,
1553 bool unsafe) {
1554 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1555 const TypePtr* adr_type = NULL;
1556 debug_only(adr_type = C->get_adr_type(adr_idx));
1557 Node *mem = memory(adr_idx);
1558 Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1559 if (unaligned) {
1560 st->as_Store()->set_unaligned_access();
1564 }
1565 if (unsafe) {
1566 st->as_Store()->set_unsafe_access();
1567 }
1568 st = _gvn.transform(st);
1569 set_memory(st, adr_idx);
1570 // Back-to-back stores can only remove intermediate store with DU info
1571 // so push on worklist for optimizer.
1572 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1573 record_for_igvn(st);
1574
1575 return st;
1576 }
1577
1578 Node* GraphKit::access_store_at(Node* obj,
1579 Node* adr,
1580 const TypePtr* adr_type,
1581 Node* val,
1582 const Type* val_type,
1583 BasicType bt,
1584 DecoratorSet decorators) {
1585 // Transformation of a value which could be NULL pointer (CastPP #NULL)
1586 // could be delayed during Parse (for example, in adjust_map_after_if()).
1587 // Execute transformation here to avoid barrier generation in such case.
1588 if (_gvn.type(val) == TypePtr::NULL_PTR) {
1589 val = _gvn.makecon(TypePtr::NULL_PTR);
1590 }
1591
1592 if (stopped()) {
1593 return top(); // Dead path ?
1594 }
1595
1596 assert(val != NULL, "not dead path");
1597
1598 C2AccessValuePtr addr(adr, adr_type);
1599 C2AccessValue value(val, val_type);
1600 C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1601 if (access.is_raw()) {
1602 return _barrier_set->BarrierSetC2::store_at(access, value);
1603 } else {
1604 return _barrier_set->store_at(access, value);
1605 }
1606 }
1607
1608 Node* GraphKit::access_load_at(Node* obj, // containing obj
1609 Node* adr, // actual address to store val at
1610 const TypePtr* adr_type,
1611 const Type* val_type,
1612 BasicType bt,
1613 DecoratorSet decorators) {
1614 if (stopped()) {
1615 return top(); // Dead path ?
1616 }
1617
1618 C2AccessValuePtr addr(adr, adr_type);
1619 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1620 if (access.is_raw()) {
1621 return _barrier_set->BarrierSetC2::load_at(access, val_type);
1622 } else {
1623 return _barrier_set->load_at(access, val_type);
1624 }
1625 }
1626
1627 Node* GraphKit::access_load(Node* adr, // actual address to load val at
1628 const Type* val_type,
1629 BasicType bt,
1630 DecoratorSet decorators) {
1631 if (stopped()) {
1632 return top(); // Dead path ?
1633 }
1634
1635 C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1636 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, NULL, addr);
1637 if (access.is_raw()) {
1638 return _barrier_set->BarrierSetC2::load_at(access, val_type);
1639 } else {
1704 Node* new_val,
1705 const Type* value_type,
1706 BasicType bt,
1707 DecoratorSet decorators) {
1708 C2AccessValuePtr addr(adr, adr_type);
1709 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1710 if (access.is_raw()) {
1711 return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1712 } else {
1713 return _barrier_set->atomic_add_at(access, new_val, value_type);
1714 }
1715 }
1716
1717 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1718 return _barrier_set->clone(this, src, dst, size, is_array);
1719 }
1720
1721 //-------------------------array_element_address-------------------------
1722 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1723 const TypeInt* sizetype, Node* ctrl) {
1724 uint shift = exact_log2(type2aelembytes(elembt));
1725 uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1726
1727 // short-circuit a common case (saves lots of confusing waste motion)
1728 jint idx_con = find_int_con(idx, -1);
1729 if (idx_con >= 0) {
1730 intptr_t offset = header + ((intptr_t)idx_con << shift);
1731 return basic_plus_adr(ary, offset);
1732 }
1733
1734 // must be correct type for alignment purposes
1735 Node* base = basic_plus_adr(ary, header);
1736 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1737 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1738 return basic_plus_adr(ary, base, scale);
1739 }
1740
1741 //-------------------------load_array_element-------------------------
1742 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1743 const Type* elemtype = arytype->elem();
1744 BasicType elembt = elemtype->array_element_basic_type();
1745 Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1746 if (elembt == T_NARROWOOP) {
1747 elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1748 }
1749 Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1750 IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1751 return ld;
1752 }
1753
1754 //-------------------------set_arguments_for_java_call-------------------------
1755 // Arguments (pre-popped from the stack) are taken from the JVMS.
1756 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1757 // Add the call arguments:
1758 uint nargs = call->method()->arg_size();
1759 for (uint i = 0; i < nargs; i++) {
1760 Node* arg = argument(i);
1761 call->init_req(i + TypeFunc::Parms, arg);
1762 }
1763 }
1764
1765 //---------------------------set_edges_for_java_call---------------------------
1766 // Connect a newly created call into the current JVMS.
1767 // A return value node (if any) is returned from set_edges_for_java_call.
1768 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1769
1770 // Add the predefined inputs:
1771 call->init_req( TypeFunc::Control, control() );
1772 call->init_req( TypeFunc::I_O , i_o() );
1773 call->init_req( TypeFunc::Memory , reset_memory() );
1774 call->init_req( TypeFunc::FramePtr, frameptr() );
1775 call->init_req( TypeFunc::ReturnAdr, top() );
1776
1777 add_safepoint_edges(call, must_throw);
1778
1779 Node* xcall = _gvn.transform(call);
1780
1781 if (xcall == top()) {
1782 set_control(top());
1783 return;
1784 }
1785 assert(xcall == call, "call identity is stable");
1786
1787 // Re-use the current map to produce the result.
1788
1789 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1790 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj)));
1791 set_all_memory_call(xcall, separate_io_proj);
1792
1793 //return xcall; // no need, caller already has it
1794 }
1795
1796 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1797 if (stopped()) return top(); // maybe the call folded up?
1798
1799 // Capture the return value, if any.
1800 Node* ret;
1801 if (call->method() == NULL ||
1802 call->method()->return_type()->basic_type() == T_VOID)
1803 ret = top();
1804 else ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1805
1806 // Note: Since any out-of-line call can produce an exception,
1807 // we always insert an I_O projection from the call into the result.
1808
1809 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1810
1811 if (separate_io_proj) {
1812 // The caller requested separate projections be used by the fall
1813 // through and exceptional paths, so replace the projections for
1814 // the fall through path.
1815 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1816 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1817 }
1818 return ret;
1819 }
1820
1821 //--------------------set_predefined_input_for_runtime_call--------------------
1822 // Reading and setting the memory state is way conservative here.
1823 // The real problem is that I am not doing real Type analysis on memory,
1824 // so I cannot distinguish card mark stores from other stores. Across a GC
1825 // point the Store Barrier and the card mark memory has to agree. I cannot
1826 // have a card mark store and its barrier split across the GC point from
1827 // either above or below. Here I get that to happen by reading ALL of memory.
1828 // A better answer would be to separate out card marks from other memory.
1829 // For now, return the input memory state, so that it can be reused
1830 // after the call, if this call has restricted memory effects.
1831 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1832 // Set fixed predefined input arguments
1833 Node* memory = reset_memory();
1834 Node* m = narrow_mem == NULL ? memory : narrow_mem;
1835 call->init_req( TypeFunc::Control, control() );
1836 call->init_req( TypeFunc::I_O, top() ); // does no i/o
1837 call->init_req( TypeFunc::Memory, m ); // may gc ptrs
1888 if (use->is_MergeMem()) {
1889 wl.push(use);
1890 }
1891 }
1892 }
1893
1894 // Replace the call with the current state of the kit.
1895 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1896 JVMState* ejvms = NULL;
1897 if (has_exceptions()) {
1898 ejvms = transfer_exceptions_into_jvms();
1899 }
1900
1901 ReplacedNodes replaced_nodes = map()->replaced_nodes();
1902 ReplacedNodes replaced_nodes_exception;
1903 Node* ex_ctl = top();
1904
1905 SafePointNode* final_state = stop();
1906
1907 // Find all the needed outputs of this call
1908 CallProjections callprojs;
1909 call->extract_projections(&callprojs, true);
1910
1911 Unique_Node_List wl;
1912 Node* init_mem = call->in(TypeFunc::Memory);
1913 Node* final_mem = final_state->in(TypeFunc::Memory);
1914 Node* final_ctl = final_state->in(TypeFunc::Control);
1915 Node* final_io = final_state->in(TypeFunc::I_O);
1916
1917 // Replace all the old call edges with the edges from the inlining result
1918 if (callprojs.fallthrough_catchproj != NULL) {
1919 C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1920 }
1921 if (callprojs.fallthrough_memproj != NULL) {
1922 if (final_mem->is_MergeMem()) {
1923 // Parser's exits MergeMem was not transformed but may be optimized
1924 final_mem = _gvn.transform(final_mem);
1925 }
1926 C->gvn_replace_by(callprojs.fallthrough_memproj, final_mem);
1927 add_mergemem_users_to_worklist(wl, final_mem);
1928 }
1929 if (callprojs.fallthrough_ioproj != NULL) {
1930 C->gvn_replace_by(callprojs.fallthrough_ioproj, final_io);
1931 }
1932
1933 // Replace the result with the new result if it exists and is used
1934 if (callprojs.resproj != NULL && result != NULL) {
1935 C->gvn_replace_by(callprojs.resproj, result);
1936 }
1937
1938 if (ejvms == NULL) {
1939 // No exception edges to simply kill off those paths
1940 if (callprojs.catchall_catchproj != NULL) {
1941 C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1942 }
1943 if (callprojs.catchall_memproj != NULL) {
1944 C->gvn_replace_by(callprojs.catchall_memproj, C->top());
1945 }
1946 if (callprojs.catchall_ioproj != NULL) {
1947 C->gvn_replace_by(callprojs.catchall_ioproj, C->top());
1948 }
1949 // Replace the old exception object with top
1950 if (callprojs.exobj != NULL) {
1951 C->gvn_replace_by(callprojs.exobj, C->top());
1952 }
1953 } else {
1954 GraphKit ekit(ejvms);
1955
1956 // Load my combined exception state into the kit, with all phis transformed:
1957 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1958 replaced_nodes_exception = ex_map->replaced_nodes();
1959
1960 Node* ex_oop = ekit.use_exception_state(ex_map);
1961
1962 if (callprojs.catchall_catchproj != NULL) {
1963 C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1964 ex_ctl = ekit.control();
1965 }
1966 if (callprojs.catchall_memproj != NULL) {
1967 Node* ex_mem = ekit.reset_memory();
1968 C->gvn_replace_by(callprojs.catchall_memproj, ex_mem);
1969 add_mergemem_users_to_worklist(wl, ex_mem);
1970 }
1971 if (callprojs.catchall_ioproj != NULL) {
1972 C->gvn_replace_by(callprojs.catchall_ioproj, ekit.i_o());
1973 }
1974
1975 // Replace the old exception object with the newly created one
1976 if (callprojs.exobj != NULL) {
1977 C->gvn_replace_by(callprojs.exobj, ex_oop);
1978 }
1979 }
1980
1981 // Disconnect the call from the graph
1982 call->disconnect_inputs(C);
1983 C->gvn_replace_by(call, C->top());
1984
1985 // Clean up any MergeMems that feed other MergeMems since the
1986 // optimizer doesn't like that.
1987 while (wl.size() > 0) {
1988 _gvn.transform(wl.pop());
1989 }
1990
1991 if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1992 replaced_nodes.apply(C, final_ctl);
1993 }
1994 if (!ex_ctl->is_top() && do_replaced_nodes) {
1995 replaced_nodes_exception.apply(C, ex_ctl);
1996 }
1997 }
1998
1999
2000 //------------------------------increment_counter------------------------------
2001 // for statistics: increment a VM counter by 1
2002
2003 void GraphKit::increment_counter(address counter_addr) {
2004 Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2005 increment_counter(adr1);
2006 }
2007
2008 void GraphKit::increment_counter(Node* counter_addr) {
2009 int adr_type = Compile::AliasIdxRaw;
2010 Node* ctrl = control();
2011 Node* cnt = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);
2170 *
2171 * @param n node that the type applies to
2172 * @param exact_kls type from profiling
2173 * @param maybe_null did profiling see null?
2174 *
2175 * @return node with improved type
2176 */
2177 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2178 const Type* current_type = _gvn.type(n);
2179 assert(UseTypeSpeculation, "type speculation must be on");
2180
2181 const TypePtr* speculative = current_type->speculative();
2182
2183 // Should the klass from the profile be recorded in the speculative type?
2184 if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2185 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2186 const TypeOopPtr* xtype = tklass->as_instance_type();
2187 assert(xtype->klass_is_exact(), "Should be exact");
2188 // Any reason to believe n is not null (from this profiling or a previous one)?
2189 assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2190 const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2191 // record the new speculative type's depth
2192 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2193 speculative = speculative->with_inline_depth(jvms()->depth());
2194 } else if (current_type->would_improve_ptr(ptr_kind)) {
2195 // Profiling report that null was never seen so we can change the
2196 // speculative type to non null ptr.
2197 if (ptr_kind == ProfileAlwaysNull) {
2198 speculative = TypePtr::NULL_PTR;
2199 } else {
2200 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2201 const TypePtr* ptr = TypePtr::NOTNULL;
2202 if (speculative != NULL) {
2203 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2204 } else {
2205 speculative = ptr;
2206 }
2207 }
2208 }
2209
2210 if (speculative != current_type->speculative()) {
2211 // Build a type with a speculative type (what we think we know
2212 // about the type but will need a guard when we use it)
2213 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2214 // We're changing the type, we need a new CheckCast node to carry
2215 // the new type. The new type depends on the control: what
2216 // profiling tells us is only valid from here as far as we can
2217 // tell.
2218 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2219 cast = _gvn.transform(cast);
2220 replace_in_map(n, cast);
2221 n = cast;
2222 }
2223
2224 return n;
2225 }
2226
2227 /**
2228 * Record profiling data from receiver profiling at an invoke with the
2229 * type system so that it can propagate it (speculation)
2230 *
2231 * @param n receiver node
2232 *
2233 * @return node with improved type
2234 */
2235 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2236 if (!UseTypeSpeculation) {
2237 return n;
2238 }
2239 ciKlass* exact_kls = profile_has_unique_klass();
2240 ProfilePtrKind ptr_kind = ProfileMaybeNull;
2241 if ((java_bc() == Bytecodes::_checkcast ||
2242 java_bc() == Bytecodes::_instanceof ||
2243 java_bc() == Bytecodes::_aastore) &&
2244 method()->method_data()->is_mature()) {
2245 ciProfileData* data = method()->method_data()->bci_to_data(bci());
2246 if (data != NULL) {
2247 if (!data->as_BitData()->null_seen()) {
2248 ptr_kind = ProfileNeverNull;
2249 } else {
2250 assert(data->is_ReceiverTypeData(), "bad profile data type");
2251 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2252 uint i = 0;
2253 for (; i < call->row_limit(); i++) {
2254 ciKlass* receiver = call->receiver(i);
2255 if (receiver != NULL) {
2256 break;
2257 }
2258 }
2259 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2260 }
2261 }
2262 }
2263 return record_profile_for_speculation(n, exact_kls, ptr_kind);
2264 }
2265
2266 /**
2267 * Record profiling data from argument profiling at an invoke with the
2268 * type system so that it can propagate it (speculation)
2269 *
2270 * @param dest_method target method for the call
2271 * @param bc what invoke bytecode is this?
2272 */
2273 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2274 if (!UseTypeSpeculation) {
2275 return;
2276 }
2277 const TypeFunc* tf = TypeFunc::make(dest_method);
2278 int nargs = tf->domain()->cnt() - TypeFunc::Parms;
2279 int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2280 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2281 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2282 if (is_reference_type(targ->basic_type())) {
2283 ProfilePtrKind ptr_kind = ProfileMaybeNull;
2284 ciKlass* better_type = NULL;
2285 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2286 record_profile_for_speculation(argument(j), better_type, ptr_kind);
2287 }
2288 i++;
2289 }
2290 }
2291 }
2292
2293 /**
2294 * Record profiling data from parameter profiling at an invoke with
2295 * the type system so that it can propagate it (speculation)
2296 */
2297 void GraphKit::record_profiled_parameters_for_speculation() {
2298 if (!UseTypeSpeculation) {
2299 return;
2300 }
2301 for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2315 * the type system so that it can propagate it (speculation)
2316 */
2317 void GraphKit::record_profiled_return_for_speculation() {
2318 if (!UseTypeSpeculation) {
2319 return;
2320 }
2321 ProfilePtrKind ptr_kind = ProfileMaybeNull;
2322 ciKlass* better_type = NULL;
2323 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2324 // If profiling reports a single type for the return value,
2325 // feed it to the type system so it can propagate it as a
2326 // speculative type
2327 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2328 }
2329 }
2330
2331 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2332 if (Matcher::strict_fp_requires_explicit_rounding) {
2333 // (Note: TypeFunc::make has a cache that makes this fast.)
2334 const TypeFunc* tf = TypeFunc::make(dest_method);
2335 int nargs = tf->domain()->cnt() - TypeFunc::Parms;
2336 for (int j = 0; j < nargs; j++) {
2337 const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2338 if (targ->basic_type() == T_DOUBLE) {
2339 // If any parameters are doubles, they must be rounded before
2340 // the call, dprecision_rounding does gvn.transform
2341 Node *arg = argument(j);
2342 arg = dprecision_rounding(arg);
2343 set_argument(j, arg);
2344 }
2345 }
2346 }
2347 }
2348
2349 // rounding for strict float precision conformance
2350 Node* GraphKit::precision_rounding(Node* n) {
2351 if (Matcher::strict_fp_requires_explicit_rounding) {
2352 #ifdef IA32
2353 if (UseSSE == 0) {
2354 return _gvn.transform(new RoundFloatNode(0, n));
2355 }
2356 #else
2357 Unimplemented();
2466 // The first NULL ends the list.
