< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/register.hpp"


  26 #include "ci/ciObjArray.hpp"
  27 #include "ci/ciUtilities.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "gc/shared/barrierSet.hpp"
  31 #include "gc/shared/c2/barrierSetC2.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "memory/resourceArea.hpp"

  34 #include "opto/addnode.hpp"
  35 #include "opto/castnode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/graphKit.hpp"
  38 #include "opto/idealKit.hpp"

  39 #include "opto/intrinsicnode.hpp"
  40 #include "opto/locknode.hpp"
  41 #include "opto/machnode.hpp"

  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subtypenode.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"

  49 #include "utilities/bitMap.inline.hpp"
  50 #include "utilities/growableArray.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 
  53 //----------------------------GraphKit-----------------------------------------
  54 // Main utility constructor.
  55 GraphKit::GraphKit(JVMState* jvms)
  56   : Phase(Phase::Parser),
  57     _env(C->env()),
  58     _gvn(*C->initial_gvn()),
  59     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  60 {

  61   _exceptions = jvms->map()->next_exception();
  62   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  63   set_jvms(jvms);







  64 }
  65 
  66 // Private constructor for parser.
  67 GraphKit::GraphKit()
  68   : Phase(Phase::Parser),
  69     _env(C->env()),
  70     _gvn(*C->initial_gvn()),
  71     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  72 {
  73   _exceptions = nullptr;
  74   set_map(nullptr);
  75   DEBUG_ONLY(_sp = -99);
  76   DEBUG_ONLY(set_bci(-99));
  77 }
  78 
  79 
  80 
  81 //---------------------------clean_stack---------------------------------------
  82 // Clear away rubbish from the stack area of the JVM state.
  83 // This destroys any arguments that may be waiting on the stack.

 328 }
 329 static inline void add_one_req(Node* dstphi, Node* src) {
 330   assert(is_hidden_merge(dstphi), "must be a special merge node");
 331   assert(!is_hidden_merge(src), "must not be a special merge node");
 332   dstphi->add_req(src);
 333 }
 334 
 335 //-----------------------combine_exception_states------------------------------
 336 // This helper function combines exception states by building phis on a
 337 // specially marked state-merging region.  These regions and phis are
 338 // untransformed, and can build up gradually.  The region is marked by
 339 // having a control input of its exception map, rather than null.  Such
 340 // regions do not appear except in this function, and in use_exception_state.
 341 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 342   if (failing_internal()) {
 343     return;  // dying anyway...
 344   }
 345   JVMState* ex_jvms = ex_map->_jvms;
 346   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 347   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 348   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");

 349   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 350   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 351   assert(ex_map->req() == phi_map->req(), "matching maps");
 352   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 353   Node*         hidden_merge_mark = root();
 354   Node*         region  = phi_map->control();
 355   MergeMemNode* phi_mem = phi_map->merged_memory();
 356   MergeMemNode* ex_mem  = ex_map->merged_memory();
 357   if (region->in(0) != hidden_merge_mark) {
 358     // The control input is not (yet) a specially-marked region in phi_map.
 359     // Make it so, and build some phis.
 360     region = new RegionNode(2);
 361     _gvn.set_type(region, Type::CONTROL);
 362     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 363     region->init_req(1, phi_map->control());
 364     phi_map->set_control(region);
 365     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 366     record_for_igvn(io_phi);
 367     _gvn.set_type(io_phi, Type::ABIO);
 368     phi_map->set_i_o(io_phi);

 856         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 857           tty->print_cr("Zombie local %d: ", local);
 858           jvms->dump();
 859         }
 860         return false;
 861       }
 862     }
 863   }
 864   return true;
 865 }
 866 
 867 #endif //ASSERT
 868 
 869 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 870 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 871   ciMethod* cur_method = jvms->method();
 872   int       cur_bci   = jvms->bci();
 873   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 874     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 875     return Interpreter::bytecode_should_reexecute(code) ||
 876            (is_anewarray && code == Bytecodes::_multianewarray);
 877     // Reexecute _multianewarray bytecode which was replaced with
 878     // sequence of [a]newarray. See Parse::do_multianewarray().
 879     //
 880     // Note: interpreter should not have it set since this optimization
 881     // is limited by dimensions and guarded by flag so in some cases
 882     // multianewarray() runtime calls will be generated and
 883     // the bytecode should not be reexecutes (stack will not be reset).
 884   } else {
 885     return false;
 886   }
 887 }
 888 
 889 // Helper function for adding JVMState and debug information to node
 890 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 891   // Add the safepoint edges to the call (or other safepoint).
 892 
 893   // Make sure dead locals are set to top.  This
 894   // should help register allocation time and cut down on the size
 895   // of the deoptimization information.
 896   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 924 
 925   if (env()->should_retain_local_variables()) {
 926     // At any safepoint, this method can get breakpointed, which would
 927     // then require an immediate deoptimization.
 928     can_prune_locals = false;  // do not prune locals
 929     stack_slots_not_pruned = 0;
 930   }
 931 
 932   // do not scribble on the input jvms
 933   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 934   call->set_jvms(out_jvms); // Start jvms list for call node
 935 
 936   // For a known set of bytecodes, the interpreter should reexecute them if
 937   // deoptimization happens. We set the reexecute state for them here
 938   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 939       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 940 #ifdef ASSERT
 941     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 942     assert(method() == youngest_jvms->method(), "sanity");
 943     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 944     assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");

 945 #endif // ASSERT
 946     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 947   }
 948 
 949   // Presize the call:
 950   DEBUG_ONLY(uint non_debug_edges = call->req());
 951   call->add_req_batch(top(), youngest_jvms->debug_depth());
 952   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 953 
 954   // Set up edges so that the call looks like this:
 955   //  Call [state:] ctl io mem fptr retadr
 956   //       [parms:] parm0 ... parmN
 957   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 958   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 959   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 960   // Note that caller debug info precedes callee debug info.
 961 
 962   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 963   uint debug_ptr = call->req();
 964 
 965   // Loop over the map input edges associated with jvms, add them
 966   // to the call node, & reset all offsets to match call node array.


 967   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 968     uint debug_end   = debug_ptr;
 969     uint debug_start = debug_ptr - in_jvms->debug_size();
 970     debug_ptr = debug_start;  // back up the ptr
 971 
 972     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 973     uint j, k, l;
 974     SafePointNode* in_map = in_jvms->map();
 975     out_jvms->set_map(call);
 976 
 977     if (can_prune_locals) {
 978       assert(in_jvms->method() == out_jvms->method(), "sanity");
 979       // If the current throw can reach an exception handler in this JVMS,
 980       // then we must keep everything live that can reach that handler.
 981       // As a quick and dirty approximation, we look for any handlers at all.
 982       if (in_jvms->method()->has_exception_handlers()) {
 983         can_prune_locals = false;
 984       }
 985     }
 986 
 987     // Add the Locals
 988     k = in_jvms->locoff();
 989     l = in_jvms->loc_size();
 990     out_jvms->set_locoff(p);
 991     if (!can_prune_locals) {
 992       for (j = 0; j < l; j++)
 993         call->set_req(p++, in_map->in(k+j));

 994     } else {
 995       p += l;  // already set to top above by add_req_batch
 996     }
 997 
 998     // Add the Expression Stack
 999     k = in_jvms->stkoff();
1000     l = in_jvms->sp();
1001     out_jvms->set_stkoff(p);
1002     if (!can_prune_locals) {
1003       for (j = 0; j < l; j++)
1004         call->set_req(p++, in_map->in(k+j));

1005     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1006       // Divide stack into {S0,...,S1}, where S0 is set to top.
1007       uint s1 = stack_slots_not_pruned;
1008       stack_slots_not_pruned = 0;  // for next iteration
1009       if (s1 > l)  s1 = l;
1010       uint s0 = l - s1;
1011       p += s0;  // skip the tops preinstalled by add_req_batch
1012       for (j = s0; j < l; j++)
1013         call->set_req(p++, in_map->in(k+j));
1014     } else {
1015       p += l;  // already set to top above by add_req_batch
1016     }
1017 
1018     // Add the Monitors
1019     k = in_jvms->monoff();
1020     l = in_jvms->mon_size();
1021     out_jvms->set_monoff(p);
1022     for (j = 0; j < l; j++)
1023       call->set_req(p++, in_map->in(k+j));
1024 
1025     // Copy any scalar object fields.
1026     k = in_jvms->scloff();
1027     l = in_jvms->scl_size();
1028     out_jvms->set_scloff(p);
1029     for (j = 0; j < l; j++)
1030       call->set_req(p++, in_map->in(k+j));
1031 
1032     // Finish the new jvms.
1033     out_jvms->set_endoff(p);
1034 
1035     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1036     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1037     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1038     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1039     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1040     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1041 
1042     // Update the two tail pointers in parallel.

1043     out_jvms = out_jvms->caller();
1044     in_jvms  = in_jvms->caller();
1045   }
1046 
1047   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1048 
1049   // Test the correctness of JVMState::debug_xxx accessors:
1050   assert(call->jvms()->debug_start() == non_debug_edges, "");
1051   assert(call->jvms()->debug_end()   == call->req(), "");
1052   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1053 }
1054 
1055 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1056   Bytecodes::Code code = java_bc();
1057   if (code == Bytecodes::_wide) {
1058     code = method()->java_code_at_bci(bci() + 1);
1059   }
1060 
1061   if (code != Bytecodes::_illegal) {
1062     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1198   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1199   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1200   return _gvn.transform( new AndLNode(conv, mask) );
1201 }
1202 
1203 Node* GraphKit::ConvL2I(Node* offset) {
1204   // short-circuit a common case
1205   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1206   if (offset_con != (jlong)Type::OffsetBot) {
1207     return intcon((int) offset_con);
1208   }
1209   return _gvn.transform( new ConvL2INode(offset));
1210 }
1211 
1212 //-------------------------load_object_klass-----------------------------------
1213 Node* GraphKit::load_object_klass(Node* obj) {
1214   // Special-case a fresh allocation to avoid building nodes:
1215   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1216   if (akls != nullptr)  return akls;
1217   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1218   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1219 }
1220 
1221 //-------------------------load_array_length-----------------------------------
1222 Node* GraphKit::load_array_length(Node* array) {
1223   // Special-case a fresh allocation to avoid building nodes:
1224   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1225   Node *alen;
1226   if (alloc == nullptr) {
1227     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1228     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1229   } else {
1230     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1231   }
1232   return alen;
1233 }
1234 
1235 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1236                                    const TypeOopPtr* oop_type,
1237                                    bool replace_length_in_map) {
1238   Node* length = alloc->Ideal_length();

1247         replace_in_map(length, ccast);
1248       }
1249       return ccast;
1250     }
1251   }
1252   return length;
1253 }
1254 
1255 //------------------------------do_null_check----------------------------------
1256 // Helper function to do a null pointer check.  Returned value is
1257 // the incoming address with null casted away.  You are allowed to use the
1258 // not-null value only if you are control dependent on the test.
1259 #ifndef PRODUCT
1260 extern uint explicit_null_checks_inserted,
1261             explicit_null_checks_elided;
1262 #endif
1263 Node* GraphKit::null_check_common(Node* value, BasicType type,
1264                                   // optional arguments for variations:
1265                                   bool assert_null,
1266                                   Node* *null_control,
1267                                   bool speculative) {

1268   assert(!assert_null || null_control == nullptr, "not both at once");
1269   if (stopped())  return top();
1270   NOT_PRODUCT(explicit_null_checks_inserted++);
1271 























1272   // Construct null check
1273   Node *chk = nullptr;
1274   switch(type) {
1275     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1276     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1277     case T_ARRAY  : // fall through
1278       type = T_OBJECT;  // simplify further tests
1279     case T_OBJECT : {
1280       const Type *t = _gvn.type( value );
1281 
1282       const TypeOopPtr* tp = t->isa_oopptr();
1283       if (tp != nullptr && !tp->is_loaded()
1284           // Only for do_null_check, not any of its siblings:
1285           && !assert_null && null_control == nullptr) {
1286         // Usually, any field access or invocation on an unloaded oop type
1287         // will simply fail to link, since the statically linked class is
1288         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1289         // the static class is loaded but the sharper oop type is not.
1290         // Rather than checking for this obscure case in lots of places,
1291         // we simply observe that a null check on an unloaded class

1355         }
1356         Node *oldcontrol = control();
1357         set_control(cfg);
1358         Node *res = cast_not_null(value);
1359         set_control(oldcontrol);
1360         NOT_PRODUCT(explicit_null_checks_elided++);
1361         return res;
1362       }
1363       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1364       if (cfg == nullptr)  break;  // Quit at region nodes
1365       depth++;
1366     }
1367   }
1368 
1369   //-----------
1370   // Branch to failure if null
1371   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1372   Deoptimization::DeoptReason reason;
1373   if (assert_null) {
1374     reason = Deoptimization::reason_null_assert(speculative);
1375   } else if (type == T_OBJECT) {
1376     reason = Deoptimization::reason_null_check(speculative);
1377   } else {
1378     reason = Deoptimization::Reason_div0_check;
1379   }
1380   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1381   // ciMethodData::has_trap_at will return a conservative -1 if any
1382   // must-be-null assertion has failed.  This could cause performance
1383   // problems for a method after its first do_null_assert failure.
1384   // Consider using 'Reason_class_check' instead?
1385 
1386   // To cause an implicit null check, we set the not-null probability
1387   // to the maximum (PROB_MAX).  For an explicit check the probability
1388   // is set to a smaller value.
1389   if (null_control != nullptr || too_many_traps(reason)) {
1390     // probability is less likely
1391     ok_prob =  PROB_LIKELY_MAG(3);
1392   } else if (!assert_null &&
1393              (ImplicitNullCheckThreshold > 0) &&
1394              method() != nullptr &&
1395              (method()->method_data()->trap_count(reason)

1429   }
1430 
1431   if (assert_null) {
1432     // Cast obj to null on this path.
1433     replace_in_map(value, zerocon(type));
1434     return zerocon(type);
1435   }
1436 
1437   // Cast obj to not-null on this path, if there is no null_control.
1438   // (If there is a null_control, a non-null value may come back to haunt us.)
1439   if (type == T_OBJECT) {
1440     Node* cast = cast_not_null(value, false);
1441     if (null_control == nullptr || (*null_control) == top())
1442       replace_in_map(value, cast);
1443     value = cast;
1444   }
1445 
1446   return value;
1447 }
1448 
1449 
1450 //------------------------------cast_not_null----------------------------------
1451 // Cast obj to not-null on this path
1452 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {









1453   const Type *t = _gvn.type(obj);
1454   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1455   // Object is already not-null?
1456   if( t == t_not_null ) return obj;
1457 
1458   Node* cast = new CastPPNode(control(), obj,t_not_null);
1459   cast = _gvn.transform( cast );
1460 
1461   // Scan for instances of 'obj' in the current JVM mapping.
1462   // These instances are known to be not-null after the test.
1463   if (do_replace_in_map)
1464     replace_in_map(obj, cast);
1465 
1466   return cast;                  // Return casted value
1467 }
1468 











1469 // Sometimes in intrinsics, we implicitly know an object is not null
1470 // (there's no actual null check) so we can cast it to not null. In
1471 // the course of optimizations, the input to the cast can become null.
1472 // In that case that data path will die and we need the control path
1473 // to become dead as well to keep the graph consistent. So we have to
1474 // add a check for null for which one branch can't be taken. It uses
1475 // an OpaqueNotNull node that will cause the check to be removed after loop
1476 // opts so the test goes away and the compiled code doesn't execute a
1477 // useless check.
1478 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1479   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1480     return value;
1481   }
1482   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1483   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1484   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1485   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1486   _gvn.set_type(iff, iff->Value(&_gvn));
1487   if (!tst->is_Con()) {
1488     record_for_igvn(iff);

1561 // These are layered on top of the factory methods in LoadNode and StoreNode,
1562 // and integrate with the parser's memory state and _gvn engine.
1563 //
1564 
1565 // factory methods in "int adr_idx"
1566 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1567                           MemNode::MemOrd mo,
1568                           LoadNode::ControlDependency control_dependency,
1569                           bool require_atomic_access,
1570                           bool unaligned,
1571                           bool mismatched,
1572                           bool unsafe,
1573                           uint8_t barrier_data) {
1574   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1575   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1576   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1577   DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx));
1578   Node* mem = memory(adr_idx);
1579   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1580   ld = _gvn.transform(ld);

1581   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1582     // Improve graph before escape analysis and boxing elimination.
1583     record_for_igvn(ld);
1584     if (ld->is_DecodeN()) {
1585       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1586       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1587       // a Phi). Recording such cases is still perfectly sound, but may be
1588       // unnecessary and result in some minor IGVN overhead.
1589       record_for_igvn(ld->in(1));
1590     }
1591   }
1592   return ld;
1593 }
1594 
1595 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1596                                 MemNode::MemOrd mo,
1597                                 bool require_atomic_access,
1598                                 bool unaligned,
1599                                 bool mismatched,
1600                                 bool unsafe,

1614   if (unsafe) {
1615     st->as_Store()->set_unsafe_access();
1616   }
1617   st->as_Store()->set_barrier_data(barrier_data);
1618   st = _gvn.transform(st);
1619   set_memory(st, adr_idx);
1620   // Back-to-back stores can only remove intermediate store with DU info
1621   // so push on worklist for optimizer.
1622   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1623     record_for_igvn(st);
1624 
1625   return st;
1626 }
1627 
1628 Node* GraphKit::access_store_at(Node* obj,
1629                                 Node* adr,
1630                                 const TypePtr* adr_type,
1631                                 Node* val,
1632                                 const Type* val_type,
1633                                 BasicType bt,
1634                                 DecoratorSet decorators) {


1635   // Transformation of a value which could be null pointer (CastPP #null)
1636   // could be delayed during Parse (for example, in adjust_map_after_if()).
1637   // Execute transformation here to avoid barrier generation in such case.
1638   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1639     val = _gvn.makecon(TypePtr::NULL_PTR);
1640   }
1641 
1642   if (stopped()) {
1643     return top(); // Dead path ?
1644   }
1645 
1646   assert(val != nullptr, "not dead path");







1647 
1648   C2AccessValuePtr addr(adr, adr_type);
1649   C2AccessValue value(val, val_type);
1650   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1651   if (access.is_raw()) {
1652     return _barrier_set->BarrierSetC2::store_at(access, value);
1653   } else {
1654     return _barrier_set->store_at(access, value);
1655   }
1656 }
1657 
1658 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1659                                Node* adr,   // actual address to store val at
1660                                const TypePtr* adr_type,
1661                                const Type* val_type,
1662                                BasicType bt,
1663                                DecoratorSet decorators) {

1664   if (stopped()) {
1665     return top(); // Dead path ?
1666   }
1667 
1668   C2AccessValuePtr addr(adr, adr_type);
1669   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1670   if (access.is_raw()) {
1671     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1672   } else {
1673     return _barrier_set->load_at(access, val_type);
1674   }
1675 }
1676 
1677 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1678                             const Type* val_type,
1679                             BasicType bt,
1680                             DecoratorSet decorators) {
1681   if (stopped()) {
1682     return top(); // Dead path ?
1683   }
1684 
1685   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1686   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1687   if (access.is_raw()) {
1688     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1689   } else {

1754                                      Node* new_val,
1755                                      const Type* value_type,
1756                                      BasicType bt,
1757                                      DecoratorSet decorators) {
1758   C2AccessValuePtr addr(adr, adr_type);
1759   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1760   if (access.is_raw()) {
1761     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1762   } else {
1763     return _barrier_set->atomic_add_at(access, new_val, value_type);
1764   }
1765 }
1766 
1767 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1768   return _barrier_set->clone(this, src, dst, size, is_array);
1769 }
1770 
1771 //-------------------------array_element_address-------------------------
1772 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1773                                       const TypeInt* sizetype, Node* ctrl) {
1774   uint shift  = exact_log2(type2aelembytes(elembt));
1775   uint header = arrayOopDesc::base_offset_in_bytes(elembt);













1776 
1777   // short-circuit a common case (saves lots of confusing waste motion)
1778   jint idx_con = find_int_con(idx, -1);
1779   if (idx_con >= 0) {
1780     intptr_t offset = header + ((intptr_t)idx_con << shift);
1781     return basic_plus_adr(ary, offset);
1782   }
1783 
1784   // must be correct type for alignment purposes
1785   Node* base  = basic_plus_adr(ary, header);
1786   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1787   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1788   return basic_plus_adr(ary, base, scale);
1789 }
1790 




























1791 //-------------------------load_array_element-------------------------
1792 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1793   const Type* elemtype = arytype->elem();
1794   BasicType elembt = elemtype->array_element_basic_type();
1795   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1796   if (elembt == T_NARROWOOP) {
1797     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1798   }
1799   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1800                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1801   return ld;
1802 }
1803 
1804 //-------------------------set_arguments_for_java_call-------------------------
1805 // Arguments (pre-popped from the stack) are taken from the JVMS.
1806 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1807   // Add the call arguments:
1808   uint nargs = call->method()->arg_size();
1809   for (uint i = 0; i < nargs; i++) {
1810     Node* arg = argument(i);
1811     call->init_req(i + TypeFunc::Parms, arg);




































1812   }
1813 }
1814 
1815 //---------------------------set_edges_for_java_call---------------------------
1816 // Connect a newly created call into the current JVMS.
1817 // A return value node (if any) is returned from set_edges_for_java_call.
1818 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1819 
1820   // Add the predefined inputs:
1821   call->init_req( TypeFunc::Control, control() );
1822   call->init_req( TypeFunc::I_O    , i_o() );
1823   call->init_req( TypeFunc::Memory , reset_memory() );
1824   call->init_req( TypeFunc::FramePtr, frameptr() );
1825   call->init_req( TypeFunc::ReturnAdr, top() );
1826 
1827   add_safepoint_edges(call, must_throw);
1828 
1829   Node* xcall = _gvn.transform(call);
1830 
1831   if (xcall == top()) {
1832     set_control(top());
1833     return;
1834   }
1835   assert(xcall == call, "call identity is stable");
1836 
1837   // Re-use the current map to produce the result.
1838 
1839   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1840   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1841   set_all_memory_call(xcall, separate_io_proj);
1842 
1843   //return xcall;   // no need, caller already has it
1844 }
1845 
1846 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1847   if (stopped())  return top();  // maybe the call folded up?
1848 
1849   // Capture the return value, if any.
1850   Node* ret;
1851   if (call->method() == nullptr ||
1852       call->method()->return_type()->basic_type() == T_VOID)
1853         ret = top();
1854   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1855 
1856   // Note:  Since any out-of-line call can produce an exception,
1857   // we always insert an I_O projection from the call into the result.
1858 
1859   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1860 
1861   if (separate_io_proj) {
1862     // The caller requested separate projections be used by the fall
1863     // through and exceptional paths, so replace the projections for
1864     // the fall through path.
1865     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1866     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1867   }








































































