1 /*
   2  * Copyright (c) 2017, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciInlineKlass.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/gc_globals.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/graphKit.hpp"
  32 #include "opto/inlinetypenode.hpp"
  33 #include "opto/rootnode.hpp"
  34 #include "opto/phaseX.hpp"
  35 
  36 // Clones the inline type to handle control flow merges involving multiple inline types.
  37 // The inputs are replaced by PhiNodes to represent the merged values for the given region.
  38 InlineTypeNode* InlineTypeNode::clone_with_phis(PhaseGVN* gvn, Node* region, SafePointNode* map, bool is_init) {
  39   InlineTypeNode* vt = clone_if_required(gvn, map);
  40   const Type* t = Type::get_const_type(inline_klass());
  41   gvn->set_type(vt, t);
  42   vt->as_InlineType()->set_type(t);
  43 
  44   // Create a PhiNode for merging the oop values
  45   PhiNode* oop = PhiNode::make(region, vt->get_oop(), t);
  46   gvn->set_type(oop, t);
  47   gvn->record_for_igvn(oop);
  48   vt->set_oop(*gvn, oop);
  49 
  50   // Create a PhiNode for merging the is_buffered values
  51   t = Type::get_const_basic_type(T_BOOLEAN);
  52   Node* is_buffered_node = PhiNode::make(region, vt->get_is_buffered(), t);
  53   gvn->set_type(is_buffered_node, t);
  54   gvn->record_for_igvn(is_buffered_node);
  55   vt->set_req(IsBuffered, is_buffered_node);
  56 
  57   // Create a PhiNode for merging the is_init values
  58   Node* is_init_node;
  59   if (is_init) {
  60     is_init_node = gvn->intcon(1);
  61   } else {
  62     t = Type::get_const_basic_type(T_BOOLEAN);
  63     is_init_node = PhiNode::make(region, vt->get_is_init(), t);
  64     gvn->set_type(is_init_node, t);
  65     gvn->record_for_igvn(is_init_node);
  66   }
  67   vt->set_req(IsInit, is_init_node);
  68 
  69   // Create a PhiNode each for merging the field values
  70   for (uint i = 0; i < vt->field_count(); ++i) {
  71     ciType* type = vt->field_type(i);
  72     Node*  value = vt->field_value(i);
  73     // We limit scalarization for inline types with circular fields and can therefore observe nodes
  74     // of the same type but with different scalarization depth during GVN. To avoid inconsistencies
  75     // during merging, make sure that we only create Phis for fields that are guaranteed to be scalarized.
  76     bool no_circularity = !gvn->C->has_circular_inline_type() || field_is_flat(i);
  77     if (value->is_InlineType() && no_circularity) {
  78       // Handle inline type fields recursively
  79       value = value->as_InlineType()->clone_with_phis(gvn, region, map);
  80     } else {
  81       t = Type::get_const_type(type);
  82       value = PhiNode::make(region, value, t);
  83       gvn->set_type(value, t);
  84       gvn->record_for_igvn(value);
  85     }
  86     vt->set_field_value(i, value);
  87   }
  88   gvn->record_for_igvn(vt);
  89   return vt;
  90 }
  91 
  92 // Checks if the inputs of the InlineTypeNode were replaced by PhiNodes
  93 // for the given region (see InlineTypeNode::clone_with_phis).
  94 bool InlineTypeNode::has_phi_inputs(Node* region) {
  95   // Check oop input
  96   bool result = get_oop()->is_Phi() && get_oop()->as_Phi()->region() == region;
  97 #ifdef ASSERT
  98   if (result) {
  99     // Check all field value inputs for consistency
 100     for (uint i = Values; i < field_count(); ++i) {
 101       Node* n = in(i);
 102       if (n->is_InlineType()) {
 103         assert(n->as_InlineType()->has_phi_inputs(region), "inconsistent phi inputs");
 104       } else {
 105         assert(n->is_Phi() && n->as_Phi()->region() == region, "inconsistent phi inputs");
 106       }
 107     }
 108   }
 109 #endif
 110   return result;
 111 }
 112 
 113 // Merges 'this' with 'other' by updating the input PhiNodes added by 'clone_with_phis'
 114 InlineTypeNode* InlineTypeNode::merge_with(PhaseGVN* gvn, const InlineTypeNode* other, int pnum, bool transform) {
 115   // Merge oop inputs
 116   PhiNode* phi = get_oop()->as_Phi();
 117   phi->set_req(pnum, other->get_oop());
 118   if (transform) {
 119     set_oop(*gvn, gvn->transform(phi));
 120   }
 121 
 122   // Merge is_buffered inputs
 123   phi = get_is_buffered()->as_Phi();
 124   phi->set_req(pnum, other->get_is_buffered());
 125   if (transform) {
 126     set_req(IsBuffered, gvn->transform(phi));
 127   }
 128 
 129   // Merge is_init inputs
 130   Node* is_init = get_is_init();
 131   if (is_init->is_Phi()) {
 132     phi = is_init->as_Phi();
 133     phi->set_req(pnum, other->get_is_init());
 134     if (transform) {
 135       set_req(IsInit, gvn->transform(phi));
 136     }
 137   } else {
 138     assert(is_init->find_int_con(0) == 1, "only with a non null inline type");
 139   }
 140 
 141   // Merge field values
 142   for (uint i = 0; i < field_count(); ++i) {
 143     Node* val1 =        field_value(i);
 144     Node* val2 = other->field_value(i);
 145     if (val1->is_InlineType()) {
 146       if (val2->is_Phi()) {
 147         val2 = gvn->transform(val2);
 148       }
 149       val1->as_InlineType()->merge_with(gvn, val2->as_InlineType(), pnum, transform);
 150     } else {
 151       assert(val1->is_Phi(), "must be a phi node");
 152       val1->set_req(pnum, val2);
 153     }
 154     if (transform) {
 155       set_field_value(i, gvn->transform(val1));
 156     }
 157   }
 158   return this;
 159 }
 160 
 161 // Adds a new merge path to an inline type node with phi inputs
 162 void InlineTypeNode::add_new_path(Node* region) {
 163   assert(has_phi_inputs(region), "must have phi inputs");
 164 
 165   PhiNode* phi = get_oop()->as_Phi();
 166   phi->add_req(nullptr);
 167   assert(phi->req() == region->req(), "must be same size as region");
 168 
 169   phi = get_is_buffered()->as_Phi();
 170   phi->add_req(nullptr);
 171   assert(phi->req() == region->req(), "must be same size as region");
 172 
 173   phi = get_is_init()->as_Phi();
 174   phi->add_req(nullptr);
 175   assert(phi->req() == region->req(), "must be same size as region");
 176 
 177   for (uint i = 0; i < field_count(); ++i) {
 178     Node* val = field_value(i);
 179     if (val->is_InlineType()) {
 180       val->as_InlineType()->add_new_path(region);
 181     } else {
 182       val->as_Phi()->add_req(nullptr);
 183       assert(val->req() == region->req(), "must be same size as region");
 184     }
 185   }
 186 }
 187 
 188 Node* InlineTypeNode::field_value(uint index) const {
 189   assert(index < field_count(), "index out of bounds");
 190   return in(Values + index);
 191 }
 192 
 193 // Get the value of the field at the given offset.
 194 // If 'recursive' is true, flat inline type fields will be resolved recursively.
 195 Node* InlineTypeNode::field_value_by_offset(int offset, bool recursive) const {
 196   // If the field at 'offset' belongs to a flat inline type field, 'index' refers to the
 197   // corresponding InlineTypeNode input and 'sub_offset' is the offset in flattened inline type.