2467 Node* parm0, Node* parm1,
2468 Node* parm2, Node* parm3,
2469 Node* parm4, Node* parm5,
2470 Node* parm6, Node* parm7) {
2471 assert(call_addr != NULL, "must not call NULL targets");
2472
2473 // Slow-path call
2474 bool is_leaf = !(flags & RC_NO_LEAF);
2475 bool has_io = (!is_leaf && !(flags & RC_NO_IO));
2476 if (call_name == NULL) {
2477 assert(!is_leaf, "must supply name for leaf");
2478 call_name = OptoRuntime::stub_name(call_addr);
2479 }
2480 CallNode* call;
2481 if (!is_leaf) {
2482 call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2483 } else if (flags & RC_NO_FP) {
2484 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2485 } else if (flags & RC_VECTOR){
2486 uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2487 call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2488 } else {
2489 call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2490 }
2491
2492 // The following is similar to set_edges_for_java_call,
2493 // except that the memory effects of the call are restricted to AliasIdxRaw.
2494
2495 // Slow path call has no side-effects, uses few values
2496 bool wide_in = !(flags & RC_NARROW_MEM);
2497 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2498
2499 Node* prev_mem = NULL;
2500 if (wide_in) {
2501 prev_mem = set_predefined_input_for_runtime_call(call);
2502 } else {
2503 assert(!wide_out, "narrow in => narrow out");
2504 Node* narrow_mem = memory(adr_type);
2505 prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2506 }
2546
2547 if (has_io) {
2548 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2549 }
2550 return call;
2551
2552 }
2553
2554 // i2b
2555 Node* GraphKit::sign_extend_byte(Node* in) {
2556 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2557 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2558 }
2559
2560 // i2s
2561 Node* GraphKit::sign_extend_short(Node* in) {
2562 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2563 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2564 }
2565
2566 //------------------------------merge_memory-----------------------------------
2567 // Merge memory from one path into the current memory state.
2568 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2569 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2570 Node* old_slice = mms.force_memory();
2571 Node* new_slice = mms.memory2();
2572 if (old_slice != new_slice) {
2573 PhiNode* phi;
2574 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2575 if (mms.is_empty()) {
2576 // clone base memory Phi's inputs for this memory slice
2577 assert(old_slice == mms.base_memory(), "sanity");
2578 phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2579 _gvn.set_type(phi, Type::MEMORY);
2580 for (uint i = 1; i < phi->req(); i++) {
2581 phi->init_req(i, old_slice->in(i));
2582 }
2583 } else {
2584 phi = old_slice->as_Phi(); // Phi was generated already
2585 }
2799
2800 // Now do a linear scan of the secondary super-klass array. Again, no real
2801 // performance impact (too rare) but it's gotta be done.
2802 // Since the code is rarely used, there is no penalty for moving it
2803 // out of line, and it can only improve I-cache density.
2804 // The decision to inline or out-of-line this final check is platform
2805 // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2806 Node* psc = gvn.transform(
2807 new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2808
2809 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2810 r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2811 r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2812
2813 // Return false path; set default control to true path.
2814 *ctrl = gvn.transform(r_ok_subtype);
2815 return gvn.transform(r_not_subtype);
2816 }
2817
2818 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
2819 bool expand_subtype_check = C->post_loop_opts_phase() || // macro node expansion is over
2820 ExpandSubTypeCheckAtParseTime; // forced expansion
2821 if (expand_subtype_check) {
2822 MergeMemNode* mem = merged_memory();
2823 Node* ctrl = control();
2824 Node* subklass = obj_or_subklass;
2825 if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2826 subklass = load_object_klass(obj_or_subklass);
2827 }
2828
2829 Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn);
2830 set_control(ctrl);
2831 return n;
2832 }
2833
2834 Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass));
2835 Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2836 IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2837 set_control(_gvn.transform(new IfTrueNode(iff)));
2838 return _gvn.transform(new IfFalseNode(iff));
2839 }
2840
2841 // Profile-driven exact type check:
2842 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2843 float prob,
2844 Node* *casted_receiver) {
2845 assert(!klass->is_interface(), "no exact type check on interfaces");
2846
2847 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2848 Node* recv_klass = load_object_klass(receiver);
2849 Node* want_klass = makecon(tklass);
2850 Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2851 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2852 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2853 set_control( _gvn.transform(new IfTrueNode (iff)));
2854 Node* fail = _gvn.transform(new IfFalseNode(iff));
2855
2856 if (!stopped()) {
2857 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2858 const TypeOopPtr* recvx_type = tklass->as_instance_type();
2859 assert(recvx_type->klass_is_exact(), "");
2860
2861 if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2862 // Subsume downstream occurrences of receiver with a cast to
2863 // recv_xtype, since now we know what the type will be.
2864 Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2865 (*casted_receiver) = _gvn.transform(cast);
2866 // (User must make the replace_in_map call.)
2867 }
2868 }
2869
2870 return fail;
2871 }
2872
2873 //------------------------------subtype_check_receiver-------------------------
2874 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2875 Node** casted_receiver) {
2876 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2877 Node* want_klass = makecon(tklass);
2878
2879 Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2880
2881 // Ignore interface type information until interface types are properly tracked.
2882 if (!stopped() && !klass->is_interface()) {
2883 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2884 const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2885 if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2886 Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2887 (*casted_receiver) = _gvn.transform(cast);
2888 }
2889 }
2890
2891 return slow_ctl;
2892 }
2893
2894 //------------------------------seems_never_null-------------------------------
2895 // Use null_seen information if it is available from the profile.
2896 // If we see an unexpected null at a type check we record it and force a
2897 // recompile; the offending check will be recompiled to handle NULLs.
2898 // If we see several offending BCIs, then all checks in the
2899 // method will be recompiled.
2900 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2901 speculating = !_gvn.type(obj)->speculative_maybe_null();
2902 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2903 if (UncommonNullCast // Cutout for this technique
2904 && obj != null() // And not the -Xcomp stupid case?
2905 && !too_many_traps(reason)
2906 ) {
2907 if (speculating) {
2908 return true;
2909 }
2910 if (data == NULL)
2911 // Edge case: no mature data. Be optimistic here.
2912 return true;
2913 // If the profile has not seen a null, assume it won't happen.
2914 assert(java_bc() == Bytecodes::_checkcast ||
2915 java_bc() == Bytecodes::_instanceof ||
2916 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2917 return !data->as_BitData()->null_seen();
2918 }
2919 speculating = false;
2920 return false;
2921 }
2922
2923 void GraphKit::guard_klass_being_initialized(Node* klass) {
2924 int init_state_off = in_bytes(InstanceKlass::init_state_offset());
2925 Node* adr = basic_plus_adr(top(), klass, init_state_off);
2926 Node* init_state = LoadNode::make(_gvn, NULL, immutable_memory(), adr,
2927 adr->bottom_type()->is_ptr(), TypeInt::BYTE,
2928 T_BYTE, MemNode::unordered);
2929 init_state = _gvn.transform(init_state);
2930
2931 Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
2932
2933 Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
2934 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2935
2936 { BuildCutout unless(this, tst, PROB_MAX);
2976
2977 //------------------------maybe_cast_profiled_receiver-------------------------
2978 // If the profile has seen exactly one type, narrow to exactly that type.
2979 // Subsequent type checks will always fold up.
2980 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2981 const TypeKlassPtr* require_klass,
2982 ciKlass* spec_klass,
2983 bool safe_for_replace) {
2984 if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2985
2986 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
2987
2988 // Make sure we haven't already deoptimized from this tactic.
2989 if (too_many_traps_or_recompiles(reason))
2990 return NULL;
2991
2992 // (No, this isn't a call, but it's enough like a virtual call
2993 // to use the same ciMethod accessor to get the profile info...)
2994 // If we have a speculative type use it instead of profiling (which
2995 // may not help us)
2996 ciKlass* exact_kls = spec_klass == NULL ? profile_has_unique_klass() : spec_klass;
2997 if (exact_kls != NULL) {// no cast failures here
2998 if (require_klass == NULL ||
2999 C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls)) == Compile::SSC_always_true) {
3000 // If we narrow the type to match what the type profile sees or
3001 // the speculative type, we can then remove the rest of the
3002 // cast.
3003 // This is a win, even if the exact_kls is very specific,
3004 // because downstream operations, such as method calls,
3005 // will often benefit from the sharper type.
3006 Node* exact_obj = not_null_obj; // will get updated in place...
3007 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0,
3008 &exact_obj);
3009 { PreserveJVMState pjvms(this);
3010 set_control(slow_ctl);
3011 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3012 }
3013 if (safe_for_replace) {
3014 replace_in_map(not_null_obj, exact_obj);
3015 }
3016 return exact_obj;
3106 // If not_null_obj is dead, only null-path is taken
3107 if (stopped()) { // Doing instance-of on a NULL?
3108 set_control(null_ctl);
3109 return intcon(0);
3110 }
3111 region->init_req(_null_path, null_ctl);
3112 phi ->init_req(_null_path, intcon(0)); // Set null path value
3113 if (null_ctl == top()) {
3114 // Do this eagerly, so that pattern matches like is_diamond_phi
3115 // will work even during parsing.
3116 assert(_null_path == PATH_LIMIT-1, "delete last");
3117 region->del_req(_null_path);
3118 phi ->del_req(_null_path);
3119 }
3120
3121 // Do we know the type check always succeed?
3122 bool known_statically = false;
3123 if (_gvn.type(superklass)->singleton()) {
3124 const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3125 const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3126 if (subk->is_loaded()) {
3127 int static_res = C->static_subtype_check(superk, subk);
3128 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3129 }
3130 }
3131
3132 if (!known_statically) {
3133 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3134 // We may not have profiling here or it may not help us. If we
3135 // have a speculative type use it to perform an exact cast.
3136 ciKlass* spec_obj_type = obj_type->speculative_type();
3137 if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
3138 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
3139 if (stopped()) { // Profile disagrees with this path.
3140 set_control(null_ctl); // Null is the only remaining possibility.
3141 return intcon(0);
3142 }
3143 if (cast_obj != NULL) {
3144 not_null_obj = cast_obj;
3145 }
3146 }
3162 record_for_igvn(region);
3163
3164 // If we know the type check always succeeds then we don't use the
3165 // profiling data at this bytecode. Don't lose it, feed it to the
3166 // type system as a speculative type.
3167 if (safe_for_replace) {
3168 Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3169 replace_in_map(obj, casted_obj);
3170 }
3171
3172 return _gvn.transform(phi);
3173 }
3174
3175 //-------------------------------gen_checkcast---------------------------------
3176 // Generate a checkcast idiom. Used by both the checkcast bytecode and the
3177 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the
3178 // uncommon-trap paths work. Adjust stack after this call.
3179 // If failure_control is supplied and not null, it is filled in with
3180 // the control edge for the cast failure. Otherwise, an appropriate
3181 // uncommon trap or exception is thrown.
3182 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3183 Node* *failure_control) {
3184 kill_dead_locals(); // Benefit all the uncommon traps
3185 const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3186 const Type *toop = tk->cast_to_exactness(false)->as_instance_type();
3187
3188 // Fast cutout: Check the case that the cast is vacuously true.
3189 // This detects the common cases where the test will short-circuit
3190 // away completely. We do this before we perform the null check,
3191 // because if the test is going to turn into zero code, we don't
3192 // want a residual null check left around. (Causes a slowdown,
3193 // for example, in some objArray manipulations, such as a[i]=a[j].)
3194 if (tk->singleton()) {
3195 const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3196 if (objtp != NULL) {
3197 switch (C->static_subtype_check(tk, objtp->as_klass_type())) {
3198 case Compile::SSC_always_true:
3199 // If we know the type check always succeed then we don't use
3200 // the profiling data at this bytecode. Don't lose it, feed it
3201 // to the type system as a speculative type.
3202 return record_profiled_receiver_for_speculation(obj);
3203 case Compile::SSC_always_false:
3204 // It needs a null check because a null will *pass* the cast check.
3205 // A non-null value will always produce an exception.
3206 if (!objtp->maybe_null()) {
3207 bool is_aastore = (java_bc() == Bytecodes::_aastore);
3208 Deoptimization::DeoptReason reason = is_aastore ?
3209 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3210 builtin_throw(reason);
3211 return top();
3212 } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3213 return null_assert(obj);
3214 }
3215 break; // Fall through to full check
3216 default:
3217 break;
3218 }
3219 }
3220 }
3221
3222 ciProfileData* data = NULL;
3223 bool safe_for_replace = false;
3224 if (failure_control == NULL) { // use MDO in regular case only
3225 assert(java_bc() == Bytecodes::_aastore ||
3226 java_bc() == Bytecodes::_checkcast,
3227 "interpreter profiles type checks only for these BCs");
3228 data = method()->method_data()->bci_to_data(bci());
3229 safe_for_replace = true;
3230 }
3231
3232 // Make the merge point
3233 enum { _obj_path = 1, _null_path, PATH_LIMIT };
3234 RegionNode* region = new RegionNode(PATH_LIMIT);
3235 Node* phi = new PhiNode(region, toop);
3236 C->set_has_split_ifs(true); // Has chance for split-if optimization
3237
3238 // Use null-cast information if it is available
3239 bool speculative_not_null = false;
3240 bool never_see_null = ((failure_control == NULL) // regular case only
3241 && seems_never_null(obj, data, speculative_not_null));
3242
3243 // Null check; get casted pointer; set region slot 3
3244 Node* null_ctl = top();
3245 Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3246
3247 // If not_null_obj is dead, only null-path is taken
3248 if (stopped()) { // Doing instance-of on a NULL?
3249 set_control(null_ctl);
3250 return null();
3251 }
3252 region->init_req(_null_path, null_ctl);
3253 phi ->init_req(_null_path, null()); // Set null path value
3254 if (null_ctl == top()) {
3255 // Do this eagerly, so that pattern matches like is_diamond_phi
3256 // will work even during parsing.
3257 assert(_null_path == PATH_LIMIT-1, "delete last");
3258 region->del_req(_null_path);
3259 phi ->del_req(_null_path);
3260 }
3261
3262 Node* cast_obj = NULL;
3263 if (tk->klass_is_exact()) {
3264 // The following optimization tries to statically cast the speculative type of the object
3265 // (for example obtained during profiling) to the type of the superklass and then do a
3266 // dynamic check that the type of the object is what we expect. To work correctly
3267 // for checkcast and aastore the type of superklass should be exact.
3268 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3269 // We may not have profiling here or it may not help us. If we have
3270 // a speculative type use it to perform an exact cast.
3271 ciKlass* spec_obj_type = obj_type->speculative_type();
3272 if (spec_obj_type != NULL || data != NULL) {
3273 cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk, spec_obj_type, safe_for_replace);
3274 if (cast_obj != NULL) {
3275 if (failure_control != NULL) // failure is now impossible
3276 (*failure_control) = top();
3277 // adjust the type of the phi to the exact klass:
3278 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3279 }
3280 }
3281 }
3282
3283 if (cast_obj == NULL) {
3284 // Generate the subtype check
3285 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass );
3286
3287 // Plug in success path into the merge
3288 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3289 // Failure path ends in uncommon trap (or may be dead - failure impossible)
3290 if (failure_control == NULL) {
3291 if (not_subtype_ctrl != top()) { // If failure is possible
3292 PreserveJVMState pjvms(this);
3293 set_control(not_subtype_ctrl);
3294 bool is_aastore = (java_bc() == Bytecodes::_aastore);
3295 Deoptimization::DeoptReason reason = is_aastore ?
3296 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3297 builtin_throw(reason);
3298 }
3299 } else {
3300 (*failure_control) = not_subtype_ctrl;
3301 }
3302 }
3303
3304 region->init_req(_obj_path, control());
3305 phi ->init_req(_obj_path, cast_obj);
3306
3307 // A merge of NULL or Casted-NotNull obj
3308 Node* res = _gvn.transform(phi);
3309
3310 // Note I do NOT always 'replace_in_map(obj,result)' here.
3311 // if( tk->klass()->can_be_primary_super() )
3312 // This means that if I successfully store an Object into an array-of-String
3313 // I 'forget' that the Object is really now known to be a String. I have to
3314 // do this because we don't have true union types for interfaces - if I store
3315 // a Baz into an array-of-Interface and then tell the optimizer it's an
3316 // Interface, I forget that it's also a Baz and cannot do Baz-like field
3317 // references to it. FIX THIS WHEN UNION TYPES APPEAR!
3318 // replace_in_map( obj, res );
3319
3320 // Return final merged results
3321 set_control( _gvn.transform(region) );
3322 record_for_igvn(region);
3323
3324 return record_profiled_receiver_for_speculation(res);
3325 }
3326
3327 //------------------------------next_monitor-----------------------------------
3328 // What number should be given to the next monitor?
3329 int GraphKit::next_monitor() {
3330 int current = jvms()->monitor_depth()* C->sync_stack_slots();
3331 int next = current + C->sync_stack_slots();
3332 // Keep the toplevel high water mark current:
3333 if (C->fixed_slots() < next) C->set_fixed_slots(next);
3334 return current;
3335 }
3336
3337 //------------------------------insert_mem_bar---------------------------------
3338 // Memory barrier to avoid floating things around
3339 // The membar serves as a pinch point between both control and all memory slices.
