1 /*
2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/macroAssembler.inline.hpp"
26 #include "gc/shared/gc_globals.hpp"
27 #include "memory/allocation.inline.hpp"
28 #include "oops/compressedOops.hpp"
29 #include "opto/ad.hpp"
30 #include "opto/block.hpp"
31 #include "opto/c2compiler.hpp"
32 #include "opto/callnode.hpp"
33 #include "opto/cfgnode.hpp"
34 #include "opto/chaitin.hpp"
35 #include "opto/machnode.hpp"
36 #include "opto/runtime.hpp"
37 #include "runtime/os.inline.hpp"
38 #include "runtime/sharedRuntime.hpp"
39
40 // Optimization - Graph Style
41
42 // Check whether val is not-null-decoded compressed oop,
43 // i.e. will grab into the base of the heap if it represents null.
44 static bool accesses_heap_base_zone(Node *val) {
45 if (CompressedOops::base() != nullptr) { // Implies UseCompressedOops.
46 if (val && val->is_Mach()) {
47 if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
48 // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
49 // decode null to point to the heap base (Decode_NN).
50 if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
51 return true;
52 }
53 }
54 // Must recognize load operation with Decode matched in memory operand.
55 // We should not reach here except for PPC/AIX, as os::zero_page_read_protected()
56 // returns true everywhere else. On PPC, no such memory operands
57 // exist, therefore we did not yet implement a check for such operands.
58 NOT_AIX(Unimplemented());
59 }
60 }
61 return false;
62 }
63
64 static bool needs_explicit_null_check_for_read(Node *val) {
65 // On some OSes (AIX) the page at address 0 is only write protected.
66 // If so, only Store operations will trap.
67 if (os::zero_page_read_protected()) {
68 return false; // Implicit null check will work.
69 }
70 // Also a read accessing the base of a heap-based compressed heap will trap.
71 if (accesses_heap_base_zone(val) && // Hits the base zone page.
72 CompressedOops::use_implicit_null_checks()) { // Base zone page is protected.
73 return false;
74 }
75
76 return true;
77 }
78
79 void PhaseCFG::move_node_and_its_projections_to_block(Node* n, Block* b) {
80 assert(!is_CFG(n), "cannot move CFG node");
81 Block* old = get_block_for_node(n);
82 old->find_remove(n);
83 b->add_inst(n);
84 map_node_to_block(n, b);
85 // Check for Mach projections that also need to be moved.
86 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
87 Node* out = n->fast_out(i);
88 if (!out->is_MachProj()) {
89 continue;
90 }
91 assert(!n->is_MachProj(), "nested projections are not allowed");
92 move_node_and_its_projections_to_block(out, b);
93 }
94 }
95
96 void PhaseCFG::ensure_node_is_at_block_or_above(Node* n, Block* b) {
97 assert(!is_CFG(n), "cannot move CFG node");
98 Block* current = get_block_for_node(n);
99 if (current->dominates(b)) {
100 return; // n is already placed above b, do nothing.
101 }
102 // We only expect nodes without further inputs, like MachTemp or load Base.
103 assert(n->req() == 0 || (n->req() == 1 && n->in(0) == (Node*)C->root()),
104 "need for recursive hoisting not expected");
105 assert(b->dominates(current), "precondition: can only move n to b if b dominates n");
106 move_node_and_its_projections_to_block(n, b);
107 }
108
109 //------------------------------implicit_null_check----------------------------
110 // Detect implicit-null-check opportunities. Basically, find null checks
111 // with suitable memory ops nearby. Use the memory op to do the null check.
112 // I can generate a memory op if there is not one nearby.
113 // The proj is the control projection for the not-null case.
114 // The val is the pointer being checked for nullness or
115 // decodeHeapOop_not_null node if it did not fold into address.
116 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
117 // Assume if null check need for 0 offset then always needed
118 // Intel solaris doesn't support any null checks yet and no
119 // mechanism exists (yet) to set the switches at an os_cpu level
120 if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
121
122 // Make sure the ptr-is-null path appears to be uncommon!
123 float f = block->end()->as_MachIf()->_prob;
124 if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
125 if( f > PROB_UNLIKELY_MAG(4) ) return;
126
127 uint bidx = 0; // Capture index of value into memop
128 bool was_store; // Memory op is a store op
129
130 // Get the successor block for if the test ptr is non-null
131 Block* not_null_block; // this one goes with the proj
132 Block* null_block;
133 if (block->get_node(block->number_of_nodes()-1) == proj) {
134 null_block = block->_succs[0];
135 not_null_block = block->_succs[1];
136 } else {
137 assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
138 not_null_block = block->_succs[0];
139 null_block = block->_succs[1];
140 }
141 while (null_block->is_Empty() == Block::empty_with_goto) {
142 null_block = null_block->_succs[0];
143 }
144
145 // Search the exception block for an uncommon trap.
146 // (See Parse::do_if and Parse::do_ifnull for the reason
147 // we need an uncommon trap. Briefly, we need a way to
148 // detect failure of this optimization, as in 6366351.)
149 {
150 bool found_trap = false;
151 for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
152 Node* nn = null_block->get_node(i1);
153 if (nn->is_MachCall() &&
154 nn->as_MachCall()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point()) {
155 const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
156 if (trtype->isa_int() && trtype->is_int()->is_con()) {
157 jint tr_con = trtype->is_int()->get_con();
158 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
159 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
160 assert((int)reason < (int)BitsPerInt, "recode bit map");
161 if (is_set_nth_bit(allowed_reasons, (int) reason)
162 && action != Deoptimization::Action_none) {
163 // This uncommon trap is sure to recompile, eventually.
164 // When that happens, C->too_many_traps will prevent
165 // this transformation from happening again.
166 found_trap = true;
167 }
168 }
169 break;
170 }
171 }
172 if (!found_trap) {
173 // We did not find an uncommon trap.
174 return;
175 }
176 }
177
178 // Check for decodeHeapOop_not_null node which did not fold into address
179 bool is_decoden = ((intptr_t)val) & 1;
180 val = (Node*)(((intptr_t)val) & ~1);
181
182 assert(!is_decoden ||
183 ((val->in(0) == nullptr) && val->is_Mach() &&
184 (val->as_Mach()->ideal_Opcode() == Op_DecodeN)), "sanity");
185
186 // Search the successor block for a load or store who's base value is also
187 // the tested value. There may be several.
