1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/jvmtiThreadState.hpp"
  55 #include "prims/unsafe.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/objectMonitor.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/powerOfTwo.hpp"
  62 
  63 //---------------------------make_vm_intrinsic----------------------------
  64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  65   vmIntrinsicID id = m->intrinsic_id();
  66   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  67 
  68   if (!m->is_loaded()) {
  69     // Do not attempt to inline unloaded methods.
  70     return nullptr;
  71   }
  72 
  73   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  74   bool is_available = false;
  75 
  76   {
  77     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  78     // the compiler must transition to '_thread_in_vm' state because both
  79     // methods access VM-internal data.
  80     VM_ENTRY_MARK;
  81     methodHandle mh(THREAD, m->get_Method());
  82     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  83     if (is_available && is_virtual) {
  84       is_available = vmIntrinsics::does_virtual_dispatch(id);
  85     }
  86   }
  87 
  88   if (is_available) {
  89     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  90     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  91     return new LibraryIntrinsic(m, is_virtual,
  92                                 vmIntrinsics::predicates_needed(id),
  93                                 vmIntrinsics::does_virtual_dispatch(id),
  94                                 id);
  95   } else {
  96     return nullptr;
  97   }
  98 }
  99 
 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 101   LibraryCallKit kit(jvms, this);
 102   Compile* C = kit.C;
 103   int nodes = C->unique();
 104 #ifndef PRODUCT
 105   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 106     char buf[1000];
 107     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 108     tty->print_cr("Intrinsic %s", str);
 109   }
 110 #endif
 111   ciMethod* callee = kit.callee();
 112   const int bci    = kit.bci();
 113 #ifdef ASSERT
 114   Node* ctrl = kit.control();
 115 #endif
 116   // Try to inline the intrinsic.
 117   if (callee->check_intrinsic_candidate() &&
 118       kit.try_to_inline(_last_predicate)) {
 119     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 120                                           : "(intrinsic)";
 121     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 122     if (C->print_intrinsics() || C->print_inlining()) {
 123       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 124     }
 125     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 126     if (C->log()) {
 127       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 128                      vmIntrinsics::name_at(intrinsic_id()),
 129                      (is_virtual() ? " virtual='1'" : ""),
 130                      C->unique() - nodes);
 131     }
 132     // Push the result from the inlined method onto the stack.
 133     kit.push_result();
 134     C->print_inlining_update(this);
 135     return kit.transfer_exceptions_into_jvms();
 136   }
 137 
 138   // The intrinsic bailed out
 139   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 140   if (jvms->has_method()) {
 141     // Not a root compile.
 142     const char* msg;
 143     if (callee->intrinsic_candidate()) {
 144       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 145     } else {
 146       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 147                          : "failed to inline (intrinsic), method not annotated";
 148     }
 149     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 150     if (C->print_intrinsics() || C->print_inlining()) {
 151       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 152     }
 153   } else {
 154     // Root compile
 155     ResourceMark rm;
 156     stringStream msg_stream;
 157     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 158                      vmIntrinsics::name_at(intrinsic_id()),
 159                      is_virtual() ? " (virtual)" : "", bci);
 160     const char *msg = msg_stream.freeze();
 161     log_debug(jit, inlining)("%s", msg);
 162     if (C->print_intrinsics() || C->print_inlining()) {
 163       tty->print("%s", msg);
 164     }
 165   }
 166   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 167   C->print_inlining_update(this);
 168 
 169   return nullptr;
 170 }
 171 
 172 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 173   LibraryCallKit kit(jvms, this);
 174   Compile* C = kit.C;
 175   int nodes = C->unique();
 176   _last_predicate = predicate;
 177 #ifndef PRODUCT
 178   assert(is_predicated() && predicate < predicates_count(), "sanity");
 179   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 180     char buf[1000];
 181     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 182     tty->print_cr("Predicate for intrinsic %s", str);
 183   }
 184 #endif
 185   ciMethod* callee = kit.callee();
 186   const int bci    = kit.bci();
 187 
 188   Node* slow_ctl = kit.try_to_predicate(predicate);
 189   if (!kit.failing()) {
 190     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 191                                           : "(intrinsic, predicate)";
 192     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 193     if (C->print_intrinsics() || C->print_inlining()) {
 194       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 195     }
 196     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 197     if (C->log()) {
 198       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 199                      vmIntrinsics::name_at(intrinsic_id()),
 200                      (is_virtual() ? " virtual='1'" : ""),
 201                      C->unique() - nodes);
 202     }
 203     return slow_ctl; // Could be null if the check folds.
 204   }
 205 
 206   // The intrinsic bailed out
 207   if (jvms->has_method()) {
 208     // Not a root compile.
 209     const char* msg = "failed to generate predicate for intrinsic";
 210     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 211     if (C->print_intrinsics() || C->print_inlining()) {
 212       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 213     }
 214   } else {
 215     // Root compile
 216     ResourceMark rm;
 217     stringStream msg_stream;
 218     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 219                      vmIntrinsics::name_at(intrinsic_id()),
 220                      is_virtual() ? " (virtual)" : "", bci);
 221     const char *msg = msg_stream.freeze();
 222     log_debug(jit, inlining)("%s", msg);
 223     if (C->print_intrinsics() || C->print_inlining()) {
 224       C->print_inlining_stream()->print("%s", msg);
 225     }
 226   }
 227   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 228   return nullptr;
 229 }
 230 
 231 bool LibraryCallKit::try_to_inline(int predicate) {
 232   // Handle symbolic names for otherwise undistinguished boolean switches:
 233   const bool is_store       = true;
 234   const bool is_compress    = true;
 235   const bool is_static      = true;
 236   const bool is_volatile    = true;
 237 
 238   if (!jvms()->has_method()) {
 239     // Root JVMState has a null method.
 240     assert(map()->memory()->Opcode() == Op_Parm, "");
 241     // Insert the memory aliasing node
 242     set_all_memory(reset_memory());
 243   }
 244   assert(merged_memory(), "");
 245 
 246   switch (intrinsic_id()) {
 247   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 248   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 249   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 250 
 251   case vmIntrinsics::_ceil:
 252   case vmIntrinsics::_floor:
 253   case vmIntrinsics::_rint:
 254   case vmIntrinsics::_dsin:
 255   case vmIntrinsics::_dcos:
 256   case vmIntrinsics::_dtan:
 257   case vmIntrinsics::_dtanh:
 258   case vmIntrinsics::_dabs:
 259   case vmIntrinsics::_fabs:
 260   case vmIntrinsics::_iabs:
 261   case vmIntrinsics::_labs:
 262   case vmIntrinsics::_datan2:
 263   case vmIntrinsics::_dsqrt:
 264   case vmIntrinsics::_dsqrt_strict:
 265   case vmIntrinsics::_dexp:
 266   case vmIntrinsics::_dlog:
 267   case vmIntrinsics::_dlog10:
 268   case vmIntrinsics::_dpow:
 269   case vmIntrinsics::_dcopySign:
 270   case vmIntrinsics::_fcopySign:
 271   case vmIntrinsics::_dsignum:
 272   case vmIntrinsics::_roundF:
 273   case vmIntrinsics::_roundD:
 274   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 275 
 276   case vmIntrinsics::_notify:
 277   case vmIntrinsics::_notifyAll:
 278     return inline_notify(intrinsic_id());
 279 
 280   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 281   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 282   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 283   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 284   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 285   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 286   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 287   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 288   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 289   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 290   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 291   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 292   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 293   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 294 
 295   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 296 
 297   case vmIntrinsics::_arraySort:                return inline_array_sort();
 298   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 299 
 300   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 301   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 302   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 303   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 304 
 305   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 306   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 307   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 308   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 309   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 310   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 311   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 312   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 313 
 314   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 315 
 316   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 317 
 318   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 319   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 320   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 321   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 322 
 323   case vmIntrinsics::_compressStringC:
 324   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 325   case vmIntrinsics::_inflateStringC:
 326   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 327 
 328   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 337 
 338   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 339   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 340   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 341   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 342   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 343   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 344   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 345   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 346   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 347 
 348   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 357 
 358   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 359   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 360   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 361   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 362   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 363   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 364   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 365   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 366   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 367 
 368   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 369   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 370   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 371   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 372 
 373   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 374   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 375   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 376   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 377 
 378   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 379   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 380   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 381   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 382   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 383   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 384   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 385   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 386   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 387 
 388   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 389   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 390   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 391   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 392   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 393   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 394   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 395   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 396   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 397 
 398   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 399   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 400   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 401   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 402   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 403   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 404   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 405   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 406   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 407 
 408   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 409   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 410   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 411   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 412   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 413   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 414   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 415   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 416   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 417 
 418   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 419   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 420   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 421   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 422   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 423 
 424   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 425   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 426   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 427   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 428   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 429   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 430   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 431   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 432   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 433   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 434   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 435   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 436   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 437   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 438   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 439   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 440   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 441   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 442   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 443   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 444 
 445   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 446   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 447   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 448   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 449   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 450   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 451   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 452   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 453   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 454   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 455   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 456   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 457   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 458   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 459   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 460 
 461   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 462   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 463   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 464   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 465 
 466   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 467   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 468   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 469   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 470   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 471 
 472   case vmIntrinsics::_loadFence:
 473   case vmIntrinsics::_storeFence:
 474   case vmIntrinsics::_storeStoreFence:
 475   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 476 
 477   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 478 
 479   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 480   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 481   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 482 
 483   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 484   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 485 
 486   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 487   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 488 
 489 #if INCLUDE_JVMTI
 490   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 491                                                                                          "notifyJvmtiStart", true, false);
 492   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 493                                                                                          "notifyJvmtiEnd", false, true);
 494   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 495                                                                                          "notifyJvmtiMount", false, false);
 496   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 497                                                                                          "notifyJvmtiUnmount", false, false);
 498   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 499 #endif
 500 
 501 #ifdef JFR_HAVE_INTRINSICS
 502   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 503   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 504   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 505 #endif
 506   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 507   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 508   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 509   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 510   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 511   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 512   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 513   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 514   case vmIntrinsics::_getLength:                return inline_native_getLength();
 515   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 516   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 517   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 518   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 519   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 520   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 521   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 522 
 523   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 524   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 525 
 526   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 527 
 528   case vmIntrinsics::_isInstance:
 529   case vmIntrinsics::_getModifiers:
 530   case vmIntrinsics::_isInterface:
 531   case vmIntrinsics::_isArray:
 532   case vmIntrinsics::_isPrimitive:
 533   case vmIntrinsics::_isHidden:
 534   case vmIntrinsics::_getSuperclass:
 535   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 536 
 537   case vmIntrinsics::_floatToRawIntBits:
 538   case vmIntrinsics::_floatToIntBits:
 539   case vmIntrinsics::_intBitsToFloat:
 540   case vmIntrinsics::_doubleToRawLongBits:
 541   case vmIntrinsics::_doubleToLongBits:
 542   case vmIntrinsics::_longBitsToDouble:
 543   case vmIntrinsics::_floatToFloat16:
 544   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 545 
 546   case vmIntrinsics::_floatIsFinite:
 547   case vmIntrinsics::_floatIsInfinite:
 548   case vmIntrinsics::_doubleIsFinite:
 549   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 550 
 551   case vmIntrinsics::_numberOfLeadingZeros_i:
 552   case vmIntrinsics::_numberOfLeadingZeros_l:
 553   case vmIntrinsics::_numberOfTrailingZeros_i:
 554   case vmIntrinsics::_numberOfTrailingZeros_l:
 555   case vmIntrinsics::_bitCount_i:
 556   case vmIntrinsics::_bitCount_l:
 557   case vmIntrinsics::_reverse_i:
 558   case vmIntrinsics::_reverse_l:
 559   case vmIntrinsics::_reverseBytes_i:
 560   case vmIntrinsics::_reverseBytes_l:
 561   case vmIntrinsics::_reverseBytes_s:
 562   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 563 
 564   case vmIntrinsics::_compress_i:
 565   case vmIntrinsics::_compress_l:
 566   case vmIntrinsics::_expand_i:
 567   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 568 
 569   case vmIntrinsics::_compareUnsigned_i:
 570   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 571 
 572   case vmIntrinsics::_divideUnsigned_i:
 573   case vmIntrinsics::_divideUnsigned_l:
 574   case vmIntrinsics::_remainderUnsigned_i:
 575   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 576 
 577   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 578 
 579   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 580   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 581   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 582   case vmIntrinsics::_Reference_clear0:         return inline_reference_clear0(false);
 583   case vmIntrinsics::_PhantomReference_clear0:  return inline_reference_clear0(true);
 584 
 585   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 586 
 587   case vmIntrinsics::_aescrypt_encryptBlock:
 588   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 589 
 590   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 591   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 592     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 593 
 594   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 595   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 596     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 597 
 598   case vmIntrinsics::_counterMode_AESCrypt:
 599     return inline_counterMode_AESCrypt(intrinsic_id());
 600 
 601   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 602     return inline_galoisCounterMode_AESCrypt();
 603 
 604   case vmIntrinsics::_md5_implCompress:
 605   case vmIntrinsics::_sha_implCompress:
 606   case vmIntrinsics::_sha2_implCompress:
 607   case vmIntrinsics::_sha5_implCompress:
 608   case vmIntrinsics::_sha3_implCompress:
 609     return inline_digestBase_implCompress(intrinsic_id());
 610 
 611   case vmIntrinsics::_digestBase_implCompressMB:
 612     return inline_digestBase_implCompressMB(predicate);
 613 
 614   case vmIntrinsics::_multiplyToLen:
 615     return inline_multiplyToLen();
 616 
 617   case vmIntrinsics::_squareToLen:
 618     return inline_squareToLen();
 619 
 620   case vmIntrinsics::_mulAdd:
 621     return inline_mulAdd();
 622 
 623   case vmIntrinsics::_montgomeryMultiply:
 624     return inline_montgomeryMultiply();
 625   case vmIntrinsics::_montgomerySquare:
 626     return inline_montgomerySquare();
 627 
 628   case vmIntrinsics::_bigIntegerRightShiftWorker:
 629     return inline_bigIntegerShift(true);
 630   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 631     return inline_bigIntegerShift(false);
 632 
 633   case vmIntrinsics::_vectorizedMismatch:
 634     return inline_vectorizedMismatch();
 635 
 636   case vmIntrinsics::_ghash_processBlocks:
 637     return inline_ghash_processBlocks();
 638   case vmIntrinsics::_chacha20Block:
 639     return inline_chacha20Block();
 640   case vmIntrinsics::_base64_encodeBlock:
 641     return inline_base64_encodeBlock();
 642   case vmIntrinsics::_base64_decodeBlock:
 643     return inline_base64_decodeBlock();
 644   case vmIntrinsics::_poly1305_processBlocks:
 645     return inline_poly1305_processBlocks();
 646   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 647     return inline_intpoly_montgomeryMult_P256();
 648   case vmIntrinsics::_intpoly_assign:
 649     return inline_intpoly_assign();
 650   case vmIntrinsics::_encodeISOArray:
 651   case vmIntrinsics::_encodeByteISOArray:
 652     return inline_encodeISOArray(false);
 653   case vmIntrinsics::_encodeAsciiArray:
 654     return inline_encodeISOArray(true);
 655 
 656   case vmIntrinsics::_updateCRC32:
 657     return inline_updateCRC32();
 658   case vmIntrinsics::_updateBytesCRC32:
 659     return inline_updateBytesCRC32();
 660   case vmIntrinsics::_updateByteBufferCRC32:
 661     return inline_updateByteBufferCRC32();
 662 
 663   case vmIntrinsics::_updateBytesCRC32C:
 664     return inline_updateBytesCRC32C();
 665   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 666     return inline_updateDirectByteBufferCRC32C();
 667 
 668   case vmIntrinsics::_updateBytesAdler32:
 669     return inline_updateBytesAdler32();
 670   case vmIntrinsics::_updateByteBufferAdler32:
 671     return inline_updateByteBufferAdler32();
 672 
 673   case vmIntrinsics::_profileBoolean:
 674     return inline_profileBoolean();
 675   case vmIntrinsics::_isCompileConstant:
 676     return inline_isCompileConstant();
 677 
 678   case vmIntrinsics::_countPositives:
 679     return inline_countPositives();
 680 
 681   case vmIntrinsics::_fmaD:
 682   case vmIntrinsics::_fmaF:
 683     return inline_fma(intrinsic_id());
 684 
 685   case vmIntrinsics::_isDigit:
 686   case vmIntrinsics::_isLowerCase:
 687   case vmIntrinsics::_isUpperCase:
 688   case vmIntrinsics::_isWhitespace:
 689     return inline_character_compare(intrinsic_id());
 690 
 691   case vmIntrinsics::_min:
 692   case vmIntrinsics::_max:
 693   case vmIntrinsics::_min_strict:
 694   case vmIntrinsics::_max_strict:
 695     return inline_min_max(intrinsic_id());
 696 
 697   case vmIntrinsics::_maxF:
 698   case vmIntrinsics::_minF:
 699   case vmIntrinsics::_maxD:
 700   case vmIntrinsics::_minD:
 701   case vmIntrinsics::_maxF_strict:
 702   case vmIntrinsics::_minF_strict:
 703   case vmIntrinsics::_maxD_strict:
 704   case vmIntrinsics::_minD_strict:
 705       return inline_fp_min_max(intrinsic_id());
 706 
 707   case vmIntrinsics::_VectorUnaryOp:
 708     return inline_vector_nary_operation(1);
 709   case vmIntrinsics::_VectorBinaryOp:
 710     return inline_vector_nary_operation(2);
 711   case vmIntrinsics::_VectorTernaryOp:
 712     return inline_vector_nary_operation(3);
 713   case vmIntrinsics::_VectorFromBitsCoerced:
 714     return inline_vector_frombits_coerced();
 715   case vmIntrinsics::_VectorShuffleIota:
 716     return inline_vector_shuffle_iota();
 717   case vmIntrinsics::_VectorMaskOp:
 718     return inline_vector_mask_operation();
 719   case vmIntrinsics::_VectorShuffleToVector:
 720     return inline_vector_shuffle_to_vector();
 721   case vmIntrinsics::_VectorWrapShuffleIndexes:
 722     return inline_vector_wrap_shuffle_indexes();
 723   case vmIntrinsics::_VectorLoadOp:
 724     return inline_vector_mem_operation(/*is_store=*/false);
 725   case vmIntrinsics::_VectorLoadMaskedOp:
 726     return inline_vector_mem_masked_operation(/*is_store*/false);
 727   case vmIntrinsics::_VectorStoreOp:
 728     return inline_vector_mem_operation(/*is_store=*/true);
 729   case vmIntrinsics::_VectorStoreMaskedOp:
 730     return inline_vector_mem_masked_operation(/*is_store=*/true);
 731   case vmIntrinsics::_VectorGatherOp:
 732     return inline_vector_gather_scatter(/*is_scatter*/ false);
 733   case vmIntrinsics::_VectorScatterOp:
 734     return inline_vector_gather_scatter(/*is_scatter*/ true);
 735   case vmIntrinsics::_VectorReductionCoerced:
 736     return inline_vector_reduction();
 737   case vmIntrinsics::_VectorTest:
 738     return inline_vector_test();
 739   case vmIntrinsics::_VectorBlend:
 740     return inline_vector_blend();
 741   case vmIntrinsics::_VectorRearrange:
 742     return inline_vector_rearrange();
 743   case vmIntrinsics::_VectorSelectFrom:
 744     return inline_vector_select_from();
 745   case vmIntrinsics::_VectorCompare:
 746     return inline_vector_compare();
 747   case vmIntrinsics::_VectorBroadcastInt:
 748     return inline_vector_broadcast_int();
 749   case vmIntrinsics::_VectorConvert:
 750     return inline_vector_convert();
 751   case vmIntrinsics::_VectorInsert:
 752     return inline_vector_insert();
 753   case vmIntrinsics::_VectorExtract:
 754     return inline_vector_extract();
 755   case vmIntrinsics::_VectorCompressExpand:
 756     return inline_vector_compress_expand();
 757   case vmIntrinsics::_VectorSelectFromTwoVectorOp:
 758     return inline_vector_select_from_two_vectors();
 759   case vmIntrinsics::_IndexVector:
 760     return inline_index_vector();
 761   case vmIntrinsics::_IndexPartiallyInUpperRange:
 762     return inline_index_partially_in_upper_range();
 763 
 764   case vmIntrinsics::_getObjectSize:
 765     return inline_getObjectSize();
 766 
 767   case vmIntrinsics::_blackhole:
 768     return inline_blackhole();
 769 
 770   default:
 771     // If you get here, it may be that someone has added a new intrinsic
 772     // to the list in vmIntrinsics.hpp without implementing it here.