3340 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3341 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3342 mb->init_req(TypeFunc::Control, control());
3343 mb->init_req(TypeFunc::Memory, reset_memory());
3344 Node* membar = _gvn.transform(mb);
3372 }
3373 Node* membar = _gvn.transform(mb);
3374 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3375 if (alias_idx == Compile::AliasIdxBot) {
3376 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3377 } else {
3378 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3379 }
3380 return membar;
3381 }
3382
3383 //------------------------------shared_lock------------------------------------
3384 // Emit locking code.
3385 FastLockNode* GraphKit::shared_lock(Node* obj) {
3386 // bci is either a monitorenter bc or InvocationEntryBci
3387 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3388 assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3389
3390 if( !GenerateSynchronizationCode )
3391 return NULL; // Not locking things?
3392 if (stopped()) // Dead monitor?
3393 return NULL;
3394
3395 assert(dead_locals_are_killed(), "should kill locals before sync. point");
3396
3397 // Box the stack location
3398 Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3399 Node* mem = reset_memory();
3400
3401 FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3402
3403 // Create the rtm counters for this fast lock if needed.
3404 flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3405
3406 // Add monitor to debug info for the slow path. If we block inside the
3407 // slow path and de-opt, we need the monitor hanging around
3408 map()->push_monitor( flock );
3409
3410 const TypeFunc *tf = LockNode::lock_type();
3411 LockNode *lock = new LockNode(C, tf);
3440 }
3441 #endif
3442
3443 return flock;
3444 }
3445
3446
3447 //------------------------------shared_unlock----------------------------------
3448 // Emit unlocking code.
3449 void GraphKit::shared_unlock(Node* box, Node* obj) {
3450 // bci is either a monitorenter bc or InvocationEntryBci
3451 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3452 assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3453
3454 if( !GenerateSynchronizationCode )
3455 return;
3456 if (stopped()) { // Dead monitor?
3457 map()->pop_monitor(); // Kill monitor from debug info
3458 return;
3459 }
3460
3461 // Memory barrier to avoid floating things down past the locked region
3462 insert_mem_bar(Op_MemBarReleaseLock);
3463
3464 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3465 UnlockNode *unlock = new UnlockNode(C, tf);
3466 #ifdef ASSERT
3467 unlock->set_dbg_jvms(sync_jvms());
3468 #endif
3469 uint raw_idx = Compile::AliasIdxRaw;
3470 unlock->init_req( TypeFunc::Control, control() );
3471 unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3472 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o
3473 unlock->init_req( TypeFunc::FramePtr, frameptr() );
3474 unlock->init_req( TypeFunc::ReturnAdr, top() );
3475
3476 unlock->init_req(TypeFunc::Parms + 0, obj);
3477 unlock->init_req(TypeFunc::Parms + 1, box);
3478 unlock = _gvn.transform(unlock)->as_Unlock();
3479
3480 Node* mem = reset_memory();
3481
3482 // unlock has no side-effects, sets few values
3483 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3484
3485 // Kill monitor from debug info
3486 map()->pop_monitor( );
3487 }
3488
3489 //-------------------------------get_layout_helper-----------------------------
3490 // If the given klass is a constant or known to be an array,
3491 // fetch the constant layout helper value into constant_value
3492 // and return (Node*)NULL. Otherwise, load the non-constant
3493 // layout helper value, and return the node which represents it.
3494 // This two-faced routine is useful because allocation sites
3495 // almost always feature constant types.
3496 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3497 const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3498 if (!StressReflectiveCode && inst_klass != NULL) {
3499 bool xklass = inst_klass->klass_is_exact();
3500 if (xklass || inst_klass->isa_aryklassptr()) {
3501 jint lhelper;
3502 if (inst_klass->isa_aryklassptr()) {
3503 BasicType elem = inst_klass->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();
3504 if (is_reference_type(elem, true)) {
3505 elem = T_OBJECT;
3506 }
3507 lhelper = Klass::array_layout_helper(elem);
3508 } else {
3509 lhelper = inst_klass->is_instklassptr()->exact_klass()->layout_helper();
3510 }
3511 if (lhelper != Klass::_lh_neutral_value) {
3512 constant_value = lhelper;
3513 return (Node*) NULL;
3514 }
3515 }
3516 }
3517 constant_value = Klass::_lh_neutral_value; // put in a known value
3518 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3519 return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3520 }
3521
3522 // We just put in an allocate/initialize with a big raw-memory effect.
3523 // Hook selected additional alias categories on the initialization.
3524 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3525 MergeMemNode* init_in_merge,
3526 Node* init_out_raw) {
3527 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3528 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3529
3530 Node* prevmem = kit.memory(alias_idx);
3531 init_in_merge->set_memory_at(alias_idx, prevmem);
3532 kit.set_memory(init_out_raw, alias_idx);
3533 }
3534
3535 //---------------------------set_output_for_allocation-------------------------
3536 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3537 const TypeOopPtr* oop_type,
3538 bool deoptimize_on_exception) {
3539 int rawidx = Compile::AliasIdxRaw;
3540 alloc->set_req( TypeFunc::FramePtr, frameptr() );
3541 add_safepoint_edges(alloc);
3542 Node* allocx = _gvn.transform(alloc);
3543 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3544 // create memory projection for i_o
3545 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3546 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3547
3548 // create a memory projection as for the normal control path
3549 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3550 set_memory(malloc, rawidx);
3551
3552 // a normal slow-call doesn't change i_o, but an allocation does
3553 // we create a separate i_o projection for the normal control path
3554 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3555 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3556
3557 // put in an initialization barrier
3558 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3559 rawoop)->as_Initialize();
3560 assert(alloc->initialization() == init, "2-way macro link must work");
3561 assert(init ->allocation() == alloc, "2-way macro link must work");
3562 {
3563 // Extract memory strands which may participate in the new object's
3564 // initialization, and source them from the new InitializeNode.
3565 // This will allow us to observe initializations when they occur,
3566 // and link them properly (as a group) to the InitializeNode.
3567 assert(init->in(InitializeNode::Memory) == malloc, "");
3568 MergeMemNode* minit_in = MergeMemNode::make(malloc);
3569 init->set_req(InitializeNode::Memory, minit_in);
3570 record_for_igvn(minit_in); // fold it up later, if possible
3571 Node* minit_out = memory(rawidx);
3572 assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3573 // Add an edge in the MergeMem for the header fields so an access
3574 // to one of those has correct memory state
3575 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3576 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3577 if (oop_type->isa_aryptr()) {
3578 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3579 int elemidx = C->get_alias_index(telemref);
3580 hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3581 } else if (oop_type->isa_instptr()) {
3582 ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3583 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3584 ciField* field = ik->nonstatic_field_at(i);
3585 if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3586 continue; // do not bother to track really large numbers of fields
3587 // Find (or create) the alias category for this field:
3588 int fieldidx = C->alias_type(field)->index();
3589 hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3590 }
3591 }
3592 }
3593
3594 // Cast raw oop to the real thing...
3595 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3596 javaoop = _gvn.transform(javaoop);
3597 C->set_recent_alloc(control(), javaoop);
3598 assert(just_allocated_object(control()) == javaoop, "just allocated");
3599
3600 #ifdef ASSERT
3601 { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3612 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3613 }
3614 }
3615 #endif //ASSERT
3616
3617 return javaoop;
3618 }
3619
3620 //---------------------------new_instance--------------------------------------
3621 // This routine takes a klass_node which may be constant (for a static type)
3622 // or may be non-constant (for reflective code). It will work equally well
3623 // for either, and the graph will fold nicely if the optimizer later reduces
3624 // the type to a constant.
3625 // The optional arguments are for specialized use by intrinsics:
3626 // - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3627 // - If 'return_size_val', report the total object size to the caller.
3628 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3629 Node* GraphKit::new_instance(Node* klass_node,
3630 Node* extra_slow_test,
3631 Node* *return_size_val,
3632 bool deoptimize_on_exception) {
3633 // Compute size in doublewords
3634 // The size is always an integral number of doublewords, represented
3635 // as a positive bytewise size stored in the klass's layout_helper.
3636 // The layout_helper also encodes (in a low bit) the need for a slow path.
3637 jint layout_con = Klass::_lh_neutral_value;
3638 Node* layout_val = get_layout_helper(klass_node, layout_con);
3639 int layout_is_con = (layout_val == NULL);
3640
3641 if (extra_slow_test == NULL) extra_slow_test = intcon(0);
3642 // Generate the initial go-slow test. It's either ALWAYS (return a
3643 // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3644 // case) a computed value derived from the layout_helper.
3645 Node* initial_slow_test = NULL;
3646 if (layout_is_con) {
3647 assert(!StressReflectiveCode, "stress mode does not use these paths");
3648 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3649 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3650 } else { // reflective case
3651 // This reflective path is used by Unsafe.allocateInstance.
3652 // (It may be stress-tested by specifying StressReflectiveCode.)
3653 // Basically, we want to get into the VM is there's an illegal argument.
3654 Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3655 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3656 if (extra_slow_test != intcon(0)) {
3657 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3658 }
3659 // (Macro-expander will further convert this to a Bool, if necessary.)
3670
3671 // Clear the low bits to extract layout_helper_size_in_bytes:
3672 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3673 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3674 size = _gvn.transform( new AndXNode(size, mask) );
3675 }
3676 if (return_size_val != NULL) {
3677 (*return_size_val) = size;
3678 }
3679
3680 // This is a precise notnull oop of the klass.
3681 // (Actually, it need not be precise if this is a reflective allocation.)
3682 // It's what we cast the result to.
3683 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3684 if (!tklass) tklass = TypeInstKlassPtr::OBJECT;
3685 const TypeOopPtr* oop_type = tklass->as_instance_type();
3686
3687 // Now generate allocation code
3688
3689 // The entire memory state is needed for slow path of the allocation
3690 // since GC and deoptimization can happened.
3691 Node *mem = reset_memory();
3692 set_all_memory(mem); // Create new memory state
3693
3694 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3695 control(), mem, i_o(),
3696 size, klass_node,
3697 initial_slow_test);
3698
3699 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3700 }
3701
3702 //-------------------------------new_array-------------------------------------
3703 // helper for both newarray and anewarray
3704 // The 'length' parameter is (obviously) the length of the array.
3705 // See comments on new_instance for the meaning of the other arguments.
3706 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable)
3707 Node* length, // number of array elements
3708 int nargs, // number of arguments to push back for uncommon trap
3709 Node* *return_size_val,
3710 bool deoptimize_on_exception) {
3711 jint layout_con = Klass::_lh_neutral_value;
3712 Node* layout_val = get_layout_helper(klass_node, layout_con);
3713 int layout_is_con = (layout_val == NULL);
3714
3715 if (!layout_is_con && !StressReflectiveCode &&
3716 !too_many_traps(Deoptimization::Reason_class_check)) {
3717 // This is a reflective array creation site.
3718 // Optimistically assume that it is a subtype of Object[],
3719 // so that we can fold up all the address arithmetic.
3720 layout_con = Klass::array_layout_helper(T_OBJECT);
3721 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3722 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3723 { BuildCutout unless(this, bol_lh, PROB_MAX);
3724 inc_sp(nargs);
3725 uncommon_trap(Deoptimization::Reason_class_check,
3726 Deoptimization::Action_maybe_recompile);
3727 }
3728 layout_val = NULL;
3729 layout_is_con = true;
3730 }
3731
3732 // Generate the initial go-slow test. Make sure we do not overflow
3733 // if length is huge (near 2Gig) or negative! We do not need
3734 // exact double-words here, just a close approximation of needed
3735 // double-words. We can't add any offset or rounding bits, lest we
3736 // take a size -1 of bytes and make it positive. Use an unsigned
3737 // compare, so negative sizes look hugely positive.
3738 int fast_size_limit = FastAllocateSizeLimit;
3739 if (layout_is_con) {
3740 assert(!StressReflectiveCode, "stress mode does not use these paths");
3741 // Increase the size limit if we have exact knowledge of array type.
3742 int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3743 fast_size_limit <<= (LogBytesPerLong - log2_esize);
3744 }
3745
3746 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3747 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3748
3749 // --- Size Computation ---
3750 // array_size = round_to_heap(array_header + (length << elem_shift));
3751 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3752 // and align_to(x, y) == ((x + y-1) & ~(y-1))
3753 // The rounding mask is strength-reduced, if possible.
3754 int round_mask = MinObjAlignmentInBytes - 1;
3755 Node* header_size = NULL;
3756 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3757 // (T_BYTE has the weakest alignment and size restrictions...)
3758 if (layout_is_con) {
3759 int hsize = Klass::layout_helper_header_size(layout_con);
3760 int eshift = Klass::layout_helper_log2_element_size(layout_con);
3761 BasicType etype = Klass::layout_helper_element_type(layout_con);
3762 if ((round_mask & ~right_n_bits(eshift)) == 0)
3763 round_mask = 0; // strength-reduce it if it goes away completely
3764 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3765 assert(header_size_min <= hsize, "generic minimum is smallest");
3766 header_size_min = hsize;
3767 header_size = intcon(hsize + round_mask);
3768 } else {
3769 Node* hss = intcon(Klass::_lh_header_size_shift);
3770 Node* hsm = intcon(Klass::_lh_header_size_mask);
3771 Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3772 hsize = _gvn.transform( new AndINode(hsize, hsm) );
3773 Node* mask = intcon(round_mask);
3774 header_size = _gvn.transform( new AddINode(hsize, mask) );
3775 }
3776
3777 Node* elem_shift = NULL;
3778 if (layout_is_con) {
3779 int eshift = Klass::layout_helper_log2_element_size(layout_con);
3780 if (eshift != 0)
3781 elem_shift = intcon(eshift);
3782 } else {
3783 // There is no need to mask or shift this value.
3784 // The semantics of LShiftINode include an implicit mask to 0x1F.
3828 // places, one where the length is sharply limited, and the other
3829 // after a successful allocation.
3830 Node* abody = lengthx;
3831 if (elem_shift != NULL)
3832 abody = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3833 Node* size = _gvn.transform( new AddXNode(headerx, abody) );
3834 if (round_mask != 0) {
3835 Node* mask = MakeConX(~round_mask);
3836 size = _gvn.transform( new AndXNode(size, mask) );
3837 }
3838 // else if round_mask == 0, the size computation is self-rounding
3839
3840 if (return_size_val != NULL) {
3841 // This is the size
3842 (*return_size_val) = size;
3843 }
3844
3845 // Now generate allocation code
3846
3847 // The entire memory state is needed for slow path of the allocation
3848 // since GC and deoptimization can happened.
3849 Node *mem = reset_memory();
3850 set_all_memory(mem); // Create new memory state
3851
3852 if (initial_slow_test->is_Bool()) {
3853 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3854 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3855 }
3856
3857 const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3858 Node* valid_length_test = _gvn.intcon(1);
3859 if (ary_type->isa_aryptr()) {
3860 BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3861 jint max = TypeAryPtr::max_array_length(bt);
3862 Node* valid_length_cmp = _gvn.transform(new CmpUNode(length, intcon(max)));
3863 valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3864 }
3865
3866 // Create the AllocateArrayNode and its result projections
3867 AllocateArrayNode* alloc
3868 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3869 control(), mem, i_o(),
3870 size, klass_node,
3871 initial_slow_test,
3872 length, valid_length_test);
3873
3874 // Cast to correct type. Note that the klass_node may be constant or not,
3875 // and in the latter case the actual array type will be inexact also.
3876 // (This happens via a non-constant argument to inline_native_newArray.)
3877 // In any case, the value of klass_node provides the desired array type.
3878 const TypeInt* length_type = _gvn.find_int_type(length);
3879 if (ary_type->isa_aryptr() && length_type != NULL) {
3880 // Try to get a better type than POS for the size
3881 ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3882 }
3883
3884 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3885
3886 array_ideal_length(alloc, ary_type, true);
3887 return javaoop;
3888 }
3889
3890 // The following "Ideal_foo" functions are placed here because they recognize
3891 // the graph shapes created by the functions immediately above.
3892
3893 //---------------------------Ideal_allocation----------------------------------
4007 set_all_memory(ideal.merged_memory());
4008 set_i_o(ideal.i_o());
4009 set_control(ideal.ctrl());
4010 }
4011
4012 void GraphKit::final_sync(IdealKit& ideal) {
4013 // Final sync IdealKit and graphKit.