188 MachNode *best = nullptr; // Best found so far
189 for (DUIterator i = val->outs(); val->has_out(i); i++) {
190 Node *m = val->out(i);
191 if( !m->is_Mach() ) continue;
192 MachNode *mach = m->as_Mach();
193 if (mach->barrier_data() != 0 &&
194 !mach->is_late_expanded_null_check_candidate()) {
195 // Using memory accesses with barriers to perform implicit null checks is
196 // only supported if these are explicit marked as emitting a candidate
197 // memory access instruction at their initial address. If not marked as
198 // such, barrier-tagged operations might expand into one or several memory
199 // access instructions located at arbitrary offsets from the initial
200 // address, which would invalidate the implicit null exception table.
201 continue;
202 }
203 was_store = false;
204 int iop = mach->ideal_Opcode();
205 switch( iop ) {
206 case Op_LoadB:
207 case Op_LoadUB:
208 case Op_LoadUS:
209 case Op_LoadD:
210 case Op_LoadF:
211 case Op_LoadI:
212 case Op_LoadL:
213 case Op_LoadP:
214 case Op_LoadN:
215 case Op_LoadS:
216 case Op_LoadKlass:
217 case Op_LoadNKlass:
218 case Op_LoadRange:
219 case Op_LoadD_unaligned:
220 case Op_LoadL_unaligned:
221 assert(mach->in(2) == val, "should be address");
222 break;
223 case Op_StoreB:
224 case Op_StoreC:
225 case Op_StoreD:
226 case Op_StoreF:
227 case Op_StoreI:
228 case Op_StoreL:
229 case Op_StoreP:
230 case Op_StoreN:
231 case Op_StoreNKlass:
232 was_store = true; // Memory op is a store op
233 // Stores will have their address in slot 2 (memory in slot 1).
234 // If the value being nul-checked is in another slot, it means we
235 // are storing the checked value, which does NOT check the value!
236 if( mach->in(2) != val ) continue;
237 break; // Found a memory op?
238 case Op_StrComp:
239 case Op_StrEquals:
240 case Op_StrIndexOf:
241 case Op_StrIndexOfChar:
242 case Op_AryEq:
243 case Op_VectorizedHashCode:
244 case Op_StrInflatedCopy:
245 case Op_StrCompressedCopy:
246 case Op_EncodeISOArray:
247 case Op_CountPositives:
248 // Not a legit memory op for implicit null check regardless of
249 // embedded loads
250 continue;
251 default: // Also check for embedded loads
252 if( !mach->needs_anti_dependence_check() )
253 continue; // Not an memory op; skip it
254 if( must_clone[iop] ) {
255 // Do not move nodes which produce flags because
256 // RA will try to clone it to place near branch and
257 // it will cause recompilation, see clone_node().
258 continue;
259 }
260 {
261 // Check that value is used in memory address in
262 // instructions with embedded load (CmpP val1,(val2+off)).
263 Node* base;
264 Node* index;
265 const MachOper* oper = mach->memory_inputs(base, index);
266 if (oper == nullptr || oper == (MachOper*)-1) {
267 continue; // Not an memory op; skip it
268 }
269 if (val == base ||
270 (val == index && val->bottom_type()->isa_narrowoop())) {
271 break; // Found it
272 } else {
273 continue; // Skip it
274 }
275 }
276 break;
277 }
278
279 // On some OSes (AIX) the page at address 0 is only write protected.
280 // If so, only Store operations will trap.
281 // But a read accessing the base of a heap-based compressed heap will trap.
282 if (!was_store && needs_explicit_null_check_for_read(val)) {
283 continue;
284 }
285
286 // Check that node's control edge is not-null block's head or dominates it,
287 // otherwise we can't hoist it because there are other control dependencies.
288 Node* ctrl = mach->in(0);
289 if (ctrl != nullptr && !(ctrl == not_null_block->head() ||
290 get_block_for_node(ctrl)->dominates(not_null_block))) {
291 continue;
292 }
293
294 // check if the offset is not too high for implicit exception
295 {
296 intptr_t offset = 0;
297 const TypePtr *adr_type = nullptr; // Do not need this return value here
298 const Node* base = mach->get_base_and_disp(offset, adr_type);
299 if (base == nullptr || base == NodeSentinel) {
300 // Narrow oop address doesn't have base, only index.
301 // Give up if offset is beyond page size or if heap base is not protected.
302 if (val->bottom_type()->isa_narrowoop() &&
303 (MacroAssembler::needs_explicit_null_check(offset) ||
304 !CompressedOops::use_implicit_null_checks()))
305 continue;
306 // cannot reason about it; is probably not implicit null exception
307 } else {
308 const TypePtr* tptr;
309 if ((UseCompressedOops && CompressedOops::shift() == 0) ||
310 (UseCompressedClassPointers && CompressedKlassPointers::shift() == 0)) {
311 // 32-bits narrow oop can be the base of address expressions
312 tptr = base->get_ptr_type();
313 } else {
314 // only regular oops are expected here
315 tptr = base->bottom_type()->is_ptr();
316 }
317 // Give up if offset is not a compile-time constant.
318 if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
319 continue;
320 offset += tptr->_offset; // correct if base is offsetted
321 // Give up if reference is beyond page size.
322 if (MacroAssembler::needs_explicit_null_check(offset))
323 continue;
324 // Give up if base is a decode node and the heap base is not protected.
325 if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
326 !CompressedOops::use_implicit_null_checks())
327 continue;
328 }
329 }
330
331 // Check ctrl input to see if the null-check dominates the memory op
332 Block *cb = get_block_for_node(mach);
333 cb = cb->_idom; // Always hoist at least 1 block
334 if( !was_store ) { // Stores can be hoisted only one block
335 while( cb->_dom_depth > (block->_dom_depth + 1))
336 cb = cb->_idom; // Hoist loads as far as we want
337 // The non-null-block should dominate the memory op, too. Live
338 // range spilling will insert a spill in the non-null-block if it is
339 // needs to spill the memory op for an implicit null check.
340 if (cb->_dom_depth == (block->_dom_depth + 1)) {
341 if (cb != not_null_block) continue;
342 cb = cb->_idom;
343 }
344 }
345 if( cb != block ) continue;
346
347 // Found a memory user; see if it can be hoisted to check-block
348 uint vidx = 0; // Capture index of value into memop
349 uint j;
350 for( j = mach->req()-1; j > 0; j-- ) {
351 if( mach->in(j) == val ) {
352 vidx = j;
353 // Ignore DecodeN val which could be hoisted to where needed.
354 if( is_decoden ) continue;
355 }
356 if (mach->in(j)->is_MachTemp()) {
357 assert(mach->in(j)->outcnt() == 1, "MachTemp nodes should not be shared");
358 // Ignore MachTemp inputs, they can be safely hoisted with the candidate.
