< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page

   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"


  26 #include "ci/ciUtilities.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "ci/ciObjArray.hpp"
  29 #include "asm/register.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "gc/shared/c2/barrierSetC2.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/castnode.hpp"
  37 #include "opto/convertnode.hpp"
  38 #include "opto/graphKit.hpp"
  39 #include "opto/idealKit.hpp"

  40 #include "opto/intrinsicnode.hpp"
  41 #include "opto/locknode.hpp"
  42 #include "opto/machnode.hpp"

  43 #include "opto/opaquenode.hpp"
  44 #include "opto/parse.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "opto/subtypenode.hpp"
  48 #include "runtime/deoptimization.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 #include "utilities/bitMap.inline.hpp"
  51 #include "utilities/powerOfTwo.hpp"
  52 #include "utilities/growableArray.hpp"
  53 
  54 //----------------------------GraphKit-----------------------------------------
  55 // Main utility constructor.
  56 GraphKit::GraphKit(JVMState* jvms)
  57   : Phase(Phase::Parser),
  58     _env(C->env()),
  59     _gvn(*C->initial_gvn()),
  60     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  61 {

  62   _exceptions = jvms->map()->next_exception();
  63   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  64   set_jvms(jvms);







  65 }
  66 
  67 // Private constructor for parser.
  68 GraphKit::GraphKit()
  69   : Phase(Phase::Parser),
  70     _env(C->env()),
  71     _gvn(*C->initial_gvn()),
  72     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  73 {
  74   _exceptions = nullptr;
  75   set_map(nullptr);
  76   debug_only(_sp = -99);
  77   debug_only(set_bci(-99));
  78 }
  79 
  80 
  81 
  82 //---------------------------clean_stack---------------------------------------
  83 // Clear away rubbish from the stack area of the JVM state.
  84 // This destroys any arguments that may be waiting on the stack.

 840         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 841           tty->print_cr("Zombie local %d: ", local);
 842           jvms->dump();
 843         }
 844         return false;
 845       }
 846     }
 847   }
 848   return true;
 849 }
 850 
 851 #endif //ASSERT
 852 
 853 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 854 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 855   ciMethod* cur_method = jvms->method();
 856   int       cur_bci   = jvms->bci();
 857   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 858     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 859     return Interpreter::bytecode_should_reexecute(code) ||
 860            (is_anewarray && code == Bytecodes::_multianewarray);
 861     // Reexecute _multianewarray bytecode which was replaced with
 862     // sequence of [a]newarray. See Parse::do_multianewarray().
 863     //
 864     // Note: interpreter should not have it set since this optimization
 865     // is limited by dimensions and guarded by flag so in some cases
 866     // multianewarray() runtime calls will be generated and
 867     // the bytecode should not be reexecutes (stack will not be reset).
 868   } else {
 869     return false;
 870   }
 871 }
 872 
 873 // Helper function for adding JVMState and debug information to node
 874 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 875   // Add the safepoint edges to the call (or other safepoint).
 876 
 877   // Make sure dead locals are set to top.  This
 878   // should help register allocation time and cut down on the size
 879   // of the deoptimization information.
 880   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

1100       ciSignature* declared_signature = nullptr;
1101       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1102       assert(declared_signature != nullptr, "cannot be null");
1103       inputs   = declared_signature->arg_size_for_bc(code);
1104       int size = declared_signature->return_type()->size();
1105       depth = size - inputs;
1106     }
1107     break;
1108 
1109   case Bytecodes::_multianewarray:
1110     {
1111       ciBytecodeStream iter(method());
1112       iter.reset_to_bci(bci());
1113       iter.next();
1114       inputs = iter.get_dimensions();
1115       assert(rsize() == 1, "");
1116       depth = 1 - inputs;
1117     }
1118     break;
1119 









1120   case Bytecodes::_ireturn:
1121   case Bytecodes::_lreturn:
1122   case Bytecodes::_freturn:
1123   case Bytecodes::_dreturn:
1124   case Bytecodes::_areturn:
1125     assert(rsize() == -depth, "");
1126     inputs = -depth;
1127     break;
1128 
1129   case Bytecodes::_jsr:
1130   case Bytecodes::_jsr_w:
1131     inputs = 0;
1132     depth  = 1;                  // S.B. depth=1, not zero
1133     break;
1134 
1135   default:
1136     // bytecode produces a typed result
1137     inputs = rsize() - depth;
1138     assert(inputs >= 0, "");
1139     break;

1182   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1183   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1184   return _gvn.transform( new AndLNode(conv, mask) );
1185 }
1186 
1187 Node* GraphKit::ConvL2I(Node* offset) {
1188   // short-circuit a common case
1189   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1190   if (offset_con != (jlong)Type::OffsetBot) {
1191     return intcon((int) offset_con);
1192   }
1193   return _gvn.transform( new ConvL2INode(offset));
1194 }
1195 
1196 //-------------------------load_object_klass-----------------------------------
1197 Node* GraphKit::load_object_klass(Node* obj) {
1198   // Special-case a fresh allocation to avoid building nodes:
1199   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1200   if (akls != nullptr)  return akls;
1201   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1202   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS));
1203 }
1204 
1205 //-------------------------load_array_length-----------------------------------
1206 Node* GraphKit::load_array_length(Node* array) {
1207   // Special-case a fresh allocation to avoid building nodes:
1208   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1209   Node *alen;
1210   if (alloc == nullptr) {
1211     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1212     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1213   } else {
1214     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1215   }
1216   return alen;
1217 }
1218 
1219 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1220                                    const TypeOopPtr* oop_type,
1221                                    bool replace_length_in_map) {
1222   Node* length = alloc->Ideal_length();

1231         replace_in_map(length, ccast);
1232       }
1233       return ccast;
1234     }
1235   }
1236   return length;
1237 }
1238 
1239 //------------------------------do_null_check----------------------------------
1240 // Helper function to do a null pointer check.  Returned value is
1241 // the incoming address with null casted away.  You are allowed to use the
1242 // not-null value only if you are control dependent on the test.
1243 #ifndef PRODUCT
1244 extern int explicit_null_checks_inserted,
1245            explicit_null_checks_elided;
1246 #endif
1247 Node* GraphKit::null_check_common(Node* value, BasicType type,
1248                                   // optional arguments for variations:
1249                                   bool assert_null,
1250                                   Node* *null_control,
1251                                   bool speculative) {

1252   assert(!assert_null || null_control == nullptr, "not both at once");
1253   if (stopped())  return top();
1254   NOT_PRODUCT(explicit_null_checks_inserted++);
1255 






















1256   // Construct null check
1257   Node *chk = nullptr;
1258   switch(type) {
1259     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1260     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;

1261     case T_ARRAY  : // fall through
1262       type = T_OBJECT;  // simplify further tests
1263     case T_OBJECT : {
1264       const Type *t = _gvn.type( value );
1265 
1266       const TypeOopPtr* tp = t->isa_oopptr();
1267       if (tp != nullptr && !tp->is_loaded()
1268           // Only for do_null_check, not any of its siblings:
1269           && !assert_null && null_control == nullptr) {
1270         // Usually, any field access or invocation on an unloaded oop type
1271         // will simply fail to link, since the statically linked class is
1272         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1273         // the static class is loaded but the sharper oop type is not.
1274         // Rather than checking for this obscure case in lots of places,
1275         // we simply observe that a null check on an unloaded class
1276         // will always be followed by a nonsense operation, so we
1277         // can just issue the uncommon trap here.
1278         // Our access to the unloaded class will only be correct
1279         // after it has been loaded and initialized, which requires
1280         // a trip through the interpreter.

1339         }
1340         Node *oldcontrol = control();
1341         set_control(cfg);
1342         Node *res = cast_not_null(value);
1343         set_control(oldcontrol);
1344         NOT_PRODUCT(explicit_null_checks_elided++);
1345         return res;
1346       }
1347       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1348       if (cfg == nullptr)  break;  // Quit at region nodes
1349       depth++;
1350     }
1351   }
1352 
1353   //-----------
1354   // Branch to failure if null
1355   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1356   Deoptimization::DeoptReason reason;
1357   if (assert_null) {
1358     reason = Deoptimization::reason_null_assert(speculative);
1359   } else if (type == T_OBJECT) {
1360     reason = Deoptimization::reason_null_check(speculative);
1361   } else {
1362     reason = Deoptimization::Reason_div0_check;
1363   }
1364   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1365   // ciMethodData::has_trap_at will return a conservative -1 if any
1366   // must-be-null assertion has failed.  This could cause performance
1367   // problems for a method after its first do_null_assert failure.
1368   // Consider using 'Reason_class_check' instead?
1369 
1370   // To cause an implicit null check, we set the not-null probability
1371   // to the maximum (PROB_MAX).  For an explicit check the probability
1372   // is set to a smaller value.
1373   if (null_control != nullptr || too_many_traps(reason)) {
1374     // probability is less likely
1375     ok_prob =  PROB_LIKELY_MAG(3);
1376   } else if (!assert_null &&
1377              (ImplicitNullCheckThreshold > 0) &&
1378              method() != nullptr &&
1379              (method()->method_data()->trap_count(reason)

1413   }
1414 
1415   if (assert_null) {
1416     // Cast obj to null on this path.
1417     replace_in_map(value, zerocon(type));
1418     return zerocon(type);
1419   }
1420 
1421   // Cast obj to not-null on this path, if there is no null_control.
1422   // (If there is a null_control, a non-null value may come back to haunt us.)
1423   if (type == T_OBJECT) {
1424     Node* cast = cast_not_null(value, false);
1425     if (null_control == nullptr || (*null_control) == top())
1426       replace_in_map(value, cast);
1427     value = cast;
1428   }
1429 
1430   return value;
1431 }
1432 
1433 
1434 //------------------------------cast_not_null----------------------------------
1435 // Cast obj to not-null on this path
1436 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {









1437   const Type *t = _gvn.type(obj);
1438   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1439   // Object is already not-null?
1440   if( t == t_not_null ) return obj;
1441 
1442   Node *cast = new CastPPNode(obj,t_not_null);
1443   cast->init_req(0, control());
1444   cast = _gvn.transform( cast );
1445 
1446   // Scan for instances of 'obj' in the current JVM mapping.
1447   // These instances are known to be not-null after the test.
1448   if (do_replace_in_map)
1449     replace_in_map(obj, cast);
1450 
1451   return cast;                  // Return casted value
1452 }
1453 
1454 // Sometimes in intrinsics, we implicitly know an object is not null
1455 // (there's no actual null check) so we can cast it to not null. In
1456 // the course of optimizations, the input to the cast can become null.

1543 // These are layered on top of the factory methods in LoadNode and StoreNode,
1544 // and integrate with the parser's memory state and _gvn engine.
1545 //
1546 
1547 // factory methods in "int adr_idx"
1548 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1549                           int adr_idx,
1550                           MemNode::MemOrd mo,
1551                           LoadNode::ControlDependency control_dependency,
1552                           bool require_atomic_access,
1553                           bool unaligned,
1554                           bool mismatched,
1555                           bool unsafe,
1556                           uint8_t barrier_data) {
1557   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1558   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1559   debug_only(adr_type = C->get_adr_type(adr_idx));
1560   Node* mem = memory(adr_idx);
1561   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1562   ld = _gvn.transform(ld);
1563   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {

1564     // Improve graph before escape analysis and boxing elimination.
1565     record_for_igvn(ld);
1566   }
1567   return ld;
1568 }
1569 
1570 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1571                                 int adr_idx,
1572                                 MemNode::MemOrd mo,
1573                                 bool require_atomic_access,
1574                                 bool unaligned,
1575                                 bool mismatched,
1576                                 bool unsafe,
1577                                 int barrier_data) {
1578   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1579   const TypePtr* adr_type = nullptr;
1580   debug_only(adr_type = C->get_adr_type(adr_idx));
1581   Node *mem = memory(adr_idx);
1582   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1583   if (unaligned) {

1589   if (unsafe) {
1590     st->as_Store()->set_unsafe_access();
1591   }
1592   st->as_Store()->set_barrier_data(barrier_data);
1593   st = _gvn.transform(st);
1594   set_memory(st, adr_idx);
1595   // Back-to-back stores can only remove intermediate store with DU info
1596   // so push on worklist for optimizer.
1597   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1598     record_for_igvn(st);
1599 
1600   return st;
1601 }
1602 
1603 Node* GraphKit::access_store_at(Node* obj,
1604                                 Node* adr,
1605                                 const TypePtr* adr_type,
1606                                 Node* val,
1607                                 const Type* val_type,
1608                                 BasicType bt,
1609                                 DecoratorSet decorators) {

1610   // Transformation of a value which could be null pointer (CastPP #null)
1611   // could be delayed during Parse (for example, in adjust_map_after_if()).
1612   // Execute transformation here to avoid barrier generation in such case.
1613   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1614     val = _gvn.makecon(TypePtr::NULL_PTR);
1615   }
1616 
1617   if (stopped()) {
1618     return top(); // Dead path ?
1619   }
1620 
1621   assert(val != nullptr, "not dead path");







1622 
1623   C2AccessValuePtr addr(adr, adr_type);
1624   C2AccessValue value(val, val_type);
1625   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1626   if (access.is_raw()) {
1627     return _barrier_set->BarrierSetC2::store_at(access, value);
1628   } else {
1629     return _barrier_set->store_at(access, value);
1630   }
1631 }
1632 
1633 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1634                                Node* adr,   // actual address to store val at
1635                                const TypePtr* adr_type,
1636                                const Type* val_type,
1637                                BasicType bt,
1638                                DecoratorSet decorators) {

1639   if (stopped()) {
1640     return top(); // Dead path ?
1641   }
1642 
1643   C2AccessValuePtr addr(adr, adr_type);
1644   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr);
1645   if (access.is_raw()) {
1646     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1647   } else {
1648     return _barrier_set->load_at(access, val_type);
1649   }
1650 }
1651 
1652 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1653                             const Type* val_type,
1654                             BasicType bt,
1655                             DecoratorSet decorators) {
1656   if (stopped()) {
1657     return top(); // Dead path ?
1658   }
1659 
1660   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1661   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1662   if (access.is_raw()) {
1663     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1664   } else {

1729                                      Node* new_val,
1730                                      const Type* value_type,
1731                                      BasicType bt,
1732                                      DecoratorSet decorators) {
1733   C2AccessValuePtr addr(adr, adr_type);
1734   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1735   if (access.is_raw()) {
1736     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1737   } else {
1738     return _barrier_set->atomic_add_at(access, new_val, value_type);
1739   }
1740 }
1741 
1742 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1743   return _barrier_set->clone(this, src, dst, size, is_array);
1744 }
1745 
1746 //-------------------------array_element_address-------------------------
1747 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1748                                       const TypeInt* sizetype, Node* ctrl) {
1749   uint shift  = exact_log2(type2aelembytes(elembt));

1750   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1751 
1752   // short-circuit a common case (saves lots of confusing waste motion)
1753   jint idx_con = find_int_con(idx, -1);
1754   if (idx_con >= 0) {
1755     intptr_t offset = header + ((intptr_t)idx_con << shift);
1756     return basic_plus_adr(ary, offset);
1757   }
1758 
1759   // must be correct type for alignment purposes
1760   Node* base  = basic_plus_adr(ary, header);
1761   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1762   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1763   return basic_plus_adr(ary, base, scale);
1764 }
1765 
1766 //-------------------------load_array_element-------------------------
1767 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1768   const Type* elemtype = arytype->elem();
1769   BasicType elembt = elemtype->array_element_basic_type();

1770   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1771   if (elembt == T_NARROWOOP) {
1772     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1773   }
1774   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1775                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1776   return ld;
1777 }
1778 
1779 //-------------------------set_arguments_for_java_call-------------------------
1780 // Arguments (pre-popped from the stack) are taken from the JVMS.
1781 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1782   // Add the call arguments:
1783   uint nargs = call->method()->arg_size();
1784   for (uint i = 0; i < nargs; i++) {
1785     Node* arg = argument(i);
1786     call->init_req(i + TypeFunc::Parms, arg);







































1787   }
1788 }
1789 
1790 //---------------------------set_edges_for_java_call---------------------------
1791 // Connect a newly created call into the current JVMS.
1792 // A return value node (if any) is returned from set_edges_for_java_call.
1793 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1794 
1795   // Add the predefined inputs:
1796   call->init_req( TypeFunc::Control, control() );
1797   call->init_req( TypeFunc::I_O    , i_o() );
1798   call->init_req( TypeFunc::Memory , reset_memory() );
1799   call->init_req( TypeFunc::FramePtr, frameptr() );
1800   call->init_req( TypeFunc::ReturnAdr, top() );
1801 
1802   add_safepoint_edges(call, must_throw);
1803 
1804   Node* xcall = _gvn.transform(call);
1805 
1806   if (xcall == top()) {
1807     set_control(top());
1808     return;
1809   }
1810   assert(xcall == call, "call identity is stable");
1811 
1812   // Re-use the current map to produce the result.
1813 
1814   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1815   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1816   set_all_memory_call(xcall, separate_io_proj);
1817 
1818   //return xcall;   // no need, caller already has it
1819 }
1820 
1821 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1822   if (stopped())  return top();  // maybe the call folded up?
1823 
1824   // Capture the return value, if any.
1825   Node* ret;
1826   if (call->method() == nullptr ||
1827       call->method()->return_type()->basic_type() == T_VOID)
1828         ret = top();
1829   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1830 
1831   // Note:  Since any out-of-line call can produce an exception,
1832   // we always insert an I_O projection from the call into the result.
1833 
1834   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1835 
1836   if (separate_io_proj) {
1837     // The caller requested separate projections be used by the fall
1838     // through and exceptional paths, so replace the projections for
1839     // the fall through path.
1840     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1841     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1842   }


















1843   return ret;
1844 }
1845 
1846 //--------------------set_predefined_input_for_runtime_call--------------------
1847 // Reading and setting the memory state is way conservative here.
1848 // The real problem is that I am not doing real Type analysis on memory,
1849 // so I cannot distinguish card mark stores from other stores.  Across a GC
1850 // point the Store Barrier and the card mark memory has to agree.  I cannot
1851 // have a card mark store and its barrier split across the GC point from
1852 // either above or below.  Here I get that to happen by reading ALL of memory.
1853 // A better answer would be to separate out card marks from other memory.
1854 // For now, return the input memory state, so that it can be reused
1855 // after the call, if this call has restricted memory effects.
1856 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1857   // Set fixed predefined input arguments
1858   Node* memory = reset_memory();
1859   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1860   call->init_req( TypeFunc::Control,   control()  );
1861   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1862   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

1913     if (use->is_MergeMem()) {
1914       wl.push(use);
1915     }
1916   }
1917 }
1918 
1919 // Replace the call with the current state of the kit.
1920 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1921   JVMState* ejvms = nullptr;
1922   if (has_exceptions()) {
1923     ejvms = transfer_exceptions_into_jvms();
1924   }
1925 
1926   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1927   ReplacedNodes replaced_nodes_exception;
1928   Node* ex_ctl = top();
1929 
1930   SafePointNode* final_state = stop();
1931 
1932   // Find all the needed outputs of this call
1933   CallProjections callprojs;
1934   call->extract_projections(&callprojs, true);
1935 
1936   Unique_Node_List wl;
1937   Node* init_mem = call->in(TypeFunc::Memory);
1938   Node* final_mem = final_state->in(TypeFunc::Memory);
1939   Node* final_ctl = final_state->in(TypeFunc::Control);
1940   Node* final_io = final_state->in(TypeFunc::I_O);
1941 
1942   // Replace all the old call edges with the edges from the inlining result
1943   if (callprojs.fallthrough_catchproj != nullptr) {
1944     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1945   }
1946   if (callprojs.fallthrough_memproj != nullptr) {
1947     if (final_mem->is_MergeMem()) {
1948       // Parser's exits MergeMem was not transformed but may be optimized
1949       final_mem = _gvn.transform(final_mem);
1950     }
1951     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1952     add_mergemem_users_to_worklist(wl, final_mem);
1953   }
1954   if (callprojs.fallthrough_ioproj != nullptr) {
1955     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1956   }
1957 
1958   // Replace the result with the new result if it exists and is used
1959   if (callprojs.resproj != nullptr && result != nullptr) {
1960     C->gvn_replace_by(callprojs.resproj, result);