 773 #ifndef PRODUCT
 774     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 775       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 776                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 777     }
 778 #endif
 779     return false;
 780   }
 781 }
 782 
 783 Node* LibraryCallKit::try_to_predicate(int predicate) {
 784   if (!jvms()->has_method()) {
 785     // Root JVMState has a null method.
 786     assert(map()->memory()->Opcode() == Op_Parm, "");
 787     // Insert the memory aliasing node
 788     set_all_memory(reset_memory());
 789   }
 790   assert(merged_memory(), "");
 791 
 792   switch (intrinsic_id()) {
 793   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 794     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 795   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 796     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 797   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 798     return inline_electronicCodeBook_AESCrypt_predicate(false);
 799   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 800     return inline_electronicCodeBook_AESCrypt_predicate(true);
 801   case vmIntrinsics::_counterMode_AESCrypt:
 802     return inline_counterMode_AESCrypt_predicate();
 803   case vmIntrinsics::_digestBase_implCompressMB:
 804     return inline_digestBase_implCompressMB_predicate(predicate);
 805   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 806     return inline_galoisCounterMode_AESCrypt_predicate();
 807 
 808   default:
 809     // If you get here, it may be that someone has added a new intrinsic
 810     // to the list in vmIntrinsics.hpp without implementing it here.
 811 #ifndef PRODUCT
 812     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 813       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 814                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 815     }
 816 #endif
 817     Node* slow_ctl = control();
 818     set_control(top()); // No fast path intrinsic
 819     return slow_ctl;
 820   }
 821 }
 822 
 823 //------------------------------set_result-------------------------------
 824 // Helper function for finishing intrinsics.
 825 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 826   record_for_igvn(region);
 827   set_control(_gvn.transform(region));
 828   set_result( _gvn.transform(value));
 829   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 830 }
 831 
 832 //------------------------------generate_guard---------------------------
 833 // Helper function for generating guarded fast-slow graph structures.
 834 // The given 'test', if true, guards a slow path.  If the test fails
 835 // then a fast path can be taken.  (We generally hope it fails.)
 836 // In all cases, GraphKit::control() is updated to the fast path.
 837 // The returned value represents the control for the slow path.
 838 // The return value is never 'top'; it is either a valid control
 839 // or null if it is obvious that the slow path can never be taken.
 840 // Also, if region and the slow control are not null, the slow edge
 841 // is appended to the region.
 842 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 843   if (stopped()) {
 844     // Already short circuited.
 845     return nullptr;
 846   }
 847 
 848   // Build an if node and its projections.
 849   // If test is true we take the slow path, which we assume is uncommon.
 850   if (_gvn.type(test) == TypeInt::ZERO) {
 851     // The slow branch is never taken.  No need to build this guard.
 852     return nullptr;
 853   }
 854 
 855   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 856 
 857   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 858   if (if_slow == top()) {
 859     // The slow branch is never taken.  No need to build this guard.
 860     return nullptr;
 861   }
 862 
 863   if (region != nullptr)
 864     region->add_req(if_slow);
 865 
 866   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 867   set_control(if_fast);
 868 
 869   return if_slow;
 870 }
 871 
 872 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 873   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 874 }
 875 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 876   return generate_guard(test, region, PROB_FAIR);
 877 }
 878 
 879 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 880                                                      Node* *pos_index) {
 881   if (stopped())
 882     return nullptr;                // already stopped
 883   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 884     return nullptr;                // index is already adequately typed
 885   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 886   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 887   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 888   if (is_neg != nullptr && pos_index != nullptr) {
 889     // Emulate effect of Parse::adjust_map_after_if.
 890     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 891     (*pos_index) = _gvn.transform(ccast);
 892   }
 893   return is_neg;
 894 }
 895 
 896 // Make sure that 'position' is a valid limit index, in [0..length].
 897 // There are two equivalent plans for checking this:
 898 //   A. (offset + copyLength)  unsigned<=  arrayLength
 899 //   B. offset  <=  (arrayLength - copyLength)
 900 // We require that all of the values above, except for the sum and
 901 // difference, are already known to be non-negative.
 902 // Plan A is robust in the face of overflow, if offset and copyLength
 903 // are both hugely positive.
 904 //
 905 // Plan B is less direct and intuitive, but it does not overflow at
 906 // all, since the difference of two non-negatives is always
 907 // representable.  Whenever Java methods must perform the equivalent
 908 // check they generally use Plan B instead of Plan A.
 909 // For the moment we use Plan A.
 910 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 911                                                   Node* subseq_length,
 912                                                   Node* array_length,
 913                                                   RegionNode* region) {
 914   if (stopped())
 915     return nullptr;                // already stopped
 916   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 917   if (zero_offset && subseq_length->eqv_uncast(array_length))
 918     return nullptr;                // common case of whole-array copy
 919   Node* last = subseq_length;
 920   if (!zero_offset)             // last += offset
 921     last = _gvn.transform(new AddINode(last, offset));
 922   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 923   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 924   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 925   return is_over;
 926 }
 927 
 928 // Emit range checks for the given String.value byte array
 929 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 930   if (stopped()) {
 931     return; // already stopped
 932   }
 933   RegionNode* bailout = new RegionNode(1);
 934   record_for_igvn(bailout);
 935   if (char_count) {
 936     // Convert char count to byte count
 937     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 938   }
 939 
 940   // Offset and count must not be negative
 941   generate_negative_guard(offset, bailout);
 942   generate_negative_guard(count, bailout);
 943   // Offset + count must not exceed length of array
 944   generate_limit_guard(offset, count, load_array_length(array), bailout);
 945 
 946   if (bailout->req() > 1) {
 947     PreserveJVMState pjvms(this);
 948     set_control(_gvn.transform(bailout));
 949     uncommon_trap(Deoptimization::Reason_intrinsic,
 950                   Deoptimization::Action_maybe_recompile);
 951   }
 952 }
 953 
 954 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 955                                             bool is_immutable) {
 956   ciKlass* thread_klass = env()->Thread_klass();
 957   const Type* thread_type
 958     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 959 
 960   Node* thread = _gvn.transform(new ThreadLocalNode());
 961   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 962   tls_output = thread;
 963 
 964   Node* thread_obj_handle
 965     = (is_immutable
 966       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
 967         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 968       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 969   thread_obj_handle = _gvn.transform(thread_obj_handle);
 970 
 971   DecoratorSet decorators = IN_NATIVE;
 972   if (is_immutable) {
 973     decorators |= C2_IMMUTABLE_MEMORY;
 974   }
 975   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 976 }
 977 
 978 //--------------------------generate_current_thread--------------------
 979 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 980   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 981                                /*is_immutable*/false);
 982 }
 983 
 984 //--------------------------generate_virtual_thread--------------------
 985 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 986   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 987                                !C->method()->changes_current_thread());
 988 }
 989 
 990 //------------------------------make_string_method_node------------------------
 991 // Helper method for String intrinsic functions. This version is called with
 992 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 993 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 994 // containing the lengths of str1 and str2.
 995 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 996   Node* result = nullptr;
 997   switch (opcode) {
 998   case Op_StrIndexOf:
 999     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1000                                 str1_start, cnt1, str2_start, cnt2, ae);
1001     break;
1002   case Op_StrComp:
1003     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1004                              str1_start, cnt1, str2_start, cnt2, ae);
1005     break;
1006   case Op_StrEquals:
1007     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1008     // Use the constant length if there is one because optimized match rule may exist.
1009     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1010                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1011     break;
1012   default:
1013     ShouldNotReachHere();
1014     return nullptr;
1015   }
1016 
1017   // All these intrinsics have checks.
1018   C->set_has_split_ifs(true); // Has chance for split-if optimization
1019   clear_upper_avx();
1020 
1021   return _gvn.transform(result);
1022 }
1023 
1024 //------------------------------inline_string_compareTo------------------------
1025 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1026   Node* arg1 = argument(0);
1027   Node* arg2 = argument(1);
1028 
1029   arg1 = must_be_not_null(arg1, true);
1030   arg2 = must_be_not_null(arg2, true);
1031 
1032   // Get start addr and length of first argument
1033   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1034   Node* arg1_cnt    = load_array_length(arg1);
1035 
1036   // Get start addr and length of second argument
1037   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1038   Node* arg2_cnt    = load_array_length(arg2);
1039 
1040   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1041   set_result(result);
1042   return true;
1043 }
1044 
1045 //------------------------------inline_string_equals------------------------
1046 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1047   Node* arg1 = argument(0);
1048   Node* arg2 = argument(1);
1049 
1050   // paths (plus control) merge
1051   RegionNode* region = new RegionNode(3);
1052   Node* phi = new PhiNode(region, TypeInt::BOOL);
1053 
1054   if (!stopped()) {
1055 
1056     arg1 = must_be_not_null(arg1, true);
1057     arg2 = must_be_not_null(arg2, true);
1058 
1059     // Get start addr and length of first argument
1060     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1061     Node* arg1_cnt    = load_array_length(arg1);
1062 
1063     // Get start addr and length of second argument
1064     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1065     Node* arg2_cnt    = load_array_length(arg2);
1066 
1067     // Check for arg1_cnt != arg2_cnt
1068     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1069     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1070     Node* if_ne = generate_slow_guard(bol, nullptr);
1071     if (if_ne != nullptr) {
1072       phi->init_req(2, intcon(0));
1073       region->init_req(2, if_ne);
1074     }
1075 
1076     // Check for count == 0 is done by assembler code for StrEquals.