1868   return ret;
1869 }
1870 
1871 //--------------------set_predefined_input_for_runtime_call--------------------
1872 // Reading and setting the memory state is way conservative here.
1873 // The real problem is that I am not doing real Type analysis on memory,
1874 // so I cannot distinguish card mark stores from other stores.  Across a GC
1875 // point the Store Barrier and the card mark memory has to agree.  I cannot
1876 // have a card mark store and its barrier split across the GC point from
1877 // either above or below.  Here I get that to happen by reading ALL of memory.
1878 // A better answer would be to separate out card marks from other memory.
1879 // For now, return the input memory state, so that it can be reused
1880 // after the call, if this call has restricted memory effects.
1881 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1882   // Set fixed predefined input arguments
1883   call->init_req(TypeFunc::Control, control());
1884   call->init_req(TypeFunc::I_O, top()); // does no i/o
1885   call->init_req(TypeFunc::ReturnAdr, top());
1886   if (call->is_CallLeafPure()) {
1887     call->init_req(TypeFunc::Memory, top());

1949     if (use->is_MergeMem()) {
1950       wl.push(use);
1951     }
1952   }
1953 }
1954 
1955 // Replace the call with the current state of the kit.
1956 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
1957   JVMState* ejvms = nullptr;
1958   if (has_exceptions()) {
1959     ejvms = transfer_exceptions_into_jvms();
1960   }
1961 
1962   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1963   ReplacedNodes replaced_nodes_exception;
1964   Node* ex_ctl = top();
1965 
1966   SafePointNode* final_state = stop();
1967 
1968   // Find all the needed outputs of this call
1969   CallProjections callprojs;
1970   call->extract_projections(&callprojs, true, do_asserts);
1971 
1972   Unique_Node_List wl;
1973   Node* init_mem = call->in(TypeFunc::Memory);
1974   Node* final_mem = final_state->in(TypeFunc::Memory);
1975   Node* final_ctl = final_state->in(TypeFunc::Control);
1976   Node* final_io = final_state->in(TypeFunc::I_O);
1977 
1978   // Replace all the old call edges with the edges from the inlining result
1979   if (callprojs.fallthrough_catchproj != nullptr) {
1980     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1981   }
1982   if (callprojs.fallthrough_memproj != nullptr) {
1983     if (final_mem->is_MergeMem()) {
1984       // Parser's exits MergeMem was not transformed but may be optimized
1985       final_mem = _gvn.transform(final_mem);
1986     }
1987     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1988     add_mergemem_users_to_worklist(wl, final_mem);
1989   }
1990   if (callprojs.fallthrough_ioproj != nullptr) {
1991     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1992   }
1993 
1994   // Replace the result with the new result if it exists and is used
1995   if (callprojs.resproj != nullptr && result != nullptr) {
1996     C->gvn_replace_by(callprojs.resproj, result);




1997   }
1998 
1999   if (ejvms == nullptr) {
2000     // No exception edges to simply kill off those paths
2001     if (callprojs.catchall_catchproj != nullptr) {
2002       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
2003     }
2004     if (callprojs.catchall_memproj != nullptr) {
2005       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
2006     }
2007     if (callprojs.catchall_ioproj != nullptr) {
2008       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
2009     }
2010     // Replace the old exception object with top
2011     if (callprojs.exobj != nullptr) {
2012       C->gvn_replace_by(callprojs.exobj, C->top());
2013     }
2014   } else {
2015     GraphKit ekit(ejvms);
2016 
2017     // Load my combined exception state into the kit, with all phis transformed:
2018     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2019     replaced_nodes_exception = ex_map->replaced_nodes();
2020 
2021     Node* ex_oop = ekit.use_exception_state(ex_map);
2022 
2023     if (callprojs.catchall_catchproj != nullptr) {
2024       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
2025       ex_ctl = ekit.control();
2026     }
2027     if (callprojs.catchall_memproj != nullptr) {
2028       Node* ex_mem = ekit.reset_memory();
2029       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
2030       add_mergemem_users_to_worklist(wl, ex_mem);
2031     }
2032     if (callprojs.catchall_ioproj != nullptr) {
2033       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
2034     }
2035 
2036     // Replace the old exception object with the newly created one
2037     if (callprojs.exobj != nullptr) {
2038       C->gvn_replace_by(callprojs.exobj, ex_oop);
2039     }
2040   }
2041 
2042   // Disconnect the call from the graph
2043   call->disconnect_inputs(C);
2044   C->gvn_replace_by(call, C->top());
2045 
2046   // Clean up any MergeMems that feed other MergeMems since the
2047   // optimizer doesn't like that.
2048   while (wl.size() > 0) {
2049     _gvn.transform(wl.pop());
2050   }
2051 
2052   if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2053     replaced_nodes.apply(C, final_ctl);
2054   }
2055   if (!ex_ctl->is_top() && do_replaced_nodes) {
2056     replaced_nodes_exception.apply(C, ex_ctl);
2057   }
2058 }
2059 
2060 
2061 //------------------------------increment_counter------------------------------
2062 // for statistics: increment a VM counter by 1
2063 
2064 void GraphKit::increment_counter(address counter_addr) {
2065   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2066   increment_counter(adr1);
2067 }
2068 
2069 void GraphKit::increment_counter(Node* counter_addr) {
2070   Node* ctrl = control();
2071   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2072   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2232  *
2233  * @param n          node that the type applies to
2234  * @param exact_kls  type from profiling
2235  * @param maybe_null did profiling see null?
2236  *
2237  * @return           node with improved type
2238  */
2239 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2240   const Type* current_type = _gvn.type(n);
2241   assert(UseTypeSpeculation, "type speculation must be on");
2242 
2243   const TypePtr* speculative = current_type->speculative();
2244 
2245   // Should the klass from the profile be recorded in the speculative type?
2246   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2247     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2248     const TypeOopPtr* xtype = tklass->as_instance_type();
2249     assert(xtype->klass_is_exact(), "Should be exact");
2250     // Any reason to believe n is not null (from this profiling or a previous one)?
2251     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2252     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2253     // record the new speculative type's depth
2254     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2255     speculative = speculative->with_inline_depth(jvms()->depth());
2256   } else if (current_type->would_improve_ptr(ptr_kind)) {
2257     // Profiling report that null was never seen so we can change the
2258     // speculative type to non null ptr.
2259     if (ptr_kind == ProfileAlwaysNull) {
2260       speculative = TypePtr::NULL_PTR;
2261     } else {
2262       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2263       const TypePtr* ptr = TypePtr::NOTNULL;
2264       if (speculative != nullptr) {
2265         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2266       } else {
2267         speculative = ptr;
2268       }
2269     }
2270   }
2271 
2272   if (speculative != current_type->speculative()) {
2273     // Build a type with a speculative type (what we think we know
2274     // about the type but will need a guard when we use it)
2275     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2276     // We're changing the type, we need a new CheckCast node to carry
2277     // the new type. The new type depends on the control: what
2278     // profiling tells us is only valid from here as far as we can
2279     // tell.
2280     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2281     cast = _gvn.transform(cast);
2282     replace_in_map(n, cast);
2283     n = cast;
2284   }
2285 
2286   return n;
2287 }
2288 
2289 /**
2290  * Record profiling data from receiver profiling at an invoke with the
2291  * type system so that it can propagate it (speculation)
2292  *
2293  * @param n  receiver node
2294  *
2295  * @return   node with improved type
2296  */
2297 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2298   if (!UseTypeSpeculation) {
2299     return n;
2300   }
2301   ciKlass* exact_kls = profile_has_unique_klass();
2302   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2303   if ((java_bc() == Bytecodes::_checkcast ||
2304        java_bc() == Bytecodes::_instanceof ||
2305        java_bc() == Bytecodes::_aastore) &&
2306       method()->method_data()->is_mature()) {
2307     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2308     if (data != nullptr) {
2309       if (!data->as_BitData()->null_seen()) {
2310         ptr_kind = ProfileNeverNull;







2311       } else {
2312         if (TypeProfileCasts) {
2313           assert(data->is_ReceiverTypeData(), "bad profile data type");
2314           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2315           uint i = 0;
2316           for (; i < call->row_limit(); i++) {
2317             ciKlass* receiver = call->receiver(i);
2318             if (receiver != nullptr) {
2319               break;




2320             }

2321           }
2322           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2323         }
2324       }
2325     }
2326   }
2327   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2328 }
2329 
2330 /**
2331  * Record profiling data from argument profiling at an invoke with the
2332  * type system so that it can propagate it (speculation)
2333  *
2334  * @param dest_method  target method for the call
2335  * @param bc           what invoke bytecode is this?
2336  */
2337 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2338   if (!UseTypeSpeculation) {
2339     return;
2340   }
2341   const TypeFunc* tf    = TypeFunc::make(dest_method);
2342   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2343   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2344   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2345     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2346     if (is_reference_type(targ->basic_type())) {
2347       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2348       ciKlass* better_type = nullptr;
2349       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2350         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2351       }
2352       i++;
2353     }
2354   }
2355 }
2356 
2357 /**
2358  * Record profiling data from parameter profiling at an invoke with
2359  * the type system so that it can propagate it (speculation)
2360  */
2361 void GraphKit::record_profiled_parameters_for_speculation() {
2362   if (!UseTypeSpeculation) {
2363     return;
2364   }
2365   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2485                                   // The first null ends the list.
2486                                   Node* parm0, Node* parm1,
2487                                   Node* parm2, Node* parm3,
2488                                   Node* parm4, Node* parm5,
2489                                   Node* parm6, Node* parm7) {
2490   assert(call_addr != nullptr, "must not call null targets");
2491 
2492   // Slow-path call
2493   bool is_leaf = !(flags & RC_NO_LEAF);
2494   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2495   if (call_name == nullptr) {
2496     assert(!is_leaf, "must supply name for leaf");
2497     call_name = OptoRuntime::stub_name(call_addr);
2498   }
2499   CallNode* call;
2500   if (!is_leaf) {
2501     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2502   } else if (flags & RC_NO_FP) {
2503     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2504   } else  if (flags & RC_VECTOR){
2505     uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2506     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2507   } else if (flags & RC_PURE) {
2508     call = new CallLeafPureNode(call_type, call_addr, call_name, adr_type);
2509   } else {
2510     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2511   }
2512 
2513   // The following is similar to set_edges_for_java_call,
2514   // except that the memory effects of the call are restricted to AliasIdxRaw.
2515 
2516   // Slow path call has no side-effects, uses few values
2517   bool wide_in  = !(flags & RC_NARROW_MEM);
2518   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2519 
2520   Node* prev_mem = nullptr;
2521   if (wide_in) {
2522     prev_mem = set_predefined_input_for_runtime_call(call);
2523   } else {
2524     assert(!wide_out, "narrow in => narrow out");
2525     Node* narrow_mem = memory(adr_type);
2526     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2527   }
2528 
2529   // Hook each parm in order.  Stop looking at the first null.
2530   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2531   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2532   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2533   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2534   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2535   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2536   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2537   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2538   /* close each nested if ===> */  } } } } } } } }
2539   assert(call->in(call->req()-1) != nullptr, "must initialize all parms");
2540 
2541   if (!is_leaf) {
2542     // Non-leaves can block and take safepoints:
2543     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2544   }
2545   // Non-leaves can throw exceptions:
2546   if (has_io) {
2547     call->set_req(TypeFunc::I_O, i_o());
2548   }
2549 
2550   if (flags & RC_UNCOMMON) {
2551     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2552     // (An "if" probability corresponds roughly to an unconditional count.
2553     // Sort of.)
2554     call->set_cnt(PROB_UNLIKELY_MAG(4));
2555   }
2556 
2557   Node* c = _gvn.transform(call);
2558   assert(c == call, "cannot disappear");
2559 

2567 
2568   if (has_io) {
2569     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2570   }
2571   return call;
2572 
2573 }
2574 
2575 // i2b
2576 Node* GraphKit::sign_extend_byte(Node* in) {
2577   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2578   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2579 }
2580 
2581 // i2s
2582 Node* GraphKit::sign_extend_short(Node* in) {
2583   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2584   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2585 }
2586 

2587 //------------------------------merge_memory-----------------------------------
2588 // Merge memory from one path into the current memory state.
2589 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2590   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2591     Node* old_slice = mms.force_memory();
2592     Node* new_slice = mms.memory2();
2593     if (old_slice != new_slice) {
2594       PhiNode* phi;
2595       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2596         if (mms.is_empty()) {
2597           // clone base memory Phi's inputs for this memory slice
2598           assert(old_slice == mms.base_memory(), "sanity");
2599           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2600           _gvn.set_type(phi, Type::MEMORY);
2601           for (uint i = 1; i < phi->req(); i++) {
2602             phi->init_req(i, old_slice->in(i));
2603           }
2604         } else {
2605           phi = old_slice->as_Phi(); // Phi was generated already
2606         }

2663   gvn.transform(iff);
2664   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2665   return iff;
2666 }
2667 
2668 //-------------------------------gen_subtype_check-----------------------------
2669 // Generate a subtyping check.  Takes as input the subtype and supertype.
2670 // Returns 2 values: sets the default control() to the true path and returns
2671 // the false path.  Only reads invariant memory; sets no (visible) memory.
2672 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2673 // but that's not exposed to the optimizer.  This call also doesn't take in an
2674 // Object; if you wish to check an Object you need to load the Object's class
2675 // prior to coming here.
2676 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2677                                ciMethod* method, int bci) {
2678   Compile* C = gvn.C;
2679   if ((*ctrl)->is_top()) {
2680     return C->top();
2681   }
2682 








2683   // Fast check for identical types, perhaps identical constants.
2684   // The types can even be identical non-constants, in cases
2685   // involving Array.newInstance, Object.clone, etc.
2686   if (subklass == superklass)
2687     return C->top();             // false path is dead; no test needed.
2688 
2689   if (gvn.type(superklass)->singleton()) {
2690     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2691     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2692 
2693     // In the common case of an exact superklass, try to fold up the
2694     // test before generating code.  You may ask, why not just generate
2695     // the code and then let it fold up?  The answer is that the generated
2696     // code will necessarily include null checks, which do not always
2697     // completely fold away.  If they are also needless, then they turn
2698     // into a performance loss.  Example:
2699     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2700     // Here, the type of 'fa' is often exact, so the store check
2701     // of fa[1]=x will fold up, without testing the nullness of x.
2702     //
2703     // At macro expansion, we would have already folded the SubTypeCheckNode
2704     // being expanded here because we always perform the static sub type
2705     // check in SubTypeCheckNode::sub() regardless of whether
2706     // StressReflectiveCode is set or not. We can therefore skip this
2707     // static check when StressReflectiveCode is on.
2708     switch (C->static_subtype_check(superk, subk)) {
2709     case Compile::SSC_always_false:
2710       {
2711         Node* always_fail = *ctrl;
2712         *ctrl = gvn.C->top();
2713         return always_fail;
2714       }
2715     case Compile::SSC_always_true:
2716       return C->top();
2717     case Compile::SSC_easy_test:
2718       {
2719         // Just do a direct pointer compare and be done.
2720         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2721         *ctrl = gvn.transform(new IfTrueNode(iff));
2722         return gvn.transform(new IfFalseNode(iff));
2723       }
2724     case Compile::SSC_full_test:
2725       break;
2726     default:
2727       ShouldNotReachHere();
2728     }
2729   }
2730 
2731   // %%% Possible further optimization:  Even if the superklass is not exact,
2732   // if the subklass is the unique subtype of the superklass, the check
2733   // will always succeed.  We could leave a dependency behind to ensure this.
2734 
2735   // First load the super-klass's check-offset
2736   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2737   Node* m = C->immutable_memory();
2738   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2739   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2740   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();

2778   gvn.record_for_igvn(r_ok_subtype);
2779 
2780   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
2781   // SubTypeCheck node
2782   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
2783     ciCallProfile profile = method->call_profile_at_bci(bci);
2784     float total_prob = 0;
2785     for (int i = 0; profile.has_receiver(i); ++i) {
2786       float prob = profile.receiver_prob(i);
2787       total_prob += prob;
2788     }
2789     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
2790       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2791       for (int i = 0; profile.has_receiver(i); ++i) {
2792         ciKlass* klass = profile.receiver(i);
2793         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
2794         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
2795         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
2796           continue;
2797         }




2798         float prob = profile.receiver_prob(i);
2799         ConNode* klass_node = gvn.makecon(klass_t);
2800         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
2801         Node* iftrue = gvn.transform(new IfTrueNode(iff));
2802 
2803         if (result == Compile::SSC_always_true) {
2804           r_ok_subtype->add_req(iftrue);
2805         } else {
2806           assert(result == Compile::SSC_always_false, "");
2807           r_not_subtype->add_req(iftrue);
2808         }
2809         *ctrl = gvn.transform(new IfFalseNode(iff));
2810       }
2811     }
2812   }
2813 
2814   // See if we get an immediate positive hit.  Happens roughly 83% of the
2815   // time.  Test to see if the value loaded just previously from the subklass
2816   // is exactly the superklass.
2817   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);

2831       igvn->remove_globally_dead_node(r_not_subtype);
2832     }
2833     return not_subtype_ctrl;
2834   }
2835 
2836   r_ok_subtype->init_req(1, iftrue1);
2837 
2838   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2839   // is roughly 63% of the remaining cases).  Test to see if the loaded
2840   // check-offset points into the subklass display list or the 1-element
2841   // cache.  If it points to the display (and NOT the cache) and the display
2842   // missed then it's not a subtype.
2843   Node *cacheoff = gvn.intcon(cacheoff_con);
2844   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
2845   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
2846   *ctrl = gvn.transform(new IfFalseNode(iff2));
2847 
2848   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2849   // No performance impact (too rare) but allows sharing of secondary arrays
2850   // which has some footprint reduction.
2851   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
2852   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
2853   *ctrl = gvn.transform(new IfFalseNode(iff3));
2854 
2855   // -- Roads not taken here: --
2856   // We could also have chosen to perform the self-check at the beginning
2857   // of this code sequence, as the assembler does.  This would not pay off
2858   // the same way, since the optimizer, unlike the assembler, can perform
2859   // static type analysis to fold away many successful self-checks.
2860   // Non-foldable self checks work better here in second position, because
2861   // the initial primary superclass check subsumes a self-check for most
2862   // types.  An exception would be a secondary type like array-of-interface,
2863   // which does not appear in its own primary supertype display.
2864   // Finally, we could have chosen to move the self-check into the
2865   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2866   // dependent manner.  But it is worthwhile to have the check here,
2867   // where it can be perhaps be optimized.  The cost in code space is
2868   // small (register compare, branch).
2869 
2870   // Now do a linear scan of the secondary super-klass array.  Again, no real
2871   // performance impact (too rare) but it's gotta be done.
2872   // Since the code is rarely used, there is no penalty for moving it
2873   // out of line, and it can only improve I-cache density.
2874   // The decision to inline or out-of-line this final check is platform
2875   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2876   Node* psc = gvn.transform(
2877     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2878 
2879   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2880   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2881   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2882 
2883   // Return false path; set default control to true path.
2884   *ctrl = gvn.transform(r_ok_subtype);
2885   return gvn.transform(r_not_subtype);
2886 }
2887 
2888 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {





2889   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
2890   if (expand_subtype_check) {
2891     MergeMemNode* mem = merged_memory();
2892     Node* ctrl = control();
2893     Node* subklass = obj_or_subklass;
2894     if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2895       subklass = load_object_klass(obj_or_subklass);
2896     }
2897 
2898     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
2899     set_control(ctrl);
2900     return n;
2901   }
2902 
2903   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
2904   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2905   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2906   set_control(_gvn.transform(new IfTrueNode(iff)));
2907   return _gvn.transform(new IfFalseNode(iff));
2908 }
2909 
2910 // Profile-driven exact type check:
2911 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2912                                     float prob,
2913                                     Node* *casted_receiver) {
2914   assert(!klass->is_interface(), "no exact type check on interfaces");
2915 











2916   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);




2917   Node* recv_klass = load_object_klass(receiver);
2918   Node* want_klass = makecon(tklass);
2919   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2920   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2921   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2922   set_control( _gvn.transform(new IfTrueNode (iff)));
2923   Node* fail = _gvn.transform(new IfFalseNode(iff));
2924 
2925   if (!stopped()) {
2926     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2927     const TypeOopPtr* recvx_type = tklass->as_instance_type();
2928     assert(recvx_type->klass_is_exact(), "");
2929 
2930     if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2931       // Subsume downstream occurrences of receiver with a cast to
2932       // recv_xtype, since now we know what the type will be.
2933       Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2934       (*casted_receiver) = _gvn.transform(cast);





2935       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
2936       // (User must make the replace_in_map call.)
2937     }
2938   }
2939 
2940   return fail;
2941 }
2942 











2943 //------------------------------subtype_check_receiver-------------------------
2944 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2945                                        Node** casted_receiver) {
2946   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2947   Node* want_klass = makecon(tklass);
2948 
2949   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2950 
2951   // Ignore interface type information until interface types are properly tracked.
2952   if (!stopped() && !klass->is_interface()) {
2953     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2954     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2955     if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2956       Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2957       (*casted_receiver) = _gvn.transform(cast);