1961   }
1962 
1963   if (ejvms == nullptr) {
1964     // No exception edges to simply kill off those paths
1965     if (callprojs.catchall_catchproj != nullptr) {
1966       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1967     }
1968     if (callprojs.catchall_memproj != nullptr) {
1969       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1970     }
1971     if (callprojs.catchall_ioproj != nullptr) {
1972       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1973     }
1974     // Replace the old exception object with top
1975     if (callprojs.exobj != nullptr) {
1976       C->gvn_replace_by(callprojs.exobj, C->top());
1977     }
1978   } else {
1979     GraphKit ekit(ejvms);
1980 
1981     // Load my combined exception state into the kit, with all phis transformed:
1982     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1983     replaced_nodes_exception = ex_map->replaced_nodes();
1984 
1985     Node* ex_oop = ekit.use_exception_state(ex_map);
1986 
1987     if (callprojs.catchall_catchproj != nullptr) {
1988       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1989       ex_ctl = ekit.control();
1990     }
1991     if (callprojs.catchall_memproj != nullptr) {
1992       Node* ex_mem = ekit.reset_memory();
1993       C->gvn_replace_by(callprojs.catchall_memproj,   ex_mem);
1994       add_mergemem_users_to_worklist(wl, ex_mem);
1995     }
1996     if (callprojs.catchall_ioproj != nullptr) {
1997       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1998     }
1999 
2000     // Replace the old exception object with the newly created one
2001     if (callprojs.exobj != nullptr) {
2002       C->gvn_replace_by(callprojs.exobj, ex_oop);
2003     }
2004   }
2005 
2006   // Disconnect the call from the graph
2007   call->disconnect_inputs(C);
2008   C->gvn_replace_by(call, C->top());
2009 
2010   // Clean up any MergeMems that feed other MergeMems since the
2011   // optimizer doesn't like that.
2012   while (wl.size() > 0) {
2013     _gvn.transform(wl.pop());
2014   }
2015 
2016   if (callprojs.fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2017     replaced_nodes.apply(C, final_ctl);
2018   }
2019   if (!ex_ctl->is_top() && do_replaced_nodes) {
2020     replaced_nodes_exception.apply(C, ex_ctl);
2021   }
2022 }
2023 
2024 
2025 //------------------------------increment_counter------------------------------
2026 // for statistics: increment a VM counter by 1
2027 
2028 void GraphKit::increment_counter(address counter_addr) {
2029   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2030   increment_counter(adr1);
2031 }
2032 
2033 void GraphKit::increment_counter(Node* counter_addr) {
2034   int adr_type = Compile::AliasIdxRaw;
2035   Node* ctrl = control();
2036   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);

2195  *
2196  * @param n          node that the type applies to
2197  * @param exact_kls  type from profiling
2198  * @param maybe_null did profiling see null?
2199  *
2200  * @return           node with improved type
2201  */
2202 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2203   const Type* current_type = _gvn.type(n);
2204   assert(UseTypeSpeculation, "type speculation must be on");
2205 
2206   const TypePtr* speculative = current_type->speculative();
2207 
2208   // Should the klass from the profile be recorded in the speculative type?
2209   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2210     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2211     const TypeOopPtr* xtype = tklass->as_instance_type();
2212     assert(xtype->klass_is_exact(), "Should be exact");
2213     // Any reason to believe n is not null (from this profiling or a previous one)?
2214     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2215     const TypePtr* ptr = (ptr_kind == ProfileMaybeNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2216     // record the new speculative type's depth
2217     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2218     speculative = speculative->with_inline_depth(jvms()->depth());
2219   } else if (current_type->would_improve_ptr(ptr_kind)) {
2220     // Profiling report that null was never seen so we can change the
2221     // speculative type to non null ptr.
2222     if (ptr_kind == ProfileAlwaysNull) {
2223       speculative = TypePtr::NULL_PTR;
2224     } else {
2225       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2226       const TypePtr* ptr = TypePtr::NOTNULL;
2227       if (speculative != nullptr) {
2228         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2229       } else {
2230         speculative = ptr;
2231       }
2232     }
2233   }
2234 
2235   if (speculative != current_type->speculative()) {
2236     // Build a type with a speculative type (what we think we know
2237     // about the type but will need a guard when we use it)
2238     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2239     // We're changing the type, we need a new CheckCast node to carry
2240     // the new type. The new type depends on the control: what
2241     // profiling tells us is only valid from here as far as we can
2242     // tell.
2243     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2244     cast = _gvn.transform(cast);
2245     replace_in_map(n, cast);
2246     n = cast;
2247   }
2248 
2249   return n;
2250 }
2251 
2252 /**
2253  * Record profiling data from receiver profiling at an invoke with the
2254  * type system so that it can propagate it (speculation)
2255  *
2256  * @param n  receiver node
2257  *
2258  * @return   node with improved type
2259  */
2260 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2261   if (!UseTypeSpeculation) {
2262     return n;
2263   }
2264   ciKlass* exact_kls = profile_has_unique_klass();
2265   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2266   if ((java_bc() == Bytecodes::_checkcast ||
2267        java_bc() == Bytecodes::_instanceof ||
2268        java_bc() == Bytecodes::_aastore) &&
2269       method()->method_data()->is_mature()) {
2270     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2271     if (data != nullptr) {
2272       if (!data->as_BitData()->null_seen()) {
2273         ptr_kind = ProfileNeverNull;







2274       } else {
2275         assert(data->is_ReceiverTypeData(), "bad profile data type");
2276         ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2277         uint i = 0;
2278         for (; i < call->row_limit(); i++) {
2279           ciKlass* receiver = call->receiver(i);
2280           if (receiver != nullptr) {
2281             break;




2282           }

2283         }
2284         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2285       }
2286     }
2287   }
2288   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2289 }
2290 
2291 /**
2292  * Record profiling data from argument profiling at an invoke with the
2293  * type system so that it can propagate it (speculation)
2294  *
2295  * @param dest_method  target method for the call
2296  * @param bc           what invoke bytecode is this?
2297  */
2298 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2299   if (!UseTypeSpeculation) {
2300     return;
2301   }
2302   const TypeFunc* tf    = TypeFunc::make(dest_method);
2303   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2304   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2305   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2306     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2307     if (is_reference_type(targ->basic_type())) {
2308       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2309       ciKlass* better_type = nullptr;
2310       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2311         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2312       }
2313       i++;
2314     }
2315   }
2316 }
2317 
2318 /**
2319  * Record profiling data from parameter profiling at an invoke with
2320  * the type system so that it can propagate it (speculation)
2321  */
2322 void GraphKit::record_profiled_parameters_for_speculation() {
2323   if (!UseTypeSpeculation) {
2324     return;
2325   }
2326   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2340  * the type system so that it can propagate it (speculation)
2341  */
2342 void GraphKit::record_profiled_return_for_speculation() {
2343   if (!UseTypeSpeculation) {
2344     return;
2345   }
2346   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2347   ciKlass* better_type = nullptr;
2348   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2349     // If profiling reports a single type for the return value,
2350     // feed it to the type system so it can propagate it as a
2351     // speculative type
2352     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2353   }
2354 }
2355 
2356 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2357   if (Matcher::strict_fp_requires_explicit_rounding) {
2358     // (Note:  TypeFunc::make has a cache that makes this fast.)
2359     const TypeFunc* tf    = TypeFunc::make(dest_method);
2360     int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2361     for (int j = 0; j < nargs; j++) {
2362       const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2363       if (targ->basic_type() == T_DOUBLE) {
2364         // If any parameters are doubles, they must be rounded before
2365         // the call, dprecision_rounding does gvn.transform
2366         Node *arg = argument(j);
2367         arg = dprecision_rounding(arg);
2368         set_argument(j, arg);
2369       }
2370     }
2371   }
2372 }
2373 
2374 // rounding for strict float precision conformance
2375 Node* GraphKit::precision_rounding(Node* n) {
2376   if (Matcher::strict_fp_requires_explicit_rounding) {
2377 #ifdef IA32
2378     if (UseSSE == 0) {
2379       return _gvn.transform(new RoundFloatNode(0, n));
2380     }
2381 #else
2382     Unimplemented();

2491                                   // The first null ends the list.
2492                                   Node* parm0, Node* parm1,
2493                                   Node* parm2, Node* parm3,
2494                                   Node* parm4, Node* parm5,
2495                                   Node* parm6, Node* parm7) {
2496   assert(call_addr != nullptr, "must not call null targets");
2497 
2498   // Slow-path call
2499   bool is_leaf = !(flags & RC_NO_LEAF);
2500   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2501   if (call_name == nullptr) {
2502     assert(!is_leaf, "must supply name for leaf");
2503     call_name = OptoRuntime::stub_name(call_addr);
2504   }
2505   CallNode* call;
2506   if (!is_leaf) {
2507     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2508   } else if (flags & RC_NO_FP) {
2509     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2510   } else  if (flags & RC_VECTOR){
2511     uint num_bits = call_type->range()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2512     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2513   } else {
2514     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2515   }
2516 
2517   // The following is similar to set_edges_for_java_call,
2518   // except that the memory effects of the call are restricted to AliasIdxRaw.
2519 
2520   // Slow path call has no side-effects, uses few values
2521   bool wide_in  = !(flags & RC_NARROW_MEM);
2522   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2523 
2524   Node* prev_mem = nullptr;
2525   if (wide_in) {
2526     prev_mem = set_predefined_input_for_runtime_call(call);
2527   } else {
2528     assert(!wide_out, "narrow in => narrow out");
2529     Node* narrow_mem = memory(adr_type);
2530     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2531   }

2571 
2572   if (has_io) {
2573     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2574   }
2575   return call;
2576 
2577 }
2578 
2579 // i2b
2580 Node* GraphKit::sign_extend_byte(Node* in) {
2581   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2582   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2583 }
2584 
2585 // i2s
2586 Node* GraphKit::sign_extend_short(Node* in) {
2587   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2588   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2589 }
2590 

2591 //------------------------------merge_memory-----------------------------------
2592 // Merge memory from one path into the current memory state.
2593 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2594   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2595     Node* old_slice = mms.force_memory();
2596     Node* new_slice = mms.memory2();
2597     if (old_slice != new_slice) {
2598       PhiNode* phi;
2599       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2600         if (mms.is_empty()) {
2601           // clone base memory Phi's inputs for this memory slice
2602           assert(old_slice == mms.base_memory(), "sanity");
2603           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2604           _gvn.set_type(phi, Type::MEMORY);
2605           for (uint i = 1; i < phi->req(); i++) {
2606             phi->init_req(i, old_slice->in(i));
2607           }
2608         } else {
2609           phi = old_slice->as_Phi(); // Phi was generated already
2610         }

2824 
2825   // Now do a linear scan of the secondary super-klass array.  Again, no real
2826   // performance impact (too rare) but it's gotta be done.
2827   // Since the code is rarely used, there is no penalty for moving it
2828   // out of line, and it can only improve I-cache density.
2829   // The decision to inline or out-of-line this final check is platform
2830   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2831   Node* psc = gvn.transform(
2832     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2833 
2834   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2835   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2836   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2837 
2838   // Return false path; set default control to true path.
2839   *ctrl = gvn.transform(r_ok_subtype);
2840   return gvn.transform(r_not_subtype);
2841 }
2842 
2843 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {





2844   bool expand_subtype_check = C->post_loop_opts_phase() ||   // macro node expansion is over
2845                               ExpandSubTypeCheckAtParseTime; // forced expansion
2846   if (expand_subtype_check) {
2847     MergeMemNode* mem = merged_memory();
2848     Node* ctrl = control();
2849     Node* subklass = obj_or_subklass;
2850     if (!_gvn.type(obj_or_subklass)->isa_klassptr()) {
2851       subklass = load_object_klass(obj_or_subklass);
2852     }
2853 
2854     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn);
2855     set_control(ctrl);
2856     return n;
2857   }
2858 
2859   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass));
2860   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2861   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2862   set_control(_gvn.transform(new IfTrueNode(iff)));
2863   return _gvn.transform(new IfFalseNode(iff));
2864 }
2865 
2866 // Profile-driven exact type check:
2867 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2868                                     float prob,
2869                                     Node* *casted_receiver) {
2870   assert(!klass->is_interface(), "no exact type check on interfaces");
2871 











2872   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
2873   Node* recv_klass = load_object_klass(receiver);
2874   Node* want_klass = makecon(tklass);
2875   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
2876   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
2877   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2878   set_control( _gvn.transform(new IfTrueNode (iff)));
2879   Node* fail = _gvn.transform(new IfFalseNode(iff));
2880 
2881   if (!stopped()) {
2882     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2883     const TypeOopPtr* recvx_type = tklass->as_instance_type();
2884     assert(recvx_type->klass_is_exact(), "");
2885 
2886     if (!receiver_type->higher_equal(recvx_type)) { // ignore redundant casts
2887       // Subsume downstream occurrences of receiver with a cast to
2888       // recv_xtype, since now we know what the type will be.
2889       Node* cast = new CheckCastPPNode(control(), receiver, recvx_type);
2890       (*casted_receiver) = _gvn.transform(cast);





2891       // (User must make the replace_in_map call.)
2892     }
2893   }
2894 
2895   return fail;
2896 }
2897 











2898 //------------------------------subtype_check_receiver-------------------------
2899 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2900                                        Node** casted_receiver) {
2901   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
2902   Node* want_klass = makecon(tklass);
2903 
2904   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
2905 
2906   // Ignore interface type information until interface types are properly tracked.
2907   if (!stopped() && !klass->is_interface()) {
2908     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
2909     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2910     if (!receiver_type->higher_equal(recv_type)) { // ignore redundant casts
2911       Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2912       (*casted_receiver) = _gvn.transform(cast);



2913     }
2914   }
2915 
2916   return slow_ctl;
2917 }
2918 
2919 //------------------------------seems_never_null-------------------------------
2920 // Use null_seen information if it is available from the profile.
2921 // If we see an unexpected null at a type check we record it and force a
2922 // recompile; the offending check will be recompiled to handle nulls.
2923 // If we see several offending BCIs, then all checks in the
2924 // method will be recompiled.
2925 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
2926   speculating = !_gvn.type(obj)->speculative_maybe_null();
2927   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
2928   if (UncommonNullCast               // Cutout for this technique
2929       && obj != null()               // And not the -Xcomp stupid case?
2930       && !too_many_traps(reason)
2931       ) {
2932     if (speculating) {
2933       return true;
2934     }
2935     if (data == nullptr)
2936       // Edge case:  no mature data.  Be optimistic here.
2937       return true;
2938     // If the profile has not seen a null, assume it won't happen.
2939     assert(java_bc() == Bytecodes::_checkcast ||
2940            java_bc() == Bytecodes::_instanceof ||
2941            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");



2942     return !data->as_BitData()->null_seen();
2943   }
2944   speculating = false;
2945   return false;
2946 }
2947 
2948 void GraphKit::guard_klass_being_initialized(Node* klass) {
2949   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
2950   Node* adr = basic_plus_adr(top(), klass, init_state_off);
2951   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
2952                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
2953                                     T_BYTE, MemNode::unordered);
2954   init_state = _gvn.transform(init_state);
2955 
2956   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
2957 
2958   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
2959   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2960 
2961   { BuildCutout unless(this, tst, PROB_MAX);

3001 
3002 //------------------------maybe_cast_profiled_receiver-------------------------
3003 // If the profile has seen exactly one type, narrow to exactly that type.
3004 // Subsequent type checks will always fold up.
3005 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3006                                              const TypeKlassPtr* require_klass,
3007                                              ciKlass* spec_klass,
3008                                              bool safe_for_replace) {
3009   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3010 
3011   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3012 
3013   // Make sure we haven't already deoptimized from this tactic.
3014   if (too_many_traps_or_recompiles(reason))
3015     return nullptr;
3016 
3017   // (No, this isn't a call, but it's enough like a virtual call
3018   // to use the same ciMethod accessor to get the profile info...)
3019   // If we have a speculative type use it instead of profiling (which
3020   // may not help us)
3021   ciKlass* exact_kls = spec_klass == nullptr ? profile_has_unique_klass() : spec_klass;













3022   if (exact_kls != nullptr) {// no cast failures here
3023     if (require_klass == nullptr ||
3024         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3025       // If we narrow the type to match what the type profile sees or
3026       // the speculative type, we can then remove the rest of the
3027       // cast.
3028       // This is a win, even if the exact_kls is very specific,
3029       // because downstream operations, such as method calls,
3030       // will often benefit from the sharper type.
3031       Node* exact_obj = not_null_obj; // will get updated in place...
3032       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3033                                             &exact_obj);
3034       { PreserveJVMState pjvms(this);
3035         set_control(slow_ctl);
3036         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3037       }
3038       if (safe_for_replace) {
3039         replace_in_map(not_null_obj, exact_obj);
3040       }
3041       return exact_obj;

3131   // If not_null_obj is dead, only null-path is taken
3132   if (stopped()) {              // Doing instance-of on a null?
3133     set_control(null_ctl);
3134     return intcon(0);
3135   }
3136   region->init_req(_null_path, null_ctl);
3137   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3138   if (null_ctl == top()) {
3139     // Do this eagerly, so that pattern matches like is_diamond_phi
3140     // will work even during parsing.
3141     assert(_null_path == PATH_LIMIT-1, "delete last");
3142     region->del_req(_null_path);
3143     phi   ->del_req(_null_path);
3144   }
3145 
3146   // Do we know the type check always succeed?
3147   bool known_statically = false;
3148   if (_gvn.type(superklass)->singleton()) {
3149     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3150     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3151     if (subk->is_loaded()) {
3152       int static_res = C->static_subtype_check(superk, subk);
3153       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3154     }
3155   }
3156 
3157   if (!known_statically) {
3158     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3159     // We may not have profiling here or it may not help us. If we
3160     // have a speculative type use it to perform an exact cast.
3161     ciKlass* spec_obj_type = obj_type->speculative_type();
3162     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3163       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3164       if (stopped()) {            // Profile disagrees with this path.
3165         set_control(null_ctl);    // Null is the only remaining possibility.
3166         return intcon(0);
3167       }
3168       if (cast_obj != nullptr) {
3169         not_null_obj = cast_obj;
3170       }
3171     }

3187   record_for_igvn(region);
3188 
3189   // If we know the type check always succeeds then we don't use the
3190   // profiling data at this bytecode. Don't lose it, feed it to the
3191   // type system as a speculative type.
3192   if (safe_for_replace) {
3193     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3194     replace_in_map(obj, casted_obj);
3195   }
3196 
3197   return _gvn.transform(phi);
3198 }
3199 
3200 //-------------------------------gen_checkcast---------------------------------
3201 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3202 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3203 // uncommon-trap paths work.  Adjust stack after this call.
3204 // If failure_control is supplied and not null, it is filled in with
3205 // the control edge for the cast failure.  Otherwise, an appropriate
3206 // uncommon trap or exception is thrown.
3207 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3208                               Node* *failure_control) {
3209   kill_dead_locals();           // Benefit all the uncommon traps
3210   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr()->try_improve();
3211   const TypeOopPtr *toop = tk->cast_to_exactness(false)->as_instance_type();