1077 
1078     if (!stopped()) {
1079       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1080       phi->init_req(1, equals);
1081       region->init_req(1, control());
1082     }
1083   }
1084 
1085   // post merge
1086   set_control(_gvn.transform(region));
1087   record_for_igvn(region);
1088 
1089   set_result(_gvn.transform(phi));
1090   return true;
1091 }
1092 
1093 //------------------------------inline_array_equals----------------------------
1094 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1095   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1096   Node* arg1 = argument(0);
1097   Node* arg2 = argument(1);
1098 
1099   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1100   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1101   clear_upper_avx();
1102 
1103   return true;
1104 }
1105 
1106 
1107 //------------------------------inline_countPositives------------------------------
1108 bool LibraryCallKit::inline_countPositives() {
1109   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1110     return false;
1111   }
1112 
1113   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1114   // no receiver since it is static method
1115   Node* ba         = argument(0);
1116   Node* offset     = argument(1);
1117   Node* len        = argument(2);
1118 
1119   ba = must_be_not_null(ba, true);
1120 
1121   // Range checks
1122   generate_string_range_check(ba, offset, len, false);
1123   if (stopped()) {
1124     return true;
1125   }
1126   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1127   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1128   set_result(_gvn.transform(result));
1129   clear_upper_avx();
1130   return true;
1131 }
1132 
1133 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1134   Node* index = argument(0);
1135   Node* length = bt == T_INT ? argument(1) : argument(2);
1136   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1137     return false;
1138   }
1139 
1140   // check that length is positive
1141   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1142   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1143 
1144   {
1145     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1146     uncommon_trap(Deoptimization::Reason_intrinsic,
1147                   Deoptimization::Action_make_not_entrant);
1148   }
1149 
1150   if (stopped()) {
1151     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1152     return true;
1153   }
1154 
1155   // length is now known positive, add a cast node to make this explicit
1156   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1157   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1158       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1159       ConstraintCastNode::RegularDependency, bt);
1160   casted_length = _gvn.transform(casted_length);
1161   replace_in_map(length, casted_length);
1162   length = casted_length;
1163 
1164   // Use an unsigned comparison for the range check itself
1165   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1166   BoolTest::mask btest = BoolTest::lt;
1167   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1168   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1169   _gvn.set_type(rc, rc->Value(&_gvn));
1170   if (!rc_bool->is_Con()) {
1171     record_for_igvn(rc);
1172   }
1173   set_control(_gvn.transform(new IfTrueNode(rc)));
1174   {
1175     PreserveJVMState pjvms(this);
1176     set_control(_gvn.transform(new IfFalseNode(rc)));
1177     uncommon_trap(Deoptimization::Reason_range_check,
1178                   Deoptimization::Action_make_not_entrant);
1179   }
1180 
1181   if (stopped()) {
1182     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1183     return true;
1184   }
1185 
1186   // index is now known to be >= 0 and < length, cast it
1187   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1188       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1189       ConstraintCastNode::RegularDependency, bt);
1190   result = _gvn.transform(result);
1191   set_result(result);
1192   replace_in_map(index, result);
1193   return true;
1194 }
1195 
1196 //------------------------------inline_string_indexOf------------------------
1197 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1198   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1199     return false;
1200   }
1201   Node* src = argument(0);
1202   Node* tgt = argument(1);
1203 
1204   // Make the merge point
1205   RegionNode* result_rgn = new RegionNode(4);
1206   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1207 
1208   src = must_be_not_null(src, true);
1209   tgt = must_be_not_null(tgt, true);
1210 
1211   // Get start addr and length of source string
1212   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1213   Node* src_count = load_array_length(src);
1214 
1215   // Get start addr and length of substring
1216   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1217   Node* tgt_count = load_array_length(tgt);
1218 
1219   Node* result = nullptr;
1220   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1221 
1222   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1223     // Divide src size by 2 if String is UTF16 encoded
1224     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1225   }
1226   if (ae == StrIntrinsicNode::UU) {
1227     // Divide substring size by 2 if String is UTF16 encoded
1228     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1229   }
1230 
1231   if (call_opt_stub) {
1232     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1233                                    StubRoutines::_string_indexof_array[ae],
1234                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1235                                    src_count, tgt_start, tgt_count);
1236     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1237   } else {
1238     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1239                                result_rgn, result_phi, ae);
1240   }
1241   if (result != nullptr) {
1242     result_phi->init_req(3, result);
1243     result_rgn->init_req(3, control());
1244   }
1245   set_control(_gvn.transform(result_rgn));
1246   record_for_igvn(result_rgn);
1247   set_result(_gvn.transform(result_phi));
1248 
1249   return true;
1250 }
1251 
1252 //-----------------------------inline_string_indexOfI-----------------------
1253 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1254   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1255     return false;
1256   }
1257   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1258     return false;
1259   }
1260 
1261   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1262   Node* src         = argument(0); // byte[]
1263   Node* src_count   = argument(1); // char count
1264   Node* tgt         = argument(2); // byte[]
1265   Node* tgt_count   = argument(3); // char count
1266   Node* from_index  = argument(4); // char index
1267 
1268   src = must_be_not_null(src, true);
1269   tgt = must_be_not_null(tgt, true);
1270 
1271   // Multiply byte array index by 2 if String is UTF16 encoded
1272   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1273   src_count = _gvn.transform(new SubINode(src_count, from_index));
1274   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1275   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1276 
1277   // Range checks
1278   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1279   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1280   if (stopped()) {
1281     return true;
1282   }
1283 
1284   RegionNode* region = new RegionNode(5);
1285   Node* phi = new PhiNode(region, TypeInt::INT);
1286   Node* result = nullptr;
1287 
1288   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1289 
1290   if (call_opt_stub) {
1291     assert(arrayOopDesc::base_offset_in_bytes(T_BYTE) >= 16, "Needed for indexOf");
1292     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1293                                    StubRoutines::_string_indexof_array[ae],
1294                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1295                                    src_count, tgt_start, tgt_count);
1296     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1297   } else {
1298     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1299                                region, phi, ae);
1300   }
1301   if (result != nullptr) {
1302     // The result is index relative to from_index if substring was found, -1 otherwise.
1303     // Generate code which will fold into cmove.
1304     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1305     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1306 
1307     Node* if_lt = generate_slow_guard(bol, nullptr);
1308     if (if_lt != nullptr) {
1309       // result == -1
1310       phi->init_req(3, result);
1311       region->init_req(3, if_lt);
1312     }
1313     if (!stopped()) {
1314       result = _gvn.transform(new AddINode(result, from_index));
1315       phi->init_req(4, result);
1316       region->init_req(4, control());
1317     }
1318   }
1319 
1320   set_control(_gvn.transform(region));
1321   record_for_igvn(region);
1322   set_result(_gvn.transform(phi));
1323   clear_upper_avx();
1324 
1325   return true;
1326 }
1327 
1328 // Create StrIndexOfNode with fast path checks
1329 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1330                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1331   // Check for substr count > string count
1332   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1333   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1334   Node* if_gt = generate_slow_guard(bol, nullptr);
1335   if (if_gt != nullptr) {
1336     phi->init_req(1, intcon(-1));
1337     region->init_req(1, if_gt);
1338   }
1339   if (!stopped()) {
1340     // Check for substr count == 0
1341     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1342     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1343     Node* if_zero = generate_slow_guard(bol, nullptr);
1344     if (if_zero != nullptr) {
1345       phi->init_req(2, intcon(0));
1346       region->init_req(2, if_zero);
1347     }
1348   }
1349   if (!stopped()) {
1350     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1351   }
1352   return nullptr;
1353 }
1354 
1355 //-----------------------------inline_string_indexOfChar-----------------------
1356 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1357   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1358     return false;
1359   }
1360   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1361     return false;
1362   }
1363   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1364   Node* src         = argument(0); // byte[]
1365   Node* int_ch      = argument(1);
1366   Node* from_index  = argument(2);
1367   Node* max         = argument(3);
1368 
1369   src = must_be_not_null(src, true);
1370 
1371   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1372   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1373   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1374 
1375   // Range checks
1376   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1377 
1378   // Check for int_ch >= 0
1379   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1380   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1381   {
1382     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1383     uncommon_trap(Deoptimization::Reason_intrinsic,
1384                   Deoptimization::Action_maybe_recompile);
1385   }
1386   if (stopped()) {
1387     return true;
1388   }
1389 
1390   RegionNode* region = new RegionNode(3);
1391   Node* phi = new PhiNode(region, TypeInt::INT);
1392 
1393   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1394   C->set_has_split_ifs(true); // Has chance for split-if optimization
1395   _gvn.transform(result);
1396 
1397   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1398   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1399 
1400   Node* if_lt = generate_slow_guard(bol, nullptr);
1401   if (if_lt != nullptr) {
1402     // result == -1
1403     phi->init_req(2, result);
1404     region->init_req(2, if_lt);
1405   }
1406   if (!stopped()) {
1407     result = _gvn.transform(new AddINode(result, from_index));
1408     phi->init_req(1, result);
1409     region->init_req(1, control());
1410   }
1411   set_control(_gvn.transform(region));
1412   record_for_igvn(region);
1413   set_result(_gvn.transform(phi));
1414   clear_upper_avx();
1415 
1416   return true;
1417 }
1418 //---------------------------inline_string_copy---------------------
1419 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1420 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1421 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1422 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1423 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1424 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1425 bool LibraryCallKit::inline_string_copy(bool compress) {
1426   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1427     return false;
1428   }
1429   int nargs = 5;  // 2 oops, 3 ints
1430   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1431 
1432   Node* src         = argument(0);
1433   Node* src_offset  = argument(1);
1434   Node* dst         = argument(2);
1435   Node* dst_offset  = argument(3);
1436   Node* length      = argument(4);
1437 
1438   // Check for allocation before we add nodes that would confuse
1439   // tightly_coupled_allocation()
1440   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1441 
1442   // Figure out the size and type of the elements we will be copying.
1443   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1444   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1445   if (src_type == nullptr || dst_type == nullptr) {
1446     return false;
1447   }
1448   BasicType src_elem = src_type->elem()->array_element_basic_type();
1449   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1450   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1451          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1452          "Unsupported array types for inline_string_copy");
1453 
1454   src = must_be_not_null(src, true);
1455   dst = must_be_not_null(dst, true);
1456 
1457   // Convert char[] offsets to byte[] offsets
1458   bool convert_src = (compress && src_elem == T_BYTE);
1459   bool convert_dst = (!compress && dst_elem == T_BYTE);
1460   if (convert_src) {
1461     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1462   } else if (convert_dst) {
1463     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1464   }
1465 
1466   // Range checks
1467   generate_string_range_check(src, src_offset, length, convert_src);
1468   generate_string_range_check(dst, dst_offset, length, convert_dst);
1469   if (stopped()) {
1470     return true;
1471   }
1472 
1473   Node* src_start = array_element_address(src, src_offset, src_elem);
1474   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1475   // 'src_start' points to src array + scaled offset
1476   // 'dst_start' points to dst array + scaled offset
1477   Node* count = nullptr;
1478   if (compress) {
1479     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1480   } else {
1481     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1482   }
1483 
1484   if (alloc != nullptr) {
1485     if (alloc->maybe_set_complete(&_gvn)) {
1486       // "You break it, you buy it."
1487       InitializeNode* init = alloc->initialization();
1488       assert(init->is_complete(), "we just did this");
1489       init->set_complete_with_arraycopy();
1490       assert(dst->is_CheckCastPP(), "sanity");
1491       assert(dst->in(0)->in(0) == init, "dest pinned");
1492     }
1493     // Do not let stores that initialize this object be reordered with
1494     // a subsequent store that would make this object accessible by
1495     // other threads.
1496     // Record what AllocateNode this StoreStore protects so that
1497     // escape analysis can go from the MemBarStoreStoreNode to the
1498     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1499     // based on the escape status of the AllocateNode.
1500     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1501   }
1502   if (compress) {
1503     set_result(_gvn.transform(count));
1504   }
1505   clear_upper_avx();
1506 
1507   return true;
1508 }
1509 
1510 #ifdef _LP64
1511 #define XTOP ,top() /*additional argument*/
1512 #else  //_LP64
1513 #define XTOP        /*no additional argument*/
1514 #endif //_LP64
1515 
1516 //------------------------inline_string_toBytesU--------------------------
1517 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1518 bool LibraryCallKit::inline_string_toBytesU() {
1519   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1520     return false;
1521   }
1522   // Get the arguments.
1523   Node* value     = argument(0);
1524   Node* offset    = argument(1);
1525   Node* length    = argument(2);
1526 
1527   Node* newcopy = nullptr;
1528 
1529   // Set the original stack and the reexecute bit for the interpreter to reexecute
1530   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1531   { PreserveReexecuteState preexecs(this);
1532     jvms()->set_should_reexecute(true);
1533 
1534     // Check if a null path was taken unconditionally.
1535     value = null_check(value);
1536 
1537     RegionNode* bailout = new RegionNode(1);
1538     record_for_igvn(bailout);
1539 
1540     // Range checks
1541     generate_negative_guard(offset, bailout);
1542     generate_negative_guard(length, bailout);
1543     generate_limit_guard(offset, length, load_array_length(value), bailout);
1544     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1545     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1546 
1547     if (bailout->req() > 1) {
1548       PreserveJVMState pjvms(this);
1549       set_control(_gvn.transform(bailout));
1550       uncommon_trap(Deoptimization::Reason_intrinsic,
1551                     Deoptimization::Action_maybe_recompile);
1552     }
1553     if (stopped()) {
1554       return true;
1555     }
1556 
1557     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1558     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1559     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1560     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1561     guarantee(alloc != nullptr, "created above");
1562 
1563     // Calculate starting addresses.
1564     Node* src_start = array_element_address(value, offset, T_CHAR);
1565     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1566 
1567     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1568     const TypeInt* toffset = gvn().type(offset)->is_int();
1569     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1570 
1571     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1572     const char* copyfunc_name = "arraycopy";
1573     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1574     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1575                       OptoRuntime::fast_arraycopy_Type(),
1576                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1577                       src_start, dst_start, ConvI2X(length) XTOP);
1578     // Do not let reads from the cloned object float above the arraycopy.
1579     if (alloc->maybe_set_complete(&_gvn)) {
1580       // "You break it, you buy it."
1581       InitializeNode* init = alloc->initialization();
1582       assert(init->is_complete(), "we just did this");
1583       init->set_complete_with_arraycopy();
1584       assert(newcopy->is_CheckCastPP(), "sanity");
1585       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1586     }
1587     // Do not let stores that initialize this object be reordered with
1588     // a subsequent store that would make this object accessible by
1589     // other threads.
1590     // Record what AllocateNode this StoreStore protects so that
1591     // escape analysis can go from the MemBarStoreStoreNode to the
1592     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1593     // based on the escape status of the AllocateNode.
1594     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1595   } // original reexecute is set back here
1596 
1597   C->set_has_split_ifs(true); // Has chance for split-if optimization
1598   if (!stopped()) {
1599     set_result(newcopy);
1600   }
1601   clear_upper_avx();
1602 
1603   return true;
1604 }
1605 
1606 //------------------------inline_string_getCharsU--------------------------
1607 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1608 bool LibraryCallKit::inline_string_getCharsU() {
1609   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1610     return false;
1611   }
1612 
1613   // Get the arguments.
1614   Node* src       = argument(0);
1615   Node* src_begin = argument(1);
1616   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1617   Node* dst       = argument(3);
1618   Node* dst_begin = argument(4);
1619 
1620   // Check for allocation before we add nodes that would confuse
1621   // tightly_coupled_allocation()
1622   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1623 
1624   // Check if a null path was taken unconditionally.
1625   src = null_check(src);
1626   dst = null_check(dst);
1627   if (stopped()) {
1628     return true;
1629   }
1630 
1631   // Get length and convert char[] offset to byte[] offset
1632   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1633   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1634 
1635   // Range checks
1636   generate_string_range_check(src, src_begin, length, true);
1637   generate_string_range_check(dst, dst_begin, length, false);
1638   if (stopped()) {
1639     return true;
1640   }
1641 
1642   if (!stopped()) {
1643     // Calculate starting addresses.
1644     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1645     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1646 
1647     // Check if array addresses are aligned to HeapWordSize
1648     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1649     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1650     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1651                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1652 
1653     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1654     const char* copyfunc_name = "arraycopy";
1655     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1656     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1657                       OptoRuntime::fast_arraycopy_Type(),
1658                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1659                       src_start, dst_start, ConvI2X(length) XTOP);
1660     // Do not let reads from the cloned object float above the arraycopy.
1661     if (alloc != nullptr) {
1662       if (alloc->maybe_set_complete(&_gvn)) {
1663         // "You break it, you buy it."
1664         InitializeNode* init = alloc->initialization();
1665         assert(init->is_complete(), "we just did this");
1666         init->set_complete_with_arraycopy();
1667         assert(dst->is_CheckCastPP(), "sanity");
1668         assert(dst->in(0)->in(0) == init, "dest pinned");
1669       }
1670       // Do not let stores that initialize this object be reordered with
1671       // a subsequent store that would make this object accessible by
1672       // other threads.
1673       // Record what AllocateNode this StoreStore protects so that
1674       // escape analysis can go from the MemBarStoreStoreNode to the
1675       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1676       // based on the escape status of the AllocateNode.
1677       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1678     } else {
1679       insert_mem_bar(Op_MemBarCPUOrder);
1680     }
1681   }
1682 
1683   C->set_has_split_ifs(true); // Has chance for split-if optimization
1684   return true;
1685 }
1686 
1687 //----------------------inline_string_char_access----------------------------
1688 // Store/Load char to/from byte[] array.
1689 // static void StringUTF16.putChar(byte[] val, int index, int c)
1690 // static char StringUTF16.getChar(byte[] val, int index)
1691 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1692   Node* value  = argument(0);
1693   Node* index  = argument(1);
1694   Node* ch = is_store ? argument(2) : nullptr;
1695 
1696   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1697   // correctly requires matched array shapes.
1698   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1699           "sanity: byte[] and char[] bases agree");
1700   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1701           "sanity: byte[] and char[] scales agree");
1702 
1703   // Bail when getChar over constants is requested: constant folding would
1704   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1705   // Java method would constant fold nicely instead.
1706   if (!is_store && value->is_Con() && index->is_Con()) {
1707     return false;
1708   }
1709 
1710   // Save state and restore on bailout
1711   uint old_sp = sp();
1712   SafePointNode* old_map = clone_map();
1713 
1714   value = must_be_not_null(value, true);
1715 
1716   Node* adr = array_element_address(value, index, T_CHAR);
1717   if (adr->is_top()) {
1718     set_map(old_map);
1719     set_sp(old_sp);
1720     return false;
1721   }
1722   destruct_map_clone(old_map);
1723   if (is_store) {
1724     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1725   } else {
1726     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1727     set_result(ch);
1728   }
1729   return true;
1730 }
1731 
1732 //--------------------------round_double_node--------------------------------
1733 // Round a double node if necessary.
