1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "gc/shared/gc_globals.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/compressedOops.hpp"
  30 #include "opto/ad.hpp"
  31 #include "opto/block.hpp"
  32 #include "opto/c2compiler.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/chaitin.hpp"
  38 #include "runtime/os.inline.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 
  41 // Optimization - Graph Style
  42 
  43 // Check whether val is not-null-decoded compressed oop,
  44 // i.e. will grab into the base of the heap if it represents null.
  45 static bool accesses_heap_base_zone(Node *val) {
  46   if (CompressedOops::base() != nullptr) { // Implies UseCompressedOops.
  47     if (val && val->is_Mach()) {
  48       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  49         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  50         // decode null to point to the heap base (Decode_NN).
  51         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  52           return true;
  53         }
  54       }
  55       // Must recognize load operation with Decode matched in memory operand.
  56       // We should not reach here except for PPC/AIX, as os::zero_page_read_protected()
  57       // returns true everywhere else. On PPC, no such memory operands
  58       // exist, therefore we did not yet implement a check for such operands.
  59       NOT_AIX(Unimplemented());
  60     }
  61   }
  62   return false;
  63 }
  64 
  65 static bool needs_explicit_null_check_for_read(Node *val) {
  66   // On some OSes (AIX) the page at address 0 is only write protected.
  67   // If so, only Store operations will trap.
  68   if (os::zero_page_read_protected()) {
  69     return false;  // Implicit null check will work.
  70   }
  71   // Also a read accessing the base of a heap-based compressed heap will trap.
  72   if (accesses_heap_base_zone(val) &&         // Hits the base zone page.
  73       CompressedOops::use_implicit_null_checks()) { // Base zone page is protected.
  74     return false;
  75   }
  76 
  77   return true;
  78 }
  79 
  80 //------------------------------implicit_null_check----------------------------
  81 // Detect implicit-null-check opportunities.  Basically, find null checks
  82 // with suitable memory ops nearby.  Use the memory op to do the null check.
  83 // I can generate a memory op if there is not one nearby.
  84 // The proj is the control projection for the not-null case.
  85 // The val is the pointer being checked for nullness or
  86 // decodeHeapOop_not_null node if it did not fold into address.
  87 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  88   // Assume if null check need for 0 offset then always needed
  89   // Intel solaris doesn't support any null checks yet and no
  90   // mechanism exists (yet) to set the switches at an os_cpu level
  91   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  92 
  93   // Make sure the ptr-is-null path appears to be uncommon!
  94   float f = block->end()->as_MachIf()->_prob;
  95   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  96   if( f > PROB_UNLIKELY_MAG(4) ) return;
  97 
  98   uint bidx = 0;                // Capture index of value into memop
  99   bool was_store;               // Memory op is a store op
 100 
 101   // Get the successor block for if the test ptr is non-null
 102   Block* not_null_block;  // this one goes with the proj
 103   Block* null_block;
 104   if (block->get_node(block->number_of_nodes()-1) == proj) {
 105     null_block     = block->_succs[0];
 106     not_null_block = block->_succs[1];
 107   } else {
 108     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 109     not_null_block = block->_succs[0];
 110     null_block     = block->_succs[1];
 111   }
 112   while (null_block->is_Empty() == Block::empty_with_goto) {
 113     null_block     = null_block->_succs[0];
 114   }
 115 
 116   // Search the exception block for an uncommon trap.
 117   // (See Parse::do_if and Parse::do_ifnull for the reason
 118   // we need an uncommon trap.  Briefly, we need a way to
 119   // detect failure of this optimization, as in 6366351.)
 120   {
 121     bool found_trap = false;
 122     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 123       Node* nn = null_block->get_node(i1);
 124       if (nn->is_MachCall() &&
 125           nn->as_MachCall()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point()) {
 126         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 127         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 128           jint tr_con = trtype->is_int()->get_con();
 129           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 130           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 131           assert((int)reason < (int)BitsPerInt, "recode bit map");
 132           if (is_set_nth_bit(allowed_reasons, (int) reason)
 133               && action != Deoptimization::Action_none) {
 134             // This uncommon trap is sure to recompile, eventually.
 135             // When that happens, C->too_many_traps will prevent
 136             // this transformation from happening again.
 137             found_trap = true;
 138           }
 139         }
 140         break;
 141       }
 142     }
 143     if (!found_trap) {
 144       // We did not find an uncommon trap.
 145       return;
 146     }
 147   }
 148 
 149   // Check for decodeHeapOop_not_null node which did not fold into address
 150   bool is_decoden = ((intptr_t)val) & 1;
 151   val = (Node*)(((intptr_t)val) & ~1);
 152 
 153   assert(!is_decoden ||
 154          ((val->in(0) == nullptr) && val->is_Mach() &&
 155           (val->as_Mach()->ideal_Opcode() == Op_DecodeN)), "sanity");
 156 
 157   // Search the successor block for a load or store who's base value is also
 158   // the tested value.  There may be several.
 159   MachNode *best = nullptr;        // Best found so far
 160   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 161     Node *m = val->out(i);
 162     if( !m->is_Mach() ) continue;
 163     MachNode *mach = m->as_Mach();
 164     if (mach->barrier_data() != 0) {
 165       // Using memory accesses with barriers to perform implicit null checks is
 166       // not supported. These operations might expand into multiple assembly
 167       // instructions during code emission, including new memory accesses (e.g.
 168       // in G1's pre-barrier), which would invalidate the implicit null
 169       // exception table.
 170       continue;
 171     }
 172     was_store = false;
 173     int iop = mach->ideal_Opcode();
 174     switch( iop ) {
 175     case Op_LoadB:
 176     case Op_LoadUB:
 177     case Op_LoadUS:
 178     case Op_LoadD:
 179     case Op_LoadF:
 180     case Op_LoadI:
 181     case Op_LoadL:
 182     case Op_LoadP:
 183     case Op_LoadN:
 184     case Op_LoadS:
 185     case Op_LoadKlass:
 186     case Op_LoadNKlass:
 187     case Op_LoadRange:
 188     case Op_LoadD_unaligned:
 189     case Op_LoadL_unaligned:
 190       assert(mach->in(2) == val, "should be address");
 191       break;
 192     case Op_StoreB:
 193     case Op_StoreC:
 194     case Op_StoreD:
 195     case Op_StoreF:
 196     case Op_StoreI:
 197     case Op_StoreL:
 198     case Op_StoreP:
 199     case Op_StoreN:
 200     case Op_StoreNKlass:
 201       was_store = true;         // Memory op is a store op
 202       // Stores will have their address in slot 2 (memory in slot 1).
