1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.inline.hpp" 26 #include "gc/shared/gc_globals.hpp" 27 #include "memory/allocation.inline.hpp" 28 #include "oops/compressedOops.hpp" 29 #include "opto/ad.hpp" 30 #include "opto/block.hpp" 31 #include "opto/c2compiler.hpp" 32 #include "opto/callnode.hpp" 33 #include "opto/cfgnode.hpp" 34 #include "opto/chaitin.hpp" 35 #include "opto/machnode.hpp" 36 #include "opto/runtime.hpp" 37 #include "runtime/os.inline.hpp" 38 #include "runtime/sharedRuntime.hpp" 39 40 // Optimization - Graph Style 41 42 // Check whether val is not-null-decoded compressed oop, 43 // i.e. will grab into the base of the heap if it represents null. 44 static bool accesses_heap_base_zone(Node *val) { 45 if (CompressedOops::base() != nullptr) { // Implies UseCompressedOops. 46 if (val && val->is_Mach()) { 47 if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) { 48 // This assumes all Decodes with TypePtr::NotNull are matched to nodes that 49 // decode null to point to the heap base (Decode_NN). 50 if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) { 51 return true; 52 } 53 } 54 // Must recognize load operation with Decode matched in memory operand. 55 // We should not reach here except for PPC/AIX, as os::zero_page_read_protected() 56 // returns true everywhere else. On PPC, no such memory operands 57 // exist, therefore we did not yet implement a check for such operands. 58 NOT_AIX(Unimplemented()); 59 } 60 } 61 return false; 62 } 63 64 static bool needs_explicit_null_check_for_read(Node *val) { 65 // On some OSes (AIX) the page at address 0 is only write protected. 66 // If so, only Store operations will trap. 67 if (os::zero_page_read_protected()) { 68 return false; // Implicit null check will work. 69 } 70 // Also a read accessing the base of a heap-based compressed heap will trap. 71 if (accesses_heap_base_zone(val) && // Hits the base zone page. 72 CompressedOops::use_implicit_null_checks()) { // Base zone page is protected. 73 return false; 74 } 75 76 return true; 77 } 78 79 void PhaseCFG::move_node_and_its_projections_to_block(Node* n, Block* b) { 80 assert(!is_CFG(n), "cannot move CFG node"); 81 Block* old = get_block_for_node(n); 82 old->find_remove(n); 83 b->add_inst(n); 84 map_node_to_block(n, b); 85 // Check for Mach projections that also need to be moved. 86 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 87 Node* out = n->fast_out(i); 88 if (!out->is_MachProj()) { 89 continue; 90 } 91 assert(!n->is_MachProj(), "nested projections are not allowed"); 92 move_node_and_its_projections_to_block(out, b); 93 } 94 } 95 96 void PhaseCFG::ensure_node_is_at_block_or_above(Node* n, Block* b) { 97 assert(!is_CFG(n), "cannot move CFG node"); 98 Block* current = get_block_for_node(n); 99 if (current->dominates(b)) { 100 return; // n is already placed above b, do nothing. 101 } 102 // We only expect nodes without further inputs, like MachTemp or load Base. 103 assert(n->req() == 0 || (n->req() == 1 && n->in(0) == (Node*)C->root()), 104 "need for recursive hoisting not expected"); 105 assert(b->dominates(current), "precondition: can only move n to b if b dominates n"); 106 move_node_and_its_projections_to_block(n, b); 107 } 108 109 //------------------------------implicit_null_check---------------------------- 110 // Detect implicit-null-check opportunities. Basically, find null checks 111 // with suitable memory ops nearby. Use the memory op to do the null check. 112 // I can generate a memory op if there is not one nearby. 113 // The proj is the control projection for the not-null case. 114 // The val is the pointer being checked for nullness or 115 // decodeHeapOop_not_null node if it did not fold into address. 116 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) { 117 // Assume if null check need for 0 offset then always needed 118 // Intel solaris doesn't support any null checks yet and no 119 // mechanism exists (yet) to set the switches at an os_cpu level 120 if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return; 121 122 // Make sure the ptr-is-null path appears to be uncommon! 123 float f = block->end()->as_MachIf()->_prob; 124 if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f; 125 if( f > PROB_UNLIKELY_MAG(4) ) return; 126 127 uint bidx = 0; // Capture index of value into memop 128 bool was_store; // Memory op is a store op 129 130 // Get the successor block for if the test ptr is non-null 131 Block* not_null_block; // this one goes with the proj 132 Block* null_block; 133 if (block->get_node(block->number_of_nodes()-1) == proj) { 134 null_block = block->_succs[0]; 135 not_null_block = block->_succs[1]; 136 } else { 137 assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other"); 138 not_null_block = block->_succs[0]; 139 null_block = block->_succs[1]; 140 } 141 while (null_block->is_Empty() == Block::empty_with_goto) { 142 null_block = null_block->_succs[0]; 143 } 144 145 // Search the exception block for an uncommon trap. 146 // (See Parse::do_if and Parse::do_ifnull for the reason 147 // we need an uncommon trap. Briefly, we need a way to 148 // detect failure of this optimization, as in 6366351.) 149 { 150 bool found_trap = false; 151 for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) { 152 Node* nn = null_block->get_node(i1); 153 if (nn->is_MachCall() && 154 nn->as_MachCall()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point()) { 155 const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type(); 156 if (trtype->isa_int() && trtype->is_int()->is_con()) { 157 jint tr_con = trtype->is_int()->get_con(); 158 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); 159 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); 160 assert((int)reason < (int)BitsPerInt, "recode bit map"); 161 if (is_set_nth_bit(allowed_reasons, (int) reason) 162 && action != Deoptimization::Action_none) { 163 // This uncommon trap is sure to recompile, eventually. 164 // When that happens, C->too_many_traps will prevent 165 // this transformation from happening again. 166 found_trap = true; 167 } 168 } 169 break; 170 } 171 } 172 if (!found_trap) { 173 // We did not find an uncommon trap. 174 return; 175 } 176 } 177 178 // Check for decodeHeapOop_not_null node which did not fold into address 179 bool is_decoden = ((intptr_t)val) & 1; 180 val = (Node*)(((intptr_t)val) & ~1); 181 182 assert(!is_decoden || 183 ((val->in(0) == nullptr) && val->is_Mach() && 184 (val->as_Mach()->ideal_Opcode() == Op_DecodeN)), "sanity"); 185 186 // Search the successor block for a load or store who's base value is also 187 // the tested value. There may be several. 