4014 sync_kit(ideal);
4015 }
4016
4017 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4018 Node* len = load_array_length(load_String_value(str, set_ctrl));
4019 Node* coder = load_String_coder(str, set_ctrl);
4020 // Divide length by 2 if coder is UTF16
4021 return _gvn.transform(new RShiftINode(len, coder));
4022 }
4023
4024 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4025 int value_offset = java_lang_String::value_offset();
4026 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4027 false, NULL, 0);
4028 const TypePtr* value_field_type = string_type->add_offset(value_offset);
4029 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4030 TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4031 ciTypeArrayKlass::make(T_BYTE), true, 0);
4032 Node* p = basic_plus_adr(str, str, value_offset);
4033 Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4034 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4035 return load;
4036 }
4037
4038 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4039 if (!CompactStrings) {
4040 return intcon(java_lang_String::CODER_UTF16);
4041 }
4042 int coder_offset = java_lang_String::coder_offset();
4043 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4044 false, NULL, 0);
4045 const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4046
4047 Node* p = basic_plus_adr(str, str, coder_offset);
4048 Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4049 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4050 return load;
4051 }
4052
4053 void GraphKit::store_String_value(Node* str, Node* value) {
4054 int value_offset = java_lang_String::value_offset();
4055 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4056 false, NULL, 0);
4057 const TypePtr* value_field_type = string_type->add_offset(value_offset);
4058
4059 access_store_at(str, basic_plus_adr(str, value_offset), value_field_type,
4060 value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4061 }
4062
4063 void GraphKit::store_String_coder(Node* str, Node* value) {
4064 int coder_offset = java_lang_String::coder_offset();
4065 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4066 false, NULL, 0);
4067 const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4068
4069 access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4070 value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4071 }
4072
4073 // Capture src and dst memory state with a MergeMemNode
4074 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4075 if (src_type == dst_type) {
4076 // Types are equal, we don't need a MergeMemNode
4077 return memory(src_type);
4078 }
4079 MergeMemNode* merge = MergeMemNode::make(map()->memory());
4080 record_for_igvn(merge); // fold it up later, if possible
4081 int src_idx = C->get_alias_index(src_type);
4082 int dst_idx = C->get_alias_index(dst_type);
4083 merge->set_memory_at(src_idx, memory(src_idx));
4084 merge->set_memory_at(dst_idx, memory(dst_idx));
4085 return merge;
4086 }
4159 i_char->init_req(2, AddI(i_char, intcon(2)));
4160
4161 set_control(IfFalse(iff));
4162 set_memory(st, TypeAryPtr::BYTES);
4163 }
4164
4165 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4166 if (!field->is_constant()) {
4167 return NULL; // Field not marked as constant.
4168 }
4169 ciInstance* holder = NULL;
4170 if (!field->is_static()) {
4171 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4172 if (const_oop != NULL && const_oop->is_instance()) {
4173 holder = const_oop->as_instance();
4174 }
4175 }
4176 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4177 /*is_unsigned_load=*/false);
4178 if (con_type != NULL) {
4179 return makecon(con_type);
4180 }
4181 return NULL;
4182 }
|
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "ci/ciFlatArrayKlass.hpp"
27 #include "ci/ciInlineKlass.hpp"
28 #include "ci/ciUtilities.hpp"
29 #include "classfile/javaClasses.hpp"
30 #include "ci/ciObjArray.hpp"
31 #include "asm/register.hpp"
32 #include "compiler/compileLog.hpp"
33 #include "gc/shared/barrierSet.hpp"
34 #include "gc/shared/c2/barrierSetC2.hpp"
35 #include "interpreter/interpreter.hpp"
36 #include "memory/resourceArea.hpp"
37 #include "opto/addnode.hpp"
38 #include "opto/castnode.hpp"
39 #include "opto/convertnode.hpp"
40 #include "opto/graphKit.hpp"
41 #include "opto/idealKit.hpp"
42 #include "opto/inlinetypenode.hpp"
43 #include "opto/intrinsicnode.hpp"
44 #include "opto/locknode.hpp"
45 #include "opto/machnode.hpp"
46 #include "opto/narrowptrnode.hpp"
47 #include "opto/opaquenode.hpp"
48 #include "opto/parse.hpp"
49 #include "opto/rootnode.hpp"
50 #include "opto/runtime.hpp"
51 #include "opto/subtypenode.hpp"
52 #include "runtime/deoptimization.hpp"
53 #include "runtime/sharedRuntime.hpp"
54 #include "utilities/bitMap.inline.hpp"
55 #include "utilities/powerOfTwo.hpp"
56 #include "utilities/growableArray.hpp"
57
58 //----------------------------GraphKit-----------------------------------------
59 // Main utility constructor.
60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
61 : Phase(Phase::Parser),
62 _env(C->env()),
63 _gvn((gvn != NULL) ? *gvn : *C->initial_gvn()),
64 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
65 {
66 assert(gvn == NULL || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
67 _exceptions = jvms->map()->next_exception();
68 if (_exceptions != NULL) jvms->map()->set_next_exception(NULL);
69 set_jvms(jvms);
70 #ifdef ASSERT
71 if (_gvn.is_IterGVN() != NULL) {
72 assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
73 // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
74 _worklist_size = _gvn.C->for_igvn()->size();
75 }
76 #endif
77 }
78
79 // Private constructor for parser.
80 GraphKit::GraphKit()
81 : Phase(Phase::Parser),
82 _env(C->env()),
83 _gvn(*C->initial_gvn()),
84 _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
85 {
86 _exceptions = NULL;
87 set_map(NULL);
88 debug_only(_sp = -99);
89 debug_only(set_bci(-99));
90 }
91
92
93
94 //---------------------------clean_stack---------------------------------------
95 // Clear away rubbish from the stack area of the JVM state.
96 // This destroys any arguments that may be waiting on the stack.
829 if (PrintMiscellaneous && (Verbose || WizardMode)) {
830 tty->print_cr("Zombie local %d: ", local);
831 jvms->dump();
832 }
833 return false;
834 }
835 }
836 }
837 return true;
838 }
839
840 #endif //ASSERT
841
842 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
843 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
844 ciMethod* cur_method = jvms->method();
845 int cur_bci = jvms->bci();
846 if (cur_method != NULL && cur_bci != InvocationEntryBci) {
847 Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
848 return Interpreter::bytecode_should_reexecute(code) ||
849 (is_anewarray && (code == Bytecodes::_multianewarray));
850 // Reexecute _multianewarray bytecode which was replaced with
851 // sequence of [a]newarray. See Parse::do_multianewarray().
852 //
853 // Note: interpreter should not have it set since this optimization
854 // is limited by dimensions and guarded by flag so in some cases
855 // multianewarray() runtime calls will be generated and
856 // the bytecode should not be reexecutes (stack will not be reset).
857 } else {
858 return false;
859 }
860 }
861
862 // Helper function for adding JVMState and debug information to node
863 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
864 // Add the safepoint edges to the call (or other safepoint).
865
866 // Make sure dead locals are set to top. This
867 // should help register allocation time and cut down on the size
868 // of the deoptimization information.
869 assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
1089 ciSignature* declared_signature = NULL;
1090 ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1091 assert(declared_signature != NULL, "cannot be null");
1092 inputs = declared_signature->arg_size_for_bc(code);
1093 int size = declared_signature->return_type()->size();
1094 depth = size - inputs;
1095 }
1096 break;
1097
1098 case Bytecodes::_multianewarray:
1099 {
1100 ciBytecodeStream iter(method());
1101 iter.reset_to_bci(bci());
1102 iter.next();
1103 inputs = iter.get_dimensions();
1104 assert(rsize == 1, "");
1105 depth = rsize - inputs;
1106 }
1107 break;
1108
1109 case Bytecodes::_withfield: {
1110 bool ignored_will_link;
1111 ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1112 int size = field->type()->size();
1113 inputs = size+1;
1114 depth = rsize - inputs;
1115 break;
1116 }
1117
1118 case Bytecodes::_ireturn:
1119 case Bytecodes::_lreturn:
1120 case Bytecodes::_freturn:
1121 case Bytecodes::_dreturn:
1122 case Bytecodes::_areturn:
1123 assert(rsize == -depth, "");
1124 inputs = rsize;
1125 break;
1126
1127 case Bytecodes::_jsr:
1128 case Bytecodes::_jsr_w:
1129 inputs = 0;
1130 depth = 1; // S.B. depth=1, not zero
1131 break;
1132
1133 default:
1134 // bytecode produces a typed result
1135 inputs = rsize - depth;
1136 assert(inputs >= 0, "");
1137 break;
1180 Node* conv = _gvn.transform( new ConvI2LNode(offset));
1181 Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1182 return _gvn.transform( new AndLNode(conv, mask) );
1183 }
1184
1185 Node* GraphKit::ConvL2I(Node* offset) {
1186 // short-circuit a common case
1187 jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1188 if (offset_con != (jlong)Type::OffsetBot) {
1189 return intcon((int) offset_con);
1190 }
1191 return _gvn.transform( new ConvL2INode(offset));
1192 }
1193
1194 //-------------------------load_object_klass-----------------------------------
1195 Node* GraphKit::load_object_klass(Node* obj) {
1196 // Special-case a fresh allocation to avoid building nodes:
1197 Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1198 if (akls != NULL) return akls;
1199 Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1200 return _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1201 }
1202
1203 //-------------------------load_array_length-----------------------------------
1204 Node* GraphKit::load_array_length(Node* array) {
1205 // Special-case a fresh allocation to avoid building nodes:
1206 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1207 Node *alen;
1208 if (alloc == NULL) {
1209 Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1210 alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1211 } else {
1212 alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1213 }
1214 return alen;
1215 }
1216
1217 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1218 const TypeOopPtr* oop_type,
1219 bool replace_length_in_map) {
1220 Node* length = alloc->Ideal_length();
1229 replace_in_map(length, ccast);
1230 }
1231 return ccast;
1232 }
1233 }
1234 return length;
1235 }
1236
1237 //------------------------------do_null_check----------------------------------
1238 // Helper function to do a NULL pointer check. Returned value is
1239 // the incoming address with NULL casted away. You are allowed to use the
1240 // not-null value only if you are control dependent on the test.
1241 #ifndef PRODUCT
1242 extern int explicit_null_checks_inserted,
1243 explicit_null_checks_elided;
1244 #endif
1245 Node* GraphKit::null_check_common(Node* value, BasicType type,
1246 // optional arguments for variations:
1247 bool assert_null,
1248 Node* *null_control,
1249 bool speculative,
1250 bool is_init_check) {
1251 assert(!assert_null || null_control == NULL, "not both at once");
1252 if (stopped()) return top();
1253 NOT_PRODUCT(explicit_null_checks_inserted++);
1254
1255 if (value->is_InlineType()) {
1256 // Null checking a scalarized but nullable inline type. Check the IsInit
1257 // input instead of the oop input to avoid keeping buffer allocations alive.
1258 InlineTypeNode* vtptr = value->as_InlineType();
1259 while (vtptr->get_oop()->is_InlineType()) {
1260 vtptr = vtptr->get_oop()->as_InlineType();
1261 }
1262 null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1263 if (stopped()) {
1264 return top();
1265 }
1266 if (assert_null) {
1267 // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1268 // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1269 // replace_in_map(value, vtptr);
1270 // return vtptr;
1271 return null();
1272 }
1273 bool do_replace_in_map = (null_control == NULL || (*null_control) == top());
1274 return cast_not_null(value, do_replace_in_map);
1275 }
1276
1277 // Construct NULL check
1278 Node *chk = NULL;
1279 switch(type) {
1280 case T_LONG : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1281 case T_INT : chk = new CmpINode(value, _gvn.intcon(0)); break;
1282 case T_PRIMITIVE_OBJECT : // fall through
1283 case T_ARRAY : // fall through
1284 type = T_OBJECT; // simplify further tests
1285 case T_OBJECT : {
1286 const Type *t = _gvn.type( value );
1287
1288 const TypeOopPtr* tp = t->isa_oopptr();
1289 if (tp != NULL && !tp->is_loaded()
1290 // Only for do_null_check, not any of its siblings:
1291 && !assert_null && null_control == NULL) {
1292 // Usually, any field access or invocation on an unloaded oop type
1293 // will simply fail to link, since the statically linked class is
1294 // likely also to be unloaded. However, in -Xcomp mode, sometimes
1295 // the static class is loaded but the sharper oop type is not.
1296 // Rather than checking for this obscure case in lots of places,
1297 // we simply observe that a null check on an unloaded class
1298 // will always be followed by a nonsense operation, so we
1299 // can just issue the uncommon trap here.
1300 // Our access to the unloaded class will only be correct
1301 // after it has been loaded and initialized, which requires
1302 // a trip through the interpreter.
1361 }
1362 Node *oldcontrol = control();
1363 set_control(cfg);
1364 Node *res = cast_not_null(value);
1365 set_control(oldcontrol);
1366 NOT_PRODUCT(explicit_null_checks_elided++);
1367 return res;
1368 }
1369 cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1370 if (cfg == NULL) break; // Quit at region nodes
1371 depth++;
1372 }
1373 }
1374
1375 //-----------
1376 // Branch to failure if null
1377 float ok_prob = PROB_MAX; // a priori estimate: nulls never happen
1378 Deoptimization::DeoptReason reason;
1379 if (assert_null) {
1380 reason = Deoptimization::reason_null_assert(speculative);
1381 } else if (type == T_OBJECT || is_init_check) {
1382 reason = Deoptimization::reason_null_check(speculative);
1383 } else {
1384 reason = Deoptimization::Reason_div0_check;
1385 }
1386 // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1387 // ciMethodData::has_trap_at will return a conservative -1 if any
1388 // must-be-null assertion has failed. This could cause performance
1389 // problems for a method after its first do_null_assert failure.
1390 // Consider using 'Reason_class_check' instead?
1391
1392 // To cause an implicit null check, we set the not-null probability
1393 // to the maximum (PROB_MAX). For an explicit check the probability
1394 // is set to a smaller value.
1395 if (null_control != NULL || too_many_traps(reason)) {
1396 // probability is less likely
1397 ok_prob = PROB_LIKELY_MAG(3);
1398 } else if (!assert_null &&
1399 (ImplicitNullCheckThreshold > 0) &&
1400 method() != NULL &&
1401 (method()->method_data()->trap_count(reason)
1435 }
1436
1437 if (assert_null) {
1438 // Cast obj to null on this path.
1439 replace_in_map(value, zerocon(type));
1440 return zerocon(type);
1441 }
1442
1443 // Cast obj to not-null on this path, if there is no null_control.
1444 // (If there is a null_control, a non-null value may come back to haunt us.)
1445 if (type == T_OBJECT) {
1446 Node* cast = cast_not_null(value, false);
1447 if (null_control == NULL || (*null_control) == top())
1448 replace_in_map(value, cast);
1449 value = cast;
1450 }
1451
1452 return value;
1453 }
1454
1455 //------------------------------cast_not_null----------------------------------
1456 // Cast obj to not-null on this path
1457 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1458 if (obj->is_InlineType()) {
1459 Node* vt = obj->clone();
1460 vt->as_InlineType()->set_is_init(_gvn);
1461 vt = _gvn.transform(vt);
1462 if (do_replace_in_map) {
1463 replace_in_map(obj, vt);
1464 }
1465 return vt;
1466 }
1467 const Type *t = _gvn.type(obj);
1468 const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1469 // Object is already not-null?
1470 if( t == t_not_null ) return obj;
1471
1472 Node *cast = new CastPPNode(obj,t_not_null);
1473 cast->init_req(0, control());
1474 cast = _gvn.transform( cast );
1475
1476 // Scan for instances of 'obj' in the current JVM mapping.
1477 // These instances are known to be not-null after the test.
1478 if (do_replace_in_map)
1479 replace_in_map(obj, cast);
1480
1481 return cast; // Return casted value
1482 }
1483
1484 // Sometimes in intrinsics, we implicitly know an object is not null
1485 // (there's no actual null check) so we can cast it to not null. In
1486 // the course of optimizations, the input to the cast can become null.
1573 // These are layered on top of the factory methods in LoadNode and StoreNode,
1574 // and integrate with the parser's memory state and _gvn engine.
1575 //
1576
1577 // factory methods in "int adr_idx"
1578 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1579 int adr_idx,
1580 MemNode::MemOrd mo,
1581 LoadNode::ControlDependency control_dependency,
1582 bool require_atomic_access,
1583 bool unaligned,
1584 bool mismatched,
1585 bool unsafe,
1586 uint8_t barrier_data) {
1587 assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1588 const TypePtr* adr_type = NULL; // debug-mode-only argument
1589 debug_only(adr_type = C->get_adr_type(adr_idx));
1590 Node* mem = memory(adr_idx);
1591 Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1592 ld = _gvn.transform(ld);
1593
1594 if (((bt == T_OBJECT || bt == T_PRIMITIVE_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1595 // Improve graph before escape analysis and boxing elimination.
1596 record_for_igvn(ld);
1597 }
1598 return ld;
1599 }
1600
1601 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1602 int adr_idx,
1603 MemNode::MemOrd mo,
1604 bool require_atomic_access,
1605 bool unaligned,
1606 bool mismatched,
1607 bool unsafe) {
1608 assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1609 const TypePtr* adr_type = NULL;
1610 debug_only(adr_type = C->get_adr_type(adr_idx));
1611 Node *mem = memory(adr_idx);
1612 Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1613 if (unaligned) {
1614 st->as_Store()->set_unaligned_access();
1618 }
1619 if (unsafe) {
1620 st->as_Store()->set_unsafe_access();
1621 }
1622 st = _gvn.transform(st);
1623 set_memory(st, adr_idx);
1624 // Back-to-back stores can only remove intermediate store with DU info
1625 // so push on worklist for optimizer.
1626 if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1627 record_for_igvn(st);
1628
1629 return st;
1630 }
1631
1632 Node* GraphKit::access_store_at(Node* obj,
1633 Node* adr,
1634 const TypePtr* adr_type,
1635 Node* val,
1636 const Type* val_type,
1637 BasicType bt,
1638 DecoratorSet decorators,
1639 bool safe_for_replace) {
1640 // Transformation of a value which could be NULL pointer (CastPP #NULL)
1641 // could be delayed during Parse (for example, in adjust_map_after_if()).
1642 // Execute transformation here to avoid barrier generation in such case.
1643 if (_gvn.type(val) == TypePtr::NULL_PTR) {
1644 val = _gvn.makecon(TypePtr::NULL_PTR);
1645 }
1646
1647 if (stopped()) {
1648 return top(); // Dead path ?
1649 }
1650
1651 assert(val != NULL, "not dead path");
1652 if (val->is_InlineType()) {
1653 // Store to non-flattened field. Buffer the inline type and make sure
1654 // the store is re-executed if the allocation triggers deoptimization.