 203       // If the value being nul-checked is in another slot, it means we
 204       // are storing the checked value, which does NOT check the value!
 205       if( mach->in(2) != val ) continue;
 206       break;                    // Found a memory op?
 207     case Op_StrComp:
 208     case Op_StrEquals:
 209     case Op_StrIndexOf:
 210     case Op_StrIndexOfChar:
 211     case Op_AryEq:
 212     case Op_VectorizedHashCode:
 213     case Op_StrInflatedCopy:
 214     case Op_StrCompressedCopy:
 215     case Op_EncodeISOArray:
 216     case Op_CountPositives:
 217       // Not a legit memory op for implicit null check regardless of
 218       // embedded loads
 219       continue;
 220     default:                    // Also check for embedded loads
 221       if( !mach->needs_anti_dependence_check() )
 222         continue;               // Not an memory op; skip it
 223       if( must_clone[iop] ) {
 224         // Do not move nodes which produce flags because
 225         // RA will try to clone it to place near branch and
 226         // it will cause recompilation, see clone_node().
 227         continue;
 228       }
 229       {
 230         // Check that value is used in memory address in
 231         // instructions with embedded load (CmpP val1,(val2+off)).
 232         Node* base;
 233         Node* index;
 234         const MachOper* oper = mach->memory_inputs(base, index);
 235         if (oper == nullptr || oper == (MachOper*)-1) {
 236           continue;             // Not an memory op; skip it
 237         }
 238         if (val == base ||
 239             (val == index && val->bottom_type()->isa_narrowoop())) {
 240           break;                // Found it
 241         } else {
 242           continue;             // Skip it
 243         }
 244       }
 245       break;
 246     }
 247 
 248     // On some OSes (AIX) the page at address 0 is only write protected.
 249     // If so, only Store operations will trap.
 250     // But a read accessing the base of a heap-based compressed heap will trap.
 251     if (!was_store && needs_explicit_null_check_for_read(val)) {
 252       continue;
 253     }
 254 
 255     // Check that node's control edge is not-null block's head or dominates it,
 256     // otherwise we can't hoist it because there are other control dependencies.
 257     Node* ctrl = mach->in(0);
 258     if (ctrl != nullptr && !(ctrl == not_null_block->head() ||
 259         get_block_for_node(ctrl)->dominates(not_null_block))) {
 260       continue;
 261     }
 262 
 263     // check if the offset is not too high for implicit exception
 264     {
 265       intptr_t offset = 0;
 266       const TypePtr *adr_type = nullptr;  // Do not need this return value here
 267       const Node* base = mach->get_base_and_disp(offset, adr_type);
 268       if (base == nullptr || base == NodeSentinel) {
 269         // Narrow oop address doesn't have base, only index.
 270         // Give up if offset is beyond page size or if heap base is not protected.
 271         if (val->bottom_type()->isa_narrowoop() &&
 272             (MacroAssembler::needs_explicit_null_check(offset) ||
 273              !CompressedOops::use_implicit_null_checks()))
 274           continue;
 275         // cannot reason about it; is probably not implicit null exception
 276       } else {
 277         const TypePtr* tptr;
 278         if ((UseCompressedOops || UseCompressedClassPointers) &&
 279             (CompressedOops::shift() == 0 || CompressedKlassPointers::shift() == 0)) {
 280           // 32-bits narrow oop can be the base of address expressions
 281           tptr = base->get_ptr_type();
 282         } else {
 283           // only regular oops are expected here
 284           tptr = base->bottom_type()->is_ptr();
 285         }
 286         // Give up if offset is not a compile-time constant.
 287         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
 288           continue;
 289         offset += tptr->_offset; // correct if base is offsetted
 290         // Give up if reference is beyond page size.
 291         if (MacroAssembler::needs_explicit_null_check(offset))
 292           continue;
 293         // Give up if base is a decode node and the heap base is not protected.
 294         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 295             !CompressedOops::use_implicit_null_checks())
 296           continue;
 297       }
 298     }
 299 
 300     // Check ctrl input to see if the null-check dominates the memory op
 301     Block *cb = get_block_for_node(mach);
 302     cb = cb->_idom;             // Always hoist at least 1 block
 303     if( !was_store ) {          // Stores can be hoisted only one block
 304       while( cb->_dom_depth > (block->_dom_depth + 1))
 305         cb = cb->_idom;         // Hoist loads as far as we want
 306       // The non-null-block should dominate the memory op, too. Live
 307       // range spilling will insert a spill in the non-null-block if it is
 308       // needs to spill the memory op for an implicit null check.
 309       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 310         if (cb != not_null_block) continue;
 311         cb = cb->_idom;
 312       }
 313     }
 314     if( cb != block ) continue;
 315 
 316     // Found a memory user; see if it can be hoisted to check-block
 317     uint vidx = 0;              // Capture index of value into memop
 318     uint j;
 319     for( j = mach->req()-1; j > 0; j-- ) {
 320       if( mach->in(j) == val ) {
 321         vidx = j;
 322         // Ignore DecodeN val which could be hoisted to where needed.
 323         if( is_decoden ) continue;
 324       }
 325       // Block of memory-op input
 326       Block *inb = get_block_for_node(mach->in(j));
 327       Block *b = block;          // Start from nul check
 328       while( b != inb && b->_dom_depth > inb->_dom_depth )
 329         b = b->_idom;           // search upwards for input
 330       // See if input dominates null check
 331       if( b != inb )
 332         break;
 333     }
 334     if( j > 0 )
 335       continue;
 336     Block *mb = get_block_for_node(mach);
 337     // Hoisting stores requires more checks for the anti-dependence case.
 338     // Give up hoisting if we have to move the store past any load.
 339     if (was_store) {
 340        // Make sure control does not do a merge (would have to check allpaths)
 341        if (mb->num_preds() != 2) {
 342          continue;
 343        }
 344        // mach is a store, hence block is the immediate dominator of mb.
 345        // Due to the null-check shape of block (where its successors cannot re-join),
 346        // block must be the direct predecessor of mb.