188 MachNode *best = nullptr; // Best found so far 189 for (DUIterator i = val->outs(); val->has_out(i); i++) { 190 Node *m = val->out(i); 191 if( !m->is_Mach() ) continue; 192 MachNode *mach = m->as_Mach(); 193 if (mach->barrier_data() != 0 && 194 !mach->is_late_expanded_null_check_candidate()) { 195 // Using memory accesses with barriers to perform implicit null checks is 196 // only supported if these are explicit marked as emitting a candidate 197 // memory access instruction at their initial address. If not marked as 198 // such, barrier-tagged operations might expand into one or several memory 199 // access instructions located at arbitrary offsets from the initial 200 // address, which would invalidate the implicit null exception table. 201 continue; 202 } 203 was_store = false; 204 int iop = mach->ideal_Opcode(); 205 switch( iop ) { 206 case Op_LoadB: 207 case Op_LoadUB: 208 case Op_LoadUS: 209 case Op_LoadD: 210 case Op_LoadF: 211 case Op_LoadI: 212 case Op_LoadL: 213 case Op_LoadP: 214 case Op_LoadN: 215 case Op_LoadS: 216 case Op_LoadKlass: 217 case Op_LoadNKlass: 218 case Op_LoadRange: 219 case Op_LoadD_unaligned: 220 case Op_LoadL_unaligned: 221 assert(mach->in(2) == val, "should be address"); 222 break; 223 case Op_StoreB: 224 case Op_StoreC: 225 case Op_StoreD: 226 case Op_StoreF: 227 case Op_StoreI: 228 case Op_StoreL: 229 case Op_StoreLSpecial: 230 case Op_StoreP: 231 case Op_StoreN: 232 case Op_StoreNKlass: 233 was_store = true; // Memory op is a store op 234 // Stores will have their address in slot 2 (memory in slot 1). 235 // If the value being nul-checked is in another slot, it means we 236 // are storing the checked value, which does NOT check the value! 237 if( mach->in(2) != val ) continue; 238 break; // Found a memory op? 239 case Op_StrComp: 240 case Op_StrEquals: 241 case Op_StrIndexOf: 242 case Op_StrIndexOfChar: 243 case Op_AryEq: 244 case Op_VectorizedHashCode: 245 case Op_StrInflatedCopy: 246 case Op_StrCompressedCopy: 247 case Op_EncodeISOArray: 248 case Op_CountPositives: 249 // Not a legit memory op for implicit null check regardless of 250 // embedded loads 251 continue; 252 default: // Also check for embedded loads 253 if( !mach->needs_anti_dependence_check() ) 254 continue; // Not an memory op; skip it 255 if( must_clone[iop] ) { 256 // Do not move nodes which produce flags because 257 // RA will try to clone it to place near branch and 258 // it will cause recompilation, see clone_node(). 259 continue; 260 } 261 { 262 // Check that value is used in memory address in 263 // instructions with embedded load (CmpP val1,(val2+off)). 264 Node* base; 265 Node* index; 266 const MachOper* oper = mach->memory_inputs(base, index); 267 if (oper == nullptr || oper == (MachOper*)-1) { 268 continue; // Not an memory op; skip it 269 } 270 if (val == base || 271 (val == index && val->bottom_type()->isa_narrowoop())) { 272 break; // Found it 273 } else { 274 continue; // Skip it 275 } 276 } 277 break; 278 } 279 280 // On some OSes (AIX) the page at address 0 is only write protected. 281 // If so, only Store operations will trap. 282 // But a read accessing the base of a heap-based compressed heap will trap. 283 if (!was_store && needs_explicit_null_check_for_read(val)) { 284 continue; 285 } 286 287 // Check that node's control edge is not-null block's head or dominates it, 288 // otherwise we can't hoist it because there are other control dependencies. 289 Node* ctrl = mach->in(0); 290 if (ctrl != nullptr && !(ctrl == not_null_block->head() || 291 get_block_for_node(ctrl)->dominates(not_null_block))) { 292 continue; 293 } 294 295 // check if the offset is not too high for implicit exception 296 { 297 intptr_t offset = 0; 298 const TypePtr *adr_type = nullptr; // Do not need this return value here 299 const Node* base = mach->get_base_and_disp(offset, adr_type); 300 if (base == nullptr || base == NodeSentinel) { 301 // Narrow oop address doesn't have base, only index. 302 // Give up if offset is beyond page size or if heap base is not protected. 303 if (val->bottom_type()->isa_narrowoop() && 304 (MacroAssembler::needs_explicit_null_check(offset) || 305 !CompressedOops::use_implicit_null_checks())) 306 continue; 307 // cannot reason about it; is probably not implicit null exception 308 } else { 309 const TypePtr* tptr; 310 if ((UseCompressedOops && CompressedOops::shift() == 0) || 311 (UseCompressedClassPointers && CompressedKlassPointers::shift() == 0)) { 312 // 32-bits narrow oop can be the base of address expressions 313 tptr = base->get_ptr_type(); 314 } else { 315 // only regular oops are expected here 316 tptr = base->bottom_type()->is_ptr(); 317 } 318 // Give up if offset is not a compile-time constant. 319 if (offset == Type::OffsetBot || tptr->offset() == Type::OffsetBot) 320 continue; 321 offset += tptr->offset(); // correct if base is offsetted 322 // Give up if reference is beyond page size. 323 if (MacroAssembler::needs_explicit_null_check(offset)) 324 continue; 325 // Give up if base is a decode node and the heap base is not protected. 326 if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN && 327 !CompressedOops::use_implicit_null_checks()) 328 continue; 329 } 330 } 331 332 // Check ctrl input to see if the null-check dominates the memory op 333 Block *cb = get_block_for_node(mach); 334 cb = cb->_idom; // Always hoist at least 1 block 335 if( !was_store ) { // Stores can be hoisted only one block 336 while( cb->_dom_depth > (block->_dom_depth + 1)) 337 cb = cb->_idom; // Hoist loads as far as we want 338 // The non-null-block should dominate the memory op, too. Live 339 // range spilling will insert a spill in the non-null-block if it is 340 // needs to spill the memory op for an implicit null check. 341 if (cb->_dom_depth == (block->_dom_depth + 1)) { 342 if (cb != not_null_block) continue; 343 cb = cb->_idom; 344 } 345 } 346 if( cb != block ) continue; 347 348 // Found a memory user; see if it can be hoisted to check-block 349 uint vidx = 0; // Capture index of value into memop 350 uint j; 351 for( j = mach->req()-1; j > 0; j-- ) { 352 if( mach->in(j) == val ) { 353 vidx = j; 354 // Ignore DecodeN val which could be hoisted to where needed. 355 if( is_decoden ) continue; 356 } 357 if (mach->in(j)->is_MachTemp()) { 358 assert(mach->in(j)->outcnt() == 1, "MachTemp nodes should not be shared"); 359 // Ignore MachTemp inputs, they can be safely hoisted with the candidate. 360 // MachTemp nodes have no inputs themselves and are only used to reserve 361 // a scratch register for the implementation of the node (e.g. in 362 // late-expanded GC barriers). 