1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.inline.hpp"
  26 #include "gc/shared/gc_globals.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "oops/compressedOops.hpp"
  29 #include "opto/ad.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/chaitin.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "runtime/os.inline.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 // Optimization - Graph Style
  41 
  42 // Check whether val is not-null-decoded compressed oop,
  43 // i.e. will grab into the base of the heap if it represents null.
  44 static bool accesses_heap_base_zone(Node *val) {
  45   if (CompressedOops::base() != nullptr) { // Implies UseCompressedOops.
  46     if (val && val->is_Mach()) {
  47       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  48         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  49         // decode null to point to the heap base (Decode_NN).
  50         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  51           return true;
  52         }
  53       }
  54       // Must recognize load operation with Decode matched in memory operand.
  55       // We should not reach here except for PPC/AIX, as os::zero_page_read_protected()
  56       // returns true everywhere else. On PPC, no such memory operands
  57       // exist, therefore we did not yet implement a check for such operands.
  58       NOT_AIX(Unimplemented());
  59     }
  60   }
  61   return false;
  62 }
  63 
  64 static bool needs_explicit_null_check_for_read(Node *val) {
  65   // On some OSes (AIX) the page at address 0 is only write protected.
  66   // If so, only Store operations will trap.
  67   if (os::zero_page_read_protected()) {
  68     return false;  // Implicit null check will work.
  69   }
  70   // Also a read accessing the base of a heap-based compressed heap will trap.
  71   if (accesses_heap_base_zone(val) &&         // Hits the base zone page.
  72       CompressedOops::use_implicit_null_checks()) { // Base zone page is protected.
  73     return false;
  74   }
  75 
  76   return true;
  77 }
  78 
  79 void PhaseCFG::move_node_and_its_projections_to_block(Node* n, Block* b) {
  80   assert(!is_CFG(n), "cannot move CFG node");
  81   Block* old = get_block_for_node(n);
  82   old->find_remove(n);
  83   b->add_inst(n);
  84   map_node_to_block(n, b);
  85   // Check for Mach projections that also need to be moved.
  86   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  87     Node* out = n->fast_out(i);
  88     if (!out->is_MachProj()) {
  89       continue;
  90     }
  91     assert(!n->is_MachProj(), "nested projections are not allowed");
  92     move_node_and_its_projections_to_block(out, b);
  93   }
  94 }
  95 
  96 void PhaseCFG::ensure_node_is_at_block_or_above(Node* n, Block* b) {
  97   assert(!is_CFG(n), "cannot move CFG node");
  98   Block* current = get_block_for_node(n);
  99   if (current->dominates(b)) {
 100     return; // n is already placed above b, do nothing.
 101   }
 102   // We only expect nodes without further inputs, like MachTemp or load Base.
 103   assert(n->req() == 0 || (n->req() == 1 && n->in(0) == (Node*)C->root()),
 104          "need for recursive hoisting not expected");
 105   assert(b->dominates(current), "precondition: can only move n to b if b dominates n");
 106   move_node_and_its_projections_to_block(n, b);
 107 }
 108 
 109 //------------------------------implicit_null_check----------------------------
 110 // Detect implicit-null-check opportunities.  Basically, find null checks
 111 // with suitable memory ops nearby.  Use the memory op to do the null check.
 112 // I can generate a memory op if there is not one nearby.
 113 // The proj is the control projection for the not-null case.
 114 // The val is the pointer being checked for nullness or
 115 // decodeHeapOop_not_null node if it did not fold into address.
 116 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
 117   // Assume if null check need for 0 offset then always needed
 118   // Intel solaris doesn't support any null checks yet and no
 119   // mechanism exists (yet) to set the switches at an os_cpu level
 120   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
 121 
 122   // Make sure the ptr-is-null path appears to be uncommon!
 123   float f = block->end()->as_MachIf()->_prob;
 124   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
 125   if( f > PROB_UNLIKELY_MAG(4) ) return;
 126 
 127   uint bidx = 0;                // Capture index of value into memop
 128   bool was_store;               // Memory op is a store op
 129 
 130   // Get the successor block for if the test ptr is non-null
 131   Block* not_null_block;  // this one goes with the proj
 132   Block* null_block;
 133   if (block->get_node(block->number_of_nodes()-1) == proj) {
 134     null_block     = block->_succs[0];
 135     not_null_block = block->_succs[1];
 136   } else {
 137     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 138     not_null_block = block->_succs[0];
 139     null_block     = block->_succs[1];
 140   }
 141   while (null_block->is_Empty() == Block::empty_with_goto) {
 142     null_block     = null_block->_succs[0];
 143   }
 144 
 145   // Search the exception block for an uncommon trap.
 146   // (See Parse::do_if and Parse::do_ifnull for the reason
 147   // we need an uncommon trap.  Briefly, we need a way to
 148   // detect failure of this optimization, as in 6366351.)
 149   {
 150     bool found_trap = false;
 151     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 152       Node* nn = null_block->get_node(i1);
 153       if (nn->is_MachCall() &&
 154           nn->as_MachCall()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point()) {
 155         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 156         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 157           jint tr_con = trtype->is_int()->get_con();
 158           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 159           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 160           assert((int)reason < (int)BitsPerInt, "recode bit map");
 161           if (is_set_nth_bit(allowed_reasons, (int) reason)
 162               && action != Deoptimization::Action_none) {
 163             // This uncommon trap is sure to recompile, eventually.
 164             // When that happens, C->too_many_traps will prevent
 165             // this transformation from happening again.
 166             found_trap = true;
 167           }
 168         }
 169         break;
 170       }
 171     }
 172     if (!found_trap) {
 173       // We did not find an uncommon trap.
 174       return;
 175     }
 176   }
 177 
 178   // Check for decodeHeapOop_not_null node which did not fold into address
 179   bool is_decoden = ((intptr_t)val) & 1;
 180   val = (Node*)(((intptr_t)val) & ~1);
 181 
 182   assert(!is_decoden ||
 183          ((val->in(0) == nullptr) && val->is_Mach() &&
 184           (val->as_Mach()->ideal_Opcode() == Op_DecodeN)), "sanity");
 185 
 186   // Search the successor block for a load or store who's base value is also
 187   // the tested value.  There may be several.
 188   MachNode *best = nullptr;        // Best found so far
 189   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 190     Node *m = val->out(i);
 191     if( !m->is_Mach() ) continue;
 192     MachNode *mach = m->as_Mach();
 193     if (mach->barrier_data() != 0 &&
 194         !mach->is_late_expanded_null_check_candidate()) {
 195       // Using memory accesses with barriers to perform implicit null checks is
 196       // only supported if these are explicit marked as emitting a candidate
 197       // memory access instruction at their initial address. If not marked as
 198       // such, barrier-tagged operations might expand into one or several memory
 199       // access instructions located at arbitrary offsets from the initial
 200       // address, which would invalidate the implicit null exception table.