1734 Node* LibraryCallKit::round_double_node(Node* n) {
1735   if (Matcher::strict_fp_requires_explicit_rounding) {
1736 #ifdef IA32
1737     if (UseSSE < 2) {
1738       n = _gvn.transform(new RoundDoubleNode(nullptr, n));
1739     }
1740 #else
1741     Unimplemented();
1742 #endif // IA32
1743   }
1744   return n;
1745 }
1746 
1747 //------------------------------inline_math-----------------------------------
1748 // public static double Math.abs(double)
1749 // public static double Math.sqrt(double)
1750 // public static double Math.log(double)
1751 // public static double Math.log10(double)
1752 // public static double Math.round(double)
1753 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1754   Node* arg = round_double_node(argument(0));
1755   Node* n = nullptr;
1756   switch (id) {
1757   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1758   case vmIntrinsics::_dsqrt:
1759   case vmIntrinsics::_dsqrt_strict:
1760                               n = new SqrtDNode(C, control(),  arg);  break;
1761   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1762   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1763   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1764   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1765   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break;
1766   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1767   default:  fatal_unexpected_iid(id);  break;
1768   }
1769   set_result(_gvn.transform(n));
1770   return true;
1771 }
1772 
1773 //------------------------------inline_math-----------------------------------
1774 // public static float Math.abs(float)
1775 // public static int Math.abs(int)
1776 // public static long Math.abs(long)
1777 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1778   Node* arg = argument(0);
1779   Node* n = nullptr;
1780   switch (id) {
1781   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1782   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1783   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1784   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1785   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1786   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1787   default:  fatal_unexpected_iid(id);  break;
1788   }
1789   set_result(_gvn.transform(n));
1790   return true;
1791 }
1792 
1793 //------------------------------runtime_math-----------------------------
1794 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1795   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1796          "must be (DD)D or (D)D type");
1797 
1798   // Inputs
1799   Node* a = round_double_node(argument(0));
1800   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr;
1801 
1802   const TypePtr* no_memory_effects = nullptr;
1803   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1804                                  no_memory_effects,
1805                                  a, top(), b, b ? top() : nullptr);
1806   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1807 #ifdef ASSERT
1808   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1809   assert(value_top == top(), "second value must be top");
1810 #endif
1811 
1812   set_result(value);
1813   return true;
1814 }
1815 
1816 //------------------------------inline_math_pow-----------------------------
1817 bool LibraryCallKit::inline_math_pow() {
1818   Node* exp = round_double_node(argument(2));
1819   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1820   if (d != nullptr) {
1821     if (d->getd() == 2.0) {
1822       // Special case: pow(x, 2.0) => x * x
1823       Node* base = round_double_node(argument(0));
1824       set_result(_gvn.transform(new MulDNode(base, base)));
1825       return true;
1826     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1827       // Special case: pow(x, 0.5) => sqrt(x)
1828       Node* base = round_double_node(argument(0));
1829       Node* zero = _gvn.zerocon(T_DOUBLE);
1830 
1831       RegionNode* region = new RegionNode(3);
1832       Node* phi = new PhiNode(region, Type::DOUBLE);
1833 
1834       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1835       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1836       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1837       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1838       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1839 
1840       Node* if_pow = generate_slow_guard(test, nullptr);
1841       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1842       phi->init_req(1, value_sqrt);
1843       region->init_req(1, control());
1844 
1845       if (if_pow != nullptr) {
1846         set_control(if_pow);
1847         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1848                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1849         const TypePtr* no_memory_effects = nullptr;
1850         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1851                                        no_memory_effects, base, top(), exp, top());
1852         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1853 #ifdef ASSERT
1854         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1855         assert(value_top == top(), "second value must be top");
1856 #endif
1857         phi->init_req(2, value_pow);
1858         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1859       }
1860 
1861       C->set_has_split_ifs(true); // Has chance for split-if optimization
1862       set_control(_gvn.transform(region));
1863       record_for_igvn(region);
1864       set_result(_gvn.transform(phi));
1865 
1866       return true;
1867     }
1868   }
1869 
1870   return StubRoutines::dpow() != nullptr ?
1871     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1872     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1873 }
1874 
1875 //------------------------------inline_math_native-----------------------------
1876 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1877   switch (id) {
1878   case vmIntrinsics::_dsin:
1879     return StubRoutines::dsin() != nullptr ?
1880       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1881       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1882   case vmIntrinsics::_dcos:
1883     return StubRoutines::dcos() != nullptr ?
1884       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1885       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1886   case vmIntrinsics::_dtan:
1887     return StubRoutines::dtan() != nullptr ?
1888       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1889       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1890   case vmIntrinsics::_dtanh:
1891     return StubRoutines::dtanh() != nullptr ?
1892       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false;
1893   case vmIntrinsics::_dexp:
1894     return StubRoutines::dexp() != nullptr ?
1895       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1896       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1897   case vmIntrinsics::_dlog:
1898     return StubRoutines::dlog() != nullptr ?
1899       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1900       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1901   case vmIntrinsics::_dlog10:
1902     return StubRoutines::dlog10() != nullptr ?
1903       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1904       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1905 
1906   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1907   case vmIntrinsics::_ceil:
1908   case vmIntrinsics::_floor:
1909   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1910 
1911   case vmIntrinsics::_dsqrt:
1912   case vmIntrinsics::_dsqrt_strict:
1913                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1914   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1915   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1916   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1917   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1918 
1919   case vmIntrinsics::_dpow:      return inline_math_pow();
1920   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1921   case vmIntrinsics::_fcopySign: return inline_math(id);
1922   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1923   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1924   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1925 
1926    // These intrinsics are not yet correctly implemented
1927   case vmIntrinsics::_datan2:
1928     return false;
1929 
1930   default:
1931     fatal_unexpected_iid(id);
1932     return false;
1933   }
1934 }
1935 
1936 //----------------------------inline_notify-----------------------------------*
1937 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1938   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1939   address func;
1940   if (id == vmIntrinsics::_notify) {
1941     func = OptoRuntime::monitor_notify_Java();
1942   } else {
1943     func = OptoRuntime::monitor_notifyAll_Java();
1944   }
1945   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1946   make_slow_call_ex(call, env()->Throwable_klass(), false);
1947   return true;
1948 }
1949 
1950 
1951 //----------------------------inline_min_max-----------------------------------
1952 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1953   set_result(generate_min_max(id, argument(0), argument(1)));
1954   return true;
1955 }
1956 
1957 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1958   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1959   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1960   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1961   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1962 
1963   {
1964     PreserveJVMState pjvms(this);
1965     PreserveReexecuteState preexecs(this);
1966     jvms()->set_should_reexecute(true);
1967 
1968     set_control(slow_path);
1969     set_i_o(i_o());
1970 
1971     uncommon_trap(Deoptimization::Reason_intrinsic,
1972                   Deoptimization::Action_none);
1973   }
1974 
1975   set_control(fast_path);
1976   set_result(math);
1977 }
1978 
1979 template <typename OverflowOp>
1980 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1981   typedef typename OverflowOp::MathOp MathOp;
1982 
1983   MathOp* mathOp = new MathOp(arg1, arg2);
1984   Node* operation = _gvn.transform( mathOp );
1985   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1986   inline_math_mathExact(operation, ofcheck);
1987   return true;
1988 }
1989 
1990 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1991   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1992 }
1993 
1994 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1995   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1996 }
1997 
1998 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1999   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2000 }
2001 
2002 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2003   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2004 }
2005 
2006 bool LibraryCallKit::inline_math_negateExactI() {
2007   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2008 }
2009 
2010 bool LibraryCallKit::inline_math_negateExactL() {
2011   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2012 }
2013 
2014 bool LibraryCallKit::inline_math_multiplyExactI() {
2015   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2016 }
2017 
2018 bool LibraryCallKit::inline_math_multiplyExactL() {
2019   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2020 }
2021 
2022 bool LibraryCallKit::inline_math_multiplyHigh() {
2023   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2024   return true;
2025 }
2026 
2027 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2028   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2029   return true;
2030 }
2031 
2032 Node*
2033 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2034   Node* result_val = nullptr;
2035   switch (id) {
2036   case vmIntrinsics::_min:
2037   case vmIntrinsics::_min_strict:
2038     result_val = _gvn.transform(new MinINode(x0, y0));
2039     break;
2040   case vmIntrinsics::_max:
2041   case vmIntrinsics::_max_strict:
2042     result_val = _gvn.transform(new MaxINode(x0, y0));
2043     break;
2044   default:
2045     fatal_unexpected_iid(id);
2046     break;
2047   }
2048   return result_val;
2049 }
2050 
2051 inline int
2052 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2053   const TypePtr* base_type = TypePtr::NULL_PTR;
2054   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2055   if (base_type == nullptr) {
2056     // Unknown type.
2057     return Type::AnyPtr;
2058   } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) {
2059     // Since this is a null+long form, we have to switch to a rawptr.
2060     base   = _gvn.transform(new CastX2PNode(offset));
2061     offset = MakeConX(0);
2062     return Type::RawPtr;
2063   } else if (base_type->base() == Type::RawPtr) {
2064     return Type::RawPtr;
2065   } else if (base_type->isa_oopptr()) {
2066     // Base is never null => always a heap address.
2067     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2068       return Type::OopPtr;
2069     }
2070     // Offset is small => always a heap address.
2071     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2072     if (offset_type != nullptr &&
2073         base_type->offset() == 0 &&     // (should always be?)
2074         offset_type->_lo >= 0 &&
2075         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2076       return Type::OopPtr;
2077     } else if (type == T_OBJECT) {
2078       // off heap access to an oop doesn't make any sense. Has to be on
2079       // heap.
2080       return Type::OopPtr;
2081     }
2082     // Otherwise, it might either be oop+off or null+addr.
2083     return Type::AnyPtr;
2084   } else {
2085     // No information:
2086     return Type::AnyPtr;
2087   }
2088 }
2089 
2090 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2091   Node* uncasted_base = base;
2092   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2093   if (kind == Type::RawPtr) {
2094     return basic_plus_adr(top(), uncasted_base, offset);
2095   } else if (kind == Type::AnyPtr) {
2096     assert(base == uncasted_base, "unexpected base change");
2097     if (can_cast) {
2098       if (!_gvn.type(base)->speculative_maybe_null() &&
2099           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2100         // According to profiling, this access is always on
2101         // heap. Casting the base to not null and thus avoiding membars
2102         // around the access should allow better optimizations
2103         Node* null_ctl = top();
2104         base = null_check_oop(base, &null_ctl, true, true, true);
2105         assert(null_ctl->is_top(), "no null control here");
2106         return basic_plus_adr(base, offset);
2107       } else if (_gvn.type(base)->speculative_always_null() &&
2108                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2109         // According to profiling, this access is always off
2110         // heap.
2111         base = null_assert(base);
2112         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2113         offset = MakeConX(0);
2114         return basic_plus_adr(top(), raw_base, offset);
2115       }
2116     }
2117     // We don't know if it's an on heap or off heap access. Fall back
2118     // to raw memory access.
2119     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2120     return basic_plus_adr(top(), raw, offset);
2121   } else {
2122     assert(base == uncasted_base, "unexpected base change");
2123     // We know it's an on heap access so base can't be null
2124     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2125       base = must_be_not_null(base, true);
2126     }
2127     return basic_plus_adr(base, offset);
2128   }
2129 }
2130 
2131 //--------------------------inline_number_methods-----------------------------
2132 // inline int     Integer.numberOfLeadingZeros(int)
2133 // inline int        Long.numberOfLeadingZeros(long)
2134 //
2135 // inline int     Integer.numberOfTrailingZeros(int)
2136 // inline int        Long.numberOfTrailingZeros(long)
2137 //
2138 // inline int     Integer.bitCount(int)
2139 // inline int        Long.bitCount(long)
2140 //
2141 // inline char  Character.reverseBytes(char)
2142 // inline short     Short.reverseBytes(short)
2143 // inline int     Integer.reverseBytes(int)
2144 // inline long       Long.reverseBytes(long)
2145 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2146   Node* arg = argument(0);
2147   Node* n = nullptr;
2148   switch (id) {
2149   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2150   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2151   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2152   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2153   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2154   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2155   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(nullptr, arg);  break;
2156   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( nullptr, arg);  break;
2157   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( nullptr, arg);  break;
2158   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( nullptr, arg);  break;
2159   case vmIntrinsics::_reverse_i:                n = new ReverseINode(nullptr, arg); break;
2160   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(nullptr, arg); break;
2161   default:  fatal_unexpected_iid(id);  break;
2162   }
2163   set_result(_gvn.transform(n));
2164   return true;
2165 }
2166 
2167 //--------------------------inline_bitshuffle_methods-----------------------------
2168 // inline int Integer.compress(int, int)
2169 // inline int Integer.expand(int, int)
2170 // inline long Long.compress(long, long)
2171 // inline long Long.expand(long, long)
2172 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2173   Node* n = nullptr;
2174   switch (id) {
2175     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2176     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2177     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2178     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2179     default:  fatal_unexpected_iid(id);  break;
2180   }
2181   set_result(_gvn.transform(n));
2182   return true;
2183 }
2184 
2185 //--------------------------inline_number_methods-----------------------------
2186 // inline int Integer.compareUnsigned(int, int)
2187 // inline int    Long.compareUnsigned(long, long)
2188 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2189   Node* arg1 = argument(0);
2190   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2191   Node* n = nullptr;
2192   switch (id) {
2193     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2194     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2195     default:  fatal_unexpected_iid(id);  break;
2196   }
2197   set_result(_gvn.transform(n));
2198   return true;
2199 }
2200 
2201 //--------------------------inline_unsigned_divmod_methods-----------------------------
2202 // inline int Integer.divideUnsigned(int, int)
2203 // inline int Integer.remainderUnsigned(int, int)
2204 // inline long Long.divideUnsigned(long, long)
2205 // inline long Long.remainderUnsigned(long, long)
2206 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2207   Node* n = nullptr;
2208   switch (id) {
2209     case vmIntrinsics::_divideUnsigned_i: {
2210       zero_check_int(argument(1));
2211       // Compile-time detect of null-exception
2212       if (stopped()) {
2213         return true; // keep the graph constructed so far
2214       }
2215       n = new UDivINode(control(), argument(0), argument(1));
2216       break;
2217     }
2218     case vmIntrinsics::_divideUnsigned_l: {
2219       zero_check_long(argument(2));
2220       // Compile-time detect of null-exception
2221       if (stopped()) {
2222         return true; // keep the graph constructed so far
2223       }
2224       n = new UDivLNode(control(), argument(0), argument(2));
2225       break;
2226     }
2227     case vmIntrinsics::_remainderUnsigned_i: {
2228       zero_check_int(argument(1));
2229       // Compile-time detect of null-exception
2230       if (stopped()) {
2231         return true; // keep the graph constructed so far
2232       }
2233       n = new UModINode(control(), argument(0), argument(1));
2234       break;
2235     }
2236     case vmIntrinsics::_remainderUnsigned_l: {
2237       zero_check_long(argument(2));
2238       // Compile-time detect of null-exception
2239       if (stopped()) {
2240         return true; // keep the graph constructed so far
2241       }
2242       n = new UModLNode(control(), argument(0), argument(2));
2243       break;
2244     }
2245     default:  fatal_unexpected_iid(id);  break;
2246   }
2247   set_result(_gvn.transform(n));
2248   return true;
2249 }
2250 
2251 //----------------------------inline_unsafe_access----------------------------
2252 
2253 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2254   // Attempt to infer a sharper value type from the offset and base type.
2255   ciKlass* sharpened_klass = nullptr;
2256 
2257   // See if it is an instance field, with an object type.
2258   if (alias_type->field() != nullptr) {
2259     if (alias_type->field()->type()->is_klass()) {
2260       sharpened_klass = alias_type->field()->type()->as_klass();
2261     }
2262   }
2263 
2264   const TypeOopPtr* result = nullptr;
2265   // See if it is a narrow oop array.
2266   if (adr_type->isa_aryptr()) {
2267     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2268       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2269       if (elem_type != nullptr && elem_type->is_loaded()) {
2270         // Sharpen the value type.
2271         result = elem_type;
2272       }
2273     }
2274   }
2275 
2276   // The sharpened class might be unloaded if there is no class loader
2277   // contraint in place.
2278   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2279     // Sharpen the value type.