 347        assert(get_block_for_node(mb->pred(1)) == block, "Unexpected predecessor block");
 348        uint k;
 349        uint num_nodes = mb->number_of_nodes();
 350        for (k = 1; k < num_nodes; k++) {
 351          Node *n = mb->get_node(k);
 352          if (n->needs_anti_dependence_check() &&
 353              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory)) {
 354            break;              // Found anti-dependent load
 355          }
 356        }
 357        if (k < num_nodes) {
 358          continue;             // Found anti-dependent load
 359        }
 360     }
 361 
 362     // Make sure this memory op is not already being used for a NullCheck
 363     Node *e = mb->end();
 364     if( e->is_MachNullCheck() && e->in(1) == mach )
 365       continue;                 // Already being used as a null check
 366 
 367     // Found a candidate!  Pick one with least dom depth - the highest
 368     // in the dom tree should be closest to the null check.
 369     if (best == nullptr || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 370       best = mach;
 371       bidx = vidx;
 372     }
 373   }
 374   // No candidate!
 375   if (best == nullptr) {
 376     return;
 377   }
 378 
 379   // ---- Found an implicit null check
 380 #ifndef PRODUCT
 381   extern uint implicit_null_checks;
 382   implicit_null_checks++;
 383 #endif
 384 
 385   if( is_decoden ) {
 386     // Check if we need to hoist decodeHeapOop_not_null first.
 387     Block *valb = get_block_for_node(val);
 388     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 389       // Hoist it up to the end of the test block together with its inputs if they exist.
 390       for (uint i = 2; i < val->req(); i++) {
 391         // DecodeN has 2 regular inputs + optional MachTemp or load Base inputs.
 392         Node *temp = val->in(i);
 393         Block *tempb = get_block_for_node(temp);
 394         if (!tempb->dominates(block)) {
 395           assert(block->dominates(tempb), "sanity check: temp node placement");
 396           // We only expect nodes without further inputs, like MachTemp or load Base.
 397           assert(temp->req() == 0 || (temp->req() == 1 && temp->in(0) == (Node*)C->root()),
 398                  "need for recursive hoisting not expected");
 399           tempb->find_remove(temp);
 400           block->add_inst(temp);
 401           map_node_to_block(temp, block);
 402         }
 403       }
 404       valb->find_remove(val);
 405       block->add_inst(val);
 406       map_node_to_block(val, block);
 407       // DecodeN on x86 may kill flags. Check for flag-killing projections
 408       // that also need to be hoisted.
 409       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 410         Node* n = val->fast_out(j);
 411         if( n->is_MachProj() ) {
 412           get_block_for_node(n)->find_remove(n);
 413           block->add_inst(n);
 414           map_node_to_block(n, block);
 415         }
 416       }
 417     }
 418   }
 419   // Hoist the memory candidate up to the end of the test block.
 420   Block *old_block = get_block_for_node(best);
 421   old_block->find_remove(best);
 422   block->add_inst(best);
 423   map_node_to_block(best, block);
 424 
 425   // Move the control dependence if it is pinned to not-null block.
 426   // Don't change it in other cases: null or dominating control.
 427   Node* ctrl = best->in(0);
 428   if (ctrl != nullptr && get_block_for_node(ctrl) == not_null_block) {
 429     // Set it to control edge of null check.
 430     best->set_req(0, proj->in(0)->in(0));
 431   }
 432 
 433   // Check for flag-killing projections that also need to be hoisted
 434   // Should be DU safe because no edge updates.
 435   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 436     Node* n = best->fast_out(j);
 437     if( n->is_MachProj() ) {
 438       get_block_for_node(n)->find_remove(n);
 439       block->add_inst(n);
 440       map_node_to_block(n, block);
 441     }
 442   }
 443 
 444   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 445   // One of two graph shapes got matched:
 446   //   (IfTrue  (If (Bool NE (CmpP ptr null))))
 447   //   (IfFalse (If (Bool EQ (CmpP ptr null))))
 448   // null checks are always branch-if-eq.  If we see a IfTrue projection
 449   // then we are replacing a 'ne' test with a 'eq' null check test.
 450   // We need to flip the projections to keep the same semantics.
 451   if( proj->Opcode() == Op_IfTrue ) {
 452     // Swap order of projections in basic block to swap branch targets
 453     Node *tmp1 = block->get_node(block->end_idx()+1);
 454     Node *tmp2 = block->get_node(block->end_idx()+2);
 455     block->map_node(tmp2, block->end_idx()+1);
 456     block->map_node(tmp1, block->end_idx()+2);
 457     Node *tmp = new Node(C->top()); // Use not null input
 458     tmp1->replace_by(tmp);
 459     tmp2->replace_by(tmp1);
 460     tmp->replace_by(tmp2);
 461     tmp->destruct(nullptr);
 462   }
 463 
 464   // Remove the existing null check; use a new implicit null check instead.
 465   // Since schedule-local needs precise def-use info, we need to correct
 466   // it as well.
 467   Node *old_tst = proj->in(0);
 468   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 469   block->map_node(nul_chk, block->end_idx());
 470   map_node_to_block(nul_chk, block);
 471   // Redirect users of old_test to nul_chk
 472   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 473     old_tst->last_out(i2)->set_req(0, nul_chk);
 474   // Clean-up any dead code
 475   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 476     Node* in = old_tst->in(i3);
 477     old_tst->set_req(i3, nullptr);
 478     if (in->outcnt() == 0) {
 479       // Remove dead input node
 480       in->disconnect_inputs(C);
 481       block->find_remove(in);
 482     }
 483   }
 484 
 485   latency_from_uses(nul_chk);
 486   latency_from_uses(best);
 487 
 488   // insert anti-dependences to defs in this block
 489   if (! best->needs_anti_dependence_check()) {
 490     for (uint k = 1; k < block->number_of_nodes(); k++) {
 491       Node *n = block->get_node(k);
 492       if (n->needs_anti_dependence_check() &&
 493           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 494         // Found anti-dependent load
 495         insert_anti_dependences(block, n);
 496       }
 497     }
 498   }
 499 }
 500 
 501 
 502 //------------------------------select-----------------------------------------
 503 // Select a nice fellow from the worklist to schedule next. If there is only one
 504 // choice, then use it. CreateEx nodes that are initially ready must start their
 505 // blocks and are given the highest priority, by being placed at the beginning
 506 // of the worklist. Next after initially-ready CreateEx nodes are projections,
 507 // which must follow their parents, and CreateEx nodes with local input
 508 // dependencies. Next are constants and CheckCastPP nodes. There are a number of
 509 // other special cases, for instructions that consume condition codes, et al.
 510 // These are chosen immediately. Some instructions are required to immediately
 511 // precede the last instruction in the block, and these are taken last. Of the
 512 // remaining cases (most), choose the instruction with the greatest latency
 513 // (that is, the most number of pseudo-cycles required to the end of the
 514 // routine). If there is a tie, choose the instruction with the most inputs.