359 // MachTemp nodes have no inputs themselves and are only used to reserve
360 // a scratch register for the implementation of the node (e.g. in
361 // late-expanded GC barriers).
362 continue;
363 }
364 // Block of memory-op input
365 Block *inb = get_block_for_node(mach->in(j));
366 Block *b = block; // Start from nul check
367 while( b != inb && b->_dom_depth > inb->_dom_depth )
368 b = b->_idom; // search upwards for input
369 // See if input dominates null check
370 if( b != inb )
371 break;
372 }
373 if( j > 0 )
374 continue;
375 Block *mb = get_block_for_node(mach);
376 // Hoisting stores requires more checks for the anti-dependence case.
377 // Give up hoisting if we have to move the store past any load.
378 if (was_store) {
379 // Make sure control does not do a merge (would have to check allpaths)
380 if (mb->num_preds() != 2) {
381 continue;
382 }
383 // mach is a store, hence block is the immediate dominator of mb.
384 // Due to the null-check shape of block (where its successors cannot re-join),
385 // block must be the direct predecessor of mb.
386 assert(get_block_for_node(mb->pred(1)) == block, "Unexpected predecessor block");
387 uint k;
388 uint num_nodes = mb->number_of_nodes();
389 for (k = 1; k < num_nodes; k++) {
390 Node *n = mb->get_node(k);
391 if (n->needs_anti_dependence_check() &&
392 n->in(LoadNode::Memory) == mach->in(StoreNode::Memory)) {
393 break; // Found anti-dependent load
394 }
395 }
396 if (k < num_nodes) {
397 continue; // Found anti-dependent load
398 }
399 }
400
401 // Make sure this memory op is not already being used for a NullCheck
402 Node *e = mb->end();
403 if( e->is_MachNullCheck() && e->in(1) == mach )
404 continue; // Already being used as a null check
405
406 // Found a candidate! Pick one with least dom depth - the highest
407 // in the dom tree should be closest to the null check.
408 if (best == nullptr || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
409 best = mach;
410 bidx = vidx;
411 }
412 }
413 // No candidate!
414 if (best == nullptr) {
415 return;
416 }
417
418 // ---- Found an implicit null check
419 #ifndef PRODUCT
420 extern uint implicit_null_checks;
421 implicit_null_checks++;
422 #endif
423
424 if( is_decoden ) {
425 // Check if we need to hoist decodeHeapOop_not_null first.
426 Block *valb = get_block_for_node(val);
427 if( block != valb && block->_dom_depth < valb->_dom_depth ) {
428 // Hoist it up to the end of the test block together with its inputs if they exist.
429 for (uint i = 2; i < val->req(); i++) {
430 // DecodeN has 2 regular inputs + optional MachTemp or load Base inputs.
431 // Inputs of val may already be early enough, but if not move them together with val.
432 ensure_node_is_at_block_or_above(val->in(i), block);
433 }
434 move_node_and_its_projections_to_block(val, block);
435 }
436 }
437
438 // Move any MachTemp inputs to the end of the test block.
439 for (uint i = 0; i < best->req(); i++) {
440 Node* n = best->in(i);
441 if (n == nullptr || !n->is_MachTemp()) {
442 continue;
443 }
444 ensure_node_is_at_block_or_above(n, block);
445 }
446
447 // Hoist the memory candidate up to the end of the test block.
448 move_node_and_its_projections_to_block(best, block);
449
450 // Move the control dependence if it is pinned to not-null block.
451 // Don't change it in other cases: null or dominating control.
452 Node* ctrl = best->in(0);
453 if (ctrl != nullptr && get_block_for_node(ctrl) == not_null_block) {
454 // Set it to control edge of null check.
455 best->set_req(0, proj->in(0)->in(0));
456 }
457
458 // proj==Op_True --> ne test; proj==Op_False --> eq test.
459 // One of two graph shapes got matched:
460 // (IfTrue (If (Bool NE (CmpP ptr null))))
461 // (IfFalse (If (Bool EQ (CmpP ptr null))))
462 // null checks are always branch-if-eq. If we see a IfTrue projection
463 // then we are replacing a 'ne' test with a 'eq' null check test.
464 // We need to flip the projections to keep the same semantics.
465 if( proj->Opcode() == Op_IfTrue ) {
466 // Swap order of projections in basic block to swap branch targets
467 Node *tmp1 = block->get_node(block->end_idx()+1);
468 Node *tmp2 = block->get_node(block->end_idx()+2);
469 block->map_node(tmp2, block->end_idx()+1);
470 block->map_node(tmp1, block->end_idx()+2);
471 Node *tmp = new Node(C->top()); // Use not null input
472 tmp1->replace_by(tmp);
473 tmp2->replace_by(tmp1);
474 tmp->replace_by(tmp2);
475 tmp->destruct(nullptr);
476 }
477
478 // Remove the existing null check; use a new implicit null check instead.
479 // Since schedule-local needs precise def-use info, we need to correct
480 // it as well.
481 Node *old_tst = proj->in(0);
482 MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
483 block->map_node(nul_chk, block->end_idx());
484 map_node_to_block(nul_chk, block);
485 // Redirect users of old_test to nul_chk
486 for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
487 old_tst->last_out(i2)->set_req(0, nul_chk);
488 // Clean-up any dead code
489 for (uint i3 = 0; i3 < old_tst->req(); i3++) {
490 Node* in = old_tst->in(i3);
491 old_tst->set_req(i3, nullptr);
492 if (in->outcnt() == 0) {
493 // Remove dead input node
494 in->disconnect_inputs(C);
495 block->find_remove(in);
496 }
497 }
498
499 latency_from_uses(nul_chk);
500 latency_from_uses(best);
501
502 // insert anti-dependences to defs in this block
503 if (! best->needs_anti_dependence_check()) {
504 for (uint k = 1; k < block->number_of_nodes(); k++) {
505 Node *n = block->get_node(k);
506 if (n->needs_anti_dependence_check() &&
507 n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
508 // Found anti-dependent load
509 raise_above_anti_dependences(block, n);
510 if (C->failing()) {
511 return;
512 }
513 }
514 }
515 }
516 }
517
518
519 //------------------------------select-----------------------------------------
520 // Select a nice fellow from the worklist to schedule next. If there is only one
521 // choice, then use it. CreateEx nodes that are initially ready must start their
522 // blocks and are given the highest priority, by being placed at the beginning
523 // of the worklist. Next after initially-ready CreateEx nodes are projections,
524 // which must follow their parents, and CreateEx nodes with local input
525 // dependencies. Next are constants and CheckCastPP nodes. There are a number of
526 // other special cases, for instructions that consume condition codes, et al.