 198   int index = inline_klass()->field_index_by_offset(offset);
 199   int sub_offset = offset - field_offset(index);
 200   Node* value = field_value(index);
 201   assert(value != nullptr, "field value not found");
 202   if (recursive && value->is_InlineType()) {
 203     if (field_is_flat(index)) {
 204       // Flat inline type field
 205       InlineTypeNode* vt = value->as_InlineType();
 206       sub_offset += vt->inline_klass()->first_field_offset(); // Add header size
 207       return vt->field_value_by_offset(sub_offset, recursive);
 208     } else {
 209       assert(sub_offset == 0, "should not have a sub offset");
 210       return value;
 211     }
 212   }
 213   assert(!(recursive && value->is_InlineType()), "should not be an inline type");
 214   assert(sub_offset == 0, "offset mismatch");
 215   return value;
 216 }
 217 
 218 void InlineTypeNode::set_field_value(uint index, Node* value) {
 219   assert(index < field_count(), "index out of bounds");
 220   set_req(Values + index, value);
 221 }
 222 
 223 void InlineTypeNode::set_field_value_by_offset(int offset, Node* value) {
 224   set_field_value(field_index(offset), value);
 225 }
 226 
 227 int InlineTypeNode::field_offset(uint index) const {
 228   assert(index < field_count(), "index out of bounds");
 229   return inline_klass()->declared_nonstatic_field_at(index)->offset_in_bytes();
 230 }
 231 
 232 uint InlineTypeNode::field_index(int offset) const {
 233   uint i = 0;
 234   for (; i < field_count() && field_offset(i) != offset; i++) { }
 235   assert(i < field_count(), "field not found");
 236   return i;
 237 }
 238 
 239 ciType* InlineTypeNode::field_type(uint index) const {
 240   assert(index < field_count(), "index out of bounds");
 241   return inline_klass()->declared_nonstatic_field_at(index)->type();
 242 }
 243 
 244 bool InlineTypeNode::field_is_flat(uint index) const {
 245   assert(index < field_count(), "index out of bounds");
 246   ciField* field = inline_klass()->declared_nonstatic_field_at(index);
 247   assert(!field->is_flat() || field->type()->is_inlinetype(), "must be an inline type");
 248   return field->is_flat();
 249 }
 250 
 251 bool InlineTypeNode::field_is_null_free(uint index) const {
 252   assert(index < field_count(), "index out of bounds");
 253   ciField* field = inline_klass()->declared_nonstatic_field_at(index);
 254   assert(!field->is_flat() || field->type()->is_inlinetype(), "must be an inline type");
 255   return field->is_null_free();
 256 }
 257 
 258 void InlineTypeNode::make_scalar_in_safepoint(PhaseIterGVN* igvn, Unique_Node_List& worklist, SafePointNode* sfpt) {
 259   // Don't scalarize larvals in their own constructor call because the constructor will update them
 260   if (is_larval() && sfpt->is_CallJava() && sfpt->as_CallJava()->method() != nullptr && sfpt->as_CallJava()->method()->is_object_constructor() &&
 261       sfpt->as_CallJava()->method()->holder()->is_inlinetype() && sfpt->in(TypeFunc::Parms) == this) {
 262     assert(is_allocated(igvn), "receiver must be allocated");
 263     return;
 264   }
 265 
 266   ciInlineKlass* vk = inline_klass();
 267   uint nfields = vk->nof_nonstatic_fields();
 268   JVMState* jvms = sfpt->jvms();
 269   // Replace safepoint edge by SafePointScalarObjectNode and add field values
 270   assert(jvms != nullptr, "missing JVMS");
 271   uint first_ind = (sfpt->req() - jvms->scloff());
 272   SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(type()->isa_instptr(),
 273                                                                   nullptr,
 274                                                                   first_ind, nfields);
 275   sobj->init_req(0, igvn->C->root());
 276   // Nullable inline types have an IsInit field that needs
 277   // to be checked before using the field values.
 278   if (!igvn->type(get_is_init())->is_int()->is_con(1)) {
 279     sfpt->add_req(get_is_init());
 280   } else {
 281     sfpt->add_req(igvn->C->top());
 282   }
 283   // Iterate over the inline type fields in order of increasing
 284   // offset and add the field values to the safepoint.
 285   for (uint j = 0; j < nfields; ++j) {
 286     int offset = vk->nonstatic_field_at(j)->offset_in_bytes();
 287     Node* value = field_value_by_offset(offset, true /* include flat inline type fields */);
 288     if (value->is_InlineType()) {
 289       // Add inline type field to the worklist to process later
 290       worklist.push(value);
 291     }
 292     sfpt->add_req(value);
 293   }
 294   jvms->set_endoff(sfpt->req());
 295   sobj = igvn->transform(sobj)->as_SafePointScalarObject();
 296   igvn->rehash_node_delayed(sfpt);
 297   for (uint i = jvms->debug_start(); i < jvms->debug_end(); i++) {
 298     Node* debug = sfpt->in(i);
 299     if (debug != nullptr && debug->uncast() == this) {
 300       sfpt->set_req(i, sobj);
 301     }
 302   }
 303 }
 304 
 305 void InlineTypeNode::make_scalar_in_safepoints(PhaseIterGVN* igvn, bool allow_oop) {
 306   // If the inline type has a constant or loaded oop, use the oop instead of scalarization
 307   // in the safepoint to avoid keeping field loads live just for the debug info.
 308   Node* oop = get_oop();
 309   // TODO 8325106
 310   // TestBasicFunctionality::test3 fails without this. Add more tests?
 311   // Add proj nodes here? Recursive handling of phis required? We need a test that fails without.
 312   bool use_oop = false;
 313   if (allow_oop && is_allocated(igvn) && oop->is_Phi()) {
 314     Unique_Node_List worklist;
 315     worklist.push(oop);
 316     use_oop = true;
 317     while (worklist.size() > 0 && use_oop) {
 318       Node* n = worklist.pop();
 319       for (uint i = 1; i < n->req(); i++) {
 320         Node* in = n->in(i);
 321         if (in->is_Phi()) {
 322           worklist.push(in);
 323         // TestNullableArrays.test123 fails when enabling this, probably we should make sure that we don't load from a just allocated object
 324         //} else if (!(in->is_Con() || in->is_Parm() || in->is_Load() || (in->isa_DecodeN() && in->in(1)->is_Load()))) {
 325         } else if (!(in->is_Con() || in->is_Parm())) {
 326           use_oop = false;
 327           break;
 328         }
 329       }
 330     }
 331   } else {
 332     use_oop = allow_oop && is_allocated(igvn) &&
 333               (oop->is_Con() || oop->is_Parm() || oop->is_Load() || (oop->isa_DecodeN() && oop->in(1)->is_Load()));
 334   }
 335 
 336   ResourceMark rm;
 337   Unique_Node_List safepoints;
 338   Unique_Node_List vt_worklist;
 339   Unique_Node_List worklist;
 340   worklist.push(this);
 341   while (worklist.size() > 0) {
 342     Node* n = worklist.pop();
 343     for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
 344       Node* use = n->fast_out(i);
 345       if (use->is_SafePoint() && !use->is_CallLeaf() && (!use->is_Call() || use->as_Call()->has_debug_use(n))) {
 346         safepoints.push(use);
 347       } else if (use->is_ConstraintCast()) {
 348         worklist.push(use);
 349       }
 350     }
 351   }
 352 
 353   // Process all safepoint uses and scalarize inline type
 354   while (safepoints.size() > 0) {
 355     SafePointNode* sfpt = safepoints.pop()->as_SafePoint();
 356     if (use_oop) {
 357       for (uint i = sfpt->jvms()->debug_start(); i < sfpt->jvms()->debug_end(); i++) {
 358         Node* debug = sfpt->in(i);
 359         if (debug != nullptr && debug->uncast() == this) {
 360           sfpt->set_req(i, get_oop());
 361         }
 362       }
 363       igvn->rehash_node_delayed(sfpt);
 364     } else {
 365       make_scalar_in_safepoint(igvn, vt_worklist, sfpt);
 366     }
 367   }
 368   // Now scalarize non-flat fields
 369   for (uint i = 0; i < vt_worklist.size(); ++i) {
 370     InlineTypeNode* vt = vt_worklist.at(i)->isa_InlineType();
 371     vt->make_scalar_in_safepoints(igvn);
 372   }
 373   if (outcnt() == 0) {
 374     igvn->_worklist.push(this);
 375   }
 376 }
 377 
 378 const TypePtr* InlineTypeNode::field_adr_type(Node* base, int offset, ciInstanceKlass* holder, DecoratorSet decorators, PhaseGVN& gvn) const {
 379   const TypeAryPtr* ary_type = gvn.type(base)->isa_aryptr();
 380   const TypePtr* adr_type = nullptr;
 381   bool is_array = ary_type != nullptr;
 382   if ((decorators & C2_MISMATCHED) != 0) {
 383     adr_type = TypeRawPtr::BOTTOM;
 384   } else if (is_array) {
 385     // In the case of a flat inline type array, each field has its own slice
 386     adr_type = ary_type->with_field_offset(offset)->add_offset(Type::OffsetBot);
 387   } else {
 388     ciField* field = holder->get_field_by_offset(offset, false);
 389     assert(field != nullptr, "field not found");
 390     adr_type = gvn.C->alias_type(field)->adr_type();
 391   }
 392   return adr_type;
 393 }
 394 
 395 // We limit scalarization for inline types with circular fields and can therefore observe nodes
 396 // of the same type but with different scalarization depth during GVN. This method adjusts the
 397 // scalarization depth to avoid inconsistencies during merging.