2958     }
2959   }
2960 
2961   return slow_ctl;
2962 }
2963 
2964 //------------------------------seems_never_null-------------------------------
2965 // Use null_seen information if it is available from the profile.
2966 // If we see an unexpected null at a type check we record it and force a
2967 // recompile; the offending check will be recompiled to handle nulls.
2968 // If we see several offending BCIs, then all checks in the
2969 // method will be recompiled.
2970 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2971   speculating = !_gvn.type(obj)->speculative_maybe_null();
2972   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2973   if (UncommonNullCast               // Cutout for this technique
2974       && obj != null()               // And not the -Xcomp stupid case?
2975       && !too_many_traps(reason)
2976       ) {
2977     if (speculating) {

3046 
3047 //------------------------maybe_cast_profiled_receiver-------------------------
3048 // If the profile has seen exactly one type, narrow to exactly that type.
3049 // Subsequent type checks will always fold up.
3050 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3051                                              const TypeKlassPtr* require_klass,
3052                                              ciKlass* spec_klass,
3053                                              bool safe_for_replace) {
3054   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3055 
3056   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3057 
3058   // Make sure we haven't already deoptimized from this tactic.
3059   if (too_many_traps_or_recompiles(reason))
3060     return nullptr;
3061 
3062   // (No, this isn't a call, but it's enough like a virtual call
3063   // to use the same ciMethod accessor to get the profile info...)
3064   // If we have a speculative type use it instead of profiling (which
3065   // may not help us)
3066   ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;













3067   if (exact_kls != nullptr) {// no cast failures here
3068     if (require_klass == nullptr ||
3069         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3070       // If we narrow the type to match what the type profile sees or
3071       // the speculative type, we can then remove the rest of the
3072       // cast.
3073       // This is a win, even if the exact_kls is very specific,
3074       // because downstream operations, such as method calls,
3075       // will often benefit from the sharper type.
3076       Node* exact_obj = not_null_obj; // will get updated in place...
3077       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3078                                             &exact_obj);
3079       { PreserveJVMState pjvms(this);
3080         set_control(slow_ctl);
3081         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3082       }
3083       if (safe_for_replace) {
3084         replace_in_map(not_null_obj, exact_obj);
3085       }
3086       return exact_obj;

3176   // If not_null_obj is dead, only null-path is taken
3177   if (stopped()) {              // Doing instance-of on a null?
3178     set_control(null_ctl);
3179     return intcon(0);
3180   }
3181   region->init_req(_null_path, null_ctl);
3182   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3183   if (null_ctl == top()) {
3184     // Do this eagerly, so that pattern matches like is_diamond_phi
3185     // will work even during parsing.
3186     assert(_null_path == PATH_LIMIT-1, "delete last");
3187     region->del_req(_null_path);
3188     phi   ->del_req(_null_path);
3189   }
3190 
3191   // Do we know the type check always succeed?
3192   bool known_statically = false;
3193   if (_gvn.type(superklass)->singleton()) {
3194     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3195     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3196     if (subk->is_loaded()) {
3197       int static_res = C->static_subtype_check(superk, subk);
3198       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3199     }
3200   }
3201 
3202   if (!known_statically) {
3203     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3204     // We may not have profiling here or it may not help us. If we
3205     // have a speculative type use it to perform an exact cast.
3206     ciKlass* spec_obj_type = obj_type->speculative_type();
3207     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3208       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3209       if (stopped()) {            // Profile disagrees with this path.
3210         set_control(null_ctl);    // Null is the only remaining possibility.
3211         return intcon(0);
3212       }
3213       if (cast_obj != nullptr) {
3214         not_null_obj = cast_obj;
3215       }
3216     }

3232   record_for_igvn(region);
3233 
3234   // If we know the type check always succeeds then we don't use the
3235   // profiling data at this bytecode. Don't lose it, feed it to the
3236   // type system as a speculative type.
3237   if (safe_for_replace) {
3238     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3239     replace_in_map(obj, casted_obj);
3240   }
3241 
3242   return _gvn.transform(phi);
3243 }
3244 
3245 //-------------------------------gen_checkcast---------------------------------
3246 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3247 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3248 // uncommon-trap paths work.  Adjust stack after this call.
3249 // If failure_control is supplied and not null, it is filled in with
3250 // the control edge for the cast failure.  Otherwise, an appropriate
3251 // uncommon trap or exception is thrown.
3252 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3253                               Node* *failure_control) {
3254   kill_dead_locals();           // Benefit all the uncommon traps
3255   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
















3256   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3257   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();


3258 
3259   // Fast cutout:  Check the case that the cast is vacuously true.
3260   // This detects the common cases where the test will short-circuit
3261   // away completely.  We do this before we perform the null check,
3262   // because if the test is going to turn into zero code, we don't
3263   // want a residual null check left around.  (Causes a slowdown,
3264   // for example, in some objArray manipulations, such as a[i]=a[j].)
3265   if (improved_klass_ptr_type->singleton()) {
3266     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3267     if (objtp != nullptr) {
3268       switch (C->static_subtype_check(improved_klass_ptr_type, objtp->as_klass_type())) {







3269       case Compile::SSC_always_true:
3270         // If we know the type check always succeed then we don't use
3271         // the profiling data at this bytecode. Don't lose it, feed it
3272         // to the type system as a speculative type.
3273         return record_profiled_receiver_for_speculation(obj);






3274       case Compile::SSC_always_false:




3275         // It needs a null check because a null will *pass* the cast check.
3276         // A non-null value will always produce an exception.
3277         if (!objtp->maybe_null()) {
3278           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3279           Deoptimization::DeoptReason reason = is_aastore ?
3280             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3281           builtin_throw(reason);
3282           return top();
3283         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3284           return null_assert(obj);
3285         }
3286         break; // Fall through to full check
3287       default:
3288         break;
3289       }
3290     }
3291   }
3292 
3293   ciProfileData* data = nullptr;
3294   bool safe_for_replace = false;
3295   if (failure_control == nullptr) {        // use MDO in regular case only
3296     assert(java_bc() == Bytecodes::_aastore ||
3297            java_bc() == Bytecodes::_checkcast,
3298            "interpreter profiles type checks only for these BCs");
3299     data = method()->method_data()->bci_to_data(bci());
3300     safe_for_replace = true;

3301   }
3302 
3303   // Make the merge point
3304   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3305   RegionNode* region = new RegionNode(PATH_LIMIT);
3306   Node*       phi    = new PhiNode(region, toop);



3307   C->set_has_split_ifs(true); // Has chance for split-if optimization
3308 
3309   // Use null-cast information if it is available
3310   bool speculative_not_null = false;
3311   bool never_see_null = ((failure_control == nullptr)  // regular case only
3312                          && seems_never_null(obj, data, speculative_not_null));
3313 







3314   // Null check; get casted pointer; set region slot 3
3315   Node* null_ctl = top();
3316   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);






3317 
3318   // If not_null_obj is dead, only null-path is taken
3319   if (stopped()) {              // Doing instance-of on a null?
3320     set_control(null_ctl);



3321     return null();
3322   }
3323   region->init_req(_null_path, null_ctl);
3324   phi   ->init_req(_null_path, null());  // Set null path value
3325   if (null_ctl == top()) {
3326     // Do this eagerly, so that pattern matches like is_diamond_phi
3327     // will work even during parsing.
3328     assert(_null_path == PATH_LIMIT-1, "delete last");
3329     region->del_req(_null_path);
3330     phi   ->del_req(_null_path);
3331   }
3332 
3333   Node* cast_obj = nullptr;
3334   if (improved_klass_ptr_type->klass_is_exact()) {
3335     // The following optimization tries to statically cast the speculative type of the object
3336     // (for example obtained during profiling) to the type of the superklass and then do a
3337     // dynamic check that the type of the object is what we expect. To work correctly
3338     // for checkcast and aastore the type of superklass should be exact.
3339     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3340     // We may not have profiling here or it may not help us. If we have
3341     // a speculative type use it to perform an exact cast.
3342     ciKlass* spec_obj_type = obj_type->speculative_type();
3343     if (spec_obj_type != nullptr || data != nullptr) {
3344       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3345       if (cast_obj != nullptr) {
3346         if (failure_control != nullptr) // failure is now impossible
3347           (*failure_control) = top();
3348         // adjust the type of the phi to the exact klass:
3349         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3350       }
3351     }
3352   }
3353 
3354   if (cast_obj == nullptr) {
3355     // Generate the subtype check
3356     Node* improved_superklass = superklass;
3357     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {



3358       improved_superklass = makecon(improved_klass_ptr_type);
3359     }
3360     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);
3361 
3362     // Plug in success path into the merge
3363     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3364     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3365     if (failure_control == nullptr) {
3366       if (not_subtype_ctrl != top()) { // If failure is possible
3367         PreserveJVMState pjvms(this);
3368         set_control(not_subtype_ctrl);
3369         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3370         Deoptimization::DeoptReason reason = is_aastore ?
3371           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3372         builtin_throw(reason);
3373       }
3374     } else {
3375       (*failure_control) = not_subtype_ctrl;
3376     }
3377   }
3378 
3379   region->init_req(_obj_path, control());
3380   phi   ->init_req(_obj_path, cast_obj);
3381 
3382   // A merge of null or Casted-NotNull obj
3383   Node* res = _gvn.transform(phi);
3384 
3385   // Note I do NOT always 'replace_in_map(obj,result)' here.
3386   //  if( tk->klass()->can_be_primary_super()  )
3387     // This means that if I successfully store an Object into an array-of-String
3388     // I 'forget' that the Object is really now known to be a String.  I have to
3389     // do this because we don't have true union types for interfaces - if I store
3390     // a Baz into an array-of-Interface and then tell the optimizer it's an
3391     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3392     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3393   //  replace_in_map( obj, res );
3394 
3395   // Return final merged results
3396   set_control( _gvn.transform(region) );
3397   record_for_igvn(region);
3398 
3399   return record_profiled_receiver_for_speculation(res);




































































































































































3400 }
3401 
3402 //------------------------------next_monitor-----------------------------------
3403 // What number should be given to the next monitor?
3404 int GraphKit::next_monitor() {
3405   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3406   int next = current + C->sync_stack_slots();
3407   // Keep the toplevel high water mark current:
3408   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3409   return current;
3410 }
3411 
3412 //------------------------------insert_mem_bar---------------------------------
3413 // Memory barrier to avoid floating things around
3414 // The membar serves as a pinch point between both control and all memory slices.
3415 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3416   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3417   mb->init_req(TypeFunc::Control, control());
3418   mb->init_req(TypeFunc::Memory,  reset_memory());
3419   Node* membar = _gvn.transform(mb);

3511     lock->create_lock_counter(map()->jvms());
3512     increment_counter(lock->counter()->addr());
3513   }
3514 #endif
3515 
3516   return flock;
3517 }
3518 
3519 
3520 //------------------------------shared_unlock----------------------------------
3521 // Emit unlocking code.
3522 void GraphKit::shared_unlock(Node* box, Node* obj) {
3523   // bci is either a monitorenter bc or InvocationEntryBci
3524   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3525   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3526 
3527   if (stopped()) {               // Dead monitor?
3528     map()->pop_monitor();        // Kill monitor from debug info
3529     return;
3530   }

3531 
3532   // Memory barrier to avoid floating things down past the locked region
3533   insert_mem_bar(Op_MemBarReleaseLock);
3534 
3535   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3536   UnlockNode *unlock = new UnlockNode(C, tf);
3537 #ifdef ASSERT
3538   unlock->set_dbg_jvms(sync_jvms());
3539 #endif
3540   uint raw_idx = Compile::AliasIdxRaw;
3541   unlock->init_req( TypeFunc::Control, control() );
3542   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3543   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3544   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3545   unlock->init_req( TypeFunc::ReturnAdr, top() );
3546 
3547   unlock->init_req(TypeFunc::Parms + 0, obj);
3548   unlock->init_req(TypeFunc::Parms + 1, box);
3549   unlock = _gvn.transform(unlock)->as_Unlock();
3550 
3551   Node* mem = reset_memory();
3552 
3553   // unlock has no side-effects, sets few values
3554   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3555 
3556   // Kill monitor from debug info
3557   map()->pop_monitor( );
3558 }
3559 
3560 //-------------------------------get_layout_helper-----------------------------
3561 // If the given klass is a constant or known to be an array,
3562 // fetch the constant layout helper value into constant_value
3563 // and return null.  Otherwise, load the non-constant
3564 // layout helper value, and return the node which represents it.
3565 // This two-faced routine is useful because allocation sites
3566 // almost always feature constant types.
3567 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3568   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
3569   if (!StressReflectiveCode && klass_t != nullptr) {
3570     bool xklass = klass_t->klass_is_exact();
3571     if (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM)) {







3572       jint lhelper;
3573       if (klass_t->isa_aryklassptr()) {
3574         BasicType elem = klass_t->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();


3575         if (is_reference_type(elem, true)) {
3576           elem = T_OBJECT;
3577         }
3578         lhelper = Klass::array_layout_helper(elem);
3579       } else {
3580         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
3581       }
3582       if (lhelper != Klass::_lh_neutral_value) {
3583         constant_value = lhelper;
3584         return (Node*) nullptr;
3585       }
3586     }
3587   }
3588   constant_value = Klass::_lh_neutral_value;  // put in a known value
3589   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3590   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3591 }
3592 
3593 // We just put in an allocate/initialize with a big raw-memory effect.
3594 // Hook selected additional alias categories on the initialization.
3595 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3596                                 MergeMemNode* init_in_merge,
3597                                 Node* init_out_raw) {
3598   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3599   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3600 
3601   Node* prevmem = kit.memory(alias_idx);
3602   init_in_merge->set_memory_at(alias_idx, prevmem);
3603   kit.set_memory(init_out_raw, alias_idx);


3604 }
3605 
3606 //---------------------------set_output_for_allocation-------------------------
3607 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3608                                           const TypeOopPtr* oop_type,
3609                                           bool deoptimize_on_exception) {
3610   int rawidx = Compile::AliasIdxRaw;
3611   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3612   add_safepoint_edges(alloc);
3613   Node* allocx = _gvn.transform(alloc);
3614   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3615   // create memory projection for i_o
3616   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3617   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3618 
3619   // create a memory projection as for the normal control path
3620   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3621   set_memory(malloc, rawidx);
3622 
3623   // a normal slow-call doesn't change i_o, but an allocation does
3624   // we create a separate i_o projection for the normal control path
3625   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3626   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3627 
3628   // put in an initialization barrier
3629   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3630                                                  rawoop)->as_Initialize();
3631   assert(alloc->initialization() == init,  "2-way macro link must work");
3632   assert(init ->allocation()     == alloc, "2-way macro link must work");
3633   {
3634     // Extract memory strands which may participate in the new object's
3635     // initialization, and source them from the new InitializeNode.
3636     // This will allow us to observe initializations when they occur,
3637     // and link them properly (as a group) to the InitializeNode.
3638     assert(init->in(InitializeNode::Memory) == malloc, "");
3639     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3640     init->set_req(InitializeNode::Memory, minit_in);
3641     record_for_igvn(minit_in); // fold it up later, if possible

3642     Node* minit_out = memory(rawidx);
3643     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3644     // Add an edge in the MergeMem for the header fields so an access
3645     // to one of those has correct memory state
3646     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3647     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3648     if (oop_type->isa_aryptr()) {
3649       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3650       int            elemidx  = C->get_alias_index(telemref);
3651       hook_memory_on_init(*this, elemidx, minit_in, minit_out);

























3652     } else if (oop_type->isa_instptr()) {

3653       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3654       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3655         ciField* field = ik->nonstatic_field_at(i);
3656         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3657           continue;  // do not bother to track really large numbers of fields
3658         // Find (or create) the alias category for this field:
3659         int fieldidx = C->alias_type(field)->index();
3660         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3661       }
3662     }
3663   }
3664 
3665   // Cast raw oop to the real thing...
3666   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3667   javaoop = _gvn.transform(javaoop);
3668   C->set_recent_alloc(control(), javaoop);
3669   assert(just_allocated_object(control()) == javaoop, "just allocated");
3670 
3671 #ifdef ASSERT
3672   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

3683       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3684     }
3685   }
3686 #endif //ASSERT
3687 
3688   return javaoop;
3689 }
3690 
3691 //---------------------------new_instance--------------------------------------
3692 // This routine takes a klass_node which may be constant (for a static type)
3693 // or may be non-constant (for reflective code).  It will work equally well
3694 // for either, and the graph will fold nicely if the optimizer later reduces
3695 // the type to a constant.
3696 // The optional arguments are for specialized use by intrinsics:
3697 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3698 //  - If 'return_size_val', report the total object size to the caller.
3699 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3700 Node* GraphKit::new_instance(Node* klass_node,
3701                              Node* extra_slow_test,
3702                              Node* *return_size_val,
3703                              bool deoptimize_on_exception) {

3704   // Compute size in doublewords
3705   // The size is always an integral number of doublewords, represented
3706   // as a positive bytewise size stored in the klass's layout_helper.
3707   // The layout_helper also encodes (in a low bit) the need for a slow path.
3708   jint  layout_con = Klass::_lh_neutral_value;
3709   Node* layout_val = get_layout_helper(klass_node, layout_con);
3710   int   layout_is_con = (layout_val == nullptr);
3711 
3712   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3713   // Generate the initial go-slow test.  It's either ALWAYS (return a
3714   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3715   // case) a computed value derived from the layout_helper.
3716   Node* initial_slow_test = nullptr;
3717   if (layout_is_con) {
3718     assert(!StressReflectiveCode, "stress mode does not use these paths");
3719     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3720     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3721   } else {   // reflective case
3722     // This reflective path is used by Unsafe.allocateInstance.
3723     // (It may be stress-tested by specifying StressReflectiveCode.)
3724     // Basically, we want to get into the VM is there's an illegal argument.
3725     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3726     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3727     if (extra_slow_test != intcon(0)) {
3728       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3729     }
3730     // (Macro-expander will further convert this to a Bool, if necessary.)

3741 
3742     // Clear the low bits to extract layout_helper_size_in_bytes:
3743     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3744     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3745     size = _gvn.transform( new AndXNode(size, mask) );
3746   }
3747   if (return_size_val != nullptr) {
3748     (*return_size_val) = size;
3749   }
3750 
3751   // This is a precise notnull oop of the klass.
3752   // (Actually, it need not be precise if this is a reflective allocation.)
3753   // It's what we cast the result to.
3754   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3755   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3756   const TypeOopPtr* oop_type = tklass->as_instance_type();
3757 
3758   // Now generate allocation code
3759 
3760   // The entire memory state is needed for slow path of the allocation
3761   // since GC and deoptimization can happened.
3762   Node *mem = reset_memory();
3763   set_all_memory(mem); // Create new memory state
3764 
3765   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3766                                          control(), mem, i_o(),
3767                                          size, klass_node,
3768                                          initial_slow_test);
3769 
3770   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3771 }
3772 
3773 //-------------------------------new_array-------------------------------------
3774 // helper for both newarray and anewarray
3775 // The 'length' parameter is (obviously) the length of the array.
3776 // The optional arguments are for specialized use by intrinsics:
3777 //  - If 'return_size_val', report the non-padded array size (sum of header size
3778 //    and array body) to the caller.
3779 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3780 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3781                           Node* length,         // number of array elements
3782                           int   nargs,          // number of arguments to push back for uncommon trap
3783                           Node* *return_size_val,
3784                           bool deoptimize_on_exception) {

3785   jint  layout_con = Klass::_lh_neutral_value;
3786   Node* layout_val = get_layout_helper(klass_node, layout_con);
3787   int   layout_is_con = (layout_val == nullptr);
3788 
3789   if (!layout_is_con && !StressReflectiveCode &&
3790       !too_many_traps(Deoptimization::Reason_class_check)) {
3791     // This is a reflective array creation site.
3792     // Optimistically assume that it is a subtype of Object[],
3793     // so that we can fold up all the address arithmetic.
3794     layout_con = Klass::array_layout_helper(T_OBJECT);
3795     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3796     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3797     { BuildCutout unless(this, bol_lh, PROB_MAX);
3798       inc_sp(nargs);
3799       uncommon_trap(Deoptimization::Reason_class_check,
3800                     Deoptimization::Action_maybe_recompile);
3801     }
3802     layout_val = nullptr;
3803     layout_is_con = true;
3804   }
3805 
3806   // Generate the initial go-slow test.  Make sure we do not overflow
3807   // if length is huge (near 2Gig) or negative!  We do not need
3808   // exact double-words here, just a close approximation of needed
3809   // double-words.  We can't add any offset or rounding bits, lest we
3810   // take a size -1 of bytes and make it positive.  Use an unsigned
3811   // compare, so negative sizes look hugely positive.
3812   int fast_size_limit = FastAllocateSizeLimit;
3813   if (layout_is_con) {
3814     assert(!StressReflectiveCode, "stress mode does not use these paths");
3815     // Increase the size limit if we have exact knowledge of array type.
3816     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3817     assert(fast_size_limit == 0 || count_leading_zeros(fast_size_limit) > static_cast<unsigned>(LogBytesPerLong - log2_esize),
3818            "fast_size_limit (%d) overflow when shifted left by %d", fast_size_limit, LogBytesPerLong - log2_esize);
3819     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3820   }
3821 
3822   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3823   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3824 
3825   // --- Size Computation ---
3826   // array_size = round_to_heap(array_header + (length << elem_shift));
3827   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3828   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3829   // The rounding mask is strength-reduced, if possible.
3830   int round_mask = MinObjAlignmentInBytes - 1;
3831   Node* header_size = nullptr;
3832   // (T_BYTE has the weakest alignment and size restrictions...)
3833   if (layout_is_con) {
3834     int       hsize  = Klass::layout_helper_header_size(layout_con);
3835     int       eshift = Klass::layout_helper_log2_element_size(layout_con);