2280     result = TypeOopPtr::make_from_klass(sharpened_klass);
2281   }
2282   if (result != nullptr) {
2283 #ifndef PRODUCT
2284     if (C->print_intrinsics() || C->print_inlining()) {
2285       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2286       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2287     }
2288 #endif
2289   }
2290   return result;
2291 }
2292 
2293 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2294   switch (kind) {
2295       case Relaxed:
2296         return MO_UNORDERED;
2297       case Opaque:
2298         return MO_RELAXED;
2299       case Acquire:
2300         return MO_ACQUIRE;
2301       case Release:
2302         return MO_RELEASE;
2303       case Volatile:
2304         return MO_SEQ_CST;
2305       default:
2306         ShouldNotReachHere();
2307         return 0;
2308   }
2309 }
2310 
2311 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2312   if (callee()->is_static())  return false;  // caller must have the capability!
2313   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2314   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2315   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2316   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2317 
2318   if (is_reference_type(type)) {
2319     decorators |= ON_UNKNOWN_OOP_REF;
2320   }
2321 
2322   if (unaligned) {
2323     decorators |= C2_UNALIGNED;
2324   }
2325 
2326 #ifndef PRODUCT
2327   {
2328     ResourceMark rm;
2329     // Check the signatures.
2330     ciSignature* sig = callee()->signature();
2331 #ifdef ASSERT
2332     if (!is_store) {
2333       // Object getReference(Object base, int/long offset), etc.
2334       BasicType rtype = sig->return_type()->basic_type();
2335       assert(rtype == type, "getter must return the expected value");
2336       assert(sig->count() == 2, "oop getter has 2 arguments");
2337       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2338       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2339     } else {
2340       // void putReference(Object base, int/long offset, Object x), etc.
2341       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2342       assert(sig->count() == 3, "oop putter has 3 arguments");
2343       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2344       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2345       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2346       assert(vtype == type, "putter must accept the expected value");
2347     }
2348 #endif // ASSERT
2349  }
2350 #endif //PRODUCT
2351 
2352   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2353 
2354   Node* receiver = argument(0);  // type: oop
2355 
2356   // Build address expression.
2357   Node* heap_base_oop = top();
2358 
2359   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2360   Node* base = argument(1);  // type: oop
2361   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2362   Node* offset = argument(2);  // type: long
2363   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2364   // to be plain byte offsets, which are also the same as those accepted
2365   // by oopDesc::field_addr.
2366   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2367          "fieldOffset must be byte-scaled");
2368   // 32-bit machines ignore the high half!
2369   offset = ConvL2X(offset);
2370 
2371   // Save state and restore on bailout
2372   uint old_sp = sp();
2373   SafePointNode* old_map = clone_map();
2374 
2375   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2376   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2377 
2378   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2379     if (type != T_OBJECT) {
2380       decorators |= IN_NATIVE; // off-heap primitive access
2381     } else {
2382       set_map(old_map);
2383       set_sp(old_sp);
2384       return false; // off-heap oop accesses are not supported
2385     }
2386   } else {
2387     heap_base_oop = base; // on-heap or mixed access
2388   }
2389 
2390   // Can base be null? Otherwise, always on-heap access.
2391   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2392 
2393   if (!can_access_non_heap) {
2394     decorators |= IN_HEAP;
2395   }
2396 
2397   Node* val = is_store ? argument(4) : nullptr;
2398 
2399   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2400   if (adr_type == TypePtr::NULL_PTR) {
2401     set_map(old_map);
2402     set_sp(old_sp);
2403     return false; // off-heap access with zero address
2404   }
2405 
2406   // Try to categorize the address.
2407   Compile::AliasType* alias_type = C->alias_type(adr_type);
2408   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2409 
2410   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2411       alias_type->adr_type() == TypeAryPtr::RANGE) {
2412     set_map(old_map);
2413     set_sp(old_sp);
2414     return false; // not supported
2415   }
2416 
2417   bool mismatched = false;
2418   BasicType bt = alias_type->basic_type();
2419   if (bt != T_ILLEGAL) {
2420     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2421     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2422       // Alias type doesn't differentiate between byte[] and boolean[]).
2423       // Use address type to get the element type.
2424       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2425     }
2426     if (is_reference_type(bt, true)) {
2427       // accessing an array field with getReference is not a mismatch
2428       bt = T_OBJECT;
2429     }
2430     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2431       // Don't intrinsify mismatched object accesses
2432       set_map(old_map);
2433       set_sp(old_sp);
2434       return false;
2435     }
2436     mismatched = (bt != type);
2437   } else if (alias_type->adr_type()->isa_oopptr()) {
2438     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2439   }
2440 
2441   destruct_map_clone(old_map);
2442   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2443 
2444   if (mismatched) {
2445     decorators |= C2_MISMATCHED;
2446   }
2447 
2448   // First guess at the value type.
2449   const Type *value_type = Type::get_const_basic_type(type);
2450 
2451   // Figure out the memory ordering.
2452   decorators |= mo_decorator_for_access_kind(kind);
2453 
2454   if (!is_store && type == T_OBJECT) {
2455     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2456     if (tjp != nullptr) {
2457       value_type = tjp;
2458     }
2459   }
2460 
2461   receiver = null_check(receiver);
2462   if (stopped()) {
2463     return true;
2464   }
2465   // Heap pointers get a null-check from the interpreter,
2466   // as a courtesy.  However, this is not guaranteed by Unsafe,
2467   // and it is not possible to fully distinguish unintended nulls
2468   // from intended ones in this API.
2469 
2470   if (!is_store) {
2471     Node* p = nullptr;
2472     // Try to constant fold a load from a constant field
2473     ciField* field = alias_type->field();
2474     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2475       // final or stable field
2476       p = make_constant_from_field(field, heap_base_oop);
2477     }
2478 
2479     if (p == nullptr) { // Could not constant fold the load
2480       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2481       // Normalize the value returned by getBoolean in the following cases
2482       if (type == T_BOOLEAN &&
2483           (mismatched ||
2484            heap_base_oop == top() ||                  // - heap_base_oop is null or
2485            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2486                                                       //   and the unsafe access is made to large offset
2487                                                       //   (i.e., larger than the maximum offset necessary for any
2488                                                       //   field access)
2489             ) {
2490           IdealKit ideal = IdealKit(this);
2491 #define __ ideal.
2492           IdealVariable normalized_result(ideal);
2493           __ declarations_done();
2494           __ set(normalized_result, p);
2495           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2496           __ set(normalized_result, ideal.ConI(1));
2497           ideal.end_if();
2498           final_sync(ideal);
2499           p = __ value(normalized_result);
2500 #undef __
2501       }
2502     }
2503     if (type == T_ADDRESS) {
2504       p = gvn().transform(new CastP2XNode(nullptr, p));
2505       p = ConvX2UL(p);
2506     }
2507     // The load node has the control of the preceding MemBarCPUOrder.  All
2508     // following nodes will have the control of the MemBarCPUOrder inserted at
2509     // the end of this method.  So, pushing the load onto the stack at a later
2510     // point is fine.
2511     set_result(p);
2512   } else {
2513     if (bt == T_ADDRESS) {
2514       // Repackage the long as a pointer.
2515       val = ConvL2X(val);
2516       val = gvn().transform(new CastX2PNode(val));
2517     }
2518     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2519   }
2520 
2521   return true;
2522 }
2523 
2524 //----------------------------inline_unsafe_load_store----------------------------
2525 // This method serves a couple of different customers (depending on LoadStoreKind):
2526 //
2527 // LS_cmp_swap:
2528 //
2529 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2530 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2531 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2532 //
2533 // LS_cmp_swap_weak:
2534 //
2535 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2536 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2537 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2538 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2539 //
2540 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2541 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2542 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2543 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2544 //
2545 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2546 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2547 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2548 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2549 //
2550 // LS_cmp_exchange:
2551 //
2552 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2553 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2554 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2555 //
2556 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2557 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2558 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2559 //
2560 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2561 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2562 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2563 //
2564 // LS_get_add:
2565 //
2566 //   int  getAndAddInt( Object o, long offset, int  delta)
2567 //   long getAndAddLong(Object o, long offset, long delta)
2568 //
2569 // LS_get_set:
2570 //
2571 //   int    getAndSet(Object o, long offset, int    newValue)
2572 //   long   getAndSet(Object o, long offset, long   newValue)
2573 //   Object getAndSet(Object o, long offset, Object newValue)
2574 //
2575 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2576   // This basic scheme here is the same as inline_unsafe_access, but
2577   // differs in enough details that combining them would make the code
2578   // overly confusing.  (This is a true fact! I originally combined
2579   // them, but even I was confused by it!) As much code/comments as
2580   // possible are retained from inline_unsafe_access though to make
2581   // the correspondences clearer. - dl
2582 
2583   if (callee()->is_static())  return false;  // caller must have the capability!
2584 
2585   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2586   decorators |= mo_decorator_for_access_kind(access_kind);
2587 
2588 #ifndef PRODUCT
2589   BasicType rtype;
2590   {
2591     ResourceMark rm;
2592     // Check the signatures.
2593     ciSignature* sig = callee()->signature();
2594     rtype = sig->return_type()->basic_type();
2595     switch(kind) {
2596       case LS_get_add:
2597       case LS_get_set: {
2598       // Check the signatures.
2599 #ifdef ASSERT
2600       assert(rtype == type, "get and set must return the expected type");
2601       assert(sig->count() == 3, "get and set has 3 arguments");
2602       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2603       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2604       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2605       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2606 #endif // ASSERT
2607         break;
2608       }
2609       case LS_cmp_swap:
2610       case LS_cmp_swap_weak: {
2611       // Check the signatures.
2612 #ifdef ASSERT
2613       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2614       assert(sig->count() == 4, "CAS has 4 arguments");
2615       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2616       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2617 #endif // ASSERT
2618         break;
2619       }
2620       case LS_cmp_exchange: {
2621       // Check the signatures.
2622 #ifdef ASSERT
2623       assert(rtype == type, "CAS must return the expected type");
2624       assert(sig->count() == 4, "CAS has 4 arguments");
2625       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2626       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2627 #endif // ASSERT
2628         break;
2629       }
2630       default:
2631         ShouldNotReachHere();
2632     }
2633   }
2634 #endif //PRODUCT
2635 
2636   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2637 
2638   // Get arguments:
2639   Node* receiver = nullptr;
2640   Node* base     = nullptr;
2641   Node* offset   = nullptr;
2642   Node* oldval   = nullptr;
2643   Node* newval   = nullptr;
2644   switch(kind) {
2645     case LS_cmp_swap:
2646     case LS_cmp_swap_weak:
2647     case LS_cmp_exchange: {
2648       const bool two_slot_type = type2size[type] == 2;
2649       receiver = argument(0);  // type: oop
2650       base     = argument(1);  // type: oop
2651       offset   = argument(2);  // type: long
2652       oldval   = argument(4);  // type: oop, int, or long
2653       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2654       break;
2655     }
2656     case LS_get_add:
2657     case LS_get_set: {
2658       receiver = argument(0);  // type: oop
2659       base     = argument(1);  // type: oop
2660       offset   = argument(2);  // type: long
2661       oldval   = nullptr;
2662       newval   = argument(4);  // type: oop, int, or long
2663       break;
2664     }
2665     default:
2666       ShouldNotReachHere();
2667   }
2668 
2669   // Build field offset expression.
2670   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2671   // to be plain byte offsets, which are also the same as those accepted
2672   // by oopDesc::field_addr.
2673   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2674   // 32-bit machines ignore the high half of long offsets
2675   offset = ConvL2X(offset);
2676   // Save state and restore on bailout
2677   uint old_sp = sp();
2678   SafePointNode* old_map = clone_map();
2679   Node* adr = make_unsafe_address(base, offset,type, false);
2680   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2681 
2682   Compile::AliasType* alias_type = C->alias_type(adr_type);
2683   BasicType bt = alias_type->basic_type();
2684   if (bt != T_ILLEGAL &&
2685       (is_reference_type(bt) != (type == T_OBJECT))) {
2686     // Don't intrinsify mismatched object accesses.
2687     set_map(old_map);
2688     set_sp(old_sp);
2689     return false;
2690   }
2691 
2692   destruct_map_clone(old_map);
2693 
2694   // For CAS, unlike inline_unsafe_access, there seems no point in
2695   // trying to refine types. Just use the coarse types here.
2696   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2697   const Type *value_type = Type::get_const_basic_type(type);
2698 
2699   switch (kind) {
2700     case LS_get_set:
2701     case LS_cmp_exchange: {
2702       if (type == T_OBJECT) {
2703         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2704         if (tjp != nullptr) {
2705           value_type = tjp;
2706         }
2707       }
2708       break;
2709     }
2710     case LS_cmp_swap:
2711     case LS_cmp_swap_weak:
2712     case LS_get_add:
2713       break;
2714     default:
2715       ShouldNotReachHere();
2716   }
2717 
2718   // Null check receiver.
2719   receiver = null_check(receiver);
2720   if (stopped()) {
2721     return true;
2722   }
2723 
2724   int alias_idx = C->get_alias_index(adr_type);
2725 
2726   if (is_reference_type(type)) {
2727     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2728 
2729     // Transformation of a value which could be null pointer (CastPP #null)
2730     // could be delayed during Parse (for example, in adjust_map_after_if()).
2731     // Execute transformation here to avoid barrier generation in such case.
2732     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2733       newval = _gvn.makecon(TypePtr::NULL_PTR);
2734 
2735     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2736       // Refine the value to a null constant, when it is known to be null
2737       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2738     }
2739   }
2740 
2741   Node* result = nullptr;
2742   switch (kind) {
2743     case LS_cmp_exchange: {
2744       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2745                                             oldval, newval, value_type, type, decorators);
2746       break;
2747     }
2748     case LS_cmp_swap_weak:
2749       decorators |= C2_WEAK_CMPXCHG;
2750     case LS_cmp_swap: {
2751       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2752                                              oldval, newval, value_type, type, decorators);
2753       break;
2754     }
2755     case LS_get_set: {
2756       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2757                                      newval, value_type, type, decorators);
2758       break;
2759     }
2760     case LS_get_add: {
2761       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2762                                     newval, value_type, type, decorators);
2763       break;
2764     }
2765     default:
2766       ShouldNotReachHere();
2767   }
2768 
2769   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2770   set_result(result);
2771   return true;
2772 }
2773 
2774 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2775   // Regardless of form, don't allow previous ld/st to move down,
2776   // then issue acquire, release, or volatile mem_bar.
2777   insert_mem_bar(Op_MemBarCPUOrder);
2778   switch(id) {
2779     case vmIntrinsics::_loadFence:
2780       insert_mem_bar(Op_LoadFence);
2781       return true;
2782     case vmIntrinsics::_storeFence:
2783       insert_mem_bar(Op_StoreFence);
2784       return true;
2785     case vmIntrinsics::_storeStoreFence:
2786       insert_mem_bar(Op_StoreStoreFence);
2787       return true;
2788     case vmIntrinsics::_fullFence:
2789       insert_mem_bar(Op_MemBarVolatile);
2790       return true;
2791     default:
2792       fatal_unexpected_iid(id);
2793       return false;
2794   }
2795 }
2796 
2797 bool LibraryCallKit::inline_onspinwait() {
2798   insert_mem_bar(Op_OnSpinWait);
2799   return true;
2800 }
2801 
2802 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2803   if (!kls->is_Con()) {
2804     return true;
2805   }
2806   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2807   if (klsptr == nullptr) {
2808     return true;
2809   }
2810   ciInstanceKlass* ik = klsptr->instance_klass();
2811   // don't need a guard for a klass that is already initialized
2812   return !ik->is_initialized();
2813 }
2814 
2815 //----------------------------inline_unsafe_writeback0-------------------------
2816 // public native void Unsafe.writeback0(long address)
2817 bool LibraryCallKit::inline_unsafe_writeback0() {
2818   if (!Matcher::has_match_rule(Op_CacheWB)) {
2819     return false;
2820   }
2821 #ifndef PRODUCT
2822   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2823   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2824   ciSignature* sig = callee()->signature();
2825   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2826 #endif
2827   null_check_receiver();  // null-check, then ignore
2828   Node *addr = argument(1);
2829   addr = new CastX2PNode(addr);
2830   addr = _gvn.transform(addr);
2831   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2832   flush = _gvn.transform(flush);
2833   set_memory(flush, TypeRawPtr::BOTTOM);
2834   return true;
2835 }
2836 
2837 //----------------------------inline_unsafe_writeback0-------------------------
2838 // public native void Unsafe.writeback0(long address)
2839 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2840   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2841     return false;
2842   }
2843   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2844     return false;
2845   }
2846 #ifndef PRODUCT
2847   assert(Matcher::has_match_rule(Op_CacheWB),
2848          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2849                 : "found match rule for CacheWBPostSync but not CacheWB"));
2850 
2851 #endif
2852   null_check_receiver();  // null-check, then ignore
2853   Node *sync;
2854   if (is_pre) {
2855     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2856   } else {
2857     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2858   }
2859   sync = _gvn.transform(sync);
2860   set_memory(sync, TypeRawPtr::BOTTOM);
2861   return true;
2862 }
2863 
2864 //----------------------------inline_unsafe_allocate---------------------------
2865 // public native Object Unsafe.allocateInstance(Class<?> cls);
2866 bool LibraryCallKit::inline_unsafe_allocate() {
2867 
2868 #if INCLUDE_JVMTI
2869   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
2870     return false;
2871   }
2872 #endif //INCLUDE_JVMTI
2873 
2874   if (callee()->is_static())  return false;  // caller must have the capability!