1655 PreserveReexecuteState preexecs(this);
1656 jvms()->set_should_reexecute(true);
1657 val = val->as_InlineType()->buffer(this, safe_for_replace);
1658 }
1659
1660 C2AccessValuePtr addr(adr, adr_type);
1661 C2AccessValue value(val, val_type);
1662 C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1663 if (access.is_raw()) {
1664 return _barrier_set->BarrierSetC2::store_at(access, value);
1665 } else {
1666 return _barrier_set->store_at(access, value);
1667 }
1668 }
1669
1670 Node* GraphKit::access_load_at(Node* obj, // containing obj
1671 Node* adr, // actual address to store val at
1672 const TypePtr* adr_type,
1673 const Type* val_type,
1674 BasicType bt,
1675 DecoratorSet decorators,
1676 Node* ctl) {
1677 if (stopped()) {
1678 return top(); // Dead path ?
1679 }
1680
1681 C2AccessValuePtr addr(adr, adr_type);
1682 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1683 if (access.is_raw()) {
1684 return _barrier_set->BarrierSetC2::load_at(access, val_type);
1685 } else {
1686 return _barrier_set->load_at(access, val_type);
1687 }
1688 }
1689
1690 Node* GraphKit::access_load(Node* adr, // actual address to load val at
1691 const Type* val_type,
1692 BasicType bt,
1693 DecoratorSet decorators) {
1694 if (stopped()) {
1695 return top(); // Dead path ?
1696 }
1697
1698 C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1699 C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, NULL, addr);
1700 if (access.is_raw()) {
1701 return _barrier_set->BarrierSetC2::load_at(access, val_type);
1702 } else {
1767 Node* new_val,
1768 const Type* value_type,
1769 BasicType bt,
1770 DecoratorSet decorators) {
1771 C2AccessValuePtr addr(adr, adr_type);
1772 C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1773 if (access.is_raw()) {
1774 return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1775 } else {
1776 return _barrier_set->atomic_add_at(access, new_val, value_type);
1777 }
1778 }
1779
1780 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1781 return _barrier_set->clone(this, src, dst, size, is_array);
1782 }
1783
1784 //-------------------------array_element_address-------------------------
1785 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1786 const TypeInt* sizetype, Node* ctrl) {
1787 const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1788 uint shift = arytype->is_flat() ? arytype->flat_log_elem_size() : exact_log2(type2aelembytes(elembt));
1789 uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1790
1791 // short-circuit a common case (saves lots of confusing waste motion)
1792 jint idx_con = find_int_con(idx, -1);
1793 if (idx_con >= 0) {
1794 intptr_t offset = header + ((intptr_t)idx_con << shift);
1795 return basic_plus_adr(ary, offset);
1796 }
1797
1798 // must be correct type for alignment purposes
1799 Node* base = basic_plus_adr(ary, header);
1800 idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1801 Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1802 return basic_plus_adr(ary, base, scale);
1803 }
1804
1805 //-------------------------load_array_element-------------------------
1806 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1807 const Type* elemtype = arytype->elem();
1808 BasicType elembt = elemtype->array_element_basic_type();
1809 assert(elembt != T_PRIMITIVE_OBJECT, "inline types are not supported by this method");
1810 Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1811 if (elembt == T_NARROWOOP) {
1812 elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1813 }
1814 Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1815 IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1816 return ld;
1817 }
1818
1819 //-------------------------set_arguments_for_java_call-------------------------
1820 // Arguments (pre-popped from the stack) are taken from the JVMS.
1821 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1822 PreserveReexecuteState preexecs(this);
1823 if (EnableValhalla) {
1824 // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1825 // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1826 jvms()->set_should_reexecute(true);
1827 int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1828 inc_sp(arg_size);
1829 }
1830 // Add the call arguments
1831 const TypeTuple* domain = call->tf()->domain_sig();
1832 uint nargs = domain->cnt();
1833 int arg_num = 0;
1834 for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1835 Node* arg = argument(i-TypeFunc::Parms);
1836 const Type* t = domain->field_at(i);
1837 if (t->is_inlinetypeptr() && call->method()->is_scalarized_arg(arg_num)) {
1838 // We don't pass inline type arguments by reference but instead pass each field of the inline type
1839 if (!arg->is_InlineType()) {
1840 assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1841 arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1842 }
1843 InlineTypeNode* vt = arg->as_InlineType();
1844 vt->pass_fields(this, call, idx, true, !t->maybe_null());
1845 // If an inline type argument is passed as fields, attach the Method* to the call site
1846 // to be able to access the extended signature later via attached_method_before_pc().
1847 // For example, see CompiledMethod::preserve_callee_argument_oops().
1848 call->set_override_symbolic_info(true);
1849 arg_num++;
1850 continue;
1851 } else if (arg->is_InlineType()) {
1852 // Pass inline type argument via oop to callee
1853 arg = arg->as_InlineType()->buffer(this);
1854 if (!is_late_inline) {
1855 arg = arg->as_InlineType()->get_oop();
1856 }
1857 }
1858 if (t != Type::HALF) {
1859 arg_num++;
1860 }
1861 call->init_req(idx++, arg);
1862 }
1863 }
1864
1865 //---------------------------set_edges_for_java_call---------------------------
1866 // Connect a newly created call into the current JVMS.
1867 // A return value node (if any) is returned from set_edges_for_java_call.
1868 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1869
1870 // Add the predefined inputs:
1871 call->init_req( TypeFunc::Control, control() );
1872 call->init_req( TypeFunc::I_O , i_o() );
1873 call->init_req( TypeFunc::Memory , reset_memory() );
1874 call->init_req( TypeFunc::FramePtr, frameptr() );
1875 call->init_req( TypeFunc::ReturnAdr, top() );
1876
1877 add_safepoint_edges(call, must_throw);
1878
1879 Node* xcall = _gvn.transform(call);
1880
1881 if (xcall == top()) {
1882 set_control(top());
1883 return;
1884 }
1885 assert(xcall == call, "call identity is stable");
1886
1887 // Re-use the current map to produce the result.
1888
1889 set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1890 set_i_o( _gvn.transform(new ProjNode(call, TypeFunc::I_O , separate_io_proj)));
1891 set_all_memory_call(xcall, separate_io_proj);
1892
1893 //return xcall; // no need, caller already has it
1894 }
1895
1896 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1897 if (stopped()) return top(); // maybe the call folded up?
1898
1899 // Note: Since any out-of-line call can produce an exception,
1900 // we always insert an I_O projection from the call into the result.
1901
1902 make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1903
1904 if (separate_io_proj) {
1905 // The caller requested separate projections be used by the fall
1906 // through and exceptional paths, so replace the projections for
1907 // the fall through path.
1908 set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1909 set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1910 }
1911
1912 // Capture the return value, if any.
1913 Node* ret;
1914 if (call->method() == NULL || call->method()->return_type()->basic_type() == T_VOID) {
1915 ret = top();
1916 } else if (call->tf()->returns_inline_type_as_fields()) {
1917 // Return of multiple values (inline type fields): we create a
1918 // InlineType node, each field is a projection from the call.
1919 ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
1920 uint base_input = TypeFunc::Parms;
1921 ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, call->method()->signature()->returns_null_free_inline_type());
1922 } else {
1923 ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1924 }
1925
1926 return ret;
1927 }
1928
1929 //--------------------set_predefined_input_for_runtime_call--------------------
1930 // Reading and setting the memory state is way conservative here.
1931 // The real problem is that I am not doing real Type analysis on memory,
1932 // so I cannot distinguish card mark stores from other stores. Across a GC
1933 // point the Store Barrier and the card mark memory has to agree. I cannot
1934 // have a card mark store and its barrier split across the GC point from
1935 // either above or below. Here I get that to happen by reading ALL of memory.
1936 // A better answer would be to separate out card marks from other memory.
1937 // For now, return the input memory state, so that it can be reused
1938 // after the call, if this call has restricted memory effects.
1939 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1940 // Set fixed predefined input arguments
1941 Node* memory = reset_memory();
1942 Node* m = narrow_mem == NULL ? memory : narrow_mem;
1943 call->init_req( TypeFunc::Control, control() );
1944 call->init_req( TypeFunc::I_O, top() ); // does no i/o
1945 call->init_req( TypeFunc::Memory, m ); // may gc ptrs
1996 if (use->is_MergeMem()) {
1997 wl.push(use);
1998 }
1999 }
2000 }
2001
2002 // Replace the call with the current state of the kit.
2003 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
2004 JVMState* ejvms = NULL;
2005 if (has_exceptions()) {
2006 ejvms = transfer_exceptions_into_jvms();
2007 }
2008
2009 ReplacedNodes replaced_nodes = map()->replaced_nodes();
2010 ReplacedNodes replaced_nodes_exception;
2011 Node* ex_ctl = top();
2012
2013 SafePointNode* final_state = stop();
2014
2015 // Find all the needed outputs of this call
2016 CallProjections* callprojs = call->extract_projections(true);
2017
2018 Unique_Node_List wl;
2019 Node* init_mem = call->in(TypeFunc::Memory);
2020 Node* final_mem = final_state->in(TypeFunc::Memory);
2021 Node* final_ctl = final_state->in(TypeFunc::Control);
2022 Node* final_io = final_state->in(TypeFunc::I_O);
2023
2024 // Replace all the old call edges with the edges from the inlining result
2025 if (callprojs->fallthrough_catchproj != NULL) {
2026 C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2027 }
2028 if (callprojs->fallthrough_memproj != NULL) {
2029 if (final_mem->is_MergeMem()) {
2030 // Parser's exits MergeMem was not transformed but may be optimized
2031 final_mem = _gvn.transform(final_mem);
2032 }
2033 C->gvn_replace_by(callprojs->fallthrough_memproj, final_mem);
2034 add_mergemem_users_to_worklist(wl, final_mem);
2035 }
2036 if (callprojs->fallthrough_ioproj != NULL) {
2037 C->gvn_replace_by(callprojs->fallthrough_ioproj, final_io);
2038 }
2039
2040 // Replace the result with the new result if it exists and is used
2041 if (callprojs->resproj[0] != NULL && result != NULL) {
2042 // If the inlined code is dead, the result projections for an inline type returned as
2043 // fields have not been replaced. They will go away once the call is replaced by TOP below.
2044 assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2045 "unexpected number of results");
2046 C->gvn_replace_by(callprojs->resproj[0], result);
2047 }
2048
2049 if (ejvms == NULL) {
2050 // No exception edges to simply kill off those paths
2051 if (callprojs->catchall_catchproj != NULL) {
2052 C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2053 }
2054 if (callprojs->catchall_memproj != NULL) {
2055 C->gvn_replace_by(callprojs->catchall_memproj, C->top());
2056 }
2057 if (callprojs->catchall_ioproj != NULL) {
2058 C->gvn_replace_by(callprojs->catchall_ioproj, C->top());
2059 }
2060 // Replace the old exception object with top
2061 if (callprojs->exobj != NULL) {
2062 C->gvn_replace_by(callprojs->exobj, C->top());
2063 }
2064 } else {
2065 GraphKit ekit(ejvms);
2066
2067 // Load my combined exception state into the kit, with all phis transformed:
2068 SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2069 replaced_nodes_exception = ex_map->replaced_nodes();
2070
2071 Node* ex_oop = ekit.use_exception_state(ex_map);
2072
2073 if (callprojs->catchall_catchproj != NULL) {
2074 C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2075 ex_ctl = ekit.control();
2076 }
2077 if (callprojs->catchall_memproj != NULL) {
2078 Node* ex_mem = ekit.reset_memory();
2079 C->gvn_replace_by(callprojs->catchall_memproj, ex_mem);
2080 add_mergemem_users_to_worklist(wl, ex_mem);
2081 }
2082 if (callprojs->catchall_ioproj != NULL) {
2083 C->gvn_replace_by(callprojs->catchall_ioproj, ekit.i_o());
2084 }
2085
2086 // Replace the old exception object with the newly created one
2087 if (callprojs->exobj != NULL) {
2088 C->gvn_replace_by(callprojs->exobj, ex_oop);
2089 }
2090 }
2091
2092 // Disconnect the call from the graph
2093 call->disconnect_inputs(C);
2094 C->gvn_replace_by(call, C->top());
2095
2096 // Clean up any MergeMems that feed other MergeMems since the
2097 // optimizer doesn't like that.
2098 while (wl.size() > 0) {
2099 _gvn.transform(wl.pop());
2100 }
2101
2102 if (callprojs->fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
2103 replaced_nodes.apply(C, final_ctl);
2104 }
2105 if (!ex_ctl->is_top() && do_replaced_nodes) {
2106 replaced_nodes_exception.apply(C, ex_ctl);
2107 }
2108 }
2109
2110
2111 //------------------------------increment_counter------------------------------
2112 // for statistics: increment a VM counter by 1
2113
2114 void GraphKit::increment_counter(address counter_addr) {
2115 Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2116 increment_counter(adr1);
2117 }
2118
2119 void GraphKit::increment_counter(Node* counter_addr) {
2120 int adr_type = Compile::AliasIdxRaw;
2121 Node* ctrl = control();
2122 Node* cnt = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);
2281 *
2282 * @param n node that the type applies to
2283 * @param exact_kls type from profiling
2284 * @param maybe_null did profiling see null?
2285 *
2286 * @return node with improved type
2287 */
2288 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2289 const Type* current_type = _gvn.type(n);
2290 assert(UseTypeSpeculation, "type speculation must be on");
2291
2292 const TypePtr* speculative = current_type->speculative();
2293
2294 // Should the klass from the profile be recorded in the speculative type?
2295 if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2296 const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls);
2297 const TypeOopPtr* xtype = tklass->as_instance_type();
2298 assert(xtype->klass_is_exact(), "Should be exact");
2299 // Any reason to believe n is not null (from this profiling or a previous one)?
2300 assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2301 const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2302 // record the new speculative type's depth
2303 speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2304 speculative = speculative->with_inline_depth(jvms()->depth());
2305 } else if (current_type->would_improve_ptr(ptr_kind)) {
2306 // Profiling report that null was never seen so we can change the
2307 // speculative type to non null ptr.
2308 if (ptr_kind == ProfileAlwaysNull) {
2309 speculative = TypePtr::NULL_PTR;
2310 } else {
2311 assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2312 const TypePtr* ptr = TypePtr::NOTNULL;
2313 if (speculative != NULL) {
2314 speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2315 } else {
2316 speculative = ptr;
2317 }
2318 }
2319 }
2320
2321 if (speculative != current_type->speculative()) {
2322 // Build a type with a speculative type (what we think we know
2323 // about the type but will need a guard when we use it)
2324 const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2325 // We're changing the type, we need a new CheckCast node to carry
2326 // the new type. The new type depends on the control: what
2327 // profiling tells us is only valid from here as far as we can
2328 // tell.
2329 Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2330 cast = _gvn.transform(cast);
2331 replace_in_map(n, cast);
2332 n = cast;
2333 }
2334
2335 return n;
2336 }
2337
2338 /**
2339 * Record profiling data from receiver profiling at an invoke with the
2340 * type system so that it can propagate it (speculation)
2341 *
2342 * @param n receiver node
2343 *
2344 * @return node with improved type
2345 */
2346 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2347 if (!UseTypeSpeculation) {
2348 return n;
2349 }
2350 ciKlass* exact_kls = profile_has_unique_klass();
2351 ProfilePtrKind ptr_kind = ProfileMaybeNull;
2352 if ((java_bc() == Bytecodes::_checkcast ||
2353 java_bc() == Bytecodes::_instanceof ||
2354 java_bc() == Bytecodes::_aastore) &&
2355 method()->method_data()->is_mature()) {
2356 ciProfileData* data = method()->method_data()->bci_to_data(bci());
2357 if (data != NULL) {
2358 if (java_bc() == Bytecodes::_aastore) {
2359 ciKlass* array_type = NULL;
2360 ciKlass* element_type = NULL;
2361 ProfilePtrKind element_ptr = ProfileMaybeNull;
2362 bool flat_array = true;
2363 bool null_free_array = true;
2364 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2365 exact_kls = element_type;
2366 ptr_kind = element_ptr;
2367 } else {
2368 if (!data->as_BitData()->null_seen()) {
2369 ptr_kind = ProfileNeverNull;
2370 } else {
2371 assert(data->is_ReceiverTypeData(), "bad profile data type");
2372 ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2373 uint i = 0;
2374 for (; i < call->row_limit(); i++) {
2375 ciKlass* receiver = call->receiver(i);
2376 if (receiver != NULL) {
2377 break;
2378 }
2379 }
2380 ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2381 }
2382 }
2383 }
2384 }
2385 return record_profile_for_speculation(n, exact_kls, ptr_kind);
2386 }
2387
2388 /**
2389 * Record profiling data from argument profiling at an invoke with the
2390 * type system so that it can propagate it (speculation)
2391 *
2392 * @param dest_method target method for the call
2393 * @param bc what invoke bytecode is this?