363 continue; 364 } 365 // Block of memory-op input 366 Block* inb = get_block_for_node(mach->in(j)); 367 if (mach->in(j)->is_Con() && mach->in(j)->req() == 1 && inb == get_block_for_node(mach)) { 368 // Ignore constant loads scheduled in the same block (we can simply hoist them as well) 369 continue; 370 } 371 Block *b = block; // Start from nul check 372 while( b != inb && b->_dom_depth > inb->_dom_depth ) 373 b = b->_idom; // search upwards for input 374 // See if input dominates null check 375 if( b != inb ) 376 break; 377 } 378 if( j > 0 ) 379 continue; 380 Block *mb = get_block_for_node(mach); 381 // Hoisting stores requires more checks for the anti-dependence case. 382 // Give up hoisting if we have to move the store past any load. 383 if (was_store) { 384 // Make sure control does not do a merge (would have to check allpaths) 385 if (mb->num_preds() != 2) { 386 continue; 387 } 388 // mach is a store, hence block is the immediate dominator of mb. 389 // Due to the null-check shape of block (where its successors cannot re-join), 390 // block must be the direct predecessor of mb. 391 assert(get_block_for_node(mb->pred(1)) == block, "Unexpected predecessor block"); 392 uint k; 393 uint num_nodes = mb->number_of_nodes(); 394 for (k = 1; k < num_nodes; k++) { 395 Node *n = mb->get_node(k); 396 if (n->needs_anti_dependence_check() && 397 n->in(LoadNode::Memory) == mach->in(StoreNode::Memory)) { 398 break; // Found anti-dependent load 399 } 400 } 401 if (k < num_nodes) { 402 continue; // Found anti-dependent load 403 } 404 } 405 406 // Make sure this memory op is not already being used for a NullCheck 407 Node *e = mb->end(); 408 if( e->is_MachNullCheck() && e->in(1) == mach ) 409 continue; // Already being used as a null check 410 411 // Found a candidate! Pick one with least dom depth - the highest 412 // in the dom tree should be closest to the null check. 413 if (best == nullptr || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) { 414 best = mach; 415 bidx = vidx; 416 } 417 } 418 // No candidate! 419 if (best == nullptr) { 420 return; 421 } 422 423 // ---- Found an implicit null check 424 #ifndef PRODUCT 425 extern uint implicit_null_checks; 426 implicit_null_checks++; 427 #endif 428 429 if( is_decoden ) { 430 // Check if we need to hoist decodeHeapOop_not_null first. 431 Block *valb = get_block_for_node(val); 432 if( block != valb && block->_dom_depth < valb->_dom_depth ) { 433 // Hoist it up to the end of the test block together with its inputs if they exist. 434 for (uint i = 2; i < val->req(); i++) { 435 // DecodeN has 2 regular inputs + optional MachTemp or load Base inputs. 436 // Inputs of val may already be early enough, but if not move them together with val. 437 ensure_node_is_at_block_or_above(val->in(i), block); 438 } 439 move_node_and_its_projections_to_block(val, block); 440 } 441 } 442 443 // Hoist constant load inputs as well. 444 for (uint i = 1; i < best->req(); ++i) { 445 Node* n = best->in(i); 446 if (n->is_Con() && get_block_for_node(n) == get_block_for_node(best)) { 447 get_block_for_node(n)->find_remove(n); 448 block->add_inst(n); 449 map_node_to_block(n, block); 450 // Constant loads may kill flags (for example, when XORing a register). 451 // Check for flag-killing projections that also need to be hoisted. 452 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 453 Node* proj = n->fast_out(j); 454 if (proj->is_MachProj()) { 455 get_block_for_node(proj)->find_remove(proj); 456 block->add_inst(proj); 457 map_node_to_block(proj, block); 458 } 459 } 460 } 461 } 462 463 464 // Move any MachTemp inputs to the end of the test block. 465 for (uint i = 0; i < best->req(); i++) { 466 Node* n = best->in(i); 467 if (n == nullptr || !n->is_MachTemp()) { 468 continue; 469 } 470 ensure_node_is_at_block_or_above(n, block); 471 } 472 473 // Hoist the memory candidate up to the end of the test block. 474 move_node_and_its_projections_to_block(best, block); 475 476 // Move the control dependence if it is pinned to not-null block. 477 // Don't change it in other cases: null or dominating control. 478 Node* ctrl = best->in(0); 479 if (ctrl != nullptr && get_block_for_node(ctrl) == not_null_block) { 480 // Set it to control edge of null check. 481 best->set_req(0, proj->in(0)->in(0)); 482 } 483 484 // proj==Op_True --> ne test; proj==Op_False --> eq test. 485 // One of two graph shapes got matched: 486 // (IfTrue (If (Bool NE (CmpP ptr null)))) 487 // (IfFalse (If (Bool EQ (CmpP ptr null)))) 488 // null checks are always branch-if-eq. If we see a IfTrue projection 489 // then we are replacing a 'ne' test with a 'eq' null check test. 490 // We need to flip the projections to keep the same semantics. 491 if( proj->Opcode() == Op_IfTrue ) { 492 // Swap order of projections in basic block to swap branch targets 493 Node *tmp1 = block->get_node(block->end_idx()+1); 494 Node *tmp2 = block->get_node(block->end_idx()+2); 495 block->map_node(tmp2, block->end_idx()+1); 496 block->map_node(tmp1, block->end_idx()+2); 497 Node *tmp = new Node(C->top()); // Use not null input 498 tmp1->replace_by(tmp); 499 tmp2->replace_by(tmp1); 500 tmp->replace_by(tmp2); 501 tmp->destruct(nullptr); 502 } 503 504 // Remove the existing null check; use a new implicit null check instead. 505 // Since schedule-local needs precise def-use info, we need to correct 506 // it as well. 507 Node *old_tst = proj->in(0); 508 MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx); 509 block->map_node(nul_chk, block->end_idx()); 510 map_node_to_block(nul_chk, block); 511 // Redirect users of old_test to nul_chk 512 for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2) 513 old_tst->last_out(i2)->set_req(0, nul_chk); 514 // Clean-up any dead code 515 for (uint i3 = 0; i3 < old_tst->req(); i3++) { 516 Node* in = old_tst->in(i3); 517 old_tst->set_req(i3, nullptr); 518 if (in->outcnt() == 0) { 519 // Remove dead input node 520 in->disconnect_inputs(C); 521 block->find_remove(in); 522 } 523 } 524 525 latency_from_uses(nul_chk); 526 latency_from_uses(best); 527 528 // insert anti-dependences to defs in this block 529 if (! best->needs_anti_dependence_check()) { 530 for (uint k = 1; k < block->number_of_nodes(); k++) { 531 Node *n = block->get_node(k); 532 if (n->needs_anti_dependence_check() && 533 n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) { 534 // Found anti-dependent load 535 raise_above_anti_dependences(block, n); 536 if (C->failing()) { 537 return; 538 } 539 } 540 } 541 } 542 } 543 544 545 //------------------------------select----------------------------------------- 546 // Select a nice fellow from the worklist to schedule next. If there is only one 547 // choice, then use it. CreateEx nodes that are initially ready must start their 548 // blocks and are given the highest priority, by being placed at the beginning 549 // of the worklist. Next after initially-ready CreateEx nodes are projections, 550 // which must follow their parents, and CreateEx nodes with local input 551 // dependencies. Next are constants and CheckCastPP nodes. There are a number of 552 // other special cases, for instructions that consume condition codes, et al. 553 // These are chosen immediately. Some instructions are required to immediately 554 // precede the last instruction in the block, and these are taken last. Of the 555 // remaining cases (most), choose the instruction with the greatest latency 556 // (that is, the most number of pseudo-cycles required to the end of the 557 // routine). If there is a tie, choose the instruction with the most inputs. 