 201       continue;
 202     }
 203     was_store = false;
 204     int iop = mach->ideal_Opcode();
 205     switch( iop ) {
 206     case Op_LoadB:
 207     case Op_LoadUB:
 208     case Op_LoadUS:
 209     case Op_LoadD:
 210     case Op_LoadF:
 211     case Op_LoadI:
 212     case Op_LoadL:
 213     case Op_LoadP:
 214     case Op_LoadN:
 215     case Op_LoadS:
 216     case Op_LoadKlass:
 217     case Op_LoadNKlass:
 218     case Op_LoadRange:
 219     case Op_LoadD_unaligned:
 220     case Op_LoadL_unaligned:
 221       assert(mach->in(2) == val, "should be address");
 222       break;
 223     case Op_StoreB:
 224     case Op_StoreC:
 225     case Op_StoreD:
 226     case Op_StoreF:
 227     case Op_StoreI:
 228     case Op_StoreL:
 229     case Op_StoreP:
 230     case Op_StoreN:
 231     case Op_StoreNKlass:
 232       was_store = true;         // Memory op is a store op
 233       // Stores will have their address in slot 2 (memory in slot 1).
 234       // If the value being nul-checked is in another slot, it means we
 235       // are storing the checked value, which does NOT check the value!
 236       if( mach->in(2) != val ) continue;
 237       break;                    // Found a memory op?
 238     case Op_StrComp:
 239     case Op_StrEquals:
 240     case Op_StrIndexOf:
 241     case Op_StrIndexOfChar:
 242     case Op_AryEq:
 243     case Op_VectorizedHashCode:
 244     case Op_StrInflatedCopy:
 245     case Op_StrCompressedCopy:
 246     case Op_EncodeISOArray:
 247     case Op_CountPositives:
 248       // Not a legit memory op for implicit null check regardless of
 249       // embedded loads
 250       continue;
 251     default:                    // Also check for embedded loads
 252       if( !mach->needs_anti_dependence_check() )
 253         continue;               // Not an memory op; skip it
 254       if( must_clone[iop] ) {
 255         // Do not move nodes which produce flags because
 256         // RA will try to clone it to place near branch and
 257         // it will cause recompilation, see clone_node().
 258         continue;
 259       }
 260       {
 261         // Check that value is used in memory address in
 262         // instructions with embedded load (CmpP val1,(val2+off)).
 263         Node* base;
 264         Node* index;
 265         const MachOper* oper = mach->memory_inputs(base, index);
 266         if (oper == nullptr || oper == (MachOper*)-1) {
 267           continue;             // Not an memory op; skip it
 268         }
 269         if (val == base ||
 270             (val == index && val->bottom_type()->isa_narrowoop())) {
 271           break;                // Found it
 272         } else {
 273           continue;             // Skip it
 274         }
 275       }
 276       break;
 277     }
 278 
 279     // On some OSes (AIX) the page at address 0 is only write protected.
 280     // If so, only Store operations will trap.
 281     // But a read accessing the base of a heap-based compressed heap will trap.
 282     if (!was_store && needs_explicit_null_check_for_read(val)) {
 283       continue;
 284     }
 285 
 286     // Check that node's control edge is not-null block's head or dominates it,
 287     // otherwise we can't hoist it because there are other control dependencies.
 288     Node* ctrl = mach->in(0);
 289     if (ctrl != nullptr && !(ctrl == not_null_block->head() ||
 290         get_block_for_node(ctrl)->dominates(not_null_block))) {
 291       continue;
 292     }
 293 
 294     // check if the offset is not too high for implicit exception
 295     {
 296       intptr_t offset = 0;
 297       const TypePtr *adr_type = nullptr;  // Do not need this return value here
 298       const Node* base = mach->get_base_and_disp(offset, adr_type);
 299       if (base == nullptr || base == NodeSentinel) {
 300         // Narrow oop address doesn't have base, only index.
 301         // Give up if offset is beyond page size or if heap base is not protected.
 302         if (val->bottom_type()->isa_narrowoop() &&
 303             (MacroAssembler::needs_explicit_null_check(offset) ||
 304              !CompressedOops::use_implicit_null_checks()))
 305           continue;
 306         // cannot reason about it; is probably not implicit null exception
 307       } else {
 308         const TypePtr* tptr;
 309         if ((UseCompressedOops && CompressedOops::shift() == 0) ||
 310             (UseCompressedClassPointers && CompressedKlassPointers::shift() == 0)) {
 311           // 32-bits narrow oop can be the base of address expressions
 312           tptr = base->get_ptr_type();
 313         } else {
 314           // only regular oops are expected here
 315           tptr = base->bottom_type()->is_ptr();
 316         }
 317         // Give up if offset is not a compile-time constant.
 318         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
 319           continue;
 320         offset += tptr->_offset; // correct if base is offsetted
 321         // Give up if reference is beyond page size.
 322         if (MacroAssembler::needs_explicit_null_check(offset))
 323           continue;
 324         // Give up if base is a decode node and the heap base is not protected.
 325         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 326             !CompressedOops::use_implicit_null_checks())
 327           continue;
 328       }
 329     }
 330 
 331     // Check ctrl input to see if the null-check dominates the memory op
 332     Block *cb = get_block_for_node(mach);
 333     cb = cb->_idom;             // Always hoist at least 1 block
 334     if( !was_store ) {          // Stores can be hoisted only one block
 335       while( cb->_dom_depth > (block->_dom_depth + 1))
 336         cb = cb->_idom;         // Hoist loads as far as we want
 337       // The non-null-block should dominate the memory op, too. Live
 338       // range spilling will insert a spill in the non-null-block if it is
 339       // needs to spill the memory op for an implicit null check.
 340       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 341         if (cb != not_null_block) continue;
 342         cb = cb->_idom;
 343       }
 344     }
 345     if( cb != block ) continue;
 346 
 347     // Found a memory user; see if it can be hoisted to check-block
 348     uint vidx = 0;              // Capture index of value into memop
 349     uint j;
 350     for( j = mach->req()-1; j > 0; j-- ) {
 351       if( mach->in(j) == val ) {
 352         vidx = j;
 353         // Ignore DecodeN val which could be hoisted to where needed.
 354         if( is_decoden ) continue;
 355       }
 356       if (mach->in(j)->is_MachTemp()) {
 357         assert(mach->in(j)->outcnt() == 1, "MachTemp nodes should not be shared");
 358         // Ignore MachTemp inputs, they can be safely hoisted with the candidate.