3212 
3213   // Fast cutout:  Check the case that the cast is vacuously true.
3214   // This detects the common cases where the test will short-circuit
3215   // away completely.  We do this before we perform the null check,
3216   // because if the test is going to turn into zero code, we don't
3217   // want a residual null check left around.  (Causes a slowdown,
3218   // for example, in some objArray manipulations, such as a[i]=a[j].)
3219   if (tk->singleton()) {
3220     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3221     if (objtp != nullptr) {
3222       switch (C->static_subtype_check(tk, objtp->as_klass_type())) {







3223       case Compile::SSC_always_true:
3224         // If we know the type check always succeed then we don't use
3225         // the profiling data at this bytecode. Don't lose it, feed it
3226         // to the type system as a speculative type.
3227         return record_profiled_receiver_for_speculation(obj);






3228       case Compile::SSC_always_false:




3229         // It needs a null check because a null will *pass* the cast check.
3230         // A non-null value will always produce an exception.
3231         if (!objtp->maybe_null()) {
3232           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3233           Deoptimization::DeoptReason reason = is_aastore ?
3234             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3235           builtin_throw(reason);
3236           return top();
3237         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3238           return null_assert(obj);
3239         }
3240         break; // Fall through to full check
3241       default:
3242         break;
3243       }
3244     }
3245   }
3246 
3247   ciProfileData* data = nullptr;
3248   bool safe_for_replace = false;
3249   if (failure_control == nullptr) {        // use MDO in regular case only
3250     assert(java_bc() == Bytecodes::_aastore ||
3251            java_bc() == Bytecodes::_checkcast,
3252            "interpreter profiles type checks only for these BCs");
3253     data = method()->method_data()->bci_to_data(bci());
3254     safe_for_replace = true;

3255   }
3256 
3257   // Make the merge point
3258   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3259   RegionNode* region = new RegionNode(PATH_LIMIT);
3260   Node*       phi    = new PhiNode(region, toop);



3261   C->set_has_split_ifs(true); // Has chance for split-if optimization
3262 
3263   // Use null-cast information if it is available
3264   bool speculative_not_null = false;
3265   bool never_see_null = ((failure_control == nullptr)  // regular case only
3266                          && seems_never_null(obj, data, speculative_not_null));
3267 







3268   // Null check; get casted pointer; set region slot 3
3269   Node* null_ctl = top();
3270   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);






3271 
3272   // If not_null_obj is dead, only null-path is taken
3273   if (stopped()) {              // Doing instance-of on a null?
3274     set_control(null_ctl);



3275     return null();
3276   }
3277   region->init_req(_null_path, null_ctl);
3278   phi   ->init_req(_null_path, null());  // Set null path value
3279   if (null_ctl == top()) {
3280     // Do this eagerly, so that pattern matches like is_diamond_phi
3281     // will work even during parsing.
3282     assert(_null_path == PATH_LIMIT-1, "delete last");
3283     region->del_req(_null_path);
3284     phi   ->del_req(_null_path);
3285   }
3286 
3287   Node* cast_obj = nullptr;
3288   if (tk->klass_is_exact()) {
3289     // The following optimization tries to statically cast the speculative type of the object
3290     // (for example obtained during profiling) to the type of the superklass and then do a
3291     // dynamic check that the type of the object is what we expect. To work correctly
3292     // for checkcast and aastore the type of superklass should be exact.
3293     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3294     // We may not have profiling here or it may not help us. If we have
3295     // a speculative type use it to perform an exact cast.
3296     ciKlass* spec_obj_type = obj_type->speculative_type();
3297     if (spec_obj_type != nullptr || data != nullptr) {
3298       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk, spec_obj_type, safe_for_replace);
3299       if (cast_obj != nullptr) {
3300         if (failure_control != nullptr) // failure is now impossible
3301           (*failure_control) = top();
3302         // adjust the type of the phi to the exact klass:
3303         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3304       }
3305     }
3306   }
3307 
3308   if (cast_obj == nullptr) {
3309     // Generate the subtype check
3310     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass );
3311 
3312     // Plug in success path into the merge
3313     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3314     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3315     if (failure_control == nullptr) {
3316       if (not_subtype_ctrl != top()) { // If failure is possible
3317         PreserveJVMState pjvms(this);
3318         set_control(not_subtype_ctrl);






3319         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3320         Deoptimization::DeoptReason reason = is_aastore ?
3321           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3322         builtin_throw(reason);
3323       }
3324     } else {
3325       (*failure_control) = not_subtype_ctrl;
3326     }
3327   }
3328 
3329   region->init_req(_obj_path, control());
3330   phi   ->init_req(_obj_path, cast_obj);
3331 
3332   // A merge of null or Casted-NotNull obj
3333   Node* res = _gvn.transform(phi);
3334 
3335   // Note I do NOT always 'replace_in_map(obj,result)' here.
3336   //  if( tk->klass()->can_be_primary_super()  )
3337     // This means that if I successfully store an Object into an array-of-String
3338     // I 'forget' that the Object is really now known to be a String.  I have to
3339     // do this because we don't have true union types for interfaces - if I store
3340     // a Baz into an array-of-Interface and then tell the optimizer it's an
3341     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3342     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3343   //  replace_in_map( obj, res );
3344 
3345   // Return final merged results
3346   set_control( _gvn.transform(region) );
3347   record_for_igvn(region);
3348 
3349   return record_profiled_receiver_for_speculation(res);

























































































































3350 }
3351 
3352 //------------------------------next_monitor-----------------------------------
3353 // What number should be given to the next monitor?
3354 int GraphKit::next_monitor() {
3355   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3356   int next = current + C->sync_stack_slots();
3357   // Keep the toplevel high water mark current:
3358   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3359   return current;
3360 }
3361 
3362 //------------------------------insert_mem_bar---------------------------------
3363 // Memory barrier to avoid floating things around
3364 // The membar serves as a pinch point between both control and all memory slices.
3365 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3366   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3367   mb->init_req(TypeFunc::Control, control());
3368   mb->init_req(TypeFunc::Memory,  reset_memory());
3369   Node* membar = _gvn.transform(mb);

3397   }
3398   Node* membar = _gvn.transform(mb);
3399   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3400   if (alias_idx == Compile::AliasIdxBot) {
3401     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3402   } else {
3403     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3404   }
3405   return membar;
3406 }
3407 
3408 //------------------------------shared_lock------------------------------------
3409 // Emit locking code.
3410 FastLockNode* GraphKit::shared_lock(Node* obj) {
3411   // bci is either a monitorenter bc or InvocationEntryBci
3412   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3413   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3414 
3415   if( !GenerateSynchronizationCode )
3416     return nullptr;                // Not locking things?

3417   if (stopped())                // Dead monitor?
3418     return nullptr;
3419 
3420   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3421 
3422   // Box the stack location
3423   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3424   Node* mem = reset_memory();
3425 
3426   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3427 
3428   // Create the rtm counters for this fast lock if needed.
3429   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3430 
3431   // Add monitor to debug info for the slow path.  If we block inside the
3432   // slow path and de-opt, we need the monitor hanging around
3433   map()->push_monitor( flock );
3434 
3435   const TypeFunc *tf = LockNode::lock_type();
3436   LockNode *lock = new LockNode(C, tf);

3465   }
3466 #endif
3467 
3468   return flock;
3469 }
3470 
3471 
3472 //------------------------------shared_unlock----------------------------------
3473 // Emit unlocking code.
3474 void GraphKit::shared_unlock(Node* box, Node* obj) {
3475   // bci is either a monitorenter bc or InvocationEntryBci
3476   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3477   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3478 
3479   if( !GenerateSynchronizationCode )
3480     return;
3481   if (stopped()) {               // Dead monitor?
3482     map()->pop_monitor();        // Kill monitor from debug info
3483     return;
3484   }

3485 
3486   // Memory barrier to avoid floating things down past the locked region
3487   insert_mem_bar(Op_MemBarReleaseLock);
3488 
3489   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3490   UnlockNode *unlock = new UnlockNode(C, tf);
3491 #ifdef ASSERT
3492   unlock->set_dbg_jvms(sync_jvms());
3493 #endif
3494   uint raw_idx = Compile::AliasIdxRaw;
3495   unlock->init_req( TypeFunc::Control, control() );
3496   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3497   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3498   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3499   unlock->init_req( TypeFunc::ReturnAdr, top() );
3500 
3501   unlock->init_req(TypeFunc::Parms + 0, obj);
3502   unlock->init_req(TypeFunc::Parms + 1, box);
3503   unlock = _gvn.transform(unlock)->as_Unlock();
3504 
3505   Node* mem = reset_memory();
3506 
3507   // unlock has no side-effects, sets few values
3508   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3509 
3510   // Kill monitor from debug info
3511   map()->pop_monitor( );
3512 }
3513 
3514 //-------------------------------get_layout_helper-----------------------------
3515 // If the given klass is a constant or known to be an array,
3516 // fetch the constant layout helper value into constant_value
3517 // and return null.  Otherwise, load the non-constant
3518 // layout helper value, and return the node which represents it.
3519 // This two-faced routine is useful because allocation sites
3520 // almost always feature constant types.
3521 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3522   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3523   if (!StressReflectiveCode && inst_klass != nullptr) {
3524     bool    xklass = inst_klass->klass_is_exact();
3525     if (xklass || inst_klass->isa_aryklassptr()) {







3526       jint lhelper;
3527       if (inst_klass->isa_aryklassptr()) {
3528         BasicType elem = inst_klass->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type();


3529         if (is_reference_type(elem, true)) {
3530           elem = T_OBJECT;
3531         }
3532         lhelper = Klass::array_layout_helper(elem);
3533       } else {
3534         lhelper = inst_klass->is_instklassptr()->exact_klass()->layout_helper();
3535       }
3536       if (lhelper != Klass::_lh_neutral_value) {
3537         constant_value = lhelper;
3538         return (Node*) nullptr;
3539       }
3540     }
3541   }
3542   constant_value = Klass::_lh_neutral_value;  // put in a known value
3543   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3544   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3545 }
3546 
3547 // We just put in an allocate/initialize with a big raw-memory effect.
3548 // Hook selected additional alias categories on the initialization.
3549 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3550                                 MergeMemNode* init_in_merge,
3551                                 Node* init_out_raw) {
3552   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3553   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3554 
3555   Node* prevmem = kit.memory(alias_idx);
3556   init_in_merge->set_memory_at(alias_idx, prevmem);
3557   kit.set_memory(init_out_raw, alias_idx);


3558 }
3559 
3560 //---------------------------set_output_for_allocation-------------------------
3561 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3562                                           const TypeOopPtr* oop_type,
3563                                           bool deoptimize_on_exception) {
3564   int rawidx = Compile::AliasIdxRaw;
3565   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3566   add_safepoint_edges(alloc);
3567   Node* allocx = _gvn.transform(alloc);
3568   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3569   // create memory projection for i_o
3570   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3571   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3572 
3573   // create a memory projection as for the normal control path
3574   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3575   set_memory(malloc, rawidx);
3576 
3577   // a normal slow-call doesn't change i_o, but an allocation does
3578   // we create a separate i_o projection for the normal control path
3579   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3580   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3581 
3582   // put in an initialization barrier
3583   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3584                                                  rawoop)->as_Initialize();
3585   assert(alloc->initialization() == init,  "2-way macro link must work");
3586   assert(init ->allocation()     == alloc, "2-way macro link must work");
3587   {
3588     // Extract memory strands which may participate in the new object's
3589     // initialization, and source them from the new InitializeNode.
3590     // This will allow us to observe initializations when they occur,
3591     // and link them properly (as a group) to the InitializeNode.
3592     assert(init->in(InitializeNode::Memory) == malloc, "");
3593     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3594     init->set_req(InitializeNode::Memory, minit_in);
3595     record_for_igvn(minit_in); // fold it up later, if possible

3596     Node* minit_out = memory(rawidx);
3597     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3598     // Add an edge in the MergeMem for the header fields so an access
3599     // to one of those has correct memory state
3600     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3601     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3602     if (oop_type->isa_aryptr()) {
3603       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3604       int            elemidx  = C->get_alias_index(telemref);
3605       hook_memory_on_init(*this, elemidx, minit_in, minit_out);

























3606     } else if (oop_type->isa_instptr()) {

3607       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3608       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3609         ciField* field = ik->nonstatic_field_at(i);
3610         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3611           continue;  // do not bother to track really large numbers of fields
3612         // Find (or create) the alias category for this field:
3613         int fieldidx = C->alias_type(field)->index();
3614         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3615       }
3616     }
3617   }
3618 
3619   // Cast raw oop to the real thing...
3620   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3621   javaoop = _gvn.transform(javaoop);
3622   C->set_recent_alloc(control(), javaoop);
3623   assert(just_allocated_object(control()) == javaoop, "just allocated");
3624 
3625 #ifdef ASSERT
3626   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

3637       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3638     }
3639   }
3640 #endif //ASSERT
3641 
3642   return javaoop;
3643 }
3644 
3645 //---------------------------new_instance--------------------------------------
3646 // This routine takes a klass_node which may be constant (for a static type)
3647 // or may be non-constant (for reflective code).  It will work equally well
3648 // for either, and the graph will fold nicely if the optimizer later reduces
3649 // the type to a constant.
3650 // The optional arguments are for specialized use by intrinsics:
3651 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3652 //  - If 'return_size_val', report the total object size to the caller.
3653 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3654 Node* GraphKit::new_instance(Node* klass_node,
3655                              Node* extra_slow_test,
3656                              Node* *return_size_val,
3657                              bool deoptimize_on_exception) {

3658   // Compute size in doublewords
3659   // The size is always an integral number of doublewords, represented
3660   // as a positive bytewise size stored in the klass's layout_helper.
3661   // The layout_helper also encodes (in a low bit) the need for a slow path.
3662   jint  layout_con = Klass::_lh_neutral_value;
3663   Node* layout_val = get_layout_helper(klass_node, layout_con);
3664   int   layout_is_con = (layout_val == nullptr);
3665 
3666   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
3667   // Generate the initial go-slow test.  It's either ALWAYS (return a
3668   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
3669   // case) a computed value derived from the layout_helper.
3670   Node* initial_slow_test = nullptr;
3671   if (layout_is_con) {
3672     assert(!StressReflectiveCode, "stress mode does not use these paths");
3673     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3674     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3675   } else {   // reflective case
3676     // This reflective path is used by Unsafe.allocateInstance.
3677     // (It may be stress-tested by specifying StressReflectiveCode.)
3678     // Basically, we want to get into the VM is there's an illegal argument.
3679     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3680     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3681     if (extra_slow_test != intcon(0)) {
3682       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3683     }
3684     // (Macro-expander will further convert this to a Bool, if necessary.)

3695 
3696     // Clear the low bits to extract layout_helper_size_in_bytes:
3697     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3698     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3699     size = _gvn.transform( new AndXNode(size, mask) );
3700   }
3701   if (return_size_val != nullptr) {
3702     (*return_size_val) = size;
3703   }
3704 
3705   // This is a precise notnull oop of the klass.
3706   // (Actually, it need not be precise if this is a reflective allocation.)
3707   // It's what we cast the result to.
3708   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3709   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
3710   const TypeOopPtr* oop_type = tklass->as_instance_type();
3711 
3712   // Now generate allocation code
3713 
3714   // The entire memory state is needed for slow path of the allocation
3715   // since GC and deoptimization can happened.
3716   Node *mem = reset_memory();
3717   set_all_memory(mem); // Create new memory state
3718 
3719   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3720                                          control(), mem, i_o(),
3721                                          size, klass_node,
3722                                          initial_slow_test);
3723 
3724   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3725 }
3726 
3727 //-------------------------------new_array-------------------------------------
3728 // helper for both newarray and anewarray
3729 // The 'length' parameter is (obviously) the length of the array.
3730 // See comments on new_instance for the meaning of the other arguments.
3731 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3732                           Node* length,         // number of array elements
3733                           int   nargs,          // number of arguments to push back for uncommon trap
3734                           Node* *return_size_val,
3735                           bool deoptimize_on_exception) {
3736   jint  layout_con = Klass::_lh_neutral_value;
3737   Node* layout_val = get_layout_helper(klass_node, layout_con);
3738   int   layout_is_con = (layout_val == nullptr);
3739 
3740   if (!layout_is_con && !StressReflectiveCode &&
3741       !too_many_traps(Deoptimization::Reason_class_check)) {
3742     // This is a reflective array creation site.
3743     // Optimistically assume that it is a subtype of Object[],
3744     // so that we can fold up all the address arithmetic.
3745     layout_con = Klass::array_layout_helper(T_OBJECT);
3746     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3747     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3748     { BuildCutout unless(this, bol_lh, PROB_MAX);
3749       inc_sp(nargs);
3750       uncommon_trap(Deoptimization::Reason_class_check,
3751                     Deoptimization::Action_maybe_recompile);
3752     }
3753     layout_val = nullptr;
3754     layout_is_con = true;
3755   }
3756 
3757   // Generate the initial go-slow test.  Make sure we do not overflow
3758   // if length is huge (near 2Gig) or negative!  We do not need
3759   // exact double-words here, just a close approximation of needed
3760   // double-words.  We can't add any offset or rounding bits, lest we
3761   // take a size -1 of bytes and make it positive.  Use an unsigned
3762   // compare, so negative sizes look hugely positive.
3763   int fast_size_limit = FastAllocateSizeLimit;
3764   if (layout_is_con) {
3765     assert(!StressReflectiveCode, "stress mode does not use these paths");
3766     // Increase the size limit if we have exact knowledge of array type.
3767     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3768     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3769   }
3770 
3771   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3772   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3773 
3774   // --- Size Computation ---
3775   // array_size = round_to_heap(array_header + (length << elem_shift));
3776   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3777   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3778   // The rounding mask is strength-reduced, if possible.
3779   int round_mask = MinObjAlignmentInBytes - 1;
3780   Node* header_size = nullptr;
3781   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3782   // (T_BYTE has the weakest alignment and size restrictions...)
3783   if (layout_is_con) {
3784     int       hsize  = Klass::layout_helper_header_size(layout_con);
3785     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3786     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3787     if ((round_mask & ~right_n_bits(eshift)) == 0)
3788       round_mask = 0;  // strength-reduce it if it goes away completely
3789     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3790     assert(header_size_min <= hsize, "generic minimum is smallest");
3791     header_size_min = hsize;
3792     header_size = intcon(hsize + round_mask);
3793   } else {
3794     Node* hss   = intcon(Klass::_lh_header_size_shift);
3795     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3796     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3797     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3798     Node* mask  = intcon(round_mask);
3799     header_size = _gvn.transform( new AddINode(hsize, mask) );
3800   }
3801 
3802   Node* elem_shift = nullptr;
3803   if (layout_is_con) {
3804     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3805     if (eshift != 0)
3806       elem_shift = intcon(eshift);
3807   } else {
3808     // There is no need to mask or shift this value.
3809     // The semantics of LShiftINode include an implicit mask to 0x1F.