2875 
2876   null_check_receiver();  // null-check, then ignore
2877   Node* cls = null_check(argument(1));
2878   if (stopped())  return true;
2879 
2880   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
2881   kls = null_check(kls);
2882   if (stopped())  return true;  // argument was like int.class
2883 
2884 #if INCLUDE_JVMTI
2885     // Don't try to access new allocated obj in the intrinsic.
2886     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
2887     // Deoptimize and allocate in interpreter instead.
2888     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
2889     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
2890     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
2891     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2892     {
2893       BuildCutout unless(this, tst, PROB_MAX);
2894       uncommon_trap(Deoptimization::Reason_intrinsic,
2895                     Deoptimization::Action_make_not_entrant);
2896     }
2897     if (stopped()) {
2898       return true;
2899     }
2900 #endif //INCLUDE_JVMTI
2901 
2902   Node* test = nullptr;
2903   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2904     // Note:  The argument might still be an illegal value like
2905     // Serializable.class or Object[].class.   The runtime will handle it.
2906     // But we must make an explicit check for initialization.
2907     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2908     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2909     // can generate code to load it as unsigned byte.
2910     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2911     Node* bits = intcon(InstanceKlass::fully_initialized);
2912     test = _gvn.transform(new SubINode(inst, bits));
2913     // The 'test' is non-zero if we need to take a slow path.
2914   }
2915 
2916   Node* obj = new_instance(kls, test);
2917   set_result(obj);
2918   return true;
2919 }
2920 
2921 //------------------------inline_native_time_funcs--------------
2922 // inline code for System.currentTimeMillis() and System.nanoTime()
2923 // these have the same type and signature
2924 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2925   const TypeFunc* tf = OptoRuntime::void_long_Type();
2926   const TypePtr* no_memory_effects = nullptr;
2927   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2928   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2929 #ifdef ASSERT
2930   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2931   assert(value_top == top(), "second value must be top");
2932 #endif
2933   set_result(value);
2934   return true;
2935 }
2936 
2937 
2938 #if INCLUDE_JVMTI
2939 
2940 // When notifications are disabled then just update the VTMS transition bit and return.
2941 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
2942 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
2943   if (!DoJVMTIVirtualThreadTransitions) {
2944     return true;
2945   }
2946   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
2947   IdealKit ideal(this);
2948 
2949   Node* ONE = ideal.ConI(1);
2950   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
2951   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
2952   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
2953 
2954   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
2955     sync_kit(ideal);
2956     // if notifyJvmti enabled then make a call to the given SharedRuntime function
2957     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
2958     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
2959     ideal.sync_kit(this);
2960   } ideal.else_(); {
2961     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
2962     Node* thread = ideal.thread();
2963     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
2964     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
2965 
2966     sync_kit(ideal);
2967     access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2968     access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2969 
2970     ideal.sync_kit(this);
2971   } ideal.end_if();
2972   final_sync(ideal);
2973 
2974   return true;
2975 }
2976 
2977 // Always update the is_disable_suspend bit.
2978 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
2979   if (!DoJVMTIVirtualThreadTransitions) {
2980     return true;
2981   }
2982   IdealKit ideal(this);
2983 
2984   {
2985     // unconditionally update the is_disable_suspend bit in current JavaThread
2986     Node* thread = ideal.thread();
2987     Node* arg = _gvn.transform(argument(0)); // argument for notification
2988     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
2989     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
2990 
2991     sync_kit(ideal);
2992     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2993     ideal.sync_kit(this);
2994   }
2995   final_sync(ideal);
2996 
2997   return true;
2998 }
2999 
3000 #endif // INCLUDE_JVMTI
3001 
3002 #ifdef JFR_HAVE_INTRINSICS
3003 
3004 /**
3005  * if oop->klass != null
3006  *   // normal class
3007  *   epoch = _epoch_state ? 2 : 1
3008  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3009  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3010  *   }
3011  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3012  * else
3013  *   // primitive class
3014  *   if oop->array_klass != null
3015  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3016  *   else
3017  *     id = LAST_TYPE_ID + 1 // void class path
3018  *   if (!signaled)
3019  *     signaled = true
3020  */
3021 bool LibraryCallKit::inline_native_classID() {
3022   Node* cls = argument(0);
3023 
3024   IdealKit ideal(this);
3025 #define __ ideal.
3026   IdealVariable result(ideal); __ declarations_done();
3027   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3028                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3029                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3030 
3031 
3032   __ if_then(kls, BoolTest::ne, null()); {
3033     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3034     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3035 
3036     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3037     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3038     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3039     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3040     mask = _gvn.transform(new OrLNode(mask, epoch));
3041     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3042 
3043     float unlikely  = PROB_UNLIKELY(0.999);
3044     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3045       sync_kit(ideal);
3046       make_runtime_call(RC_LEAF,
3047                         OptoRuntime::class_id_load_barrier_Type(),
3048                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3049                         "class id load barrier",
3050                         TypePtr::BOTTOM,
3051                         kls);
3052       ideal.sync_kit(this);
3053     } __ end_if();
3054 
3055     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3056   } __ else_(); {
3057     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3058                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3059                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3060     __ if_then(array_kls, BoolTest::ne, null()); {
3061       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3062       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3063       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3064       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3065     } __ else_(); {
3066       // void class case
3067       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3068     } __ end_if();
3069 
3070     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3071     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3072     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3073       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3074     } __ end_if();
3075   } __ end_if();
3076 
3077   final_sync(ideal);
3078   set_result(ideal.value(result));
3079 #undef __
3080   return true;
3081 }
3082 
3083 //------------------------inline_native_jvm_commit------------------
3084 bool LibraryCallKit::inline_native_jvm_commit() {
3085   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3086 
3087   // Save input memory and i_o state.
3088   Node* input_memory_state = reset_memory();
3089   set_all_memory(input_memory_state);
3090   Node* input_io_state = i_o();
3091 
3092   // TLS.
3093   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3094   // Jfr java buffer.
3095   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3096   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3097   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3098 
3099   // Load the current value of the notified field in the JfrThreadLocal.
3100   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3101   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3102 
3103   // Test for notification.
3104   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3105   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3106   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3107 
3108   // True branch, is notified.
3109   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3110   set_control(is_notified);
3111 
3112   // Reset notified state.
3113   Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered);
3114 
3115   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3116   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3117   // Convert the machine-word to a long.
3118   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3119 
3120   // False branch, not notified.
3121   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3122   set_control(not_notified);
3123   set_all_memory(input_memory_state);
3124 
3125   // Arg is the next position as a long.
3126   Node* arg = argument(0);
3127   // Convert long to machine-word.
3128   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3129 
3130   // Store the next_position to the underlying jfr java buffer.
3131   Node* commit_memory;
3132 #ifdef _LP64
3133   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release);
3134 #else
3135   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release);
3136 #endif
3137 
3138   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3139   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3140   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3141   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3142 
3143   // And flags with lease constant.
3144   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3145 
3146   // Branch on lease to conditionalize returning the leased java buffer.
3147   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3148   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3149   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3150 
3151   // False branch, not a lease.
3152   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3153 
3154   // True branch, is lease.
3155   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3156   set_control(is_lease);
3157 
3158   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3159   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3160                                               OptoRuntime::void_void_Type(),
3161                                               SharedRuntime::jfr_return_lease(),
3162                                               "return_lease", TypePtr::BOTTOM);
3163   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3164 
3165   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3166   record_for_igvn(lease_compare_rgn);
3167   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3168   record_for_igvn(lease_compare_mem);
3169   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3170   record_for_igvn(lease_compare_io);
3171   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3172   record_for_igvn(lease_result_value);
3173 
3174   // Update control and phi nodes.
3175   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3176   lease_compare_rgn->init_req(_false_path, not_lease);
3177 
3178   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3179   lease_compare_mem->init_req(_false_path, commit_memory);
3180 
3181   lease_compare_io->init_req(_true_path, i_o());
3182   lease_compare_io->init_req(_false_path, input_io_state);
3183 
3184   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3185   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3186 
3187   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3188   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3189   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3190   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3191 
3192   // Update control and phi nodes.
3193   result_rgn->init_req(_true_path, is_notified);
3194   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3195 
3196   result_mem->init_req(_true_path, notified_reset_memory);
3197   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3198 
3199   result_io->init_req(_true_path, input_io_state);
3200   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3201 
3202   result_value->init_req(_true_path, current_pos);
3203   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3204 
3205   // Set output state.
3206   set_control(_gvn.transform(result_rgn));
3207   set_all_memory(_gvn.transform(result_mem));
3208   set_i_o(_gvn.transform(result_io));
3209   set_result(result_rgn, result_value);
3210   return true;
3211 }
3212 
3213 /*
3214  * The intrinsic is a model of this pseudo-code:
3215  *
3216  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3217  * jobject h_event_writer = tl->java_event_writer();
3218  * if (h_event_writer == nullptr) {
3219  *   return nullptr;
3220  * }
3221  * oop threadObj = Thread::threadObj();
3222  * oop vthread = java_lang_Thread::vthread(threadObj);
3223  * traceid tid;
3224  * bool pinVirtualThread;
3225  * bool excluded;
3226  * if (vthread != threadObj) {  // i.e. current thread is virtual
3227  *   tid = java_lang_Thread::tid(vthread);
3228  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3229  *   pinVirtualThread = VMContinuations;
3230  *   excluded = vthread_epoch_raw & excluded_mask;
3231  *   if (!excluded) {
3232  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3233  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3234  *     if (vthread_epoch != current_epoch) {
3235  *       write_checkpoint();
3236  *     }
3237  *   }
3238  * } else {
3239  *   tid = java_lang_Thread::tid(threadObj);
3240  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3241  *   pinVirtualThread = false;
3242  *   excluded = thread_epoch_raw & excluded_mask;
3243  * }
3244  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3245  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3246  * if (tid_in_event_writer != tid) {
3247  *   setField(event_writer, "pinVirtualThread", pinVirtualThread);
3248  *   setField(event_writer, "excluded", excluded);
3249  *   setField(event_writer, "threadID", tid);
3250  * }
3251  * return event_writer
3252  */
3253 bool LibraryCallKit::inline_native_getEventWriter() {
3254   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3255 
3256   // Save input memory and i_o state.
3257   Node* input_memory_state = reset_memory();
3258   set_all_memory(input_memory_state);
3259   Node* input_io_state = i_o();
3260 
3261   Node* excluded_mask = _gvn.intcon(32768);
3262   Node* epoch_mask = _gvn.intcon(32767);
3263 
3264   // TLS
3265   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3266 
3267   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3268   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3269 
3270   // Load the eventwriter jobject handle.
3271   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3272 
3273   // Null check the jobject handle.
3274   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3275   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3276   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3277 
3278   // False path, jobj is null.
3279   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3280 
3281   // True path, jobj is not null.
3282   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3283 
3284   set_control(jobj_is_not_null);
3285 
3286   // Load the threadObj for the CarrierThread.
3287   Node* threadObj = generate_current_thread(tls_ptr);
3288 
3289   // Load the vthread.
3290   Node* vthread = generate_virtual_thread(tls_ptr);
3291 
3292   // If vthread != threadObj, this is a virtual thread.
3293   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3294   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3295   IfNode* iff_vthread_not_equal_threadObj =
3296     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3297 
3298   // False branch, fallback to threadObj.
3299   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3300   set_control(vthread_equal_threadObj);
3301 
3302   // Load the tid field from the vthread object.
3303   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3304 
3305   // Load the raw epoch value from the threadObj.
3306   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3307   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset,
3308                                              _gvn.type(threadObj_epoch_offset)->isa_ptr(),
3309                                              TypeInt::CHAR, T_CHAR,
3310                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3311 
3312   // Mask off the excluded information from the epoch.
3313   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3314 
3315   // True branch, this is a virtual thread.
3316   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3317   set_control(vthread_not_equal_threadObj);
3318 
3319   // Load the tid field from the vthread object.
3320   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3321 
3322   // Continuation support determines if a virtual thread should be pinned.
3323   Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations));
3324   Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3325 
3326   // Load the raw epoch value from the vthread.
3327   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3328   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(),
3329                                            TypeInt::CHAR, T_CHAR,
3330                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3331 
3332   // Mask off the excluded information from the epoch.
3333   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3334 
3335   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3336   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3337   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3338   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3339 
3340   // False branch, vthread is excluded, no need to write epoch info.
3341   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3342 
3343   // True branch, vthread is included, update epoch info.
3344   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3345   set_control(included);
3346 
3347   // Get epoch value.
3348   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3349 
3350   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3351   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3352   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3353 
3354   // Compare the epoch in the vthread to the current epoch generation.
3355   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3356   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3357   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3358 
3359   // False path, epoch is equal, checkpoint information is valid.
3360   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3361 
3362   // True path, epoch is not equal, write a checkpoint for the vthread.
3363   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3364 
3365   set_control(epoch_is_not_equal);
3366 
3367   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3368   // The call also updates the native thread local thread id and the vthread with the current epoch.
3369   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3370                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3371                                                   SharedRuntime::jfr_write_checkpoint(),
3372                                                   "write_checkpoint", TypePtr::BOTTOM);
3373   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3374 
3375   // vthread epoch != current epoch
3376   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3377   record_for_igvn(epoch_compare_rgn);
3378   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3379   record_for_igvn(epoch_compare_mem);
3380   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3381   record_for_igvn(epoch_compare_io);
3382 
3383   // Update control and phi nodes.
3384   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3385   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3386   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3387   epoch_compare_mem->init_req(_false_path, input_memory_state);
3388   epoch_compare_io->init_req(_true_path, i_o());
3389   epoch_compare_io->init_req(_false_path, input_io_state);
3390 
3391   // excluded != true
3392   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3393   record_for_igvn(exclude_compare_rgn);
3394   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3395   record_for_igvn(exclude_compare_mem);
3396   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3397   record_for_igvn(exclude_compare_io);
3398 
3399   // Update control and phi nodes.
3400   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3401   exclude_compare_rgn->init_req(_false_path, excluded);
3402   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3403   exclude_compare_mem->init_req(_false_path, input_memory_state);
3404   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3405   exclude_compare_io->init_req(_false_path, input_io_state);
3406 
3407   // vthread != threadObj
3408   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3409   record_for_igvn(vthread_compare_rgn);
3410   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3411   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3412   record_for_igvn(vthread_compare_io);
3413   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3414   record_for_igvn(tid);
3415   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3416   record_for_igvn(exclusion);
3417   PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3418   record_for_igvn(pinVirtualThread);
3419 
3420   // Update control and phi nodes.
3421   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3422   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3423   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3424   vthread_compare_mem->init_req(_false_path, input_memory_state);
3425   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3426   vthread_compare_io->init_req(_false_path, input_io_state);
3427   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3428   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3429   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3430   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3431   pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support));
3432   pinVirtualThread->init_req(_false_path, _gvn.intcon(0));
3433 
3434   // Update branch state.
3435   set_control(_gvn.transform(vthread_compare_rgn));
3436   set_all_memory(_gvn.transform(vthread_compare_mem));
3437   set_i_o(_gvn.transform(vthread_compare_io));
3438 
3439   // Load the event writer oop by dereferencing the jobject handle.