2394 */
2395 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2396 if (!UseTypeSpeculation) {
2397 return;
2398 }
2399 const TypeFunc* tf = TypeFunc::make(dest_method);
2400 int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2401 int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2402 for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2403 const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2404 if (is_reference_type(targ->basic_type())) {
2405 ProfilePtrKind ptr_kind = ProfileMaybeNull;
2406 ciKlass* better_type = NULL;
2407 if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2408 record_profile_for_speculation(argument(j), better_type, ptr_kind);
2409 }
2410 i++;
2411 }
2412 }
2413 }
2414
2415 /**
2416 * Record profiling data from parameter profiling at an invoke with
2417 * the type system so that it can propagate it (speculation)
2418 */
2419 void GraphKit::record_profiled_parameters_for_speculation() {
2420 if (!UseTypeSpeculation) {
2421 return;
2422 }
2423 for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2437 * the type system so that it can propagate it (speculation)
2438 */
2439 void GraphKit::record_profiled_return_for_speculation() {
2440 if (!UseTypeSpeculation) {
2441 return;
2442 }
2443 ProfilePtrKind ptr_kind = ProfileMaybeNull;
2444 ciKlass* better_type = NULL;
2445 if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2446 // If profiling reports a single type for the return value,
2447 // feed it to the type system so it can propagate it as a
2448 // speculative type
2449 record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2450 }
2451 }
2452
2453 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2454 if (Matcher::strict_fp_requires_explicit_rounding) {
2455 // (Note: TypeFunc::make has a cache that makes this fast.)
2456 const TypeFunc* tf = TypeFunc::make(dest_method);
2457 int nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2458 for (int j = 0; j < nargs; j++) {
2459 const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2460 if (targ->basic_type() == T_DOUBLE) {
2461 // If any parameters are doubles, they must be rounded before
2462 // the call, dprecision_rounding does gvn.transform
2463 Node *arg = argument(j);
2464 arg = dprecision_rounding(arg);
2465 set_argument(j, arg);
2466 }
2467 }
2468 }
2469 }
2470
2471 // rounding for strict float precision conformance
2472 Node* GraphKit::precision_rounding(Node* n) {
2473 if (Matcher::strict_fp_requires_explicit_rounding) {
2474 #ifdef IA32
2475 if (UseSSE == 0) {
2476 return _gvn.transform(new RoundFloatNode(0, n));
2477 }
2478 #else
2479 Unimplemented();
2588 // The first NULL ends the list.
2589 Node* parm0, Node* parm1,
2590 Node* parm2, Node* parm3,
2591 Node* parm4, Node* parm5,
2592 Node* parm6, Node* parm7) {
2593 assert(call_addr != NULL, "must not call NULL targets");
2594
2595 // Slow-path call
2596 bool is_leaf = !(flags & RC_NO_LEAF);
2597 bool has_io = (!is_leaf && !(flags & RC_NO_IO));
2598 if (call_name == NULL) {
2599 assert(!is_leaf, "must supply name for leaf");
2600 call_name = OptoRuntime::stub_name(call_addr);
2601 }
2602 CallNode* call;
2603 if (!is_leaf) {
2604 call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2605 } else if (flags & RC_NO_FP) {
2606 call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2607 } else if (flags & RC_VECTOR){
2608 uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2609 call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2610 } else {
2611 call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2612 }
2613
2614 // The following is similar to set_edges_for_java_call,
2615 // except that the memory effects of the call are restricted to AliasIdxRaw.
2616
2617 // Slow path call has no side-effects, uses few values
2618 bool wide_in = !(flags & RC_NARROW_MEM);
2619 bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2620
2621 Node* prev_mem = NULL;
2622 if (wide_in) {
2623 prev_mem = set_predefined_input_for_runtime_call(call);
2624 } else {
2625 assert(!wide_out, "narrow in => narrow out");
2626 Node* narrow_mem = memory(adr_type);
2627 prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2628 }
2668
2669 if (has_io) {
2670 set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2671 }
2672 return call;
2673
2674 }
2675
2676 // i2b
2677 Node* GraphKit::sign_extend_byte(Node* in) {
2678 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2679 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2680 }
2681
2682 // i2s
2683 Node* GraphKit::sign_extend_short(Node* in) {
2684 Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2685 return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2686 }
2687
2688
2689 //------------------------------merge_memory-----------------------------------
2690 // Merge memory from one path into the current memory state.
2691 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2692 for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2693 Node* old_slice = mms.force_memory();
2694 Node* new_slice = mms.memory2();
2695 if (old_slice != new_slice) {
2696 PhiNode* phi;
2697 if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2698 if (mms.is_empty()) {
2699 // clone base memory Phi's inputs for this memory slice
2700 assert(old_slice == mms.base_memory(), "sanity");
2701 phi = PhiNode::make(region, NULL, Type::MEMORY, mms.adr_type(C));
2702 _gvn.set_type(phi, Type::MEMORY);
2703 for (uint i = 1; i < phi->req(); i++) {
2704 phi->init_req(i, old_slice->in(i));
2705 }
2706 } else {
2707 phi = old_slice->as_Phi(); // Phi was generated already
2708 }
2922
2923 // Now do a linear scan of the secondary super-klass array. Again, no real
2924 // performance impact (too rare) but it's gotta be done.
2925 // Since the code is rarely used, there is no penalty for moving it
2926 // out of line, and it can only improve I-cache density.
2927 // The decision to inline or out-of-line this final check is platform
2928 // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2929 Node* psc = gvn.transform(
2930 new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2931
2932 IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2933 r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2934 r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2935
2936 // Return false path; set default control to true path.
2937 *ctrl = gvn.transform(r_ok_subtype);
2938 return gvn.transform(r_not_subtype);
2939 }
2940
2941 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
2942 const Type* sub_t = _gvn.type(obj_or_subklass);
2943 if (sub_t->make_oopptr() != NULL && sub_t->make_oopptr()->is_inlinetypeptr()) {
2944 sub_t = TypeKlassPtr::make(sub_t->inline_klass());
2945 obj_or_subklass = makecon(sub_t);
2946 }
2947 bool expand_subtype_check = C->post_loop_opts_phase() || // macro node expansion is over
2948 ExpandSubTypeCheckAtParseTime; // forced expansion
2949 if (expand_subtype_check) {
2950 MergeMemNode* mem = merged_memory();
2951 Node* ctrl = control();
2952 Node* subklass = obj_or_subklass;
2953 if (!sub_t->isa_klassptr()) {
2954 subklass = load_object_klass(obj_or_subklass);
2955 }
2956 Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn);
2957 set_control(ctrl);
2958 return n;
2959 }
2960
2961 Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass));
2962 Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2963 IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2964 set_control(_gvn.transform(new IfTrueNode(iff)));
2965 return _gvn.transform(new IfFalseNode(iff));
2966 }
2967
2968 // Profile-driven exact type check:
2969 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2970 float prob, Node* *casted_receiver) {
2971 assert(!klass->is_interface(), "no exact type check on interfaces");
2972 Node* fail = top();
2973 const Type* rec_t = _gvn.type(receiver);
2974 if (rec_t->is_inlinetypeptr()) {
2975 if (klass->equals(rec_t->inline_klass())) {
2976 (*casted_receiver) = receiver; // Always passes
2977 } else {
2978 (*casted_receiver) = top(); // Always fails
2979 fail = control();
2980 set_control(top());
2981 }
2982 return fail;
2983 }
2984 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2985 Node* recv_klass = load_object_klass(receiver);
2986 fail = type_check(recv_klass, tklass, prob);
2987
2988 if (!stopped()) {
2989 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2990 const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2991 assert(recv_xtype->klass_is_exact(), "");
2992
2993 if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
2994 // Subsume downstream occurrences of receiver with a cast to
2995 // recv_xtype, since now we know what the type will be.
2996 Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2997 Node* res = _gvn.transform(cast);
2998 if (recv_xtype->is_inlinetypeptr()) {
2999 assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3000 res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3001 }
3002 (*casted_receiver) = res;
3003 // (User must make the replace_in_map call.)
3004 }
3005 }
3006
3007 return fail;
3008 }
3009
3010 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3011 float prob) {
3012 Node* want_klass = makecon(tklass);
3013 Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3014 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3015 IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3016 set_control(_gvn.transform(new IfTrueNode (iff)));
3017 Node* fail = _gvn.transform(new IfFalseNode(iff));
3018 return fail;
3019 }
3020
3021 //------------------------------subtype_check_receiver-------------------------
3022 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3023 Node** casted_receiver) {
3024 const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
3025 Node* want_klass = makecon(tklass);
3026
3027 Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3028
3029 // Ignore interface type information until interface types are properly tracked.
3030 if (!stopped() && !klass->is_interface()) {
3031 const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3032 const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3033 if (receiver_type != NULL && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3034 Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3035 if (recv_type->is_inlinetypeptr()) {
3036 cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3037 }
3038 (*casted_receiver) = cast;
3039 }
3040 }
3041
3042 return slow_ctl;
3043 }
3044
3045 //------------------------------seems_never_null-------------------------------
3046 // Use null_seen information if it is available from the profile.
3047 // If we see an unexpected null at a type check we record it and force a
3048 // recompile; the offending check will be recompiled to handle NULLs.
3049 // If we see several offending BCIs, then all checks in the
3050 // method will be recompiled.
3051 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3052 speculating = !_gvn.type(obj)->speculative_maybe_null();
3053 Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3054 if (UncommonNullCast // Cutout for this technique
3055 && obj != null() // And not the -Xcomp stupid case?
3056 && !too_many_traps(reason)
3057 ) {
3058 if (speculating) {
3059 return true;
3060 }
3061 if (data == NULL)
3062 // Edge case: no mature data. Be optimistic here.
3063 return true;
3064 // If the profile has not seen a null, assume it won't happen.
3065 assert(java_bc() == Bytecodes::_checkcast ||
3066 java_bc() == Bytecodes::_instanceof ||
3067 java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3068 if (java_bc() == Bytecodes::_aastore) {
3069 return ((ciArrayLoadStoreData*)data->as_ArrayLoadStoreData())->element()->ptr_kind() == ProfileNeverNull;
3070 }
3071 return !data->as_BitData()->null_seen();
3072 }
3073 speculating = false;
3074 return false;
3075 }
3076
3077 void GraphKit::guard_klass_being_initialized(Node* klass) {
3078 int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3079 Node* adr = basic_plus_adr(top(), klass, init_state_off);
3080 Node* init_state = LoadNode::make(_gvn, NULL, immutable_memory(), adr,
3081 adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3082 T_BYTE, MemNode::unordered);
3083 init_state = _gvn.transform(init_state);
3084
3085 Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3086
3087 Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3088 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3089
3090 { BuildCutout unless(this, tst, PROB_MAX);
3130
3131 //------------------------maybe_cast_profiled_receiver-------------------------
3132 // If the profile has seen exactly one type, narrow to exactly that type.
3133 // Subsequent type checks will always fold up.
3134 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3135 const TypeKlassPtr* require_klass,
3136 ciKlass* spec_klass,
3137 bool safe_for_replace) {
3138 if (!UseTypeProfile || !TypeProfileCasts) return NULL;
3139
3140 Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != NULL);
3141
3142 // Make sure we haven't already deoptimized from this tactic.
3143 if (too_many_traps_or_recompiles(reason))
3144 return NULL;
3145
3146 // (No, this isn't a call, but it's enough like a virtual call
3147 // to use the same ciMethod accessor to get the profile info...)
3148 // If we have a speculative type use it instead of profiling (which
3149 // may not help us)
3150 ciKlass* exact_kls = spec_klass;
3151 if (exact_kls == NULL) {
3152 if (java_bc() == Bytecodes::_aastore) {
3153 ciKlass* array_type = NULL;
3154 ciKlass* element_type = NULL;
3155 ProfilePtrKind element_ptr = ProfileMaybeNull;
3156 bool flat_array = true;
3157 bool null_free_array = true;
3158 method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3159 exact_kls = element_type;
3160 } else {
3161 exact_kls = profile_has_unique_klass();
3162 }
3163 }
3164 if (exact_kls != NULL) {// no cast failures here
3165 if (require_klass == NULL ||
3166 C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls)) == Compile::SSC_always_true) {
3167 // If we narrow the type to match what the type profile sees or
3168 // the speculative type, we can then remove the rest of the
3169 // cast.
3170 // This is a win, even if the exact_kls is very specific,
3171 // because downstream operations, such as method calls,
3172 // will often benefit from the sharper type.
3173 Node* exact_obj = not_null_obj; // will get updated in place...
3174 Node* slow_ctl = type_check_receiver(exact_obj, exact_kls, 1.0,
3175 &exact_obj);
3176 { PreserveJVMState pjvms(this);
3177 set_control(slow_ctl);
3178 uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3179 }
3180 if (safe_for_replace) {
3181 replace_in_map(not_null_obj, exact_obj);
3182 }
3183 return exact_obj;
3273 // If not_null_obj is dead, only null-path is taken
3274 if (stopped()) { // Doing instance-of on a NULL?
3275 set_control(null_ctl);
3276 return intcon(0);
3277 }
3278 region->init_req(_null_path, null_ctl);
3279 phi ->init_req(_null_path, intcon(0)); // Set null path value
3280 if (null_ctl == top()) {
3281 // Do this eagerly, so that pattern matches like is_diamond_phi
3282 // will work even during parsing.
3283 assert(_null_path == PATH_LIMIT-1, "delete last");
3284 region->del_req(_null_path);
3285 phi ->del_req(_null_path);
3286 }
3287
3288 // Do we know the type check always succeed?
3289 bool known_statically = false;
3290 if (_gvn.type(superklass)->singleton()) {
3291 const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3292 const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3293 if (subk != NULL && subk->is_loaded()) {
3294 int static_res = C->static_subtype_check(superk, subk);
3295 known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3296 }
3297 }
3298
3299 if (!known_statically) {
3300 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3301 // We may not have profiling here or it may not help us. If we
3302 // have a speculative type use it to perform an exact cast.
3303 ciKlass* spec_obj_type = obj_type->speculative_type();
3304 if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
3305 Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
3306 if (stopped()) { // Profile disagrees with this path.
3307 set_control(null_ctl); // Null is the only remaining possibility.
3308 return intcon(0);
3309 }
3310 if (cast_obj != NULL) {
3311 not_null_obj = cast_obj;
3312 }
3313 }
3329 record_for_igvn(region);
3330
3331 // If we know the type check always succeeds then we don't use the
3332 // profiling data at this bytecode. Don't lose it, feed it to the
3333 // type system as a speculative type.
3334 if (safe_for_replace) {
3335 Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3336 replace_in_map(obj, casted_obj);
3337 }
3338
3339 return _gvn.transform(phi);
3340 }
3341
3342 //-------------------------------gen_checkcast---------------------------------
3343 // Generate a checkcast idiom. Used by both the checkcast bytecode and the
3344 // array store bytecode. Stack must be as-if BEFORE doing the bytecode so the
3345 // uncommon-trap paths work. Adjust stack after this call.
3346 // If failure_control is supplied and not null, it is filled in with
3347 // the control edge for the cast failure. Otherwise, an appropriate
3348 // uncommon trap or exception is thrown.
3349 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {
3350 kill_dead_locals(); // Benefit all the uncommon traps
3351 const TypeKlassPtr* tk = _gvn.type(superklass)->is_klassptr();
3352 const TypeOopPtr* toop = tk->cast_to_exactness(false)->as_instance_type();
3353 bool safe_for_replace = (failure_control == NULL);
3354 assert(!null_free || toop->is_inlinetypeptr(), "must be an inline type pointer");
3355
3356 // Fast cutout: Check the case that the cast is vacuously true.
3357 // This detects the common cases where the test will short-circuit
3358 // away completely. We do this before we perform the null check,
3359 // because if the test is going to turn into zero code, we don't
3360 // want a residual null check left around. (Causes a slowdown,
3361 // for example, in some objArray manipulations, such as a[i]=a[j].)
3362 if (tk->singleton()) {
3363 const TypeKlassPtr* kptr = NULL;
3364 const Type* t = _gvn.type(obj);
3365 if (t->isa_oop_ptr()) {
3366 kptr = t->is_oopptr()->as_klass_type();
3367 } else if (obj->is_InlineType()) {
3368 ciInlineKlass* vk = t->inline_klass();
3369 kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0), vk->flatten_array());
3370 }
3371 if (kptr != NULL) {
3372 switch (C->static_subtype_check(tk, kptr)) {
3373 case Compile::SSC_always_true:
3374 // If we know the type check always succeed then we don't use
3375 // the profiling data at this bytecode. Don't lose it, feed it
3376 // to the type system as a speculative type.
3377 obj = record_profiled_receiver_for_speculation(obj);
3378 if (null_free) {
3379 assert(safe_for_replace, "must be");
3380 obj = null_check(obj);
3381 }
3382 assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3383 return obj;
3384 case Compile::SSC_always_false:
3385 if (null_free) {
3386 assert(safe_for_replace, "must be");
3387 obj = null_check(obj);
3388 }
3389 // It needs a null check because a null will *pass* the cast check.
3390 if (t->isa_oopptr() != NULL && !t->is_oopptr()->maybe_null()) {
3391 bool is_aastore = (java_bc() == Bytecodes::_aastore);
3392 Deoptimization::DeoptReason reason = is_aastore ?
3393 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3394 builtin_throw(reason);
3395 return top();
3396 } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3397 return null_assert(obj);
3398 }
3399 break; // Fall through to full check
3400 default:
3401 break;
3402 }
3403 }
3404 }
3405
3406 ciProfileData* data = NULL;
3407 if (failure_control == NULL) { // use MDO in regular case only
3408 assert(java_bc() == Bytecodes::_aastore ||
3409 java_bc() == Bytecodes::_checkcast,
3410 "interpreter profiles type checks only for these BCs");
3411 if (method()->method_data()->is_mature()) {
3412 data = method()->method_data()->bci_to_data(bci());
3413 }
3414 }
3415
3416 // Make the merge point
3417 enum { _obj_path = 1, _null_path, PATH_LIMIT };
3418 RegionNode* region = new RegionNode(PATH_LIMIT);
3419 Node* phi = new PhiNode(region, toop);
3420 _gvn.set_type(region, Type::CONTROL);
3421 _gvn.set_type(phi, toop);
3422
3423 C->set_has_split_ifs(true); // Has chance for split-if optimization
3424
3425 // Use null-cast information if it is available
3426 bool speculative_not_null = false;
3427 bool never_see_null = ((failure_control == NULL) // regular case only
3428 && seems_never_null(obj, data, speculative_not_null));
3429
3430 if (obj->is_InlineType()) {
3431 // Re-execute if buffering during triggers deoptimization
3432 PreserveReexecuteState preexecs(this);
3433 jvms()->set_should_reexecute(true);
3434 obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3435 }
3436
3437 // Null check; get casted pointer; set region slot 3
3438 Node* null_ctl = top();
3439 Node* not_null_obj = NULL;
3440 if (null_free) {
3441 assert(safe_for_replace, "must be");
3442 not_null_obj = null_check(obj);
3443 } else {
3444 not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3445 }
3446
3447 // If not_null_obj is dead, only null-path is taken
3448 if (stopped()) { // Doing instance-of on a NULL?