527 // These are chosen immediately. Some instructions are required to immediately
528 // precede the last instruction in the block, and these are taken last. Of the
529 // remaining cases (most), choose the instruction with the greatest latency
530 // (that is, the most number of pseudo-cycles required to the end of the
531 // routine). If there is a tie, choose the instruction with the most inputs.
532 Node* PhaseCFG::select(
533 Block* block,
534 Node_List &worklist,
535 GrowableArray<int> &ready_cnt,
536 VectorSet &next_call,
537 uint sched_slot,
538 intptr_t* recalc_pressure_nodes) {
539
540 // If only a single entry on the stack, use it
541 uint cnt = worklist.size();
542 if (cnt == 1) {
543 Node *n = worklist[0];
544 worklist.map(0,worklist.pop());
545 return n;
546 }
547
548 uint choice = 0; // Bigger is most important
549 uint latency = 0; // Bigger is scheduled first
550 uint score = 0; // Bigger is better
551 int idx = -1; // Index in worklist
552 int cand_cnt = 0; // Candidate count
553 bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
554
555 for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
556 // Order in worklist is used to break ties.
557 // See caller for how this is used to delay scheduling
558 // of induction variable increments to after the other
559 // uses of the phi are scheduled.
560 Node *n = worklist[i]; // Get Node on worklist
561
562 int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
563 if (iop == Op_CreateEx || n->is_Proj()) {
564 // CreateEx nodes that are initially ready must start the block (after Phi
565 // and Parm nodes which are pre-scheduled) and get top priority. This is
566 // currently enforced by placing them at the beginning of the initial
567 // worklist and selecting them eagerly here. After these, projections and
568 // other CreateEx nodes are selected with equal priority.
569 worklist.map(i,worklist.pop());
570 return n;
571 }
572
573 if (n->Opcode() == Op_Con || iop == Op_CheckCastPP) {
574 // Constants and CheckCastPP nodes have higher priority than the rest of
575 // the nodes tested below. Record as current winner, but keep looking for
576 // higher-priority nodes in the worklist.
577 choice = 4;
578 // Latency and score are only used to break ties among low-priority nodes.
579 latency = 0;
580 score = 0;
581 idx = i;
582 continue;
583 }
584
585 // Final call in a block must be adjacent to 'catch'
586 Node *e = block->end();
587 if( e->is_Catch() && e->in(0)->in(0) == n )
588 continue;
589
590 // Memory op for an implicit null check has to be at the end of the block
591 if( e->is_MachNullCheck() && e->in(1) == n )
592 continue;
593
594 // Schedule IV increment last.
595 if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
596 // Cmp might be matched into CountedLoopEnd node.
597 Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
598 if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
599 continue;
600 }
601 }
602
603 uint n_choice = 2;
604
605 // See if this instruction is consumed by a branch. If so, then (as the
606 // branch is the last instruction in the basic block) force it to the
607 // end of the basic block
608 if ( must_clone[iop] ) {
609 // See if any use is a branch
610 bool found_machif = false;
611
612 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
613 Node* use = n->fast_out(j);
614
615 // The use is a conditional branch, make them adjacent
616 if (use->is_MachIf() && get_block_for_node(use) == block) {
617 found_machif = true;
618 break;
619 }
620
621 // More than this instruction pending for successor to be ready,
622 // don't choose this if other opportunities are ready
623 if (ready_cnt.at(use->_idx) > 1)
624 n_choice = 1;
625 }
626
627 // loop terminated, prefer not to use this instruction
628 if (found_machif)
629 continue;
630 }
631
632 // See if this has a predecessor that is "must_clone", i.e. sets the
633 // condition code. If so, choose this first
634 for (uint j = 0; j < n->req() ; j++) {
635 Node *inn = n->in(j);
636 if (inn) {
637 if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
638 n_choice = 3;
639 break;
640 }
641 }
642 }
643
644 // MachTemps should be scheduled last so they are near their uses
645 if (n->is_MachTemp()) {
646 n_choice = 1;
647 }
648
649 uint n_latency = get_latency_for_node(n);
650 uint n_score = n->req(); // Many inputs get high score to break ties
651
652 if (OptoRegScheduling && block_size_threshold_ok) {
653 if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
654 _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
655 _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
656 // simulate the notion that we just picked this node to schedule
657 n->add_flag(Node::Flag_is_scheduled);
658 // now calculate its effect upon the graph if we did
659 adjust_register_pressure(n, block, recalc_pressure_nodes, false);
660 // return its state for finalize in case somebody else wins
661 n->remove_flag(Node::Flag_is_scheduled);
662 // now save the two final pressure components of register pressure, limiting pressure calcs to short size
663 short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
664 short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
665 recalc_pressure_nodes[n->_idx] = int_pressure;
666 recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
667 }
668
669 if (_scheduling_for_pressure) {
670 latency = n_latency;
671 if (n_choice != 3) {
672 // Now evaluate each register pressure component based on threshold in the score.
673 // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
674 // on a single instruction, but we might see it shrink on both banks.
675 // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
676 // live ranges that terminate on this instruction.
