1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.inline.hpp"
  26 #include "gc/shared/gc_globals.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "oops/compressedOops.hpp"
  29 #include "opto/ad.hpp"
  30 #include "opto/block.hpp"
  31 #include "opto/c2compiler.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/chaitin.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "runtime/os.inline.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 // Optimization - Graph Style
  41 
  42 // Check whether val is not-null-decoded compressed oop,
  43 // i.e. will grab into the base of the heap if it represents null.
  44 static bool accesses_heap_base_zone(Node *val) {
  45   if (CompressedOops::base() != nullptr) { // Implies UseCompressedOops.
  46     if (val && val->is_Mach()) {
  47       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  48         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  49         // decode null to point to the heap base (Decode_NN).
  50         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  51           return true;
  52         }
  53       }
  54       // Must recognize load operation with Decode matched in memory operand.
  55       // We should not reach here except for PPC/AIX, as os::zero_page_read_protected()
  56       // returns true everywhere else. On PPC, no such memory operands
  57       // exist, therefore we did not yet implement a check for such operands.
  58       NOT_AIX(Unimplemented());
  59     }
  60   }
  61   return false;
  62 }
  63 
  64 static bool needs_explicit_null_check_for_read(Node *val) {
  65   // On some OSes (AIX) the page at address 0 is only write protected.
  66   // If so, only Store operations will trap.
  67   if (os::zero_page_read_protected()) {
  68     return false;  // Implicit null check will work.
  69   }
  70   // Also a read accessing the base of a heap-based compressed heap will trap.
  71   if (accesses_heap_base_zone(val) &&         // Hits the base zone page.
  72       CompressedOops::use_implicit_null_checks()) { // Base zone page is protected.
  73     return false;
  74   }
  75 
  76   return true;
  77 }
  78 
  79 void PhaseCFG::move_node_and_its_projections_to_block(Node* n, Block* b) {
  80   assert(!is_CFG(n), "cannot move CFG node");
  81   Block* old = get_block_for_node(n);
  82   old->find_remove(n);
  83   b->add_inst(n);
  84   map_node_to_block(n, b);
  85   // Check for Mach projections that also need to be moved.
  86   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
  87     Node* out = n->fast_out(i);
  88     if (!out->is_MachProj()) {
  89       continue;
  90     }
  91     assert(!n->is_MachProj(), "nested projections are not allowed");
  92     move_node_and_its_projections_to_block(out, b);
  93   }
  94 }
  95 
  96 void PhaseCFG::ensure_node_is_at_block_or_above(Node* n, Block* b) {
  97   assert(!is_CFG(n), "cannot move CFG node");
  98   Block* current = get_block_for_node(n);
  99   if (current->dominates(b)) {
 100     return; // n is already placed above b, do nothing.
 101   }
 102   // We only expect nodes without further inputs, like MachTemp or load Base.
 103   assert(n->req() == 0 || (n->req() == 1 && n->in(0) == (Node*)C->root()),
 104          "need for recursive hoisting not expected");
 105   assert(b->dominates(current), "precondition: can only move n to b if b dominates n");
 106   move_node_and_its_projections_to_block(n, b);
 107 }
 108 
 109 //------------------------------implicit_null_check----------------------------
 110 // Detect implicit-null-check opportunities.  Basically, find null checks
 111 // with suitable memory ops nearby.  Use the memory op to do the null check.
 112 // I can generate a memory op if there is not one nearby.
 113 // The proj is the control projection for the not-null case.
 114 // The val is the pointer being checked for nullness or
 115 // decodeHeapOop_not_null node if it did not fold into address.
 116 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
 117   // Assume if null check need for 0 offset then always needed
 118   // Intel solaris doesn't support any null checks yet and no
 119   // mechanism exists (yet) to set the switches at an os_cpu level
 120   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
 121 
 122   // Make sure the ptr-is-null path appears to be uncommon!
 123   float f = block->end()->as_MachIf()->_prob;
 124   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
 125   if( f > PROB_UNLIKELY_MAG(4) ) return;
 126 
 127   uint bidx = 0;                // Capture index of value into memop
 128   bool was_store;               // Memory op is a store op
 129 
 130   // Get the successor block for if the test ptr is non-null
 131   Block* not_null_block;  // this one goes with the proj
 132   Block* null_block;
 133   if (block->get_node(block->number_of_nodes()-1) == proj) {
 134     null_block     = block->_succs[0];
 135     not_null_block = block->_succs[1];
 136   } else {
 137     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 138     not_null_block = block->_succs[0];
 139     null_block     = block->_succs[1];
 140   }
 141   while (null_block->is_Empty() == Block::empty_with_goto) {
 142     null_block     = null_block->_succs[0];
 143   }
 144 
 145   // Search the exception block for an uncommon trap.
 146   // (See Parse::do_if and Parse::do_ifnull for the reason
 147   // we need an uncommon trap.  Briefly, we need a way to
 148   // detect failure of this optimization, as in 6366351.)
 149   {
 150     bool found_trap = false;
 151     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 152       Node* nn = null_block->get_node(i1);
 153       if (nn->is_MachCall() &&
 154           nn->as_MachCall()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point()) {
 155         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 156         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 157           jint tr_con = trtype->is_int()->get_con();
 158           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 159           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 160           assert((int)reason < (int)BitsPerInt, "recode bit map");
 161           if (is_set_nth_bit(allowed_reasons, (int) reason)
 162               && action != Deoptimization::Action_none) {
 163             // This uncommon trap is sure to recompile, eventually.
 164             // When that happens, C->too_many_traps will prevent
 165             // this transformation from happening again.
 166             found_trap = true;
 167           }
 168         }
 169         break;
 170       }
 171     }
 172     if (!found_trap) {
 173       // We did not find an uncommon trap.
 174       return;
 175     }
 176   }
 177 
 178   // Check for decodeHeapOop_not_null node which did not fold into address
 179   bool is_decoden = ((intptr_t)val) & 1;
 180   val = (Node*)(((intptr_t)val) & ~1);
 181 
 182   assert(!is_decoden ||
 183          ((val->in(0) == nullptr) && val->is_Mach() &&
 184           (val->as_Mach()->ideal_Opcode() == Op_DecodeN)), "sanity");
 185 
 186   // Search the successor block for a load or store who's base value is also
 187   // the tested value.  There may be several.
 188   MachNode *best = nullptr;        // Best found so far
 189   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 190     Node *m = val->out(i);
 191     if( !m->is_Mach() ) continue;
 192     MachNode *mach = m->as_Mach();
 193     if (mach->barrier_data() != 0 &&
 194         !mach->is_late_expanded_null_check_candidate()) {
 195       // Using memory accesses with barriers to perform implicit null checks is
 196       // only supported if these are explicit marked as emitting a candidate
 197       // memory access instruction at their initial address. If not marked as
 198       // such, barrier-tagged operations might expand into one or several memory
 199       // access instructions located at arbitrary offsets from the initial
 200       // address, which would invalidate the implicit null exception table.