 359         // MachTemp nodes have no inputs themselves and are only used to reserve
 360         // a scratch register for the implementation of the node (e.g. in
 361         // late-expanded GC barriers).
 362         continue;
 363       }
 364       // Block of memory-op input
 365       Block *inb = get_block_for_node(mach->in(j));
 366       Block *b = block;          // Start from nul check
 367       while( b != inb && b->_dom_depth > inb->_dom_depth )
 368         b = b->_idom;           // search upwards for input
 369       // See if input dominates null check
 370       if( b != inb )
 371         break;
 372     }
 373     if( j > 0 )
 374       continue;
 375     Block *mb = get_block_for_node(mach);
 376     // Hoisting stores requires more checks for the anti-dependence case.
 377     // Give up hoisting if we have to move the store past any load.
 378     if (was_store) {
 379        // Make sure control does not do a merge (would have to check allpaths)
 380        if (mb->num_preds() != 2) {
 381          continue;
 382        }
 383        // mach is a store, hence block is the immediate dominator of mb.
 384        // Due to the null-check shape of block (where its successors cannot re-join),
 385        // block must be the direct predecessor of mb.
 386        assert(get_block_for_node(mb->pred(1)) == block, "Unexpected predecessor block");
 387        uint k;
 388        uint num_nodes = mb->number_of_nodes();
 389        for (k = 1; k < num_nodes; k++) {
 390          Node *n = mb->get_node(k);
 391          if (n->needs_anti_dependence_check() &&
 392              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory)) {
 393            break;              // Found anti-dependent load
 394          }
 395        }
 396        if (k < num_nodes) {
 397          continue;             // Found anti-dependent load
 398        }
 399     }
 400 
 401     // Make sure this memory op is not already being used for a NullCheck
 402     Node *e = mb->end();
 403     if( e->is_MachNullCheck() && e->in(1) == mach )
 404       continue;                 // Already being used as a null check
 405 
 406     // Found a candidate!  Pick one with least dom depth - the highest
 407     // in the dom tree should be closest to the null check.
 408     if (best == nullptr || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 409       best = mach;
 410       bidx = vidx;
 411     }
 412   }
 413   // No candidate!
 414   if (best == nullptr) {
 415     return;
 416   }
 417 
 418   // ---- Found an implicit null check
 419 #ifndef PRODUCT
 420   extern uint implicit_null_checks;
 421   implicit_null_checks++;
 422 #endif
 423 
 424   if( is_decoden ) {
 425     // Check if we need to hoist decodeHeapOop_not_null first.
 426     Block *valb = get_block_for_node(val);
 427     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 428       // Hoist it up to the end of the test block together with its inputs if they exist.
 429       for (uint i = 2; i < val->req(); i++) {
 430         // DecodeN has 2 regular inputs + optional MachTemp or load Base inputs.
 431         // Inputs of val may already be early enough, but if not move them together with val.
 432         ensure_node_is_at_block_or_above(val->in(i), block);
 433       }
 434       move_node_and_its_projections_to_block(val, block);
 435     }
 436   }
 437 
 438   // Move any MachTemp inputs to the end of the test block.
 439   for (uint i = 0; i < best->req(); i++) {
 440     Node* n = best->in(i);
 441     if (n == nullptr || !n->is_MachTemp()) {
 442       continue;
 443     }
 444     ensure_node_is_at_block_or_above(n, block);
 445   }
 446 
 447   // Hoist the memory candidate up to the end of the test block.
 448   move_node_and_its_projections_to_block(best, block);
 449 
 450   // Move the control dependence if it is pinned to not-null block.
 451   // Don't change it in other cases: null or dominating control.
 452   Node* ctrl = best->in(0);
 453   if (ctrl != nullptr && get_block_for_node(ctrl) == not_null_block) {
 454     // Set it to control edge of null check.
 455     best->set_req(0, proj->in(0)->in(0));
 456   }
 457 
 458   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 459   // One of two graph shapes got matched:
 460   //   (IfTrue  (If (Bool NE (CmpP ptr null))))
 461   //   (IfFalse (If (Bool EQ (CmpP ptr null))))
 462   // null checks are always branch-if-eq.  If we see a IfTrue projection
 463   // then we are replacing a 'ne' test with a 'eq' null check test.
 464   // We need to flip the projections to keep the same semantics.
 465   if( proj->Opcode() == Op_IfTrue ) {
 466     // Swap order of projections in basic block to swap branch targets
 467     Node *tmp1 = block->get_node(block->end_idx()+1);
 468     Node *tmp2 = block->get_node(block->end_idx()+2);
 469     block->map_node(tmp2, block->end_idx()+1);
 470     block->map_node(tmp1, block->end_idx()+2);
 471     Node *tmp = new Node(C->top()); // Use not null input
 472     tmp1->replace_by(tmp);
 473     tmp2->replace_by(tmp1);
 474     tmp->replace_by(tmp2);
 475     tmp->destruct(nullptr);
 476   }
 477 
 478   // Remove the existing null check; use a new implicit null check instead.
 479   // Since schedule-local needs precise def-use info, we need to correct
 480   // it as well.
 481   Node *old_tst = proj->in(0);
 482   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 483   block->map_node(nul_chk, block->end_idx());
 484   map_node_to_block(nul_chk, block);
 485   // Redirect users of old_test to nul_chk
 486   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 487     old_tst->last_out(i2)->set_req(0, nul_chk);
 488   // Clean-up any dead code
 489   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 490     Node* in = old_tst->in(i3);
 491     old_tst->set_req(i3, nullptr);
 492     if (in->outcnt() == 0) {
 493       // Remove dead input node
 494       in->disconnect_inputs(C);
 495       block->find_remove(in);
 496     }
 497   }
 498 
 499   latency_from_uses(nul_chk);
 500   latency_from_uses(best);
 501 
 502   // insert anti-dependences to defs in this block
 503   if (! best->needs_anti_dependence_check()) {
 504     for (uint k = 1; k < block->number_of_nodes(); k++) {
 505       Node *n = block->get_node(k);
 506       if (n->needs_anti_dependence_check() &&
 507           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 508         // Found anti-dependent load
 509         raise_above_anti_dependences(block, n);
 510         if (C->failing()) {
 511           return;
 512         }
 513       }
 514     }
 515   }
 516 }
 517 
 518 
 519 //------------------------------select-----------------------------------------
 520 // Select a nice fellow from the worklist to schedule next. If there is only one
 521 // choice, then use it. CreateEx nodes that are initially ready must start their
 522 // blocks and are given the highest priority, by being placed at the beginning
 523 // of the worklist. Next after initially-ready CreateEx nodes are projections,
 524 // which must follow their parents, and CreateEx nodes with local input
 525 // dependencies. Next are constants and CheckCastPP nodes. There are a number of
 526 // other special cases, for instructions that consume condition codes, et al.