 515 Node* PhaseCFG::select(
 516   Block* block,
 517   Node_List &worklist,
 518   GrowableArray<int> &ready_cnt,
 519   VectorSet &next_call,
 520   uint sched_slot,
 521   intptr_t* recalc_pressure_nodes) {
 522 
 523   // If only a single entry on the stack, use it
 524   uint cnt = worklist.size();
 525   if (cnt == 1) {
 526     Node *n = worklist[0];
 527     worklist.map(0,worklist.pop());
 528     return n;
 529   }
 530 
 531   uint choice  = 0; // Bigger is most important
 532   uint latency = 0; // Bigger is scheduled first
 533   uint score   = 0; // Bigger is better
 534   int idx = -1;     // Index in worklist
 535   int cand_cnt = 0; // Candidate count
 536   bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
 537 
 538   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 539     // Order in worklist is used to break ties.
 540     // See caller for how this is used to delay scheduling
 541     // of induction variable increments to after the other
 542     // uses of the phi are scheduled.
 543     Node *n = worklist[i];      // Get Node on worklist
 544 
 545     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 546     if (iop == Op_CreateEx || n->is_Proj()) {
 547       // CreateEx nodes that are initially ready must start the block (after Phi
 548       // and Parm nodes which are pre-scheduled) and get top priority. This is
 549       // currently enforced by placing them at the beginning of the initial
 550       // worklist and selecting them eagerly here. After these, projections and
 551       // other CreateEx nodes are selected with equal priority.
 552       worklist.map(i,worklist.pop());
 553       return n;
 554     }
 555 
 556     if (n->Opcode() == Op_Con || iop == Op_CheckCastPP) {
 557       // Constants and CheckCastPP nodes have higher priority than the rest of
 558       // the nodes tested below. Record as current winner, but keep looking for
 559       // higher-priority nodes in the worklist.
 560       choice  = 4;
 561       // Latency and score are only used to break ties among low-priority nodes.
 562       latency = 0;
 563       score   = 0;
 564       idx     = i;
 565       continue;
 566     }
 567 
 568     // Final call in a block must be adjacent to 'catch'
 569     Node *e = block->end();
 570     if( e->is_Catch() && e->in(0)->in(0) == n )
 571       continue;
 572 
 573     // Memory op for an implicit null check has to be at the end of the block
 574     if( e->is_MachNullCheck() && e->in(1) == n )
 575       continue;
 576 
 577     // Schedule IV increment last.
 578     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 579       // Cmp might be matched into CountedLoopEnd node.
 580       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 581       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 582         continue;
 583       }
 584     }
 585 
 586     uint n_choice = 2;
 587 
 588     // See if this instruction is consumed by a branch. If so, then (as the
 589     // branch is the last instruction in the basic block) force it to the
 590     // end of the basic block
 591     if ( must_clone[iop] ) {
 592       // See if any use is a branch
 593       bool found_machif = false;
 594 
 595       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 596         Node* use = n->fast_out(j);
 597 
 598         // The use is a conditional branch, make them adjacent
 599         if (use->is_MachIf() && get_block_for_node(use) == block) {
 600           found_machif = true;
 601           break;
 602         }
 603 
 604         // More than this instruction pending for successor to be ready,
 605         // don't choose this if other opportunities are ready
 606         if (ready_cnt.at(use->_idx) > 1)
 607           n_choice = 1;
 608       }
 609 
 610       // loop terminated, prefer not to use this instruction
 611       if (found_machif)
 612         continue;
 613     }
 614 
 615     // See if this has a predecessor that is "must_clone", i.e. sets the
 616     // condition code. If so, choose this first
 617     for (uint j = 0; j < n->req() ; j++) {
 618       Node *inn = n->in(j);
 619       if (inn) {
 620         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 621           n_choice = 3;
 622           break;
 623         }
 624       }
 625     }
 626 
 627     // MachTemps should be scheduled last so they are near their uses
 628     if (n->is_MachTemp()) {
 629       n_choice = 1;
 630     }
 631 
 632     uint n_latency = get_latency_for_node(n);
 633     uint n_score = n->req();   // Many inputs get high score to break ties
 634 
 635     if (OptoRegScheduling && block_size_threshold_ok) {
 636       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 637         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 638         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 639         // simulate the notion that we just picked this node to schedule
 640         n->add_flag(Node::Flag_is_scheduled);
 641         // now calculate its effect upon the graph if we did
 642         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 643         // return its state for finalize in case somebody else wins
 644         n->remove_flag(Node::Flag_is_scheduled);
 645         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 646         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 647         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 648         recalc_pressure_nodes[n->_idx] = int_pressure;
 649         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 650       }
 651 
 652       if (_scheduling_for_pressure) {
 653         latency = n_latency;
 654         if (n_choice != 3) {
 655           // Now evaluate each register pressure component based on threshold in the score.
 656           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 657           // on a single instruction, but we might see it shrink on both banks.
 658           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 659           // live ranges that terminate on this instruction.