3853   // places, one where the length is sharply limited, and the other
3854   // after a successful allocation.
3855   Node* abody = lengthx;
3856   if (elem_shift != nullptr)
3857     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3858   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3859   if (round_mask != 0) {
3860     Node* mask = MakeConX(~round_mask);
3861     size       = _gvn.transform( new AndXNode(size, mask) );
3862   }
3863   // else if round_mask == 0, the size computation is self-rounding
3864 
3865   if (return_size_val != nullptr) {
3866     // This is the size
3867     (*return_size_val) = size;
3868   }
3869 
3870   // Now generate allocation code
3871 
3872   // The entire memory state is needed for slow path of the allocation
3873   // since GC and deoptimization can happened.
3874   Node *mem = reset_memory();
3875   set_all_memory(mem); // Create new memory state
3876 
3877   if (initial_slow_test->is_Bool()) {
3878     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3879     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3880   }
3881 
3882   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();



























































3883   Node* valid_length_test = _gvn.intcon(1);
3884   if (ary_type->isa_aryptr()) {
3885     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
3886     jint max = TypeAryPtr::max_array_length(bt);
3887     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
3888     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
3889   }
3890 
3891   // Create the AllocateArrayNode and its result projections
3892   AllocateArrayNode* alloc
3893     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3894                             control(), mem, i_o(),
3895                             size, klass_node,
3896                             initial_slow_test,
3897                             length, valid_length_test);
3898 
3899   // Cast to correct type.  Note that the klass_node may be constant or not,
3900   // and in the latter case the actual array type will be inexact also.
3901   // (This happens via a non-constant argument to inline_native_newArray.)
3902   // In any case, the value of klass_node provides the desired array type.
3903   const TypeInt* length_type = _gvn.find_int_type(length);
3904   if (ary_type->isa_aryptr() && length_type != nullptr) {
3905     // Try to get a better type than POS for the size
3906     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3907   }
3908 
3909   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3910 
3911   array_ideal_length(alloc, ary_type, true);
3912   return javaoop;
3913 }
3914 
3915 // The following "Ideal_foo" functions are placed here because they recognize
3916 // the graph shapes created by the functions immediately above.
3917 
3918 //---------------------------Ideal_allocation----------------------------------

4028   set_all_memory(ideal.merged_memory());
4029   set_i_o(ideal.i_o());
4030   set_control(ideal.ctrl());
4031 }
4032 
4033 void GraphKit::final_sync(IdealKit& ideal) {
4034   // Final sync IdealKit and graphKit.
4035   sync_kit(ideal);
4036 }
4037 
4038 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4039   Node* len = load_array_length(load_String_value(str, set_ctrl));
4040   Node* coder = load_String_coder(str, set_ctrl);
4041   // Divide length by 2 if coder is UTF16
4042   return _gvn.transform(new RShiftINode(len, coder));
4043 }
4044 
4045 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4046   int value_offset = java_lang_String::value_offset();
4047   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4048                                                      false, nullptr, 0);
4049   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4050   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4051                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4052                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
4053   Node* p = basic_plus_adr(str, str, value_offset);
4054   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4055                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4056   return load;
4057 }
4058 
4059 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4060   if (!CompactStrings) {
4061     return intcon(java_lang_String::CODER_UTF16);
4062   }
4063   int coder_offset = java_lang_String::coder_offset();
4064   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4065                                                      false, nullptr, 0);
4066   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4067 
4068   Node* p = basic_plus_adr(str, str, coder_offset);
4069   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4070                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4071   return load;
4072 }
4073 
4074 void GraphKit::store_String_value(Node* str, Node* value) {
4075   int value_offset = java_lang_String::value_offset();
4076   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4077                                                      false, nullptr, 0);
4078   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4079 
4080   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4081                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4082 }
4083 
4084 void GraphKit::store_String_coder(Node* str, Node* value) {
4085   int coder_offset = java_lang_String::coder_offset();
4086   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4087                                                      false, nullptr, 0);
4088   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4089 
4090   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4091                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4092 }
4093 
4094 // Capture src and dst memory state with a MergeMemNode
4095 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4096   if (src_type == dst_type) {
4097     // Types are equal, we don't need a MergeMemNode
4098     return memory(src_type);
4099   }
4100   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4101   record_for_igvn(merge); // fold it up later, if possible
4102   int src_idx = C->get_alias_index(src_type);
4103   int dst_idx = C->get_alias_index(dst_type);
4104   merge->set_memory_at(src_idx, memory(src_idx));
4105   merge->set_memory_at(dst_idx, memory(dst_idx));
4106   return merge;
4107 }

4180   i_char->init_req(2, AddI(i_char, intcon(2)));
4181 
4182   set_control(IfFalse(iff));
4183   set_memory(st, TypeAryPtr::BYTES);
4184 }
4185 
4186 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4187   if (!field->is_constant()) {
4188     return nullptr; // Field not marked as constant.
4189   }
4190   ciInstance* holder = nullptr;
4191   if (!field->is_static()) {
4192     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4193     if (const_oop != nullptr && const_oop->is_instance()) {
4194       holder = const_oop->as_instance();
4195     }
4196   }
4197   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4198                                                         /*is_unsigned_load=*/false);
4199   if (con_type != nullptr) {
4200     return makecon(con_type);






4201   }
4202   return nullptr;
4203 }










   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciFlatArrayKlass.hpp"
  27 #include "ci/ciInlineKlass.hpp"
  28 #include "ci/ciUtilities.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "ci/ciObjArray.hpp"
  31 #include "asm/register.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/barrierSet.hpp"
  34 #include "gc/shared/c2/barrierSetC2.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/castnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/graphKit.hpp"
  41 #include "opto/idealKit.hpp"
  42 #include "opto/inlinetypenode.hpp"
  43 #include "opto/intrinsicnode.hpp"
  44 #include "opto/locknode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/rootnode.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/subtypenode.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "utilities/bitMap.inline.hpp"
  55 #include "utilities/powerOfTwo.hpp"
  56 #include "utilities/growableArray.hpp"
  57 
  58 //----------------------------GraphKit-----------------------------------------
  59 // Main utility constructor.
  60 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  61   : Phase(Phase::Parser),
  62     _env(C->env()),
  63     _gvn((gvn != nullptr) ? *gvn : *C->initial_gvn()),
  64     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  65 {
  66   assert(gvn == nullptr || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  67   _exceptions = jvms->map()->next_exception();
  68   if (_exceptions != nullptr)  jvms->map()->set_next_exception(nullptr);
  69   set_jvms(jvms);
  70 #ifdef ASSERT
  71   if (_gvn.is_IterGVN() != nullptr) {
  72     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  73     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  74     _worklist_size = _gvn.C->for_igvn()->size();
  75   }
  76 #endif
  77 }
  78 
  79 // Private constructor for parser.
  80 GraphKit::GraphKit()
  81   : Phase(Phase::Parser),
  82     _env(C->env()),
  83     _gvn(*C->initial_gvn()),
  84     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  85 {
  86   _exceptions = nullptr;
  87   set_map(nullptr);
  88   debug_only(_sp = -99);
  89   debug_only(set_bci(-99));
  90 }
  91 
  92 
  93 
  94 //---------------------------clean_stack---------------------------------------
  95 // Clear away rubbish from the stack area of the JVM state.
  96 // This destroys any arguments that may be waiting on the stack.

 852         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 853           tty->print_cr("Zombie local %d: ", local);
 854           jvms->dump();
 855         }
 856         return false;
 857       }
 858     }
 859   }
 860   return true;
 861 }
 862 
 863 #endif //ASSERT
 864 
 865 // Helper function for enforcing certain bytecodes to reexecute if deoptimization happens.
 866 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 867   ciMethod* cur_method = jvms->method();
 868   int       cur_bci   = jvms->bci();
 869   if (cur_method != nullptr && cur_bci != InvocationEntryBci) {
 870     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 871     return Interpreter::bytecode_should_reexecute(code) ||
 872            (is_anewarray && (code == Bytecodes::_multianewarray));
 873     // Reexecute _multianewarray bytecode which was replaced with
 874     // sequence of [a]newarray. See Parse::do_multianewarray().
 875     //
 876     // Note: interpreter should not have it set since this optimization
 877     // is limited by dimensions and guarded by flag so in some cases
 878     // multianewarray() runtime calls will be generated and
 879     // the bytecode should not be reexecutes (stack will not be reset).
 880   } else {
 881     return false;
 882   }
 883 }
 884 
 885 // Helper function for adding JVMState and debug information to node
 886 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 887   // Add the safepoint edges to the call (or other safepoint).
 888 
 889   // Make sure dead locals are set to top.  This
 890   // should help register allocation time and cut down on the size
 891   // of the deoptimization information.
 892   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");

1112       ciSignature* declared_signature = nullptr;
1113       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1114       assert(declared_signature != nullptr, "cannot be null");
1115       inputs   = declared_signature->arg_size_for_bc(code);
1116       int size = declared_signature->return_type()->size();
1117       depth = size - inputs;
1118     }
1119     break;
1120 
1121   case Bytecodes::_multianewarray:
1122     {
1123       ciBytecodeStream iter(method());
1124       iter.reset_to_bci(bci());
1125       iter.next();
1126       inputs = iter.get_dimensions();
1127       assert(rsize() == 1, "");
1128       depth = 1 - inputs;
1129     }
1130     break;
1131 
1132   case Bytecodes::_withfield: {
1133     bool ignored_will_link;
1134     ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1135     int      size  = field->type()->size();
1136     inputs = size+1;
1137     depth = rsize() - inputs;
1138     break;
1139   }
1140 
1141   case Bytecodes::_ireturn:
1142   case Bytecodes::_lreturn:
1143   case Bytecodes::_freturn:
1144   case Bytecodes::_dreturn:
1145   case Bytecodes::_areturn:
1146     assert(rsize() == -depth, "");
1147     inputs = -depth;
1148     break;
1149 
1150   case Bytecodes::_jsr:
1151   case Bytecodes::_jsr_w:
1152     inputs = 0;
1153     depth  = 1;                  // S.B. depth=1, not zero
1154     break;
1155 
1156   default:
1157     // bytecode produces a typed result
1158     inputs = rsize() - depth;
1159     assert(inputs >= 0, "");
1160     break;

1203   Node* conv = _gvn.transform( new ConvI2LNode(offset));
1204   Node* mask = _gvn.transform(ConLNode::make((julong) max_juint));
1205   return _gvn.transform( new AndLNode(conv, mask) );
1206 }
1207 
1208 Node* GraphKit::ConvL2I(Node* offset) {
1209   // short-circuit a common case
1210   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1211   if (offset_con != (jlong)Type::OffsetBot) {
1212     return intcon((int) offset_con);
1213   }
1214   return _gvn.transform( new ConvL2INode(offset));
1215 }
1216 
1217 //-------------------------load_object_klass-----------------------------------
1218 Node* GraphKit::load_object_klass(Node* obj) {
1219   // Special-case a fresh allocation to avoid building nodes:
1220   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1221   if (akls != nullptr)  return akls;
1222   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1223   return _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeInstKlassPtr::OBJECT));
1224 }
1225 
1226 //-------------------------load_array_length-----------------------------------
1227 Node* GraphKit::load_array_length(Node* array) {
1228   // Special-case a fresh allocation to avoid building nodes:
1229   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1230   Node *alen;
1231   if (alloc == nullptr) {
1232     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1233     alen = _gvn.transform( new LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1234   } else {
1235     alen = array_ideal_length(alloc, _gvn.type(array)->is_oopptr(), false);
1236   }
1237   return alen;
1238 }
1239 
1240 Node* GraphKit::array_ideal_length(AllocateArrayNode* alloc,
1241                                    const TypeOopPtr* oop_type,
1242                                    bool replace_length_in_map) {
1243   Node* length = alloc->Ideal_length();

1252         replace_in_map(length, ccast);
1253       }
1254       return ccast;
1255     }
1256   }
1257   return length;
1258 }
1259 
1260 //------------------------------do_null_check----------------------------------
1261 // Helper function to do a null pointer check.  Returned value is
1262 // the incoming address with null casted away.  You are allowed to use the
1263 // not-null value only if you are control dependent on the test.
1264 #ifndef PRODUCT
1265 extern int explicit_null_checks_inserted,
1266            explicit_null_checks_elided;
1267 #endif
1268 Node* GraphKit::null_check_common(Node* value, BasicType type,
1269                                   // optional arguments for variations:
1270                                   bool assert_null,
1271                                   Node* *null_control,
1272                                   bool speculative,
1273                                   bool is_init_check) {
1274   assert(!assert_null || null_control == nullptr, "not both at once");
1275   if (stopped())  return top();
1276   NOT_PRODUCT(explicit_null_checks_inserted++);
1277 
1278   if (value->is_InlineType()) {
1279     // Null checking a scalarized but nullable inline type. Check the IsInit
1280     // input instead of the oop input to avoid keeping buffer allocations alive.
1281     InlineTypeNode* vtptr = value->as_InlineType();
1282     while (vtptr->get_oop()->is_InlineType()) {
1283       vtptr = vtptr->get_oop()->as_InlineType();
1284     }
1285     null_check_common(vtptr->get_is_init(), T_INT, assert_null, null_control, speculative, true);
1286     if (stopped()) {
1287       return top();
1288     }
1289     if (assert_null) {
1290       // TODO 8284443 Scalarize here (this currently leads to compilation bailouts)
1291       // vtptr = InlineTypeNode::make_null(_gvn, vtptr->type()->inline_klass());
1292       // replace_in_map(value, vtptr);
1293       // return vtptr;
1294       return null();
1295     }
1296     bool do_replace_in_map = (null_control == nullptr || (*null_control) == top());
1297     return cast_not_null(value, do_replace_in_map);
1298   }
1299 
1300   // Construct null check
1301   Node *chk = nullptr;
1302   switch(type) {
1303     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1304     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1305     case T_PRIMITIVE_OBJECT : // fall through
1306     case T_ARRAY  : // fall through
1307       type = T_OBJECT;  // simplify further tests
1308     case T_OBJECT : {
1309       const Type *t = _gvn.type( value );
1310 
1311       const TypeOopPtr* tp = t->isa_oopptr();
1312       if (tp != nullptr && !tp->is_loaded()
1313           // Only for do_null_check, not any of its siblings:
1314           && !assert_null && null_control == nullptr) {
1315         // Usually, any field access or invocation on an unloaded oop type
1316         // will simply fail to link, since the statically linked class is
1317         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1318         // the static class is loaded but the sharper oop type is not.
1319         // Rather than checking for this obscure case in lots of places,
1320         // we simply observe that a null check on an unloaded class
1321         // will always be followed by a nonsense operation, so we
1322         // can just issue the uncommon trap here.
1323         // Our access to the unloaded class will only be correct
1324         // after it has been loaded and initialized, which requires
1325         // a trip through the interpreter.

1384         }
1385         Node *oldcontrol = control();
1386         set_control(cfg);
1387         Node *res = cast_not_null(value);
1388         set_control(oldcontrol);
1389         NOT_PRODUCT(explicit_null_checks_elided++);
1390         return res;
1391       }
1392       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1393       if (cfg == nullptr)  break;  // Quit at region nodes
1394       depth++;
1395     }
1396   }
1397 
1398   //-----------
1399   // Branch to failure if null
1400   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1401   Deoptimization::DeoptReason reason;
1402   if (assert_null) {
1403     reason = Deoptimization::reason_null_assert(speculative);
1404   } else if (type == T_OBJECT || is_init_check) {
1405     reason = Deoptimization::reason_null_check(speculative);
1406   } else {
1407     reason = Deoptimization::Reason_div0_check;
1408   }
1409   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1410   // ciMethodData::has_trap_at will return a conservative -1 if any
1411   // must-be-null assertion has failed.  This could cause performance
1412   // problems for a method after its first do_null_assert failure.
1413   // Consider using 'Reason_class_check' instead?
1414 
1415   // To cause an implicit null check, we set the not-null probability
1416   // to the maximum (PROB_MAX).  For an explicit check the probability
1417   // is set to a smaller value.
1418   if (null_control != nullptr || too_many_traps(reason)) {
1419     // probability is less likely
1420     ok_prob =  PROB_LIKELY_MAG(3);
1421   } else if (!assert_null &&
1422              (ImplicitNullCheckThreshold > 0) &&
1423              method() != nullptr &&
1424              (method()->method_data()->trap_count(reason)

1458   }
1459 
1460   if (assert_null) {
1461     // Cast obj to null on this path.
1462     replace_in_map(value, zerocon(type));
1463     return zerocon(type);
1464   }
1465 
1466   // Cast obj to not-null on this path, if there is no null_control.
1467   // (If there is a null_control, a non-null value may come back to haunt us.)
1468   if (type == T_OBJECT) {
1469     Node* cast = cast_not_null(value, false);
1470     if (null_control == nullptr || (*null_control) == top())
1471       replace_in_map(value, cast);
1472     value = cast;
1473   }
1474 
1475   return value;
1476 }
1477 

1478 //------------------------------cast_not_null----------------------------------
1479 // Cast obj to not-null on this path
1480 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1481   if (obj->is_InlineType()) {
1482     Node* vt = obj->clone();
1483     vt->as_InlineType()->set_is_init(_gvn);
1484     vt = _gvn.transform(vt);
1485     if (do_replace_in_map) {
1486       replace_in_map(obj, vt);
1487     }
1488     return vt;
1489   }
1490   const Type *t = _gvn.type(obj);
1491   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1492   // Object is already not-null?
1493   if( t == t_not_null ) return obj;
1494 
1495   Node *cast = new CastPPNode(obj,t_not_null);
1496   cast->init_req(0, control());
1497   cast = _gvn.transform( cast );
1498 
1499   // Scan for instances of 'obj' in the current JVM mapping.
1500   // These instances are known to be not-null after the test.
1501   if (do_replace_in_map)
1502     replace_in_map(obj, cast);
1503 
1504   return cast;                  // Return casted value
1505 }
1506 
1507 // Sometimes in intrinsics, we implicitly know an object is not null
1508 // (there's no actual null check) so we can cast it to not null. In
1509 // the course of optimizations, the input to the cast can become null.