558 Node* PhaseCFG::select( 559 Block* block, 560 Node_List &worklist, 561 GrowableArray<int> &ready_cnt, 562 VectorSet &next_call, 563 uint sched_slot, 564 intptr_t* recalc_pressure_nodes) { 565 566 // If only a single entry on the stack, use it 567 uint cnt = worklist.size(); 568 if (cnt == 1) { 569 Node *n = worklist[0]; 570 worklist.map(0,worklist.pop()); 571 return n; 572 } 573 574 uint choice = 0; // Bigger is most important 575 uint latency = 0; // Bigger is scheduled first 576 uint score = 0; // Bigger is better 577 int idx = -1; // Index in worklist 578 int cand_cnt = 0; // Candidate count 579 bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10); 580 581 for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist 582 // Order in worklist is used to break ties. 583 // See caller for how this is used to delay scheduling 584 // of induction variable increments to after the other 585 // uses of the phi are scheduled. 586 Node *n = worklist[i]; // Get Node on worklist 587 588 int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0; 589 if (iop == Op_CreateEx || n->is_Proj()) { 590 // CreateEx nodes that are initially ready must start the block (after Phi 591 // and Parm nodes which are pre-scheduled) and get top priority. This is 592 // currently enforced by placing them at the beginning of the initial 593 // worklist and selecting them eagerly here. After these, projections and 594 // other CreateEx nodes are selected with equal priority. 595 worklist.map(i,worklist.pop()); 596 return n; 597 } 598 599 if (n->Opcode() == Op_Con || iop == Op_CheckCastPP) { 600 // Constants and CheckCastPP nodes have higher priority than the rest of 601 // the nodes tested below. Record as current winner, but keep looking for 602 // higher-priority nodes in the worklist. 603 choice = 4; 604 // Latency and score are only used to break ties among low-priority nodes. 605 latency = 0; 606 score = 0; 607 idx = i; 608 continue; 609 } 610 611 // Final call in a block must be adjacent to 'catch' 612 Node *e = block->end(); 613 if( e->is_Catch() && e->in(0)->in(0) == n ) 614 continue; 615 616 // Memory op for an implicit null check has to be at the end of the block 617 if( e->is_MachNullCheck() && e->in(1) == n ) 618 continue; 619 620 // Schedule IV increment last. 621 if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) { 622 // Cmp might be matched into CountedLoopEnd node. 623 Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e; 624 if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) { 625 continue; 626 } 627 } 628 629 uint n_choice = 2; 630 631 // See if this instruction is consumed by a branch. If so, then (as the 632 // branch is the last instruction in the basic block) force it to the 633 // end of the basic block 634 if ( must_clone[iop] ) { 635 // See if any use is a branch 636 bool found_machif = false; 637 638 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 639 Node* use = n->fast_out(j); 640 641 // The use is a conditional branch, make them adjacent 642 if (use->is_MachIf() && get_block_for_node(use) == block) { 643 found_machif = true; 644 break; 645 } 646 647 // More than this instruction pending for successor to be ready, 648 // don't choose this if other opportunities are ready 649 if (ready_cnt.at(use->_idx) > 1) 650 n_choice = 1; 651 } 652 653 // loop terminated, prefer not to use this instruction 654 if (found_machif) 655 continue; 656 } 657 658 // See if this has a predecessor that is "must_clone", i.e. sets the 659 // condition code. If so, choose this first 660 for (uint j = 0; j < n->req() ; j++) { 661 Node *inn = n->in(j); 662 if (inn) { 663 if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) { 664 n_choice = 3; 665 break; 666 } 667 } 668 } 669 670 // MachTemps should be scheduled last so they are near their uses 671 if (n->is_MachTemp()) { 672 n_choice = 1; 673 } 674 675 uint n_latency = get_latency_for_node(n); 676 uint n_score = n->req(); // Many inputs get high score to break ties 677 678 if (OptoRegScheduling && block_size_threshold_ok) { 679 if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) { 680 _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit()); 681 _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit()); 682 // simulate the notion that we just picked this node to schedule 683 n->add_flag(Node::Flag_is_scheduled); 684 // now calculate its effect upon the graph if we did 685 adjust_register_pressure(n, block, recalc_pressure_nodes, false); 686 // return its state for finalize in case somebody else wins 687 n->remove_flag(Node::Flag_is_scheduled); 688 // now save the two final pressure components of register pressure, limiting pressure calcs to short size 689 short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure(); 690 short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure(); 691 recalc_pressure_nodes[n->_idx] = int_pressure; 692 recalc_pressure_nodes[n->_idx] |= (float_pressure << 16); 693 } 694 695 if (_scheduling_for_pressure) { 696 latency = n_latency; 697 if (n_choice != 3) { 698 // Now evaluate each register pressure component based on threshold in the score. 699 // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks 700 // on a single instruction, but we might see it shrink on both banks. 701 // For each use of register that has a register class that is over the high pressure limit, we build n_score up for 702 // live ranges that terminate on this instruction. 703 if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) { 704 short int_pressure = (short)recalc_pressure_nodes[n->_idx]; 705 n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score; 706 } 707 if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) { 708 short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16); 709 n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score; 710 } 711 } else { 712 // make sure we choose these candidates 713 score = 0; 714 } 715 } 716 } 717 718 // Keep best latency found 719 cand_cnt++; 720 if (choice < n_choice || 721 (choice == n_choice && 722 ((StressLCM && C->randomized_select(cand_cnt)) || 723 (!StressLCM && 724 (latency < n_latency || 725 (latency == n_latency && 726 (score < n_score))))))) { 727 choice = n_choice; 728 latency = n_latency; 729 score = n_score; 730 idx = i; // Also keep index in worklist 731 } 732 } // End of for all ready nodes in worklist 733 734 guarantee(idx >= 0, "index should be set"); 735 Node *n = worklist[(uint)idx]; // Get the winner 736 737 worklist.map((uint)idx, worklist.pop()); // Compress worklist 738 return n; 739 } 740 741 //-------------------------adjust_register_pressure---------------------------- 742 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) { 743 PhaseLive* liveinfo = _regalloc->get_live(); 744 IndexSet* liveout = liveinfo->live(block); 745 // first adjust the register pressure for the sources 746 for (uint i = 1; i < n->req(); i++) { 747 bool lrg_ends = false; 748 Node *src_n = n->in(i); 749 if (src_n == nullptr) continue; 750 if (!src_n->is_Mach()) continue; 751 uint src = _regalloc->_lrg_map.find(src_n); 752 if (src == 0) continue; 753 LRG& lrg_src = _regalloc->lrgs(src); 754 // detect if the live range ends or not 755 if (liveout->member(src) == false) { 756 lrg_ends = true; 757 for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) { 758 Node* m = src_n->fast_out(j); // Get user 759 if (m == n) continue; 760 if (!m->is_Mach()) continue; 761 MachNode *mach = m->as_Mach(); 762 bool src_matches = false; 763 int iop = mach->ideal_Opcode(); 764 765 switch (iop) { 766 case Op_StoreB: 767 case Op_StoreC: 768 case Op_StoreD: 769 case Op_StoreF: 770 case Op_StoreI: 771 case Op_StoreL: 772 case Op_StoreLSpecial: 773 case Op_StoreP: 774 case Op_StoreN: 775 case Op_StoreVector: 776 case Op_StoreVectorMasked: 777 case Op_StoreVectorScatter: 778 case Op_StoreVectorScatterMasked: 779 case Op_StoreNKlass: 780 for (uint k = 1; k < m->req(); k++) { 781 Node *in = m->in(k); 782 if (in == src_n) { 783 src_matches = true; 784 break; 785 } 786 } 787 break; 788 789 default: 790 src_matches = true; 791 break; 792 } 793 794 // If we have a store as our use, ignore the non source operands 795 if (src_matches == false) continue; 796 797 // Mark every unscheduled use which is not n with a recalculation 798 if ((get_block_for_node(m) == block) && (!m->is_scheduled())) { 799 if (finalize_mode && !m->is_Phi()) { 800 recalc_pressure_nodes[m->_idx] = 0x7fff7fff; 801 } 802 lrg_ends = false; 803 } 804 } 805 } 806 // if none, this live range ends and we can adjust register pressure 807 if (lrg_ends) { 808 if (finalize_mode) { 809 _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure); 810 } else { 811 _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure); 812 } 813 } 814 } 815 816 // now add the register pressure from the dest and evaluate which heuristic we should use: 817 // 1.) The default, latency scheduling 818 // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks 819 uint dst = _regalloc->_lrg_map.find(n); 820 if (dst != 0) { 821 LRG& lrg_dst = _regalloc->lrgs(dst); 822 if (finalize_mode) { 823 _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure); 824 // check to see if we fall over the register pressure cliff here 825 if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) { 826 _scheduling_for_pressure = true; 827 } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) { 828 _scheduling_for_pressure = true; 829 } else { 830 // restore latency scheduling mode 831 _scheduling_for_pressure = false; 832 } 833 } else { 834 _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure); 835 } 836 } 837 } 838 839 //------------------------------set_next_call---------------------------------- 840 void PhaseCFG::set_next_call(const Block* block, Node* init, VectorSet& next_call) const { 841 Node_List worklist; 842 worklist.push(init); 843 844 while (worklist.size() > 0) { 845 Node* n = worklist.pop(); 846 if (next_call.test_set(n->_idx)) continue; 847 for (uint i = 0; i < n->len(); i++) { 848 Node* m = n->in(i); 849 if (m == nullptr) continue; // must see all nodes in block that precede call 850 if (get_block_for_node(m) == block) { 851 worklist.push(m); 852 } 853 } 854 } 855 } 856 857 //------------------------------needed_for_next_call--------------------------- 858 // Set the flag 'next_call' for each Node that is needed for the next call to 859 // be scheduled. This flag lets me bias scheduling so Nodes needed for the 860 // next subroutine call get priority - basically it moves things NOT needed 861 // for the next call till after the call. This prevents me from trying to 862 // carry lots of stuff live across a call. 863 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) { 864 // Find the next control-defining Node in this block 865 Node* call = nullptr; 866 for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) { 867 Node* m = this_call->fast_out(i); 868 if (get_block_for_node(m) == block && // Local-block user 869 m != this_call && // Not self-start node 870 m->is_MachCall()) { 871 call = m; 872 break; 873 } 874 } 875 if (call == nullptr) return; // No next call (e.g., block end is near) 876 // Set next-call for all inputs to this call 877 set_next_call(block, call, next_call); 878 } 879 880 //------------------------------add_call_kills------------------------------------- 881 // helper function that adds caller save registers to MachProjNode 882 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) { 883 // Fill in the kill mask for the call 884 for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) { 885 if( !regs.Member(r) ) { // Not already defined by the call 886 // Save-on-call register? 887 if ((save_policy[r] == 'C') || 888 (save_policy[r] == 'A') || 889 ((save_policy[r] == 'E') && exclude_soe)) { 890 proj->_rout.Insert(r); 891 } 892 } 893 } 894 } 895 896 897 //------------------------------sched_call------------------------------------- 898 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) { 899 RegMask regs; 900 901 // Schedule all the users of the call right now. All the users are 902 // projection Nodes, so they must be scheduled next to the call. 903 // Collect all the defined registers. 904 for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) { 905 Node* n = mcall->fast_out(i); 906 assert( n->is_MachProj(), "" ); 907 int n_cnt = ready_cnt.at(n->_idx)-1; 908 ready_cnt.at_put(n->_idx, n_cnt); 909 assert( n_cnt == 0, "" ); 910 // Schedule next to call 911 block->map_node(n, node_cnt++); 912 // Collect defined registers 913 regs.OR(n->out_RegMask()); 914 // Check for scheduling the next control-definer 915 if( n->bottom_type() == Type::CONTROL ) 916 // Warm up next pile of heuristic bits 917 needed_for_next_call(block, n, next_call); 918 919 // Children of projections are now all ready 920 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 921 Node* m = n->fast_out(j); // Get user 922 if(get_block_for_node(m) != block) { 923 continue; 924 } 925 if( m->is_Phi() ) continue; 926 int m_cnt = ready_cnt.at(m->_idx) - 1; 927 ready_cnt.at_put(m->_idx, m_cnt); 928 if( m_cnt == 0 ) 929 worklist.push(m); 930 } 931 932 } 933 934 // Act as if the call defines the Frame Pointer. 935 // Certainly the FP is alive and well after the call. 936 regs.Insert(_matcher.c_frame_pointer()); 937 938 // Set all registers killed and not already defined by the call. 939 uint r_cnt = mcall->tf()->range_cc()->cnt(); 940 int op = mcall->ideal_Opcode(); 941 MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj ); 942 map_node_to_block(proj, block); 943 block->insert_node(proj, node_cnt++); 944 945 // Select the right register save policy. 