 398 InlineTypeNode* InlineTypeNode::adjust_scalarization_depth(GraphKit* kit) {
 399   if (!kit->C->has_circular_inline_type()) {
 400     return this;
 401   }
 402   GrowableArray<ciType*> visited;
 403   visited.push(inline_klass());
 404   return adjust_scalarization_depth_impl(kit, visited);
 405 }
 406 
 407 InlineTypeNode* InlineTypeNode::adjust_scalarization_depth_impl(GraphKit* kit, GrowableArray<ciType*>& visited) {
 408   InlineTypeNode* val = this;
 409   for (uint i = 0; i < field_count(); ++i) {
 410     Node* value = field_value(i);
 411     Node* new_value = value;
 412     ciType* ft = field_type(i);
 413     if (value->is_InlineType()) {
 414       if (!field_is_flat(i) && visited.contains(ft)) {
 415         new_value = value->as_InlineType()->buffer(kit)->get_oop();
 416       } else {
 417         int old_len = visited.length();
 418         visited.push(ft);
 419         new_value = value->as_InlineType()->adjust_scalarization_depth_impl(kit, visited);
 420         visited.trunc_to(old_len);
 421       }
 422     } else if (ft->is_inlinetype() && !visited.contains(ft)) {
 423       int old_len = visited.length();
 424       visited.push(ft);
 425       new_value = make_from_oop_impl(kit, value, ft->as_inline_klass(), field_is_null_free(i), visited);
 426       visited.trunc_to(old_len);
 427     }
 428     if (value != new_value) {
 429       if (val == this) {
 430         val = clone_if_required(&kit->gvn(), kit->map());
 431       }
 432       val->set_field_value(i, new_value);
 433     }
 434   }
 435   return (val == this) ? this : kit->gvn().transform(val)->as_InlineType();
 436 }
 437 
 438 void InlineTypeNode::load(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, GrowableArray<ciType*>& visited, int holder_offset, DecoratorSet decorators) {
 439   // Initialize the inline type by loading its field values from
 440   // memory and adding the values as input edges to the node.
 441   for (uint i = 0; i < field_count(); ++i) {
 442     int offset = holder_offset + field_offset(i);
 443     Node* value = nullptr;
 444     ciType* ft = field_type(i);
 445     bool null_free = field_is_null_free(i);
 446     if (null_free && ft->as_inline_klass()->is_empty()) {
 447       // Loading from a field of an empty inline type. Just return the default instance.
 448       value = make_default_impl(kit->gvn(), ft->as_inline_klass(), visited);
 449     } else if (field_is_flat(i)) {
 450       // Recursively load the flat inline type field
 451       value = make_from_flat_impl(kit, ft->as_inline_klass(), base, ptr, holder, offset, decorators, visited);
 452     } else {
 453       const TypeOopPtr* oop_ptr = kit->gvn().type(base)->isa_oopptr();
 454       bool is_array = (oop_ptr->isa_aryptr() != nullptr);
 455       bool mismatched = (decorators & C2_MISMATCHED) != 0;
 456       if (base->is_Con() && !is_array && !mismatched) {
 457         // If the oop to the inline type is constant (static final field), we can
 458         // also treat the fields as constants because the inline type is immutable.
 459         ciObject* constant_oop = oop_ptr->const_oop();
 460         ciField* field = holder->get_field_by_offset(offset, false);
 461         assert(field != nullptr, "field not found");
 462         ciConstant constant = constant_oop->as_instance()->field_value(field);
 463         const Type* con_type = Type::make_from_constant(constant, /*require_const=*/ true);
 464         assert(con_type != nullptr, "type not found");
 465         value = kit->gvn().transform(kit->makecon(con_type));
 466         // Check type of constant which might be more precise than the static field type
 467         if (con_type->is_inlinetypeptr() && !con_type->is_zero_type()) {
 468           ft = con_type->inline_klass();
 469           null_free = true;
 470         }
 471       } else {
 472         // Load field value from memory
 473         const TypePtr* adr_type = field_adr_type(base, offset, holder, decorators, kit->gvn());
 474         Node* adr = kit->basic_plus_adr(base, ptr, offset);
 475         BasicType bt = type2field[ft->basic_type()];
 476         assert(is_java_primitive(bt) || adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent");
 477         const Type* val_type = Type::get_const_type(ft);
 478         value = kit->access_load_at(base, adr, adr_type, val_type, bt, is_array ? (decorators | IS_ARRAY) : decorators);
 479       }
 480       // Loading a non-flattened inline type from memory
 481       if (visited.contains(ft)) {
 482         kit->C->set_has_circular_inline_type(true);
 483       } else if (ft->is_inlinetype()) {
 484         int old_len = visited.length();
 485         visited.push(ft);
 486         value = make_from_oop_impl(kit, value, ft->as_inline_klass(), null_free, visited);
 487         visited.trunc_to(old_len);
 488       }
 489     }
 490     set_field_value(i, value);
 491   }
 492 }
 493 
 494 void InlineTypeNode::store_flat(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset, DecoratorSet decorators) const {
 495   if (kit->gvn().type(base)->isa_aryptr()) {
 496     kit->C->set_flat_accesses();
 497   }
 498   // The inline type is embedded into the object without an oop header. Subtract the
 499   // offset of the first field to account for the missing header when storing the values.