677 if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
678 short int_pressure = (short)recalc_pressure_nodes[n->_idx];
679 n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
680 }
681 if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
682 short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
683 n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
684 }
685 } else {
686 // make sure we choose these candidates
687 score = 0;
688 }
689 }
690 }
691
692 // Keep best latency found
693 cand_cnt++;
694 if (choice < n_choice ||
695 (choice == n_choice &&
696 ((StressLCM && C->randomized_select(cand_cnt)) ||
697 (!StressLCM &&
698 (latency < n_latency ||
699 (latency == n_latency &&
700 (score < n_score))))))) {
701 choice = n_choice;
702 latency = n_latency;
703 score = n_score;
704 idx = i; // Also keep index in worklist
705 }
706 } // End of for all ready nodes in worklist
707
708 guarantee(idx >= 0, "index should be set");
709 Node *n = worklist[(uint)idx]; // Get the winner
710
711 worklist.map((uint)idx, worklist.pop()); // Compress worklist
712 return n;
713 }
714
715 //-------------------------adjust_register_pressure----------------------------
716 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
717 PhaseLive* liveinfo = _regalloc->get_live();
718 IndexSet* liveout = liveinfo->live(block);
719 // first adjust the register pressure for the sources
720 for (uint i = 1; i < n->req(); i++) {
721 bool lrg_ends = false;
722 Node *src_n = n->in(i);
723 if (src_n == nullptr) continue;
724 if (!src_n->is_Mach()) continue;
725 uint src = _regalloc->_lrg_map.find(src_n);
726 if (src == 0) continue;
727 LRG& lrg_src = _regalloc->lrgs(src);
728 // detect if the live range ends or not
729 if (liveout->member(src) == false) {
730 lrg_ends = true;
731 for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
732 Node* m = src_n->fast_out(j); // Get user
733 if (m == n) continue;
734 if (!m->is_Mach()) continue;
735 MachNode *mach = m->as_Mach();
736 bool src_matches = false;
737 int iop = mach->ideal_Opcode();
738
739 switch (iop) {
740 case Op_StoreB:
741 case Op_StoreC:
742 case Op_StoreD:
743 case Op_StoreF:
744 case Op_StoreI:
745 case Op_StoreL:
746 case Op_StoreP:
747 case Op_StoreN:
748 case Op_StoreVector:
749 case Op_StoreVectorMasked:
750 case Op_StoreVectorScatter:
751 case Op_StoreVectorScatterMasked:
752 case Op_StoreNKlass:
753 for (uint k = 1; k < m->req(); k++) {
754 Node *in = m->in(k);
755 if (in == src_n) {
756 src_matches = true;
757 break;
758 }
759 }
760 break;
761
762 default:
763 src_matches = true;
764 break;
765 }
766
767 // If we have a store as our use, ignore the non source operands
768 if (src_matches == false) continue;
769
770 // Mark every unscheduled use which is not n with a recalculation
771 if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
772 if (finalize_mode && !m->is_Phi()) {
773 recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
774 }
775 lrg_ends = false;
776 }
777 }
778 }
779 // if none, this live range ends and we can adjust register pressure
780 if (lrg_ends) {
781 if (finalize_mode) {
782 _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
783 } else {
784 _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
785 }
786 }
787 }
788
789 // now add the register pressure from the dest and evaluate which heuristic we should use:
790 // 1.) The default, latency scheduling
791 // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
792 uint dst = _regalloc->_lrg_map.find(n);
793 if (dst != 0) {
794 LRG& lrg_dst = _regalloc->lrgs(dst);
795 if (finalize_mode) {
796 _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
797 // check to see if we fall over the register pressure cliff here
798 if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
799 _scheduling_for_pressure = true;
800 } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
801 _scheduling_for_pressure = true;
802 } else {
803 // restore latency scheduling mode
804 _scheduling_for_pressure = false;
805 }
806 } else {
807 _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
808 }
809 }
810 }
811
812 //------------------------------set_next_call----------------------------------
813 void PhaseCFG::set_next_call(const Block* block, Node* init, VectorSet& next_call) const {
814 Node_List worklist;
815 worklist.push(init);
816
817 while (worklist.size() > 0) {
818 Node* n = worklist.pop();
819 if (next_call.test_set(n->_idx)) continue;
820 for (uint i = 0; i < n->len(); i++) {
821 Node* m = n->in(i);
822 if (m == nullptr) continue; // must see all nodes in block that precede call
823 if (get_block_for_node(m) == block) {
824 worklist.push(m);
825 }
826 }
827 }
828 }
829
830 //------------------------------needed_for_next_call---------------------------
831 // Set the flag 'next_call' for each Node that is needed for the next call to
832 // be scheduled. This flag lets me bias scheduling so Nodes needed for the
833 // next subroutine call get priority - basically it moves things NOT needed
834 // for the next call till after the call. This prevents me from trying to
835 // carry lots of stuff live across a call.
836 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
837 // Find the next control-defining Node in this block
838 Node* call = nullptr;
839 for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
840 Node* m = this_call->fast_out(i);
841 if (get_block_for_node(m) == block && // Local-block user
842 m != this_call && // Not self-start node
843 m->is_MachCall()) {
844 call = m;
845 break;
846 }
847 }
848 if (call == nullptr) return; // No next call (e.g., block end is near)
849 // Set next-call for all inputs to this call
850 set_next_call(block, call, next_call);
851 }
852
853 //------------------------------add_call_kills-------------------------------------
854 // helper function that adds caller save registers to MachProjNode
855 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
856 // Fill in the kill mask for the call
857 for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
858 if( !regs.Member(r) ) { // Not already defined by the call
859 // Save-on-call register?
860 if ((save_policy[r] == 'C') ||
861 (save_policy[r] == 'A') ||
862 ((save_policy[r] == 'E') && exclude_soe)) {
863 proj->_rout.Insert(r);
864 }
865 }
866 }
867 }
868
869
870 //------------------------------sched_call-------------------------------------
871 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
872 ResourceMark rm(C->regmask_arena());
873 RegMask regs(C->regmask_arena());
874
875 // Schedule all the users of the call right now. All the users are
876 // projection Nodes, so they must be scheduled next to the call.
877 // Collect all the defined registers.
878 for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
879 Node* n = mcall->fast_out(i);
880 assert( n->is_MachProj(), "" );
881 int n_cnt = ready_cnt.at(n->_idx)-1;
882 ready_cnt.at_put(n->_idx, n_cnt);
883 assert( n_cnt == 0, "" );
884 // Schedule next to call
885 block->map_node(n, node_cnt++);
886 // Collect defined registers
887 regs.OR(n->out_RegMask());
888 // Check for scheduling the next control-definer
889 if( n->bottom_type() == Type::CONTROL )
890 // Warm up next pile of heuristic bits
891 needed_for_next_call(block, n, next_call);
892
893 // Children of projections are now all ready
894 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
895 Node* m = n->fast_out(j); // Get user
896 if(get_block_for_node(m) != block) {
897 continue;
898 }
899 if( m->is_Phi() ) continue;
900 int m_cnt = ready_cnt.at(m->_idx) - 1;
901 ready_cnt.at_put(m->_idx, m_cnt);
902 if( m_cnt == 0 )
903 worklist.push(m);
904 }
905
906 }
907
908 // Act as if the call defines the Frame Pointer.
909 // Certainly the FP is alive and well after the call.
910 regs.Insert(_matcher.c_frame_pointer());
911
912 // Set all registers killed and not already defined by the call.
913 uint r_cnt = mcall->tf()->range()->cnt();
914 int op = mcall->ideal_Opcode();
915 MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
916 map_node_to_block(proj, block);
917 block->insert_node(proj, node_cnt++);
918
919 // Select the right register save policy.