3449 set_control(null_ctl);
3450 if (toop->is_inlinetypeptr()) {
3451 return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3452 }
3453 return null();
3454 }
3455 region->init_req(_null_path, null_ctl);
3456 phi ->init_req(_null_path, null()); // Set null path value
3457 if (null_ctl == top()) {
3458 // Do this eagerly, so that pattern matches like is_diamond_phi
3459 // will work even during parsing.
3460 assert(_null_path == PATH_LIMIT-1, "delete last");
3461 region->del_req(_null_path);
3462 phi ->del_req(_null_path);
3463 }
3464
3465 Node* cast_obj = NULL;
3466 if (tk->klass_is_exact()) {
3467 // The following optimization tries to statically cast the speculative type of the object
3468 // (for example obtained during profiling) to the type of the superklass and then do a
3469 // dynamic check that the type of the object is what we expect. To work correctly
3470 // for checkcast and aastore the type of superklass should be exact.
3471 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3472 // We may not have profiling here or it may not help us. If we have
3473 // a speculative type use it to perform an exact cast.
3474 ciKlass* spec_obj_type = obj_type->speculative_type();
3475 if (spec_obj_type != NULL || data != NULL) {
3476 cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk, spec_obj_type, safe_for_replace);
3477 if (cast_obj != NULL) {
3478 if (failure_control != NULL) // failure is now impossible
3479 (*failure_control) = top();
3480 // adjust the type of the phi to the exact klass:
3481 phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3482 }
3483 }
3484 }
3485
3486 if (cast_obj == NULL) {
3487 // Generate the subtype check
3488 Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3489
3490 // Plug in success path into the merge
3491 cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3492 // Failure path ends in uncommon trap (or may be dead - failure impossible)
3493 if (failure_control == NULL) {
3494 if (not_subtype_ctrl != top()) { // If failure is possible
3495 PreserveJVMState pjvms(this);
3496 set_control(not_subtype_ctrl);
3497 Node* obj_klass = NULL;
3498 if (not_null_obj->is_InlineType()) {
3499 obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3500 } else {
3501 obj_klass = load_object_klass(not_null_obj);
3502 }
3503 bool is_aastore = (java_bc() == Bytecodes::_aastore);
3504 Deoptimization::DeoptReason reason = is_aastore ?
3505 Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3506 builtin_throw(reason);
3507 }
3508 } else {
3509 (*failure_control) = not_subtype_ctrl;
3510 }
3511 }
3512
3513 region->init_req(_obj_path, control());
3514 phi ->init_req(_obj_path, cast_obj);
3515
3516 // A merge of NULL or Casted-NotNull obj
3517 Node* res = _gvn.transform(phi);
3518
3519 // Note I do NOT always 'replace_in_map(obj,result)' here.
3520 // if( tk->klass()->can_be_primary_super() )
3521 // This means that if I successfully store an Object into an array-of-String
3522 // I 'forget' that the Object is really now known to be a String. I have to
3523 // do this because we don't have true union types for interfaces - if I store
3524 // a Baz into an array-of-Interface and then tell the optimizer it's an
3525 // Interface, I forget that it's also a Baz and cannot do Baz-like field
3526 // references to it. FIX THIS WHEN UNION TYPES APPEAR!
3527 // replace_in_map( obj, res );
3528
3529 // Return final merged results
3530 set_control( _gvn.transform(region) );
3531 record_for_igvn(region);
3532
3533 bool not_inline = !toop->can_be_inline_type();
3534 bool not_flattened = !UseFlatArray || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flatten_array());
3535 if (EnableValhalla && not_flattened) {
3536 // Check if obj has been loaded from an array
3537 obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3538 Node* array = NULL;
3539 if (obj->isa_Load()) {
3540 Node* address = obj->in(MemNode::Address);
3541 if (address->isa_AddP()) {
3542 array = address->as_AddP()->in(AddPNode::Base);
3543 }
3544 } else if (obj->is_Phi()) {
3545 Node* region = obj->in(0);
3546 // TODO make this more robust (see JDK-8231346)
3547 if (region->req() == 3 && region->in(2) != NULL && region->in(2)->in(0) != NULL) {
3548 IfNode* iff = region->in(2)->in(0)->isa_If();
3549 if (iff != NULL) {
3550 iff->is_flat_array_check(&_gvn, &array);
3551 }
3552 }
3553 }
3554 if (array != NULL) {
3555 const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3556 if (ary_t != NULL) {
3557 if (!ary_t->is_not_null_free() && not_inline) {
3558 // Casting array element to a non-inline-type, mark array as not null-free.
3559 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3560 replace_in_map(array, cast);
3561 } else if (!ary_t->is_not_flat()) {
3562 // Casting array element to a non-flattened type, mark array as not flat.
3563 Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3564 replace_in_map(array, cast);
3565 }
3566 }
3567 }
3568 }
3569
3570 if (!stopped() && !res->is_InlineType()) {
3571 res = record_profiled_receiver_for_speculation(res);
3572 if (toop->is_inlinetypeptr()) {
3573 Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3574 res = vt;
3575 if (safe_for_replace) {
3576 replace_in_map(obj, vt);
3577 replace_in_map(not_null_obj, vt);
3578 replace_in_map(res, vt);
3579 }
3580 }
3581 }
3582 return res;
3583 }
3584
3585 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3586 Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3587 Node* mark = make_load(NULL, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3588 Node* mask = MakeConX(markWord::inline_type_pattern);
3589 Node* masked = _gvn.transform(new AndXNode(mark, mask));
3590 Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3591 return _gvn.transform(new BoolNode(cmp, is_inline ? BoolTest::eq : BoolTest::ne));
3592 }
3593
3594 Node* GraphKit::is_val_mirror(Node* mirror) {
3595 Node* p = basic_plus_adr(mirror, java_lang_Class::secondary_mirror_offset());
3596 Node* secondary_mirror = access_load_at(mirror, p, _gvn.type(p)->is_ptr(), TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR), T_OBJECT, IN_HEAP);
3597 Node* cmp = _gvn.transform(new CmpPNode(mirror, secondary_mirror));
3598 return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3599 }
3600
3601 Node* GraphKit::array_lh_test(Node* klass, jint mask, jint val, bool eq) {
3602 Node* lh_adr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset()));
3603 // Make sure to use immutable memory here to enable hoisting the check out of loops
3604 Node* lh_val = _gvn.transform(LoadNode::make(_gvn, NULL, immutable_memory(), lh_adr, lh_adr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered));
3605 Node* masked = _gvn.transform(new AndINode(lh_val, intcon(mask)));
3606 Node* cmp = _gvn.transform(new CmpINode(masked, intcon(val)));
3607 return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3608 }
3609
3610 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3611 // We can't use immutable memory here because the mark word is mutable.
3612 // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3613 // check is moved out of loops (mainly to enable loop unswitching).
3614 Node* mem = UseArrayMarkWordCheck ? memory(Compile::AliasIdxRaw) : immutable_memory();
3615 Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, mem, array_or_klass));
3616 record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3617 return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3618 }
3619
3620 Node* GraphKit::null_free_array_test(Node* klass, bool null_free) {
3621 return array_lh_test(klass, Klass::_lh_null_free_array_bit_inplace, 0, !null_free);
3622 }
3623
3624 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3625 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3626 RegionNode* region = new RegionNode(3);
3627 Node* null_ctl = top();
3628 null_check_oop(val, &null_ctl);
3629 if (null_ctl != top()) {
3630 PreserveJVMState pjvms(this);
3631 set_control(null_ctl);
3632 {
3633 // Deoptimize if null-free array
3634 BuildCutout unless(this, null_free_array_test(load_object_klass(ary), /* null_free = */ false), PROB_MAX);
3635 inc_sp(nargs);
3636 uncommon_trap(Deoptimization::Reason_null_check,
3637 Deoptimization::Action_none);
3638 }
3639 region->init_req(1, control());
3640 }
3641 region->init_req(2, control());
3642 set_control(_gvn.transform(region));
3643 record_for_igvn(region);
3644 if (_gvn.type(val) == TypePtr::NULL_PTR) {
3645 // Since we were just successfully storing null, the array can't be null free.
3646 const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3647 ary_t = ary_t->cast_to_not_null_free();
3648 Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3649 if (safe_for_replace) {
3650 replace_in_map(ary, cast);
3651 }
3652 ary = cast;
3653 }
3654 return ary;
3655 }
3656
3657 //------------------------------next_monitor-----------------------------------
3658 // What number should be given to the next monitor?
3659 int GraphKit::next_monitor() {
3660 int current = jvms()->monitor_depth()* C->sync_stack_slots();
3661 int next = current + C->sync_stack_slots();
3662 // Keep the toplevel high water mark current:
3663 if (C->fixed_slots() < next) C->set_fixed_slots(next);
3664 return current;
3665 }
3666
3667 //------------------------------insert_mem_bar---------------------------------
3668 // Memory barrier to avoid floating things around
3669 // The membar serves as a pinch point between both control and all memory slices.
3670 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3671 MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3672 mb->init_req(TypeFunc::Control, control());
3673 mb->init_req(TypeFunc::Memory, reset_memory());
3674 Node* membar = _gvn.transform(mb);
3702 }
3703 Node* membar = _gvn.transform(mb);
3704 set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3705 if (alias_idx == Compile::AliasIdxBot) {
3706 merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3707 } else {
3708 set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3709 }
3710 return membar;
3711 }
3712
3713 //------------------------------shared_lock------------------------------------
3714 // Emit locking code.
3715 FastLockNode* GraphKit::shared_lock(Node* obj) {
3716 // bci is either a monitorenter bc or InvocationEntryBci
3717 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3718 assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3719
3720 if( !GenerateSynchronizationCode )
3721 return NULL; // Not locking things?
3722
3723 if (stopped()) // Dead monitor?
3724 return NULL;
3725
3726 assert(dead_locals_are_killed(), "should kill locals before sync. point");
3727
3728 // Box the stack location
3729 Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3730 Node* mem = reset_memory();
3731
3732 FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3733
3734 // Create the rtm counters for this fast lock if needed.
3735 flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3736
3737 // Add monitor to debug info for the slow path. If we block inside the
3738 // slow path and de-opt, we need the monitor hanging around
3739 map()->push_monitor( flock );
3740
3741 const TypeFunc *tf = LockNode::lock_type();
3742 LockNode *lock = new LockNode(C, tf);
3771 }
3772 #endif
3773
3774 return flock;
3775 }
3776
3777
3778 //------------------------------shared_unlock----------------------------------
3779 // Emit unlocking code.
3780 void GraphKit::shared_unlock(Node* box, Node* obj) {
3781 // bci is either a monitorenter bc or InvocationEntryBci
3782 // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3783 assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3784
3785 if( !GenerateSynchronizationCode )
3786 return;
3787 if (stopped()) { // Dead monitor?
3788 map()->pop_monitor(); // Kill monitor from debug info
3789 return;
3790 }
3791 assert(!obj->is_InlineType(), "should not unlock on inline type");
3792
3793 // Memory barrier to avoid floating things down past the locked region
3794 insert_mem_bar(Op_MemBarReleaseLock);
3795
3796 const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3797 UnlockNode *unlock = new UnlockNode(C, tf);
3798 #ifdef ASSERT
3799 unlock->set_dbg_jvms(sync_jvms());
3800 #endif
3801 uint raw_idx = Compile::AliasIdxRaw;
3802 unlock->init_req( TypeFunc::Control, control() );
3803 unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3804 unlock->init_req( TypeFunc::I_O , top() ) ; // does no i/o
3805 unlock->init_req( TypeFunc::FramePtr, frameptr() );
3806 unlock->init_req( TypeFunc::ReturnAdr, top() );
3807
3808 unlock->init_req(TypeFunc::Parms + 0, obj);
3809 unlock->init_req(TypeFunc::Parms + 1, box);
3810 unlock = _gvn.transform(unlock)->as_Unlock();
3811
3812 Node* mem = reset_memory();
3813
3814 // unlock has no side-effects, sets few values
3815 set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3816
3817 // Kill monitor from debug info
3818 map()->pop_monitor( );
3819 }
3820
3821 //-------------------------------get_layout_helper-----------------------------
3822 // If the given klass is a constant or known to be an array,
3823 // fetch the constant layout helper value into constant_value
3824 // and return (Node*)NULL. Otherwise, load the non-constant
3825 // layout helper value, and return the node which represents it.
3826 // This two-faced routine is useful because allocation sites
3827 // almost always feature constant types.
3828 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3829 const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3830 if (!StressReflectiveCode && inst_klass != NULL) {
3831 bool xklass = inst_klass->klass_is_exact();
3832 bool can_be_flattened = false;
3833 const TypeAryPtr* ary_type = inst_klass->as_instance_type()->isa_aryptr();
3834 if (UseFlatArray && !xklass && ary_type != NULL && !ary_type->is_null_free()) {
3835 // The runtime type of [LMyValue might be [QMyValue due to [QMyValue <: [LMyValue. Don't constant fold.
3836 const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
3837 can_be_flattened = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flatten_array());
3838 }
3839 if (!can_be_flattened && (xklass || inst_klass->isa_aryklassptr())) {
3840 jint lhelper;
3841 if (inst_klass->is_flat()) {
3842 lhelper = ary_type->flat_layout_helper();
3843 } else if (inst_klass->isa_aryklassptr()) {
3844 BasicType elem = ary_type->elem()->array_element_basic_type();
3845 if (is_reference_type(elem, true)) {
3846 elem = T_OBJECT;
3847 }
3848 lhelper = Klass::array_layout_helper(elem);
3849 } else {
3850 lhelper = inst_klass->is_instklassptr()->exact_klass()->layout_helper();
3851 }
3852 if (lhelper != Klass::_lh_neutral_value) {
3853 constant_value = lhelper;
3854 return (Node*) NULL;
3855 }
3856 }
3857 }
3858 constant_value = Klass::_lh_neutral_value; // put in a known value
3859 Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3860 return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3861 }
3862
3863 // We just put in an allocate/initialize with a big raw-memory effect.
3864 // Hook selected additional alias categories on the initialization.
3865 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3866 MergeMemNode* init_in_merge,
3867 Node* init_out_raw) {
3868 DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3869 assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3870
3871 Node* prevmem = kit.memory(alias_idx);
3872 init_in_merge->set_memory_at(alias_idx, prevmem);
3873 if (init_out_raw != NULL) {
3874 kit.set_memory(init_out_raw, alias_idx);
3875 }
3876 }
3877
3878 //---------------------------set_output_for_allocation-------------------------
3879 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3880 const TypeOopPtr* oop_type,
3881 bool deoptimize_on_exception) {
3882 int rawidx = Compile::AliasIdxRaw;
3883 alloc->set_req( TypeFunc::FramePtr, frameptr() );
3884 add_safepoint_edges(alloc);
3885 Node* allocx = _gvn.transform(alloc);
3886 set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3887 // create memory projection for i_o
3888 set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3889 make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3890
3891 // create a memory projection as for the normal control path
3892 Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3893 set_memory(malloc, rawidx);
3894
3895 // a normal slow-call doesn't change i_o, but an allocation does
3896 // we create a separate i_o projection for the normal control path
3897 set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3898 Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3899
3900 // put in an initialization barrier
3901 InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3902 rawoop)->as_Initialize();
3903 assert(alloc->initialization() == init, "2-way macro link must work");
3904 assert(init ->allocation() == alloc, "2-way macro link must work");
3905 {
3906 // Extract memory strands which may participate in the new object's
3907 // initialization, and source them from the new InitializeNode.
3908 // This will allow us to observe initializations when they occur,
3909 // and link them properly (as a group) to the InitializeNode.
3910 assert(init->in(InitializeNode::Memory) == malloc, "");
3911 MergeMemNode* minit_in = MergeMemNode::make(malloc);
3912 init->set_req(InitializeNode::Memory, minit_in);
3913 record_for_igvn(minit_in); // fold it up later, if possible
3914 _gvn.set_type(minit_in, Type::MEMORY);
3915 Node* minit_out = memory(rawidx);
3916 assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3917 // Add an edge in the MergeMem for the header fields so an access
3918 // to one of those has correct memory state
3919 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3920 set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3921 if (oop_type->isa_aryptr()) {
3922 const TypeAryPtr* arytype = oop_type->is_aryptr();
3923 if (arytype->is_flat()) {
3924 // Initially all flattened array accesses share a single slice
3925 // but that changes after parsing. Prepare the memory graph so
3926 // it can optimize flattened array accesses properly once they
3927 // don't share a single slice.