 500   if (holder == nullptr) {
 501     holder = inline_klass();
 502   }
 503   holder_offset -= inline_klass()->first_field_offset();
 504   store(kit, base, ptr, holder, holder_offset, decorators);
 505 }
 506 
 507 void InlineTypeNode::store(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset, DecoratorSet decorators, int offsetOnly) const {
 508   // Write field values to memory
 509   for (uint i = 0; i < field_count(); ++i) {
 510     if (offsetOnly != -1 && offsetOnly != field_offset(i)) continue;
 511     int offset = holder_offset + field_offset(i);
 512     Node* value = field_value(i);
 513     ciType* ft = field_type(i);
 514     if (field_is_flat(i)) {
 515       // Recursively store the flat inline type field
 516       value->as_InlineType()->store_flat(kit, base, ptr, holder, offset, decorators);
 517     } else {
 518       // Store field value to memory
 519       const TypePtr* adr_type = field_adr_type(base, offset, holder, decorators, kit->gvn());
 520       Node* adr = kit->basic_plus_adr(base, ptr, offset);
 521       BasicType bt = type2field[ft->basic_type()];
 522       assert(is_java_primitive(bt) || adr->bottom_type()->is_ptr_to_narrowoop() == UseCompressedOops, "inconsistent");
 523       const Type* val_type = Type::get_const_type(ft);
 524       bool is_array = (kit->gvn().type(base)->isa_aryptr() != nullptr);
 525       kit->access_store_at(base, adr, adr_type, value, val_type, bt, is_array ? (decorators | IS_ARRAY) : decorators);
 526     }
 527   }
 528 }
 529 
 530 InlineTypeNode* InlineTypeNode::buffer(GraphKit* kit, bool safe_for_replace) {
 531   if (kit->gvn().find_int_con(get_is_buffered(), 0) == 1) {
 532     // Already buffered
 533     return this;
 534   }
 535 
 536   // Check if inline type is already buffered
 537   Node* not_buffered_ctl = kit->top();
 538   Node* not_null_oop = kit->null_check_oop(get_oop(), &not_buffered_ctl, /* never_see_null = */ false, safe_for_replace);
 539   if (not_buffered_ctl->is_top()) {
 540     // Already buffered
 541     InlineTypeNode* vt = clone_if_required(&kit->gvn(), kit->map(), safe_for_replace);
 542     vt->set_is_buffered(kit->gvn());
 543     vt = kit->gvn().transform(vt)->as_InlineType();
 544     if (safe_for_replace) {
 545       kit->replace_in_map(this, vt);
 546     }
 547     return vt;
 548   }
 549   Node* buffered_ctl = kit->control();
 550   kit->set_control(not_buffered_ctl);
 551 
 552   // Inline type is not buffered, check if it is null.
 553   Node* null_ctl = kit->top();
 554   kit->null_check_common(get_is_init(), T_INT, false, &null_ctl);
 555   bool null_free = null_ctl->is_top();
 556 
 557   RegionNode* region = new RegionNode(4);
 558   PhiNode* oop = PhiNode::make(region, not_null_oop, type()->join_speculative(null_free ? TypePtr::NOTNULL : TypePtr::BOTTOM));
 559 
 560   // InlineType is already buffered
 561   region->init_req(1, buffered_ctl);
 562   oop->init_req(1, not_null_oop);
 563 
 564   // InlineType is null
 565   region->init_req(2, null_ctl);
 566   oop->init_req(2, kit->gvn().zerocon(T_OBJECT));
 567 
 568   PhiNode* io  = PhiNode::make(region, kit->i_o(), Type::ABIO);
 569   PhiNode* mem = PhiNode::make(region, kit->merged_memory(), Type::MEMORY, TypePtr::BOTTOM);
 570 
 571   int bci = kit->bci();
 572   bool reexecute = kit->jvms()->should_reexecute();
 573   if (!kit->stopped()) {
 574     assert(!is_allocated(&kit->gvn()), "already buffered");
 575 
 576     // Allocate and initialize buffer
 577     PreserveJVMState pjvms(kit);
 578     // Propagate re-execution state and bci
 579     kit->set_bci(bci);
 580     kit->jvms()->set_bci(bci);
 581     kit->jvms()->set_should_reexecute(reexecute);
 582 
 583     kit->kill_dead_locals();
 584     ciInlineKlass* vk = inline_klass();
 585     Node* klass_node = kit->makecon(TypeKlassPtr::make(vk));
 586     Node* alloc_oop  = kit->new_instance(klass_node, nullptr, nullptr, /* deoptimize_on_exception */ true, this);
 587     // No need to initialize a larval buffer, we make sure that the oop can not escape
 588     if (!is_larval()) {
 589       // Larval will be initialized later
 590       // TODO 8325106 should this use C2_TIGHTLY_COUPLED_ALLOC?
 591       store(kit, alloc_oop, alloc_oop, vk);
 592 
 593       // Do not let stores that initialize this buffer be reordered with a subsequent
 594       // store that would make this buffer accessible by other threads.
 595       AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_oop);
 596       assert(alloc != nullptr, "must have an allocation node");
 597       kit->insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
 598     }
 599 
 600     region->init_req(3, kit->control());
 601     oop   ->init_req(3, alloc_oop);
 602     io    ->init_req(3, kit->i_o());
 603     mem   ->init_req(3, kit->merged_memory());
 604   }
 605 
 606   // Update GraphKit
 607   kit->set_control(kit->gvn().transform(region));
 608   kit->set_i_o(kit->gvn().transform(io));
 609   kit->set_all_memory(kit->gvn().transform(mem));
 610   kit->record_for_igvn(region);
 611   kit->record_for_igvn(oop);
 612   kit->record_for_igvn(io);
 613   kit->record_for_igvn(mem);
 614 
 615   // Use cloned InlineTypeNode to propagate oop from now on
 616   Node* res_oop = kit->gvn().transform(oop);
 617   InlineTypeNode* vt = clone_if_required(&kit->gvn(), kit->map(), safe_for_replace);
 618   vt->set_oop(kit->gvn(), res_oop);
 619   vt->set_is_buffered(kit->gvn());
 620   vt = kit->gvn().transform(vt)->as_InlineType();
 621   if (safe_for_replace) {
 622     kit->replace_in_map(this, vt);
 623   }
 624   // InlineTypeNode::remove_redundant_allocations piggybacks on split if.
 625   // Make sure it gets a chance to remove this allocation.
 626   kit->C->set_has_split_ifs(true);
 627   return vt;
 628 }
 629 
 630 bool InlineTypeNode::is_allocated(PhaseGVN* phase) const {
 631   if (phase->find_int_con(get_is_buffered(), 0) == 1) {
 632     return true;
 633   }
 634   Node* oop = get_oop();
 635   const Type* oop_type = (phase != nullptr) ? phase->type(oop) : oop->bottom_type();
 636   return !oop_type->maybe_null();
 637 }
 638 
 639 // When a call returns multiple values, it has several result
 640 // projections, one per field. Replacing the result of the call by an
 641 // inline type node (after late inlining) requires that for each result
 642 // projection, we find the corresponding inline type field.
 643 void InlineTypeNode::replace_call_results(GraphKit* kit, CallNode* call, Compile* C) {
 644   ciInlineKlass* vk = inline_klass();
 645   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 646     ProjNode* pn = call->fast_out(i)->as_Proj();
 647     uint con = pn->_con;
 648     Node* field = nullptr;
 649     if (con == TypeFunc::Parms) {
 650       field = get_oop();
 651     } else if (con == (call->tf()->range_cc()->cnt() - 1)) {
 652       field = get_is_init();
 653     } else if (con > TypeFunc::Parms) {
 654       uint field_nb = con - (TypeFunc::Parms+1);
 655       int extra = 0;
 656       for (uint j = 0; j < field_nb - extra; j++) {
 657         ciField* f = vk->nonstatic_field_at(j);
 658         BasicType bt = f->type()->basic_type();
 659         if (bt == T_LONG || bt == T_DOUBLE) {
 660           extra++;
 661         }
 662       }
 663       ciField* f = vk->nonstatic_field_at(field_nb - extra);
 664       field = field_value_by_offset(f->offset_in_bytes(), true);
 665     }
 666     if (field != nullptr) {
 667       C->gvn_replace_by(pn, field);
 668       C->initial_gvn()->hash_delete(pn);
 669       pn->set_req(0, C->top());
 670       --i; --imax;
 671     }
 672   }
 673 }
 674 
 675 Node* InlineTypeNode::allocate_fields(GraphKit* kit) {
 676   InlineTypeNode* vt = clone_if_required(&kit->gvn(), kit->map());
 677   for (uint i = 0; i < field_count(); i++) {
 678      Node* value = field_value(i);
 679      if (field_is_flat(i)) {
 680        // Flat inline type field
 681        vt->set_field_value(i, value->as_InlineType()->allocate_fields(kit));
 682      } else if (value->is_InlineType()) {
 683        // Non-flat inline type field
 684        vt->set_field_value(i, value->as_InlineType()->buffer(kit));
 685      }
 686   }
 687   vt = kit->gvn().transform(vt)->as_InlineType();
 688   kit->replace_in_map(this, vt);
 689   return vt;
 690 }
 691 
 692 // Replace a buffer allocation by a dominating allocation
 693 static void replace_allocation(PhaseIterGVN* igvn, Node* res, Node* dom) {
 694   // Remove initializing stores and GC barriers
 695   for (DUIterator_Fast imax, i = res->fast_outs(imax); i < imax; i++) {
 696     Node* use = res->fast_out(i);
 697     if (use->is_AddP()) {
 698       for (DUIterator_Fast jmax, j = use->fast_outs(jmax); j < jmax; j++) {
 699         Node* store = use->fast_out(j)->isa_Store();
 700         if (store != nullptr) {
 701           igvn->rehash_node_delayed(store);
 702           igvn->replace_in_uses(store, store->in(MemNode::Memory));
 703         }
 704       }
 705     } else if (use->Opcode() == Op_CastP2X) {
 706       if (UseG1GC && use->find_out_with(Op_XorX)->in(1) != use) {
 707         // The G1 pre-barrier uses a CastP2X both for the pointer of the object
 708         // we store into, as well as the value we are storing. Skip if this is a
 709         // barrier for storing 'res' into another object.