 527 // These are chosen immediately. Some instructions are required to immediately
 528 // precede the last instruction in the block, and these are taken last. Of the
 529 // remaining cases (most), choose the instruction with the greatest latency
 530 // (that is, the most number of pseudo-cycles required to the end of the
 531 // routine). If there is a tie, choose the instruction with the most inputs.
 532 Node* PhaseCFG::select(
 533   Block* block,
 534   Node_List &worklist,
 535   GrowableArray<int> &ready_cnt,
 536   VectorSet &next_call,
 537   uint sched_slot,
 538   intptr_t* recalc_pressure_nodes) {
 539 
 540   // If only a single entry on the stack, use it
 541   uint cnt = worklist.size();
 542   if (cnt == 1) {
 543     Node *n = worklist[0];
 544     worklist.map(0,worklist.pop());
 545     return n;
 546   }
 547 
 548   uint choice  = 0; // Bigger is most important
 549   uint latency = 0; // Bigger is scheduled first
 550   uint score   = 0; // Bigger is better
 551   int idx = -1;     // Index in worklist
 552   int cand_cnt = 0; // Candidate count
 553   bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
 554 
 555   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 556     // Order in worklist is used to break ties.
 557     // See caller for how this is used to delay scheduling
 558     // of induction variable increments to after the other
 559     // uses of the phi are scheduled.
 560     Node *n = worklist[i];      // Get Node on worklist
 561 
 562     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 563     if (iop == Op_CreateEx || n->is_Proj()) {
 564       // CreateEx nodes that are initially ready must start the block (after Phi
 565       // and Parm nodes which are pre-scheduled) and get top priority. This is
 566       // currently enforced by placing them at the beginning of the initial
 567       // worklist and selecting them eagerly here. After these, projections and
 568       // other CreateEx nodes are selected with equal priority.
 569       worklist.map(i,worklist.pop());
 570       return n;
 571     }
 572 
 573     if (n->Opcode() == Op_Con || iop == Op_CheckCastPP) {
 574       // Constants and CheckCastPP nodes have higher priority than the rest of
 575       // the nodes tested below. Record as current winner, but keep looking for
 576       // higher-priority nodes in the worklist.
 577       choice  = 4;
 578       // Latency and score are only used to break ties among low-priority nodes.
 579       latency = 0;
 580       score   = 0;
 581       idx     = i;
 582       continue;
 583     }
 584 
 585     // Final call in a block must be adjacent to 'catch'
 586     Node *e = block->end();
 587     if( e->is_Catch() && e->in(0)->in(0) == n )
 588       continue;
 589 
 590     // Memory op for an implicit null check has to be at the end of the block
 591     if( e->is_MachNullCheck() && e->in(1) == n )
 592       continue;
 593 
 594     // Schedule IV increment last.
 595     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 596       // Cmp might be matched into CountedLoopEnd node.
 597       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 598       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 599         continue;
 600       }
 601     }
 602 
 603     uint n_choice = 2;
 604 
 605     // See if this instruction is consumed by a branch. If so, then (as the
 606     // branch is the last instruction in the basic block) force it to the
 607     // end of the basic block
 608     if ( must_clone[iop] ) {
 609       // See if any use is a branch
 610       bool found_machif = false;
 611 
 612       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 613         Node* use = n->fast_out(j);
 614 
 615         // The use is a conditional branch, make them adjacent
 616         if (use->is_MachIf() && get_block_for_node(use) == block) {
 617           found_machif = true;
 618           break;
 619         }
 620 
 621         // More than this instruction pending for successor to be ready,
 622         // don't choose this if other opportunities are ready
 623         if (ready_cnt.at(use->_idx) > 1)
 624           n_choice = 1;
 625       }
 626 
 627       // loop terminated, prefer not to use this instruction
 628       if (found_machif)
 629         continue;
 630     }
 631 
 632     // See if this has a predecessor that is "must_clone", i.e. sets the
 633     // condition code. If so, choose this first
 634     for (uint j = 0; j < n->req() ; j++) {
 635       Node *inn = n->in(j);
 636       if (inn) {
 637         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 638           n_choice = 3;
 639           break;
 640         }
 641       }
 642     }
 643 
 644     // MachTemps should be scheduled last so they are near their uses
 645     if (n->is_MachTemp()) {
 646       n_choice = 1;
 647     }
 648 
 649     uint n_latency = get_latency_for_node(n);
 650     uint n_score = n->req();   // Many inputs get high score to break ties
 651 
 652     if (OptoRegScheduling && block_size_threshold_ok) {
 653       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 654         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 655         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 656         // simulate the notion that we just picked this node to schedule
 657         n->add_flag(Node::Flag_is_scheduled);
 658         // now calculate its effect upon the graph if we did
 659         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 660         // return its state for finalize in case somebody else wins
 661         n->remove_flag(Node::Flag_is_scheduled);
 662         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 663         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 664         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 665         recalc_pressure_nodes[n->_idx] = int_pressure;
 666         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 667       }
 668 
 669       if (_scheduling_for_pressure) {
 670         latency = n_latency;
 671         if (n_choice != 3) {
 672           // Now evaluate each register pressure component based on threshold in the score.
 673           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 674           // on a single instruction, but we might see it shrink on both banks.
 675           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 676           // live ranges that terminate on this instruction.