3836     if ((round_mask & ~right_n_bits(eshift)) == 0)
3837       round_mask = 0;  // strength-reduce it if it goes away completely
3838     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3839     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3840     assert(header_size_min <= hsize, "generic minimum is smallest");
3841     header_size = intcon(hsize);
3842   } else {
3843     Node* hss   = intcon(Klass::_lh_header_size_shift);
3844     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3845     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
3846     header_size = _gvn.transform(new AndINode(header_size, hsm));
3847   }
3848 
3849   Node* elem_shift = nullptr;
3850   if (layout_is_con) {
3851     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3852     if (eshift != 0)
3853       elem_shift = intcon(eshift);
3854   } else {
3855     // There is no need to mask or shift this value.
3856     // The semantics of LShiftINode include an implicit mask to 0x1F.
3857     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3858     elem_shift = layout_val;

3907   }
3908   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
3909 
3910   if (return_size_val != nullptr) {
3911     // This is the size
3912     (*return_size_val) = non_rounded_size;
3913   }
3914 
3915   Node* size = non_rounded_size;
3916   if (round_mask != 0) {
3917     Node* mask1 = MakeConX(round_mask);
3918     size = _gvn.transform(new AddXNode(size, mask1));
3919     Node* mask2 = MakeConX(~round_mask);
3920     size = _gvn.transform(new AndXNode(size, mask2));
3921   }
3922   // else if round_mask == 0, the size computation is self-rounding
3923 
3924   // Now generate allocation code
3925 
3926   // The entire memory state is needed for slow path of the allocation
3927   // since GC and deoptimization can happened.
3928   Node *mem = reset_memory();
3929   set_all_memory(mem); // Create new memory state
3930 
3931   if (initial_slow_test->is_Bool()) {
3932     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3933     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3934   }
3935 
3936   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();




















3937   Node* valid_length_test = _gvn.intcon(1);
3938   if (ary_type->isa_aryptr()) {
3939     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3940     jint max = TypeAryPtr::max_array_length(bt);
3941     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3942     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3943   }
3944 
3945   // Create the AllocateArrayNode and its result projections
3946   AllocateArrayNode* alloc
3947     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3948                             control(), mem, i_o(),
3949                             size, klass_node,
3950                             initial_slow_test,
3951                             length, valid_length_test);
3952 
3953   // Cast to correct type.  Note that the klass_node may be constant or not,
3954   // and in the latter case the actual array type will be inexact also.
3955   // (This happens via a non-constant argument to inline_native_newArray.)
3956   // In any case, the value of klass_node provides the desired array type.
3957   const TypeInt* length_type = _gvn.find_int_type(length);
3958   if (ary_type->isa_aryptr() && length_type != nullptr) {
3959     // Try to get a better type than POS for the size
3960     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3961   }
3962 
3963   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3964 
3965   array_ideal_length(alloc, ary_type, true);
3966   return javaoop;
3967 }
3968 
3969 // The following "Ideal_foo" functions are placed here because they recognize
3970 // the graph shapes created by the functions immediately above.
3971 
3972 //---------------------------Ideal_allocation----------------------------------

4067 void GraphKit::add_parse_predicates(int nargs) {
4068   if (ShortRunningLongLoop) {
4069     // Will narrow the limit down with a cast node. Predicates added later may depend on the cast so should be last when
4070     // walking up from the loop.
4071     add_parse_predicate(Deoptimization::Reason_short_running_long_loop, nargs);
4072   }
4073   if (UseLoopPredicate) {
4074     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4075     if (UseProfiledLoopPredicate) {
4076       add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4077     }
4078   }
4079   if (UseAutoVectorizationPredicate) {
4080     add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs);
4081   }
4082   // Loop Limit Check Predicate should be near the loop.
4083   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4084 }
4085 
4086 void GraphKit::sync_kit(IdealKit& ideal) {

4087   set_all_memory(ideal.merged_memory());
4088   set_i_o(ideal.i_o());
4089   set_control(ideal.ctrl());
4090 }
4091 
4092 void GraphKit::final_sync(IdealKit& ideal) {
4093   // Final sync IdealKit and graphKit.
4094   sync_kit(ideal);
4095 }
4096 
4097 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4098   Node* len = load_array_length(load_String_value(str, set_ctrl));
4099   Node* coder = load_String_coder(str, set_ctrl);
4100   // Divide length by 2 if coder is UTF16
4101   return _gvn.transform(new RShiftINode(len, coder));
4102 }
4103 
4104 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4105   int value_offset = java_lang_String::value_offset();
4106   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4107                                                      false, nullptr, 0);
4108   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4109   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4110                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4111                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4112   Node* p = basic_plus_adr(str, str, value_offset);
4113   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4114                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4115   return load;
4116 }
4117 
4118 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4119   if (!CompactStrings) {
4120     return intcon(java_lang_String::CODER_UTF16);
4121   }
4122   int coder_offset = java_lang_String::coder_offset();
4123   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4124                                                      false, nullptr, 0);
4125   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4126 
4127   Node* p = basic_plus_adr(str, str, coder_offset);
4128   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4129                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4130   return load;
4131 }
4132 
4133 void GraphKit::store_String_value(Node* str, Node* value) {
4134   int value_offset = java_lang_String::value_offset();
4135   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4136                                                      false, nullptr, 0);
4137   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4138 
4139   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4140                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4141 }
4142 
4143 void GraphKit::store_String_coder(Node* str, Node* value) {
4144   int coder_offset = java_lang_String::coder_offset();
4145   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4146                                                      false, nullptr, 0);
4147   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4148 
4149   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4150                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4151 }
4152 
4153 // Capture src and dst memory state with a MergeMemNode
4154 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4155   if (src_type == dst_type) {
4156     // Types are equal, we don't need a MergeMemNode
4157     return memory(src_type);
4158   }
4159   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4160   record_for_igvn(merge); // fold it up later, if possible
4161   int src_idx = C->get_alias_index(src_type);
4162   int dst_idx = C->get_alias_index(dst_type);
4163   merge->set_memory_at(src_idx, memory(src_idx));
4164   merge->set_memory_at(dst_idx, memory(dst_idx));
4165   return merge;
4166 }

4239   i_char->init_req(2, AddI(i_char, intcon(2)));
4240 
4241   set_control(IfFalse(iff));
4242   set_memory(st, TypeAryPtr::BYTES);
4243 }
4244 
4245 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4246   if (!field->is_constant()) {
4247     return nullptr; // Field not marked as constant.
4248   }
4249   ciInstance* holder = nullptr;
4250   if (!field->is_static()) {
4251     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4252     if (const_oop != nullptr && const_oop->is_instance()) {
4253       holder = const_oop->as_instance();
4254     }
4255   }
4256   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4257                                                         /*is_unsigned_load=*/false);
4258   if (con_type != nullptr) {
4259     return makecon(con_type);






4260   }
4261   return nullptr;
4262 }
4263 









4264 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4265   const TypeOopPtr* obj_type = obj->bottom_type()->isa_oopptr();
4266   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4267   if (obj_type != nullptr && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4268     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4269     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4270     return casted_obj;



4271   }
4272   return obj;
4273 }

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/register.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciObjArray.hpp"
  29 #include "ci/ciUtilities.hpp"
  30 #include "classfile/javaClasses.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "gc/shared/c2/barrierSetC2.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/flatArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "utilities/bitMap.inline.hpp"
  56 #include "utilities/growableArray.hpp"
  57 #include "utilities/powerOfTwo.hpp"
  58 
  59 //----------------------------GraphKit-----------------------------------------
  60 // Main utility constructor.
  61 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  62   : Phase(Phase::Parser),
  63     _env(C->env()),
  64     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  65     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  66 {
  67   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  68   _exceptions = jvms->map()->next_exception();
  69   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  70   set_jvms(jvms);
  71 #ifdef ASSERT
  72   if (_gvn.is_IterGVN() != nullptr) {
  73     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  74     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  75     _worklist_size = _gvn.C->igvn_worklist()->size();
  76   }
  77 #endif
  78 }
  79 
  80 // Private constructor for parser.
  81 GraphKit::GraphKit()
  82   : Phase(Phase::Parser),
  83     _env(C->env()),
  84     _gvn(*C->initial_gvn()),
  85     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  86 {
  87   _exceptions = nullptr;
  88   set_map(nullptr);
  89   DEBUG_ONLY(_sp = -99);
  90   DEBUG_ONLY(set_bci(-99));
  91 }
  92 
  93 
  94 
  95 //---------------------------clean_stack---------------------------------------
  96 // Clear away rubbish from the stack area of the JVM state.
  97 // This destroys any arguments that may be waiting on the stack.

 342 }
 343 static inline void add_one_req(Node* dstphi, Node* src) {
 344   assert(is_hidden_merge(dstphi), "must be a special merge node");
 345   assert(!is_hidden_merge(src), "must not be a special merge node");
 346   dstphi->add_req(src);
 347 }
 348 
 349 //-----------------------combine_exception_states------------------------------
 350 // This helper function combines exception states by building phis on a
 351 // specially marked state-merging region.  These regions and phis are
 352 // untransformed, and can build up gradually.  The region is marked by
 353 // having a control input of its exception map, rather than null.  Such
 354 // regions do not appear except in this function, and in use_exception_state.
 355 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 356   if (failing_internal()) {
 357     return;  // dying anyway...
 358   }
 359   JVMState* ex_jvms = ex_map->_jvms;
 360   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 361   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 362   // TODO 8325632 Re-enable
 363   // assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 364   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 365   assert(ex_jvms->scloff() == phi_map->_jvms->scloff(), "matching scalar replaced objects");
 366   assert(ex_map->req() == phi_map->req(), "matching maps");
 367   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 368   Node*         hidden_merge_mark = root();
 369   Node*         region  = phi_map->control();
 370   MergeMemNode* phi_mem = phi_map->merged_memory();
 371   MergeMemNode* ex_mem  = ex_map->merged_memory();
 372   if (region->in(0) != hidden_merge_mark) {
 373     // The control input is not (yet) a specially-marked region in phi_map.
 374     // Make it so, and build some phis.
 375     region = new RegionNode(2);
 376     _gvn.set_type(region, Type::CONTROL);
 377     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 378     region->init_req(1, phi_map->control());
 379     phi_map->set_control(region);
 380     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 381     record_for_igvn(io_phi);
 382     _gvn.set_type(io_phi, Type::ABIO);
 383     phi_map->set_i_o(io_phi);

 871         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 872           tty->print_cr("Zombie local %d: ", local);
 873           jvms->dump();
 874         }
 875         return false;
 876       }
 877     }
 878   }
 879   return true;
 880 }
 881 
 882 #endif //ASSERT
 883 
 884 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 885 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 886   ciMethod* cur_method = jvms->method();
 887   int       cur_bci   = jvms->bci();
 888   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 889     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 890     return Interpreter::bytecode_should_reexecute(code) ||
 891            (is_anewarray && (code == Bytecodes::_multianewarray));
 892     // Reexecute _multianewarray bytecode which was replaced with
 893     // sequence of [a]newarray. See Parse::do_multianewarray().
 894     //
 895     // Note: interpreter should not have it set since this optimization
 896     // is limited by dimensions and guarded by flag so in some cases
 897     // multianewarray() runtime calls will be generated and
 898     // the bytecode should not be reexecutes (stack will not be reset).
 899   } else {
 900     return false;
 901   }
 902 }
 903 
 904 // Helper function for adding JVMState and debug information to node
 905 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 906   // Add the safepoint edges to the call (or other safepoint).
 907 
 908   // Make sure dead locals are set to top.  This
 909   // should help register allocation time and cut down on the size
 910   // of the deoptimization information.
 911   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

 939 
 940   if (env()->should_retain_local_variables()) {
 941     // At any safepoint, this method can get breakpointed, which would
 942     // then require an immediate deoptimization.
 943     can_prune_locals = false;  // do not prune locals
 944     stack_slots_not_pruned = 0;
 945   }
 946 
 947   // do not scribble on the input jvms
 948   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 949   call->set_jvms(out_jvms); // Start jvms list for call node
 950 
 951   // For a known set of bytecodes, the interpreter should reexecute them if
 952   // deoptimization happens. We set the reexecute state for them here
 953   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 954       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 955 #ifdef ASSERT
 956     int inputs = 0, not_used; // initialized by GraphKit::compute_stack_effects()
 957     assert(method() == youngest_jvms->method(), "sanity");
 958     assert(compute_stack_effects(inputs, not_used), "unknown bytecode: %s", Bytecodes::name(java_bc()));
 959     // TODO 8371125
 960     // assert(out_jvms->sp() >= (uint)inputs, "not enough operands for reexecution");
 961 #endif // ASSERT
 962     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 963   }
 964 
 965   // Presize the call:
 966   DEBUG_ONLY(uint non_debug_edges = call->req());
 967   call->add_req_batch(top(), youngest_jvms->debug_depth());
 968   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 969 
 970   // Set up edges so that the call looks like this:
 971   //  Call [state:] ctl io mem fptr retadr
 972   //       [parms:] parm0 ... parmN
 973   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 974   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 975   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 976   // Note that caller debug info precedes callee debug info.
 977 
 978   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 979   uint debug_ptr = call->req();
 980 
 981   // Loop over the map input edges associated with jvms, add them
 982   // to the call node, & reset all offsets to match call node array.
 983 
 984   JVMState* callee_jvms = nullptr;
 985   for (JVMState* in_jvms = youngest_jvms; in_jvms != nullptr; ) {
 986     uint debug_end   = debug_ptr;
 987     uint debug_start = debug_ptr - in_jvms->debug_size();
 988     debug_ptr = debug_start;  // back up the ptr
 989 
 990     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 991     uint j, k, l;
 992     SafePointNode* in_map = in_jvms->map();
 993     out_jvms->set_map(call);
 994 
 995     if (can_prune_locals) {
 996       assert(in_jvms->method() == out_jvms->method(), "sanity");
 997       // If the current throw can reach an exception handler in this JVMS,
 998       // then we must keep everything live that can reach that handler.
 999       // As a quick and dirty approximation, we look for any handlers at all.
1000       if (in_jvms->method()->has_exception_handlers()) {
1001         can_prune_locals = false;
1002       }
1003     }
1004 
1005     // Add the Locals
1006     k = in_jvms->locoff();
1007     l = in_jvms->loc_size();
1008     out_jvms->set_locoff(p);
1009     if (!can_prune_locals) {
1010       for (j = 0; j < l; j++) {
1011         call->set_req(p++, in_map->in(k + j));
1012       }
1013     } else {
1014       p += l;  // already set to top above by add_req_batch
1015     }
1016 
1017     // Add the Expression Stack
1018     k = in_jvms->stkoff();
1019     l = in_jvms->sp();
1020     out_jvms->set_stkoff(p);
1021     if (!can_prune_locals) {
1022       for (j = 0; j < l; j++) {
1023         call->set_req(p++, in_map->in(k + j));
1024       }
1025     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
1026       // Divide stack into {S0,...,S1}, where S0 is set to top.
1027       uint s1 = stack_slots_not_pruned;
1028       stack_slots_not_pruned = 0;  // for next iteration
1029       if (s1 > l)  s1 = l;
1030       uint s0 = l - s1;
1031       p += s0;  // skip the tops preinstalled by add_req_batch
1032       for (j = s0; j < l; j++)
1033         call->set_req(p++, in_map->in(k+j));
1034     } else {
1035       p += l;  // already set to top above by add_req_batch
1036     }
1037 
1038     // Add the Monitors
1039     k = in_jvms->monoff();
1040     l = in_jvms->mon_size();
1041     out_jvms->set_monoff(p);
1042     for (j = 0; j < l; j++)
1043       call->set_req(p++, in_map->in(k+j));
1044 
1045     // Copy any scalar object fields.
1046     k = in_jvms->scloff();
1047     l = in_jvms->scl_size();
1048     out_jvms->set_scloff(p);
1049     for (j = 0; j < l; j++)
1050       call->set_req(p++, in_map->in(k+j));
1051 
1052     // Finish the new jvms.
1053     out_jvms->set_endoff(p);
1054 
1055     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
1056     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
1057     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
1058     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
1059     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
1060     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
1061 
1062     // Update the two tail pointers in parallel.
1063     callee_jvms = out_jvms;
1064     out_jvms = out_jvms->caller();
1065     in_jvms  = in_jvms->caller();
1066   }
1067 
1068   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
1069 
1070   // Test the correctness of JVMState::debug_xxx accessors:
1071   assert(call->jvms()->debug_start() == non_debug_edges, "");
1072   assert(call->jvms()->debug_end()   == call->req(), "");
1073   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
1074 }
1075 
1076 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
1077   Bytecodes::Code code = java_bc();
1078   if (code == Bytecodes::_wide) {
1079     code = method()->java_code_at_bci(bci() + 1);
1080   }
1081 
1082   if (code != Bytecodes::_illegal) {
1083     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1

1219   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1220   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1221   return _gvn.transform( new AndLNode(conv, mask) );
1222 }
1223 
1224 Node* GraphKit::ConvL2I(Node* offset) {
1225   // short-circuit a common case
1226   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1227   if (offset_con != (jlong)Type::OffsetBot) {
1228     return intcon((int) offset_con);
1229   }
1230   return _gvn.transform( new ConvL2INode(offset));
1231 }
1232 
1233 //-------------------------load_object_klass-----------------------------------
1234 Node* GraphKit::load_object_klass(Node* obj) {
1235   // Special-case a fresh allocation to avoid building nodes:
1236   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1237   if (akls != nullptr)  return akls;
1238   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1239   return _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1240 }
1241 
1242 //-------------------------load_array_length-----------------------------------
1243 Node* GraphKit::load_array_length(Node* array) {
1244   // Special-case a fresh allocation to avoid building nodes:
1245   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array);
1246   Node *alen;
1247   if (alloc == nullptr) {
1248     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1249     alen = _gvn.transform( new LoadRangeNode(nullptr, immutable_memory(), r_adr, TypeInt::POS));
1250   } else {
1251     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1252   }
1253   return alen;
1254 }
1255 
1256 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1257                                    const TypeOopPtr* oop_type,
1258                                    bool replace_length_in_map) {
1259   Node* length = alloc->Ideal_length();

1268         replace_in_map(length, ccast);
1269       }
1270       return ccast;
1271     }
1272   }
1273   return length;
1274 }
1275 
1276 //------------------------------do_null_check----------------------------------
1277 // Helper function to do a null pointer check.  Returned value is
1278 // the incoming address with null casted away.  You are allowed to use the
1279 // not-null value only if you are control dependent on the test.
1280 #ifndef PRODUCT
1281 extern uint explicit_null_checks_inserted,
1282             explicit_null_checks_elided;
1283 #endif
1284 Node* GraphKit::null_check_common(Node* value, BasicType type,
1285                                   // optional arguments for variations:
1286                                   bool assert_null,
1287                                   Node* *null_control,
1288                                   bool speculative,
1289                                   bool null_marker_check) {
1290   assert(!assert_null || null_control == nullptr, "not both at once");
1291   if (stopped())  return top();
1292   NOT_PRODUCT(explicit_null_checks_inserted++);
1293 
1294   if (value->is_InlineType()) {
1295     // Null checking a scalarized but nullable inline type. Check the null marker
1296     // input instead of the oop input to avoid keeping buffer allocations alive.
1297     InlineTypeNode* vtptr = value->as_InlineType();
1298     while (vtptr->get_oop()->is_InlineType()) {
1299       vtptr = vtptr->get_oop()->as_InlineType();
1300     }
1301     null_check_common(vtptr->get_null_marker(), T_INT, assert_null, null_control, speculative, true);
1302     if (stopped()) {
1303       return top();
1304     }
1305     if (assert_null) {
1306       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1307       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1308       // replace_in_map(value, vtptr);
1309       // return vtptr;
1310       replace_in_map(value, null());
1311       return null();
1312     }
1313     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1314     return cast_not_null(value, do_replace_in_map);
1315   }
1316 
1317   // Construct null check
1318   Node *chk = nullptr;
1319   switch(type) {
1320     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1321     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1322     case T_ARRAY  : // fall through
1323       type = T_OBJECT;  // simplify further tests
1324     case T_OBJECT : {
1325       const Type *t = _gvn.type( value );
1326 
1327       const TypeOopPtr* tp = t->isa_oopptr();
1328       if (tp != nullptr && !tp->is_loaded()
1329           // Only for do_null_check, not any of its siblings:
1330           && !assert_null && null_control == nullptr) {
1331         // Usually, any field access or invocation on an unloaded oop type
1332         // will simply fail to link, since the statically linked class is
1333         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1334         // the static class is loaded but the sharper oop type is not.
1335         // Rather than checking for this obscure case in lots of places,
1336         // we simply observe that a null check on an unloaded class

1400         }
1401         Node *oldcontrol = control();
1402         set_control(cfg);
1403         Node *res = cast_not_null(value);
1404         set_control(oldcontrol);
1405         NOT_PRODUCT(explicit_null_checks_elided++);
1406         return res;
1407       }
1408       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1409       if (cfg == nullptr)  break;  // Quit at region nodes
1410       depth++;
1411     }
1412   }
1413 
1414   //-----------
1415   // Branch to failure if null
1416   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1417   Deoptimization::DeoptReason reason;
1418   if (assert_null) {
1419     reason = Deoptimization::reason_null_assert(speculative);
1420   } else if (type == T_OBJECT || null_marker_check) {
1421     reason = Deoptimization::reason_null_check(speculative);
1422   } else {
1423     reason = Deoptimization::Reason_div0_check;
1424   }
1425   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1426   // ciMethodData::has_trap_at will return a conservative -1 if any
1427   // must-be-null assertion has failed.  This could cause performance
1428   // problems for a method after its first do_null_assert failure.
1429   // Consider using 'Reason_class_check' instead?
1430 
1431   // To cause an implicit null check, we set the not-null probability
1432   // to the maximum (PROB_MAX).  For an explicit check the probability
1433   // is set to a smaller value.
1434   if (null_control != nullptr || too_many_traps(reason)) {
1435     // probability is less likely
1436     ok_prob =  PROB_LIKELY_MAG(3);
1437   } else if (!assert_null &&
1438              (ImplicitNullCheckThreshold > 0) &&
1439              method() != nullptr &&
1440              (method()->method_data()->trap_count(reason)