 710         continue;
 711       }
 712       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 713       bs->eliminate_gc_barrier(igvn, use);
 714       --i; --imax;
 715     }
 716   }
 717   igvn->replace_node(res, dom);
 718 }
 719 
 720 Node* InlineTypeNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 721   Node* oop = get_oop();
 722   const Type* tinit = phase->type(get_is_init());
 723   if (!is_larval(phase) && !is_larval() &&
 724       (tinit->isa_int() && tinit->is_int()->is_con(1)) &&
 725       (is_default(phase) || inline_klass()->is_empty()) &&
 726       inline_klass()->is_initialized() &&
 727       (!oop->is_Con() || phase->type(oop)->is_zero_type())) {
 728     // Use the pre-allocated oop for null-free default or empty inline types
 729     set_oop(*phase, default_oop(*phase, inline_klass()));
 730     assert(is_allocated(phase), "should now be allocated");
 731     return this;
 732   }
 733   if (oop->isa_InlineType() && !phase->type(oop)->maybe_null()) {
 734     InlineTypeNode* vtptr = oop->as_InlineType();
 735     set_oop(*phase, vtptr->get_oop());
 736     set_is_buffered(*phase);
 737     set_is_init(*phase);
 738     for (uint i = Values; i < vtptr->req(); ++i) {
 739       set_req(i, vtptr->in(i));
 740     }
 741     return this;
 742   }
 743   // TODO 8325106 Re-evaluate this: We prefer a "loaded" oop because it's free. The existing oop might come from a buffering.
 744   if (!is_larval(phase) && !is_larval()) {
 745     // Save base oop if fields are loaded from memory and the inline
 746     // type is not buffered (in this case we should not use the oop).
 747     Node* base = is_loaded(phase);
 748     if (base != nullptr && get_oop() != base && !phase->type(base)->maybe_null()) {
 749       set_oop(*phase, base);
 750       assert(is_allocated(phase), "should now be allocated");
 751       return this;
 752     }
 753   }
 754 
 755   if (can_reshape) {
 756     PhaseIterGVN* igvn = phase->is_IterGVN();
 757     if (is_allocated(phase)) {
 758       // Search for and remove re-allocations of this inline type. Ignore scalar replaceable ones,
 759       // they will be removed anyway and changing the memory chain will confuse other optimizations.
 760       // This can happen with late inlining when we first allocate an inline type argument
 761       // but later decide to inline the call after the callee code also triggered allocation.
 762       for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 763         AllocateNode* alloc = fast_out(i)->isa_Allocate();
 764         if (alloc != nullptr && alloc->in(AllocateNode::InlineType) == this && !alloc->_is_scalar_replaceable) {
 765           // Found a re-allocation
 766           Node* res = alloc->result_cast();
 767           if (res != nullptr && res->is_CheckCastPP()) {
 768             // Replace allocation by oop and unlink AllocateNode
 769             replace_allocation(igvn, res, oop);
 770             igvn->replace_input_of(alloc, AllocateNode::InlineType, igvn->C->top());
 771             --i; --imax;
 772           }
 773         }
 774       }
 775     }
 776   }
 777 
 778   return nullptr;
 779 }
 780 
 781 InlineTypeNode* InlineTypeNode::make_uninitialized(PhaseGVN& gvn, ciInlineKlass* vk, bool null_free) {
 782   // Create a new InlineTypeNode with uninitialized values and nullptr oop
 783   bool use_default_oop = vk->is_empty() && vk->is_initialized() && null_free;
 784   Node* oop = use_default_oop ? default_oop(gvn, vk) : gvn.zerocon(T_OBJECT);
 785   InlineTypeNode* vt = new InlineTypeNode(vk, oop, null_free);
 786   vt->set_is_buffered(gvn, use_default_oop);
 787   vt->set_is_init(gvn);
 788   return vt;
 789 }
 790 
 791 Node* InlineTypeNode::default_oop(PhaseGVN& gvn, ciInlineKlass* vk) {
 792   // Returns the constant oop of the default inline type allocation
 793   return gvn.makecon(TypeInstPtr::make(vk->default_instance()));
 794 }
 795 
 796 InlineTypeNode* InlineTypeNode::make_default(PhaseGVN& gvn, ciInlineKlass* vk, bool is_larval) {
 797   GrowableArray<ciType*> visited;
 798   visited.push(vk);
 799   return make_default_impl(gvn, vk, visited, is_larval);
 800 }
 801 
 802 InlineTypeNode* InlineTypeNode::make_default_impl(PhaseGVN& gvn, ciInlineKlass* vk, GrowableArray<ciType*>& visited, bool is_larval) {
 803   // Create a new InlineTypeNode with default values
 804   Node* oop = vk->is_initialized() && !is_larval ? default_oop(gvn, vk) : gvn.zerocon(T_OBJECT);
 805   InlineTypeNode* vt = new InlineTypeNode(vk, oop, /* null_free= */ true);
 806   // TODO 8325106 we should be able to set buffered here for non-larvals, right?