920 const char *save_policy = nullptr;
921 switch (op) {
922 case Op_CallRuntime:
923 case Op_CallLeaf:
924 case Op_CallLeafNoFP:
925 case Op_CallLeafVector:
926 // Calling C code so use C calling convention
927 save_policy = _matcher._c_reg_save_policy;
928 break;
929
930 case Op_CallStaticJava:
931 case Op_CallDynamicJava:
932 // Calling Java code so use Java calling convention
933 save_policy = _matcher._register_save_policy;
934 break;
935
936 default:
937 ShouldNotReachHere();
938 }
939
940 // When using CallRuntime mark SOE registers as killed by the call
941 // so values that could show up in the RegisterMap aren't live in a
942 // callee saved register since the register wouldn't know where to
943 // find them. CallLeaf and CallLeafNoFP are ok because they can't
944 // have debug info on them. Strictly speaking this only needs to be
945 // done for oops since idealreg2debugmask takes care of debug info
946 // references but there no way to handle oops differently than other
947 // pointers as far as the kill mask goes.
948 bool exclude_soe = op == Op_CallRuntime;
949
950 // If the call is a MethodHandle invoke, we need to exclude the
951 // register which is used to save the SP value over MH invokes from
952 // the mask. Otherwise this register could be used for
953 // deoptimization information.
954 if (op == Op_CallStaticJava) {
955 MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
956 if (mcallstaticjava->_method_handle_invoke)
957 proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
958 }
959
960 add_call_kills(proj, regs, save_policy, exclude_soe);
961
962 return node_cnt;
963 }
964
965
966 //------------------------------schedule_local---------------------------------
967 // Topological sort within a block. Someday become a real scheduler.
968 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
969 // Already "sorted" are the block start Node (as the first entry), and
970 // the block-ending Node and any trailing control projections. We leave
971 // these alone. PhiNodes and ParmNodes are made to follow the block start
972 // Node. Everything else gets topo-sorted.
973
974 #ifndef PRODUCT
975 if (trace_opto_pipelining()) {
976 tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
977 for (uint i = 0;i < block->number_of_nodes(); i++) {
978 tty->print("# ");
979 block->get_node(i)->dump();
980 }
981 tty->print_cr("#");
982 }
983 #endif
984
985 // RootNode is already sorted
986 if (block->number_of_nodes() == 1) {
987 return true;
988 }
989
990 bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
991
992 // We track the uses of local definitions as input dependences so that
993 // we know when a given instruction is available to be scheduled.
994 uint i;
995 if (OptoRegScheduling && block_size_threshold_ok) {
996 for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
997 Node *n = block->get_node(i);
998 n->remove_flag(Node::Flag_is_scheduled);
999 if (!n->is_Phi()) {
1000 recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
1001 }
1002 }
1003 }
1004
1005 // Move PhiNodes and ParmNodes from 1 to cnt up to the start
1006 uint node_cnt = block->end_idx();
1007 uint phi_cnt = 1;
1008 for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
1009 Node *n = block->get_node(i);
1010 if( n->is_Phi() || // Found a PhiNode or ParmNode
1011 (n->is_Proj() && n->in(0) == block->head()) ) {
1012 // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
1013 block->map_node(block->get_node(phi_cnt), i);
1014 block->map_node(n, phi_cnt++); // swap Phi/Parm up front
1015 if (OptoRegScheduling && block_size_threshold_ok) {
1016 // mark n as scheduled
1017 n->add_flag(Node::Flag_is_scheduled);
1018 }
1019 } else { // All others
1020 // Count block-local inputs to 'n'
1021 uint cnt = n->len(); // Input count
1022 uint local = 0;
1023 for( uint j=0; j<cnt; j++ ) {
1024 Node *m = n->in(j);
1025 if( m && get_block_for_node(m) == block && !m->is_top() )
1026 local++; // One more block-local input
1027 }
1028 ready_cnt.at_put(n->_idx, local); // Count em up
1029 // A few node types require changing a required edge to a precedence edge
1030 // before allocation.
1031 if( n->is_Mach() && n->req() > TypeFunc::Parms &&
1032 (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
1033 n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
1034 // MemBarAcquire could be created without Precedent edge.
1035 // del_req() replaces the specified edge with the last input edge
1036 // and then removes the last edge. If the specified edge > number of
1037 // edges the last edge will be moved outside of the input edges array
1038 // and the edge will be lost. This is why this code should be
1039 // executed only when Precedent (== TypeFunc::Parms) edge is present.
1040 Node *x = n->in(TypeFunc::Parms);
1041 if (x != nullptr && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
1042 // Old edge to node within same block will get removed, but no precedence
1043 // edge will get added because it already exists. Update ready count.
1044 int cnt = ready_cnt.at(n->_idx);
1045 assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
1046 ready_cnt.at_put(n->_idx, cnt-1);
1047 }
1048 n->del_req(TypeFunc::Parms);
1049 n->add_prec(x);
1050 }
1051 }
1052 }
1053 for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1054 ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1055
1056 // All the prescheduled guys do not hold back internal nodes
1057 uint i3;
1058 for (i3 = 0; i3 < phi_cnt; i3++) { // For all pre-scheduled
1059 Node *n = block->get_node(i3); // Get pre-scheduled
1060 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1061 Node* m = n->fast_out(j);
1062 if (get_block_for_node(m) == block) { // Local-block user
1063 int m_cnt = ready_cnt.at(m->_idx)-1;
1064 if (OptoRegScheduling && block_size_threshold_ok) {
1065 // mark m as scheduled
1066 if (m_cnt < 0) {
1067 m->add_flag(Node::Flag_is_scheduled);
1068 }
1069 }
1070 ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count
1071 }
1072 }
1073 }
1074
1075 Node_List delay;
1076 // Make a worklist
1077 Node_List worklist;
1078 for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist
1079 Node *m = block->get_node(i4);
1080 if( !ready_cnt.at(m->_idx) ) { // Zero ready count?
1081 if (m->is_iteratively_computed()) {
1082 // Push induction variable increments last to allow other uses
1083 // of the phi to be scheduled first. The select() method breaks
1084 // ties in scheduling by worklist order.
1085 delay.push(m);
1086 } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1087 // Place CreateEx nodes that are initially ready at the beginning of the
1088 // worklist so they are selected first and scheduled at the block start.
1089 worklist.insert(0, m);
1090 } else {
1091 worklist.push(m); // Then on to worklist!
1092 }
1093 }
1094 }
1095 while (delay.size()) {
1096 Node* d = delay.pop();
1097 worklist.push(d);
1098 }
1099
1100 if (OptoRegScheduling && block_size_threshold_ok) {
1101 // To stage register pressure calculations we need to examine the live set variables
1102 // breaking them up by register class to compartmentalize the calculations.