3440   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3441   assert(klass_EventWriter->is_loaded(), "invariant");
3442   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3443   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3444   const TypeOopPtr* const xtype = aklass->as_instance_type();
3445   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3446   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3447 
3448   // Load the current thread id from the event writer object.
3449   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3450   // Get the field offset to, conditionally, store an updated tid value later.
3451   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3452   const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr();
3453   // Get the field offset to, conditionally, store an updated exclusion value later.
3454   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3455   const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr();
3456   // Get the field offset to, conditionally, store an updated pinVirtualThread value later.
3457   Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false);
3458   const TypePtr* event_writer_pin_field_type = _gvn.type(event_writer_pin_field)->isa_ptr();
3459 
3460   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3461   record_for_igvn(event_writer_tid_compare_rgn);
3462   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3463   record_for_igvn(event_writer_tid_compare_mem);
3464   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3465   record_for_igvn(event_writer_tid_compare_io);
3466 
3467   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3468   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3469   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3470   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3471 
3472   // False path, tids are the same.
3473   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3474 
3475   // True path, tid is not equal, need to update the tid in the event writer.
3476   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3477   record_for_igvn(tid_is_not_equal);
3478 
3479   // Store the pin state to the event writer.
3480   store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, event_writer_pin_field_type, MemNode::unordered);
3481 
3482   // Store the exclusion state to the event writer.
3483   store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered);
3484 
3485   // Store the tid to the event writer.
3486   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered);
3487 
3488   // Update control and phi nodes.
3489   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3490   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3491   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3492   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3493   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3494   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3495 
3496   // Result of top level CFG, Memory, IO and Value.
3497   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3498   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3499   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3500   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3501 
3502   // Result control.
3503   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3504   result_rgn->init_req(_false_path, jobj_is_null);
3505 
3506   // Result memory.
3507   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3508   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3509 
3510   // Result IO.
3511   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3512   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3513 
3514   // Result value.
3515   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3516   result_value->init_req(_false_path, null()); // return null
3517 
3518   // Set output state.
3519   set_control(_gvn.transform(result_rgn));
3520   set_all_memory(_gvn.transform(result_mem));
3521   set_i_o(_gvn.transform(result_io));
3522   set_result(result_rgn, result_value);
3523   return true;
3524 }
3525 
3526 /*
3527  * The intrinsic is a model of this pseudo-code:
3528  *
3529  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3530  * if (carrierThread != thread) { // is virtual thread
3531  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3532  *   bool excluded = vthread_epoch_raw & excluded_mask;
3533  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3534  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3535  *   if (!excluded) {
3536  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3537  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3538  *   }
3539  *   Atomic::release_store(&tl->_vthread, true);
3540  *   return;
3541  * }
3542  * Atomic::release_store(&tl->_vthread, false);
3543  */
3544 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3545   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3546 
3547   Node* input_memory_state = reset_memory();
3548   set_all_memory(input_memory_state);
3549 
3550   Node* excluded_mask = _gvn.intcon(32768);
3551   Node* epoch_mask = _gvn.intcon(32767);
3552 
3553   Node* const carrierThread = generate_current_thread(jt);
3554   // If thread != carrierThread, this is a virtual thread.
3555   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3556   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3557   IfNode* iff_thread_not_equal_carrierThread =
3558     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3559 
3560   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3561 
3562   // False branch, is carrierThread.
3563   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3564   // Store release
3565   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3566 
3567   set_all_memory(input_memory_state);
3568 
3569   // True branch, is virtual thread.
3570   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3571   set_control(thread_not_equal_carrierThread);
3572 
3573   // Load the raw epoch value from the vthread.
3574   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3575   Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR,
3576                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3577 
3578   // Mask off the excluded information from the epoch.
3579   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3580 
3581   // Load the tid field from the thread.
3582   Node* tid = load_field_from_object(thread, "tid", "J");
3583 
3584   // Store the vthread tid to the jfr thread local.
3585   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3586   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true);
3587 
3588   // Branch is_excluded to conditionalize updating the epoch .
3589   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3590   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3591   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3592 
3593   // True branch, vthread is excluded, no need to write epoch info.
3594   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3595   set_control(excluded);
3596   Node* vthread_is_excluded = _gvn.intcon(1);
3597 
3598   // False branch, vthread is included, update epoch info.
3599   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3600   set_control(included);
3601   Node* vthread_is_included = _gvn.intcon(0);
3602 
3603   // Get epoch value.
3604   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3605 
3606   // Store the vthread epoch to the jfr thread local.
3607   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3608   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true);
3609 
3610   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3611   record_for_igvn(excluded_rgn);
3612   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3613   record_for_igvn(excluded_mem);
3614   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3615   record_for_igvn(exclusion);
3616 
3617   // Merge the excluded control and memory.
3618   excluded_rgn->init_req(_true_path, excluded);
3619   excluded_rgn->init_req(_false_path, included);
3620   excluded_mem->init_req(_true_path, tid_memory);
3621   excluded_mem->init_req(_false_path, included_memory);
3622   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3623   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3624 
3625   // Set intermediate state.
3626   set_control(_gvn.transform(excluded_rgn));
3627   set_all_memory(excluded_mem);
3628 
3629   // Store the vthread exclusion state to the jfr thread local.
3630   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3631   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true);
3632 
3633   // Store release
3634   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3635 
3636   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3637   record_for_igvn(thread_compare_rgn);
3638   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3639   record_for_igvn(thread_compare_mem);
3640   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3641   record_for_igvn(vthread);
3642 
3643   // Merge the thread_compare control and memory.
3644   thread_compare_rgn->init_req(_true_path, control());
3645   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3646   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3647   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3648 
3649   // Set output state.
3650   set_control(_gvn.transform(thread_compare_rgn));
3651   set_all_memory(_gvn.transform(thread_compare_mem));
3652 }
3653 
3654 #endif // JFR_HAVE_INTRINSICS
3655 
3656 //------------------------inline_native_currentCarrierThread------------------
3657 bool LibraryCallKit::inline_native_currentCarrierThread() {
3658   Node* junk = nullptr;
3659   set_result(generate_current_thread(junk));
3660   return true;
3661 }
3662 
3663 //------------------------inline_native_currentThread------------------
3664 bool LibraryCallKit::inline_native_currentThread() {
3665   Node* junk = nullptr;
3666   set_result(generate_virtual_thread(junk));
3667   return true;
3668 }
3669 
3670 //------------------------inline_native_setVthread------------------
3671 bool LibraryCallKit::inline_native_setCurrentThread() {
3672   assert(C->method()->changes_current_thread(),
3673          "method changes current Thread but is not annotated ChangesCurrentThread");
3674   Node* arr = argument(1);
3675   Node* thread = _gvn.transform(new ThreadLocalNode());
3676   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3677   Node* thread_obj_handle
3678     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3679   thread_obj_handle = _gvn.transform(thread_obj_handle);
3680   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3681   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3682   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3683   return true;
3684 }
3685 
3686 const Type* LibraryCallKit::scopedValueCache_type() {
3687   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3688   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3689   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3690 
3691   // Because we create the scopedValue cache lazily we have to make the
3692   // type of the result BotPTR.
3693   bool xk = etype->klass_is_exact();
3694   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3695   return objects_type;
3696 }
3697 
3698 Node* LibraryCallKit::scopedValueCache_helper() {
3699   Node* thread = _gvn.transform(new ThreadLocalNode());
3700   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3701   // We cannot use immutable_memory() because we might flip onto a
3702   // different carrier thread, at which point we'll need to use that
3703   // carrier thread's cache.
3704   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3705   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3706   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3707 }
3708 
3709 //------------------------inline_native_scopedValueCache------------------
3710 bool LibraryCallKit::inline_native_scopedValueCache() {
3711   Node* cache_obj_handle = scopedValueCache_helper();
3712   const Type* objects_type = scopedValueCache_type();
3713   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3714 
3715   return true;
3716 }
3717 
3718 //------------------------inline_native_setScopedValueCache------------------
3719 bool LibraryCallKit::inline_native_setScopedValueCache() {
3720   Node* arr = argument(0);
3721   Node* cache_obj_handle = scopedValueCache_helper();
3722   const Type* objects_type = scopedValueCache_type();
3723 
3724   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3725   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3726 
3727   return true;
3728 }
3729 
3730 //------------------------inline_native_Continuation_pin and unpin-----------
3731 
3732 // Shared implementation routine for both pin and unpin.
3733 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) {
3734   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3735 
3736   // Save input memory.
3737   Node* input_memory_state = reset_memory();
3738   set_all_memory(input_memory_state);
3739 
3740   // TLS
3741   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3742   Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset()));
3743   Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered);
3744 
3745   // Null check the last continuation object.
3746   Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null()));
3747   Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne));
3748   IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3749 
3750   // False path, last continuation is null.
3751   Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null));
3752 
3753   // True path, last continuation is not null.
3754   Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null));
3755 
3756   set_control(continuation_is_not_null);
3757 
3758   // Load the pin count from the last continuation.
3759   Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset()));
3760   Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered);
3761 
3762   // The loaded pin count is compared against a context specific rhs for over/underflow detection.
3763   Node* pin_count_rhs;
3764   if (unpin) {
3765     pin_count_rhs = _gvn.intcon(0);
3766   } else {
3767     pin_count_rhs = _gvn.intcon(UINT32_MAX);
3768   }
3769   Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs));
3770   Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq));
3771   IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN);
3772 
3773   // False branch, no pin count over/underflow. Increment or decrement pin count and store back.
3774   Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow));
3775   set_control(valid_pin_count);
3776 
3777   Node* next_pin_count;
3778   if (unpin) {
3779     next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1)));
3780   } else {
3781     next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1)));
3782   }
3783 
3784   Node* updated_pin_count_memory = store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
3785 
3786   // True branch, pin count over/underflow.
3787   Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow));
3788   {
3789     // Trap (but not deoptimize (Action_none)) and continue in the interpreter
3790     // which will throw IllegalStateException for pin count over/underflow.
3791     PreserveJVMState pjvms(this);
3792     set_control(pin_count_over_underflow);
3793     set_all_memory(input_memory_state);
3794     uncommon_trap_exact(Deoptimization::Reason_intrinsic,
3795                         Deoptimization::Action_none);
3796     assert(stopped(), "invariant");
3797   }
3798 
3799   // Result of top level CFG and Memory.
3800   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3801   record_for_igvn(result_rgn);
3802   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3803   record_for_igvn(result_mem);
3804 
3805   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3806   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3807   result_mem->init_req(_true_path, _gvn.transform(updated_pin_count_memory));
3808   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3809 
3810   // Set output state.
3811   set_control(_gvn.transform(result_rgn));
3812   set_all_memory(_gvn.transform(result_mem));
3813 
3814   return true;
3815 }
3816 
3817 //---------------------------load_mirror_from_klass----------------------------
3818 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3819 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3820   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3821   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3822   // mirror = ((OopHandle)mirror)->resolve();
3823   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3824 }
3825 
3826 //-----------------------load_klass_from_mirror_common-------------------------
3827 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3828 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3829 // and branch to the given path on the region.
3830 // If never_see_null, take an uncommon trap on null, so we can optimistically
3831 // compile for the non-null case.
3832 // If the region is null, force never_see_null = true.
3833 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3834                                                     bool never_see_null,
3835                                                     RegionNode* region,
3836                                                     int null_path,
3837                                                     int offset) {
3838   if (region == nullptr)  never_see_null = true;
3839   Node* p = basic_plus_adr(mirror, offset);
3840   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3841   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3842   Node* null_ctl = top();
3843   kls = null_check_oop(kls, &null_ctl, never_see_null);
3844   if (region != nullptr) {
3845     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3846     region->init_req(null_path, null_ctl);
3847   } else {
3848     assert(null_ctl == top(), "no loose ends");
3849   }
3850   return kls;
3851 }
3852 
3853 //--------------------(inline_native_Class_query helpers)---------------------
3854 // Use this for JVM_ACC_INTERFACE.
3855 // Fall through if (mods & mask) == bits, take the guard otherwise.
3856 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3857                                                  ByteSize offset, const Type* type, BasicType bt) {
3858   // Branch around if the given klass has the given modifier bit set.
3859   // Like generate_guard, adds a new path onto the region.
3860   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3861   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3862   Node* mask = intcon(modifier_mask);
3863   Node* bits = intcon(modifier_bits);
3864   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3865   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3866   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3867   return generate_fair_guard(bol, region);
3868 }
3869 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3870   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3871                                     Klass::access_flags_offset(), TypeInt::INT, T_INT);
3872 }
3873 
3874 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3875 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3876   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3877                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3878 }
3879 
3880 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3881   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3882 }
3883 
3884 //-------------------------inline_native_Class_query-------------------
3885 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3886   const Type* return_type = TypeInt::BOOL;
3887   Node* prim_return_value = top();  // what happens if it's a primitive class?
3888   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3889   bool expect_prim = false;     // most of these guys expect to work on refs
3890 
3891   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3892 
3893   Node* mirror = argument(0);
3894   Node* obj    = top();
3895 
3896   switch (id) {
3897   case vmIntrinsics::_isInstance:
3898     // nothing is an instance of a primitive type
3899     prim_return_value = intcon(0);
3900     obj = argument(1);
3901     break;
3902   case vmIntrinsics::_getModifiers:
3903     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3904     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3905     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3906     break;
3907   case vmIntrinsics::_isInterface:
3908     prim_return_value = intcon(0);
3909     break;
3910   case vmIntrinsics::_isArray:
3911     prim_return_value = intcon(0);
3912     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3913     break;
3914   case vmIntrinsics::_isPrimitive:
3915     prim_return_value = intcon(1);
3916     expect_prim = true;  // obviously
3917     break;
3918   case vmIntrinsics::_isHidden:
3919     prim_return_value = intcon(0);
3920     break;
3921   case vmIntrinsics::_getSuperclass:
3922     prim_return_value = null();
3923     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3924     break;
3925   case vmIntrinsics::_getClassAccessFlags:
3926     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3927     return_type = TypeInt::INT;  // not bool!  6297094
3928     break;
3929   default:
3930     fatal_unexpected_iid(id);
3931     break;
3932   }
3933 
3934   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3935   if (mirror_con == nullptr)  return false;  // cannot happen?
3936 
3937 #ifndef PRODUCT
3938   if (C->print_intrinsics() || C->print_inlining()) {
3939     ciType* k = mirror_con->java_mirror_type();
3940     if (k) {
3941       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3942       k->print_name();
3943       tty->cr();
3944     }
3945   }
3946 #endif
3947 
3948   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3949   RegionNode* region = new RegionNode(PATH_LIMIT);
3950   record_for_igvn(region);
3951   PhiNode* phi = new PhiNode(region, return_type);
3952 
3953   // The mirror will never be null of Reflection.getClassAccessFlags, however
3954   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3955   // if it is. See bug 4774291.
3956 
3957   // For Reflection.getClassAccessFlags(), the null check occurs in
3958   // the wrong place; see inline_unsafe_access(), above, for a similar
3959   // situation.
3960   mirror = null_check(mirror);
3961   // If mirror or obj is dead, only null-path is taken.
3962   if (stopped())  return true;
3963 
3964   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3965 
3966   // Now load the mirror's klass metaobject, and null-check it.
3967   // Side-effects region with the control path if the klass is null.
3968   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3969   // If kls is null, we have a primitive mirror.
3970   phi->init_req(_prim_path, prim_return_value);
3971   if (stopped()) { set_result(region, phi); return true; }
3972   bool safe_for_replace = (region->in(_prim_path) == top());
3973 
3974   Node* p;  // handy temp
3975   Node* null_ctl;
3976 
3977   // Now that we have the non-null klass, we can perform the real query.
3978   // For constant classes, the query will constant-fold in LoadNode::Value.
3979   Node* query_value = top();
3980   switch (id) {
3981   case vmIntrinsics::_isInstance:
3982     // nothing is an instance of a primitive type
3983     query_value = gen_instanceof(obj, kls, safe_for_replace);
3984     break;
3985 
3986   case vmIntrinsics::_getModifiers:
3987     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3988     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
3989     break;
3990 
3991   case vmIntrinsics::_isInterface:
3992     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3993     if (generate_interface_guard(kls, region) != nullptr)
3994       // A guard was added.  If the guard is taken, it was an interface.
3995       phi->add_req(intcon(1));
3996     // If we fall through, it's a plain class.