946 const char *save_policy = nullptr; 947 switch (op) { 948 case Op_CallRuntime: 949 case Op_CallLeaf: 950 case Op_CallLeafNoFP: 951 case Op_CallLeafVector: 952 // Calling C code so use C calling convention 953 save_policy = _matcher._c_reg_save_policy; 954 break; 955 956 case Op_CallStaticJava: 957 case Op_CallDynamicJava: 958 // Calling Java code so use Java calling convention 959 save_policy = _matcher._register_save_policy; 960 break; 961 962 default: 963 ShouldNotReachHere(); 964 } 965 966 // When using CallRuntime mark SOE registers as killed by the call 967 // so values that could show up in the RegisterMap aren't live in a 968 // callee saved register since the register wouldn't know where to 969 // find them. CallLeaf and CallLeafNoFP are ok because they can't 970 // have debug info on them. Strictly speaking this only needs to be 971 // done for oops since idealreg2debugmask takes care of debug info 972 // references but there no way to handle oops differently than other 973 // pointers as far as the kill mask goes. 974 bool exclude_soe = op == Op_CallRuntime; 975 976 // If the call is a MethodHandle invoke, we need to exclude the 977 // register which is used to save the SP value over MH invokes from 978 // the mask. Otherwise this register could be used for 979 // deoptimization information. 980 if (op == Op_CallStaticJava) { 981 MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall; 982 if (mcallstaticjava->_method_handle_invoke) 983 proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask()); 984 } 985 986 add_call_kills(proj, regs, save_policy, exclude_soe); 987 988 return node_cnt; 989 } 990 991 992 //------------------------------schedule_local--------------------------------- 993 // Topological sort within a block. Someday become a real scheduler. 994 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) { 995 // Already "sorted" are the block start Node (as the first entry), and 996 // the block-ending Node and any trailing control projections. We leave 997 // these alone. PhiNodes and ParmNodes are made to follow the block start 998 // Node. Everything else gets topo-sorted. 999 1000 #ifndef PRODUCT 1001 if (trace_opto_pipelining()) { 1002 tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order); 1003 for (uint i = 0;i < block->number_of_nodes(); i++) { 1004 tty->print("# "); 1005 block->get_node(i)->dump(); 1006 } 1007 tty->print_cr("#"); 1008 } 1009 #endif 1010 1011 // RootNode is already sorted 1012 if (block->number_of_nodes() == 1) { 1013 return true; 1014 } 1015 1016 bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10); 1017 1018 // We track the uses of local definitions as input dependences so that 1019 // we know when a given instruction is available to be scheduled. 1020 uint i; 1021 if (OptoRegScheduling && block_size_threshold_ok) { 1022 for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc 1023 Node *n = block->get_node(i); 1024 n->remove_flag(Node::Flag_is_scheduled); 1025 if (!n->is_Phi()) { 1026 recalc_pressure_nodes[n->_idx] = 0x7fff7fff; 1027 } 1028 } 1029 } 1030 1031 // Move PhiNodes and ParmNodes from 1 to cnt up to the start 1032 uint node_cnt = block->end_idx(); 1033 uint phi_cnt = 1; 1034 for( i = 1; i<node_cnt; i++ ) { // Scan for Phi 1035 Node *n = block->get_node(i); 1036 if( n->is_Phi() || // Found a PhiNode or ParmNode 1037 (n->is_Proj() && n->in(0) == block->head()) ) { 1038 // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt 1039 block->map_node(block->get_node(phi_cnt), i); 1040 block->map_node(n, phi_cnt++); // swap Phi/Parm up front 1041 if (OptoRegScheduling && block_size_threshold_ok) { 1042 // mark n as scheduled 1043 n->add_flag(Node::Flag_is_scheduled); 1044 } 1045 } else { // All others 1046 // Count block-local inputs to 'n' 1047 uint cnt = n->len(); // Input count 1048 uint local = 0; 1049 for( uint j=0; j<cnt; j++ ) { 1050 Node *m = n->in(j); 1051 if( m && get_block_for_node(m) == block && !m->is_top() ) 1052 local++; // One more block-local input 1053 } 1054 ready_cnt.at_put(n->_idx, local); // Count em up 1055 // A few node types require changing a required edge to a precedence edge 1056 // before allocation. 1057 if( n->is_Mach() && n->req() > TypeFunc::Parms && 1058 (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire || 1059 n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) { 1060 // MemBarAcquire could be created without Precedent edge. 1061 // del_req() replaces the specified edge with the last input edge 1062 // and then removes the last edge. If the specified edge > number of 1063 // edges the last edge will be moved outside of the input edges array 1064 // and the edge will be lost. This is why this code should be 1065 // executed only when Precedent (== TypeFunc::Parms) edge is present. 1066 Node *x = n->in(TypeFunc::Parms); 1067 if (x != nullptr && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) { 1068 // Old edge to node within same block will get removed, but no precedence 1069 // edge will get added because it already exists. Update ready count. 1070 int cnt = ready_cnt.at(n->_idx); 1071 assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx); 1072 ready_cnt.at_put(n->_idx, cnt-1); 1073 } 1074 n->del_req(TypeFunc::Parms); 1075 n->add_prec(x); 1076 } 1077 } 1078 } 1079 for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count 1080 ready_cnt.at_put(block->get_node(i2)->_idx, 0); 1081 1082 // All the prescheduled guys do not hold back internal nodes 1083 uint i3; 1084 for (i3 = 0; i3 < phi_cnt; i3++) { // For all pre-scheduled 1085 Node *n = block->get_node(i3); // Get pre-scheduled 1086 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 1087 Node* m = n->fast_out(j); 1088 if (get_block_for_node(m) == block) { // Local-block user 1089 int m_cnt = ready_cnt.at(m->_idx)-1; 1090 if (OptoRegScheduling && block_size_threshold_ok) { 1091 // mark m as scheduled 1092 if (m_cnt < 0) { 1093 m->add_flag(Node::Flag_is_scheduled); 1094 } 1095 } 1096 ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count 1097 } 1098 } 1099 } 1100 1101 Node_List delay; 1102 // Make a worklist 1103 Node_List worklist; 1104 for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist 1105 Node *m = block->get_node(i4); 1106 if( !ready_cnt.at(m->_idx) ) { // Zero ready count? 1107 if (m->is_iteratively_computed()) { 1108 // Push induction variable increments last to allow other uses 1109 // of the phi to be scheduled first. The select() method breaks 1110 // ties in scheduling by worklist order. 1111 delay.push(m); 1112 } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) { 1113 // Place CreateEx nodes that are initially ready at the beginning of the 1114 // worklist so they are selected first and scheduled at the block start. 