1474   }
1475 
1476   if (assert_null) {
1477     // Cast obj to null on this path.
1478     replace_in_map(value, zerocon(type));
1479     return zerocon(type);
1480   }
1481 
1482   // Cast obj to not-null on this path, if there is no null_control.
1483   // (If there is a null_control, a non-null value may come back to haunt us.)
1484   if (type == T_OBJECT) {
1485     Node* cast = cast_not_null(value, false);
1486     if (null_control == nullptr || (*null_control) == top())
1487       replace_in_map(value, cast);
1488     value = cast;
1489   }
1490 
1491   return value;
1492 }
1493 

1494 //------------------------------cast_not_null----------------------------------
1495 // Cast obj to not-null on this path
1496 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1497   if (obj->is_InlineType()) {
1498     Node* vt = obj->isa_InlineType()->clone_if_required(&gvn(), map(), do_replace_in_map);
1499     vt->as_InlineType()->set_null_marker(_gvn);
1500     vt = _gvn.transform(vt);
1501     if (do_replace_in_map) {
1502       replace_in_map(obj, vt);
1503     }
1504     return vt;
1505   }
1506   const Type *t = _gvn.type(obj);
1507   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1508   // Object is already not-null?
1509   if( t == t_not_null ) return obj;
1510 
1511   Node* cast = new CastPPNode(control(), obj,t_not_null);
1512   cast = _gvn.transform( cast );
1513 
1514   // Scan for instances of 'obj' in the current JVM mapping.
1515   // These instances are known to be not-null after the test.
1516   if (do_replace_in_map)
1517     replace_in_map(obj, cast);
1518 
1519   return cast;                  // Return casted value
1520 }
1521 
1522 Node* GraphKit::cast_to_non_larval(Node* obj) {
1523   const Type* obj_type = gvn().type(obj);
1524   if (obj->is_InlineType() || !obj_type->is_inlinetypeptr()) {
1525     return obj;
1526   }
1527 
1528   Node* new_obj = InlineTypeNode::make_from_oop(this, obj, obj_type->inline_klass());
1529   replace_in_map(obj, new_obj);
1530   return new_obj;
1531 }
1532 
1533 // Sometimes in intrinsics, we implicitly know an object is not null
1534 // (there's no actual null check) so we can cast it to not null. In
1535 // the course of optimizations, the input to the cast can become null.
1536 // In that case that data path will die and we need the control path
1537 // to become dead as well to keep the graph consistent. So we have to
1538 // add a check for null for which one branch can't be taken. It uses
1539 // an OpaqueNotNull node that will cause the check to be removed after loop
1540 // opts so the test goes away and the compiled code doesn't execute a
1541 // useless check.
1542 Node* GraphKit::must_be_not_null(Node* value, bool do_replace_in_map) {
1543   if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(value))) {
1544     return value;
1545   }
1546   Node* chk = _gvn.transform(new CmpPNode(value, null()));
1547   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::ne));
1548   Node* opaq = _gvn.transform(new OpaqueNotNullNode(C, tst));
1549   IfNode* iff = new IfNode(control(), opaq, PROB_MAX, COUNT_UNKNOWN);
1550   _gvn.set_type(iff, iff->Value(&_gvn));
1551   if (!tst->is_Con()) {
1552     record_for_igvn(iff);

1625 // These are layered on top of the factory methods in LoadNode and StoreNode,
1626 // and integrate with the parser's memory state and _gvn engine.
1627 //
1628 
1629 // factory methods in "int adr_idx"
1630 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1631                           MemNode::MemOrd mo,
1632                           LoadNode::ControlDependency control_dependency,
1633                           bool require_atomic_access,
1634                           bool unaligned,
1635                           bool mismatched,
1636                           bool unsafe,
1637                           uint8_t barrier_data) {
1638   int adr_idx = C->get_alias_index(_gvn.type(adr)->isa_ptr());
1639   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1640   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1641   DEBUG_ONLY(adr_type = C->get_adr_type(adr_idx));
1642   Node* mem = memory(adr_idx);
1643   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1644   ld = _gvn.transform(ld);
1645 
1646   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1647     // Improve graph before escape analysis and boxing elimination.
1648     record_for_igvn(ld);
1649     if (ld->is_DecodeN()) {
1650       // Also record the actual load (LoadN) in case ld is DecodeN. In some
1651       // rare corner cases, ld->in(1) can be something other than LoadN (e.g.,
1652       // a Phi). Recording such cases is still perfectly sound, but may be
1653       // unnecessary and result in some minor IGVN overhead.
1654       record_for_igvn(ld->in(1));
1655     }
1656   }
1657   return ld;
1658 }
1659 
1660 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1661                                 MemNode::MemOrd mo,
1662                                 bool require_atomic_access,
1663                                 bool unaligned,
1664                                 bool mismatched,
1665                                 bool unsafe,

1679   if (unsafe) {
1680     st->as_Store()->set_unsafe_access();
1681   }
1682   st->as_Store()->set_barrier_data(barrier_data);
1683   st = _gvn.transform(st);
1684   set_memory(st, adr_idx);
1685   // Back-to-back stores can only remove intermediate store with DU info
1686   // so push on worklist for optimizer.
1687   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1688     record_for_igvn(st);
1689 
1690   return st;
1691 }
1692 
1693 Node* GraphKit::access_store_at(Node* obj,
1694                                 Node* adr,
1695                                 const TypePtr* adr_type,
1696                                 Node* val,
1697                                 const Type* val_type,
1698                                 BasicType bt,
1699                                 DecoratorSet decorators,
1700                                 bool safe_for_replace,
1701                                 const InlineTypeNode* vt) {
1702   // Transformation of a value which could be null pointer (CastPP #null)
1703   // could be delayed during Parse (for example, in adjust_map_after_if()).
1704   // Execute transformation here to avoid barrier generation in such case.
1705   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1706     val = _gvn.makecon(TypePtr::NULL_PTR);
1707   }
1708 
1709   if (stopped()) {
1710     return top(); // Dead path ?
1711   }
1712 
1713   assert(val != nullptr, "not dead path");
1714   if (val->is_InlineType()) {
1715     // Store to non-flat field. Buffer the inline type and make sure
1716     // the store is re-executed if the allocation triggers deoptimization.
1717     PreserveReexecuteState preexecs(this);
1718     jvms()->set_should_reexecute(true);
1719     val = val->as_InlineType()->buffer(this, safe_for_replace);
1720   }
1721 
1722   C2AccessValuePtr addr(adr, adr_type);
1723   C2AccessValue value(val, val_type);
1724   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr, nullptr, vt);
1725   if (access.is_raw()) {
1726     return _barrier_set->BarrierSetC2::store_at(access, value);
1727   } else {
1728     return _barrier_set->store_at(access, value);
1729   }
1730 }
1731 
1732 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1733                                Node* adr,   // actual address to store val at
1734                                const TypePtr* adr_type,
1735                                const Type* val_type,
1736                                BasicType bt,
1737                                DecoratorSet decorators,
1738                                Node* ctl) {
1739   if (stopped()) {
1740     return top(); // Dead path ?
1741   }
1742 
1743   C2AccessValuePtr addr(adr, adr_type);
1744   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1745   if (access.is_raw()) {
1746     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1747   } else {
1748     return _barrier_set->load_at(access, val_type);
1749   }
1750 }
1751 
1752 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1753                             const Type* val_type,
1754                             BasicType bt,
1755                             DecoratorSet decorators) {
1756   if (stopped()) {
1757     return top(); // Dead path ?
1758   }
1759 
1760   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1761   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1762   if (access.is_raw()) {
1763     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1764   } else {

1829                                      Node* new_val,
1830                                      const Type* value_type,
1831                                      BasicType bt,
1832                                      DecoratorSet decorators) {
1833   C2AccessValuePtr addr(adr, adr_type);
1834   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1835   if (access.is_raw()) {
1836     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1837   } else {
1838     return _barrier_set->atomic_add_at(access, new_val, value_type);
1839   }
1840 }
1841 
1842 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1843   return _barrier_set->clone(this, src, dst, size, is_array);
1844 }
1845 
1846 //-------------------------array_element_address-------------------------
1847 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1848                                       const TypeInt* sizetype, Node* ctrl) {
1849   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1850   uint shift;
1851   uint header;
1852   if (arytype->is_flat() && arytype->klass_is_exact()) {
1853     // We can only determine the flat array layout statically if the klass is exact. Otherwise, we could have different
1854     // value classes at runtime with a potentially different layout. The caller needs to fall back to call
1855     // load/store_unknown_inline_Type() at runtime. We could return a sentinel node for the non-exact case but that
1856     // might mess with other GVN transformations in between. Thus, we just continue in the else branch normally, even
1857     // though we don't need the address node in this case and throw it away again.
1858     shift = arytype->flat_log_elem_size();
1859     header = arrayOopDesc::base_offset_in_bytes(T_FLAT_ELEMENT);
1860   } else {
1861     shift = exact_log2(type2aelembytes(elembt));
1862     header = arrayOopDesc::base_offset_in_bytes(elembt);
1863   }
1864 
1865   // short-circuit a common case (saves lots of confusing waste motion)
1866   jint idx_con = find_int_con(idx, -1);
1867   if (idx_con >= 0) {
1868     intptr_t offset = header + ((intptr_t)idx_con << shift);
1869     return basic_plus_adr(ary, offset);
1870   }
1871 
1872   // must be correct type for alignment purposes
1873   Node* base  = basic_plus_adr(ary, header);
1874   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1875   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1876   return basic_plus_adr(ary, base, scale);
1877 }
1878 
1879 Node* GraphKit::cast_to_flat_array(Node* array, ciInlineKlass* vk, bool is_null_free, bool is_not_null_free, bool is_atomic) {
1880   assert(vk->maybe_flat_in_array(), "element of type %s cannot be flat in array", vk->name()->as_utf8());
1881   if (!vk->has_nullable_atomic_layout()) {
1882     // Element does not have a nullable flat layout, cannot be nullable
1883     is_null_free = true;
1884   }
1885   if (!vk->has_atomic_layout() && !vk->has_non_atomic_layout()) {
1886     // Element does not have a null-free flat layout, cannot be null-free
1887     is_not_null_free = true;
1888   }
1889   if (is_null_free) {
1890     // TODO 8350865 Impossible type
1891     is_not_null_free = false;
1892   }
1893 
1894   bool is_exact = is_null_free || is_not_null_free;
1895   ciArrayKlass* array_klass = ciArrayKlass::make(vk, is_null_free, is_atomic, true);
1896   assert(array_klass->is_elem_null_free() == is_null_free, "inconsistency");
1897   assert(array_klass->is_elem_atomic() == is_atomic, "inconsistency");
1898   const TypeAryPtr* arytype = TypeOopPtr::make_from_klass(array_klass)->isa_aryptr();
1899   arytype = arytype->cast_to_exactness(is_exact);
1900   arytype = arytype->cast_to_not_null_free(is_not_null_free);
1901   assert(arytype->is_null_free() == is_null_free, "inconsistency");
1902   assert(arytype->is_not_null_free() == is_not_null_free, "inconsistency");
1903   assert(arytype->is_atomic() == is_atomic, "inconsistency");
1904   return _gvn.transform(new CastPPNode(control(), array, arytype, ConstraintCastNode::StrongDependency));
1905 }
1906 
1907 //-------------------------load_array_element-------------------------
1908 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1909   const Type* elemtype = arytype->elem();
1910   BasicType elembt = elemtype->array_element_basic_type();
1911   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1912   if (elembt == T_NARROWOOP) {
1913     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1914   }
1915   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1916                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1917   return ld;
1918 }
1919 
1920 //-------------------------set_arguments_for_java_call-------------------------
1921 // Arguments (pre-popped from the stack) are taken from the JVMS.
1922 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1923   PreserveReexecuteState preexecs(this);
1924   if (EnableValhalla) {
1925     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1926     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1927     jvms()->set_should_reexecute(true);
1928     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1929     inc_sp(arg_size);
1930   }
1931   // Add the call arguments
1932   const TypeTuple* domain = call->tf()->domain_sig();
1933   uint nargs = domain->cnt();
1934   int arg_num = 0;
1935   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1936     Node* arg = argument(i-TypeFunc::Parms);
1937     const Type* t = domain->field_at(i);
1938     // TODO 8284443 A static call to a mismatched method should still be scalarized
1939     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1940       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1941       if (!arg->is_InlineType()) {
1942         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1943         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass());
1944       }
1945       InlineTypeNode* vt = arg->as_InlineType();
1946       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1947       // If an inline type argument is passed as fields, attach the Method* to the call site
1948       // to be able to access the extended signature later via attached_method_before_pc().
1949       // For example, see CompiledMethod::preserve_callee_argument_oops().
1950       call->set_override_symbolic_info(true);
1951       // Register an calling convention dependency on the callee method to make sure that this method is deoptimized and
1952       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1953       C->dependencies()->assert_mismatch_calling_convention(call->method());
1954       arg_num++;
1955       continue;
1956     } else if (arg->is_InlineType()) {
1957       // Pass inline type argument via oop to callee
1958       arg = arg->as_InlineType()->buffer(this, true);
1959     }
1960     if (t != Type::HALF) {
1961       arg_num++;
1962     }
1963     call->init_req(idx++, arg);
1964   }
1965 }
1966 
1967 //---------------------------set_edges_for_java_call---------------------------
1968 // Connect a newly created call into the current JVMS.
1969 // A return value node (if any) is returned from set_edges_for_java_call.
1970 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1971 
1972   // Add the predefined inputs:
1973   call->init_req( TypeFunc::Control, control() );
1974   call->init_req( TypeFunc::I_O    , i_o() );
1975   call->init_req( TypeFunc::Memory , reset_memory() );
1976   call->init_req( TypeFunc::FramePtr, frameptr() );
1977   call->init_req( TypeFunc::ReturnAdr, top() );
1978 
1979   add_safepoint_edges(call, must_throw);
1980 
1981   Node* xcall = _gvn.transform(call);
1982 
1983   if (xcall == top()) {
1984     set_control(top());
1985     return;
1986   }
1987   assert(xcall == call, "call identity is stable");
1988 
1989   // Re-use the current map to produce the result.
1990 
1991   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1992   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1993   set_all_memory_call(xcall, separate_io_proj);
1994 
1995   //return xcall;   // no need, caller already has it
1996 }
1997 
1998 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1999   if (stopped())  return top();  // maybe the call folded up?
2000 







2001   // Note:  Since any out-of-line call can produce an exception,
2002   // we always insert an I_O projection from the call into the result.
2003 
2004   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
2005 
2006   if (separate_io_proj) {
2007     // The caller requested separate projections be used by the fall
2008     // through and exceptional paths, so replace the projections for
2009     // the fall through path.
2010     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
2011     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
2012   }
2013 
2014   // Capture the return value, if any.
2015   Node* ret;
2016   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
2017     ret = top();
2018   } else if (call->tf()->returns_inline_type_as_fields()) {
2019     // Return of multiple values (inline type fields): we create a
2020     // InlineType node, each field is a projection from the call.
2021     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
2022     uint base_input = TypeFunc::Parms;
2023     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, false);
2024   } else {
2025     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
2026     ciType* t = call->method()->return_type();
2027     if (!t->is_loaded() && InlineTypeReturnedAsFields) {
2028       // The return type is unloaded but the callee might later be C2 compiled and then return
2029       // in scalarized form when the return type is loaded. Handle this similar to what we do in
2030       // PhaseMacroExpand::expand_mh_intrinsic_return by calling into the runtime to buffer.
2031       // It's a bit unfortunate because we will deopt anyway but the interpreter needs an oop.
2032       IdealKit ideal(this);
2033       IdealVariable res(ideal);
2034       ideal.declarations_done();
2035       ideal.if_then(ret, BoolTest::eq, ideal.makecon(TypePtr::NULL_PTR)); {
2036         // Return value is null
2037         ideal.set(res, makecon(TypePtr::NULL_PTR));
2038       } ideal.else_(); {
2039         // Return value is non-null
2040         sync_kit(ideal);
2041 
2042         // Change return type of call to scalarized return
2043         const TypeFunc* tf = call->_tf;
2044         const TypeTuple* domain = OptoRuntime::store_inline_type_fields_Type()->domain_cc();
2045         const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2046         call->_tf = new_tf;
2047         _gvn.set_type(call, call->Value(&_gvn));
2048         _gvn.set_type(ret, ret->Value(&_gvn));
2049 
2050         Node* store_to_buf_call = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
2051                                                     OptoRuntime::store_inline_type_fields_Type(),
2052                                                     StubRoutines::store_inline_type_fields_to_buf(),
2053                                                     nullptr, TypePtr::BOTTOM, ret);
2054 
2055         // We don't know how many values are returned. This assumes the
2056         // worst case, that all available registers are used.
2057         for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2058           if (domain->field_at(i) == Type::HALF) {
2059             store_to_buf_call->init_req(i, top());
2060             continue;
2061           }
2062           Node* proj =_gvn.transform(new ProjNode(call, i));
2063           store_to_buf_call->init_req(i, proj);
2064         }
2065         make_slow_call_ex(store_to_buf_call, env()->Throwable_klass(), false);
2066 
2067         Node* buf = _gvn.transform(new ProjNode(store_to_buf_call, TypeFunc::Parms));
2068         const Type* buf_type = TypeOopPtr::make_from_klass(t->as_klass())->join_speculative(TypePtr::NOTNULL);
2069         buf = _gvn.transform(new CheckCastPPNode(control(), buf, buf_type));
2070 
2071         ideal.set(res, buf);
2072         ideal.sync_kit(this);
2073       } ideal.end_if();
2074       sync_kit(ideal);
2075       ret = _gvn.transform(ideal.value(res));
2076     }
2077     if (t->is_klass()) {
2078       const Type* type = TypeOopPtr::make_from_klass(t->as_klass());
2079       if (type->is_inlinetypeptr()) {
2080         ret = InlineTypeNode::make_from_oop(this, ret, type->inline_klass());
2081       }
2082     }
2083   }
2084 
2085   return ret;
2086 }
2087 
2088 //--------------------set_predefined_input_for_runtime_call--------------------
2089 // Reading and setting the memory state is way conservative here.
2090 // The real problem is that I am not doing real Type analysis on memory,
2091 // so I cannot distinguish card mark stores from other stores.  Across a GC
2092 // point the Store Barrier and the card mark memory has to agree.  I cannot
2093 // have a card mark store and its barrier split across the GC point from
2094 // either above or below.  Here I get that to happen by reading ALL of memory.
2095 // A better answer would be to separate out card marks from other memory.
2096 // For now, return the input memory state, so that it can be reused
2097 // after the call, if this call has restricted memory effects.
2098 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
2099   // Set fixed predefined input arguments
2100   call->init_req(TypeFunc::Control, control());
2101   call->init_req(TypeFunc::I_O, top()); // does no i/o
2102   call->init_req(TypeFunc::ReturnAdr, top());
2103   if (call->is_CallLeafPure()) {
2104     call->init_req(TypeFunc::Memory, top());

2166     if (use->is_MergeMem()) {
2167       wl.push(use);
2168     }
2169   }
2170 }
2171 
2172 // Replace the call with the current state of the kit.
2173 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes, bool do_asserts) {
2174   JVMState* ejvms = nullptr;
2175   if (has_exceptions()) {
2176     ejvms = transfer_exceptions_into_jvms();
2177   }
2178 
2179   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2180   ReplacedNodes replaced_nodes_exception;
2181   Node* ex_ctl = top();
2182 
2183   SafePointNode* final_state = stop();
2184 
2185   // Find all the needed outputs of this call
2186   CallProjections* callprojs = call->extract_projections(true, do_asserts);

2187 
2188   Unique_Node_List wl;
2189   Node* init_mem = call->in(TypeFunc::Memory);
2190   Node* final_mem = final_state->in(TypeFunc::Memory);
2191   Node* final_ctl = final_state->in(TypeFunc::Control);
2192   Node* final_io = final_state->in(TypeFunc::I_O);
2193 
2194   // Replace all the old call edges with the edges from the inlining result
2195   if (callprojs->fallthrough_catchproj != nullptr) {
2196     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2197   }
2198   if (callprojs->fallthrough_memproj != nullptr) {
2199     if (final_mem->is_MergeMem()) {
2200       // Parser's exits MergeMem was not transformed but may be optimized
2201       final_mem = _gvn.transform(final_mem);
2202     }
2203     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2204     add_mergemem_users_to_worklist(wl, final_mem);
2205   }
2206   if (callprojs->fallthrough_ioproj != nullptr) {
2207     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2208   }
2209 
2210   // Replace the result with the new result if it exists and is used
2211   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2212     // If the inlined code is dead, the result projections for an inline type returned as
2213     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2214     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2215            "unexpected number of results");
2216     C->gvn_replace_by(callprojs->resproj[0], result);
2217   }
2218 
2219   if (ejvms == nullptr) {
2220     // No exception edges to simply kill off those paths
2221     if (callprojs->catchall_catchproj != nullptr) {
2222       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2223     }
2224     if (callprojs->catchall_memproj != nullptr) {
2225       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2226     }
2227     if (callprojs->catchall_ioproj != nullptr) {
2228       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2229     }
2230     // Replace the old exception object with top
2231     if (callprojs->exobj != nullptr) {
2232       C->gvn_replace_by(callprojs->exobj, C->top());
2233     }
2234   } else {
2235     GraphKit ekit(ejvms);
2236 
2237     // Load my combined exception state into the kit, with all phis transformed:
2238     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2239     replaced_nodes_exception = ex_map->replaced_nodes();
2240 
2241     Node* ex_oop = ekit.use_exception_state(ex_map);
2242 
2243     if (callprojs->catchall_catchproj != nullptr) {
2244       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2245       ex_ctl = ekit.control();
2246     }
2247     if (callprojs->catchall_memproj != nullptr) {
2248       Node* ex_mem = ekit.reset_memory();
2249       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2250       add_mergemem_users_to_worklist(wl, ex_mem);
2251     }
2252     if (callprojs->catchall_ioproj != nullptr) {
2253       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2254     }
2255 
2256     // Replace the old exception object with the newly created one
2257     if (callprojs->exobj != nullptr) {
2258       C->gvn_replace_by(callprojs->exobj, ex_oop);
2259     }
2260   }
2261 
2262   // Disconnect the call from the graph
2263   call->disconnect_inputs(C);
2264   C->gvn_replace_by(call, C->top());
2265 
2266   // Clean up any MergeMems that feed other MergeMems since the
2267   // optimizer doesn't like that.
2268   while (wl.size() > 0) {
2269     _gvn.transform(wl.pop());
2270   }
2271 
2272   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2273     replaced_nodes.apply(C, final_ctl);
2274   }
2275   if (!ex_ctl->is_top() && do_replaced_nodes) {
2276     replaced_nodes_exception.apply(C, ex_ctl);
2277   }
2278 }
2279 
2280 
2281 //------------------------------increment_counter------------------------------
2282 // for statistics: increment a VM counter by 1
2283 
2284 void GraphKit::increment_counter(address counter_addr) {
2285   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2286   increment_counter(adr1);
2287 }
2288 
2289 void GraphKit::increment_counter(Node* counter_addr) {
2290   Node* ctrl = control();
2291   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, MemNode::unordered);
2292   Node* incr = _gvn.transform(new AddLNode(cnt, _gvn.longcon(1)));