 677           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 678             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 679             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 680           }
 681           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 682             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 683             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 684           }
 685         } else {
 686           // make sure we choose these candidates
 687           score = 0;
 688         }
 689       }
 690     }
 691 
 692     // Keep best latency found
 693     cand_cnt++;
 694     if (choice < n_choice ||
 695         (choice == n_choice &&
 696          ((StressLCM && C->randomized_select(cand_cnt)) ||
 697           (!StressLCM &&
 698            (latency < n_latency ||
 699             (latency == n_latency &&
 700              (score < n_score))))))) {
 701       choice  = n_choice;
 702       latency = n_latency;
 703       score   = n_score;
 704       idx     = i;               // Also keep index in worklist
 705     }
 706   } // End of for all ready nodes in worklist
 707 
 708   guarantee(idx >= 0, "index should be set");
 709   Node *n = worklist[(uint)idx];      // Get the winner
 710 
 711   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 712   return n;
 713 }
 714 
 715 //-------------------------adjust_register_pressure----------------------------
 716 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 717   PhaseLive* liveinfo = _regalloc->get_live();
 718   IndexSet* liveout = liveinfo->live(block);
 719   // first adjust the register pressure for the sources
 720   for (uint i = 1; i < n->req(); i++) {
 721     bool lrg_ends = false;
 722     Node *src_n = n->in(i);
 723     if (src_n == nullptr) continue;
 724     if (!src_n->is_Mach()) continue;
 725     uint src = _regalloc->_lrg_map.find(src_n);
 726     if (src == 0) continue;
 727     LRG& lrg_src = _regalloc->lrgs(src);
 728     // detect if the live range ends or not
 729     if (liveout->member(src) == false) {
 730       lrg_ends = true;
 731       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 732         Node* m = src_n->fast_out(j); // Get user
 733         if (m == n) continue;
 734         if (!m->is_Mach()) continue;
 735         MachNode *mach = m->as_Mach();
 736         bool src_matches = false;
 737         int iop = mach->ideal_Opcode();
 738 
 739         switch (iop) {
 740         case Op_StoreB:
 741         case Op_StoreC:
 742         case Op_StoreD:
 743         case Op_StoreF:
 744         case Op_StoreI:
 745         case Op_StoreL:
 746         case Op_StoreP:
 747         case Op_StoreN:
 748         case Op_StoreVector:
 749         case Op_StoreVectorMasked:
 750         case Op_StoreVectorScatter:
 751         case Op_StoreVectorScatterMasked:
 752         case Op_StoreNKlass:
 753           for (uint k = 1; k < m->req(); k++) {
 754             Node *in = m->in(k);
 755             if (in == src_n) {
 756               src_matches = true;
 757               break;
 758             }
 759           }
 760           break;
 761 
 762         default:
 763           src_matches = true;
 764           break;
 765         }
 766 
 767         // If we have a store as our use, ignore the non source operands
 768         if (src_matches == false) continue;
 769 
 770         // Mark every unscheduled use which is not n with a recalculation
 771         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 772           if (finalize_mode && !m->is_Phi()) {
 773             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 774           }
 775           lrg_ends = false;
 776         }
 777       }
 778     }
 779     // if none, this live range ends and we can adjust register pressure
 780     if (lrg_ends) {
 781       if (finalize_mode) {
 782         _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 783       } else {
 784         _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 785       }
 786     }
 787   }
 788 
 789   // now add the register pressure from the dest and evaluate which heuristic we should use:
 790   // 1.) The default, latency scheduling
 791   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 792   uint dst = _regalloc->_lrg_map.find(n);
 793   if (dst != 0) {
 794     LRG& lrg_dst = _regalloc->lrgs(dst);
 795     if (finalize_mode) {
 796       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 797       // check to see if we fall over the register pressure cliff here
 798       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 799         _scheduling_for_pressure = true;
 800       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 801         _scheduling_for_pressure = true;
 802       } else {
 803         // restore latency scheduling mode
 804         _scheduling_for_pressure = false;
 805       }
 806     } else {
 807       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 808     }
 809   }
 810 }
 811 
 812 //------------------------------set_next_call----------------------------------
 813 void PhaseCFG::set_next_call(const Block* block, Node* init, VectorSet& next_call) const {
 814   Node_List worklist;
 815   worklist.push(init);
 816 
 817   while (worklist.size() > 0) {
 818     Node* n = worklist.pop();
 819     if (next_call.test_set(n->_idx)) continue;
 820     for (uint i = 0; i < n->len(); i++) {
 821       Node* m = n->in(i);
 822       if (m == nullptr) continue;  // must see all nodes in block that precede call
 823       if (get_block_for_node(m) == block) {
 824         worklist.push(m);
 825       }
 826     }
 827   }
 828 }
 829 
 830 //------------------------------needed_for_next_call---------------------------
 831 // Set the flag 'next_call' for each Node that is needed for the next call to
 832 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 833 // next subroutine call get priority - basically it moves things NOT needed
 834 // for the next call till after the call.  This prevents me from trying to
 835 // carry lots of stuff live across a call.
 836 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 837   // Find the next control-defining Node in this block
 838   Node* call = nullptr;
 839   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 840     Node* m = this_call->fast_out(i);
 841     if (get_block_for_node(m) == block && // Local-block user
 842         m != this_call &&       // Not self-start node
 843         m->is_MachCall()) {
 844       call = m;
 845       break;
 846     }
 847   }
 848   if (call == nullptr)  return;    // No next call (e.g., block end is near)
 849   // Set next-call for all inputs to this call
 850   set_next_call(block, call, next_call);
 851 }
 852 
 853 //------------------------------add_call_kills-------------------------------------
 854 // helper function that adds caller save registers to MachProjNode
 855 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 856   // Fill in the kill mask for the call
 857   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 858     if( !regs.Member(r) ) {     // Not already defined by the call
 859       // Save-on-call register?
 860       if ((save_policy[r] == 'C') ||
 861           (save_policy[r] == 'A') ||
 862           ((save_policy[r] == 'E') && exclude_soe)) {
 863         proj->_rout.Insert(r);
 864       }
 865     }
 866   }
 867 }
 868 
 869 
 870 //------------------------------sched_call-------------------------------------
 871 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 872   ResourceMark rm(C->regmask_arena());
 873   RegMask regs(C->regmask_arena());
 874 
 875   // Schedule all the users of the call right now.  All the users are
 876   // projection Nodes, so they must be scheduled next to the call.
 877   // Collect all the defined registers.
 878   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 879     Node* n = mcall->fast_out(i);
 880     assert( n->is_MachProj(), "" );
 881     int n_cnt = ready_cnt.at(n->_idx)-1;
 882     ready_cnt.at_put(n->_idx, n_cnt);
 883     assert( n_cnt == 0, "" );
 884     // Schedule next to call
 885     block->map_node(n, node_cnt++);
 886     // Collect defined registers
 887     regs.OR(n->out_RegMask());
 888     // Check for scheduling the next control-definer
 889     if( n->bottom_type() == Type::CONTROL )
 890       // Warm up next pile of heuristic bits
 891       needed_for_next_call(block, n, next_call);
 892 
 893     // Children of projections are now all ready
 894     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 895       Node* m = n->fast_out(j); // Get user
 896       if(get_block_for_node(m) != block) {
 897         continue;
 898       }
 899       if( m->is_Phi() ) continue;
 900       int m_cnt = ready_cnt.at(m->_idx) - 1;
 901       ready_cnt.at_put(m->_idx, m_cnt);
 902       if( m_cnt == 0 )
 903         worklist.push(m);
 904     }
 905 
 906   }
 907 
 908   // Act as if the call defines the Frame Pointer.
 909   // Certainly the FP is alive and well after the call.
 910   regs.Insert(_matcher.c_frame_pointer());
 911 
 912   // Set all registers killed and not already defined by the call.