 660           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 661             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 662             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 663           }
 664           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 665             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 666             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 667           }
 668         } else {
 669           // make sure we choose these candidates
 670           score = 0;
 671         }
 672       }
 673     }
 674 
 675     // Keep best latency found
 676     cand_cnt++;
 677     if (choice < n_choice ||
 678         (choice == n_choice &&
 679          ((StressLCM && C->randomized_select(cand_cnt)) ||
 680           (!StressLCM &&
 681            (latency < n_latency ||
 682             (latency == n_latency &&
 683              (score < n_score))))))) {
 684       choice  = n_choice;
 685       latency = n_latency;
 686       score   = n_score;
 687       idx     = i;               // Also keep index in worklist
 688     }
 689   } // End of for all ready nodes in worklist
 690 
 691   guarantee(idx >= 0, "index should be set");
 692   Node *n = worklist[(uint)idx];      // Get the winner
 693 
 694   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 695   return n;
 696 }
 697 
 698 //-------------------------adjust_register_pressure----------------------------
 699 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 700   PhaseLive* liveinfo = _regalloc->get_live();
 701   IndexSet* liveout = liveinfo->live(block);
 702   // first adjust the register pressure for the sources
 703   for (uint i = 1; i < n->req(); i++) {
 704     bool lrg_ends = false;
 705     Node *src_n = n->in(i);
 706     if (src_n == nullptr) continue;
 707     if (!src_n->is_Mach()) continue;
 708     uint src = _regalloc->_lrg_map.find(src_n);
 709     if (src == 0) continue;
 710     LRG& lrg_src = _regalloc->lrgs(src);
 711     // detect if the live range ends or not
 712     if (liveout->member(src) == false) {
 713       lrg_ends = true;
 714       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 715         Node* m = src_n->fast_out(j); // Get user
 716         if (m == n) continue;
 717         if (!m->is_Mach()) continue;
 718         MachNode *mach = m->as_Mach();
 719         bool src_matches = false;
 720         int iop = mach->ideal_Opcode();
 721 
 722         switch (iop) {
 723         case Op_StoreB:
 724         case Op_StoreC:
 725         case Op_StoreD:
 726         case Op_StoreF:
 727         case Op_StoreI:
 728         case Op_StoreL:
 729         case Op_StoreP:
 730         case Op_StoreN:
 731         case Op_StoreVector:
 732         case Op_StoreVectorMasked:
 733         case Op_StoreVectorScatter:
 734         case Op_StoreVectorScatterMasked:
 735         case Op_StoreNKlass:
 736           for (uint k = 1; k < m->req(); k++) {
 737             Node *in = m->in(k);
 738             if (in == src_n) {
 739               src_matches = true;
 740               break;
 741             }
 742           }
 743           break;
 744 
 745         default:
 746           src_matches = true;
 747           break;
 748         }
 749 
 750         // If we have a store as our use, ignore the non source operands
 751         if (src_matches == false) continue;
 752 
 753         // Mark every unscheduled use which is not n with a recalculation
 754         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 755           if (finalize_mode && !m->is_Phi()) {
 756             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 757           }
 758           lrg_ends = false;
 759         }
 760       }
 761     }
 762     // if none, this live range ends and we can adjust register pressure
 763     if (lrg_ends) {
 764       if (finalize_mode) {
 765         _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 766       } else {
 767         _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 768       }
 769     }
 770   }
 771 
 772   // now add the register pressure from the dest and evaluate which heuristic we should use:
 773   // 1.) The default, latency scheduling
 774   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 775   uint dst = _regalloc->_lrg_map.find(n);
 776   if (dst != 0) {
 777     LRG& lrg_dst = _regalloc->lrgs(dst);
 778     if (finalize_mode) {
 779       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 780       // check to see if we fall over the register pressure cliff here
 781       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 782         _scheduling_for_pressure = true;
 783       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 784         _scheduling_for_pressure = true;
 785       } else {
 786         // restore latency scheduling mode
 787         _scheduling_for_pressure = false;
 788       }
 789     } else {
 790       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 791     }
 792   }
 793 }
 794 
 795 //------------------------------set_next_call----------------------------------
 796 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 797   if( next_call.test_set(n->_idx) ) return;
 798   for( uint i=0; i<n->len(); i++ ) {
 799     Node *m = n->in(i);
 800     if( !m ) continue;  // must see all nodes in block that precede call
 801     if (get_block_for_node(m) == block) {
 802       set_next_call(block, m, next_call);
 803     }
 804   }
 805 }
 806 
 807 //------------------------------needed_for_next_call---------------------------
 808 // Set the flag 'next_call' for each Node that is needed for the next call to
 809 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 810 // next subroutine call get priority - basically it moves things NOT needed
 811 // for the next call till after the call.  This prevents me from trying to
 812 // carry lots of stuff live across a call.
 813 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 814   // Find the next control-defining Node in this block
 815   Node* call = nullptr;
 816   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 817     Node* m = this_call->fast_out(i);
 818     if (get_block_for_node(m) == block && // Local-block user
 819         m != this_call &&       // Not self-start node
 820         m->is_MachCall()) {
 821       call = m;
 822       break;
 823     }
 824   }
 825   if (call == nullptr)  return;    // No next call (e.g., block end is near)
 826   // Set next-call for all inputs to this call
 827   set_next_call(block, call, next_call);
 828 }
 829 
 830 //------------------------------add_call_kills-------------------------------------
 831 // helper function that adds caller save registers to MachProjNode
 832 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 833   // Fill in the kill mask for the call
 834   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 835     if( !regs.Member(r) ) {     // Not already defined by the call
 836       // Save-on-call register?
 837       if ((save_policy[r] == 'C') ||
 838           (save_policy[r] == 'A') ||
 839           ((save_policy[r] == 'E') && exclude_soe)) {
 840         proj->_rout.Insert(r);
 841       }
 842     }
 843   }
 844 }
 845 
 846 
 847 //------------------------------sched_call-------------------------------------
 848 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 849   RegMask regs;
 850 
 851   // Schedule all the users of the call right now.  All the users are
 852   // projection Nodes, so they must be scheduled next to the call.
 853   // Collect all the defined registers.
 854   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 855     Node* n = mcall->fast_out(i);
 856     assert( n->is_MachProj(), "" );
 857     int n_cnt = ready_cnt.at(n->_idx)-1;
 858     ready_cnt.at_put(n->_idx, n_cnt);
 859     assert( n_cnt == 0, "" );
 860     // Schedule next to call
 861     block->map_node(n, node_cnt++);
 862     // Collect defined registers
 863     regs.OR(n->out_RegMask());
 864     // Check for scheduling the next control-definer
 865     if( n->bottom_type() == Type::CONTROL )
 866       // Warm up next pile of heuristic bits
 867       needed_for_next_call(block, n, next_call);
 868 
 869     // Children of projections are now all ready
 870     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 871       Node* m = n->fast_out(j); // Get user
 872       if(get_block_for_node(m) != block) {
 873         continue;
 874       }
 875       if( m->is_Phi() ) continue;
 876       int m_cnt = ready_cnt.at(m->_idx) - 1;
 877       ready_cnt.at_put(m->_idx, m_cnt);
 878       if( m_cnt == 0 )
 879         worklist.push(m);
 880     }
 881 
 882   }
 883 
 884   // Act as if the call defines the Frame Pointer.
 885   // Certainly the FP is alive and well after the call.
 886   regs.Insert(_matcher.c_frame_pointer());
 887 
 888   // Set all registers killed and not already defined by the call.
 889   uint r_cnt = mcall->tf()->range()->cnt();
 890   int op = mcall->ideal_Opcode();
 891   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 892   map_node_to_block(proj, block);
 893   block->insert_node(proj, node_cnt++);
 894 
 895   // Select the right register save policy.