3928 assert(C->flattened_accesses_share_alias(), "should be set at parse time");
3929 C->set_flattened_accesses_share_alias(false);
3930 ciInlineKlass* vk = arytype->elem()->inline_klass();
3931 for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
3932 ciField* field = vk->nonstatic_field_at(i);
3933 if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3934 continue; // do not bother to track really large numbers of fields
3935 int off_in_vt = field->offset() - vk->first_field_offset();
3936 const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
3937 int fieldidx = C->get_alias_index(adr_type, true);
3938 // Pass NULL for init_out. Having per flat array element field memory edges as uses of the Initialize node
3939 // can result in per flat array field Phis to be created which confuses the logic of
3940 // Compile::adjust_flattened_array_access_aliases().
3941 hook_memory_on_init(*this, fieldidx, minit_in, NULL);
3942 }
3943 C->set_flattened_accesses_share_alias(true);
3944 hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
3945 } else {
3946 const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3947 int elemidx = C->get_alias_index(telemref);
3948 hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3949 }
3950 } else if (oop_type->isa_instptr()) {
3951 set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
3952 ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3953 for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3954 ciField* field = ik->nonstatic_field_at(i);
3955 if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3956 continue; // do not bother to track really large numbers of fields
3957 // Find (or create) the alias category for this field:
3958 int fieldidx = C->alias_type(field)->index();
3959 hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3960 }
3961 }
3962 }
3963
3964 // Cast raw oop to the real thing...
3965 Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3966 javaoop = _gvn.transform(javaoop);
3967 C->set_recent_alloc(control(), javaoop);
3968 assert(just_allocated_object(control()) == javaoop, "just allocated");
3969
3970 #ifdef ASSERT
3971 { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3982 assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3983 }
3984 }
3985 #endif //ASSERT
3986
3987 return javaoop;
3988 }
3989
3990 //---------------------------new_instance--------------------------------------
3991 // This routine takes a klass_node which may be constant (for a static type)
3992 // or may be non-constant (for reflective code). It will work equally well
3993 // for either, and the graph will fold nicely if the optimizer later reduces
3994 // the type to a constant.
3995 // The optional arguments are for specialized use by intrinsics:
3996 // - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3997 // - If 'return_size_val', report the total object size to the caller.
3998 // - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3999 Node* GraphKit::new_instance(Node* klass_node,
4000 Node* extra_slow_test,
4001 Node* *return_size_val,
4002 bool deoptimize_on_exception,
4003 InlineTypeNode* inline_type_node) {
4004 // Compute size in doublewords
4005 // The size is always an integral number of doublewords, represented
4006 // as a positive bytewise size stored in the klass's layout_helper.
4007 // The layout_helper also encodes (in a low bit) the need for a slow path.
4008 jint layout_con = Klass::_lh_neutral_value;
4009 Node* layout_val = get_layout_helper(klass_node, layout_con);
4010 bool layout_is_con = (layout_val == NULL);
4011
4012 if (extra_slow_test == NULL) extra_slow_test = intcon(0);
4013 // Generate the initial go-slow test. It's either ALWAYS (return a
4014 // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
4015 // case) a computed value derived from the layout_helper.
4016 Node* initial_slow_test = NULL;
4017 if (layout_is_con) {
4018 assert(!StressReflectiveCode, "stress mode does not use these paths");
4019 bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4020 initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4021 } else { // reflective case
4022 // This reflective path is used by Unsafe.allocateInstance.
4023 // (It may be stress-tested by specifying StressReflectiveCode.)
4024 // Basically, we want to get into the VM is there's an illegal argument.
4025 Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4026 initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4027 if (extra_slow_test != intcon(0)) {
4028 initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4029 }
4030 // (Macro-expander will further convert this to a Bool, if necessary.)
4041
4042 // Clear the low bits to extract layout_helper_size_in_bytes:
4043 assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4044 Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4045 size = _gvn.transform( new AndXNode(size, mask) );
4046 }
4047 if (return_size_val != NULL) {
4048 (*return_size_val) = size;
4049 }
4050
4051 // This is a precise notnull oop of the klass.
4052 // (Actually, it need not be precise if this is a reflective allocation.)
4053 // It's what we cast the result to.
4054 const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4055 if (!tklass) tklass = TypeInstKlassPtr::OBJECT;
4056 const TypeOopPtr* oop_type = tklass->as_instance_type();
4057
4058 // Now generate allocation code
4059
4060 // The entire memory state is needed for slow path of the allocation
4061 // since GC and deoptimization can happen.
4062 Node *mem = reset_memory();
4063 set_all_memory(mem); // Create new memory state
4064
4065 AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4066 control(), mem, i_o(),
4067 size, klass_node,
4068 initial_slow_test, inline_type_node);
4069
4070 return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4071 }
4072
4073 //-------------------------------new_array-------------------------------------
4074 // helper for newarray and anewarray
4075 // The 'length' parameter is (obviously) the length of the array.
4076 // See comments on new_instance for the meaning of the other arguments.
4077 Node* GraphKit::new_array(Node* klass_node, // array klass (maybe variable)
4078 Node* length, // number of array elements
4079 int nargs, // number of arguments to push back for uncommon trap
4080 Node* *return_size_val,
4081 bool deoptimize_on_exception) {
4082 jint layout_con = Klass::_lh_neutral_value;
4083 Node* layout_val = get_layout_helper(klass_node, layout_con);
4084 bool layout_is_con = (layout_val == NULL);
4085
4086 if (!layout_is_con && !StressReflectiveCode &&
4087 !too_many_traps(Deoptimization::Reason_class_check)) {
4088 // This is a reflective array creation site.
4089 // Optimistically assume that it is a subtype of Object[],
4090 // so that we can fold up all the address arithmetic.
4091 layout_con = Klass::array_layout_helper(T_OBJECT);
4092 Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4093 Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4094 { BuildCutout unless(this, bol_lh, PROB_MAX);
4095 inc_sp(nargs);
4096 uncommon_trap(Deoptimization::Reason_class_check,
4097 Deoptimization::Action_maybe_recompile);
4098 }
4099 layout_val = NULL;
4100 layout_is_con = true;
4101 }
4102
4103 // Generate the initial go-slow test. Make sure we do not overflow
4104 // if length is huge (near 2Gig) or negative! We do not need
4105 // exact double-words here, just a close approximation of needed
4106 // double-words. We can't add any offset or rounding bits, lest we
4107 // take a size -1 of bytes and make it positive. Use an unsigned
4108 // compare, so negative sizes look hugely positive.
4109 int fast_size_limit = FastAllocateSizeLimit;
4110 if (layout_is_con) {
4111 assert(!StressReflectiveCode, "stress mode does not use these paths");
4112 // Increase the size limit if we have exact knowledge of array type.
4113 int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4114 fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4115 }
4116
4117 Node* initial_slow_cmp = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4118 Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4119
4120 // --- Size Computation ---
4121 // array_size = round_to_heap(array_header + (length << elem_shift));
4122 // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4123 // and align_to(x, y) == ((x + y-1) & ~(y-1))
4124 // The rounding mask is strength-reduced, if possible.
4125 int round_mask = MinObjAlignmentInBytes - 1;
4126 Node* header_size = NULL;
4127 int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4128 // (T_BYTE has the weakest alignment and size restrictions...)
4129 if (layout_is_con) {
4130 int hsize = Klass::layout_helper_header_size(layout_con);
4131 int eshift = Klass::layout_helper_log2_element_size(layout_con);
4132 bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4133 if ((round_mask & ~right_n_bits(eshift)) == 0)
4134 round_mask = 0; // strength-reduce it if it goes away completely
4135 assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4136 assert(header_size_min <= hsize, "generic minimum is smallest");
4137 header_size_min = hsize;
4138 header_size = intcon(hsize + round_mask);
4139 } else {
4140 Node* hss = intcon(Klass::_lh_header_size_shift);
4141 Node* hsm = intcon(Klass::_lh_header_size_mask);
4142 Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
4143 hsize = _gvn.transform( new AndINode(hsize, hsm) );
4144 Node* mask = intcon(round_mask);
4145 header_size = _gvn.transform( new AddINode(hsize, mask) );
4146 }
4147
4148 Node* elem_shift = NULL;
4149 if (layout_is_con) {
4150 int eshift = Klass::layout_helper_log2_element_size(layout_con);
4151 if (eshift != 0)
4152 elem_shift = intcon(eshift);
4153 } else {
4154 // There is no need to mask or shift this value.
4155 // The semantics of LShiftINode include an implicit mask to 0x1F.
4199 // places, one where the length is sharply limited, and the other
4200 // after a successful allocation.
4201 Node* abody = lengthx;
4202 if (elem_shift != NULL)
4203 abody = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
4204 Node* size = _gvn.transform( new AddXNode(headerx, abody) );
4205 if (round_mask != 0) {
4206 Node* mask = MakeConX(~round_mask);
4207 size = _gvn.transform( new AndXNode(size, mask) );
4208 }
4209 // else if round_mask == 0, the size computation is self-rounding
4210
4211 if (return_size_val != NULL) {
4212 // This is the size
4213 (*return_size_val) = size;
4214 }
4215
4216 // Now generate allocation code
4217
4218 // The entire memory state is needed for slow path of the allocation
4219 // since GC and deoptimization can happen.
4220 Node *mem = reset_memory();
4221 set_all_memory(mem); // Create new memory state
4222
4223 if (initial_slow_test->is_Bool()) {
4224 // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4225 initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4226 }
4227
4228 const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4229 const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4230 const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4231
4232 // Inline type array variants:
4233 // - null-ok: MyValue.ref[] (ciObjArrayKlass "[LMyValue")
4234 // - null-free: MyValue.val[] (ciObjArrayKlass "[QMyValue")
4235 // - null-free, flattened: MyValue.val[] (ciFlatArrayKlass "[QMyValue")
4236 // Check if array is a null-free, non-flattened inline type array
4237 // that needs to be initialized with the default inline type.
4238 Node* default_value = NULL;
4239 Node* raw_default_value = NULL;
4240 if (ary_ptr != NULL && ary_ptr->klass_is_exact()) {
4241 // Array type is known
4242 if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) {
4243 ciInlineKlass* vk = ary_ptr->elem()->make_oopptr()->inline_klass();
4244 default_value = InlineTypeNode::default_oop(gvn(), vk);
4245 }
4246 } else if (ary_type->can_be_inline_array()) {
4247 // Array type is not known, add runtime checks
4248 assert(!ary_klass->klass_is_exact(), "unexpected exact type");
4249 Node* r = new RegionNode(3);
4250 default_value = new PhiNode(r, TypeInstPtr::BOTTOM);
4251
4252 Node* bol = array_lh_test(klass_node, Klass::_lh_array_tag_flat_value_bit_inplace | Klass::_lh_null_free_array_bit_inplace, Klass::_lh_null_free_array_bit_inplace);
4253 IfNode* iff = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4254
4255 // Null-free, non-flattened inline type array, initialize with the default value
4256 set_control(_gvn.transform(new IfTrueNode(iff)));
4257 Node* p = basic_plus_adr(klass_node, in_bytes(ArrayKlass::element_klass_offset()));
4258 Node* eklass = _gvn.transform(LoadKlassNode::make(_gvn, control(), immutable_memory(), p, TypeInstPtr::KLASS));
4259 Node* adr_fixed_block_addr = basic_plus_adr(eklass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()));
4260 Node* adr_fixed_block = make_load(control(), adr_fixed_block_addr, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4261 Node* default_value_offset_addr = basic_plus_adr(adr_fixed_block, in_bytes(InlineKlass::default_value_offset_offset()));
4262 Node* default_value_offset = make_load(control(), default_value_offset_addr, TypeInt::INT, T_INT, MemNode::unordered);
4263 Node* elem_mirror = load_mirror_from_klass(eklass);
4264 Node* default_value_addr = basic_plus_adr(elem_mirror, ConvI2X(default_value_offset));
4265 Node* val = access_load_at(elem_mirror, default_value_addr, TypeInstPtr::MIRROR, TypeInstPtr::NOTNULL, T_OBJECT, IN_HEAP);
4266 r->init_req(1, control());
4267 default_value->init_req(1, val);
4268
4269 // Otherwise initialize with all zero
4270 r->init_req(2, _gvn.transform(new IfFalseNode(iff)));
4271 default_value->init_req(2, null());
4272
4273 set_control(_gvn.transform(r));
4274 default_value = _gvn.transform(default_value);
4275 }
4276 if (default_value != NULL) {
4277 if (UseCompressedOops) {
4278 // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4279 default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4280 Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4281 Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4282 raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4283 } else {
4284 raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4285 }
4286 }
4287
4288 Node* valid_length_test = _gvn.intcon(1);
4289 if (ary_type->isa_aryptr()) {
4290 BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4291 jint max = TypeAryPtr::max_array_length(bt);
4292 Node* valid_length_cmp = _gvn.transform(new CmpUNode(length, intcon(max)));
4293 valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4294 }
4295
4296 // Create the AllocateArrayNode and its result projections
4297 AllocateArrayNode* alloc
4298 = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4299 control(), mem, i_o(),
4300 size, klass_node,
4301 initial_slow_test,
4302 length, valid_length_test,
4303 default_value, raw_default_value);
4304 // Cast to correct type. Note that the klass_node may be constant or not,
4305 // and in the latter case the actual array type will be inexact also.
4306 // (This happens via a non-constant argument to inline_native_newArray.)
4307 // In any case, the value of klass_node provides the desired array type.
4308 const TypeInt* length_type = _gvn.find_int_type(length);
4309 if (ary_type->isa_aryptr() && length_type != NULL) {
4310 // Try to get a better type than POS for the size
4311 ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4312 }
4313
4314 Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4315
4316 array_ideal_length(alloc, ary_type, true);
4317 return javaoop;
4318 }
4319
4320 // The following "Ideal_foo" functions are placed here because they recognize
4321 // the graph shapes created by the functions immediately above.
4322
4323 //---------------------------Ideal_allocation----------------------------------
4437 set_all_memory(ideal.merged_memory());
4438 set_i_o(ideal.i_o());
4439 set_control(ideal.ctrl());
4440 }
4441
4442 void GraphKit::final_sync(IdealKit& ideal) {
4443 // Final sync IdealKit and graphKit.
4444 sync_kit(ideal);
4445 }
4446
4447 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4448 Node* len = load_array_length(load_String_value(str, set_ctrl));
4449 Node* coder = load_String_coder(str, set_ctrl);
4450 // Divide length by 2 if coder is UTF16
4451 return _gvn.transform(new RShiftINode(len, coder));
4452 }
4453
4454 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4455 int value_offset = java_lang_String::value_offset();
4456 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4457 false, NULL, Type::Offset(0));
4458 const TypePtr* value_field_type = string_type->add_offset(value_offset);
4459 const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4460 TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, true, true),
4461 ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4462 Node* p = basic_plus_adr(str, str, value_offset);
4463 Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4464 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4465 return load;
4466 }
4467
4468 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4469 if (!CompactStrings) {
4470 return intcon(java_lang_String::CODER_UTF16);
4471 }
4472 int coder_offset = java_lang_String::coder_offset();
4473 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4474 false, NULL, Type::Offset(0));
4475 const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4476
4477 Node* p = basic_plus_adr(str, str, coder_offset);
4478 Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4479 IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4480 return load;
4481 }
4482
4483 void GraphKit::store_String_value(Node* str, Node* value) {
4484 int value_offset = java_lang_String::value_offset();
4485 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4486 false, NULL, Type::Offset(0));
4487 const TypePtr* value_field_type = string_type->add_offset(value_offset);
4488
4489 access_store_at(str, basic_plus_adr(str, value_offset), value_field_type,
4490 value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4491 }
4492
4493 void GraphKit::store_String_coder(Node* str, Node* value) {
4494 int coder_offset = java_lang_String::coder_offset();
4495 const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4496 false, NULL, Type::Offset(0));
4497 const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4498
4499 access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4500 value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4501 }
4502
4503 // Capture src and dst memory state with a MergeMemNode
4504 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4505 if (src_type == dst_type) {
4506 // Types are equal, we don't need a MergeMemNode
4507 return memory(src_type);
4508 }
4509 MergeMemNode* merge = MergeMemNode::make(map()->memory());
4510 record_for_igvn(merge); // fold it up later, if possible
4511 int src_idx = C->get_alias_index(src_type);
4512 int dst_idx = C->get_alias_index(dst_type);
4513 merge->set_memory_at(src_idx, memory(src_idx));
4514 merge->set_memory_at(dst_idx, memory(dst_idx));
4515 return merge;
4516 }
4589 i_char->init_req(2, AddI(i_char, intcon(2)));
4590
4591 set_control(IfFalse(iff));
4592 set_memory(st, TypeAryPtr::BYTES);
4593 }
4594
4595 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4596 if (!field->is_constant()) {
4597 return NULL; // Field not marked as constant.
4598 }
4599 ciInstance* holder = NULL;
4600 if (!field->is_static()) {
4601 ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4602 if (const_oop != NULL && const_oop->is_instance()) {
4603 holder = const_oop->as_instance();
4604 }
4605 }
4606 const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4607 /*is_unsigned_load=*/false);
4608 if (con_type != NULL) {
4609 Node* con = makecon(con_type);
4610 if (field->type()->is_inlinetype()) {
4611 con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4612 } else if (con_type->is_inlinetypeptr()) {
4613 con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4614 }
4615 return con;
4616 }
4617 return NULL;
4618 }
4619
4620 //---------------------------load_mirror_from_klass----------------------------
4621 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4622 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4623 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4624 Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4625 // mirror = ((OopHandle)mirror)->resolve();
4626 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4627 }
|