1596 // These are layered on top of the factory methods in LoadNode and StoreNode,
1597 // and integrate with the parser's memory state and _gvn engine.
1598 //
1599 
1600 // factory methods in "int adr_idx"
1601 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1602                           int adr_idx,
1603                           MemNode::MemOrd mo,
1604                           LoadNode::ControlDependency control_dependency,
1605                           bool require_atomic_access,
1606                           bool unaligned,
1607                           bool mismatched,
1608                           bool unsafe,
1609                           uint8_t barrier_data) {
1610   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1611   const TypePtr* adr_type = nullptr; // debug-mode-only argument
1612   debug_only(adr_type = C->get_adr_type(adr_idx));
1613   Node* mem = memory(adr_idx);
1614   Node* ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, require_atomic_access, unaligned, mismatched, unsafe, barrier_data);
1615   ld = _gvn.transform(ld);
1616 
1617   if (((bt == T_OBJECT || bt == T_PRIMITIVE_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1618     // Improve graph before escape analysis and boxing elimination.
1619     record_for_igvn(ld);
1620   }
1621   return ld;
1622 }
1623 
1624 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1625                                 int adr_idx,
1626                                 MemNode::MemOrd mo,
1627                                 bool require_atomic_access,
1628                                 bool unaligned,
1629                                 bool mismatched,
1630                                 bool unsafe,
1631                                 int barrier_data) {
1632   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1633   const TypePtr* adr_type = nullptr;
1634   debug_only(adr_type = C->get_adr_type(adr_idx));
1635   Node *mem = memory(adr_idx);
1636   Node* st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, mo, require_atomic_access);
1637   if (unaligned) {

1643   if (unsafe) {
1644     st->as_Store()->set_unsafe_access();
1645   }
1646   st->as_Store()->set_barrier_data(barrier_data);
1647   st = _gvn.transform(st);
1648   set_memory(st, adr_idx);
1649   // Back-to-back stores can only remove intermediate store with DU info
1650   // so push on worklist for optimizer.
1651   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1652     record_for_igvn(st);
1653 
1654   return st;
1655 }
1656 
1657 Node* GraphKit::access_store_at(Node* obj,
1658                                 Node* adr,
1659                                 const TypePtr* adr_type,
1660                                 Node* val,
1661                                 const Type* val_type,
1662                                 BasicType bt,
1663                                 DecoratorSet decorators,
1664                                 bool safe_for_replace) {
1665   // Transformation of a value which could be null pointer (CastPP #null)
1666   // could be delayed during Parse (for example, in adjust_map_after_if()).
1667   // Execute transformation here to avoid barrier generation in such case.
1668   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1669     val = _gvn.makecon(TypePtr::NULL_PTR);
1670   }
1671 
1672   if (stopped()) {
1673     return top(); // Dead path ?
1674   }
1675 
1676   assert(val != nullptr, "not dead path");
1677   if (val->is_InlineType()) {
1678     // Store to non-flattened field. Buffer the inline type and make sure
1679     // the store is re-executed if the allocation triggers deoptimization.
1680     PreserveReexecuteState preexecs(this);
1681     jvms()->set_should_reexecute(true);
1682     val = val->as_InlineType()->buffer(this, safe_for_replace);
1683   }
1684 
1685   C2AccessValuePtr addr(adr, adr_type);
1686   C2AccessValue value(val, val_type);
1687   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1688   if (access.is_raw()) {
1689     return _barrier_set->BarrierSetC2::store_at(access, value);
1690   } else {
1691     return _barrier_set->store_at(access, value);
1692   }
1693 }
1694 
1695 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1696                                Node* adr,   // actual address to store val at
1697                                const TypePtr* adr_type,
1698                                const Type* val_type,
1699                                BasicType bt,
1700                                DecoratorSet decorators,
1701                                Node* ctl) {
1702   if (stopped()) {
1703     return top(); // Dead path ?
1704   }
1705 
1706   C2AccessValuePtr addr(adr, adr_type);
1707   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, obj, addr, ctl);
1708   if (access.is_raw()) {
1709     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1710   } else {
1711     return _barrier_set->load_at(access, val_type);
1712   }
1713 }
1714 
1715 Node* GraphKit::access_load(Node* adr,   // actual address to load val at
1716                             const Type* val_type,
1717                             BasicType bt,
1718                             DecoratorSet decorators) {
1719   if (stopped()) {
1720     return top(); // Dead path ?
1721   }
1722 
1723   C2AccessValuePtr addr(adr, adr->bottom_type()->is_ptr());
1724   C2ParseAccess access(this, decorators | C2_READ_ACCESS, bt, nullptr, addr);
1725   if (access.is_raw()) {
1726     return _barrier_set->BarrierSetC2::load_at(access, val_type);
1727   } else {

1792                                      Node* new_val,
1793                                      const Type* value_type,
1794                                      BasicType bt,
1795                                      DecoratorSet decorators) {
1796   C2AccessValuePtr addr(adr, adr_type);
1797   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1798   if (access.is_raw()) {
1799     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1800   } else {
1801     return _barrier_set->atomic_add_at(access, new_val, value_type);
1802   }
1803 }
1804 
1805 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1806   return _barrier_set->clone(this, src, dst, size, is_array);
1807 }
1808 
1809 //-------------------------array_element_address-------------------------
1810 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1811                                       const TypeInt* sizetype, Node* ctrl) {
1812   const TypeAryPtr* arytype = _gvn.type(ary)->is_aryptr();
1813   uint shift = arytype->is_flat() ? arytype->flat_log_elem_size() : exact_log2(type2aelembytes(elembt));
1814   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1815 
1816   // short-circuit a common case (saves lots of confusing waste motion)
1817   jint idx_con = find_int_con(idx, -1);
1818   if (idx_con >= 0) {
1819     intptr_t offset = header + ((intptr_t)idx_con << shift);
1820     return basic_plus_adr(ary, offset);
1821   }
1822 
1823   // must be correct type for alignment purposes
1824   Node* base  = basic_plus_adr(ary, header);
1825   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1826   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1827   return basic_plus_adr(ary, base, scale);
1828 }
1829 
1830 //-------------------------load_array_element-------------------------
1831 Node* GraphKit::load_array_element(Node* ary, Node* idx, const TypeAryPtr* arytype, bool set_ctrl) {
1832   const Type* elemtype = arytype->elem();
1833   BasicType elembt = elemtype->array_element_basic_type();
1834   assert(elembt != T_PRIMITIVE_OBJECT, "inline types are not supported by this method");
1835   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1836   if (elembt == T_NARROWOOP) {
1837     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1838   }
1839   Node* ld = access_load_at(ary, adr, arytype, elemtype, elembt,
1840                             IN_HEAP | IS_ARRAY | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0));
1841   return ld;
1842 }
1843 
1844 //-------------------------set_arguments_for_java_call-------------------------
1845 // Arguments (pre-popped from the stack) are taken from the JVMS.
1846 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool is_late_inline) {
1847   PreserveReexecuteState preexecs(this);
1848   if (EnableValhalla) {
1849     // Make sure the call is "re-executed", if buffering of inline type arguments triggers deoptimization.
1850     // At this point, the call hasn't been executed yet, so we will only ever execute the call once.
1851     jvms()->set_should_reexecute(true);
1852     int arg_size = method()->get_declared_signature_at_bci(bci())->arg_size_for_bc(java_bc());
1853     inc_sp(arg_size);
1854   }
1855   // Add the call arguments
1856   const TypeTuple* domain = call->tf()->domain_sig();
1857   uint nargs = domain->cnt();
1858   int arg_num = 0;
1859   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1860     Node* arg = argument(i-TypeFunc::Parms);
1861     const Type* t = domain->field_at(i);
1862     // TODO 8284443 A static call to a mismatched method should still be scalarized
1863     if (t->is_inlinetypeptr() && !call->method()->get_Method()->mismatch() && call->method()->is_scalarized_arg(arg_num)) {
1864       // We don't pass inline type arguments by reference but instead pass each field of the inline type
1865       if (!arg->is_InlineType()) {
1866         assert(_gvn.type(arg)->is_zero_type() && !t->inline_klass()->is_null_free(), "Unexpected argument type");
1867         arg = InlineTypeNode::make_from_oop(this, arg, t->inline_klass(), t->inline_klass()->is_null_free());
1868       }
1869       InlineTypeNode* vt = arg->as_InlineType();
1870       vt->pass_fields(this, call, idx, true, !t->maybe_null());
1871       // If an inline type argument is passed as fields, attach the Method* to the call site
1872       // to be able to access the extended signature later via attached_method_before_pc().
1873       // For example, see CompiledMethod::preserve_callee_argument_oops().
1874       call->set_override_symbolic_info(true);
1875       // Register an evol dependency on the callee method to make sure that this method is deoptimized and
1876       // re-compiled with a non-scalarized calling convention if the callee method is later marked as mismatched.
1877       C->dependencies()->assert_evol_method(call->method());
1878       arg_num++;
1879       continue;
1880     } else if (arg->is_InlineType()) {
1881       // Pass inline type argument via oop to callee
1882       arg = arg->as_InlineType()->buffer(this);
1883       if (!is_late_inline) {
1884         arg = arg->as_InlineType()->get_oop();
1885       }
1886     }
1887     if (t != Type::HALF) {
1888       arg_num++;
1889     }
1890     call->init_req(idx++, arg);
1891   }
1892 }
1893 
1894 //---------------------------set_edges_for_java_call---------------------------
1895 // Connect a newly created call into the current JVMS.
1896 // A return value node (if any) is returned from set_edges_for_java_call.
1897 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1898 
1899   // Add the predefined inputs:
1900   call->init_req( TypeFunc::Control, control() );
1901   call->init_req( TypeFunc::I_O    , i_o() );
1902   call->init_req( TypeFunc::Memory , reset_memory() );
1903   call->init_req( TypeFunc::FramePtr, frameptr() );
1904   call->init_req( TypeFunc::ReturnAdr, top() );
1905 
1906   add_safepoint_edges(call, must_throw);
1907 
1908   Node* xcall = _gvn.transform(call);
1909 
1910   if (xcall == top()) {
1911     set_control(top());
1912     return;
1913   }
1914   assert(xcall == call, "call identity is stable");
1915 
1916   // Re-use the current map to produce the result.
1917 
1918   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1919   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1920   set_all_memory_call(xcall, separate_io_proj);
1921 
1922   //return xcall;   // no need, caller already has it
1923 }
1924 
1925 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1926   if (stopped())  return top();  // maybe the call folded up?
1927 







1928   // Note:  Since any out-of-line call can produce an exception,
1929   // we always insert an I_O projection from the call into the result.
1930 
1931   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1932 
1933   if (separate_io_proj) {
1934     // The caller requested separate projections be used by the fall
1935     // through and exceptional paths, so replace the projections for
1936     // the fall through path.
1937     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1938     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1939   }
1940 
1941   // Capture the return value, if any.
1942   Node* ret;
1943   if (call->method() == nullptr || call->method()->return_type()->basic_type() == T_VOID) {
1944     ret = top();
1945   } else if (call->tf()->returns_inline_type_as_fields()) {
1946     // Return of multiple values (inline type fields): we create a
1947     // InlineType node, each field is a projection from the call.
1948     ciInlineKlass* vk = call->method()->return_type()->as_inline_klass();
1949     uint base_input = TypeFunc::Parms;
1950     ret = InlineTypeNode::make_from_multi(this, call, vk, base_input, false, call->method()->signature()->returns_null_free_inline_type());
1951   } else {
1952     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1953     if (call->method()->return_type()->is_inlinetype()) {
1954       ret = InlineTypeNode::make_from_oop(this, ret, call->method()->return_type()->as_inline_klass(), call->method()->signature()->returns_null_free_inline_type());
1955     }
1956   }
1957 
1958   return ret;
1959 }
1960 
1961 //--------------------set_predefined_input_for_runtime_call--------------------
1962 // Reading and setting the memory state is way conservative here.
1963 // The real problem is that I am not doing real Type analysis on memory,
1964 // so I cannot distinguish card mark stores from other stores.  Across a GC
1965 // point the Store Barrier and the card mark memory has to agree.  I cannot
1966 // have a card mark store and its barrier split across the GC point from
1967 // either above or below.  Here I get that to happen by reading ALL of memory.
1968 // A better answer would be to separate out card marks from other memory.
1969 // For now, return the input memory state, so that it can be reused
1970 // after the call, if this call has restricted memory effects.
1971 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1972   // Set fixed predefined input arguments
1973   Node* memory = reset_memory();
1974   Node* m = narrow_mem == nullptr ? memory : narrow_mem;
1975   call->init_req( TypeFunc::Control,   control()  );
1976   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1977   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs

2028     if (use->is_MergeMem()) {
2029       wl.push(use);
2030     }
2031   }
2032 }
2033 
2034 // Replace the call with the current state of the kit.
2035 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
2036   JVMState* ejvms = nullptr;
2037   if (has_exceptions()) {
2038     ejvms = transfer_exceptions_into_jvms();
2039   }
2040 
2041   ReplacedNodes replaced_nodes = map()->replaced_nodes();
2042   ReplacedNodes replaced_nodes_exception;
2043   Node* ex_ctl = top();
2044 
2045   SafePointNode* final_state = stop();
2046 
2047   // Find all the needed outputs of this call
2048   CallProjections* callprojs = call->extract_projections(true);

2049 
2050   Unique_Node_List wl;
2051   Node* init_mem = call->in(TypeFunc::Memory);
2052   Node* final_mem = final_state->in(TypeFunc::Memory);
2053   Node* final_ctl = final_state->in(TypeFunc::Control);
2054   Node* final_io = final_state->in(TypeFunc::I_O);
2055 
2056   // Replace all the old call edges with the edges from the inlining result
2057   if (callprojs->fallthrough_catchproj != nullptr) {
2058     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
2059   }
2060   if (callprojs->fallthrough_memproj != nullptr) {
2061     if (final_mem->is_MergeMem()) {
2062       // Parser's exits MergeMem was not transformed but may be optimized
2063       final_mem = _gvn.transform(final_mem);
2064     }
2065     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
2066     add_mergemem_users_to_worklist(wl, final_mem);
2067   }
2068   if (callprojs->fallthrough_ioproj != nullptr) {
2069     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
2070   }
2071 
2072   // Replace the result with the new result if it exists and is used
2073   if (callprojs->resproj[0] != nullptr && result != nullptr) {
2074     // If the inlined code is dead, the result projections for an inline type returned as
2075     // fields have not been replaced. They will go away once the call is replaced by TOP below.
2076     assert(callprojs->nb_resproj == 1 || (call->tf()->returns_inline_type_as_fields() && stopped()),
2077            "unexpected number of results");
2078     C->gvn_replace_by(callprojs->resproj[0], result);
2079   }
2080 
2081   if (ejvms == nullptr) {
2082     // No exception edges to simply kill off those paths
2083     if (callprojs->catchall_catchproj != nullptr) {
2084       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2085     }
2086     if (callprojs->catchall_memproj != nullptr) {
2087       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2088     }
2089     if (callprojs->catchall_ioproj != nullptr) {
2090       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2091     }
2092     // Replace the old exception object with top
2093     if (callprojs->exobj != nullptr) {
2094       C->gvn_replace_by(callprojs->exobj, C->top());
2095     }
2096   } else {
2097     GraphKit ekit(ejvms);
2098 
2099     // Load my combined exception state into the kit, with all phis transformed:
2100     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2101     replaced_nodes_exception = ex_map->replaced_nodes();
2102 
2103     Node* ex_oop = ekit.use_exception_state(ex_map);
2104 
2105     if (callprojs->catchall_catchproj != nullptr) {
2106       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2107       ex_ctl = ekit.control();
2108     }
2109     if (callprojs->catchall_memproj != nullptr) {
2110       Node* ex_mem = ekit.reset_memory();
2111       C->gvn_replace_by(callprojs->catchall_memproj,   ex_mem);
2112       add_mergemem_users_to_worklist(wl, ex_mem);
2113     }
2114     if (callprojs->catchall_ioproj != nullptr) {
2115       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2116     }
2117 
2118     // Replace the old exception object with the newly created one
2119     if (callprojs->exobj != nullptr) {
2120       C->gvn_replace_by(callprojs->exobj, ex_oop);
2121     }
2122   }
2123 
2124   // Disconnect the call from the graph
2125   call->disconnect_inputs(C);
2126   C->gvn_replace_by(call, C->top());
2127 
2128   // Clean up any MergeMems that feed other MergeMems since the
2129   // optimizer doesn't like that.
2130   while (wl.size() > 0) {
2131     _gvn.transform(wl.pop());
2132   }
2133 
2134   if (callprojs->fallthrough_catchproj != nullptr && !final_ctl->is_top() && do_replaced_nodes) {
2135     replaced_nodes.apply(C, final_ctl);
2136   }
2137   if (!ex_ctl->is_top() && do_replaced_nodes) {
2138     replaced_nodes_exception.apply(C, ex_ctl);
2139   }
2140 }
2141 
2142 
2143 //------------------------------increment_counter------------------------------
2144 // for statistics: increment a VM counter by 1
2145 
2146 void GraphKit::increment_counter(address counter_addr) {
2147   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2148   increment_counter(adr1);
2149 }
2150 
2151 void GraphKit::increment_counter(Node* counter_addr) {
2152   int adr_type = Compile::AliasIdxRaw;
2153   Node* ctrl = control();
2154   Node* cnt  = make_load(ctrl, counter_addr, TypeLong::LONG, T_LONG, adr_type, MemNode::unordered);

2313  *
2314  * @param n          node that the type applies to
2315  * @param exact_kls  type from profiling
2316  * @param maybe_null did profiling see null?
2317  *
2318  * @return           node with improved type
2319  */
2320 Node* GraphKit::record_profile_for_speculation(Node* n, ciKlass* exact_kls, ProfilePtrKind ptr_kind) {
2321   const Type* current_type = _gvn.type(n);
2322   assert(UseTypeSpeculation, "type speculation must be on");
2323 
2324   const TypePtr* speculative = current_type->speculative();
2325 
2326   // Should the klass from the profile be recorded in the speculative type?
2327   if (current_type->would_improve_type(exact_kls, jvms()->depth())) {
2328     const TypeKlassPtr* tklass = TypeKlassPtr::make(exact_kls, Type::trust_interfaces);
2329     const TypeOopPtr* xtype = tklass->as_instance_type();
2330     assert(xtype->klass_is_exact(), "Should be exact");
2331     // Any reason to believe n is not null (from this profiling or a previous one)?
2332     assert(ptr_kind != ProfileAlwaysNull, "impossible here");
2333     const TypePtr* ptr = (ptr_kind != ProfileNeverNull && current_type->speculative_maybe_null()) ? TypePtr::BOTTOM : TypePtr::NOTNULL;
2334     // record the new speculative type's depth
2335     speculative = xtype->cast_to_ptr_type(ptr->ptr())->is_ptr();
2336     speculative = speculative->with_inline_depth(jvms()->depth());
2337   } else if (current_type->would_improve_ptr(ptr_kind)) {
2338     // Profiling report that null was never seen so we can change the
2339     // speculative type to non null ptr.
2340     if (ptr_kind == ProfileAlwaysNull) {
2341       speculative = TypePtr::NULL_PTR;
2342     } else {
2343       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2344       const TypePtr* ptr = TypePtr::NOTNULL;
2345       if (speculative != nullptr) {
2346         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2347       } else {
2348         speculative = ptr;
2349       }
2350     }
2351   }
2352 
2353   if (speculative != current_type->speculative()) {
2354     // Build a type with a speculative type (what we think we know
2355     // about the type but will need a guard when we use it)
2356     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2357     // We're changing the type, we need a new CheckCast node to carry
2358     // the new type. The new type depends on the control: what
2359     // profiling tells us is only valid from here as far as we can
2360     // tell.
2361     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2362     cast = _gvn.transform(cast);
2363     replace_in_map(n, cast);
2364     n = cast;
2365   }
2366 
2367   return n;
2368 }
2369 
2370 /**
2371  * Record profiling data from receiver profiling at an invoke with the
2372  * type system so that it can propagate it (speculation)
2373  *
2374  * @param n  receiver node
2375  *
2376  * @return   node with improved type
2377  */
2378 Node* GraphKit::record_profiled_receiver_for_speculation(Node* n) {
2379   if (!UseTypeSpeculation) {
2380     return n;
2381   }
2382   ciKlass* exact_kls = profile_has_unique_klass();
2383   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2384   if ((java_bc() == Bytecodes::_checkcast ||
2385        java_bc() == Bytecodes::_instanceof ||
2386        java_bc() == Bytecodes::_aastore) &&
2387       method()->method_data()->is_mature()) {
2388     ciProfileData* data = method()->method_data()->bci_to_data(bci());
2389     if (data != nullptr) {
2390       if (java_bc() == Bytecodes::_aastore) {
2391         ciKlass* array_type = nullptr;
2392         ciKlass* element_type = nullptr;
2393         ProfilePtrKind element_ptr = ProfileMaybeNull;
2394         bool flat_array = true;
2395         bool null_free_array = true;
2396         method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
2397         exact_kls = element_type;
2398         ptr_kind = element_ptr;
2399       } else {
2400         if (!data->as_BitData()->null_seen()) {
2401           ptr_kind = ProfileNeverNull;
2402         } else {
2403           assert(data->is_ReceiverTypeData(), "bad profile data type");
2404           ciReceiverTypeData* call = (ciReceiverTypeData*)data->as_ReceiverTypeData();
2405           uint i = 0;
2406           for (; i < call->row_limit(); i++) {
2407             ciKlass* receiver = call->receiver(i);
2408             if (receiver != nullptr) {
2409               break;
2410             }
2411           }
2412           ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2413         }

2414       }
2415     }
2416   }
2417   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2418 }
2419 
2420 /**
2421  * Record profiling data from argument profiling at an invoke with the
2422  * type system so that it can propagate it (speculation)
2423  *
2424  * @param dest_method  target method for the call
2425  * @param bc           what invoke bytecode is this?
2426  */
2427 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2428   if (!UseTypeSpeculation) {
2429     return;
2430   }
2431   const TypeFunc* tf    = TypeFunc::make(dest_method);
2432   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2433   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2434   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2435     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2436     if (is_reference_type(targ->basic_type())) {
2437       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2438       ciKlass* better_type = nullptr;
2439       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2440         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2441       }
2442       i++;
2443     }
2444   }
2445 }
2446 
2447 /**
2448  * Record profiling data from parameter profiling at an invoke with
2449  * the type system so that it can propagate it (speculation)
2450  */
2451 void GraphKit::record_profiled_parameters_for_speculation() {
2452   if (!UseTypeSpeculation) {
2453     return;
2454   }
2455   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {

2469  * the type system so that it can propagate it (speculation)
2470  */
2471 void GraphKit::record_profiled_return_for_speculation() {
2472   if (!UseTypeSpeculation) {
2473     return;
2474   }
2475   ProfilePtrKind ptr_kind = ProfileMaybeNull;
2476   ciKlass* better_type = nullptr;
2477   if (method()->return_profiled_type(bci(), better_type, ptr_kind)) {
2478     // If profiling reports a single type for the return value,
2479     // feed it to the type system so it can propagate it as a
2480     // speculative type
2481     record_profile_for_speculation(stack(sp()-1), better_type, ptr_kind);
2482   }
2483 }
2484 
2485 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2486   if (Matcher::strict_fp_requires_explicit_rounding) {
2487     // (Note:  TypeFunc::make has a cache that makes this fast.)
2488     const TypeFunc* tf    = TypeFunc::make(dest_method);
2489     int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2490     for (int j = 0; j < nargs; j++) {
2491       const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2492       if (targ->basic_type() == T_DOUBLE) {
2493         // If any parameters are doubles, they must be rounded before
2494         // the call, dprecision_rounding does gvn.transform
2495         Node *arg = argument(j);
2496         arg = dprecision_rounding(arg);
2497         set_argument(j, arg);
2498       }
2499     }
2500   }
2501 }
2502 
2503 // rounding for strict float precision conformance
2504 Node* GraphKit::precision_rounding(Node* n) {
2505   if (Matcher::strict_fp_requires_explicit_rounding) {
2506 #ifdef IA32
2507     if (UseSSE == 0) {
2508       return _gvn.transform(new RoundFloatNode(0, n));
2509     }
2510 #else
2511     Unimplemented();

2620                                   // The first null ends the list.
2621                                   Node* parm0, Node* parm1,
2622                                   Node* parm2, Node* parm3,
2623                                   Node* parm4, Node* parm5,
2624                                   Node* parm6, Node* parm7) {
2625   assert(call_addr != nullptr, "must not call null targets");
2626 
2627   // Slow-path call
2628   bool is_leaf = !(flags & RC_NO_LEAF);
2629   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2630   if (call_name == nullptr) {
2631     assert(!is_leaf, "must supply name for leaf");
2632     call_name = OptoRuntime::stub_name(call_addr);
2633   }
2634   CallNode* call;
2635   if (!is_leaf) {
2636     call = new CallStaticJavaNode(call_type, call_addr, call_name, adr_type);
2637   } else if (flags & RC_NO_FP) {
2638     call = new CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2639   } else  if (flags & RC_VECTOR){
2640     uint num_bits = call_type->range_sig()->field_at(TypeFunc::Parms)->is_vect()->length_in_bytes() * BitsPerByte;
2641     call = new CallLeafVectorNode(call_type, call_addr, call_name, adr_type, num_bits);
2642   } else {
2643     call = new CallLeafNode(call_type, call_addr, call_name, adr_type);
2644   }
2645 
2646   // The following is similar to set_edges_for_java_call,
2647   // except that the memory effects of the call are restricted to AliasIdxRaw.
2648 
2649   // Slow path call has no side-effects, uses few values
2650   bool wide_in  = !(flags & RC_NARROW_MEM);
2651   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2652 
2653   Node* prev_mem = nullptr;
2654   if (wide_in) {
2655     prev_mem = set_predefined_input_for_runtime_call(call);
2656   } else {
2657     assert(!wide_out, "narrow in => narrow out");
2658     Node* narrow_mem = memory(adr_type);
2659     prev_mem = set_predefined_input_for_runtime_call(call, narrow_mem);
2660   }

2700 
2701   if (has_io) {
2702     set_i_o(_gvn.transform(new ProjNode(call, TypeFunc::I_O)));
2703   }
2704   return call;
2705 
2706 }
2707 
2708 // i2b
2709 Node* GraphKit::sign_extend_byte(Node* in) {
2710   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(24)));
2711   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(24)));
2712 }
2713 
2714 // i2s
2715 Node* GraphKit::sign_extend_short(Node* in) {
2716   Node* tmp = _gvn.transform(new LShiftINode(in, _gvn.intcon(16)));
2717   return _gvn.transform(new RShiftINode(tmp, _gvn.intcon(16)));
2718 }
2719 
2720 
2721 //------------------------------merge_memory-----------------------------------
2722 // Merge memory from one path into the current memory state.
2723 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2724   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2725     Node* old_slice = mms.force_memory();
2726     Node* new_slice = mms.memory2();
2727     if (old_slice != new_slice) {
2728       PhiNode* phi;
2729       if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region) {
2730         if (mms.is_empty()) {
2731           // clone base memory Phi's inputs for this memory slice
2732           assert(old_slice == mms.base_memory(), "sanity");
2733           phi = PhiNode::make(region, nullptr, Type::MEMORY, mms.adr_type(C));
2734           _gvn.set_type(phi, Type::MEMORY);
2735           for (uint i = 1; i < phi->req(); i++) {
2736             phi->init_req(i, old_slice->in(i));
2737           }
2738         } else {
2739           phi = old_slice->as_Phi(); // Phi was generated already
2740         }

2954 
2955   // Now do a linear scan of the secondary super-klass array.  Again, no real
2956   // performance impact (too rare) but it's gotta be done.
2957   // Since the code is rarely used, there is no penalty for moving it
2958   // out of line, and it can only improve I-cache density.
2959   // The decision to inline or out-of-line this final check is platform
2960   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2961   Node* psc = gvn.transform(
2962     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2963 
2964   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn.zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2965   r_not_subtype->init_req(2, gvn.transform(new IfTrueNode (iff4)));
2966   r_ok_subtype ->init_req(3, gvn.transform(new IfFalseNode(iff4)));
2967 
2968   // Return false path; set default control to true path.
2969   *ctrl = gvn.transform(r_ok_subtype);
2970   return gvn.transform(r_not_subtype);
2971 }
2972 
2973 Node* GraphKit::gen_subtype_check(Node* obj_or_subklass, Node* superklass) {
2974   const Type* sub_t = _gvn.type(obj_or_subklass);
2975   if (sub_t->make_oopptr() != nullptr && sub_t->make_oopptr()->is_inlinetypeptr()) {
2976     sub_t = TypeKlassPtr::make(sub_t->inline_klass());
2977     obj_or_subklass = makecon(sub_t);
2978   }
2979   bool expand_subtype_check = C->post_loop_opts_phase() ||   // macro node expansion is over
2980                               ExpandSubTypeCheckAtParseTime; // forced expansion
2981   if (expand_subtype_check) {
2982     MergeMemNode* mem = merged_memory();
2983     Node* ctrl = control();
2984     Node* subklass = obj_or_subklass;
2985     if (!sub_t->isa_klassptr()) {
2986       subklass = load_object_klass(obj_or_subklass);
2987     }

2988     Node* n = Phase::gen_subtype_check(subklass, superklass, &ctrl, mem, _gvn);
2989     set_control(ctrl);
2990     return n;
2991   }
2992 
2993   Node* check = _gvn.transform(new SubTypeCheckNode(C, obj_or_subklass, superklass));
2994   Node* bol = _gvn.transform(new BoolNode(check, BoolTest::eq));
2995   IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2996   set_control(_gvn.transform(new IfTrueNode(iff)));
2997   return _gvn.transform(new IfFalseNode(iff));
2998 }
2999 
3000 // Profile-driven exact type check:
3001 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
3002                                     float prob, Node* *casted_receiver) {

3003   assert(!klass->is_interface(), "no exact type check on interfaces");
3004   Node* fail = top();
3005   const Type* rec_t = _gvn.type(receiver);
3006   if (rec_t->is_inlinetypeptr()) {
3007     if (klass->equals(rec_t->inline_klass())) {
3008       (*casted_receiver) = receiver; // Always passes
3009     } else {
3010       (*casted_receiver) = top();    // Always fails
3011       fail = control();
3012       set_control(top());
3013     }
3014     return fail;
3015   }
3016   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces);
3017   Node* recv_klass = load_object_klass(receiver);
3018   fail = type_check(recv_klass, tklass, prob);





3019 
3020   if (!stopped()) {
3021     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3022     const TypeOopPtr* recv_xtype = tklass->as_instance_type();
3023     assert(recv_xtype->klass_is_exact(), "");
3024 
3025     if (!receiver_type->higher_equal(recv_xtype)) { // ignore redundant casts
3026       // Subsume downstream occurrences of receiver with a cast to
3027       // recv_xtype, since now we know what the type will be.
3028       Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
3029       Node* res = _gvn.transform(cast);
3030       if (recv_xtype->is_inlinetypeptr()) {
3031         assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
3032         res = InlineTypeNode::make_from_oop(this, res, recv_xtype->inline_klass());
3033       }
3034       (*casted_receiver) = res;
3035       // (User must make the replace_in_map call.)
3036     }
3037   }
3038 
3039   return fail;
3040 }
3041 
3042 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
3043                            float prob) {
3044   Node* want_klass = makecon(tklass);
3045   Node* cmp = _gvn.transform(new CmpPNode(recv_klass, want_klass));
3046   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3047   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
3048   set_control(_gvn.transform(new IfTrueNode (iff)));
3049   Node* fail = _gvn.transform(new IfFalseNode(iff));
3050   return fail;
3051 }
3052 
3053 //------------------------------subtype_check_receiver-------------------------
3054 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
3055                                        Node** casted_receiver) {
3056   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass, Type::trust_interfaces)->try_improve();
3057   Node* want_klass = makecon(tklass);
3058 
3059   Node* slow_ctl = gen_subtype_check(receiver, want_klass);
3060 
3061   // Ignore interface type information until interface types are properly tracked.
3062   if (!stopped() && !klass->is_interface()) {
3063     const TypeOopPtr* receiver_type = _gvn.type(receiver)->isa_oopptr();
3064     const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
3065     if (receiver_type != nullptr && !receiver_type->higher_equal(recv_type)) { // ignore redundant casts
3066       Node* cast = _gvn.transform(new CheckCastPPNode(control(), receiver, recv_type));
3067       if (recv_type->is_inlinetypeptr()) {
3068         cast = InlineTypeNode::make_from_oop(this, cast, recv_type->inline_klass());
3069       }
3070       (*casted_receiver) = cast;
3071     }
3072   }
3073 
3074   return slow_ctl;
3075 }
3076 
3077 //------------------------------seems_never_null-------------------------------
3078 // Use null_seen information if it is available from the profile.
3079 // If we see an unexpected null at a type check we record it and force a
3080 // recompile; the offending check will be recompiled to handle nulls.
3081 // If we see several offending BCIs, then all checks in the
3082 // method will be recompiled.
3083 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data, bool& speculating) {
3084   speculating = !_gvn.type(obj)->speculative_maybe_null();
3085   Deoptimization::DeoptReason reason = Deoptimization::reason_null_check(speculating);
3086   if (UncommonNullCast               // Cutout for this technique
3087       && obj != null()               // And not the -Xcomp stupid case?
3088       && !too_many_traps(reason)
3089       ) {
3090     if (speculating) {
3091       return true;
3092     }
3093     if (data == nullptr)
3094       // Edge case:  no mature data.  Be optimistic here.
3095       return true;
3096     // If the profile has not seen a null, assume it won't happen.
3097     assert(java_bc() == Bytecodes::_checkcast ||
3098            java_bc() == Bytecodes::_instanceof ||
3099            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
3100     if (java_bc() == Bytecodes::_aastore) {
3101       return ((ciArrayLoadStoreData*)data->as_ArrayLoadStoreData())->element()->ptr_kind() == ProfileNeverNull;
3102     }
3103     return !data->as_BitData()->null_seen();
3104   }
3105   speculating = false;
3106   return false;
3107 }
3108 
3109 void GraphKit::guard_klass_being_initialized(Node* klass) {
3110   int init_state_off = in_bytes(InstanceKlass::init_state_offset());
3111   Node* adr = basic_plus_adr(top(), klass, init_state_off);
3112   Node* init_state = LoadNode::make(_gvn, nullptr, immutable_memory(), adr,
3113                                     adr->bottom_type()->is_ptr(), TypeInt::BYTE,
3114                                     T_BYTE, MemNode::unordered);
3115   init_state = _gvn.transform(init_state);
3116 
3117   Node* being_initialized_state = makecon(TypeInt::make(InstanceKlass::being_initialized));
3118 
3119   Node* chk = _gvn.transform(new CmpINode(being_initialized_state, init_state));
3120   Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3121 
3122   { BuildCutout unless(this, tst, PROB_MAX);

3162 
3163 //------------------------maybe_cast_profiled_receiver-------------------------
3164 // If the profile has seen exactly one type, narrow to exactly that type.
3165 // Subsequent type checks will always fold up.
3166 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
3167                                              const TypeKlassPtr* require_klass,
3168                                              ciKlass* spec_klass,
3169                                              bool safe_for_replace) {
3170   if (!UseTypeProfile || !TypeProfileCasts) return nullptr;
3171 
3172   Deoptimization::DeoptReason reason = Deoptimization::reason_class_check(spec_klass != nullptr);
3173 
3174   // Make sure we haven't already deoptimized from this tactic.
3175   if (too_many_traps_or_recompiles(reason))
3176     return nullptr;
3177 
3178   // (No, this isn't a call, but it's enough like a virtual call
3179   // to use the same ciMethod accessor to get the profile info...)
3180   // If we have a speculative type use it instead of profiling (which
3181   // may not help us)
3182   ciKlass* exact_kls = spec_klass;
3183   if (exact_kls == nullptr) {
3184     if (java_bc() == Bytecodes::_aastore) {
3185       ciKlass* array_type = nullptr;
3186       ciKlass* element_type = nullptr;
3187       ProfilePtrKind element_ptr = ProfileMaybeNull;
3188       bool flat_array = true;
3189       bool null_free_array = true;
3190       method()->array_access_profiled_type(bci(), array_type, element_type, element_ptr, flat_array, null_free_array);
3191       exact_kls = element_type;
3192     } else {
3193       exact_kls = profile_has_unique_klass();
3194     }
3195   }
3196   if (exact_kls != nullptr) {// no cast failures here
3197     if (require_klass == nullptr ||
3198         C->static_subtype_check(require_klass, TypeKlassPtr::make(exact_kls, Type::trust_interfaces)) == Compile::SSC_always_true) {
3199       // If we narrow the type to match what the type profile sees or
3200       // the speculative type, we can then remove the rest of the
3201       // cast.
3202       // This is a win, even if the exact_kls is very specific,
3203       // because downstream operations, such as method calls,
3204       // will often benefit from the sharper type.
3205       Node* exact_obj = not_null_obj; // will get updated in place...
3206       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
3207                                             &exact_obj);
3208       { PreserveJVMState pjvms(this);
3209         set_control(slow_ctl);
3210         uncommon_trap_exact(reason, Deoptimization::Action_maybe_recompile);
3211       }
3212       if (safe_for_replace) {
3213         replace_in_map(not_null_obj, exact_obj);
3214       }
3215       return exact_obj;

3305   // If not_null_obj is dead, only null-path is taken
3306   if (stopped()) {              // Doing instance-of on a null?
3307     set_control(null_ctl);
3308     return intcon(0);
3309   }
3310   region->init_req(_null_path, null_ctl);
3311   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3312   if (null_ctl == top()) {
3313     // Do this eagerly, so that pattern matches like is_diamond_phi
3314     // will work even during parsing.
3315     assert(_null_path == PATH_LIMIT-1, "delete last");
3316     region->del_req(_null_path);
3317     phi   ->del_req(_null_path);
3318   }
3319 
3320   // Do we know the type check always succeed?
3321   bool known_statically = false;
3322   if (_gvn.type(superklass)->singleton()) {
3323     const TypeKlassPtr* superk = _gvn.type(superklass)->is_klassptr();
3324     const TypeKlassPtr* subk = _gvn.type(obj)->is_oopptr()->as_klass_type();
3325     if (subk != nullptr && subk->is_loaded()) {
3326       int static_res = C->static_subtype_check(superk, subk);
3327       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3328     }
3329   }
3330 
3331   if (!known_statically) {
3332     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3333     // We may not have profiling here or it may not help us. If we
3334     // have a speculative type use it to perform an exact cast.
3335     ciKlass* spec_obj_type = obj_type->speculative_type();
3336     if (spec_obj_type != nullptr || (ProfileDynamicTypes && data != nullptr)) {
3337       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, nullptr, spec_obj_type, safe_for_replace);
3338       if (stopped()) {            // Profile disagrees with this path.
3339         set_control(null_ctl);    // Null is the only remaining possibility.
3340         return intcon(0);
3341       }
3342       if (cast_obj != nullptr) {
3343         not_null_obj = cast_obj;
3344       }
3345     }

3361   record_for_igvn(region);
3362 
3363   // If we know the type check always succeeds then we don't use the
3364   // profiling data at this bytecode. Don't lose it, feed it to the
3365   // type system as a speculative type.
3366   if (safe_for_replace) {
3367     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3368     replace_in_map(obj, casted_obj);
3369   }
3370 
3371   return _gvn.transform(phi);
3372 }
3373 
3374 //-------------------------------gen_checkcast---------------------------------
3375 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3376 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3377 // uncommon-trap paths work.  Adjust stack after this call.
3378 // If failure_control is supplied and not null, it is filled in with
3379 // the control edge for the cast failure.  Otherwise, an appropriate
3380 // uncommon trap or exception is thrown.
3381 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool null_free) {

3382   kill_dead_locals();           // Benefit all the uncommon traps
3383   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr()->try_improve();
3384   const TypeOopPtr *toop = tk->cast_to_exactness(false)->as_instance_type();
3385   bool safe_for_replace = (failure_control == nullptr);
3386   assert(!null_free || toop->is_inlinetypeptr(), "must be an inline type pointer");
3387 
3388   // Fast cutout:  Check the case that the cast is vacuously true.
3389   // This detects the common cases where the test will short-circuit
3390   // away completely.  We do this before we perform the null check,
3391   // because if the test is going to turn into zero code, we don't
3392   // want a residual null check left around.  (Causes a slowdown,
3393   // for example, in some objArray manipulations, such as a[i]=a[j].)
3394   if (tk->singleton()) {
3395     const TypeKlassPtr* kptr = nullptr;
3396     const Type* t = _gvn.type(obj);
3397     if (t->isa_oop_ptr()) {
3398       kptr = t->is_oopptr()->as_klass_type();
3399     } else if (obj->is_InlineType()) {
3400       ciInlineKlass* vk = t->inline_klass();
3401       kptr = TypeInstKlassPtr::make(TypePtr::NotNull, vk, Type::Offset(0));
3402     }
3403     if (kptr != nullptr) {
3404       switch (C->static_subtype_check(tk, kptr)) {
3405       case Compile::SSC_always_true:
3406         // If we know the type check always succeed then we don't use
3407         // the profiling data at this bytecode. Don't lose it, feed it
3408         // to the type system as a speculative type.
3409         obj = record_profiled_receiver_for_speculation(obj);
3410         if (null_free) {
3411           assert(safe_for_replace, "must be");
3412           obj = null_check(obj);
3413         }
3414         assert(stopped() || !toop->is_inlinetypeptr() || obj->is_InlineType(), "should have been scalarized");
3415         return obj;
3416       case Compile::SSC_always_false:
3417         if (null_free) {
3418           assert(safe_for_replace, "must be");
3419           obj = null_check(obj);
3420         }
3421         // It needs a null check because a null will *pass* the cast check.
3422         if (t->isa_oopptr() != nullptr && !t->is_oopptr()->maybe_null()) {