 201       continue;
 202     }
 203     was_store = false;
 204     int iop = mach->ideal_Opcode();
 205     switch( iop ) {
 206     case Op_LoadB:
 207     case Op_LoadUB:
 208     case Op_LoadUS:
 209     case Op_LoadD:
 210     case Op_LoadF:
 211     case Op_LoadI:
 212     case Op_LoadL:
 213     case Op_LoadP:
 214     case Op_LoadN:
 215     case Op_LoadS:
 216     case Op_LoadKlass:
 217     case Op_LoadNKlass:
 218     case Op_LoadRange:
 219     case Op_LoadD_unaligned:
 220     case Op_LoadL_unaligned:
 221       assert(mach->in(2) == val, "should be address");
 222       break;
 223     case Op_StoreB:
 224     case Op_StoreC:
 225     case Op_StoreD:
 226     case Op_StoreF:
 227     case Op_StoreI:
 228     case Op_StoreL:
 229     case Op_StoreLSpecial:
 230     case Op_StoreP:
 231     case Op_StoreN:
 232     case Op_StoreNKlass:
 233       was_store = true;         // Memory op is a store op
 234       // Stores will have their address in slot 2 (memory in slot 1).
 235       // If the value being nul-checked is in another slot, it means we
 236       // are storing the checked value, which does NOT check the value!
 237       if( mach->in(2) != val ) continue;
 238       break;                    // Found a memory op?
 239     case Op_StrComp:
 240     case Op_StrEquals:
 241     case Op_StrIndexOf:
 242     case Op_StrIndexOfChar:
 243     case Op_AryEq:
 244     case Op_VectorizedHashCode:
 245     case Op_StrInflatedCopy:
 246     case Op_StrCompressedCopy:
 247     case Op_EncodeISOArray:
 248     case Op_CountPositives:
 249       // Not a legit memory op for implicit null check regardless of
 250       // embedded loads
 251       continue;
 252     default:                    // Also check for embedded loads
 253       if( !mach->needs_anti_dependence_check() )
 254         continue;               // Not an memory op; skip it
 255       if( must_clone[iop] ) {
 256         // Do not move nodes which produce flags because
 257         // RA will try to clone it to place near branch and
 258         // it will cause recompilation, see clone_node().
 259         continue;
 260       }
 261       {
 262         // Check that value is used in memory address in
 263         // instructions with embedded load (CmpP val1,(val2+off)).
 264         Node* base;
 265         Node* index;
 266         const MachOper* oper = mach->memory_inputs(base, index);
 267         if (oper == nullptr || oper == (MachOper*)-1) {
 268           continue;             // Not an memory op; skip it
 269         }
 270         if (val == base ||
 271             (val == index && val->bottom_type()->isa_narrowoop())) {
 272           break;                // Found it
 273         } else {
 274           continue;             // Skip it
 275         }
 276       }
 277       break;
 278     }
 279 
 280     // On some OSes (AIX) the page at address 0 is only write protected.
 281     // If so, only Store operations will trap.
 282     // But a read accessing the base of a heap-based compressed heap will trap.
 283     if (!was_store && needs_explicit_null_check_for_read(val)) {
 284       continue;
 285     }
 286 
 287     // Check that node's control edge is not-null block's head or dominates it,
 288     // otherwise we can't hoist it because there are other control dependencies.
 289     Node* ctrl = mach->in(0);
 290     if (ctrl != nullptr && !(ctrl == not_null_block->head() ||
 291         get_block_for_node(ctrl)->dominates(not_null_block))) {
 292       continue;
 293     }
 294 
 295     // check if the offset is not too high for implicit exception
 296     {
 297       intptr_t offset = 0;
 298       const TypePtr *adr_type = nullptr;  // Do not need this return value here
 299       const Node* base = mach->get_base_and_disp(offset, adr_type);
 300       if (base == nullptr || base == NodeSentinel) {
 301         // Narrow oop address doesn't have base, only index.
 302         // Give up if offset is beyond page size or if heap base is not protected.
 303         if (val->bottom_type()->isa_narrowoop() &&
 304             (MacroAssembler::needs_explicit_null_check(offset) ||
 305              !CompressedOops::use_implicit_null_checks()))
 306           continue;
 307         // cannot reason about it; is probably not implicit null exception
 308       } else {
 309         const TypePtr* tptr;
 310         if ((UseCompressedOops && CompressedOops::shift() == 0) ||
 311             (UseCompressedClassPointers && CompressedKlassPointers::shift() == 0)) {
 312           // 32-bits narrow oop can be the base of address expressions
 313           tptr = base->get_ptr_type();
 314         } else {
 315           // only regular oops are expected here
 316           tptr = base->bottom_type()->is_ptr();
 317         }
 318         // Give up if offset is not a compile-time constant.
 319         if (offset == Type::OffsetBot || tptr->offset() == Type::OffsetBot)
 320           continue;
 321         offset += tptr->offset(); // correct if base is offsetted
 322         // Give up if reference is beyond page size.
 323         if (MacroAssembler::needs_explicit_null_check(offset))
 324           continue;
 325         // Give up if base is a decode node and the heap base is not protected.
 326         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 327             !CompressedOops::use_implicit_null_checks())
 328           continue;
 329       }
 330     }
 331 
 332     // Check ctrl input to see if the null-check dominates the memory op
 333     Block *cb = get_block_for_node(mach);
 334     cb = cb->_idom;             // Always hoist at least 1 block
 335     if( !was_store ) {          // Stores can be hoisted only one block
 336       while( cb->_dom_depth > (block->_dom_depth + 1))
 337         cb = cb->_idom;         // Hoist loads as far as we want
 338       // The non-null-block should dominate the memory op, too. Live
 339       // range spilling will insert a spill in the non-null-block if it is
 340       // needs to spill the memory op for an implicit null check.
 341       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 342         if (cb != not_null_block) continue;
 343         cb = cb->_idom;
 344       }
 345     }
 346     if( cb != block ) continue;
 347 
 348     // Found a memory user; see if it can be hoisted to check-block
 349     uint vidx = 0;              // Capture index of value into memop
 350     uint j;
 351     for( j = mach->req()-1; j > 0; j-- ) {
 352       if( mach->in(j) == val ) {
 353         vidx = j;
 354         // Ignore DecodeN val which could be hoisted to where needed.
 355         if( is_decoden ) continue;
 356       }
 357       if (mach->in(j)->is_MachTemp()) {
 358         assert(mach->in(j)->outcnt() == 1, "MachTemp nodes should not be shared");
 359         // Ignore MachTemp inputs, they can be safely hoisted with the candidate.
 360         // MachTemp nodes have no inputs themselves and are only used to reserve
 361         // a scratch register for the implementation of the node (e.g. in
 362         // late-expanded GC barriers).