 913   uint r_cnt = mcall->tf()->range()->cnt();
 914   int op = mcall->ideal_Opcode();
 915   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 916   map_node_to_block(proj, block);
 917   block->insert_node(proj, node_cnt++);
 918 
 919   // Select the right register save policy.
 920   const char *save_policy = nullptr;
 921   switch (op) {
 922     case Op_CallRuntime:
 923     case Op_CallLeaf:
 924     case Op_CallLeafNoFP:
 925     case Op_CallLeafVector:
 926       // Calling C code so use C calling convention
 927       save_policy = _matcher._c_reg_save_policy;
 928       break;
 929 
 930     case Op_CallStaticJava:
 931     case Op_CallDynamicJava:
 932       // Calling Java code so use Java calling convention
 933       save_policy = _matcher._register_save_policy;
 934       break;
 935 
 936     default:
 937       ShouldNotReachHere();
 938   }
 939 
 940   // When using CallRuntime mark SOE registers as killed by the call
 941   // so values that could show up in the RegisterMap aren't live in a
 942   // callee saved register since the register wouldn't know where to
 943   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 944   // have debug info on them.  Strictly speaking this only needs to be
 945   // done for oops since idealreg2debugmask takes care of debug info
 946   // references but there no way to handle oops differently than other
 947   // pointers as far as the kill mask goes.
 948   bool exclude_soe = op == Op_CallRuntime;
 949 
 950   // If the call is a MethodHandle invoke, we need to exclude the
 951   // register which is used to save the SP value over MH invokes from
 952   // the mask.  Otherwise this register could be used for
 953   // deoptimization information.
 954   if (op == Op_CallStaticJava) {
 955     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 956     if (mcallstaticjava->_method_handle_invoke)
 957       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 958   }
 959 
 960   add_call_kills(proj, regs, save_policy, exclude_soe);
 961 
 962   return node_cnt;
 963 }
 964 
 965 
 966 //------------------------------schedule_local---------------------------------
 967 // Topological sort within a block.  Someday become a real scheduler.
 968 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 969   // Already "sorted" are the block start Node (as the first entry), and
 970   // the block-ending Node and any trailing control projections.  We leave
 971   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 972   // Node.  Everything else gets topo-sorted.
 973 
 974 #ifndef PRODUCT
 975     if (trace_opto_pipelining()) {
 976       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 977       for (uint i = 0;i < block->number_of_nodes(); i++) {
 978         tty->print("# ");
 979         block->get_node(i)->dump();
 980       }
 981       tty->print_cr("#");
 982     }
 983 #endif
 984 
 985   // RootNode is already sorted
 986   if (block->number_of_nodes() == 1) {
 987     return true;
 988   }
 989 
 990   bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
 991 
 992   // We track the uses of local definitions as input dependences so that
 993   // we know when a given instruction is available to be scheduled.
 994   uint i;
 995   if (OptoRegScheduling && block_size_threshold_ok) {
 996     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 997       Node *n = block->get_node(i);
 998       n->remove_flag(Node::Flag_is_scheduled);
 999       if (!n->is_Phi()) {
1000         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
1001       }
1002     }
1003   }
1004 
1005   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
1006   uint node_cnt = block->end_idx();
1007   uint phi_cnt = 1;
1008   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
1009     Node *n = block->get_node(i);
1010     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
1011         (n->is_Proj()  && n->in(0) == block->head()) ) {
1012       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
1013       block->map_node(block->get_node(phi_cnt), i);
1014       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
1015       if (OptoRegScheduling && block_size_threshold_ok) {
1016         // mark n as scheduled
1017         n->add_flag(Node::Flag_is_scheduled);
1018       }
1019     } else {                    // All others
1020       // Count block-local inputs to 'n'
1021       uint cnt = n->len();      // Input count
1022       uint local = 0;
1023       for( uint j=0; j<cnt; j++ ) {
1024         Node *m = n->in(j);
1025         if( m && get_block_for_node(m) == block && !m->is_top() )
1026           local++;              // One more block-local input
1027       }
1028       ready_cnt.at_put(n->_idx, local); // Count em up
1029       // A few node types require changing a required edge to a precedence edge
1030       // before allocation.
1031       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
1032           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
1033            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
1034         // MemBarAcquire could be created without Precedent edge.
1035         // del_req() replaces the specified edge with the last input edge
1036         // and then removes the last edge. If the specified edge > number of
1037         // edges the last edge will be moved outside of the input edges array
1038         // and the edge will be lost. This is why this code should be
1039         // executed only when Precedent (== TypeFunc::Parms) edge is present.
1040         Node *x = n->in(TypeFunc::Parms);
1041         if (x != nullptr && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
1042           // Old edge to node within same block will get removed, but no precedence
1043           // edge will get added because it already exists. Update ready count.
1044           int cnt = ready_cnt.at(n->_idx);
1045           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
1046           ready_cnt.at_put(n->_idx, cnt-1);
1047         }
1048         n->del_req(TypeFunc::Parms);
1049         n->add_prec(x);
1050       }
1051     }
1052   }
1053   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1054     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1055 
1056   // All the prescheduled guys do not hold back internal nodes
1057   uint i3;
1058   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1059     Node *n = block->get_node(i3);       // Get pre-scheduled
1060     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1061       Node* m = n->fast_out(j);
1062       if (get_block_for_node(m) == block) { // Local-block user
1063         int m_cnt = ready_cnt.at(m->_idx)-1;
1064         if (OptoRegScheduling && block_size_threshold_ok) {
1065           // mark m as scheduled
1066           if (m_cnt < 0) {
1067             m->add_flag(Node::Flag_is_scheduled);
1068           }
1069         }
1070         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1071       }
1072     }
1073   }
1074 
1075   Node_List delay;
1076   // Make a worklist
1077   Node_List worklist;
1078   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1079     Node *m = block->get_node(i4);
1080     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1081       if (m->is_iteratively_computed()) {
1082         // Push induction variable increments last to allow other uses
1083         // of the phi to be scheduled first. The select() method breaks
1084         // ties in scheduling by worklist order.
1085         delay.push(m);
1086       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1087         // Place CreateEx nodes that are initially ready at the beginning of the
1088         // worklist so they are selected first and scheduled at the block start.
1089         worklist.insert(0, m);
1090       } else {
1091         worklist.push(m);         // Then on to worklist!
1092       }
1093     }
1094   }
1095   while (delay.size()) {
1096     Node* d = delay.pop();
1097     worklist.push(d);
1098   }
1099 
1100   if (OptoRegScheduling && block_size_threshold_ok) {
1101     // To stage register pressure calculations we need to examine the live set variables
1102     // breaking them up by register class to compartmentalize the calculations.