1103 _regalloc->_sched_int_pressure.init(Matcher::int_pressure_limit());
1104 _regalloc->_sched_float_pressure.init(Matcher::float_pressure_limit());
1105 _regalloc->_scratch_int_pressure.init(Matcher::int_pressure_limit());
1106 _regalloc->_scratch_float_pressure.init(Matcher::float_pressure_limit());
1107
1108 _regalloc->compute_entry_block_pressure(block);
1109 }
1110
1111 // Warm up the 'next_call' heuristic bits
1112 needed_for_next_call(block, block->head(), next_call);
1113
1114 #ifndef PRODUCT
1115 if (trace_opto_pipelining()) {
1116 for (uint j=0; j< block->number_of_nodes(); j++) {
1117 Node *n = block->get_node(j);
1118 int idx = n->_idx;
1119 tty->print("# ready cnt:%3d ", ready_cnt.at(idx));
1120 tty->print("latency:%3d ", get_latency_for_node(n));
1121 tty->print("%4d: %s\n", idx, n->Name());
1122 }
1123 }
1124 #endif
1125
1126 uint max_idx = (uint)ready_cnt.length();
1127 // Pull from worklist and schedule
1128 while( worklist.size() ) { // Worklist is not ready
1129
1130 #ifndef PRODUCT
1131 if (trace_opto_pipelining()) {
1132 tty->print("# ready list:");
1133 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1134 Node *n = worklist[i]; // Get Node on worklist
1135 tty->print(" %d", n->_idx);
1136 }
1137 tty->cr();
1138 }
1139 #endif
1140
1141 // Select and pop a ready guy from worklist
1142 Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1143 block->map_node(n, phi_cnt++); // Schedule him next
1144
1145 if (OptoRegScheduling && block_size_threshold_ok) {
1146 n->add_flag(Node::Flag_is_scheduled);
1147
1148 // Now adjust the resister pressure with the node we selected
1149 if (!n->is_Phi()) {
1150 adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1151 }
1152 }
1153
1154 #ifndef PRODUCT
1155 if (trace_opto_pipelining()) {
1156 tty->print("# select %d: %s", n->_idx, n->Name());
1157 tty->print(", latency:%d", get_latency_for_node(n));
1158 n->dump();
1159 if (Verbose) {
1160 tty->print("# ready list:");
1161 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1162 Node *n = worklist[i]; // Get Node on worklist
1163 tty->print(" %d", n->_idx);
1164 }
1165 tty->cr();
1166 }
1167 }
1168
1169 #endif
1170 if( n->is_MachCall() ) {
1171 MachCallNode *mcall = n->as_MachCall();
1172 phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1173 continue;
1174 }
1175
1176 if (n->is_Mach() && n->as_Mach()->has_call()) {
1177 RegMask regs;
1178 regs.Insert(_matcher.c_frame_pointer());
1179 regs.OR(n->out_RegMask());
1180
1181 MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1182 map_node_to_block(proj, block);
1183 block->insert_node(proj, phi_cnt++);
1184
1185 add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1186 }
1187
1188 // Children are now all ready
1189 for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1190 Node* m = n->fast_out(i5); // Get user
1191 if (get_block_for_node(m) != block) {
1192 continue;
1193 }
1194 if( m->is_Phi() ) continue;
1195 if (m->_idx >= max_idx) { // new node, skip it
1196 assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1197 continue;
1198 }
1199 int m_cnt = ready_cnt.at(m->_idx) - 1;
1200 ready_cnt.at_put(m->_idx, m_cnt);
1201 if( m_cnt == 0 )
1202 worklist.push(m);
1203 }
1204 }
1205
1206 if( phi_cnt != block->end_idx() ) {
1207 // did not schedule all. Retry, Bailout, or Die
1208 if (C->subsume_loads() == true && !C->failing()) {
1209 // Retry with subsume_loads == false
1210 // If this is the first failure, the sentinel string will "stick"
1211 // to the Compile object, and the C2Compiler will see it and retry.
1212 C->record_failure(C2Compiler::retry_no_subsuming_loads());
1213 } else {
1214 assert(C->failure_is_artificial(), "graph should be schedulable");
1215 }
1216 // assert( phi_cnt == end_idx(), "did not schedule all" );
1217 return false;
1218 }
1219
1220 if (OptoRegScheduling && block_size_threshold_ok) {
1221 _regalloc->compute_exit_block_pressure(block);
1222 block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1223 block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1224 }
1225
1226 #ifndef PRODUCT
1227 if (trace_opto_pipelining()) {
1228 tty->print_cr("#");
1229 tty->print_cr("# after schedule_local");
1230 for (uint i = 0;i < block->number_of_nodes();i++) {
1231 tty->print("# ");
1232 block->get_node(i)->dump();
1233 }
1234 tty->print_cr("# ");
1235
1236 if (OptoRegScheduling && block_size_threshold_ok) {
1237 tty->print_cr("# pressure info : %d", block->_pre_order);
1238 _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1239 _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1240 }
1241 tty->cr();
1242 }
1243 #endif
1244
1245 return true;
1246 }
1247
1248 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1249 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1250 for (uint l = 0; l < use->len(); l++) {
1251 if (use->in(l) == old_def) {
1252 if (l < use->req()) {
1253 use->set_req(l, new_def);
1254 } else {
1255 use->rm_prec(l);
1256 use->add_prec(new_def);
1257 l--;
1258 }
1259 }
1260 }
1261 }
1262
1263 //------------------------------catch_cleanup_find_cloned_def------------------
1264 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1265 assert( use_blk != def_blk, "Inter-block cleanup only");
1266
1267 // The use is some block below the Catch. Find and return the clone of the def
1268 // that dominates the use. If there is no clone in a dominating block, then
1269 // create a phi for the def in a dominating block.
1270
1271 // Find which successor block dominates this use. The successor
1272 // blocks must all be single-entry (from the Catch only; I will have
1273 // split blocks to make this so), hence they all dominate.
1274 while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1275 use_blk = use_blk->_idom;
1276
1277 // Find the successor
1278 Node *fixup = nullptr;
1279
1280 uint j;
1281 for( j = 0; j < def_blk->_num_succs; j++ )
1282 if( use_blk == def_blk->_succs[j] )
1283 break;
1284
1285 if( j == def_blk->_num_succs ) {
1286 // Block at same level in dom-tree is not a successor. It needs a
1287 // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1288 Node_Array inputs;
1289 for(uint k = 1; k < use_blk->num_preds(); k++) {
1290 Block* block = get_block_for_node(use_blk->pred(k));
1291 inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1292 }
1293
1294 // Check to see if the use_blk already has an identical phi inserted.
1295 // If it exists, it will be at the first position since all uses of a
1296 // def are processed together.
1297 Node *phi = use_blk->get_node(1);
1298 if( phi->is_Phi() ) {
1299 fixup = phi;
1300 for (uint k = 1; k < use_blk->num_preds(); k++) {
1301 if (phi->in(k) != inputs[k]) {
1302 // Not a match
1303 fixup = nullptr;
1304 break;
1305 }
1306 }
1307 }
1308
1309 // If an existing PhiNode was not found, make a new one.