 363         continue;
 364       }
 365       // Block of memory-op input
 366       Block* inb = get_block_for_node(mach->in(j));
 367       if (mach->in(j)->is_Con() && mach->in(j)->req() == 1 && inb == get_block_for_node(mach)) {
 368         // Ignore constant loads scheduled in the same block (we can simply hoist them as well)
 369         continue;
 370       }
 371       Block *b = block;          // Start from nul check
 372       while( b != inb && b->_dom_depth > inb->_dom_depth )
 373         b = b->_idom;           // search upwards for input
 374       // See if input dominates null check
 375       if( b != inb )
 376         break;
 377     }
 378     if( j > 0 )
 379       continue;
 380     Block *mb = get_block_for_node(mach);
 381     // Hoisting stores requires more checks for the anti-dependence case.
 382     // Give up hoisting if we have to move the store past any load.
 383     if (was_store) {
 384        // Make sure control does not do a merge (would have to check allpaths)
 385        if (mb->num_preds() != 2) {
 386          continue;
 387        }
 388        // mach is a store, hence block is the immediate dominator of mb.
 389        // Due to the null-check shape of block (where its successors cannot re-join),
 390        // block must be the direct predecessor of mb.
 391        assert(get_block_for_node(mb->pred(1)) == block, "Unexpected predecessor block");
 392        uint k;
 393        uint num_nodes = mb->number_of_nodes();
 394        for (k = 1; k < num_nodes; k++) {
 395          Node *n = mb->get_node(k);
 396          if (n->needs_anti_dependence_check() &&
 397              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory)) {
 398            break;              // Found anti-dependent load
 399          }
 400        }
 401        if (k < num_nodes) {
 402          continue;             // Found anti-dependent load
 403        }
 404     }
 405 
 406     // Make sure this memory op is not already being used for a NullCheck
 407     Node *e = mb->end();
 408     if( e->is_MachNullCheck() && e->in(1) == mach )
 409       continue;                 // Already being used as a null check
 410 
 411     // Found a candidate!  Pick one with least dom depth - the highest
 412     // in the dom tree should be closest to the null check.
 413     if (best == nullptr || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 414       best = mach;
 415       bidx = vidx;
 416     }
 417   }
 418   // No candidate!
 419   if (best == nullptr) {
 420     return;
 421   }
 422 
 423   // ---- Found an implicit null check
 424 #ifndef PRODUCT
 425   extern uint implicit_null_checks;
 426   implicit_null_checks++;
 427 #endif
 428 
 429   if( is_decoden ) {
 430     // Check if we need to hoist decodeHeapOop_not_null first.
 431     Block *valb = get_block_for_node(val);
 432     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 433       // Hoist it up to the end of the test block together with its inputs if they exist.
 434       for (uint i = 2; i < val->req(); i++) {
 435         // DecodeN has 2 regular inputs + optional MachTemp or load Base inputs.
 436         // Inputs of val may already be early enough, but if not move them together with val.
 437         ensure_node_is_at_block_or_above(val->in(i), block);
 438       }
 439       move_node_and_its_projections_to_block(val, block);
 440     }
 441   }
 442 
 443   // Hoist constant load inputs as well.
 444   for (uint i = 1; i < best->req(); ++i) {
 445     Node* n = best->in(i);
 446     if (n->is_Con() && get_block_for_node(n) == get_block_for_node(best)) {
 447       get_block_for_node(n)->find_remove(n);
 448       block->add_inst(n);
 449       map_node_to_block(n, block);
 450       // Constant loads may kill flags (for example, when XORing a register).
 451       // Check for flag-killing projections that also need to be hoisted.
 452       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 453         Node* proj = n->fast_out(j);
 454         if (proj->is_MachProj()) {
 455           get_block_for_node(proj)->find_remove(proj);
 456           block->add_inst(proj);
 457           map_node_to_block(proj, block);
 458         }
 459       }
 460     }
 461   }
 462 
 463 
 464   // Move any MachTemp inputs to the end of the test block.
 465   for (uint i = 0; i < best->req(); i++) {
 466     Node* n = best->in(i);
 467     if (n == nullptr || !n->is_MachTemp()) {
 468       continue;
 469     }
 470     ensure_node_is_at_block_or_above(n, block);
 471   }
 472 
 473   // Hoist the memory candidate up to the end of the test block.
 474   move_node_and_its_projections_to_block(best, block);
 475 
 476   // Move the control dependence if it is pinned to not-null block.
 477   // Don't change it in other cases: null or dominating control.
 478   Node* ctrl = best->in(0);
 479   if (ctrl != nullptr && get_block_for_node(ctrl) == not_null_block) {
 480     // Set it to control edge of null check.
 481     best->set_req(0, proj->in(0)->in(0));
 482   }
 483 
 484   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 485   // One of two graph shapes got matched:
 486   //   (IfTrue  (If (Bool NE (CmpP ptr null))))
 487   //   (IfFalse (If (Bool EQ (CmpP ptr null))))
 488   // null checks are always branch-if-eq.  If we see a IfTrue projection
 489   // then we are replacing a 'ne' test with a 'eq' null check test.
 490   // We need to flip the projections to keep the same semantics.
 491   if( proj->Opcode() == Op_IfTrue ) {
 492     // Swap order of projections in basic block to swap branch targets
 493     Node *tmp1 = block->get_node(block->end_idx()+1);
 494     Node *tmp2 = block->get_node(block->end_idx()+2);
 495     block->map_node(tmp2, block->end_idx()+1);
 496     block->map_node(tmp1, block->end_idx()+2);
 497     Node *tmp = new Node(C->top()); // Use not null input
 498     tmp1->replace_by(tmp);
 499     tmp2->replace_by(tmp1);
 500     tmp->replace_by(tmp2);
 501     tmp->destruct(nullptr);
 502   }
 503 
 504   // Remove the existing null check; use a new implicit null check instead.
 505   // Since schedule-local needs precise def-use info, we need to correct
 506   // it as well.