1103     _regalloc->_sched_int_pressure.init(Matcher::int_pressure_limit());
1104     _regalloc->_sched_float_pressure.init(Matcher::float_pressure_limit());
1105     _regalloc->_scratch_int_pressure.init(Matcher::int_pressure_limit());
1106     _regalloc->_scratch_float_pressure.init(Matcher::float_pressure_limit());
1107 
1108     _regalloc->compute_entry_block_pressure(block);
1109   }
1110 
1111   // Warm up the 'next_call' heuristic bits
1112   needed_for_next_call(block, block->head(), next_call);
1113 
1114 #ifndef PRODUCT
1115     if (trace_opto_pipelining()) {
1116       for (uint j=0; j< block->number_of_nodes(); j++) {
1117         Node     *n = block->get_node(j);
1118         int     idx = n->_idx;
1119         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1120         tty->print("latency:%3d  ", get_latency_for_node(n));
1121         tty->print("%4d: %s\n", idx, n->Name());
1122       }
1123     }
1124 #endif
1125 
1126   uint max_idx = (uint)ready_cnt.length();
1127   // Pull from worklist and schedule
1128   while( worklist.size() ) {    // Worklist is not ready
1129 
1130 #ifndef PRODUCT
1131     if (trace_opto_pipelining()) {
1132       tty->print("#   ready list:");
1133       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1134         Node *n = worklist[i];      // Get Node on worklist
1135         tty->print(" %d", n->_idx);
1136       }
1137       tty->cr();
1138     }
1139 #endif
1140 
1141     // Select and pop a ready guy from worklist
1142     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1143     block->map_node(n, phi_cnt++);    // Schedule him next
1144 
1145     if (OptoRegScheduling && block_size_threshold_ok) {
1146       n->add_flag(Node::Flag_is_scheduled);
1147 
1148       // Now adjust the resister pressure with the node we selected
1149       if (!n->is_Phi()) {
1150         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1151       }
1152     }
1153 
1154 #ifndef PRODUCT
1155     if (trace_opto_pipelining()) {
1156       tty->print("#    select %d: %s", n->_idx, n->Name());
1157       tty->print(", latency:%d", get_latency_for_node(n));
1158       n->dump();
1159       if (Verbose) {
1160         tty->print("#   ready list:");
1161         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1162           Node *n = worklist[i];      // Get Node on worklist
1163           tty->print(" %d", n->_idx);
1164         }
1165         tty->cr();
1166       }
1167     }
1168 
1169 #endif
1170     if( n->is_MachCall() ) {
1171       MachCallNode *mcall = n->as_MachCall();
1172       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1173       continue;
1174     }
1175 
1176     if (n->is_Mach() && n->as_Mach()->has_call()) {
1177       RegMask regs;
1178       regs.Insert(_matcher.c_frame_pointer());
1179       regs.OR(n->out_RegMask());
1180 
1181       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1182       map_node_to_block(proj, block);
1183       block->insert_node(proj, phi_cnt++);
1184 
1185       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1186     }
1187 
1188     // Children are now all ready
1189     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1190       Node* m = n->fast_out(i5); // Get user
1191       if (get_block_for_node(m) != block) {
1192         continue;
1193       }
1194       if( m->is_Phi() ) continue;
1195       if (m->_idx >= max_idx) { // new node, skip it
1196         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1197         continue;
1198       }
1199       int m_cnt = ready_cnt.at(m->_idx) - 1;
1200       ready_cnt.at_put(m->_idx, m_cnt);
1201       if( m_cnt == 0 )
1202         worklist.push(m);
1203     }
1204   }
1205 
1206   if( phi_cnt != block->end_idx() ) {
1207     // did not schedule all.  Retry, Bailout, or Die
1208     if (C->subsume_loads() == true && !C->failing()) {
1209       // Retry with subsume_loads == false
1210       // If this is the first failure, the sentinel string will "stick"
1211       // to the Compile object, and the C2Compiler will see it and retry.
1212       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1213     } else {
1214       assert(C->failure_is_artificial(), "graph should be schedulable");
1215     }
1216     // assert( phi_cnt == end_idx(), "did not schedule all" );
1217     return false;
1218   }
1219 
1220   if (OptoRegScheduling && block_size_threshold_ok) {
1221     _regalloc->compute_exit_block_pressure(block);
1222     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1223     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1224   }
1225 
1226 #ifndef PRODUCT
1227   if (trace_opto_pipelining()) {
1228     tty->print_cr("#");
1229     tty->print_cr("# after schedule_local");
1230     for (uint i = 0;i < block->number_of_nodes();i++) {
1231       tty->print("# ");
1232       block->get_node(i)->dump();
1233     }
1234     tty->print_cr("# ");
1235 
1236     if (OptoRegScheduling && block_size_threshold_ok) {
1237       tty->print_cr("# pressure info : %d", block->_pre_order);
1238       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1239       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1240     }
1241     tty->cr();
1242   }
1243 #endif
1244 
1245   return true;
1246 }
1247 
1248 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1249 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1250   for (uint l = 0; l < use->len(); l++) {
1251     if (use->in(l) == old_def) {
1252       if (l < use->req()) {
1253         use->set_req(l, new_def);
1254       } else {
1255         use->rm_prec(l);
1256         use->add_prec(new_def);
1257         l--;
1258       }
1259     }
1260   }
1261 }
1262 
1263 //------------------------------catch_cleanup_find_cloned_def------------------
1264 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1265   assert( use_blk != def_blk, "Inter-block cleanup only");
1266 
1267   // The use is some block below the Catch.  Find and return the clone of the def
1268   // that dominates the use. If there is no clone in a dominating block, then
1269   // create a phi for the def in a dominating block.
1270 
1271   // Find which successor block dominates this use.  The successor
1272   // blocks must all be single-entry (from the Catch only; I will have
1273   // split blocks to make this so), hence they all dominate.
1274   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1275     use_blk = use_blk->_idom;
1276 
1277   // Find the successor
1278   Node *fixup = nullptr;
1279 
1280   uint j;
1281   for( j = 0; j < def_blk->_num_succs; j++ )
1282     if( use_blk == def_blk->_succs[j] )
1283       break;
1284 
1285   if( j == def_blk->_num_succs ) {
1286     // Block at same level in dom-tree is not a successor.  It needs a
1287     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1288     Node_Array inputs;
1289     for(uint k = 1; k < use_blk->num_preds(); k++) {
1290       Block* block = get_block_for_node(use_blk->pred(k));
1291       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1292     }
1293 
1294     // Check to see if the use_blk already has an identical phi inserted.
1295     // If it exists, it will be at the first position since all uses of a
1296     // def are processed together.