 807   //vt->set_is_buffered(gvn, vk->is_initialized());
 808   vt->set_is_buffered(gvn, false);
 809   vt->set_is_init(gvn);
 810   vt->set_is_larval(is_larval);
 811   for (uint i = 0; i < vt->field_count(); ++i) {
 812     ciType* ft = vt->field_type(i);
 813     Node* value = gvn.zerocon(ft->basic_type());
 814     if (!vt->field_is_flat(i) && visited.contains(ft)) {
 815       gvn.C->set_has_circular_inline_type(true);
 816     } else if (ft->is_inlinetype()) {
 817       int old_len = visited.length();
 818       visited.push(ft);
 819       ciInlineKlass* vk = ft->as_inline_klass();
 820       if (vt->field_is_null_free(i)) {
 821         value = make_default_impl(gvn, vk, visited);
 822       } else {
 823         value = make_null_impl(gvn, vk, visited);
 824       }
 825       visited.trunc_to(old_len);
 826     }
 827     vt->set_field_value(i, value);
 828   }
 829   vt = gvn.transform(vt)->as_InlineType();
 830   assert(vt->is_default(&gvn), "must be the default inline type");
 831   return vt;
 832 }
 833 
 834 bool InlineTypeNode::is_default(PhaseGVN* gvn) const {
 835   const Type* tinit = gvn->type(get_is_init());
 836   if (!tinit->isa_int() || !tinit->is_int()->is_con(1)) {
 837     return false; // May be null
 838   }
 839   for (uint i = 0; i < field_count(); ++i) {
 840     ciType* ft = field_type(i);
 841     Node* value = field_value(i);
 842     if (field_is_null_free(i)) {
 843       if (!value->is_InlineType() || !value->as_InlineType()->is_default(gvn)) {
 844         return false;
 845       }
 846       continue;
 847     } else if (value->is_InlineType()) {
 848       if (value->as_InlineType()->is_default(gvn)) {
 849         continue;
 850       } else {
 851         const Type* tinit = gvn->type(value->as_InlineType()->get_is_init());
 852         if (tinit->isa_int() && tinit->is_int()->is_con(0)) {
 853           continue;
 854         }
 855         return false;
 856       }
 857     }
 858     if (!gvn->type(value)->is_zero_type()) {
 859       return false;
 860     }
 861   }
 862   return true;
 863 }
 864 
 865 InlineTypeNode* InlineTypeNode::make_from_oop(GraphKit* kit, Node* oop, ciInlineKlass* vk, bool null_free, bool is_larval) {
 866   GrowableArray<ciType*> visited;
 867   visited.push(vk);
 868   return make_from_oop_impl(kit, oop, vk, null_free, visited, is_larval);
 869 }
 870 
 871 InlineTypeNode* InlineTypeNode::make_from_oop_impl(GraphKit* kit, Node* oop, ciInlineKlass* vk, bool null_free, GrowableArray<ciType*>& visited, bool is_larval) {
 872   PhaseGVN& gvn = kit->gvn();
 873 
 874   if (!is_larval && vk->is_empty() && null_free) {
 875     InlineTypeNode* def = make_default_impl(gvn, vk, visited);
 876     kit->record_for_igvn(def);
 877     return def;
 878   }
 879   // Create and initialize an InlineTypeNode by loading all field
 880   // values from a heap-allocated version and also save the oop.
 881   InlineTypeNode* vt = nullptr;
 882 
 883   if (oop->isa_InlineType()) {
 884     assert(!is_larval || oop->as_InlineType()->is_larval(), "must be larval");
 885     return oop->as_InlineType();
 886   } else if (gvn.type(oop)->maybe_null()) {
 887     // Add a null check because the oop may be null
 888     Node* null_ctl = kit->top();
 889     Node* not_null_oop = kit->null_check_oop(oop, &null_ctl);
 890     if (kit->stopped()) {
 891       // Constant null
 892       kit->set_control(null_ctl);
 893       if (null_free) {
 894         vt = make_default_impl(gvn, vk, visited);
 895       } else {
 896         vt = make_null_impl(gvn, vk, visited);
 897       }
 898       kit->record_for_igvn(vt);
 899       return vt;
 900     }
 901     vt = new InlineTypeNode(vk, not_null_oop, null_free);
 902     vt->set_is_buffered(gvn);
 903     vt->set_is_init(gvn);
 904     vt->set_is_larval(is_larval);
 905     vt->load(kit, not_null_oop, not_null_oop, vk, visited);
 906 
 907     if (null_ctl != kit->top()) {
 908       InlineTypeNode* null_vt = nullptr;
 909       if (null_free) {
 910         null_vt = make_default_impl(gvn, vk, visited);
 911       } else {
 912         null_vt = make_null_impl(gvn, vk, visited);
 913       }
 914       Node* region = new RegionNode(3);
 915       region->init_req(1, kit->control());
 916       region->init_req(2, null_ctl);
 917       vt = vt->clone_with_phis(&gvn, region, kit->map());
 918       vt->merge_with(&gvn, null_vt, 2, true);
 919       if (!null_free) {
 920         vt->set_oop(gvn, oop);
 921       }
 922       kit->set_control(gvn.transform(region));
 923     }
 924   } else {
 925     // Oop can never be null
 926     vt = new InlineTypeNode(vk, oop, /* null_free= */ true);
 927     Node* init_ctl = kit->control();
 928     vt->set_is_buffered(gvn);
 929     vt->set_is_init(gvn);
 930     vt->set_is_larval(is_larval);
 931     vt->load(kit, oop, oop, vk, visited);
 932 // TODO 8284443
 933 //    assert(!null_free || vt->as_InlineType()->is_default(&gvn) || init_ctl != kit->control() || !gvn.type(oop)->is_inlinetypeptr() || oop->is_Con() || oop->Opcode() == Op_InlineType ||
 934 //           AllocateNode::Ideal_allocation(oop, &gvn) != nullptr || vt->as_InlineType()->is_loaded(&gvn) == oop, "inline type should be loaded");
 935   }
 936   assert(vt->is_allocated(&gvn) || (null_free && !vk->is_initialized()), "inline type should be allocated");
 937   kit->record_for_igvn(vt);
 938   return gvn.transform(vt)->as_InlineType();
 939 }
 940 
 941 InlineTypeNode* InlineTypeNode::make_from_flat(GraphKit* kit, ciInlineKlass* vk, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset, DecoratorSet decorators) {
 942   GrowableArray<ciType*> visited;
 943   visited.push(vk);
 944   return make_from_flat_impl(kit, vk, obj, ptr, holder, holder_offset, decorators, visited);
 945 }
 946 
 947 // GraphKit wrapper for the 'make_from_flat' method
 948 InlineTypeNode* InlineTypeNode::make_from_flat_impl(GraphKit* kit, ciInlineKlass* vk, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset, DecoratorSet decorators, GrowableArray<ciType*>& visited) {
 949   if (kit->gvn().type(obj)->isa_aryptr()) {
 950     kit->C->set_flat_accesses();
 951   }
 952   // Create and initialize an InlineTypeNode by loading all field values from
 953   // a flat inline type field at 'holder_offset' or from an inline type array.
 954   InlineTypeNode* vt = make_uninitialized(kit->gvn(), vk);
 955   // The inline type is flattened into the object without an oop header. Subtract the
 956   // offset of the first field to account for the missing header when loading the values.
 957   holder_offset -= vk->first_field_offset();
 958   vt->load(kit, obj, ptr, holder, visited, holder_offset, decorators);
 959   assert(vt->is_loaded(&kit->gvn()) != obj, "holder oop should not be used as flattened inline type oop");
 960   return kit->gvn().transform(vt)->as_InlineType();
 961 }
 962 
 963 InlineTypeNode* InlineTypeNode::make_from_multi(GraphKit* kit, MultiNode* multi, ciInlineKlass* vk, uint& base_input, bool in, bool null_free) {
 964   InlineTypeNode* vt = make_uninitialized(kit->gvn(), vk, null_free);
 965   if (!in) {
 966     // Keep track of the oop. The returned inline type might already be buffered.
 967     Node* oop = kit->gvn().transform(new ProjNode(multi, base_input++));
 968     vt->set_oop(kit->gvn(), oop);
 969   }
 970   GrowableArray<ciType*> visited;
 971   visited.push(vk);
 972   vt->initialize_fields(kit, multi, base_input, in, null_free, nullptr, visited);
 973   return kit->gvn().transform(vt)->as_InlineType();
 974 }
 975 
 976 InlineTypeNode* InlineTypeNode::make_larval(GraphKit* kit, bool allocate) const {
 977   ciInlineKlass* vk = inline_klass();
 978   InlineTypeNode* res = make_uninitialized(kit->gvn(), vk);
 979   for (uint i = 1; i < req(); ++i) {
 980     res->set_req(i, in(i));
 981   }
 982 
 983   if (allocate) {
 984     // Re-execute if buffering triggers deoptimization
 985     PreserveReexecuteState preexecs(kit);
 986     kit->jvms()->set_should_reexecute(true);
 987     Node* klass_node = kit->makecon(TypeKlassPtr::make(vk));
 988     Node* alloc_oop  = kit->new_instance(klass_node, nullptr, nullptr, true);
 989     AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_oop);
 990     alloc->_larval = true;
 991 
 992     store(kit, alloc_oop, alloc_oop, vk);
 993     res->set_oop(kit->gvn(), alloc_oop);
 994   }
 995   // TODO 8239003
 996   //res->set_type(TypeInlineType::make(vk, true));
 997   res = kit->gvn().transform(res)->as_InlineType();
 998   assert(!allocate || res->is_allocated(&kit->gvn()), "must be allocated");
 999   return res;
1000 }
1001 
1002 InlineTypeNode* InlineTypeNode::finish_larval(GraphKit* kit) const {
1003   Node* obj = get_oop();
1004   Node* mark_addr = kit->basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
1005   Node* mark = kit->make_load(nullptr, mark_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
1006   mark = kit->gvn().transform(new AndXNode(mark, kit->MakeConX(~markWord::larval_bit_in_place)));
1007   kit->store_to_memory(kit->control(), mark_addr, mark, TypeX_X->basic_type(), kit->gvn().type(mark_addr)->is_ptr(), MemNode::unordered);
1008 
1009   // Do not let stores that initialize this buffer be reordered with a subsequent
1010   // store that would make this buffer accessible by other threads.