2452  *
2453  * @param n          node that the type applies to
2454  * @param exact_kls  type from profiling
2455  * @param maybe_null did profiling see null?
2456  *
2457  * @return           node with improved type
2458  */
2459 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2460   const Type* current_type = _gvn.type(n);
2461   assert(UseTypeSpeculation, "type speculation must be on");
2462 
2463   const TypePtr* speculative = current_type->speculative();
2464 
2465   // Should the klass from the profile be recorded in the speculative type?
2466   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2467     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2468     const TypeOopPtr* xtype = tklass->as_instance_type();
2469     assert(xtype->klass_is_exact(), "Should be exact");
2470     // Any reason to believe n is not null (from this profiling or a previous one)?
2471     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2472     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2473     // record the new speculative type's depth
2474     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2475     speculative = speculative->with_inline_depth(jvms()->depth());
2476   } else if (current_type->would_improve_ptr(ptr_kind)) {
2477     // Profiling report that null was never seen so we can change the
2478     // speculative type to non null ptr.
2479     if (ptr_kind == ProfileAlwaysNull) {
2480       speculative = TypePtr::NULL_PTR;
2481     } else {
2482       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2483       const TypePtr* ptr = TypePtr::NOTNULL;
2484       if (speculative != nullptr) {
2485         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2486       } else {
2487         speculative = ptr;
2488       }
2489     }
2490   }
2491 
2492   if (speculative != current_type->speculative()) {
2493     // Build a type with a speculative type (what we think we know
2494     // about the type but will need a guard when we use it)
2495     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2496     // We're changing the type, we need a new CheckCast node to carry
2497     // the new type. The new type depends on the control: what
2498     // profiling tells us is only valid from here as far as we can
2499     // tell.
2500     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2501     cast = _gvn.transform(cast);
2502     replace_in_map(n, cast);
2503     n = cast;
2504   }
2505 
2506   return n;
2507 }
2508 
2509 /**
2510  * Record profiling data from receiver profiling at an invoke with the
2511  * type system so that it can propagate it (speculation)
2512  *
2513  * @param n  receiver node
2514  *
2515  * @return   node with improved type
2516  */
2517 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2518   if (!UseTypeSpeculation) {
2519     return n;
2520   }
2521   ciKlass* exact_kls = profile_has_unique_klass();
2522   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2523   if ((java_bc() == Bytecodes::_checkcast ||
2524        java_bc() == Bytecodes::_instanceof ||
2525        java_bc() == Bytecodes::_aastore) &&
2526       method()->method_data()->is_mature()) {
2527     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2528     if (data != nullptr) {
2529       if (java_bc() == Bytecodes::_aastore) {
2530         ciKlass* array_type = nullptr;
2531         ciKlass* element_type = nullptr;
2532         ProfilePtrKind element_ptr = ProfileMaybeNull;
2533         bool flat_array = true;
2534         bool null_free_array = true;
2535         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2536         exact_kls = element_type;
2537         ptr_kind = element_ptr;
2538       } else {
2539         if (!data->as_BitData()->null_seen()) {
2540           ptr_kind = ProfileNeverNull;
2541         } else {
2542           if (TypeProfileCasts) {
2543             assert(data->is_ReceiverTypeData(), "bad profile data type");
2544             ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2545             uint i = 0;
2546             for (; i < call->row_limit(); i++) {
2547               ciKlass* receiver = call->receiver(i);
2548               if (receiver != nullptr) {
2549                 break;
2550               }
2551             }
2552             ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2553           }

2554         }
2555       }
2556     }
2557   }
2558   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2559 }
2560 
2561 /**
2562  * Record profiling data from argument profiling at an invoke with the
2563  * type system so that it can propagate it (speculation)
2564  *
2565  * @param dest_method  target method for the call
2566  * @param bc           what invoke bytecode is this?
2567  */
2568 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2569   if (!UseTypeSpeculation) {
2570     return;
2571   }
2572   const TypeFunc* tf    = TypeFunc::make(dest_method);
2573   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2574   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2575   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2576     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2577     if (is_reference_type(targ->basic_type())) {
2578       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2579       ciKlass* better_type = nullptr;
2580       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2581         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2582       }
2583       i++;
2584     }
2585   }
2586 }
2587 
2588 /**
2589  * Record profiling data from parameter profiling at an invoke with
2590  * the type system so that it can propagate it (speculation)
2591  */
2592 void GraphKit::record_profiled_parameters_for_speculation() {
2593   if (!UseTypeSpeculation) {
2594     return;
2595   }
2596   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2716                                   // The first null ends the list.
2717                                   Node* parm0, Node* parm1,
2718                                   Node* parm2, Node* parm3,
2719                                   Node* parm4, Node* parm5,
2720                                   Node* parm6, Node* parm7) {
2721   assert(call_addr != nullptr, "must not call null targets");
2722 
2723   // Slow-path call
2724   bool is_leaf = !(flags & RC_NO_LEAF);
2725   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2726   if (call_name == nullptr) {
2727     assert(!is_leaf, "must supply name for leaf");
2728     call_name = OptoRuntime::stub_name(call_addr);
2729   }
2730   CallNode* call;
2731   if (!is_leaf) {
2732     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2733   } else if (flags & RC_NO_FP) {
2734     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2735   } else  if (flags & RC_VECTOR){
2736     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2737     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2738   } else if (flags & RC_PURE) {
2739     call = new CallLeafPureNode(call_type, call_addr, call_name, adr_type);
2740   } else {
2741     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2742   }
2743 
2744   // The following is similar to set_edges_for_java_call,
2745   // except that the memory effects of the call are restricted to AliasIdxRaw.
2746 
2747   // Slow path call has no side-effects, uses few values
2748   bool wide_in  = !(flags & RC_NARROW_MEM);
2749   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2750 
2751   Node* prev_mem = nullptr;
2752   if (wide_in) {
2753     prev_mem = set_predefined_input_for_runtime_call(call);
2754   } else {
2755     assert(!wide_out, "narrow in => narrow out");
2756     Node* narrow_mem = memory(adr_type);
2757     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2758   }
2759 
2760   // Hook each parm in order.  Stop looking at the first null.
2761   if (parm0 != nullptr) { call->init_req(TypeFunc::Parms+0, parm0);
2762   if (parm1 != nullptr) { call->init_req(TypeFunc::Parms+1, parm1);
2763   if (parm2 != nullptr) { call->init_req(TypeFunc::Parms+2, parm2);
2764   if (parm3 != nullptr) { call->init_req(TypeFunc::Parms+3, parm3);
2765   if (parm4 != nullptr) { call->init_req(TypeFunc::Parms+4, parm4);
2766   if (parm5 != nullptr) { call->init_req(TypeFunc::Parms+5, parm5);
2767   if (parm6 != nullptr) { call->init_req(TypeFunc::Parms+6, parm6);
2768   if (parm7 != nullptr) { call->init_req(TypeFunc::Parms+7, parm7);
2769   /* close each nested if ===> */  } } } } } } } }
2770   assert(call->in(call->req()-1) != nullptr || (call->req()-1) > (TypeFunc::Parms+7), "must initialize all parms");
2771 
2772   if (!is_leaf) {
2773     // Non-leaves can block and take safepoints:
2774     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2775   }
2776   // Non-leaves can throw exceptions:
2777   if (has_io) {
2778     call->set_req(TypeFunc::I_O, i_o());
2779   }
2780 
2781   if (flags & RC_UNCOMMON) {
2782     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2783     // (An "if" probability corresponds roughly to an unconditional count.
2784     // Sort of.)
2785     call->set_cnt(PROB_UNLIKELY_MAG(4));
2786   }
2787 
2788   Node* c = _gvn.transform(call);
2789   assert(c == call, "cannot disappear");
2790 

2798 
2799   if (has_io) {
2800     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2801   }
2802   return call;
2803 
2804 }
2805 
2806 // i2b
2807 Node* GraphKit::sign_extend_byte(Node* in) {
2808   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2809   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2810 }
2811 
2812 // i2s
2813 Node* GraphKit::sign_extend_short(Node* in) {
2814   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2815   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2816 }
2817 
2818 
2819 //------------------------------merge_memory-----------------------------------
2820 // Merge memory from one path into the current memory state.
2821 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2822   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2823     Node* old_slice = mms.force_memory();
2824     Node* new_slice = mms.memory2();
2825     if (old_slice != new_slice) {
2826       PhiNode* phi;
2827       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2828         if (mms.is_empty()) {
2829           // clone base memory Phi's inputs for this memory slice
2830           assert(old_slice == mms.base_memory(), "sanity");
2831           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2832           _gvn.set_type(phi, Type::MEMORY);
2833           for (uint i = 1; i < phi->req(); i++) {
2834             phi->init_req(i, old_slice->in(i));
2835           }
2836         } else {
2837           phi = old_slice->as_Phi(); // Phi was generated already
2838         }

2895   gvn.transform(iff);
2896   if (!bol->is_Con()) gvn.record_for_igvn(iff);
2897   return iff;
2898 }
2899 
2900 //-------------------------------gen_subtype_check-----------------------------
2901 // Generate a subtyping check.  Takes as input the subtype and supertype.
2902 // Returns 2 values: sets the default control() to the true path and returns
2903 // the false path.  Only reads invariant memory; sets no (visible) memory.
2904 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2905 // but that's not exposed to the optimizer.  This call also doesn't take in an
2906 // Object; if you wish to check an Object you need to load the Object's class
2907 // prior to coming here.
2908 Node* Phase::gen_subtype_check(Node* subklass, Node* superklass, Node** ctrl, Node* mem, PhaseGVN& gvn,
2909                                ciMethod* method, int bci) {
2910   Compile* C = gvn.C;
2911   if ((*ctrl)->is_top()) {
2912     return C->top();
2913   }
2914 
2915   const TypeKlassPtr* klass_ptr_type = gvn.type(superklass)->is_klassptr();
2916   // For a direct pointer comparison, we need the refined array klass pointer
2917   Node* vm_superklass = superklass;
2918   if (klass_ptr_type->isa_aryklassptr() && klass_ptr_type->klass_is_exact()) {
2919     assert(!klass_ptr_type->is_aryklassptr()->is_refined_type(), "Unexpected refined array klass pointer");
2920     vm_superklass = gvn.makecon(klass_ptr_type->is_aryklassptr()->cast_to_refined_array_klass_ptr());
2921   }
2922 
2923   // Fast check for identical types, perhaps identical constants.
2924   // The types can even be identical non-constants, in cases
2925   // involving Array.newInstance, Object.clone, etc.
2926   if (subklass == superklass)
2927     return C->top();             // false path is dead; no test needed.
2928 
2929   if (gvn.type(superklass)->singleton()) {
2930     const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
2931     const TypeKlassPtr* subk   = gvn.type(subklass)->is_klassptr();
2932 
2933     // In the common case of an exact superklass, try to fold up the
2934     // test before generating code.  You may ask, why not just generate
2935     // the code and then let it fold up?  The answer is that the generated
2936     // code will necessarily include null checks, which do not always
2937     // completely fold away.  If they are also needless, then they turn
2938     // into a performance loss.  Example:
2939     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2940     // Here, the type of 'fa' is often exact, so the store check
2941     // of fa[1]=x will fold up, without testing the nullness of x.
2942     //
2943     // At macro expansion, we would have already folded the SubTypeCheckNode
2944     // being expanded here because we always perform the static sub type
2945     // check in SubTypeCheckNode::sub() regardless of whether
2946     // StressReflectiveCode is set or not. We can therefore skip this
2947     // static check when StressReflectiveCode is on.
2948     switch (C->static_subtype_check(superk, subk)) {
2949     case Compile::SSC_always_false:
2950       {
2951         Node* always_fail = *ctrl;
2952         *ctrl = gvn.C->top();
2953         return always_fail;
2954       }
2955     case Compile::SSC_always_true:
2956       return C->top();
2957     case Compile::SSC_easy_test:
2958       {
2959         // Just do a direct pointer compare and be done.
2960         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_STATIC_FREQUENT, gvn, T_ADDRESS);
2961         *ctrl = gvn.transform(new IfTrueNode(iff));
2962         return gvn.transform(new IfFalseNode(iff));
2963       }
2964     case Compile::SSC_full_test:
2965       break;
2966     default:
2967       ShouldNotReachHere();
2968     }
2969   }
2970 
2971   // %%% Possible further optimization:  Even if the superklass is not exact,
2972   // if the subklass is the unique subtype of the superklass, the check
2973   // will always succeed.  We could leave a dependency behind to ensure this.
2974 
2975   // First load the super-klass's check-offset
2976   Node *p1 = gvn.transform(new AddPNode(superklass, superklass, gvn.MakeConX(in_bytes(Klass::super_check_offset_offset()))));
2977   Node* m = C->immutable_memory();
2978   Node *chk_off = gvn.transform(new LoadINode(nullptr, m, p1, gvn.type(p1)->is_ptr(), TypeInt::INT, MemNode::unordered));
2979   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2980   const TypeInt* chk_off_t = chk_off->Value(&gvn)->isa_int();

3018   gvn.record_for_igvn(r_ok_subtype);
3019 
3020   // If we might perform an expensive check, first try to take advantage of profile data that was attached to the
3021   // SubTypeCheck node
3022   if (might_be_cache && method != nullptr && VM_Version::profile_all_receivers_at_type_check()) {
3023     ciCallProfile profile = method->call_profile_at_bci(bci);
3024     float total_prob = 0;
3025     for (int i = 0; profile.has_receiver(i); ++i) {
3026       float prob = profile.receiver_prob(i);
3027       total_prob += prob;
3028     }
3029     if (total_prob * 100. >= TypeProfileSubTypeCheckCommonThreshold) {
3030       const TypeKlassPtr* superk = gvn.type(superklass)->is_klassptr();
3031       for (int i = 0; profile.has_receiver(i); ++i) {
3032         ciKlass* klass = profile.receiver(i);
3033         const TypeKlassPtr* klass_t = TypeKlassPtr::make(klass);
3034         Compile::SubTypeCheckResult result = C->static_subtype_check(superk, klass_t);
3035         if (result != Compile::SSC_always_true && result != Compile::SSC_always_false) {
3036           continue;
3037         }
3038         if (klass_t->isa_aryklassptr()) {
3039           // For a direct pointer comparison, we need the refined array klass pointer
3040           klass_t = klass_t->is_aryklassptr()->cast_to_refined_array_klass_ptr();
3041         }
3042         float prob = profile.receiver_prob(i);
3043         ConNode* klass_node = gvn.makecon(klass_t);
3044         IfNode* iff = gen_subtype_check_compare(*ctrl, subklass, klass_node, BoolTest::eq, prob, gvn, T_ADDRESS);
3045         Node* iftrue = gvn.transform(new IfTrueNode(iff));
3046 
3047         if (result == Compile::SSC_always_true) {
3048           r_ok_subtype->add_req(iftrue);
3049         } else {
3050           assert(result == Compile::SSC_always_false, "");
3051           r_not_subtype->add_req(iftrue);
3052         }
3053         *ctrl = gvn.transform(new IfFalseNode(iff));
3054       }
3055     }
3056   }
3057 
3058   // See if we get an immediate positive hit.  Happens roughly 83% of the
3059   // time.  Test to see if the value loaded just previously from the subklass
3060   // is exactly the superklass.
3061   IfNode *iff1 = gen_subtype_check_compare(*ctrl, superklass, nkls, BoolTest::eq, PROB_LIKELY(0.83f), gvn, T_ADDRESS);

3075       igvn->remove_globally_dead_node(r_not_subtype);
3076     }
3077     return not_subtype_ctrl;
3078   }
3079 
3080   r_ok_subtype->init_req(1, iftrue1);
3081 
3082   // Check for immediate negative hit.  Happens roughly 11% of the time (which
3083   // is roughly 63% of the remaining cases).  Test to see if the loaded
3084   // check-offset points into the subklass display list or the 1-element
3085   // cache.  If it points to the display (and NOT the cache) and the display
3086   // missed then it's not a subtype.
3087   Node *cacheoff = gvn.intcon(cacheoff_con);
3088   IfNode *iff2 = gen_subtype_check_compare(*ctrl, chk_off, cacheoff, BoolTest::ne, PROB_LIKELY(0.63f), gvn, T_INT);
3089   r_not_subtype->init_req(1, gvn.transform(new IfTrueNode (iff2)));
3090   *ctrl = gvn.transform(new IfFalseNode(iff2));
3091 
3092   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
3093   // No performance impact (too rare) but allows sharing of secondary arrays
3094   // which has some footprint reduction.
3095   IfNode *iff3 = gen_subtype_check_compare(*ctrl, subklass, vm_superklass, BoolTest::eq, PROB_LIKELY(0.36f), gvn, T_ADDRESS);
3096   r_ok_subtype->init_req(2, gvn.transform(new IfTrueNode(iff3)));
3097   *ctrl = gvn.transform(new IfFalseNode(iff3));
3098 
3099   // -- Roads not taken here: --
3100   // We could also have chosen to perform the self-check at the beginning
3101   // of this code sequence, as the assembler does.  This would not pay off
3102   // the same way, since the optimizer, unlike the assembler, can perform
3103   // static type analysis to fold away many successful self-checks.
3104   // Non-foldable self checks work better here in second position, because
3105   // the initial primary superclass check subsumes a self-check for most
3106   // types.  An exception would be a secondary type like array-of-interface,
3107   // which does not appear in its own primary supertype display.
3108   // Finally, we could have chosen to move the self-check into the
3109   // PartialSubtypeCheckNode, and from there out-of-line in a platform
3110   // dependent manner.  But it is worthwhile to have the check here,
3111   // where it can be perhaps be optimized.  The cost in code space is
3112   // small (register compare, branch).
3113 
3114   // Now do a linear scan of the secondary super-klass array.  Again, no real
3115   // performance impact (too rare) but it's gotta be done.
3116   // Since the code is rarely used, there is no penalty for moving it
3117   // out of line, and it can only improve I-cache density.
3118   // The decision to inline or out-of-line this final check is platform
3119   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
3120   Node* psc = gvn.transform(
3121     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
3122 
3123   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
3124   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
3125   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
3126 
3127   // Return false path; set default control to true path.
3128   *ctrl = gvn.transform(r_ok_subtype);
3129   return gvn.transform(r_not_subtype);
3130 }
3131 
3132 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
3133   const Type* sub_t = _gvn.type(obj_or_subklass);
3134   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
3135     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
3136     obj_or_subklass = makecon(sub_t);
3137   }
3138   bool expand_subtype_check = C->post_loop_opts_phase(); // macro node expansion is over
3139   if (expand_subtype_check) {
3140     MergeMemNode* mem = merged_memory();
3141     Node* ctrl = control();
3142     Node* subklass = obj_or_subklass;
3143     if (!sub_t->isa_klassptr()) {
3144       subklass = load_object_klass(obj_or_subklass);
3145     }
3146 
3147     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn, method(), bci());
3148     set_control(ctrl);
3149     return n;
3150   }
3151 
3152   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass, method(), bci()));
3153   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
3154   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3155   set_control(_gvn.transform(new IfTrueNode(iff)));
3156   return _gvn.transform(new IfFalseNode(iff));
3157 }
3158 
3159 // Profile-driven exact type check:
3160 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3161                                     float prob, Node* *casted_receiver) {

3162   assert(!klass->is_interface(), "no exact type check on interfaces");
3163   Node* fail = top();
3164   const Type* rec_t = _gvn.type(receiver);
3165   if (rec_t->is_inlinetypeptr()) {
3166     if (klass->equals(rec_t->inline_klass())) {
3167       (*casted_receiver) = receiver; // Always passes
3168     } else {
3169       (*casted_receiver) = top();    // Always fails
3170       fail = control();
3171       set_control(top());
3172     }
3173     return fail;
3174   }
3175   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3176   if (tklass->isa_aryklassptr()) {
3177     // For a direct pointer comparison, we need the refined array klass pointer
3178     tklass = tklass->is_aryklassptr()->cast_to_refined_array_klass_ptr();
3179   }
3180   Node* recv_klass = load_object_klass(receiver);
3181   fail = type_check(recv_klass, tklass, prob);