 507   Node *old_tst = proj->in(0);
 508   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 509   block->map_node(nul_chk, block->end_idx());
 510   map_node_to_block(nul_chk, block);
 511   // Redirect users of old_test to nul_chk
 512   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 513     old_tst->last_out(i2)->set_req(0, nul_chk);
 514   // Clean-up any dead code
 515   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 516     Node* in = old_tst->in(i3);
 517     old_tst->set_req(i3, nullptr);
 518     if (in->outcnt() == 0) {
 519       // Remove dead input node
 520       in->disconnect_inputs(C);
 521       block->find_remove(in);
 522     }
 523   }
 524 
 525   latency_from_uses(nul_chk);
 526   latency_from_uses(best);
 527 
 528   // insert anti-dependences to defs in this block
 529   if (! best->needs_anti_dependence_check()) {
 530     for (uint k = 1; k < block->number_of_nodes(); k++) {
 531       Node *n = block->get_node(k);
 532       if (n->needs_anti_dependence_check() &&
 533           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 534         // Found anti-dependent load
 535         raise_above_anti_dependences(block, n);
 536         if (C->failing()) {
 537           return;
 538         }
 539       }
 540     }
 541   }
 542 }
 543 
 544 
 545 //------------------------------select-----------------------------------------
 546 // Select a nice fellow from the worklist to schedule next. If there is only one
 547 // choice, then use it. CreateEx nodes that are initially ready must start their
 548 // blocks and are given the highest priority, by being placed at the beginning
 549 // of the worklist. Next after initially-ready CreateEx nodes are projections,
 550 // which must follow their parents, and CreateEx nodes with local input
 551 // dependencies. Next are constants and CheckCastPP nodes. There are a number of
 552 // other special cases, for instructions that consume condition codes, et al.
 553 // These are chosen immediately. Some instructions are required to immediately
 554 // precede the last instruction in the block, and these are taken last. Of the
 555 // remaining cases (most), choose the instruction with the greatest latency
 556 // (that is, the most number of pseudo-cycles required to the end of the
 557 // routine). If there is a tie, choose the instruction with the most inputs.
 558 Node* PhaseCFG::select(
 559   Block* block,
 560   Node_List &worklist,
 561   GrowableArray<int> &ready_cnt,
 562   VectorSet &next_call,
 563   uint sched_slot,
 564   intptr_t* recalc_pressure_nodes) {
 565 
 566   // If only a single entry on the stack, use it
 567   uint cnt = worklist.size();
 568   if (cnt == 1) {
 569     Node *n = worklist[0];
 570     worklist.map(0,worklist.pop());
 571     return n;
 572   }
 573 
 574   uint choice  = 0; // Bigger is most important
 575   uint latency = 0; // Bigger is scheduled first
 576   uint score   = 0; // Bigger is better
 577   int idx = -1;     // Index in worklist
 578   int cand_cnt = 0; // Candidate count
 579   bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
 580 
 581   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 582     // Order in worklist is used to break ties.
 583     // See caller for how this is used to delay scheduling
 584     // of induction variable increments to after the other
 585     // uses of the phi are scheduled.
 586     Node *n = worklist[i];      // Get Node on worklist
 587 
 588     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 589     if (iop == Op_CreateEx || n->is_Proj()) {
 590       // CreateEx nodes that are initially ready must start the block (after Phi
 591       // and Parm nodes which are pre-scheduled) and get top priority. This is
 592       // currently enforced by placing them at the beginning of the initial
 593       // worklist and selecting them eagerly here. After these, projections and
 594       // other CreateEx nodes are selected with equal priority.
 595       worklist.map(i,worklist.pop());
 596       return n;
 597     }
 598 
 599     if (n->Opcode() == Op_Con || iop == Op_CheckCastPP) {
 600       // Constants and CheckCastPP nodes have higher priority than the rest of
 601       // the nodes tested below. Record as current winner, but keep looking for
 602       // higher-priority nodes in the worklist.
 603       choice  = 4;
 604       // Latency and score are only used to break ties among low-priority nodes.
 605       latency = 0;
 606       score   = 0;
 607       idx     = i;
 608       continue;
 609     }
 610 
 611     // Final call in a block must be adjacent to 'catch'
 612     Node *e = block->end();
 613     if( e->is_Catch() && e->in(0)->in(0) == n )
 614       continue;
 615 
 616     // Memory op for an implicit null check has to be at the end of the block
 617     if( e->is_MachNullCheck() && e->in(1) == n )
 618       continue;
 619 
 620     // Schedule IV increment last.
 621     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 622       // Cmp might be matched into CountedLoopEnd node.
 623       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 624       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 625         continue;
 626       }
 627     }
 628 
 629     uint n_choice = 2;
 630 
 631     // See if this instruction is consumed by a branch. If so, then (as the
 632     // branch is the last instruction in the basic block) force it to the
 633     // end of the basic block
 634     if ( must_clone[iop] ) {
 635       // See if any use is a branch
 636       bool found_machif = false;
 637 
 638       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 639         Node* use = n->fast_out(j);
 640 
 641         // The use is a conditional branch, make them adjacent
 642         if (use->is_MachIf() && get_block_for_node(use) == block) {
 643           found_machif = true;
 644           break;
 645         }
 646 
 647         // More than this instruction pending for successor to be ready,
 648         // don't choose this if other opportunities are ready
 649         if (ready_cnt.at(use->_idx) > 1)
 650           n_choice = 1;
 651       }
 652 
 653       // loop terminated, prefer not to use this instruction
 654       if (found_machif)
 655         continue;
 656     }
 657 
 658     // See if this has a predecessor that is "must_clone", i.e. sets the
 659     // condition code. If so, choose this first
 660     for (uint j = 0; j < n->req() ; j++) {
 661       Node *inn = n->in(j);
 662       if (inn) {
 663         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 664           n_choice = 3;
 665           break;
 666         }
 667       }
 668     }
 669 
 670     // MachTemps should be scheduled last so they are near their uses
 671     if (n->is_MachTemp()) {
 672       n_choice = 1;
 673     }
 674 
 675     uint n_latency = get_latency_for_node(n);
 676     uint n_score = n->req();   // Many inputs get high score to break ties
 677 
 678     if (OptoRegScheduling && block_size_threshold_ok) {
 679       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 680         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 681         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 682         // simulate the notion that we just picked this node to schedule
 683         n->add_flag(Node::Flag_is_scheduled);
 684         // now calculate its effect upon the graph if we did
 685         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 686         // return its state for finalize in case somebody else wins
 687         n->remove_flag(Node::Flag_is_scheduled);
 688         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 689         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 690         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 691         recalc_pressure_nodes[n->_idx] = int_pressure;
 692         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 693       }
 694 
 695       if (_scheduling_for_pressure) {
 696         latency = n_latency;
 697         if (n_choice != 3) {
 698           // Now evaluate each register pressure component based on threshold in the score.
 699           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 700           // on a single instruction, but we might see it shrink on both banks.
 701           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 702           // live ranges that terminate on this instruction.