1011   AllocateNode* alloc = AllocateNode::Ideal_allocation(obj);
1012   assert(alloc != nullptr, "must have an allocation node");
1013   kit->insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1014 
1015   ciInlineKlass* vk = inline_klass();
1016   InlineTypeNode* res = make_uninitialized(kit->gvn(), vk);
1017   for (uint i = 1; i < req(); ++i) {
1018     res->set_req(i, in(i));
1019   }
1020   // TODO 8239003
1021   //res->set_type(TypeInlineType::make(vk, false));
1022   res = kit->gvn().transform(res)->as_InlineType();
1023   return res;
1024 }
1025 
1026 bool InlineTypeNode::is_larval(PhaseGVN* gvn) const {
1027   if (!is_allocated(gvn)) {
1028     return false;
1029   }
1030 
1031   Node* oop = get_oop();
1032   AllocateNode* alloc = AllocateNode::Ideal_allocation(oop);
1033   return alloc != nullptr && alloc->_larval;
1034 }
1035 
1036 Node* InlineTypeNode::is_loaded(PhaseGVN* phase, ciInlineKlass* vk, Node* base, int holder_offset) {
1037   if (vk == nullptr) {
1038     vk = inline_klass();
1039   }
1040   if (field_count() == 0 && vk->is_initialized()) {
1041     const Type* tinit = phase->type(in(IsInit));
1042     // TODO 8325106
1043     if (false && !is_larval() && tinit->isa_int() && tinit->is_int()->is_con(1)) {
1044       assert(is_allocated(phase), "must be allocated");
1045       return get_oop();
1046     } else {
1047       // TODO 8284443
1048       return nullptr;
1049     }
1050   }
1051   for (uint i = 0; i < field_count(); ++i) {
1052     int offset = holder_offset + field_offset(i);
1053     Node* value = field_value(i);
1054     if (value->is_InlineType()) {
1055       InlineTypeNode* vt = value->as_InlineType();
1056       if (vt->type()->inline_klass()->is_empty()) {
1057         continue;
1058       } else if (field_is_flat(i) && vt->is_InlineType()) {
1059         // Check inline type field load recursively
1060         base = vt->as_InlineType()->is_loaded(phase, vk, base, offset - vt->type()->inline_klass()->first_field_offset());
1061         if (base == nullptr) {
1062           return nullptr;
1063         }
1064         continue;
1065       } else {
1066         value = vt->get_oop();
1067         if (value->Opcode() == Op_CastPP) {
1068           // Skip CastPP
1069           value = value->in(1);
1070         }
1071       }
1072     }
1073     if (value->isa_DecodeN()) {
1074       // Skip DecodeN
1075       value = value->in(1);
1076     }
1077     if (value->isa_Load()) {
1078       // Check if base and offset of field load matches inline type layout
1079       intptr_t loffset = 0;
1080       Node* lbase = AddPNode::Ideal_base_and_offset(value->in(MemNode::Address), phase, loffset);
1081       if (lbase == nullptr || (lbase != base && base != nullptr) || loffset != offset) {
1082         return nullptr;
1083       } else if (base == nullptr) {
1084         // Set base and check if pointer type matches
1085         base = lbase;
1086         const TypeInstPtr* vtptr = phase->type(base)->isa_instptr();
1087         if (vtptr == nullptr || !vtptr->instance_klass()->equals(vk)) {
1088           return nullptr;
1089         }
1090       }
1091     } else {
1092       return nullptr;
1093     }
1094   }
1095   return base;
1096 }
1097 
1098 Node* InlineTypeNode::tagged_klass(ciInlineKlass* vk, PhaseGVN& gvn) {
1099   const TypeKlassPtr* tk = TypeKlassPtr::make(vk);
1100   intptr_t bits = tk->get_con();
1101   set_nth_bit(bits, 0);
1102   return gvn.longcon((jlong)bits);
1103 }
1104 
1105 void InlineTypeNode::pass_fields(GraphKit* kit, Node* n, uint& base_input, bool in, bool null_free) {
1106   if (!null_free && in) {
1107     n->init_req(base_input++, get_is_init());
1108   }
1109   for (uint i = 0; i < field_count(); i++) {
1110     Node* arg = field_value(i);
1111     if (field_is_flat(i)) {
1112       // Flat inline type field
1113       arg->as_InlineType()->pass_fields(kit, n, base_input, in);
1114     } else {
1115       if (arg->is_InlineType()) {
1116         // Non-flat inline type field
1117         InlineTypeNode* vt = arg->as_InlineType();
1118         assert(n->Opcode() != Op_Return || vt->is_allocated(&kit->gvn()), "inline type field should be allocated on return");
1119         arg = vt->buffer(kit);
1120       }
1121       // Initialize call/return arguments
1122       n->init_req(base_input++, arg);
1123       if (field_type(i)->size() == 2) {
1124         n->init_req(base_input++, kit->top());
1125       }
1126     }
1127   }
1128   // The last argument is used to pass IsInit information to compiled code and not required here.
1129   if (!null_free && !in) {
1130     n->init_req(base_input++, kit->top());
1131   }
1132 }
1133 
1134 void InlineTypeNode::initialize_fields(GraphKit* kit, MultiNode* multi, uint& base_input, bool in, bool null_free, Node* null_check_region, GrowableArray<ciType*>& visited) {
1135   PhaseGVN& gvn = kit->gvn();
1136   Node* is_init = nullptr;
1137   if (!null_free) {
1138     // Nullable inline type
1139     if (in) {
1140       // Set IsInit field
1141       if (multi->is_Start()) {
1142         is_init = gvn.transform(new ParmNode(multi->as_Start(), base_input));
1143       } else {
1144         is_init = multi->as_Call()->in(base_input);
1145       }
1146       set_req(IsInit, is_init);
1147       base_input++;
1148     }
1149     // Add a null check to make subsequent loads dependent on
1150     assert(null_check_region == nullptr, "already set");
1151     if (is_init == nullptr) {
1152       // Will only be initialized below, use dummy node for now
1153       is_init = new Node(1);
1154       gvn.set_type_bottom(is_init);
1155     }
1156     Node* null_ctrl = kit->top();
1157     kit->null_check_common(is_init, T_INT, false, &null_ctrl);
1158     Node* non_null_ctrl = kit->control();
1159     null_check_region = new RegionNode(3);
1160     null_check_region->init_req(1, non_null_ctrl);
1161     null_check_region->init_req(2, null_ctrl);
1162     null_check_region = gvn.transform(null_check_region);
1163     kit->set_control(null_check_region);
1164   }
1165 
1166   for (uint i = 0; i < field_count(); ++i) {
1167     ciType* type = field_type(i);
1168     Node* parm = nullptr;
1169     if (field_is_flat(i)) {
1170       // Flat inline type field
1171       InlineTypeNode* vt = make_uninitialized(gvn, type->as_inline_klass());
1172       vt->initialize_fields(kit, multi, base_input, in, true, null_check_region, visited);
1173       parm = gvn.transform(vt);
1174     } else {
1175       if (multi->is_Start()) {
1176         assert(in, "return from start?");
1177         parm = gvn.transform(new ParmNode(multi->as_Start(), base_input));
1178       } else if (in) {
1179         parm = multi->as_Call()->in(base_input);
1180       } else {
1181         parm = gvn.transform(new ProjNode(multi->as_Call(), base_input));
1182       }
1183       // Non-flat inline type field
1184       if (type->is_inlinetype()) {
1185         if (null_check_region != nullptr) {
1186           // We limit scalarization for inline types with circular fields and can therefore observe nodes
1187           // of the same type but with different scalarization depth during GVN. To avoid inconsistencies
1188           // during merging, make sure that we only create Phis for fields that are guaranteed to be scalarized.