1115 worklist.insert(0, m); 1116 } else { 1117 worklist.push(m); // Then on to worklist! 1118 } 1119 } 1120 } 1121 while (delay.size()) { 1122 Node* d = delay.pop(); 1123 worklist.push(d); 1124 } 1125 1126 if (OptoRegScheduling && block_size_threshold_ok) { 1127 // To stage register pressure calculations we need to examine the live set variables 1128 // breaking them up by register class to compartmentalize the calculations. 1129 _regalloc->_sched_int_pressure.init(Matcher::int_pressure_limit()); 1130 _regalloc->_sched_float_pressure.init(Matcher::float_pressure_limit()); 1131 _regalloc->_scratch_int_pressure.init(Matcher::int_pressure_limit()); 1132 _regalloc->_scratch_float_pressure.init(Matcher::float_pressure_limit()); 1133 1134 _regalloc->compute_entry_block_pressure(block); 1135 } 1136 1137 // Warm up the 'next_call' heuristic bits 1138 needed_for_next_call(block, block->head(), next_call); 1139 1140 #ifndef PRODUCT 1141 if (trace_opto_pipelining()) { 1142 for (uint j=0; j< block->number_of_nodes(); j++) { 1143 Node *n = block->get_node(j); 1144 int idx = n->_idx; 1145 tty->print("# ready cnt:%3d ", ready_cnt.at(idx)); 1146 tty->print("latency:%3d ", get_latency_for_node(n)); 1147 tty->print("%4d: %s\n", idx, n->Name()); 1148 } 1149 } 1150 #endif 1151 1152 uint max_idx = (uint)ready_cnt.length(); 1153 // Pull from worklist and schedule 1154 while( worklist.size() ) { // Worklist is not ready 1155 1156 #ifndef PRODUCT 1157 if (trace_opto_pipelining()) { 1158 tty->print("# ready list:"); 1159 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist 1160 Node *n = worklist[i]; // Get Node on worklist 1161 tty->print(" %d", n->_idx); 1162 } 1163 tty->cr(); 1164 } 1165 #endif 1166 1167 // Select and pop a ready guy from worklist 1168 Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes); 1169 block->map_node(n, phi_cnt++); // Schedule him next 1170 1171 if (OptoRegScheduling && block_size_threshold_ok) { 1172 n->add_flag(Node::Flag_is_scheduled); 1173 1174 // Now adjust the resister pressure with the node we selected 1175 if (!n->is_Phi()) { 1176 adjust_register_pressure(n, block, recalc_pressure_nodes, true); 1177 } 1178 } 1179 1180 #ifndef PRODUCT 1181 if (trace_opto_pipelining()) { 1182 tty->print("# select %d: %s", n->_idx, n->Name()); 1183 tty->print(", latency:%d", get_latency_for_node(n)); 1184 n->dump(); 1185 if (Verbose) { 1186 tty->print("# ready list:"); 1187 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist 1188 Node *n = worklist[i]; // Get Node on worklist 1189 tty->print(" %d", n->_idx); 1190 } 1191 tty->cr(); 1192 } 1193 } 1194 1195 #endif 1196 if( n->is_MachCall() ) { 1197 MachCallNode *mcall = n->as_MachCall(); 1198 phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call); 1199 continue; 1200 } 1201 1202 if (n->is_Mach() && n->as_Mach()->has_call()) { 1203 RegMask regs; 1204 regs.Insert(_matcher.c_frame_pointer()); 1205 regs.OR(n->out_RegMask()); 1206 1207 MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj ); 1208 map_node_to_block(proj, block); 1209 block->insert_node(proj, phi_cnt++); 1210 1211 add_call_kills(proj, regs, _matcher._c_reg_save_policy, false); 1212 } 1213 1214 // Children are now all ready 1215 for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) { 1216 Node* m = n->fast_out(i5); // Get user 1217 if (get_block_for_node(m) != block) { 1218 continue; 1219 } 1220 if( m->is_Phi() ) continue; 1221 if (m->_idx >= max_idx) { // new node, skip it 1222 assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types"); 1223 continue; 1224 } 1225 int m_cnt = ready_cnt.at(m->_idx) - 1; 1226 ready_cnt.at_put(m->_idx, m_cnt); 1227 if( m_cnt == 0 ) 1228 worklist.push(m); 1229 } 1230 } 1231 1232 if( phi_cnt != block->end_idx() ) { 1233 // did not schedule all. Retry, Bailout, or Die 1234 if (C->subsume_loads() == true && !C->failing()) { 1235 // Retry with subsume_loads == false 1236 // If this is the first failure, the sentinel string will "stick" 1237 // to the Compile object, and the C2Compiler will see it and retry. 1238 C->record_failure(C2Compiler::retry_no_subsuming_loads()); 1239 } else { 1240 assert(C->failure_is_artificial(), "graph should be schedulable"); 1241 } 1242 // assert( phi_cnt == end_idx(), "did not schedule all" ); 1243 return false; 1244 } 1245 1246 if (OptoRegScheduling && block_size_threshold_ok) { 1247 _regalloc->compute_exit_block_pressure(block); 1248 block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure(); 1249 block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure(); 1250 } 1251 1252 #ifndef PRODUCT 1253 if (trace_opto_pipelining()) { 1254 tty->print_cr("#"); 1255 tty->print_cr("# after schedule_local"); 1256 for (uint i = 0;i < block->number_of_nodes();i++) { 1257 tty->print("# "); 1258 block->get_node(i)->dump(); 1259 } 1260 tty->print_cr("# "); 1261 1262 if (OptoRegScheduling && block_size_threshold_ok) { 1263 tty->print_cr("# pressure info : %d", block->_pre_order); 1264 _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info"); 1265 _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info"); 1266 } 1267 tty->cr(); 1268 } 1269 #endif 1270 1271 return true; 1272 } 1273 1274 //--------------------------catch_cleanup_fix_all_inputs----------------------- 1275 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) { 1276 for (uint l = 0; l < use->len(); l++) { 1277 if (use->in(l) == old_def) { 1278 if (l < use->req()) { 1279 use->set_req(l, new_def); 1280 } else { 1281 use->rm_prec(l); 1282 use->add_prec(new_def); 1283 l--; 1284 } 1285 } 1286 } 1287 } 1288 1289 //------------------------------catch_cleanup_find_cloned_def------------------ 1290 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) { 1291 assert( use_blk != def_blk, "Inter-block cleanup only"); 1292 1293 // The use is some block below the Catch. Find and return the clone of the def 1294 // that dominates the use. If there is no clone in a dominating block, then 1295 // create a phi for the def in a dominating block. 1296 1297 // Find which successor block dominates this use. The successor 1298 // blocks must all be single-entry (from the Catch only; I will have 1299 // split blocks to make this so), hence they all dominate. 1300 while( use_blk->_dom_depth > def_blk->_dom_depth+1 ) 1301 use_blk = use_blk->_idom; 1302 1303 // Find the successor 1304 Node *fixup = nullptr; 1305 1306 uint j; 1307 for( j = 0; j < def_blk->_num_succs; j++ ) 1308 if( use_blk == def_blk->_succs[j] ) 1309 break; 1310 1311 if( j == def_blk->_num_succs ) { 1312 // Block at same level in dom-tree is not a successor. It needs a 1313 // PhiNode, the PhiNode uses from the def and IT's uses need fixup. 