 896   const char *save_policy = nullptr;
 897   switch (op) {
 898     case Op_CallRuntime:
 899     case Op_CallLeaf:
 900     case Op_CallLeafNoFP:
 901     case Op_CallLeafVector:
 902       // Calling C code so use C calling convention
 903       save_policy = _matcher._c_reg_save_policy;
 904       break;
 905 
 906     case Op_CallStaticJava:
 907     case Op_CallDynamicJava:
 908       // Calling Java code so use Java calling convention
 909       save_policy = _matcher._register_save_policy;
 910       break;
 911 
 912     default:
 913       ShouldNotReachHere();
 914   }
 915 
 916   // When using CallRuntime mark SOE registers as killed by the call
 917   // so values that could show up in the RegisterMap aren't live in a
 918   // callee saved register since the register wouldn't know where to
 919   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 920   // have debug info on them.  Strictly speaking this only needs to be
 921   // done for oops since idealreg2debugmask takes care of debug info
 922   // references but there no way to handle oops differently than other
 923   // pointers as far as the kill mask goes.
 924   bool exclude_soe = op == Op_CallRuntime;
 925 
 926   // If the call is a MethodHandle invoke, we need to exclude the
 927   // register which is used to save the SP value over MH invokes from
 928   // the mask.  Otherwise this register could be used for
 929   // deoptimization information.
 930   if (op == Op_CallStaticJava) {
 931     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 932     if (mcallstaticjava->_method_handle_invoke)
 933       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 934   }
 935 
 936   add_call_kills(proj, regs, save_policy, exclude_soe);
 937 
 938   return node_cnt;
 939 }
 940 
 941 
 942 //------------------------------schedule_local---------------------------------
 943 // Topological sort within a block.  Someday become a real scheduler.
 944 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 945   // Already "sorted" are the block start Node (as the first entry), and
 946   // the block-ending Node and any trailing control projections.  We leave
 947   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 948   // Node.  Everything else gets topo-sorted.
 949 
 950 #ifndef PRODUCT
 951     if (trace_opto_pipelining()) {
 952       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 953       for (uint i = 0;i < block->number_of_nodes(); i++) {
 954         tty->print("# ");
 955         block->get_node(i)->dump();
 956       }
 957       tty->print_cr("#");
 958     }
 959 #endif
 960 
 961   // RootNode is already sorted
 962   if (block->number_of_nodes() == 1) {
 963     return true;
 964   }
 965 
 966   bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
 967 
 968   // We track the uses of local definitions as input dependences so that
 969   // we know when a given instruction is available to be scheduled.
 970   uint i;
 971   if (OptoRegScheduling && block_size_threshold_ok) {
 972     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 973       Node *n = block->get_node(i);
 974       n->remove_flag(Node::Flag_is_scheduled);
 975       if (!n->is_Phi()) {
 976         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 977       }
 978     }
 979   }
 980 
 981   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 982   uint node_cnt = block->end_idx();
 983   uint phi_cnt = 1;
 984   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 985     Node *n = block->get_node(i);
 986     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 987         (n->is_Proj()  && n->in(0) == block->head()) ) {
 988       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 989       block->map_node(block->get_node(phi_cnt), i);
 990       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 991       if (OptoRegScheduling && block_size_threshold_ok) {
 992         // mark n as scheduled
 993         n->add_flag(Node::Flag_is_scheduled);
 994       }
 995     } else {                    // All others
 996       // Count block-local inputs to 'n'
 997       uint cnt = n->len();      // Input count
 998       uint local = 0;
 999       for( uint j=0; j<cnt; j++ ) {
1000         Node *m = n->in(j);
1001         if( m && get_block_for_node(m) == block && !m->is_top() )
1002           local++;              // One more block-local input
1003       }
1004       ready_cnt.at_put(n->_idx, local); // Count em up
1005       // A few node types require changing a required edge to a precedence edge
1006       // before allocation.
1007       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
1008           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
1009            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
1010         // MemBarAcquire could be created without Precedent edge.
1011         // del_req() replaces the specified edge with the last input edge
1012         // and then removes the last edge. If the specified edge > number of
1013         // edges the last edge will be moved outside of the input edges array
1014         // and the edge will be lost. This is why this code should be
1015         // executed only when Precedent (== TypeFunc::Parms) edge is present.
1016         Node *x = n->in(TypeFunc::Parms);
1017         if (x != nullptr && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
1018           // Old edge to node within same block will get removed, but no precedence
1019           // edge will get added because it already exists. Update ready count.
1020           int cnt = ready_cnt.at(n->_idx);
1021           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
1022           ready_cnt.at_put(n->_idx, cnt-1);
1023         }
1024         n->del_req(TypeFunc::Parms);
1025         n->add_prec(x);
1026       }
1027     }
1028   }
1029   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1030     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1031 
1032   // All the prescheduled guys do not hold back internal nodes
1033   uint i3;
1034   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1035     Node *n = block->get_node(i3);       // Get pre-scheduled
1036     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1037       Node* m = n->fast_out(j);
1038       if (get_block_for_node(m) == block) { // Local-block user
1039         int m_cnt = ready_cnt.at(m->_idx)-1;
1040         if (OptoRegScheduling && block_size_threshold_ok) {
1041           // mark m as scheduled
1042           if (m_cnt < 0) {
1043             m->add_flag(Node::Flag_is_scheduled);
1044           }
1045         }
1046         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1047       }
1048     }
1049   }
1050 
1051   Node_List delay;
1052   // Make a worklist
1053   Node_List worklist;
1054   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1055     Node *m = block->get_node(i4);
1056     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1057       if (m->is_iteratively_computed()) {
1058         // Push induction variable increments last to allow other uses
1059         // of the phi to be scheduled first. The select() method breaks
1060         // ties in scheduling by worklist order.
1061         delay.push(m);
1062       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1063         // Place CreateEx nodes that are initially ready at the beginning of the
1064         // worklist so they are selected first and scheduled at the block start.
1065         worklist.insert(0, m);
1066       } else {
1067         worklist.push(m);         // Then on to worklist!
1068       }
1069     }
1070   }
1071   while (delay.size()) {
1072     Node* d = delay.pop();
1073     worklist.push(d);
1074   }
1075 
1076   if (OptoRegScheduling && block_size_threshold_ok) {
1077     // To stage register pressure calculations we need to examine the live set variables
1078     // breaking them up by register class to compartmentalize the calculations.