 703           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 704             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 705             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 706           }
 707           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 708             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 709             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 710           }
 711         } else {
 712           // make sure we choose these candidates
 713           score = 0;
 714         }
 715       }
 716     }
 717 
 718     // Keep best latency found
 719     cand_cnt++;
 720     if (choice < n_choice ||
 721         (choice == n_choice &&
 722          ((StressLCM && C->randomized_select(cand_cnt)) ||
 723           (!StressLCM &&
 724            (latency < n_latency ||
 725             (latency == n_latency &&
 726              (score < n_score))))))) {
 727       choice  = n_choice;
 728       latency = n_latency;
 729       score   = n_score;
 730       idx     = i;               // Also keep index in worklist
 731     }
 732   } // End of for all ready nodes in worklist
 733 
 734   guarantee(idx >= 0, "index should be set");
 735   Node *n = worklist[(uint)idx];      // Get the winner
 736 
 737   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 738   return n;
 739 }
 740 
 741 //-------------------------adjust_register_pressure----------------------------
 742 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 743   PhaseLive* liveinfo = _regalloc->get_live();
 744   IndexSet* liveout = liveinfo->live(block);
 745   // first adjust the register pressure for the sources
 746   for (uint i = 1; i < n->req(); i++) {
 747     bool lrg_ends = false;
 748     Node *src_n = n->in(i);
 749     if (src_n == nullptr) continue;
 750     if (!src_n->is_Mach()) continue;
 751     uint src = _regalloc->_lrg_map.find(src_n);
 752     if (src == 0) continue;
 753     LRG& lrg_src = _regalloc->lrgs(src);
 754     // detect if the live range ends or not
 755     if (liveout->member(src) == false) {
 756       lrg_ends = true;
 757       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 758         Node* m = src_n->fast_out(j); // Get user
 759         if (m == n) continue;
 760         if (!m->is_Mach()) continue;
 761         MachNode *mach = m->as_Mach();
 762         bool src_matches = false;
 763         int iop = mach->ideal_Opcode();
 764 
 765         switch (iop) {
 766         case Op_StoreB:
 767         case Op_StoreC:
 768         case Op_StoreD:
 769         case Op_StoreF:
 770         case Op_StoreI:
 771         case Op_StoreL:
 772         case Op_StoreLSpecial:
 773         case Op_StoreP:
 774         case Op_StoreN:
 775         case Op_StoreVector:
 776         case Op_StoreVectorMasked:
 777         case Op_StoreVectorScatter:
 778         case Op_StoreVectorScatterMasked:
 779         case Op_StoreNKlass:
 780           for (uint k = 1; k < m->req(); k++) {
 781             Node *in = m->in(k);
 782             if (in == src_n) {
 783               src_matches = true;
 784               break;
 785             }
 786           }
 787           break;
 788 
 789         default:
 790           src_matches = true;
 791           break;
 792         }
 793 
 794         // If we have a store as our use, ignore the non source operands
 795         if (src_matches == false) continue;
 796 
 797         // Mark every unscheduled use which is not n with a recalculation
 798         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 799           if (finalize_mode && !m->is_Phi()) {
 800             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 801           }
 802           lrg_ends = false;
 803         }
 804       }
 805     }
 806     // if none, this live range ends and we can adjust register pressure
 807     if (lrg_ends) {
 808       if (finalize_mode) {
 809         _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 810       } else {
 811         _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 812       }
 813     }
 814   }
 815 
 816   // now add the register pressure from the dest and evaluate which heuristic we should use:
 817   // 1.) The default, latency scheduling
 818   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 819   uint dst = _regalloc->_lrg_map.find(n);
 820   if (dst != 0) {
 821     LRG& lrg_dst = _regalloc->lrgs(dst);
 822     if (finalize_mode) {
 823       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 824       // check to see if we fall over the register pressure cliff here
 825       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 826         _scheduling_for_pressure = true;
 827       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 828         _scheduling_for_pressure = true;
 829       } else {
 830         // restore latency scheduling mode
 831         _scheduling_for_pressure = false;
 832       }
 833     } else {
 834       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 835     }
 836   }
 837 }
 838 
 839 //------------------------------set_next_call----------------------------------
 840 void PhaseCFG::set_next_call(const Block* block, Node* init, VectorSet& next_call) const {
 841   Node_List worklist;
 842   worklist.push(init);
 843 
 844   while (worklist.size() > 0) {
 845     Node* n = worklist.pop();
 846     if (next_call.test_set(n->_idx)) continue;
 847     for (uint i = 0; i < n->len(); i++) {
 848       Node* m = n->in(i);
 849       if (m == nullptr) continue;  // must see all nodes in block that precede call
 850       if (get_block_for_node(m) == block) {
 851         worklist.push(m);
 852       }
 853     }
 854   }
 855 }
 856 
 857 //------------------------------needed_for_next_call---------------------------
 858 // Set the flag 'next_call' for each Node that is needed for the next call to
 859 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 860 // next subroutine call get priority - basically it moves things NOT needed
 861 // for the next call till after the call.  This prevents me from trying to
 862 // carry lots of stuff live across a call.
 863 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 864   // Find the next control-defining Node in this block
 865   Node* call = nullptr;
 866   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 867     Node* m = this_call->fast_out(i);
 868     if (get_block_for_node(m) == block && // Local-block user
 869         m != this_call &&       // Not self-start node
 870         m->is_MachCall()) {
 871       call = m;
 872       break;
 873     }
 874   }
 875   if (call == nullptr)  return;    // No next call (e.g., block end is near)
 876   // Set next-call for all inputs to this call
 877   set_next_call(block, call, next_call);
 878 }
 879 
 880 //------------------------------add_call_kills-------------------------------------
 881 // helper function that adds caller save registers to MachProjNode
 882 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 883   // Fill in the kill mask for the call
 884   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 885     if( !regs.Member(r) ) {     // Not already defined by the call
 886       // Save-on-call register?
 887       if ((save_policy[r] == 'C') ||
 888           (save_policy[r] == 'A') ||
 889           ((save_policy[r] == 'E') && exclude_soe)) {
 890         proj->_rout.Insert(r);
 891       }
 892     }
 893   }
 894 }
 895 
 896 
 897 //------------------------------sched_call-------------------------------------
 898 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 899   RegMask regs;
 900 
 901   // Schedule all the users of the call right now.  All the users are
 902   // projection Nodes, so they must be scheduled next to the call.
 903   // Collect all the defined registers.
 904   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 905     Node* n = mcall->fast_out(i);
 906     assert( n->is_MachProj(), "" );
 907     int n_cnt = ready_cnt.at(n->_idx)-1;
 908     ready_cnt.at_put(n->_idx, n_cnt);
 909     assert( n_cnt == 0, "" );
 910     // Schedule next to call
 911     block->map_node(n, node_cnt++);
 912     // Collect defined registers
 913     regs.OR(n->out_RegMask());
 914     // Check for scheduling the next control-definer
 915     if( n->bottom_type() == Type::CONTROL )
 916       // Warm up next pile of heuristic bits
 917       needed_for_next_call(block, n, next_call);
 918 
 919     // Children of projections are now all ready
 920     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 921       Node* m = n->fast_out(j); // Get user
 922       if(get_block_for_node(m) != block) {
 923         continue;
 924       }
 925       if( m->is_Phi() ) continue;
 926       int m_cnt = ready_cnt.at(m->_idx) - 1;
 927       ready_cnt.at_put(m->_idx, m_cnt);
 928       if( m_cnt == 0 )
 929         worklist.push(m);
 930     }
 931 
 932   }
 933 
 934   // Act as if the call defines the Frame Pointer.