1314 Node_Array inputs; 1315 for(uint k = 1; k < use_blk->num_preds(); k++) { 1316 Block* block = get_block_for_node(use_blk->pred(k)); 1317 inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx)); 1318 } 1319 1320 // Check to see if the use_blk already has an identical phi inserted. 1321 // If it exists, it will be at the first position since all uses of a 1322 // def are processed together. 1323 Node *phi = use_blk->get_node(1); 1324 if( phi->is_Phi() ) { 1325 fixup = phi; 1326 for (uint k = 1; k < use_blk->num_preds(); k++) { 1327 if (phi->in(k) != inputs[k]) { 1328 // Not a match 1329 fixup = nullptr; 1330 break; 1331 } 1332 } 1333 } 1334 1335 // If an existing PhiNode was not found, make a new one. 1336 if (fixup == nullptr) { 1337 Node *new_phi = PhiNode::make(use_blk->head(), def); 1338 use_blk->insert_node(new_phi, 1); 1339 map_node_to_block(new_phi, use_blk); 1340 for (uint k = 1; k < use_blk->num_preds(); k++) { 1341 new_phi->set_req(k, inputs[k]); 1342 } 1343 fixup = new_phi; 1344 } 1345 1346 } else { 1347 // Found the use just below the Catch. Make it use the clone. 1348 fixup = use_blk->get_node(n_clone_idx); 1349 } 1350 1351 return fixup; 1352 } 1353 1354 //--------------------------catch_cleanup_intra_block-------------------------- 1355 // Fix all input edges in use that reference "def". The use is in the same 1356 // block as the def and both have been cloned in each successor block. 1357 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) { 1358 1359 // Both the use and def have been cloned. For each successor block, 1360 // get the clone of the use, and make its input the clone of the def 1361 // found in that block. 1362 1363 uint use_idx = blk->find_node(use); 1364 uint offset_idx = use_idx - beg; 1365 for( uint k = 0; k < blk->_num_succs; k++ ) { 1366 // Get clone in each successor block 1367 Block *sb = blk->_succs[k]; 1368 Node *clone = sb->get_node(offset_idx+1); 1369 assert( clone->Opcode() == use->Opcode(), "" ); 1370 1371 // Make use-clone reference the def-clone 1372 catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx)); 1373 } 1374 } 1375 1376 //------------------------------catch_cleanup_inter_block--------------------- 1377 // Fix all input edges in use that reference "def". The use is in a different 1378 // block than the def. 1379 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) { 1380 if( !use_blk ) return; // Can happen if the use is a precedence edge 1381 1382 Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx); 1383 catch_cleanup_fix_all_inputs(use, def, new_def); 1384 } 1385 1386 //------------------------------call_catch_cleanup----------------------------- 1387 // If we inserted any instructions between a Call and his CatchNode, 1388 // clone the instructions on all paths below the Catch. 1389 void PhaseCFG::call_catch_cleanup(Block* block) { 1390 1391 // End of region to clone 1392 uint end = block->end_idx(); 1393 if( !block->get_node(end)->is_Catch() ) return; 1394 // Start of region to clone 1395 uint beg = end; 1396 while(!block->get_node(beg-1)->is_MachProj() || 1397 !block->get_node(beg-1)->in(0)->is_MachCall() ) { 1398 beg--; 1399 assert(beg > 0,"Catch cleanup walking beyond block boundary"); 1400 } 1401 // Range of inserted instructions is [beg, end) 1402 if( beg == end ) return; 1403 1404 // Clone along all Catch output paths. Clone area between the 'beg' and 1405 // 'end' indices. 1406 for( uint i = 0; i < block->_num_succs; i++ ) { 1407 Block *sb = block->_succs[i]; 1408 // Clone the entire area; ignoring the edge fixup for now. 1409 for( uint j = end; j > beg; j-- ) { 1410 Node *clone = block->get_node(j-1)->clone(); 1411 sb->insert_node(clone, 1); 1412 map_node_to_block(clone, sb); 1413 if (clone->needs_anti_dependence_check()) { 1414 raise_above_anti_dependences(sb, clone); 1415 if (C->failing()) { 1416 return; 1417 } 1418 } 1419 } 1420 } 1421 1422 1423 // Fixup edges. Check the def-use info per cloned Node 1424 for(uint i2 = beg; i2 < end; i2++ ) { 1425 uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block 1426 Node *n = block->get_node(i2); // Node that got cloned 1427 // Need DU safe iterator because of edge manipulation in calls. 1428 Unique_Node_List* out = new Unique_Node_List(); 1429 for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) { 1430 out->push(n->fast_out(j1)); 1431 } 1432 uint max = out->size(); 1433 for (uint j = 0; j < max; j++) {// For all users 1434 Node *use = out->pop(); 1435 Block *buse = get_block_for_node(use); 1436 if( use->is_Phi() ) { 1437 for( uint k = 1; k < use->req(); k++ ) 1438 if( use->in(k) == n ) { 1439 Block* b = get_block_for_node(buse->pred(k)); 1440 Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx); 1441 use->set_req(k, fixup); 1442 } 1443 } else { 1444 if (block == buse) { 1445 catch_cleanup_intra_block(use, n, block, beg, n_clone_idx); 1446 } else { 1447 catch_cleanup_inter_block(use, buse, n, block, n_clone_idx); 1448 } 1449 } 1450 } // End for all users 1451 1452 } // End of for all Nodes in cloned area 1453 1454 // Remove the now-dead cloned ops 1455 for(uint i3 = beg; i3 < end; i3++ ) { 1456 block->get_node(beg)->disconnect_inputs(C); 1457 block->remove_node(beg); 1458 } 1459 1460 // If the successor blocks have a CreateEx node, move it back to the top 1461 for (uint i4 = 0; i4 < block->_num_succs; i4++) { 1462 Block *sb = block->_succs[i4]; 1463 uint new_cnt = end - beg; 1464 // Remove any newly created, but dead, nodes by traversing their schedule 1465 // backwards. Here, a dead node is a node whose only outputs (if any) are 1466 // unused projections. 1467 for (uint j = new_cnt; j > 0; j--) { 1468 Node *n = sb->get_node(j); 1469 // Individual projections are examined together with all siblings when 1470 // their parent is visited. 1471 if (n->is_Proj()) { 1472 continue; 1473 } 1474 bool dead = true; 1475 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1476 Node* out = n->fast_out(i); 1477 // n is live if it has a non-projection output or a used projection. 1478 if (!out->is_Proj() || out->outcnt() > 0) { 1479 dead = false; 1480 break; 1481 } 1482 } 1483 if (dead) { 1484 // n's only outputs (if any) are unused projections scheduled next to n 1485 // (see PhaseCFG::select()). Remove these projections backwards. 1486 for (uint k = j + n->outcnt(); k > j; k--) { 1487 Node* proj = sb->get_node(k); 1488 assert(proj->is_Proj() && proj->in(0) == n, 1489 "projection should correspond to dead node"); 1490 proj->disconnect_inputs(C); 1491 sb->remove_node(k); 1492 new_cnt--; 1493 } 1494 // Now remove the node itself. 1495 n->disconnect_inputs(C); 1496 sb->remove_node(j); 1497 new_cnt--; 1498 } 1499 } 1500 // If any newly created nodes remain, move the CreateEx node to the top 1501 if (new_cnt > 0) { 1502 Node *cex = sb->get_node(1+new_cnt); 1503 if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) { 1504 sb->remove_node(1+new_cnt); 1505 sb->insert_node(cex, 1); 1506 } 1507 } 1508 } 1509 }