1297     Node *phi = use_blk->get_node(1);
1298     if( phi->is_Phi() ) {
1299       fixup = phi;
1300       for (uint k = 1; k < use_blk->num_preds(); k++) {
1301         if (phi->in(k) != inputs[k]) {
1302           // Not a match
1303           fixup = nullptr;
1304           break;
1305         }
1306       }
1307     }
1308 
1309     // If an existing PhiNode was not found, make a new one.
1310     if (fixup == nullptr) {
1311       Node *new_phi = PhiNode::make(use_blk->head(), def);
1312       use_blk->insert_node(new_phi, 1);
1313       map_node_to_block(new_phi, use_blk);
1314       for (uint k = 1; k < use_blk->num_preds(); k++) {
1315         new_phi->set_req(k, inputs[k]);
1316       }
1317       fixup = new_phi;
1318     }
1319 
1320   } else {
1321     // Found the use just below the Catch.  Make it use the clone.
1322     fixup = use_blk->get_node(n_clone_idx);
1323   }
1324 
1325   return fixup;
1326 }
1327 
1328 //--------------------------catch_cleanup_intra_block--------------------------
1329 // Fix all input edges in use that reference "def".  The use is in the same
1330 // block as the def and both have been cloned in each successor block.
1331 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1332 
1333   // Both the use and def have been cloned. For each successor block,
1334   // get the clone of the use, and make its input the clone of the def
1335   // found in that block.
1336 
1337   uint use_idx = blk->find_node(use);
1338   uint offset_idx = use_idx - beg;
1339   for( uint k = 0; k < blk->_num_succs; k++ ) {
1340     // Get clone in each successor block
1341     Block *sb = blk->_succs[k];
1342     Node *clone = sb->get_node(offset_idx+1);
1343     assert( clone->Opcode() == use->Opcode(), "" );
1344 
1345     // Make use-clone reference the def-clone
1346     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1347   }
1348 }
1349 
1350 //------------------------------catch_cleanup_inter_block---------------------
1351 // Fix all input edges in use that reference "def".  The use is in a different
1352 // block than the def.
1353 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1354   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1355 
1356   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1357   catch_cleanup_fix_all_inputs(use, def, new_def);
1358 }
1359 
1360 //------------------------------call_catch_cleanup-----------------------------
1361 // If we inserted any instructions between a Call and his CatchNode,
1362 // clone the instructions on all paths below the Catch.
1363 void PhaseCFG::call_catch_cleanup(Block* block) {
1364 
1365   // End of region to clone
1366   uint end = block->end_idx();
1367   if( !block->get_node(end)->is_Catch() ) return;
1368   // Start of region to clone
1369   uint beg = end;
1370   while(!block->get_node(beg-1)->is_MachProj() ||
1371         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1372     beg--;
1373     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1374   }
1375   // Range of inserted instructions is [beg, end)
1376   if( beg == end ) return;
1377 
1378   // Clone along all Catch output paths.  Clone area between the 'beg' and
1379   // 'end' indices.
1380   for( uint i = 0; i < block->_num_succs; i++ ) {
1381     Block *sb = block->_succs[i];
1382     // Clone the entire area; ignoring the edge fixup for now.
1383     for( uint j = end; j > beg; j-- ) {
1384       Node *clone = block->get_node(j-1)->clone();
1385       sb->insert_node(clone, 1);
1386       map_node_to_block(clone, sb);
1387       if (clone->needs_anti_dependence_check()) {
1388         raise_above_anti_dependences(sb, clone);
1389         if (C->failing()) {
1390           return;
1391         }
1392       }
1393     }
1394   }
1395 
1396 
1397   // Fixup edges.  Check the def-use info per cloned Node
1398   for(uint i2 = beg; i2 < end; i2++ ) {
1399     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1400     Node *n = block->get_node(i2);        // Node that got cloned
1401     // Need DU safe iterator because of edge manipulation in calls.
1402     Unique_Node_List* out = new Unique_Node_List();
1403     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1404       out->push(n->fast_out(j1));
1405     }
1406     uint max = out->size();
1407     for (uint j = 0; j < max; j++) {// For all users
1408       Node *use = out->pop();
1409       Block *buse = get_block_for_node(use);
1410       if( use->is_Phi() ) {
1411         for( uint k = 1; k < use->req(); k++ )
1412           if( use->in(k) == n ) {
1413             Block* b = get_block_for_node(buse->pred(k));
1414             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1415             use->set_req(k, fixup);
1416           }
1417       } else {
1418         if (block == buse) {
1419           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1420         } else {
1421           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1422         }
1423       }
1424     } // End for all users
1425 
1426   } // End of for all Nodes in cloned area
1427 
1428   // Remove the now-dead cloned ops
1429   for(uint i3 = beg; i3 < end; i3++ ) {
1430     block->get_node(beg)->disconnect_inputs(C);
1431     block->remove_node(beg);
1432   }
1433 
1434   // If the successor blocks have a CreateEx node, move it back to the top
1435   for (uint i4 = 0; i4 < block->_num_succs; i4++) {
1436     Block *sb = block->_succs[i4];
1437     uint new_cnt = end - beg;
1438     // Remove any newly created, but dead, nodes by traversing their schedule
1439     // backwards. Here, a dead node is a node whose only outputs (if any) are
1440     // unused projections.
1441     for (uint j = new_cnt; j > 0; j--) {
1442       Node *n = sb->get_node(j);
1443       // Individual projections are examined together with all siblings when
1444       // their parent is visited.
1445       if (n->is_Proj()) {
1446         continue;
1447       }
1448       bool dead = true;
1449       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1450         Node* out = n->fast_out(i);
1451         // n is live if it has a non-projection output or a used projection.
1452         if (!out->is_Proj() || out->outcnt() > 0) {
1453           dead = false;
1454           break;
1455         }
1456       }
1457       if (dead) {
1458         // n's only outputs (if any) are unused projections scheduled next to n
1459         // (see PhaseCFG::select()). Remove these projections backwards.
1460         for (uint k = j + n->outcnt(); k > j; k--) {
1461           Node* proj = sb->get_node(k);
1462           assert(proj->is_Proj() && proj->in(0) == n,
1463                  "projection should correspond to dead node");
1464           proj->disconnect_inputs(C);
1465           sb->remove_node(k);
1466           new_cnt--;
1467         }
1468         // Now remove the node itself.
1469         n->disconnect_inputs(C);
1470         sb->remove_node(j);
1471         new_cnt--;
1472       }
1473     }
1474     // If any newly created nodes remain, move the CreateEx node to the top
1475     if (new_cnt > 0) {
1476       Node *cex = sb->get_node(1+new_cnt);
1477       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1478         sb->remove_node(1+new_cnt);
1479         sb->insert_node(cex, 1);
1480       }
1481     }
1482   }
1483 }