3423           bool is_aastore = (java_bc() == Bytecodes::_aastore);
3424           Deoptimization::DeoptReason reason = is_aastore ?
3425             Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3426           builtin_throw(reason);
3427           return top();
3428         } else if (!too_many_traps_or_recompiles(Deoptimization::Reason_null_assert)) {
3429           return null_assert(obj);
3430         }
3431         break; // Fall through to full check
3432       default:
3433         break;
3434       }
3435     }
3436   }
3437 
3438   ciProfileData* data = nullptr;

3439   if (failure_control == nullptr) {        // use MDO in regular case only
3440     assert(java_bc() == Bytecodes::_aastore ||
3441            java_bc() == Bytecodes::_checkcast,
3442            "interpreter profiles type checks only for these BCs");
3443     if (method()->method_data()->is_mature()) {
3444       data = method()->method_data()->bci_to_data(bci());
3445     }
3446   }
3447 
3448   // Make the merge point
3449   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3450   RegionNode* region = new RegionNode(PATH_LIMIT);
3451   Node*       phi    = new PhiNode(region, toop);
3452   _gvn.set_type(region, Type::CONTROL);
3453   _gvn.set_type(phi, toop);
3454 
3455   C->set_has_split_ifs(true); // Has chance for split-if optimization
3456 
3457   // Use null-cast information if it is available
3458   bool speculative_not_null = false;
3459   bool never_see_null = ((failure_control == nullptr)  // regular case only
3460                          && seems_never_null(obj, data, speculative_not_null));
3461 
3462   if (obj->is_InlineType()) {
3463     // Re-execute if buffering during triggers deoptimization
3464     PreserveReexecuteState preexecs(this);
3465     jvms()->set_should_reexecute(true);
3466     obj = obj->as_InlineType()->buffer(this, safe_for_replace);
3467   }
3468 
3469   // Null check; get casted pointer; set region slot 3
3470   Node* null_ctl = top();
3471   Node* not_null_obj = nullptr;
3472   if (null_free) {
3473     assert(safe_for_replace, "must be");
3474     not_null_obj = null_check(obj);
3475   } else {
3476     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3477   }
3478 
3479   // If not_null_obj is dead, only null-path is taken
3480   if (stopped()) {              // Doing instance-of on a null?
3481     set_control(null_ctl);
3482     if (toop->is_inlinetypeptr()) {
3483       return InlineTypeNode::make_null(_gvn, toop->inline_klass());
3484     }
3485     return null();
3486   }
3487   region->init_req(_null_path, null_ctl);
3488   phi   ->init_req(_null_path, null());  // Set null path value
3489   if (null_ctl == top()) {
3490     // Do this eagerly, so that pattern matches like is_diamond_phi
3491     // will work even during parsing.
3492     assert(_null_path == PATH_LIMIT-1, "delete last");
3493     region->del_req(_null_path);
3494     phi   ->del_req(_null_path);
3495   }
3496 
3497   Node* cast_obj = nullptr;
3498   if (tk->klass_is_exact()) {
3499     // The following optimization tries to statically cast the speculative type of the object
3500     // (for example obtained during profiling) to the type of the superklass and then do a
3501     // dynamic check that the type of the object is what we expect. To work correctly
3502     // for checkcast and aastore the type of superklass should be exact.
3503     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3504     // We may not have profiling here or it may not help us. If we have
3505     // a speculative type use it to perform an exact cast.
3506     ciKlass* spec_obj_type = obj_type->speculative_type();
3507     if (spec_obj_type != nullptr || data != nullptr) {
3508       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk, spec_obj_type, safe_for_replace);
3509       if (cast_obj != nullptr) {
3510         if (failure_control != nullptr) // failure is now impossible
3511           (*failure_control) = top();
3512         // adjust the type of the phi to the exact klass:
3513         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3514       }
3515     }
3516   }
3517 
3518   if (cast_obj == nullptr) {
3519     // Generate the subtype check
3520     Node* not_subtype_ctrl = gen_subtype_check(not_null_obj, superklass);
3521 
3522     // Plug in success path into the merge
3523     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3524     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3525     if (failure_control == nullptr) {
3526       if (not_subtype_ctrl != top()) { // If failure is possible
3527         PreserveJVMState pjvms(this);
3528         set_control(not_subtype_ctrl);
3529         Node* obj_klass = nullptr;
3530         if (not_null_obj->is_InlineType()) {
3531           obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->inline_klass()));
3532         } else {
3533           obj_klass = load_object_klass(not_null_obj);
3534         }
3535         bool is_aastore = (java_bc() == Bytecodes::_aastore);
3536         Deoptimization::DeoptReason reason = is_aastore ?
3537           Deoptimization::Reason_array_check : Deoptimization::Reason_class_check;
3538         builtin_throw(reason);
3539       }
3540     } else {
3541       (*failure_control) = not_subtype_ctrl;
3542     }
3543   }
3544 
3545   region->init_req(_obj_path, control());
3546   phi   ->init_req(_obj_path, cast_obj);
3547 
3548   // A merge of null or Casted-NotNull obj
3549   Node* res = _gvn.transform(phi);
3550 
3551   // Note I do NOT always 'replace_in_map(obj,result)' here.
3552   //  if( tk->klass()->can_be_primary_super()  )
3553     // This means that if I successfully store an Object into an array-of-String
3554     // I 'forget' that the Object is really now known to be a String.  I have to
3555     // do this because we don't have true union types for interfaces - if I store
3556     // a Baz into an array-of-Interface and then tell the optimizer it's an
3557     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3558     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3559   //  replace_in_map( obj, res );
3560 
3561   // Return final merged results
3562   set_control( _gvn.transform(region) );
3563   record_for_igvn(region);
3564 
3565   bool not_inline = !toop->can_be_inline_type();
3566   bool not_flattened = !UseFlatArray || not_inline || (toop->is_inlinetypeptr() && !toop->inline_klass()->flatten_array());
3567   if (EnableValhalla && not_flattened) {
3568     // Check if obj has been loaded from an array
3569     obj = obj->isa_DecodeN() ? obj->in(1) : obj;
3570     Node* array = nullptr;
3571     if (obj->isa_Load()) {
3572       Node* address = obj->in(MemNode::Address);
3573       if (address->isa_AddP()) {
3574         array = address->as_AddP()->in(AddPNode::Base);
3575       }
3576     } else if (obj->is_Phi()) {
3577       Node* region = obj->in(0);
3578       // TODO make this more robust (see JDK-8231346)
3579       if (region->req() == 3 && region->in(2) != nullptr && region->in(2)->in(0) != nullptr) {
3580         IfNode* iff = region->in(2)->in(0)->isa_If();
3581         if (iff != nullptr) {
3582           iff->is_flat_array_check(&_gvn, &array);
3583         }
3584       }
3585     }
3586     if (array != nullptr) {
3587       const TypeAryPtr* ary_t = _gvn.type(array)->isa_aryptr();
3588       if (ary_t != nullptr) {
3589         if (!ary_t->is_not_null_free() && not_inline) {
3590           // Casting array element to a non-inline-type, mark array as not null-free.
3591           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_null_free()));
3592           replace_in_map(array, cast);
3593         } else if (!ary_t->is_not_flat()) {
3594           // Casting array element to a non-flattened type, mark array as not flat.
3595           Node* cast = _gvn.transform(new CheckCastPPNode(control(), array, ary_t->cast_to_not_flat()));
3596           replace_in_map(array, cast);
3597         }
3598       }
3599     }
3600   }
3601 
3602   if (!stopped() && !res->is_InlineType()) {
3603     res = record_profiled_receiver_for_speculation(res);
3604     if (toop->is_inlinetypeptr()) {
3605       Node* vt = InlineTypeNode::make_from_oop(this, res, toop->inline_klass(), !gvn().type(res)->maybe_null());
3606       res = vt;
3607       if (safe_for_replace) {
3608         replace_in_map(obj, vt);
3609         replace_in_map(not_null_obj, vt);
3610         replace_in_map(res, vt);
3611       }
3612     }
3613   }
3614   return res;
3615 }
3616 
3617 Node* GraphKit::inline_type_test(Node* obj, bool is_inline) {
3618   Node* mark_adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3619   Node* mark = make_load(nullptr, mark_adr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3620   Node* mask = MakeConX(markWord::inline_type_pattern);
3621   Node* masked = _gvn.transform(new AndXNode(mark, mask));
3622   Node* cmp = _gvn.transform(new CmpXNode(masked, mask));
3623   return _gvn.transform(new BoolNode(cmp, is_inline ? BoolTest::eq : BoolTest::ne));
3624 }
3625 
3626 Node* GraphKit::is_val_mirror(Node* mirror) {
3627   Node* p = basic_plus_adr(mirror, java_lang_Class::secondary_mirror_offset());
3628   Node* secondary_mirror = access_load_at(mirror, p, _gvn.type(p)->is_ptr(), TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR), T_OBJECT, IN_HEAP);
3629   Node* cmp = _gvn.transform(new CmpPNode(mirror, secondary_mirror));
3630   return _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3631 }
3632 
3633 Node* GraphKit::array_lh_test(Node* klass, jint mask, jint val, bool eq) {
3634   Node* lh_adr = basic_plus_adr(klass, in_bytes(Klass::layout_helper_offset()));
3635   // Make sure to use immutable memory here to enable hoisting the check out of loops
3636   Node* lh_val = _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), lh_adr, lh_adr->bottom_type()->is_ptr(), TypeInt::INT, T_INT, MemNode::unordered));
3637   Node* masked = _gvn.transform(new AndINode(lh_val, intcon(mask)));
3638   Node* cmp = _gvn.transform(new CmpINode(masked, intcon(val)));
3639   return _gvn.transform(new BoolNode(cmp, eq ? BoolTest::eq : BoolTest::ne));
3640 }
3641 
3642 Node* GraphKit::flat_array_test(Node* array_or_klass, bool flat) {
3643   // We can't use immutable memory here because the mark word is mutable.
3644   // PhaseIdealLoop::move_flat_array_check_out_of_loop will make sure the
3645   // check is moved out of loops (mainly to enable loop unswitching).
3646   Node* mem = UseArrayMarkWordCheck ? memory(Compile::AliasIdxRaw) : immutable_memory();
3647   Node* cmp = _gvn.transform(new FlatArrayCheckNode(C, mem, array_or_klass));
3648   record_for_igvn(cmp); // Give it a chance to be optimized out by IGVN
3649   return _gvn.transform(new BoolNode(cmp, flat ? BoolTest::eq : BoolTest::ne));
3650 }
3651 
3652 Node* GraphKit::null_free_array_test(Node* klass, bool null_free) {
3653   return array_lh_test(klass, Klass::_lh_null_free_array_bit_inplace, 0, !null_free);
3654 }
3655 
3656 // Deoptimize if 'ary' is a null-free inline type array and 'val' is null
3657 Node* GraphKit::inline_array_null_guard(Node* ary, Node* val, int nargs, bool safe_for_replace) {
3658   RegionNode* region = new RegionNode(3);
3659   Node* null_ctl = top();
3660   null_check_oop(val, &null_ctl);
3661   if (null_ctl != top()) {
3662     PreserveJVMState pjvms(this);
3663     set_control(null_ctl);
3664     {
3665       // Deoptimize if null-free array
3666       BuildCutout unless(this, null_free_array_test(load_object_klass(ary), /* null_free = */ false), PROB_MAX);
3667       inc_sp(nargs);
3668       uncommon_trap(Deoptimization::Reason_null_check,
3669                     Deoptimization::Action_none);
3670     }
3671     region->init_req(1, control());
3672   }
3673   region->init_req(2, control());
3674   set_control(_gvn.transform(region));
3675   record_for_igvn(region);
3676   if (_gvn.type(val) == TypePtr::NULL_PTR) {
3677     // Since we were just successfully storing null, the array can't be null free.
3678     const TypeAryPtr* ary_t = _gvn.type(ary)->is_aryptr();
3679     ary_t = ary_t->cast_to_not_null_free();
3680     Node* cast = _gvn.transform(new CheckCastPPNode(control(), ary, ary_t));
3681     if (safe_for_replace) {
3682       replace_in_map(ary, cast);
3683     }
3684     ary = cast;
3685   }
3686   return ary;
3687 }
3688 
3689 //------------------------------next_monitor-----------------------------------
3690 // What number should be given to the next monitor?
3691 int GraphKit::next_monitor() {
3692   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3693   int next = current + C->sync_stack_slots();
3694   // Keep the toplevel high water mark current:
3695   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3696   return current;
3697 }
3698 
3699 //------------------------------insert_mem_bar---------------------------------
3700 // Memory barrier to avoid floating things around
3701 // The membar serves as a pinch point between both control and all memory slices.
3702 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3703   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3704   mb->init_req(TypeFunc::Control, control());
3705   mb->init_req(TypeFunc::Memory,  reset_memory());
3706   Node* membar = _gvn.transform(mb);

3734   }
3735   Node* membar = _gvn.transform(mb);
3736   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3737   if (alias_idx == Compile::AliasIdxBot) {
3738     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3739   } else {
3740     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3741   }
3742   return membar;
3743 }
3744 
3745 //------------------------------shared_lock------------------------------------
3746 // Emit locking code.
3747 FastLockNode* GraphKit::shared_lock(Node* obj) {
3748   // bci is either a monitorenter bc or InvocationEntryBci
3749   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3750   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3751 
3752   if( !GenerateSynchronizationCode )
3753     return nullptr;                // Not locking things?
3754 
3755   if (stopped())                // Dead monitor?
3756     return nullptr;
3757 
3758   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3759 
3760   // Box the stack location
3761   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3762   Node* mem = reset_memory();
3763 
3764   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3765 
3766   // Create the rtm counters for this fast lock if needed.
3767   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3768 
3769   // Add monitor to debug info for the slow path.  If we block inside the
3770   // slow path and de-opt, we need the monitor hanging around
3771   map()->push_monitor( flock );
3772 
3773   const TypeFunc *tf = LockNode::lock_type();
3774   LockNode *lock = new LockNode(C, tf);

3803   }
3804 #endif
3805 
3806   return flock;
3807 }
3808 
3809 
3810 //------------------------------shared_unlock----------------------------------
3811 // Emit unlocking code.
3812 void GraphKit::shared_unlock(Node* box, Node* obj) {
3813   // bci is either a monitorenter bc or InvocationEntryBci
3814   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3815   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3816 
3817   if( !GenerateSynchronizationCode )
3818     return;
3819   if (stopped()) {               // Dead monitor?
3820     map()->pop_monitor();        // Kill monitor from debug info
3821     return;
3822   }
3823   assert(!obj->is_InlineType(), "should not unlock on inline type");
3824 
3825   // Memory barrier to avoid floating things down past the locked region
3826   insert_mem_bar(Op_MemBarReleaseLock);
3827 
3828   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3829   UnlockNode *unlock = new UnlockNode(C, tf);
3830 #ifdef ASSERT
3831   unlock->set_dbg_jvms(sync_jvms());
3832 #endif
3833   uint raw_idx = Compile::AliasIdxRaw;
3834   unlock->init_req( TypeFunc::Control, control() );
3835   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3836   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3837   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3838   unlock->init_req( TypeFunc::ReturnAdr, top() );
3839 
3840   unlock->init_req(TypeFunc::Parms + 0, obj);
3841   unlock->init_req(TypeFunc::Parms + 1, box);
3842   unlock = _gvn.transform(unlock)->as_Unlock();
3843 
3844   Node* mem = reset_memory();
3845 
3846   // unlock has no side-effects, sets few values
3847   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3848 
3849   // Kill monitor from debug info
3850   map()->pop_monitor( );
3851 }
3852 
3853 //-------------------------------get_layout_helper-----------------------------
3854 // If the given klass is a constant or known to be an array,
3855 // fetch the constant layout helper value into constant_value
3856 // and return null.  Otherwise, load the non-constant
3857 // layout helper value, and return the node which represents it.
3858 // This two-faced routine is useful because allocation sites
3859 // almost always feature constant types.
3860 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3861   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3862   if (!StressReflectiveCode && inst_klass != nullptr) {
3863     bool xklass = inst_klass->klass_is_exact();
3864     bool can_be_flattened = false;
3865     const TypeAryPtr* ary_type = inst_klass->as_instance_type()->isa_aryptr();
3866     if (UseFlatArray && !xklass && ary_type != nullptr && !ary_type->is_null_free()) {
3867       // The runtime type of [LMyValue might be [QMyValue due to [QMyValue <: [LMyValue. Don't constant fold.
3868       const TypeOopPtr* elem = ary_type->elem()->make_oopptr();
3869       can_be_flattened = ary_type->can_be_inline_array() && (!elem->is_inlinetypeptr() || elem->inline_klass()->flatten_array());
3870     }
3871     if (!can_be_flattened && (xklass || inst_klass->isa_aryklassptr())) {
3872       jint lhelper;
3873       if (inst_klass->is_flat()) {
3874         lhelper = ary_type->flat_layout_helper();
3875       } else if (inst_klass->isa_aryklassptr()) {
3876         BasicType elem = ary_type->elem()->array_element_basic_type();
3877         if (is_reference_type(elem, true)) {
3878           elem = T_OBJECT;
3879         }
3880         lhelper = Klass::array_layout_helper(elem);
3881       } else {
3882         lhelper = inst_klass->is_instklassptr()->exact_klass()->layout_helper();
3883       }
3884       if (lhelper != Klass::_lh_neutral_value) {
3885         constant_value = lhelper;
3886         return (Node*) nullptr;
3887       }
3888     }
3889   }
3890   constant_value = Klass::_lh_neutral_value;  // put in a known value
3891   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3892   return make_load(nullptr, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3893 }
3894 
3895 // We just put in an allocate/initialize with a big raw-memory effect.
3896 // Hook selected additional alias categories on the initialization.
3897 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3898                                 MergeMemNode* init_in_merge,
3899                                 Node* init_out_raw) {
3900   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3901   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3902 
3903   Node* prevmem = kit.memory(alias_idx);
3904   init_in_merge->set_memory_at(alias_idx, prevmem);
3905   if (init_out_raw != nullptr) {
3906     kit.set_memory(init_out_raw, alias_idx);
3907   }
3908 }
3909 
3910 //---------------------------set_output_for_allocation-------------------------
3911 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3912                                           const TypeOopPtr* oop_type,
3913                                           bool deoptimize_on_exception) {
3914   int rawidx = Compile::AliasIdxRaw;
3915   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3916   add_safepoint_edges(alloc);
3917   Node* allocx = _gvn.transform(alloc);
3918   set_control( _gvn.transform(new ProjNode(allocx, TypeFunc::Control) ) );
3919   // create memory projection for i_o
3920   set_memory ( _gvn.transform( new ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3921   make_slow_call_ex(allocx, env()->Throwable_klass(), true, deoptimize_on_exception);
3922 
3923   // create a memory projection as for the normal control path
3924   Node* malloc = _gvn.transform(new ProjNode(allocx, TypeFunc::Memory));
3925   set_memory(malloc, rawidx);
3926 
3927   // a normal slow-call doesn't change i_o, but an allocation does
3928   // we create a separate i_o projection for the normal control path
3929   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3930   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3931 
3932   // put in an initialization barrier
3933   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3934                                                  rawoop)->as_Initialize();
3935   assert(alloc->initialization() == init,  "2-way macro link must work");
3936   assert(init ->allocation()     == alloc, "2-way macro link must work");
3937   {
3938     // Extract memory strands which may participate in the new object's
3939     // initialization, and source them from the new InitializeNode.
3940     // This will allow us to observe initializations when they occur,
3941     // and link them properly (as a group) to the InitializeNode.
3942     assert(init->in(InitializeNode::Memory) == malloc, "");
3943     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3944     init->set_req(InitializeNode::Memory, minit_in);
3945     record_for_igvn(minit_in); // fold it up later, if possible
3946     _gvn.set_type(minit_in, Type::MEMORY);
3947     Node* minit_out = memory(rawidx);
3948     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3949     // Add an edge in the MergeMem for the header fields so an access
3950     // to one of those has correct memory state
3951     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3952     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3953     if (oop_type->isa_aryptr()) {
3954       const TypeAryPtr* arytype = oop_type->is_aryptr();
3955       if (arytype->is_flat()) {
3956         // Initially all flattened array accesses share a single slice
3957         // but that changes after parsing. Prepare the memory graph so
3958         // it can optimize flattened array accesses properly once they
3959         // don't share a single slice.
3960         assert(C->flattened_accesses_share_alias(), "should be set at parse time");
3961         C->set_flattened_accesses_share_alias(false);
3962         ciInlineKlass* vk = arytype->elem()->inline_klass();
3963         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
3964           ciField* field = vk->nonstatic_field_at(i);
3965           if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3966             continue;  // do not bother to track really large numbers of fields
3967           int off_in_vt = field->offset_in_bytes() - vk->first_field_offset();
3968           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
3969           int fieldidx = C->get_alias_index(adr_type, true);
3970           // Pass nullptr for init_out. Having per flat array element field memory edges as uses of the Initialize node
3971           // can result in per flat array field Phis to be created which confuses the logic of
3972           // Compile::adjust_flattened_array_access_aliases().
3973           hook_memory_on_init(*this, fieldidx, minit_in, nullptr);
3974         }
3975         C->set_flattened_accesses_share_alias(true);
3976         hook_memory_on_init(*this, C->get_alias_index(TypeAryPtr::INLINES), minit_in, minit_out);
3977       } else {
3978         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3979         int            elemidx  = C->get_alias_index(telemref);
3980         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3981       }
3982     } else if (oop_type->isa_instptr()) {
3983       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
3984       ciInstanceKlass* ik = oop_type->is_instptr()->instance_klass();
3985       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3986         ciField* field = ik->nonstatic_field_at(i);
3987         if (field->offset_in_bytes() >= TrackedInitializationLimit * HeapWordSize)
3988           continue;  // do not bother to track really large numbers of fields
3989         // Find (or create) the alias category for this field:
3990         int fieldidx = C->alias_type(field)->index();
3991         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3992       }
3993     }
3994   }
3995 
3996   // Cast raw oop to the real thing...
3997   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3998   javaoop = _gvn.transform(javaoop);
3999   C->set_recent_alloc(control(), javaoop);
4000   assert(just_allocated_object(control()) == javaoop, "just allocated");
4001 
4002 #ifdef ASSERT
4003   { // Verify that the AllocateNode::Ideal_allocation recognizers work:

4014       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
4015     }
4016   }
4017 #endif //ASSERT
4018 
4019   return javaoop;
4020 }
4021 
4022 //---------------------------new_instance--------------------------------------
4023 // This routine takes a klass_node which may be constant (for a static type)
4024 // or may be non-constant (for reflective code).  It will work equally well
4025 // for either, and the graph will fold nicely if the optimizer later reduces
4026 // the type to a constant.
4027 // The optional arguments are for specialized use by intrinsics:
4028 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
4029 //  - If 'return_size_val', report the total object size to the caller.
4030 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
4031 Node* GraphKit::new_instance(Node* klass_node,
4032                              Node* extra_slow_test,
4033                              Node* *return_size_val,
4034                              bool deoptimize_on_exception,
4035                              InlineTypeNode* inline_type_node) {
4036   // Compute size in doublewords
4037   // The size is always an integral number of doublewords, represented
4038   // as a positive bytewise size stored in the klass's layout_helper.
4039   // The layout_helper also encodes (in a low bit) the need for a slow path.
4040   jint  layout_con = Klass::_lh_neutral_value;
4041   Node* layout_val = get_layout_helper(klass_node, layout_con);
4042   bool  layout_is_con = (layout_val == nullptr);
4043 
4044   if (extra_slow_test == nullptr)  extra_slow_test = intcon(0);
4045   // Generate the initial go-slow test.  It's either ALWAYS (return a
4046   // Node for 1) or NEVER (return a null) or perhaps (in the reflective
4047   // case) a computed value derived from the layout_helper.
4048   Node* initial_slow_test = nullptr;
4049   if (layout_is_con) {
4050     assert(!StressReflectiveCode, "stress mode does not use these paths");
4051     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
4052     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
4053   } else {   // reflective case
4054     // This reflective path is used by Unsafe.allocateInstance.
4055     // (It may be stress-tested by specifying StressReflectiveCode.)
4056     // Basically, we want to get into the VM is there's an illegal argument.
4057     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
4058     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
4059     if (extra_slow_test != intcon(0)) {
4060       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
4061     }
4062     // (Macro-expander will further convert this to a Bool, if necessary.)

4073 
4074     // Clear the low bits to extract layout_helper_size_in_bytes:
4075     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
4076     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
4077     size = _gvn.transform( new AndXNode(size, mask) );
4078   }
4079   if (return_size_val != nullptr) {
4080     (*return_size_val) = size;
4081   }
4082 
4083   // This is a precise notnull oop of the klass.
4084   // (Actually, it need not be precise if this is a reflective allocation.)
4085   // It's what we cast the result to.
4086   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
4087   if (!tklass)  tklass = TypeInstKlassPtr::OBJECT;
4088   const TypeOopPtr* oop_type = tklass->as_instance_type();
4089 
4090   // Now generate allocation code
4091 
4092   // The entire memory state is needed for slow path of the allocation
4093   // since GC and deoptimization can happen.
4094   Node *mem = reset_memory();
4095   set_all_memory(mem); // Create new memory state
4096 
4097   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
4098                                          control(), mem, i_o(),
4099                                          size, klass_node,
4100                                          initial_slow_test, inline_type_node);
4101 
4102   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
4103 }
4104 
4105 //-------------------------------new_array-------------------------------------
4106 // helper for newarray and anewarray
4107 // The 'length' parameter is (obviously) the length of the array.
4108 // See comments on new_instance for the meaning of the other arguments.
4109 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
4110                           Node* length,         // number of array elements
4111                           int   nargs,          // number of arguments to push back for uncommon trap
4112                           Node* *return_size_val,
4113                           bool deoptimize_on_exception) {
4114   jint  layout_con = Klass::_lh_neutral_value;
4115   Node* layout_val = get_layout_helper(klass_node, layout_con);
4116   bool  layout_is_con = (layout_val == nullptr);
4117 
4118   if (!layout_is_con && !StressReflectiveCode &&
4119       !too_many_traps(Deoptimization::Reason_class_check)) {
4120     // This is a reflective array creation site.
4121     // Optimistically assume that it is a subtype of Object[],
4122     // so that we can fold up all the address arithmetic.
4123     layout_con = Klass::array_layout_helper(T_OBJECT);
4124     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
4125     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
4126     { BuildCutout unless(this, bol_lh, PROB_MAX);
4127       inc_sp(nargs);
4128       uncommon_trap(Deoptimization::Reason_class_check,
4129                     Deoptimization::Action_maybe_recompile);
4130     }
4131     layout_val = nullptr;
4132     layout_is_con = true;
4133   }
4134 
4135   // Generate the initial go-slow test.  Make sure we do not overflow
4136   // if length is huge (near 2Gig) or negative!  We do not need
4137   // exact double-words here, just a close approximation of needed
4138   // double-words.  We can't add any offset or rounding bits, lest we
4139   // take a size -1 of bytes and make it positive.  Use an unsigned
4140   // compare, so negative sizes look hugely positive.
4141   int fast_size_limit = FastAllocateSizeLimit;
4142   if (layout_is_con) {
4143     assert(!StressReflectiveCode, "stress mode does not use these paths");
4144     // Increase the size limit if we have exact knowledge of array type.
4145     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
4146     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
4147   }
4148 
4149   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
4150   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
4151 
4152   // --- Size Computation ---
4153   // array_size = round_to_heap(array_header + (length << elem_shift));
4154   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
4155   // and align_to(x, y) == ((x + y-1) & ~(y-1))
4156   // The rounding mask is strength-reduced, if possible.
4157   int round_mask = MinObjAlignmentInBytes - 1;
4158   Node* header_size = nullptr;
4159   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
4160   // (T_BYTE has the weakest alignment and size restrictions...)
4161   if (layout_is_con) {
4162     int       hsize  = Klass::layout_helper_header_size(layout_con);
4163     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
4164     bool is_flat_array = Klass::layout_helper_is_flatArray(layout_con);
4165     if ((round_mask & ~right_n_bits(eshift)) == 0)
4166       round_mask = 0;  // strength-reduce it if it goes away completely
4167     assert(is_flat_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
4168     assert(header_size_min <= hsize, "generic minimum is smallest");
4169     header_size_min = hsize;
4170     header_size = intcon(hsize + round_mask);
4171   } else {
4172     Node* hss   = intcon(Klass::_lh_header_size_shift);
4173     Node* hsm   = intcon(Klass::_lh_header_size_mask);
4174     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
4175     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
4176     Node* mask  = intcon(round_mask);
4177     header_size = _gvn.transform( new AddINode(hsize, mask) );
4178   }
4179 
4180   Node* elem_shift = nullptr;
4181   if (layout_is_con) {
4182     int eshift = Klass::layout_helper_log2_element_size(layout_con);
4183     if (eshift != 0)
4184       elem_shift = intcon(eshift);
4185   } else {
4186     // There is no need to mask or shift this value.
4187     // The semantics of LShiftINode include an implicit mask to 0x1F.

4231   // places, one where the length is sharply limited, and the other
4232   // after a successful allocation.
4233   Node* abody = lengthx;
4234   if (elem_shift != nullptr)
4235     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
4236   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
4237   if (round_mask != 0) {
4238     Node* mask = MakeConX(~round_mask);
4239     size       = _gvn.transform( new AndXNode(size, mask) );
4240   }
4241   // else if round_mask == 0, the size computation is self-rounding
4242 
4243   if (return_size_val != nullptr) {
4244     // This is the size
4245     (*return_size_val) = size;
4246   }
4247 
4248   // Now generate allocation code
4249 
4250   // The entire memory state is needed for slow path of the allocation
4251   // since GC and deoptimization can happen.
4252   Node *mem = reset_memory();
4253   set_all_memory(mem); // Create new memory state
4254 
4255   if (initial_slow_test->is_Bool()) {
4256     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4257     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4258   }
4259 
4260   const TypeKlassPtr* ary_klass = _gvn.type(klass_node)->isa_klassptr();
4261   const TypeOopPtr* ary_type = ary_klass->as_instance_type();
4262   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4263 
4264   // Inline type array variants:
4265   // - null-ok:              MyValue.ref[] (ciObjArrayKlass "[LMyValue")
4266   // - null-free:            MyValue.val[] (ciObjArrayKlass "[QMyValue")
4267   // - null-free, flattened: MyValue.val[] (ciFlatArrayKlass "[QMyValue")
4268   // Check if array is a null-free, non-flattened inline type array
4269   // that needs to be initialized with the default inline type.
4270   Node* default_value = nullptr;
4271   Node* raw_default_value = nullptr;
4272   if (ary_ptr != nullptr && ary_ptr->klass_is_exact()) {
4273     // Array type is known
4274     if (ary_ptr->is_null_free() && !ary_ptr->is_flat()) {
4275       ciInlineKlass* vk = ary_ptr->elem()->inline_klass();
4276       default_value = InlineTypeNode::default_oop(gvn(), vk);
4277     }
4278   } else if (ary_type->can_be_inline_array()) {
4279     // Array type is not known, add runtime checks
4280     assert(!ary_klass->klass_is_exact(), "unexpected exact type");
4281     Node* r = new RegionNode(3);
4282     default_value = new PhiNode(r, TypeInstPtr::BOTTOM);
4283 
4284     Node* bol = array_lh_test(klass_node, Klass::_lh_array_tag_flat_value_bit_inplace | Klass::_lh_null_free_array_bit_inplace, Klass::_lh_null_free_array_bit_inplace);
4285     IfNode* iff = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4286 
4287     // Null-free, non-flattened inline type array, initialize with the default value
4288     set_control(_gvn.transform(new IfTrueNode(iff)));
4289     Node* p = basic_plus_adr(klass_node, in_bytes(ArrayKlass::element_klass_offset()));
4290     Node* eklass = _gvn.transform(LoadKlassNode::make(_gvn, control(), immutable_memory(), p, TypeInstPtr::KLASS));
4291     Node* adr_fixed_block_addr = basic_plus_adr(eklass, in_bytes(InstanceKlass::adr_inlineklass_fixed_block_offset()));
4292     Node* adr_fixed_block = make_load(control(), adr_fixed_block_addr, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4293     Node* default_value_offset_addr = basic_plus_adr(adr_fixed_block, in_bytes(InlineKlass::default_value_offset_offset()));
4294     Node* default_value_offset = make_load(control(), default_value_offset_addr, TypeInt::INT, T_INT, MemNode::unordered);
4295     Node* elem_mirror = load_mirror_from_klass(eklass);
4296     Node* default_value_addr = basic_plus_adr(elem_mirror, ConvI2X(default_value_offset));
4297     Node* val = access_load_at(elem_mirror, default_value_addr, TypeInstPtr::MIRROR, TypeInstPtr::NOTNULL, T_OBJECT, IN_HEAP);
4298     r->init_req(1, control());
4299     default_value->init_req(1, val);
4300 
4301     // Otherwise initialize with all zero
4302     r->init_req(2, _gvn.transform(new IfFalseNode(iff)));
4303     default_value->init_req(2, null());
4304 
4305     set_control(_gvn.transform(r));
4306     default_value = _gvn.transform(default_value);
4307   }
4308   if (default_value != nullptr) {
4309     if (UseCompressedOops) {
4310       // With compressed oops, the 64-bit init value is built from two 32-bit compressed oops
4311       default_value = _gvn.transform(new EncodePNode(default_value, default_value->bottom_type()->make_narrowoop()));
4312       Node* lower = _gvn.transform(new CastP2XNode(control(), default_value));
4313       Node* upper = _gvn.transform(new LShiftLNode(lower, intcon(32)));
4314       raw_default_value = _gvn.transform(new OrLNode(lower, upper));
4315     } else {
4316       raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4317     }
4318   }
4319 
4320   Node* valid_length_test = _gvn.intcon(1);
4321   if (ary_type->isa_aryptr()) {
4322     BasicType bt = ary_type->isa_aryptr()->elem()->array_element_basic_type();
4323     jint max = TypeAryPtr::max_array_length(bt);
4324     Node* valid_length_cmp  = _gvn.transform(new CmpUNode(length, intcon(max)));
4325     valid_length_test = _gvn.transform(new BoolNode(valid_length_cmp, BoolTest::le));
4326   }
4327 
4328   // Create the AllocateArrayNode and its result projections
4329   AllocateArrayNode* alloc
4330     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4331                             control(), mem, i_o(),
4332                             size, klass_node,
4333                             initial_slow_test,
4334                             length, valid_length_test,
4335                             default_value, raw_default_value);
4336   // Cast to correct type.  Note that the klass_node may be constant or not,
4337   // and in the latter case the actual array type will be inexact also.
4338   // (This happens via a non-constant argument to inline_native_newArray.)
4339   // In any case, the value of klass_node provides the desired array type.
4340   const TypeInt* length_type = _gvn.find_int_type(length);
4341   if (ary_type->isa_aryptr() && length_type != nullptr) {
4342     // Try to get a better type than POS for the size
4343     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4344   }
4345 
4346   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4347 
4348   array_ideal_length(alloc, ary_type, true);
4349   return javaoop;
4350 }
4351 
4352 // The following "Ideal_foo" functions are placed here because they recognize
4353 // the graph shapes created by the functions immediately above.
4354 
4355 //---------------------------Ideal_allocation----------------------------------

4465   set_all_memory(ideal.merged_memory());
4466   set_i_o(ideal.i_o());
4467   set_control(ideal.ctrl());
4468 }
4469 
4470 void GraphKit::final_sync(IdealKit& ideal) {
4471   // Final sync IdealKit and graphKit.
4472   sync_kit(ideal);
4473 }
4474 
4475 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4476   Node* len = load_array_length(load_String_value(str, set_ctrl));
4477   Node* coder = load_String_coder(str, set_ctrl);
4478   // Divide length by 2 if coder is UTF16
4479   return _gvn.transform(new RShiftINode(len, coder));
4480 }
4481 
4482 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4483   int value_offset = java_lang_String::value_offset();
4484   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4485                                                      false, nullptr, Type::Offset(0));
4486   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4487   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4488                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS, false, false, true, true),
4489                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4490   Node* p = basic_plus_adr(str, str, value_offset);
4491   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4492                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4493   return load;
4494 }
4495 
4496 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4497   if (!CompactStrings) {
4498     return intcon(java_lang_String::CODER_UTF16);
4499   }
4500   int coder_offset = java_lang_String::coder_offset();
4501   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4502                                                      false, nullptr, Type::Offset(0));
4503   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4504 
4505   Node* p = basic_plus_adr(str, str, coder_offset);
4506   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4507                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4508   return load;
4509 }
4510 
4511 void GraphKit::store_String_value(Node* str, Node* value) {
4512   int value_offset = java_lang_String::value_offset();
4513   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4514                                                      false, nullptr, Type::Offset(0));
4515   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4516 
4517   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4518                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4519 }
4520 
4521 void GraphKit::store_String_coder(Node* str, Node* value) {
4522   int coder_offset = java_lang_String::coder_offset();
4523   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4524                                                      false, nullptr, Type::Offset(0));
4525   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4526 
4527   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4528                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4529 }
4530 
4531 // Capture src and dst memory state with a MergeMemNode
4532 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4533   if (src_type == dst_type) {
4534     // Types are equal, we don't need a MergeMemNode
4535     return memory(src_type);
4536   }
4537   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4538   record_for_igvn(merge); // fold it up later, if possible
4539   int src_idx = C->get_alias_index(src_type);
4540   int dst_idx = C->get_alias_index(dst_type);
4541   merge->set_memory_at(src_idx, memory(src_idx));
4542   merge->set_memory_at(dst_idx, memory(dst_idx));
4543   return merge;
4544 }

4617   i_char->init_req(2, AddI(i_char, intcon(2)));
4618 
4619   set_control(IfFalse(iff));
4620   set_memory(st, TypeAryPtr::BYTES);
4621 }
4622 
4623 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4624   if (!field->is_constant()) {
4625     return nullptr; // Field not marked as constant.
4626   }
4627   ciInstance* holder = nullptr;
4628   if (!field->is_static()) {
4629     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4630     if (const_oop != nullptr && const_oop->is_instance()) {
4631       holder = const_oop->as_instance();
4632     }
4633   }
4634   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4635                                                         /*is_unsigned_load=*/false);
4636   if (con_type != nullptr) {
4637     Node* con = makecon(con_type);
4638     if (field->type()->is_inlinetype()) {
4639       con = InlineTypeNode::make_from_oop(this, con, field->type()->as_inline_klass(), field->is_null_free());
4640     } else if (con_type->is_inlinetypeptr()) {
4641       con = InlineTypeNode::make_from_oop(this, con, con_type->inline_klass(), field->is_null_free());
4642     }
4643     return con;
4644   }
4645   return nullptr;
4646 }
4647 
4648 //---------------------------load_mirror_from_klass----------------------------
4649 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4650 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4651   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4652   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4653   // mirror = ((OopHandle)mirror)->resolve();
4654   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4655 }
< prev index next >