 935   // Certainly the FP is alive and well after the call.
 936   regs.Insert(_matcher.c_frame_pointer());
 937 
 938   // Set all registers killed and not already defined by the call.
 939   uint r_cnt = mcall->tf()->range_cc()->cnt();
 940   int op = mcall->ideal_Opcode();
 941   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 942   map_node_to_block(proj, block);
 943   block->insert_node(proj, node_cnt++);
 944 
 945   // Select the right register save policy.
 946   const char *save_policy = nullptr;
 947   switch (op) {
 948     case Op_CallRuntime:
 949     case Op_CallLeaf:
 950     case Op_CallLeafNoFP:
 951     case Op_CallLeafVector:
 952       // Calling C code so use C calling convention
 953       save_policy = _matcher._c_reg_save_policy;
 954       break;
 955 
 956     case Op_CallStaticJava:
 957     case Op_CallDynamicJava:
 958       // Calling Java code so use Java calling convention
 959       save_policy = _matcher._register_save_policy;
 960       break;
 961 
 962     default:
 963       ShouldNotReachHere();
 964   }
 965 
 966   // When using CallRuntime mark SOE registers as killed by the call
 967   // so values that could show up in the RegisterMap aren't live in a
 968   // callee saved register since the register wouldn't know where to
 969   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 970   // have debug info on them.  Strictly speaking this only needs to be
 971   // done for oops since idealreg2debugmask takes care of debug info
 972   // references but there no way to handle oops differently than other
 973   // pointers as far as the kill mask goes.
 974   bool exclude_soe = op == Op_CallRuntime;
 975 
 976   // If the call is a MethodHandle invoke, we need to exclude the
 977   // register which is used to save the SP value over MH invokes from
 978   // the mask.  Otherwise this register could be used for
 979   // deoptimization information.
 980   if (op == Op_CallStaticJava) {
 981     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 982     if (mcallstaticjava->_method_handle_invoke)
 983       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 984   }
 985 
 986   add_call_kills(proj, regs, save_policy, exclude_soe);
 987 
 988   return node_cnt;
 989 }
 990 
 991 
 992 //------------------------------schedule_local---------------------------------
 993 // Topological sort within a block.  Someday become a real scheduler.
 994 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 995   // Already "sorted" are the block start Node (as the first entry), and
 996   // the block-ending Node and any trailing control projections.  We leave
 997   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 998   // Node.  Everything else gets topo-sorted.
 999 
1000 #ifndef PRODUCT
1001     if (trace_opto_pipelining()) {
1002       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
1003       for (uint i = 0;i < block->number_of_nodes(); i++) {
1004         tty->print("# ");
1005         block->get_node(i)->dump();
1006       }
1007       tty->print_cr("#");
1008     }
1009 #endif
1010 
1011   // RootNode is already sorted
1012   if (block->number_of_nodes() == 1) {
1013     return true;
1014   }
1015 
1016   bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
1017 
1018   // We track the uses of local definitions as input dependences so that
1019   // we know when a given instruction is available to be scheduled.
1020   uint i;
1021   if (OptoRegScheduling && block_size_threshold_ok) {
1022     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
1023       Node *n = block->get_node(i);
1024       n->remove_flag(Node::Flag_is_scheduled);
1025       if (!n->is_Phi()) {
1026         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
1027       }
1028     }
1029   }
1030 
1031   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
1032   uint node_cnt = block->end_idx();
1033   uint phi_cnt = 1;
1034   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
1035     Node *n = block->get_node(i);
1036     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
1037         (n->is_Proj()  && n->in(0) == block->head()) ) {
1038       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
1039       block->map_node(block->get_node(phi_cnt), i);
1040       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
1041       if (OptoRegScheduling && block_size_threshold_ok) {
1042         // mark n as scheduled
1043         n->add_flag(Node::Flag_is_scheduled);
1044       }
1045     } else {                    // All others
1046       // Count block-local inputs to 'n'
1047       uint cnt = n->len();      // Input count
1048       uint local = 0;
1049       for( uint j=0; j<cnt; j++ ) {
1050         Node *m = n->in(j);
1051         if( m && get_block_for_node(m) == block && !m->is_top() )
1052           local++;              // One more block-local input
1053       }
1054       ready_cnt.at_put(n->_idx, local); // Count em up
1055       // A few node types require changing a required edge to a precedence edge
1056       // before allocation.
1057       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
1058           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
1059            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
1060         // MemBarAcquire could be created without Precedent edge.
1061         // del_req() replaces the specified edge with the last input edge
1062         // and then removes the last edge. If the specified edge > number of
1063         // edges the last edge will be moved outside of the input edges array
1064         // and the edge will be lost. This is why this code should be
1065         // executed only when Precedent (== TypeFunc::Parms) edge is present.
1066         Node *x = n->in(TypeFunc::Parms);
1067         if (x != nullptr && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
1068           // Old edge to node within same block will get removed, but no precedence
1069           // edge will get added because it already exists. Update ready count.
1070           int cnt = ready_cnt.at(n->_idx);
1071           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
1072           ready_cnt.at_put(n->_idx, cnt-1);
1073         }
1074         n->del_req(TypeFunc::Parms);
1075         n->add_prec(x);
1076       }
1077     }
1078   }
1079   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1080     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1081 
1082   // All the prescheduled guys do not hold back internal nodes
1083   uint i3;
1084   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1085     Node *n = block->get_node(i3);       // Get pre-scheduled
1086     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1087       Node* m = n->fast_out(j);
1088       if (get_block_for_node(m) == block) { // Local-block user
1089         int m_cnt = ready_cnt.at(m->_idx)-1;
1090         if (OptoRegScheduling && block_size_threshold_ok) {
1091           // mark m as scheduled
1092           if (m_cnt < 0) {
1093             m->add_flag(Node::Flag_is_scheduled);
1094           }
1095         }
1096         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1097       }
1098     }
1099   }
1100 
1101   Node_List delay;
1102   // Make a worklist
1103   Node_List worklist;
1104   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1105     Node *m = block->get_node(i4);
1106     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1107       if (m->is_iteratively_computed()) {
1108         // Push induction variable increments last to allow other uses
1109         // of the phi to be scheduled first. The select() method breaks
1110         // ties in scheduling by worklist order.
1111         delay.push(m);
1112       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1113         // Place CreateEx nodes that are initially ready at the beginning of the
1114         // worklist so they are selected first and scheduled at the block start.
1115         worklist.insert(0, m);
1116       } else {
1117         worklist.push(m);         // Then on to worklist!