1189           if (parm->is_InlineType() && kit->C->has_circular_inline_type()) {
1190             parm = parm->as_InlineType()->get_oop();
1191           }
1192           // Holder is nullable, set field to nullptr if holder is nullptr to avoid loading from uninitialized memory
1193           parm = PhiNode::make(null_check_region, parm, TypeInstPtr::make(TypePtr::BotPTR, type->as_inline_klass()));
1194           parm->set_req(2, kit->zerocon(T_OBJECT));
1195           parm = gvn.transform(parm);
1196         }
1197         if (visited.contains(type)) {
1198           kit->C->set_has_circular_inline_type(true);
1199         } else if (!parm->is_InlineType()) {
1200           int old_len = visited.length();
1201           visited.push(type);
1202           parm = make_from_oop_impl(kit, parm, type->as_inline_klass(), field_is_null_free(i), visited);
1203           visited.trunc_to(old_len);
1204         }
1205       }
1206       base_input += type->size();
1207     }
1208     assert(parm != nullptr, "should never be null");
1209     assert(field_value(i) == nullptr, "already set");
1210     set_field_value(i, parm);
1211     gvn.record_for_igvn(parm);
1212   }
1213   // The last argument is used to pass IsInit information to compiled code
1214   if (!null_free && !in) {
1215     Node* cmp = is_init->raw_out(0);
1216     is_init = gvn.transform(new ProjNode(multi->as_Call(), base_input));
1217     set_req(IsInit, is_init);
1218     gvn.hash_delete(cmp);
1219     cmp->set_req(1, is_init);
1220     gvn.hash_find_insert(cmp);
1221     base_input++;
1222   }
1223 }
1224 
1225 // Search for multiple allocations of this inline type and try to replace them by dominating allocations.
1226 // Equivalent InlineTypeNodes are merged by GVN, so we just need to search for AllocateNode users to find redundant allocations.
1227 void InlineTypeNode::remove_redundant_allocations(PhaseIdealLoop* phase) {
1228   if (is_larval()) {
1229     return;
1230   }
1231   PhaseIterGVN* igvn = &phase->igvn();
1232   // Search for allocations of this inline type. Ignore scalar replaceable ones, they
1233   // will be removed anyway and changing the memory chain will confuse other optimizations.
1234   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
1235     AllocateNode* alloc = fast_out(i)->isa_Allocate();
1236     if (alloc != nullptr && alloc->in(AllocateNode::InlineType) == this && !alloc->_is_scalar_replaceable) {
1237       Node* res = alloc->result_cast();
1238       if (res == nullptr || !res->is_CheckCastPP()) {
1239         break; // No unique CheckCastPP
1240       }
1241       // TODO 8325106
1242       // assert((!is_default(igvn) || !inline_klass()->is_initialized()) && !is_allocated(igvn), "re-allocation should be removed by Ideal transformation");
1243       // Search for a dominating allocation of the same inline type
1244       Node* res_dom = res;
1245       for (DUIterator_Fast jmax, j = fast_outs(jmax); j < jmax; j++) {
1246         AllocateNode* alloc_other = fast_out(j)->isa_Allocate();
1247         if (alloc_other != nullptr && alloc_other->in(AllocateNode::InlineType) == this && !alloc_other->_is_scalar_replaceable) {
1248           Node* res_other = alloc_other->result_cast();
1249           if (res_other != nullptr && res_other->is_CheckCastPP() && res_other != res_dom &&
1250               phase->is_dominator(res_other->in(0), res_dom->in(0))) {
1251             res_dom = res_other;
1252           }
1253         }
1254       }
1255       if (res_dom != res) {
1256         // Replace allocation by dominating one.
1257         replace_allocation(igvn, res, res_dom);
1258         // The result of the dominated allocation is now unused and will be removed
1259         // later in PhaseMacroExpand::eliminate_allocate_node to not confuse loop opts.
1260         igvn->_worklist.push(alloc);
1261       }
1262     }
1263   }
1264 }
1265 
1266 InlineTypeNode* InlineTypeNode::make_null(PhaseGVN& gvn, ciInlineKlass* vk, bool transform) {
1267   GrowableArray<ciType*> visited;
1268   visited.push(vk);
1269   return make_null_impl(gvn, vk, visited, transform);
1270 }
1271 
1272 InlineTypeNode* InlineTypeNode::make_null_impl(PhaseGVN& gvn, ciInlineKlass* vk, GrowableArray<ciType*>& visited, bool transform) {
1273   InlineTypeNode* vt = new InlineTypeNode(vk, gvn.zerocon(T_OBJECT), /* null_free= */ false);
1274   vt->set_is_buffered(gvn);
1275   vt->set_is_init(gvn, false);
1276   for (uint i = 0; i < vt->field_count(); i++) {
1277     ciType* ft = vt->field_type(i);
1278     Node* value = gvn.zerocon(ft->basic_type());
1279     if (!vt->field_is_flat(i) && visited.contains(ft)) {
1280       gvn.C->set_has_circular_inline_type(true);
1281     } else if (ft->is_inlinetype()) {
1282       int old_len = visited.length();
1283       visited.push(ft);
1284       value = make_null_impl(gvn, ft->as_inline_klass(), visited);
1285       visited.trunc_to(old_len);
1286     }
1287     vt->set_field_value(i, value);
1288   }
1289   return transform ? gvn.transform(vt)->as_InlineType() : vt;
1290 }
1291 
1292 InlineTypeNode* InlineTypeNode::clone_if_required(PhaseGVN* gvn, SafePointNode* map, bool safe_for_replace) {
1293   if (!safe_for_replace || (map == nullptr && outcnt() != 0)) {
1294     return clone()->as_InlineType();
1295   }
1296   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
1297     if (fast_out(i) != map) {
1298       return clone()->as_InlineType();
1299     }
1300   }
1301   gvn->hash_delete(this);
1302   return this;
1303 }
1304 
1305 const Type* InlineTypeNode::Value(PhaseGVN* phase) const {
1306   Node* oop = get_oop();
1307   const Type* toop = phase->type(oop);
1308 #ifdef ASSERT
1309   if (oop->is_Con() && toop->is_zero_type() && _type->isa_oopptr()->is_known_instance()) {
1310     // We are not allocated (anymore) and should therefore not have an instance id
1311     dump(1);
1312     assert(false, "Unbuffered inline type should not have known instance id");
1313   }
1314 #endif
1315   const Type* t = toop->filter_speculative(_type);
1316   if (t->singleton()) {
1317     // Don't replace InlineType by a constant
1318     t = _type;
1319   }
1320   const Type* tinit = phase->type(in(IsInit));
1321   if (tinit == Type::TOP) {
1322     return Type::TOP;
1323   }
1324   if (tinit->isa_int() && tinit->is_int()->is_con(1)) {
1325     t = t->join_speculative(TypePtr::NOTNULL);
1326   }
1327   return t;
1328 }