1079     _regalloc->_sched_int_pressure.init(Matcher::int_pressure_limit());
1080     _regalloc->_sched_float_pressure.init(Matcher::float_pressure_limit());
1081     _regalloc->_scratch_int_pressure.init(Matcher::int_pressure_limit());
1082     _regalloc->_scratch_float_pressure.init(Matcher::float_pressure_limit());
1083 
1084     _regalloc->compute_entry_block_pressure(block);
1085   }
1086 
1087   // Warm up the 'next_call' heuristic bits
1088   needed_for_next_call(block, block->head(), next_call);
1089 
1090 #ifndef PRODUCT
1091     if (trace_opto_pipelining()) {
1092       for (uint j=0; j< block->number_of_nodes(); j++) {
1093         Node     *n = block->get_node(j);
1094         int     idx = n->_idx;
1095         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1096         tty->print("latency:%3d  ", get_latency_for_node(n));
1097         tty->print("%4d: %s\n", idx, n->Name());
1098       }
1099     }
1100 #endif
1101 
1102   uint max_idx = (uint)ready_cnt.length();
1103   // Pull from worklist and schedule
1104   while( worklist.size() ) {    // Worklist is not ready
1105 
1106 #ifndef PRODUCT
1107     if (trace_opto_pipelining()) {
1108       tty->print("#   ready list:");
1109       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1110         Node *n = worklist[i];      // Get Node on worklist
1111         tty->print(" %d", n->_idx);
1112       }
1113       tty->cr();
1114     }
1115 #endif
1116 
1117     // Select and pop a ready guy from worklist
1118     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1119     block->map_node(n, phi_cnt++);    // Schedule him next
1120 
1121     if (OptoRegScheduling && block_size_threshold_ok) {
1122       n->add_flag(Node::Flag_is_scheduled);
1123 
1124       // Now adjust the resister pressure with the node we selected
1125       if (!n->is_Phi()) {
1126         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1127       }
1128     }
1129 
1130 #ifndef PRODUCT
1131     if (trace_opto_pipelining()) {
1132       tty->print("#    select %d: %s", n->_idx, n->Name());
1133       tty->print(", latency:%d", get_latency_for_node(n));
1134       n->dump();
1135       if (Verbose) {
1136         tty->print("#   ready list:");
1137         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1138           Node *n = worklist[i];      // Get Node on worklist
1139           tty->print(" %d", n->_idx);
1140         }
1141         tty->cr();
1142       }
1143     }
1144 
1145 #endif
1146     if( n->is_MachCall() ) {
1147       MachCallNode *mcall = n->as_MachCall();
1148       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1149       continue;
1150     }
1151 
1152     if (n->is_Mach() && n->as_Mach()->has_call()) {
1153       RegMask regs;
1154       regs.Insert(_matcher.c_frame_pointer());
1155       regs.OR(n->out_RegMask());
1156 
1157       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1158       map_node_to_block(proj, block);
1159       block->insert_node(proj, phi_cnt++);
1160 
1161       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1162     }
1163 
1164     // Children are now all ready
1165     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1166       Node* m = n->fast_out(i5); // Get user
1167       if (get_block_for_node(m) != block) {
1168         continue;
1169       }
1170       if( m->is_Phi() ) continue;
1171       if (m->_idx >= max_idx) { // new node, skip it
1172         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1173         continue;
1174       }
1175       int m_cnt = ready_cnt.at(m->_idx) - 1;
1176       ready_cnt.at_put(m->_idx, m_cnt);
1177       if( m_cnt == 0 )
1178         worklist.push(m);
1179     }
1180   }
1181 
1182   if( phi_cnt != block->end_idx() ) {
1183     // did not schedule all.  Retry, Bailout, or Die
1184     if (C->subsume_loads() == true && !C->failing()) {
1185       // Retry with subsume_loads == false
1186       // If this is the first failure, the sentinel string will "stick"
1187       // to the Compile object, and the C2Compiler will see it and retry.
1188       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1189     } else {
1190       assert(C->failure_is_artificial(), "graph should be schedulable");
1191     }
1192     // assert( phi_cnt == end_idx(), "did not schedule all" );
1193     return false;
1194   }
1195 
1196   if (OptoRegScheduling && block_size_threshold_ok) {
1197     _regalloc->compute_exit_block_pressure(block);
1198     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1199     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1200   }
1201 
1202 #ifndef PRODUCT
1203   if (trace_opto_pipelining()) {
1204     tty->print_cr("#");
1205     tty->print_cr("# after schedule_local");
1206     for (uint i = 0;i < block->number_of_nodes();i++) {
1207       tty->print("# ");
1208       block->get_node(i)->dump();
1209     }
1210     tty->print_cr("# ");
1211 
1212     if (OptoRegScheduling && block_size_threshold_ok) {
1213       tty->print_cr("# pressure info : %d", block->_pre_order);
1214       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1215       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1216     }
1217     tty->cr();
1218   }
1219 #endif
1220 
1221   return true;
1222 }
1223 
1224 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1225 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1226   for (uint l = 0; l < use->len(); l++) {
1227     if (use->in(l) == old_def) {
1228       if (l < use->req()) {
1229         use->set_req(l, new_def);
1230       } else {
1231         use->rm_prec(l);
1232         use->add_prec(new_def);
1233         l--;
1234       }
1235     }
1236   }
1237 }
1238 
1239 //------------------------------catch_cleanup_find_cloned_def------------------
1240 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1241   assert( use_blk != def_blk, "Inter-block cleanup only");
1242 
1243   // The use is some block below the Catch.  Find and return the clone of the def
1244   // that dominates the use. If there is no clone in a dominating block, then
1245   // create a phi for the def in a dominating block.
1246 
1247   // Find which successor block dominates this use.  The successor
1248   // blocks must all be single-entry (from the Catch only; I will have
1249   // split blocks to make this so), hence they all dominate.
1250   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1251     use_blk = use_blk->_idom;
1252 
1253   // Find the successor
1254   Node *fixup = nullptr;
1255 
1256   uint j;
1257   for( j = 0; j < def_blk->_num_succs; j++ )
1258     if( use_blk == def_blk->_succs[j] )
1259       break;
1260 
1261   if( j == def_blk->_num_succs ) {
1262     // Block at same level in dom-tree is not a successor.  It needs a
1263     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1264     Node_Array inputs;
1265     for(uint k = 1; k < use_blk->num_preds(); k++) {
1266       Block* block = get_block_for_node(use_blk->pred(k));
1267       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1268     }
1269 
1270     // Check to see if the use_blk already has an identical phi inserted.
1271     // If it exists, it will be at the first position since all uses of a
1272     // def are processed together.
1273     Node *phi = use_blk->get_node(1);
1274     if( phi->is_Phi() ) {
1275       fixup = phi;
1276       for (uint k = 1; k < use_blk->num_preds(); k++) {
1277         if (phi->in(k) != inputs[k]) {
1278           // Not a match
1279           fixup = nullptr;
1280           break;
1281         }
1282       }
1283     }
1284 
1285     // If an existing PhiNode was not found, make a new one.