1310 if (fixup == nullptr) {
1311 Node *new_phi = PhiNode::make(use_blk->head(), def);
1312 use_blk->insert_node(new_phi, 1);
1313 map_node_to_block(new_phi, use_blk);
1314 for (uint k = 1; k < use_blk->num_preds(); k++) {
1315 new_phi->set_req(k, inputs[k]);
1316 }
1317 fixup = new_phi;
1318 }
1319
1320 } else {
1321 // Found the use just below the Catch. Make it use the clone.
1322 fixup = use_blk->get_node(n_clone_idx);
1323 }
1324
1325 return fixup;
1326 }
1327
1328 //--------------------------catch_cleanup_intra_block--------------------------
1329 // Fix all input edges in use that reference "def". The use is in the same
1330 // block as the def and both have been cloned in each successor block.
1331 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1332
1333 // Both the use and def have been cloned. For each successor block,
1334 // get the clone of the use, and make its input the clone of the def
1335 // found in that block.
1336
1337 uint use_idx = blk->find_node(use);
1338 uint offset_idx = use_idx - beg;
1339 for( uint k = 0; k < blk->_num_succs; k++ ) {
1340 // Get clone in each successor block
1341 Block *sb = blk->_succs[k];
1342 Node *clone = sb->get_node(offset_idx+1);
1343 assert( clone->Opcode() == use->Opcode(), "" );
1344
1345 // Make use-clone reference the def-clone
1346 catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1347 }
1348 }
1349
1350 //------------------------------catch_cleanup_inter_block---------------------
1351 // Fix all input edges in use that reference "def". The use is in a different
1352 // block than the def.
1353 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1354 if( !use_blk ) return; // Can happen if the use is a precedence edge
1355
1356 Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1357 catch_cleanup_fix_all_inputs(use, def, new_def);
1358 }
1359
1360 //------------------------------call_catch_cleanup-----------------------------
1361 // If we inserted any instructions between a Call and his CatchNode,
1362 // clone the instructions on all paths below the Catch.
1363 void PhaseCFG::call_catch_cleanup(Block* block) {
1364
1365 // End of region to clone
1366 uint end = block->end_idx();
1367 if( !block->get_node(end)->is_Catch() ) return;
1368 // Start of region to clone
1369 uint beg = end;
1370 while(!block->get_node(beg-1)->is_MachProj() ||
1371 !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1372 beg--;
1373 assert(beg > 0,"Catch cleanup walking beyond block boundary");
1374 }
1375 // Range of inserted instructions is [beg, end)
1376 if( beg == end ) return;
1377
1378 // Clone along all Catch output paths. Clone area between the 'beg' and
1379 // 'end' indices.
1380 for( uint i = 0; i < block->_num_succs; i++ ) {
1381 Block *sb = block->_succs[i];
1382 // Clone the entire area; ignoring the edge fixup for now.
1383 for( uint j = end; j > beg; j-- ) {
1384 Node *clone = block->get_node(j-1)->clone();
1385 sb->insert_node(clone, 1);
1386 map_node_to_block(clone, sb);
1387 if (clone->needs_anti_dependence_check()) {
1388 raise_above_anti_dependences(sb, clone);
1389 if (C->failing()) {
1390 return;
1391 }
1392 }
1393 }
1394 }
1395
1396
1397 // Fixup edges. Check the def-use info per cloned Node
1398 for(uint i2 = beg; i2 < end; i2++ ) {
1399 uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1400 Node *n = block->get_node(i2); // Node that got cloned
1401 // Need DU safe iterator because of edge manipulation in calls.
1402 Unique_Node_List* out = new Unique_Node_List();
1403 for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1404 out->push(n->fast_out(j1));
1405 }
1406 uint max = out->size();
1407 for (uint j = 0; j < max; j++) {// For all users
1408 Node *use = out->pop();
1409 Block *buse = get_block_for_node(use);
1410 if( use->is_Phi() ) {
1411 for( uint k = 1; k < use->req(); k++ )
1412 if( use->in(k) == n ) {
1413 Block* b = get_block_for_node(buse->pred(k));
1414 Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1415 use->set_req(k, fixup);
1416 }
1417 } else {
1418 if (block == buse) {
1419 catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1420 } else {
1421 catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1422 }
1423 }
1424 } // End for all users
1425
1426 } // End of for all Nodes in cloned area
1427
1428 // Remove the now-dead cloned ops
1429 for(uint i3 = beg; i3 < end; i3++ ) {
1430 block->get_node(beg)->disconnect_inputs(C);
1431 block->remove_node(beg);
1432 }
1433
1434 // If the successor blocks have a CreateEx node, move it back to the top
1435 for (uint i4 = 0; i4 < block->_num_succs; i4++) {
1436 Block *sb = block->_succs[i4];
1437 uint new_cnt = end - beg;
1438 // Remove any newly created, but dead, nodes by traversing their schedule
1439 // backwards. Here, a dead node is a node whose only outputs (if any) are
1440 // unused projections.
1441 for (uint j = new_cnt; j > 0; j--) {
1442 Node *n = sb->get_node(j);
1443 // Individual projections are examined together with all siblings when
1444 // their parent is visited.
1445 if (n->is_Proj()) {
1446 continue;
1447 }
1448 bool dead = true;
1449 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1450 Node* out = n->fast_out(i);
1451 // n is live if it has a non-projection output or a used projection.
1452 if (!out->is_Proj() || out->outcnt() > 0) {
1453 dead = false;
1454 break;
1455 }
1456 }
1457 if (dead) {
1458 // n's only outputs (if any) are unused projections scheduled next to n
1459 // (see PhaseCFG::select()). Remove these projections backwards.
1460 for (uint k = j + n->outcnt(); k > j; k--) {
1461 Node* proj = sb->get_node(k);
1462 assert(proj->is_Proj() && proj->in(0) == n,
1463 "projection should correspond to dead node");
1464 proj->disconnect_inputs(C);
1465 sb->remove_node(k);
1466 new_cnt--;
1467 }
1468 // Now remove the node itself.
1469 n->disconnect_inputs(C);
1470 sb->remove_node(j);
1471 new_cnt--;
1472 }
1473 }
1474 // If any newly created nodes remain, move the CreateEx node to the top
1475 if (new_cnt > 0) {
1476 Node *cex = sb->get_node(1+new_cnt);
1477 if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1478 sb->remove_node(1+new_cnt);
1479 sb->insert_node(cex, 1);
1480 }
1481 }
1482 }
1483 }