1118       }
1119     }
1120   }
1121   while (delay.size()) {
1122     Node* d = delay.pop();
1123     worklist.push(d);
1124   }
1125 
1126   if (OptoRegScheduling && block_size_threshold_ok) {
1127     // To stage register pressure calculations we need to examine the live set variables
1128     // breaking them up by register class to compartmentalize the calculations.
1129     _regalloc->_sched_int_pressure.init(Matcher::int_pressure_limit());
1130     _regalloc->_sched_float_pressure.init(Matcher::float_pressure_limit());
1131     _regalloc->_scratch_int_pressure.init(Matcher::int_pressure_limit());
1132     _regalloc->_scratch_float_pressure.init(Matcher::float_pressure_limit());
1133 
1134     _regalloc->compute_entry_block_pressure(block);
1135   }
1136 
1137   // Warm up the 'next_call' heuristic bits
1138   needed_for_next_call(block, block->head(), next_call);
1139 
1140 #ifndef PRODUCT
1141     if (trace_opto_pipelining()) {
1142       for (uint j=0; j< block->number_of_nodes(); j++) {
1143         Node     *n = block->get_node(j);
1144         int     idx = n->_idx;
1145         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1146         tty->print("latency:%3d  ", get_latency_for_node(n));
1147         tty->print("%4d: %s\n", idx, n->Name());
1148       }
1149     }
1150 #endif
1151 
1152   uint max_idx = (uint)ready_cnt.length();
1153   // Pull from worklist and schedule
1154   while( worklist.size() ) {    // Worklist is not ready
1155 
1156 #ifndef PRODUCT
1157     if (trace_opto_pipelining()) {
1158       tty->print("#   ready list:");
1159       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1160         Node *n = worklist[i];      // Get Node on worklist
1161         tty->print(" %d", n->_idx);
1162       }
1163       tty->cr();
1164     }
1165 #endif
1166 
1167     // Select and pop a ready guy from worklist
1168     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1169     block->map_node(n, phi_cnt++);    // Schedule him next
1170 
1171     if (OptoRegScheduling && block_size_threshold_ok) {
1172       n->add_flag(Node::Flag_is_scheduled);
1173 
1174       // Now adjust the resister pressure with the node we selected
1175       if (!n->is_Phi()) {
1176         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1177       }
1178     }
1179 
1180 #ifndef PRODUCT
1181     if (trace_opto_pipelining()) {
1182       tty->print("#    select %d: %s", n->_idx, n->Name());
1183       tty->print(", latency:%d", get_latency_for_node(n));
1184       n->dump();
1185       if (Verbose) {
1186         tty->print("#   ready list:");
1187         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1188           Node *n = worklist[i];      // Get Node on worklist
1189           tty->print(" %d", n->_idx);
1190         }
1191         tty->cr();
1192       }
1193     }
1194 
1195 #endif
1196     if( n->is_MachCall() ) {
1197       MachCallNode *mcall = n->as_MachCall();
1198       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1199       continue;
1200     }
1201 
1202     if (n->is_Mach() && n->as_Mach()->has_call()) {
1203       RegMask regs;
1204       regs.Insert(_matcher.c_frame_pointer());
1205       regs.OR(n->out_RegMask());
1206 
1207       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1208       map_node_to_block(proj, block);
1209       block->insert_node(proj, phi_cnt++);
1210 
1211       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1212     }
1213 
1214     // Children are now all ready
1215     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1216       Node* m = n->fast_out(i5); // Get user
1217       if (get_block_for_node(m) != block) {
1218         continue;
1219       }
1220       if( m->is_Phi() ) continue;
1221       if (m->_idx >= max_idx) { // new node, skip it
1222         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1223         continue;
1224       }
1225       int m_cnt = ready_cnt.at(m->_idx) - 1;
1226       ready_cnt.at_put(m->_idx, m_cnt);
1227       if( m_cnt == 0 )
1228         worklist.push(m);
1229     }
1230   }
1231 
1232   if( phi_cnt != block->end_idx() ) {
1233     // did not schedule all.  Retry, Bailout, or Die
1234     if (C->subsume_loads() == true && !C->failing()) {
1235       // Retry with subsume_loads == false
1236       // If this is the first failure, the sentinel string will "stick"
1237       // to the Compile object, and the C2Compiler will see it and retry.
1238       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1239     } else {
1240       assert(C->failure_is_artificial(), "graph should be schedulable");
1241     }
1242     // assert( phi_cnt == end_idx(), "did not schedule all" );
1243     return false;
1244   }
1245 
1246   if (OptoRegScheduling && block_size_threshold_ok) {
1247     _regalloc->compute_exit_block_pressure(block);
1248     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1249     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1250   }
1251 
1252 #ifndef PRODUCT
1253   if (trace_opto_pipelining()) {
1254     tty->print_cr("#");
1255     tty->print_cr("# after schedule_local");
1256     for (uint i = 0;i < block->number_of_nodes();i++) {
1257       tty->print("# ");
1258       block->get_node(i)->dump();
1259     }
1260     tty->print_cr("# ");
1261 
1262     if (OptoRegScheduling && block_size_threshold_ok) {
1263       tty->print_cr("# pressure info : %d", block->_pre_order);
1264       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1265       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1266     }
1267     tty->cr();
1268   }
1269 #endif
1270 
1271   return true;
1272 }
1273 
1274 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1275 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1276   for (uint l = 0; l < use->len(); l++) {
1277     if (use->in(l) == old_def) {
1278       if (l < use->req()) {
1279         use->set_req(l, new_def);
1280       } else {
1281         use->rm_prec(l);
1282         use->add_prec(new_def);
1283         l--;
1284       }
1285     }
1286   }
1287 }
1288 
1289 //------------------------------catch_cleanup_find_cloned_def------------------
1290 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1291   assert( use_blk != def_blk, "Inter-block cleanup only");
1292 
1293   // The use is some block below the Catch.  Find and return the clone of the def
1294   // that dominates the use. If there is no clone in a dominating block, then
1295   // create a phi for the def in a dominating block.
1296 
1297   // Find which successor block dominates this use.  The successor
1298   // blocks must all be single-entry (from the Catch only; I will have
1299   // split blocks to make this so), hence they all dominate.
1300   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1301     use_blk = use_blk->_idom;
1302 
1303   // Find the successor
1304   Node *fixup = nullptr;
1305 
1306   uint j;
1307   for( j = 0; j < def_blk->_num_succs; j++ )
1308     if( use_blk == def_blk->_succs[j] )
1309       break;
1310 
1311   if( j == def_blk->_num_succs ) {
1312     // Block at same level in dom-tree is not a successor.  It needs a
1313     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1314     Node_Array inputs;
1315     for(uint k = 1; k < use_blk->num_preds(); k++) {
1316       Block* block = get_block_for_node(use_blk->pred(k));
1317       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1318     }
1319 
1320     // Check to see if the use_blk already has an identical phi inserted.
1321     // If it exists, it will be at the first position since all uses of a
1322     // def are processed together.