1286     if (fixup == nullptr) {
1287       Node *new_phi = PhiNode::make(use_blk->head(), def);
1288       use_blk->insert_node(new_phi, 1);
1289       map_node_to_block(new_phi, use_blk);
1290       for (uint k = 1; k < use_blk->num_preds(); k++) {
1291         new_phi->set_req(k, inputs[k]);
1292       }
1293       fixup = new_phi;
1294     }
1295 
1296   } else {
1297     // Found the use just below the Catch.  Make it use the clone.
1298     fixup = use_blk->get_node(n_clone_idx);
1299   }
1300 
1301   return fixup;
1302 }
1303 
1304 //--------------------------catch_cleanup_intra_block--------------------------
1305 // Fix all input edges in use that reference "def".  The use is in the same
1306 // block as the def and both have been cloned in each successor block.
1307 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1308 
1309   // Both the use and def have been cloned. For each successor block,
1310   // get the clone of the use, and make its input the clone of the def
1311   // found in that block.
1312 
1313   uint use_idx = blk->find_node(use);
1314   uint offset_idx = use_idx - beg;
1315   for( uint k = 0; k < blk->_num_succs; k++ ) {
1316     // Get clone in each successor block
1317     Block *sb = blk->_succs[k];
1318     Node *clone = sb->get_node(offset_idx+1);
1319     assert( clone->Opcode() == use->Opcode(), "" );
1320 
1321     // Make use-clone reference the def-clone
1322     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1323   }
1324 }
1325 
1326 //------------------------------catch_cleanup_inter_block---------------------
1327 // Fix all input edges in use that reference "def".  The use is in a different
1328 // block than the def.
1329 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1330   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1331 
1332   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1333   catch_cleanup_fix_all_inputs(use, def, new_def);
1334 }
1335 
1336 //------------------------------call_catch_cleanup-----------------------------
1337 // If we inserted any instructions between a Call and his CatchNode,
1338 // clone the instructions on all paths below the Catch.
1339 void PhaseCFG::call_catch_cleanup(Block* block) {
1340 
1341   // End of region to clone
1342   uint end = block->end_idx();
1343   if( !block->get_node(end)->is_Catch() ) return;
1344   // Start of region to clone
1345   uint beg = end;
1346   while(!block->get_node(beg-1)->is_MachProj() ||
1347         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1348     beg--;
1349     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1350   }
1351   // Range of inserted instructions is [beg, end)
1352   if( beg == end ) return;
1353 
1354   // Clone along all Catch output paths.  Clone area between the 'beg' and
1355   // 'end' indices.
1356   for( uint i = 0; i < block->_num_succs; i++ ) {
1357     Block *sb = block->_succs[i];
1358     // Clone the entire area; ignoring the edge fixup for now.
1359     for( uint j = end; j > beg; j-- ) {
1360       Node *clone = block->get_node(j-1)->clone();
1361       sb->insert_node(clone, 1);
1362       map_node_to_block(clone, sb);
1363       if (clone->needs_anti_dependence_check()) {
1364         insert_anti_dependences(sb, clone);
1365       }
1366     }
1367   }
1368 
1369 
1370   // Fixup edges.  Check the def-use info per cloned Node
1371   for(uint i2 = beg; i2 < end; i2++ ) {
1372     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1373     Node *n = block->get_node(i2);        // Node that got cloned
1374     // Need DU safe iterator because of edge manipulation in calls.
1375     Unique_Node_List* out = new Unique_Node_List();
1376     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1377       out->push(n->fast_out(j1));
1378     }
1379     uint max = out->size();
1380     for (uint j = 0; j < max; j++) {// For all users
1381       Node *use = out->pop();
1382       Block *buse = get_block_for_node(use);
1383       if( use->is_Phi() ) {
1384         for( uint k = 1; k < use->req(); k++ )
1385           if( use->in(k) == n ) {
1386             Block* b = get_block_for_node(buse->pred(k));
1387             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1388             use->set_req(k, fixup);
1389           }
1390       } else {
1391         if (block == buse) {
1392           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1393         } else {
1394           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1395         }
1396       }
1397     } // End for all users
1398 
1399   } // End of for all Nodes in cloned area
1400 
1401   // Remove the now-dead cloned ops
1402   for(uint i3 = beg; i3 < end; i3++ ) {
1403     block->get_node(beg)->disconnect_inputs(C);
1404     block->remove_node(beg);
1405   }
1406 
1407   // If the successor blocks have a CreateEx node, move it back to the top
1408   for (uint i4 = 0; i4 < block->_num_succs; i4++) {
1409     Block *sb = block->_succs[i4];
1410     uint new_cnt = end - beg;
1411     // Remove any newly created, but dead, nodes by traversing their schedule
1412     // backwards. Here, a dead node is a node whose only outputs (if any) are
1413     // unused projections.
1414     for (uint j = new_cnt; j > 0; j--) {
1415       Node *n = sb->get_node(j);
1416       // Individual projections are examined together with all siblings when
1417       // their parent is visited.
1418       if (n->is_Proj()) {
1419         continue;
1420       }
1421       bool dead = true;
1422       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1423         Node* out = n->fast_out(i);
1424         // n is live if it has a non-projection output or a used projection.
1425         if (!out->is_Proj() || out->outcnt() > 0) {
1426           dead = false;
1427           break;
1428         }
1429       }
1430       if (dead) {
1431         // n's only outputs (if any) are unused projections scheduled next to n
1432         // (see PhaseCFG::select()). Remove these projections backwards.
1433         for (uint k = j + n->outcnt(); k > j; k--) {
1434           Node* proj = sb->get_node(k);
1435           assert(proj->is_Proj() && proj->in(0) == n,
1436                  "projection should correspond to dead node");
1437           proj->disconnect_inputs(C);
1438           sb->remove_node(k);
1439           new_cnt--;
1440         }
1441         // Now remove the node itself.
1442         n->disconnect_inputs(C);
1443         sb->remove_node(j);
1444         new_cnt--;
1445       }
1446     }
1447     // If any newly created nodes remain, move the CreateEx node to the top
1448     if (new_cnt > 0) {
1449       Node *cex = sb->get_node(1+new_cnt);
1450       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1451         sb->remove_node(1+new_cnt);
1452         sb->insert_node(cex, 1);
1453       }
1454     }
1455   }
1456 }