3182 
3183   if (!stopped()) {
3184     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3185     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3186     assert(recv_xtype->klass_is_exact(), "");
3187 
3188     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3189       // Subsume downstream occurrences of receiver with a cast to
3190       // recv_xtype, since now we know what the type will be.
3191       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3192       Node* res = _gvn.transform(cast);
3193       if (recv_xtype->is_inlinetypeptr()) {
3194         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3195         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3196       }
3197       (*casted_receiver) = res;
3198       assert(!(*casted_receiver)->is_top(), "that path should be unreachable");
3199       // (User must make the replace_in_map call.)
3200     }
3201   }
3202 
3203   return fail;
3204 }
3205 
3206 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3207                            float prob) {
3208   Node* want_klass = makecon(tklass);
3209   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3210   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3211   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3212   set_control(_gvn.transform(new IfTrueNode (iff)));
3213   Node* fail = _gvn.transform(new IfFalseNode(iff));
3214   return fail;
3215 }
3216 
3217 //------------------------------subtype_check_receiver-------------------------
3218 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3219                                        Node** casted_receiver) {
3220   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3221   Node* want_klass = makecon(tklass);
3222 
3223   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3224 
3225   // Ignore interface type information until interface types are properly tracked.
3226   if (!stopped() && !klass->is_interface()) {
3227     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3228     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3229     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3230       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3231       if (recv_type->is_inlinetypeptr()) {
3232         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3233       }
3234       (*casted_receiver) = cast;
3235     }
3236   }
3237 
3238   return slow_ctl;
3239 }
3240 
3241 //------------------------------seems_never_null-------------------------------
3242 // Use null_seen information if it is available from the profile.
3243 // If we see an unexpected null at a type check we record it and force a
3244 // recompile; the offending check will be recompiled to handle nulls.
3245 // If we see several offending BCIs, then all checks in the
3246 // method will be recompiled.
3247 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3248   speculating = !_gvn.type(obj)->speculative_maybe_null();
3249   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3250   if (UncommonNullCast               // Cutout for this technique
3251       && obj != null()               // And not the -Xcomp stupid case?
3252       && !too_many_traps(reason)
3253       ) {
3254     if (speculating) {

3323 
3324 //------------------------maybe_cast_profiled_receiver-------------------------
3325 // If the profile has seen exactly one type, narrow to exactly that type.
3326 // Subsequent type checks will always fold up.
3327 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3328                                              const TypeKlassPtr* require_klass,
3329                                              ciKlass* spec_klass,
3330                                              bool safe_for_replace) {
3331   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3332 
3333   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3334 
3335   // Make sure we haven't already deoptimized from this tactic.
3336   if (too_many_traps_or_recompiles(reason))
3337     return nullptr;
3338 
3339   // (No, this isn't a call, but it's enough like a virtual call
3340   // to use the same ciMethod accessor to get the profile info...)
3341   // If we have a speculative type use it instead of profiling (which
3342   // may not help us)
3343   ciKlass* exact_kls = spec_klass;
3344   if (exact_kls == nullptr) {
3345     if (java_bc() == Bytecodes::_aastore) {
3346       ciKlass* array_type = nullptr;
3347       ciKlass* element_type = nullptr;
3348       ProfilePtrKind element_ptr = ProfileMaybeNull;
3349       bool flat_array = true;
3350       bool null_free_array = true;
3351       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3352       exact_kls = element_type;
3353     } else {
3354       exact_kls = profile_has_unique_klass();
3355     }
3356   }
3357   if (exact_kls != nullptr) {// no cast failures here
3358     if (require_klass == nullptr ||
3359         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3360       // If we narrow the type to match what the type profile sees or
3361       // the speculative type, we can then remove the rest of the
3362       // cast.
3363       // This is a win, even if the exact_kls is very specific,
3364       // because downstream operations, such as method calls,
3365       // will often benefit from the sharper type.
3366       Node* exact_obj = not_null_obj; // will get updated in place...
3367       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3368                                             &exact_obj);
3369       { PreserveJVMState pjvms(this);
3370         set_control(slow_ctl);
3371         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3372       }
3373       if (safe_for_replace) {
3374         replace_in_map(not_null_obj, exact_obj);
3375       }
3376       return exact_obj;

3466   // If not_null_obj is dead, only null-path is taken
3467   if (stopped()) {              // Doing instance-of on a null?
3468     set_control(null_ctl);
3469     return intcon(0);
3470   }
3471   region->init_req(_null_path, null_ctl);
3472   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3473   if (null_ctl == top()) {
3474     // Do this eagerly, so that pattern matches like is_diamond_phi
3475     // will work even during parsing.
3476     assert(_null_path == PATH_LIMIT-1, "delete last");
3477     region->del_req(_null_path);
3478     phi   ->del_req(_null_path);
3479   }
3480 
3481   // Do we know the type check always succeed?
3482   bool known_statically = false;
3483   if (_gvn.type(superklass)->singleton()) {
3484     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3485     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3486     if (subk != nullptr && subk->is_loaded()) {
3487       int static_res = C->static_subtype_check(superk, subk);
3488       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3489     }
3490   }
3491 
3492   if (!known_statically) {
3493     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3494     // We may not have profiling here or it may not help us. If we
3495     // have a speculative type use it to perform an exact cast.
3496     ciKlass* spec_obj_type = obj_type->speculative_type();
3497     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3498       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3499       if (stopped()) {            // Profile disagrees with this path.
3500         set_control(null_ctl);    // Null is the only remaining possibility.
3501         return intcon(0);
3502       }
3503       if (cast_obj != nullptr) {
3504         not_null_obj = cast_obj;
3505       }
3506     }

3522   record_for_igvn(region);
3523 
3524   // If we know the type check always succeeds then we don't use the
3525   // profiling data at this bytecode. Don't lose it, feed it to the
3526   // type system as a speculative type.
3527   if (safe_for_replace) {
3528     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3529     replace_in_map(obj, casted_obj);
3530   }
3531 
3532   return _gvn.transform(phi);
3533 }
3534 
3535 //-------------------------------gen_checkcast---------------------------------
3536 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3537 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3538 // uncommon-trap paths work.  Adjust stack after this call.
3539 // If failure_control is supplied and not null, it is filled in with
3540 // the control edge for the cast failure.  Otherwise, an appropriate
3541 // uncommon trap or exception is thrown.
3542 Node* GraphKit::gen_checkcast(Node* obj, Node* superklass, Node* *failure_control, bool null_free, bool maybe_larval) {

3543   kill_dead_locals();           // Benefit all the uncommon traps
3544   const TypeKlassPtr* klass_ptr_type = _gvn.type(superklass)->is_klassptr();
3545   const Type* obj_type = _gvn.type(obj);
3546   if (obj_type->is_inlinetypeptr() && !obj_type->maybe_null() && klass_ptr_type->klass_is_exact() && obj_type->inline_klass() == klass_ptr_type->exact_klass(true)) {
3547     // Special case: larval inline objects must not be scalarized. They are also generally not
3548     // allowed to participate in most operations except as the first operand of putfield, or as an
3549     // argument to a constructor invocation with it being a receiver, Unsafe::putXXX with it being
3550     // the first argument, or Unsafe::finishPrivateBuffer. This allows us to aggressively scalarize
3551     // value objects in all other places. This special case comes from the limitation of the Java
3552     // language, Unsafe::makePrivateBuffer returns an Object that is checkcast-ed to the concrete
3553     // value type. We must do this first because C->static_subtype_check may do nothing when
3554     // StressReflectiveCode is set.
3555     return obj;
3556   }
3557 
3558   // Else it must be a non-larval object
3559   obj = cast_to_non_larval(obj);
3560 
3561   const TypeKlassPtr* improved_klass_ptr_type = klass_ptr_type->try_improve();
3562   const TypeOopPtr* toop = improved_klass_ptr_type->cast_to_exactness(false)->as_instance_type();
3563   bool safe_for_replace = (failure_control == nullptr);
3564   assert(!null_free || toop->can_be_inline_type(), "must be an inline type pointer");
3565 
3566   // Fast cutout:  Check the case that the cast is vacuously true.
3567   // This detects the common cases where the test will short-circuit
3568   // away completely.  We do this before we perform the null check,
3569   // because if the test is going to turn into zero code, we don't
3570   // want a residual null check left around.  (Causes a slowdown,
3571   // for example, in some objArray manipulations, such as a[i]=a[j].)
3572   if (improved_klass_ptr_type->singleton()) {
3573     const TypeKlassPtr* kptr = nullptr;
3574     if (obj_type->isa_oop_ptr()) {
3575       kptr = obj_type->is_oopptr()->as_klass_type();
3576     } else if (obj->is_InlineType()) {
3577       ciInlineKlass* vk = obj_type->inline_klass();
3578       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3579     }
3580 
3581     if (kptr != nullptr) {
3582       switch (C->static_subtype_check(improved_klass_ptr_type, kptr)) {
3583       case Compile::SSC_always_true:
3584         // If we know the type check always succeed then we don't use
3585         // the profiling data at this bytecode. Don't lose it, feed it
3586         // to the type system as a speculative type.
3587         obj = record_profiled_receiver_for_speculation(obj);
3588         if (null_free) {
3589           assert(safe_for_replace, "must be");
3590           obj = null_check(obj);
3591         }
3592         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3593         return obj;
3594       case Compile::SSC_always_false:
3595         if (null_free) {
3596           assert(safe_for_replace, "must be");
3597           obj = null_check(obj);
3598         }
3599         // It needs a null check because a null will *pass* the cast check.
3600         if (obj_type->isa_oopptr() != nullptr && !obj_type->is_oopptr()->maybe_null()) {

3601           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3602           Deoptimization::DeoptReason reason = is_aastore ?
3603             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3604           builtin_throw(reason);
3605           return top();
3606         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3607           return null_assert(obj);
3608         }
3609         break; // Fall through to full check
3610       default:
3611         break;
3612       }
3613     }
3614   }
3615 
3616   ciProfileData* data = nullptr;

3617   if (failure_control == nullptr) {        // use MDO in regular case only
3618     assert(java_bc() == Bytecodes::_aastore ||
3619            java_bc() == Bytecodes::_checkcast,
3620            "interpreter profiles type checks only for these BCs");
3621     if (method()->method_data()->is_mature()) {
3622       data = method()->method_data()->bci_to_data(bci());
3623     }
3624   }
3625 
3626   // Make the merge point
3627   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3628   RegionNode* region = new RegionNode(PATH_LIMIT);
3629   Node*       phi    = new PhiNode(region, toop);
3630   _gvn.set_type(region, Type::CONTROL);
3631   _gvn.set_type(phi, toop);
3632 
3633   C->set_has_split_ifs(true); // Has chance for split-if optimization
3634 
3635   // Use null-cast information if it is available
3636   bool speculative_not_null = false;
3637   bool never_see_null = ((failure_control == nullptr)  // regular case only
3638                          && seems_never_null(obj, data, speculative_not_null));
3639 
3640   if (obj->is_InlineType()) {
3641     // Re-execute if buffering during triggers deoptimization
3642     PreserveReexecuteState preexecs(this);
3643     jvms()->set_should_reexecute(true);
3644     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3645   }
3646 
3647   // Null check; get casted pointer; set region slot 3
3648   Node* null_ctl = top();
3649   Node* not_null_obj = nullptr;
3650   if (null_free) {
3651     assert(safe_for_replace, "must be");
3652     not_null_obj = null_check(obj);
3653   } else {
3654     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3655   }
3656 
3657   // If not_null_obj is dead, only null-path is taken
3658   if (stopped()) {              // Doing instance-of on a null?
3659     set_control(null_ctl);
3660     if (toop->is_inlinetypeptr()) {
3661       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3662     }
3663     return null();
3664   }
3665   region->init_req(_null_path, null_ctl);
3666   phi   ->init_req(_null_path, null());  // Set null path value
3667   if (null_ctl == top()) {
3668     // Do this eagerly, so that pattern matches like is_diamond_phi
3669     // will work even during parsing.
3670     assert(_null_path == PATH_LIMIT-1, "delete last");
3671     region->del_req(_null_path);
3672     phi   ->del_req(_null_path);
3673   }
3674 
3675   Node* cast_obj = nullptr;
3676   if (improved_klass_ptr_type->klass_is_exact()) {
3677     // The following optimization tries to statically cast the speculative type of the object
3678     // (for example obtained during profiling) to the type of the superklass and then do a
3679     // dynamic check that the type of the object is what we expect. To work correctly
3680     // for checkcast and aastore the type of superklass should be exact.
3681     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3682     // We may not have profiling here or it may not help us. If we have
3683     // a speculative type use it to perform an exact cast.
3684     ciKlass* spec_obj_type = obj_type->speculative_type();
3685     if (spec_obj_type != nullptr || data != nullptr) {
3686       cast_obj = maybe_cast_profiled_receiver(not_null_obj, improved_klass_ptr_type, spec_obj_type, safe_for_replace);
3687       if (cast_obj != nullptr) {
3688         if (failure_control != nullptr) // failure is now impossible
3689           (*failure_control) = top();
3690         // adjust the type of the phi to the exact klass:
3691         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3692       }
3693     }
3694   }
3695 
3696   if (cast_obj == nullptr) {
3697     // Generate the subtype check
3698     Node* improved_superklass = superklass;
3699     if (improved_klass_ptr_type != klass_ptr_type && improved_klass_ptr_type->singleton()) {
3700       // Only improve the super class for constants which allows subsequent sub type checks to possibly be commoned up.
3701       // The other non-constant cases cannot be improved with a cast node here since they could be folded to top.
3702       // Additionally, the benefit would only be minor in non-constant cases.
3703       improved_superklass = makecon(improved_klass_ptr_type);
3704     }
3705     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, improved_superklass);

3706     // Plug in success path into the merge
3707     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3708     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3709     if (failure_control == nullptr) {
3710       if (not_subtype_ctrl != top()) { // If failure is possible
3711         PreserveJVMState pjvms(this);
3712         set_control(not_subtype_ctrl);
3713         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3714         Deoptimization::DeoptReason reason = is_aastore ?
3715           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3716         builtin_throw(reason);
3717       }
3718     } else {
3719       (*failure_control) = not_subtype_ctrl;
3720     }
3721   }
3722 
3723   region->init_req(_obj_path, control());
3724   phi   ->init_req(_obj_path, cast_obj);
3725 
3726   // A merge of null or Casted-NotNull obj
3727   Node* res = _gvn.transform(phi);
3728 
3729   // Note I do NOT always 'replace_in_map(obj,result)' here.
3730   //  if( tk->klass()->can_be_primary_super()  )
3731     // This means that if I successfully store an Object into an array-of-String
3732     // I 'forget' that the Object is really now known to be a String.  I have to
3733     // do this because we don't have true union types for interfaces - if I store
3734     // a Baz into an array-of-Interface and then tell the optimizer it's an
3735     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3736     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3737   //  replace_in_map( obj, res );
3738 
3739   // Return final merged results
3740   set_control( _gvn.transform(region) );
3741   record_for_igvn(region);
3742 
3743   bool not_inline = !toop->can_be_inline_type();
3744   bool not_flat_in_array = !UseArrayFlattening || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->maybe_flat_in_array());
3745   if (EnableValhalla && (not_inline || not_flat_in_array)) {
3746     // Check if obj has been loaded from an array
3747     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3748     Node* array = nullptr;
3749     if (obj->isa_Load()) {
3750       Node* address = obj->in(MemNode::Address);
3751       if (address->isa_AddP()) {
3752         array = address->as_AddP()->in(AddPNode::Base);
3753       }
3754     } else if (obj->is_Phi()) {
3755       Node* region = obj->in(0);
3756       // TODO make this more robust (see JDK-8231346)
3757       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3758         IfNode* iff = region->in(2)->in(0)->isa_If();
3759         if (iff != nullptr) {
3760           iff->is_flat_array_check(&_gvn, &array);
3761         }
3762       }
3763     }
3764     if (array != nullptr) {
3765       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3766       if (ary_t != nullptr) {
3767         if (!ary_t->is_not_null_free() && !ary_t->is_null_free() && not_inline) {
3768           // Casting array element to a non-inline-type, mark array as not null-free.
3769           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3770           replace_in_map(array, cast);
3771           array = cast;
3772         }
3773         if (!ary_t->is_not_flat() && !ary_t->is_flat() && not_flat_in_array) {
3774           // Casting array element to a non-flat-in-array type, mark array as not flat.
3775           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3776           replace_in_map(array, cast);
3777           array = cast;
3778         }
3779       }
3780     }
3781   }
3782 
3783   if (!stopped() && !res->is_InlineType()) {
3784     res = record_profiled_receiver_for_speculation(res);
3785     if (toop->is_inlinetypeptr() && !maybe_larval) {
3786       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass());
3787       res = vt;
3788       if (safe_for_replace) {
3789         replace_in_map(obj, vt);
3790         replace_in_map(not_null_obj, vt);
3791         replace_in_map(res, vt);
3792       }
3793     }
3794   }
3795   return res;
3796 }
3797 
3798 Node* GraphKit::mark_word_test(Node* obj, uintptr_t mask_val, bool eq, bool check_lock) {
3799   // Load markword
3800   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3801   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3802   if (check_lock && !UseCompactObjectHeaders) {
3803     // COH: Locking does not override the markword with a tagged pointer. We can directly read from the markword.
3804     // Check if obj is locked
3805     Node* locked_bit = MakeConX(markWord::unlocked_value);
3806     locked_bit = _gvn.transform(new AndXNode(locked_bit, mark));
3807     Node* cmp = _gvn.transform(new CmpXNode(locked_bit, MakeConX(0)));
3808     Node* is_unlocked = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3809     IfNode* iff = new IfNode(control(), is_unlocked, PROB_MAX, COUNT_UNKNOWN);
3810     _gvn.transform(iff);
3811     Node* locked_region = new RegionNode(3);
3812     Node* mark_phi = new PhiNode(locked_region, TypeX_X);
3813 
3814     // Unlocked: Use bits from mark word
3815     locked_region->init_req(1, _gvn.transform(new IfTrueNode(iff)));
3816     mark_phi->init_req(1, mark);
3817 
3818     // Locked: Load prototype header from klass
3819     set_control(_gvn.transform(new IfFalseNode(iff)));
3820     // Make loads control dependent to make sure they are only executed if array is locked
3821     Node* klass_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
3822     Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, C->immutable_memory(), klass_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
3823     Node* proto_adr = basic_plus_adr(klass, in_bytes(Klass::prototype_header_offset()));
3824     Node* proto = _gvn.transform(LoadNode::make(_gvn, control(), C->immutable_memory(), proto_adr, proto_adr->bottom_type()->is_ptr(), TypeX_X, TypeX_X->basic_type(), MemNode::unordered));
3825 
3826     locked_region->init_req(2, control());
3827     mark_phi->init_req(2, proto);
3828     set_control(_gvn.transform(locked_region));
3829     record_for_igvn(locked_region);
3830 
3831     mark = mark_phi;
3832   }
3833 
3834   // Now check if mark word bits are set
3835   Node* mask = MakeConX(mask_val);
3836   Node* masked = _gvn.transform(new AndXNode(_gvn.transform(mark), mask));
3837   record_for_igvn(masked); // Give it a chance to be optimized out by IGVN
3838   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3839   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3840 }
3841 
3842 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3843   return mark_word_test(obj, markWord::inline_type_pattern, is_inline, /* check_lock = */ false);
3844 }
3845 
3846 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3847   // We can't use immutable memory here because the mark word is mutable.
3848   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3849   // check is moved out of loops (mainly to enable loop unswitching).
3850   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, memory(Compile::AliasIdxRaw), array_or_klass));
3851   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3852   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3853 }
3854 
3855 Node* GraphKit::null_free_array_test(Node* array, bool null_free) {
3856   return mark_word_test(array, markWord::null_free_array_bit_in_place, null_free);
3857 }
3858 
3859 Node* GraphKit::null_free_atomic_array_test(Node* array, ciInlineKlass* vk) {
3860   assert(vk->has_atomic_layout() || vk->has_non_atomic_layout(), "Can't be null-free and flat");
3861 
3862   // TODO 8350865 Add a stress flag to always access atomic if layout exists?
3863   if (!vk->has_non_atomic_layout()) {
3864     return intcon(1); // Always atomic
3865   } else if (!vk->has_atomic_layout()) {
3866     return intcon(0); // Never atomic
3867   }
3868 
3869   Node* array_klass = load_object_klass(array);
3870   int layout_kind_offset = in_bytes(FlatArrayKlass::layout_kind_offset());
3871   Node* layout_kind_addr = basic_plus_adr(array_klass, array_klass, layout_kind_offset);
3872   Node* layout_kind = make_load(nullptr, layout_kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
3873   Node* cmp = _gvn.transform(new CmpINode(layout_kind, intcon((int)LayoutKind::ATOMIC_FLAT)));
3874   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3875 }
3876 
3877 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3878 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3879   RegionNode* region = new RegionNode(3);
3880   Node* null_ctl = top();
3881   null_check_oop(val, &null_ctl);
3882   if (null_ctl != top()) {
3883     PreserveJVMState pjvms(this);
3884     set_control(null_ctl);
3885     {
3886       // Deoptimize if null-free array
3887       BuildCutout unless(this, null_free_array_test(ary, /* null_free = */ false), PROB_MAX);
3888       inc_sp(nargs);
3889       uncommon_trap(Deoptimization::Reason_null_check,
3890                     Deoptimization::Action_none);
3891     }
3892     region->init_req(1, control());
3893   }
3894   region->init_req(2, control());
3895   set_control(_gvn.transform(region));
3896   record_for_igvn(region);
3897   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3898     // Since we were just successfully storing null, the array can't be null free.
3899     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3900     ary_t = ary_t->cast_to_not_null_free();
3901     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3902     if (safe_for_replace) {
3903       replace_in_map(ary, cast);
3904     }
3905     ary = cast;
3906   }
3907   return ary;
3908 }
3909 
3910 //------------------------------next_monitor-----------------------------------
3911 // What number should be given to the next monitor?
3912 int GraphKit::next_monitor() {
3913   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3914   int next = current + C->sync_stack_slots();
3915   // Keep the toplevel high water mark current:
3916   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3917   return current;
3918 }
3919 
3920 //------------------------------insert_mem_bar---------------------------------
3921 // Memory barrier to avoid floating things around
3922 // The membar serves as a pinch point between both control and all memory slices.
3923 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3924   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3925   mb->init_req(TypeFunc::Control, control());
3926   mb->init_req(TypeFunc::Memory,  reset_memory());
3927   Node* membar = _gvn.transform(mb);