1323     Node *phi = use_blk->get_node(1);
1324     if( phi->is_Phi() ) {
1325       fixup = phi;
1326       for (uint k = 1; k < use_blk->num_preds(); k++) {
1327         if (phi->in(k) != inputs[k]) {
1328           // Not a match
1329           fixup = nullptr;
1330           break;
1331         }
1332       }
1333     }
1334 
1335     // If an existing PhiNode was not found, make a new one.
1336     if (fixup == nullptr) {
1337       Node *new_phi = PhiNode::make(use_blk->head(), def);
1338       use_blk->insert_node(new_phi, 1);
1339       map_node_to_block(new_phi, use_blk);
1340       for (uint k = 1; k < use_blk->num_preds(); k++) {
1341         new_phi->set_req(k, inputs[k]);
1342       }
1343       fixup = new_phi;
1344     }
1345 
1346   } else {
1347     // Found the use just below the Catch.  Make it use the clone.
1348     fixup = use_blk->get_node(n_clone_idx);
1349   }
1350 
1351   return fixup;
1352 }
1353 
1354 //--------------------------catch_cleanup_intra_block--------------------------
1355 // Fix all input edges in use that reference "def".  The use is in the same
1356 // block as the def and both have been cloned in each successor block.
1357 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1358 
1359   // Both the use and def have been cloned. For each successor block,
1360   // get the clone of the use, and make its input the clone of the def
1361   // found in that block.
1362 
1363   uint use_idx = blk->find_node(use);
1364   uint offset_idx = use_idx - beg;
1365   for( uint k = 0; k < blk->_num_succs; k++ ) {
1366     // Get clone in each successor block
1367     Block *sb = blk->_succs[k];
1368     Node *clone = sb->get_node(offset_idx+1);
1369     assert( clone->Opcode() == use->Opcode(), "" );
1370 
1371     // Make use-clone reference the def-clone
1372     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1373   }
1374 }
1375 
1376 //------------------------------catch_cleanup_inter_block---------------------
1377 // Fix all input edges in use that reference "def".  The use is in a different
1378 // block than the def.
1379 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1380   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1381 
1382   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1383   catch_cleanup_fix_all_inputs(use, def, new_def);
1384 }
1385 
1386 //------------------------------call_catch_cleanup-----------------------------
1387 // If we inserted any instructions between a Call and his CatchNode,
1388 // clone the instructions on all paths below the Catch.
1389 void PhaseCFG::call_catch_cleanup(Block* block) {
1390 
1391   // End of region to clone
1392   uint end = block->end_idx();
1393   if( !block->get_node(end)->is_Catch() ) return;
1394   // Start of region to clone
1395   uint beg = end;
1396   while(!block->get_node(beg-1)->is_MachProj() ||
1397         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1398     beg--;
1399     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1400   }
1401   // Range of inserted instructions is [beg, end)
1402   if( beg == end ) return;
1403 
1404   // Clone along all Catch output paths.  Clone area between the 'beg' and
1405   // 'end' indices.
1406   for( uint i = 0; i < block->_num_succs; i++ ) {
1407     Block *sb = block->_succs[i];
1408     // Clone the entire area; ignoring the edge fixup for now.
1409     for( uint j = end; j > beg; j-- ) {
1410       Node *clone = block->get_node(j-1)->clone();
1411       sb->insert_node(clone, 1);
1412       map_node_to_block(clone, sb);
1413       if (clone->needs_anti_dependence_check()) {
1414         raise_above_anti_dependences(sb, clone);
1415         if (C->failing()) {
1416           return;
1417         }
1418       }
1419     }
1420   }
1421 
1422 
1423   // Fixup edges.  Check the def-use info per cloned Node
1424   for(uint i2 = beg; i2 < end; i2++ ) {
1425     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1426     Node *n = block->get_node(i2);        // Node that got cloned
1427     // Need DU safe iterator because of edge manipulation in calls.
1428     Unique_Node_List* out = new Unique_Node_List();
1429     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1430       out->push(n->fast_out(j1));
1431     }
1432     uint max = out->size();
1433     for (uint j = 0; j < max; j++) {// For all users
1434       Node *use = out->pop();
1435       Block *buse = get_block_for_node(use);
1436       if( use->is_Phi() ) {
1437         for( uint k = 1; k < use->req(); k++ )
1438           if( use->in(k) == n ) {
1439             Block* b = get_block_for_node(buse->pred(k));
1440             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1441             use->set_req(k, fixup);
1442           }
1443       } else {
1444         if (block == buse) {
1445           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1446         } else {
1447           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1448         }
1449       }
1450     } // End for all users
1451 
1452   } // End of for all Nodes in cloned area
1453 
1454   // Remove the now-dead cloned ops
1455   for(uint i3 = beg; i3 < end; i3++ ) {
1456     block->get_node(beg)->disconnect_inputs(C);
1457     block->remove_node(beg);
1458   }
1459 
1460   // If the successor blocks have a CreateEx node, move it back to the top
1461   for (uint i4 = 0; i4 < block->_num_succs; i4++) {
1462     Block *sb = block->_succs[i4];
1463     uint new_cnt = end - beg;
1464     // Remove any newly created, but dead, nodes by traversing their schedule
1465     // backwards. Here, a dead node is a node whose only outputs (if any) are
1466     // unused projections.
1467     for (uint j = new_cnt; j > 0; j--) {
1468       Node *n = sb->get_node(j);
1469       // Individual projections are examined together with all siblings when
1470       // their parent is visited.
1471       if (n->is_Proj()) {
1472         continue;
1473       }
1474       bool dead = true;
1475       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1476         Node* out = n->fast_out(i);
1477         // n is live if it has a non-projection output or a used projection.
1478         if (!out->is_Proj() || out->outcnt() > 0) {
1479           dead = false;
1480           break;
1481         }
1482       }
1483       if (dead) {
1484         // n's only outputs (if any) are unused projections scheduled next to n
1485         // (see PhaseCFG::select()). Remove these projections backwards.
1486         for (uint k = j + n->outcnt(); k > j; k--) {
1487           Node* proj = sb->get_node(k);
1488           assert(proj->is_Proj() && proj->in(0) == n,
1489                  "projection should correspond to dead node");
1490           proj->disconnect_inputs(C);
1491           sb->remove_node(k);
1492           new_cnt--;
1493         }
1494         // Now remove the node itself.
1495         n->disconnect_inputs(C);
1496         sb->remove_node(j);
1497         new_cnt--;
1498       }
1499     }
1500     // If any newly created nodes remain, move the CreateEx node to the top
1501     if (new_cnt > 0) {
1502       Node *cex = sb->get_node(1+new_cnt);
1503       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1504         sb->remove_node(1+new_cnt);
1505         sb->insert_node(cex, 1);
1506       }
1507     }
1508   }
1509 }