4019     lock->create_lock_counter(map()->jvms());
4020     increment_counter(lock->counter()->addr());
4021   }
4022 #endif
4023 
4024   return flock;
4025 }
4026 
4027 
4028 //------------------------------shared_unlock----------------------------------
4029 // Emit unlocking code.
4030 void GraphKit::shared_unlock(Node* box, Node* obj) {
4031   // bci is either a monitorenter bc or InvocationEntryBci
4032   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
4033   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
4034 
4035   if (stopped()) {               // Dead monitor?
4036     map()->pop_monitor();        // Kill monitor from debug info
4037     return;
4038   }
4039   assert(!obj->is_InlineType(), "should not unlock on inline type");
4040 
4041   // Memory barrier to avoid floating things down past the locked region
4042   insert_mem_bar(Op_MemBarReleaseLock);
4043 
4044   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
4045   UnlockNode *unlock = new UnlockNode(C, tf);
4046 #ifdef ASSERT
4047   unlock->set_dbg_jvms(sync_jvms());
4048 #endif
4049   uint raw_idx = Compile::AliasIdxRaw;
4050   unlock->init_req( TypeFunc::Control, control() );
4051   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
4052   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
4053   unlock->init_req( TypeFunc::FramePtr, frameptr() );
4054   unlock->init_req( TypeFunc::ReturnAdr, top() );
4055 
4056   unlock->init_req(TypeFunc::Parms + 0, obj);
4057   unlock->init_req(TypeFunc::Parms + 1, box);
4058   unlock = _gvn.transform(unlock)->as_Unlock();
4059 
4060   Node* mem = reset_memory();
4061 
4062   // unlock has no side-effects, sets few values
4063   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
4064 
4065   // Kill monitor from debug info
4066   map()->pop_monitor( );
4067 }
4068 
4069 //-------------------------------get_layout_helper-----------------------------
4070 // If the given klass is a constant or known to be an array,
4071 // fetch the constant layout helper value into constant_value
4072 // and return null.  Otherwise, load the non-constant
4073 // layout helper value, and return the node which represents it.
4074 // This two-faced routine is useful because allocation sites
4075 // almost always feature constant types.
4076 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
4077   const TypeKlassPtr* klass_t = _gvn.type(klass_node)->isa_klassptr();
4078   if (!StressReflectiveCode && klass_t != nullptr) {
4079     bool xklass = klass_t->klass_is_exact();
4080     bool can_be_flat = false;
4081     const TypeAryPtr* ary_type = klass_t->as_instance_type()->isa_aryptr();
4082     if (UseArrayFlattening && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
4083       // Don't constant fold if the runtime type might be a flat array but the static type is not.
4084       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
4085       can_be_flat = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->maybe_flat_in_array());
4086     }
4087     if (!can_be_flat && (xklass || (klass_t->isa_aryklassptr() && klass_t->is_aryklassptr()->elem() != Type::BOTTOM))) {
4088       jint lhelper;
4089       if (klass_t->is_flat()) {
4090         lhelper = ary_type->flat_layout_helper();
4091       } else if (klass_t->isa_aryklassptr()) {
4092         BasicType elem = ary_type->elem()->array_element_basic_type();
4093         if (is_reference_type(elem, true)) {
4094           elem = T_OBJECT;
4095         }
4096         lhelper = Klass::array_layout_helper(elem);
4097       } else {
4098         lhelper = klass_t->is_instklassptr()->exact_klass()->layout_helper();
4099       }
4100       if (lhelper != Klass::_lh_neutral_value) {
4101         constant_value = lhelper;
4102         return (Node*) nullptr;
4103       }
4104     }
4105   }
4106   constant_value = Klass::_lh_neutral_value;  // put in a known value
4107   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
4108   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
4109 }
4110 
4111 // We just put in an allocate/initialize with a big raw-memory effect.
4112 // Hook selected additional alias categories on the initialization.
4113 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
4114                                 MergeMemNode* init_in_merge,
4115                                 Node* init_out_raw) {
4116   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
4117   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
4118 
4119   Node* prevmem = kit.memory(alias_idx);
4120   init_in_merge->set_memory_at(alias_idx, prevmem);
4121   if (init_out_raw != nullptr) {
4122     kit.set_memory(init_out_raw, alias_idx);
4123   }
4124 }
4125 
4126 //---------------------------set_output_for_allocation-------------------------
4127 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
4128                                           const TypeOopPtr* oop_type,
4129                                           bool deoptimize_on_exception) {
4130   int rawidx = Compile::AliasIdxRaw;
4131   alloc->set_req( TypeFunc::FramePtr, frameptr() );
4132   add_safepoint_edges(alloc);
4133   Node* allocx = _gvn.transform(alloc);
4134   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
4135   // create memory projection for i_o
4136   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
4137   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
4138 
4139   // create a memory projection as for the normal control path
4140   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
4141   set_memory(malloc, rawidx);
4142 
4143   // a normal slow-call doesn't change i_o, but an allocation does
4144   // we create a separate i_o projection for the normal control path
4145   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
4146   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
4147 
4148   // put in an initialization barrier
4149   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
4150                                                  rawoop)->as_Initialize();
4151   assert(alloc->initialization() == init,  "2-way macro link must work");
4152   assert(init ->allocation()     == alloc, "2-way macro link must work");
4153   {
4154     // Extract memory strands which may participate in the new object's
4155     // initialization, and source them from the new InitializeNode.
4156     // This will allow us to observe initializations when they occur,
4157     // and link them properly (as a group) to the InitializeNode.
4158     assert(init->in(InitializeNode::Memory) == malloc, "");
4159     MergeMemNode* minit_in = MergeMemNode::make(malloc);
4160     init->set_req(InitializeNode::Memory, minit_in);
4161     record_for_igvn(minit_in); // fold it up later, if possible
4162     _gvn.set_type(minit_in, Type::MEMORY);
4163     Node* minit_out = memory(rawidx);
4164     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
4165     // Add an edge in the MergeMem for the header fields so an access
4166     // to one of those has correct memory state
4167     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
4168     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
4169     if (oop_type->isa_aryptr()) {
4170       const TypeAryPtr* arytype = oop_type->is_aryptr();
4171       if (arytype->is_flat()) {
4172         // Initially all flat array accesses share a single slice
4173         // but that changes after parsing. Prepare the memory graph so
4174         // it can optimize flat array accesses properly once they
4175         // don't share a single slice.
4176         assert(C->flat_accesses_share_alias(), "should be set at parse time");
4177         C->set_flat_accesses_share_alias(false);
4178         ciInlineKlass* vk = arytype->elem()->inline_klass();
4179         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
4180           ciField* field = vk->nonstatic_field_at(i);
4181           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4182             continue;  // do not bother to track really large numbers of fields
4183           int off_in_vt = field->offset_in_bytes() - vk->payload_offset();
4184           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
4185           int fieldidx = C->get_alias_index(adr_type, true);
4186           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
4187           // can result in per flat array field Phis to be created which confuses the logic of
4188           // Compile::adjust_flat_array_access_aliases().
4189           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
4190         }
4191         C->set_flat_accesses_share_alias(true);
4192         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
4193       } else {
4194         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
4195         int            elemidx  = C->get_alias_index(telemref);
4196         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
4197       }
4198     } else if (oop_type->isa_instptr()) {
4199       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
4200       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
4201       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
4202         ciField* field = ik->nonstatic_field_at(i);
4203         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
4204           continue;  // do not bother to track really large numbers of fields
4205         // Find (or create) the alias category for this field:
4206         int fieldidx = C->alias_type(field)->index();
4207         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
4208       }
4209     }
4210   }
4211 
4212   // Cast raw oop to the real thing...
4213   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
4214   javaoop = _gvn.transform(javaoop);
4215   C->set_recent_alloc(control(), javaoop);
4216   assert(just_allocated_object(control()) == javaoop, "just allocated");
4217 
4218 #ifdef ASSERT
4219   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

4230       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4231     }
4232   }
4233 #endif //ASSERT
4234 
4235   return javaoop;
4236 }
4237 
4238 //---------------------------new_instance--------------------------------------
4239 // This routine takes a klass_node which may be constant (for a static type)
4240 // or may be non-constant (for reflective code).  It will work equally well
4241 // for either, and the graph will fold nicely if the optimizer later reduces
4242 // the type to a constant.
4243 // The optional arguments are for specialized use by intrinsics:
4244 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4245 //  - If 'return_size_val', report the total object size to the caller.
4246 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4247 Node* GraphKit::new_instance(Node* klass_node,
4248                              Node* extra_slow_test,
4249                              Node* *return_size_val,
4250                              bool deoptimize_on_exception,
4251                              InlineTypeNode* inline_type_node) {
4252   // Compute size in doublewords
4253   // The size is always an integral number of doublewords, represented
4254   // as a positive bytewise size stored in the klass's layout_helper.
4255   // The layout_helper also encodes (in a low bit) the need for a slow path.
4256   jint  layout_con = Klass::_lh_neutral_value;
4257   Node* layout_val = get_layout_helper(klass_node, layout_con);
4258   bool  layout_is_con = (layout_val == nullptr);
4259 
4260   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4261   // Generate the initial go-slow test.  It's either ALWAYS (return a
4262   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4263   // case) a computed value derived from the layout_helper.
4264   Node* initial_slow_test = nullptr;
4265   if (layout_is_con) {
4266     assert(!StressReflectiveCode, "stress mode does not use these paths");
4267     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4268     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4269   } else {   // reflective case
4270     // This reflective path is used by Unsafe.allocateInstance.
4271     // (It may be stress-tested by specifying StressReflectiveCode.)
4272     // Basically, we want to get into the VM is there's an illegal argument.
4273     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4274     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4275     if (extra_slow_test != intcon(0)) {
4276       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4277     }
4278     // (Macro-expander will further convert this to a Bool, if necessary.)

4289 
4290     // Clear the low bits to extract layout_helper_size_in_bytes:
4291     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4292     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4293     size = _gvn.transform( new AndXNode(size, mask) );
4294   }
4295   if (return_size_val != nullptr) {
4296     (*return_size_val) = size;
4297   }
4298 
4299   // This is a precise notnull oop of the klass.
4300   // (Actually, it need not be precise if this is a reflective allocation.)
4301   // It's what we cast the result to.
4302   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4303   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4304   const TypeOopPtr* oop_type = tklass->as_instance_type();
4305 
4306   // Now generate allocation code
4307 
4308   // The entire memory state is needed for slow path of the allocation
4309   // since GC and deoptimization can happen.
4310   Node *mem = reset_memory();
4311   set_all_memory(mem); // Create new memory state
4312 
4313   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4314                                          control(), mem, i_o(),
4315                                          size, klass_node,
4316                                          initial_slow_test, inline_type_node);
4317 
4318   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4319 }
4320 
4321 //-------------------------------new_array-------------------------------------
4322 // helper for newarray and anewarray
4323 // The 'length' parameter is (obviously) the length of the array.
4324 // The optional arguments are for specialized use by intrinsics:
4325 //  - If 'return_size_val', report the non-padded array size (sum of header size
4326 //    and array body) to the caller.
4327 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4328 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4329                           Node* length,         // number of array elements
4330                           int   nargs,          // number of arguments to push back for uncommon trap
4331                           Node* *return_size_val,
4332                           bool deoptimize_on_exception,
4333                           Node* init_val) {
4334   jint  layout_con = Klass::_lh_neutral_value;
4335   Node* layout_val = get_layout_helper(klass_node, layout_con);
4336   bool  layout_is_con = (layout_val == nullptr);
4337 
4338   if (!layout_is_con && !StressReflectiveCode &&
4339       !too_many_traps(Deoptimization::Reason_class_check)) {
4340     // This is a reflective array creation site.
4341     // Optimistically assume that it is a subtype of Object[],
4342     // so that we can fold up all the address arithmetic.
4343     layout_con = Klass::array_layout_helper(T_OBJECT);
4344     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4345     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4346     { BuildCutout unless(this, bol_lh, PROB_MAX);
4347       inc_sp(nargs);
4348       uncommon_trap(Deoptimization::Reason_class_check,
4349                     Deoptimization::Action_maybe_recompile);
4350     }
4351     layout_val = nullptr;
4352     layout_is_con = true;
4353   }
4354 
4355   // Generate the initial go-slow test.  Make sure we do not overflow
4356   // if length is huge (near 2Gig) or negative!  We do not need
4357   // exact double-words here, just a close approximation of needed
4358   // double-words.  We can't add any offset or rounding bits, lest we
4359   // take a size -1 of bytes and make it positive.  Use an unsigned
4360   // compare, so negative sizes look hugely positive.
4361   int fast_size_limit = FastAllocateSizeLimit;
4362   if (layout_is_con) {
4363     assert(!StressReflectiveCode, "stress mode does not use these paths");
4364     // Increase the size limit if we have exact knowledge of array type.
4365     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4366     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);


4367   }
4368 
4369   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4370   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4371 
4372   // --- Size Computation ---
4373   // array_size = round_to_heap(array_header + (length << elem_shift));
4374   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4375   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4376   // The rounding mask is strength-reduced, if possible.
4377   int round_mask = MinObjAlignmentInBytes - 1;
4378   Node* header_size = nullptr;
4379   // (T_BYTE has the weakest alignment and size restrictions...)
4380   if (layout_is_con) {
4381     int       hsize  = Klass::layout_helper_header_size(layout_con);
4382     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4383     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4384     if ((round_mask & ~right_n_bits(eshift)) == 0)
4385       round_mask = 0;  // strength-reduce it if it goes away completely
4386     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4387     int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4388     assert(header_size_min <= hsize, "generic minimum is smallest");
4389     header_size = intcon(hsize);
4390   } else {
4391     Node* hss   = intcon(Klass::_lh_header_size_shift);
4392     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4393     header_size = _gvn.transform(new URShiftINode(layout_val, hss));
4394     header_size = _gvn.transform(new AndINode(header_size, hsm));
4395   }
4396 
4397   Node* elem_shift = nullptr;
4398   if (layout_is_con) {
4399     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4400     if (eshift != 0)
4401       elem_shift = intcon(eshift);
4402   } else {
4403     // There is no need to mask or shift this value.
4404     // The semantics of LShiftINode include an implicit mask to 0x1F.
4405     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
4406     elem_shift = layout_val;

4455   }
4456   Node* non_rounded_size = _gvn.transform(new AddXNode(headerx, abody));
4457 
4458   if (return_size_val != nullptr) {
4459     // This is the size
4460     (*return_size_val) = non_rounded_size;
4461   }
4462 
4463   Node* size = non_rounded_size;
4464   if (round_mask != 0) {
4465     Node* mask1 = MakeConX(round_mask);
4466     size = _gvn.transform(new AddXNode(size, mask1));
4467     Node* mask2 = MakeConX(~round_mask);
4468     size = _gvn.transform(new AndXNode(size, mask2));
4469   }
4470   // else if round_mask == 0, the size computation is self-rounding
4471 
4472   // Now generate allocation code
4473 
4474   // The entire memory state is needed for slow path of the allocation
4475   // since GC and deoptimization can happen.
4476   Node *mem = reset_memory();
4477   set_all_memory(mem); // Create new memory state
4478 
4479   if (initial_slow_test->is_Bool()) {
4480     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4481     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4482   }
4483 
4484   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4485   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4486 
4487   Node* raw_init_value = nullptr;
4488   if (init_val != nullptr) {
4489     // TODO 8350865 Fast non-zero init not implemented yet for flat, null-free arrays
4490     if (ary_type->is_flat()) {
4491       initial_slow_test = intcon(1);
4492     }
4493 
4494     if (UseCompressedOops) {
4495       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4496       init_val = _gvn.transform(new EncodePNode(init_val, init_val->bottom_type()->make_narrowoop()));
4497       Node* lower = _gvn.transform(new CastP2XNode(control(), init_val));
4498       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4499       raw_init_value = _gvn.transform(new OrLNode(lower, upper));
4500     } else {
4501       raw_init_value = _gvn.transform(new CastP2XNode(control(), init_val));
4502     }
4503   }
4504 
4505   Node* valid_length_test = _gvn.intcon(1);
4506   if (ary_type->isa_aryptr()) {
4507     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4508     jint max = TypeAryPtr::max_array_length(bt);
4509     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4510     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4511   }
4512 
4513   // Create the AllocateArrayNode and its result projections
4514   AllocateArrayNode* alloc
4515     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4516                             control(), mem, i_o(),
4517                             size, klass_node,
4518                             initial_slow_test,
4519                             length, valid_length_test,
4520                             init_val, raw_init_value);
4521   // Cast to correct type.  Note that the klass_node may be constant or not,
4522   // and in the latter case the actual array type will be inexact also.
4523   // (This happens via a non-constant argument to inline_native_newArray.)
4524   // In any case, the value of klass_node provides the desired array type.
4525   const TypeInt* length_type = _gvn.find_int_type(length);
4526   if (ary_type->isa_aryptr() && length_type != nullptr) {
4527     // Try to get a better type than POS for the size
4528     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4529   }
4530 
4531   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4532 
4533   array_ideal_length(alloc, ary_type, true);
4534   return javaoop;
4535 }
4536 
4537 // The following "Ideal_foo" functions are placed here because they recognize
4538 // the graph shapes created by the functions immediately above.
4539 
4540 //---------------------------Ideal_allocation----------------------------------

4635 void GraphKit::add_parse_predicates(int nargs) {
4636   if (ShortRunningLongLoop) {
4637     // Will narrow the limit down with a cast node. Predicates added later may depend on the cast so should be last when
4638     // walking up from the loop.
4639     add_parse_predicate(Deoptimization::Reason_short_running_long_loop, nargs);
4640   }
4641   if (UseLoopPredicate) {
4642     add_parse_predicate(Deoptimization::Reason_predicate, nargs);
4643     if (UseProfiledLoopPredicate) {
4644       add_parse_predicate(Deoptimization::Reason_profile_predicate, nargs);
4645     }
4646   }
4647   if (UseAutoVectorizationPredicate) {
4648     add_parse_predicate(Deoptimization::Reason_auto_vectorization_check, nargs);
4649   }
4650   // Loop Limit Check Predicate should be near the loop.
4651   add_parse_predicate(Deoptimization::Reason_loop_limit_check, nargs);
4652 }
4653 
4654 void GraphKit::sync_kit(IdealKit& ideal) {
4655   reset_memory();
4656   set_all_memory(ideal.merged_memory());
4657   set_i_o(ideal.i_o());
4658   set_control(ideal.ctrl());
4659 }
4660 
4661 void GraphKit::final_sync(IdealKit& ideal) {
4662   // Final sync IdealKit and graphKit.
4663   sync_kit(ideal);
4664 }
4665 
4666 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4667   Node* len = load_array_length(load_String_value(str, set_ctrl));
4668   Node* coder = load_String_coder(str, set_ctrl);
4669   // Divide length by 2 if coder is UTF16
4670   return _gvn.transform(new RShiftINode(len, coder));
4671 }
4672 
4673 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4674   int value_offset = java_lang_String::value_offset();
4675   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4676                                                      false, nullptr, Type::Offset(0));
4677   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4678   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4679                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4680                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4681   Node* p = basic_plus_adr(str, str, value_offset);
4682   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4683                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4684   return load;
4685 }
4686 
4687 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4688   if (!CompactStrings) {
4689     return intcon(java_lang_String::CODER_UTF16);
4690   }
4691   int coder_offset = java_lang_String::coder_offset();
4692   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4693                                                      false, nullptr, Type::Offset(0));
4694   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4695 
4696   Node* p = basic_plus_adr(str, str, coder_offset);
4697   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4698                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4699   return load;
4700 }
4701 
4702 void GraphKit::store_String_value(Node* str, Node* value) {
4703   int value_offset = java_lang_String::value_offset();
4704   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4705                                                      false, nullptr, Type::Offset(0));
4706   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4707 
4708   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4709                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4710 }
4711 
4712 void GraphKit::store_String_coder(Node* str, Node* value) {
4713   int coder_offset = java_lang_String::coder_offset();
4714   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4715                                                      false, nullptr, Type::Offset(0));
4716   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4717 
4718   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4719                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4720 }
4721 
4722 // Capture src and dst memory state with a MergeMemNode
4723 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4724   if (src_type == dst_type) {
4725     // Types are equal, we don't need a MergeMemNode
4726     return memory(src_type);
4727   }
4728   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4729   record_for_igvn(merge); // fold it up later, if possible
4730   int src_idx = C->get_alias_index(src_type);
4731   int dst_idx = C->get_alias_index(dst_type);
4732   merge->set_memory_at(src_idx, memory(src_idx));
4733   merge->set_memory_at(dst_idx, memory(dst_idx));
4734   return merge;
4735 }

4808   i_char->init_req(2, AddI(i_char, intcon(2)));
4809 
4810   set_control(IfFalse(iff));
4811   set_memory(st, TypeAryPtr::BYTES);
4812 }
4813 
4814 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4815   if (!field->is_constant()) {
4816     return nullptr; // Field not marked as constant.
4817   }
4818   ciInstance* holder = nullptr;
4819   if (!field->is_static()) {
4820     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4821     if (const_oop != nullptr && const_oop->is_instance()) {
4822       holder = const_oop->as_instance();
4823     }
4824   }
4825   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4826                                                         /*is_unsigned_load=*/false);
4827   if (con_type != nullptr) {
4828     Node* con = makecon(con_type);
4829     if (field->type()->is_inlinetype()) {
4830       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass());
4831     } else if (con_type->is_inlinetypeptr()) {
4832       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass());
4833     }
4834     return con;
4835   }
4836   return nullptr;
4837 }
4838 
4839 //---------------------------load_mirror_from_klass----------------------------
4840 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4841 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4842   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4843   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4844   // mirror = ((OopHandle)mirror)->resolve();
4845   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4846 }
4847 
4848 Node* GraphKit::maybe_narrow_object_type(Node* obj, ciKlass* type) {
4849   const Type* obj_type = obj->bottom_type();
4850   const TypeOopPtr* sig_type = TypeOopPtr::make_from_klass(type);
4851   if (obj_type->isa_oopptr() && sig_type->is_loaded() && !obj_type->higher_equal(sig_type)) {
4852     const Type* narrow_obj_type = obj_type->filter_speculative(sig_type); // keep speculative part
4853     Node* casted_obj = gvn().transform(new CheckCastPPNode(control(), obj, narrow_obj_type));
4854     obj = casted_obj;
4855   }
4856   if (sig_type->is_inlinetypeptr()) {
4857     obj = InlineTypeNode::make_from_oop(this, obj, sig_type->inline_klass());
4858   }
4859   return obj;
4860 }
< prev index next >