3997     query_value = intcon(0);
3998     break;
3999 
4000   case vmIntrinsics::_isArray:
4001     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
4002     if (generate_array_guard(kls, region) != nullptr)
4003       // A guard was added.  If the guard is taken, it was an array.
4004       phi->add_req(intcon(1));
4005     // If we fall through, it's a plain class.
4006     query_value = intcon(0);
4007     break;
4008 
4009   case vmIntrinsics::_isPrimitive:
4010     query_value = intcon(0); // "normal" path produces false
4011     break;
4012 
4013   case vmIntrinsics::_isHidden:
4014     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
4015     if (generate_hidden_class_guard(kls, region) != nullptr)
4016       // A guard was added.  If the guard is taken, it was an hidden class.
4017       phi->add_req(intcon(1));
4018     // If we fall through, it's a plain class.
4019     query_value = intcon(0);
4020     break;
4021 
4022 
4023   case vmIntrinsics::_getSuperclass:
4024     // The rules here are somewhat unfortunate, but we can still do better
4025     // with random logic than with a JNI call.
4026     // Interfaces store null or Object as _super, but must report null.
4027     // Arrays store an intermediate super as _super, but must report Object.
4028     // Other types can report the actual _super.
4029     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4030     if (generate_interface_guard(kls, region) != nullptr)
4031       // A guard was added.  If the guard is taken, it was an interface.
4032       phi->add_req(null());
4033     if (generate_array_guard(kls, region) != nullptr)
4034       // A guard was added.  If the guard is taken, it was an array.
4035       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4036     // If we fall through, it's a plain class.  Get its _super.
4037     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4038     kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4039     null_ctl = top();
4040     kls = null_check_oop(kls, &null_ctl);
4041     if (null_ctl != top()) {
4042       // If the guard is taken, Object.superClass is null (both klass and mirror).
4043       region->add_req(null_ctl);
4044       phi   ->add_req(null());
4045     }
4046     if (!stopped()) {
4047       query_value = load_mirror_from_klass(kls);
4048     }
4049     break;
4050 
4051   case vmIntrinsics::_getClassAccessFlags:
4052     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4053     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4054     break;
4055 
4056   default:
4057     fatal_unexpected_iid(id);
4058     break;
4059   }
4060 
4061   // Fall-through is the normal case of a query to a real class.
4062   phi->init_req(1, query_value);
4063   region->init_req(1, control());
4064 
4065   C->set_has_split_ifs(true); // Has chance for split-if optimization
4066   set_result(region, phi);
4067   return true;
4068 }
4069 
4070 //-------------------------inline_Class_cast-------------------
4071 bool LibraryCallKit::inline_Class_cast() {
4072   Node* mirror = argument(0); // Class
4073   Node* obj    = argument(1);
4074   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4075   if (mirror_con == nullptr) {
4076     return false;  // dead path (mirror->is_top()).
4077   }
4078   if (obj == nullptr || obj->is_top()) {
4079     return false;  // dead path
4080   }
4081   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4082 
4083   // First, see if Class.cast() can be folded statically.
4084   // java_mirror_type() returns non-null for compile-time Class constants.
4085   ciType* tm = mirror_con->java_mirror_type();
4086   if (tm != nullptr && tm->is_klass() &&
4087       tp != nullptr) {
4088     if (!tp->is_loaded()) {
4089       // Don't use intrinsic when class is not loaded.
4090       return false;
4091     } else {
4092       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());
4093       if (static_res == Compile::SSC_always_true) {
4094         // isInstance() is true - fold the code.
4095         set_result(obj);
4096         return true;
4097       } else if (static_res == Compile::SSC_always_false) {
4098         // Don't use intrinsic, have to throw ClassCastException.
4099         // If the reference is null, the non-intrinsic bytecode will
4100         // be optimized appropriately.
4101         return false;
4102       }
4103     }
4104   }
4105 
4106   // Bailout intrinsic and do normal inlining if exception path is frequent.
4107   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4108     return false;
4109   }
4110 
4111   // Generate dynamic checks.
4112   // Class.cast() is java implementation of _checkcast bytecode.
4113   // Do checkcast (Parse::do_checkcast()) optimizations here.
4114 
4115   mirror = null_check(mirror);
4116   // If mirror is dead, only null-path is taken.
4117   if (stopped()) {
4118     return true;
4119   }
4120 
4121   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4122   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4123   RegionNode* region = new RegionNode(PATH_LIMIT);
4124   record_for_igvn(region);
4125 
4126   // Now load the mirror's klass metaobject, and null-check it.
4127   // If kls is null, we have a primitive mirror and
4128   // nothing is an instance of a primitive type.
4129   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4130 
4131   Node* res = top();
4132   if (!stopped()) {
4133     Node* bad_type_ctrl = top();
4134     // Do checkcast optimizations.
4135     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4136     region->init_req(_bad_type_path, bad_type_ctrl);
4137   }
4138   if (region->in(_prim_path) != top() ||
4139       region->in(_bad_type_path) != top()) {
4140     // Let Interpreter throw ClassCastException.
4141     PreserveJVMState pjvms(this);
4142     set_control(_gvn.transform(region));
4143     uncommon_trap(Deoptimization::Reason_intrinsic,
4144                   Deoptimization::Action_maybe_recompile);
4145   }
4146   if (!stopped()) {
4147     set_result(res);
4148   }
4149   return true;
4150 }
4151 
4152 
4153 //--------------------------inline_native_subtype_check------------------------
4154 // This intrinsic takes the JNI calls out of the heart of
4155 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4156 bool LibraryCallKit::inline_native_subtype_check() {
4157   // Pull both arguments off the stack.
4158   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4159   args[0] = argument(0);
4160   args[1] = argument(1);
4161   Node* klasses[2];             // corresponding Klasses: superk, subk
4162   klasses[0] = klasses[1] = top();
4163 
4164   enum {
4165     // A full decision tree on {superc is prim, subc is prim}:
4166     _prim_0_path = 1,           // {P,N} => false
4167                                 // {P,P} & superc!=subc => false
4168     _prim_same_path,            // {P,P} & superc==subc => true
4169     _prim_1_path,               // {N,P} => false
4170     _ref_subtype_path,          // {N,N} & subtype check wins => true
4171     _both_ref_path,             // {N,N} & subtype check loses => false
4172     PATH_LIMIT
4173   };
4174 
4175   RegionNode* region = new RegionNode(PATH_LIMIT);
4176   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4177   record_for_igvn(region);
4178 
4179   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4180   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4181   int class_klass_offset = java_lang_Class::klass_offset();
4182 
4183   // First null-check both mirrors and load each mirror's klass metaobject.
4184   int which_arg;
4185   for (which_arg = 0; which_arg <= 1; which_arg++) {
4186     Node* arg = args[which_arg];
4187     arg = null_check(arg);
4188     if (stopped())  break;
4189     args[which_arg] = arg;
4190 
4191     Node* p = basic_plus_adr(arg, class_klass_offset);
4192     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4193     klasses[which_arg] = _gvn.transform(kls);
4194   }
4195 
4196   // Having loaded both klasses, test each for null.
4197   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4198   for (which_arg = 0; which_arg <= 1; which_arg++) {
4199     Node* kls = klasses[which_arg];
4200     Node* null_ctl = top();
4201     kls = null_check_oop(kls, &null_ctl, never_see_null);
4202     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4203     region->init_req(prim_path, null_ctl);
4204     if (stopped())  break;
4205     klasses[which_arg] = kls;
4206   }
4207 
4208   if (!stopped()) {
4209     // now we have two reference types, in klasses[0..1]
4210     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4211     Node* superk = klasses[0];  // the receiver
4212     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4213     // now we have a successful reference subtype check
4214     region->set_req(_ref_subtype_path, control());
4215   }
4216 
4217   // If both operands are primitive (both klasses null), then
4218   // we must return true when they are identical primitives.
4219   // It is convenient to test this after the first null klass check.
4220   set_control(region->in(_prim_0_path)); // go back to first null check
4221   if (!stopped()) {
4222     // Since superc is primitive, make a guard for the superc==subc case.
4223     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4224     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4225     generate_guard(bol_eq, region, PROB_FAIR);
4226     if (region->req() == PATH_LIMIT+1) {
4227       // A guard was added.  If the added guard is taken, superc==subc.
4228       region->swap_edges(PATH_LIMIT, _prim_same_path);
4229       region->del_req(PATH_LIMIT);
4230     }
4231     region->set_req(_prim_0_path, control()); // Not equal after all.
4232   }
4233 
4234   // these are the only paths that produce 'true':
4235   phi->set_req(_prim_same_path,   intcon(1));
4236   phi->set_req(_ref_subtype_path, intcon(1));
4237 
4238   // pull together the cases:
4239   assert(region->req() == PATH_LIMIT, "sane region");
4240   for (uint i = 1; i < region->req(); i++) {
4241     Node* ctl = region->in(i);
4242     if (ctl == nullptr || ctl == top()) {
4243       region->set_req(i, top());
4244       phi   ->set_req(i, top());
4245     } else if (phi->in(i) == nullptr) {
4246       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4247     }
4248   }
4249 
4250   set_control(_gvn.transform(region));
4251   set_result(_gvn.transform(phi));
4252   return true;
4253 }
4254 
4255 //---------------------generate_array_guard_common------------------------
4256 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4257                                                   bool obj_array, bool not_array) {
4258 
4259   if (stopped()) {
4260     return nullptr;
4261   }
4262 
4263   // If obj_array/non_array==false/false:
4264   // Branch around if the given klass is in fact an array (either obj or prim).
4265   // If obj_array/non_array==false/true:
4266   // Branch around if the given klass is not an array klass of any kind.
4267   // If obj_array/non_array==true/true:
4268   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4269   // If obj_array/non_array==true/false:
4270   // Branch around if the kls is an oop array (Object[] or subtype)
4271   //
4272   // Like generate_guard, adds a new path onto the region.
4273   jint  layout_con = 0;
4274   Node* layout_val = get_layout_helper(kls, layout_con);
4275   if (layout_val == nullptr) {
4276     bool query = (obj_array
4277                   ? Klass::layout_helper_is_objArray(layout_con)
4278                   : Klass::layout_helper_is_array(layout_con));
4279     if (query == not_array) {
4280       return nullptr;                       // never a branch
4281     } else {                             // always a branch
4282       Node* always_branch = control();
4283       if (region != nullptr)
4284         region->add_req(always_branch);
4285       set_control(top());
4286       return always_branch;
4287     }
4288   }
4289   // Now test the correct condition.
4290   jint  nval = (obj_array
4291                 ? (jint)(Klass::_lh_array_tag_type_value
4292                    <<    Klass::_lh_array_tag_shift)
4293                 : Klass::_lh_neutral_value);
4294   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4295   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4296   // invert the test if we are looking for a non-array
4297   if (not_array)  btest = BoolTest(btest).negate();
4298   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4299   return generate_fair_guard(bol, region);
4300 }
4301 
4302 
4303 //-----------------------inline_native_newArray--------------------------
4304 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4305 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4306 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4307   Node* mirror;
4308   Node* count_val;
4309   if (uninitialized) {
4310     null_check_receiver();
4311     mirror    = argument(1);
4312     count_val = argument(2);
4313   } else {
4314     mirror    = argument(0);
4315     count_val = argument(1);
4316   }
4317 
4318   mirror = null_check(mirror);
4319   // If mirror or obj is dead, only null-path is taken.
4320   if (stopped())  return true;
4321 
4322   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4323   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4324   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4325   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4326   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4327 
4328   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4329   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4330                                                   result_reg, _slow_path);
4331   Node* normal_ctl   = control();
4332   Node* no_array_ctl = result_reg->in(_slow_path);
4333 
4334   // Generate code for the slow case.  We make a call to newArray().
4335   set_control(no_array_ctl);
4336   if (!stopped()) {
4337     // Either the input type is void.class, or else the
4338     // array klass has not yet been cached.  Either the
4339     // ensuing call will throw an exception, or else it
4340     // will cache the array klass for next time.
4341     PreserveJVMState pjvms(this);
4342     CallJavaNode* slow_call = nullptr;
4343     if (uninitialized) {
4344       // Generate optimized virtual call (holder class 'Unsafe' is final)
4345       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4346     } else {
4347       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4348     }
4349     Node* slow_result = set_results_for_java_call(slow_call);
4350     // this->control() comes from set_results_for_java_call
4351     result_reg->set_req(_slow_path, control());
4352     result_val->set_req(_slow_path, slow_result);
4353     result_io ->set_req(_slow_path, i_o());
4354     result_mem->set_req(_slow_path, reset_memory());
4355   }
4356 
4357   set_control(normal_ctl);
4358   if (!stopped()) {
4359     // Normal case:  The array type has been cached in the java.lang.Class.
4360     // The following call works fine even if the array type is polymorphic.
4361     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4362     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4363     result_reg->init_req(_normal_path, control());
4364     result_val->init_req(_normal_path, obj);
4365     result_io ->init_req(_normal_path, i_o());
4366     result_mem->init_req(_normal_path, reset_memory());
4367 
4368     if (uninitialized) {
4369       // Mark the allocation so that zeroing is skipped
4370       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4371       alloc->maybe_set_complete(&_gvn);
4372     }
4373   }
4374 
4375   // Return the combined state.
4376   set_i_o(        _gvn.transform(result_io)  );
4377   set_all_memory( _gvn.transform(result_mem));
4378 
4379   C->set_has_split_ifs(true); // Has chance for split-if optimization
4380   set_result(result_reg, result_val);
4381   return true;
4382 }
4383 
4384 //----------------------inline_native_getLength--------------------------
4385 // public static native int java.lang.reflect.Array.getLength(Object array);
4386 bool LibraryCallKit::inline_native_getLength() {
4387   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4388 
4389   Node* array = null_check(argument(0));
4390   // If array is dead, only null-path is taken.
4391   if (stopped())  return true;
4392 
4393   // Deoptimize if it is a non-array.
4394   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr);
4395 
4396   if (non_array != nullptr) {
4397     PreserveJVMState pjvms(this);
4398     set_control(non_array);
4399     uncommon_trap(Deoptimization::Reason_intrinsic,
4400                   Deoptimization::Action_maybe_recompile);
4401   }
4402 
4403   // If control is dead, only non-array-path is taken.
4404   if (stopped())  return true;
4405 
4406   // The works fine even if the array type is polymorphic.
4407   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4408   Node* result = load_array_length(array);
4409 
4410   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4411   set_result(result);
4412   return true;
4413 }
4414 
4415 //------------------------inline_array_copyOf----------------------------
4416 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4417 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4418 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4419   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4420 
4421   // Get the arguments.
4422   Node* original          = argument(0);
4423   Node* start             = is_copyOfRange? argument(1): intcon(0);
4424   Node* end               = is_copyOfRange? argument(2): argument(1);
4425   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4426 
4427   Node* newcopy = nullptr;
4428 
4429   // Set the original stack and the reexecute bit for the interpreter to reexecute
4430   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4431   { PreserveReexecuteState preexecs(this);
4432     jvms()->set_should_reexecute(true);
4433 
4434     array_type_mirror = null_check(array_type_mirror);
4435     original          = null_check(original);
4436 
4437     // Check if a null path was taken unconditionally.
4438     if (stopped())  return true;
4439 
4440     Node* orig_length = load_array_length(original);
4441 
4442     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4443     klass_node = null_check(klass_node);
4444 
4445     RegionNode* bailout = new RegionNode(1);
4446     record_for_igvn(bailout);
4447 
4448     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4449     // Bail out if that is so.
4450     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4451     if (not_objArray != nullptr) {
4452       // Improve the klass node's type from the new optimistic assumption:
4453       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4454       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4455       Node* cast = new CastPPNode(control(), klass_node, akls);
4456       klass_node = _gvn.transform(cast);
4457     }
4458 
4459     // Bail out if either start or end is negative.
4460     generate_negative_guard(start, bailout, &start);
4461     generate_negative_guard(end,   bailout, &end);
4462 
4463     Node* length = end;
4464     if (_gvn.type(start) != TypeInt::ZERO) {
4465       length = _gvn.transform(new SubINode(end, start));
4466     }
4467 
4468     // Bail out if length is negative (i.e., if start > end).
4469     // Without this the new_array would throw
4470     // NegativeArraySizeException but IllegalArgumentException is what
4471     // should be thrown
4472     generate_negative_guard(length, bailout, &length);
4473 
4474     // Bail out if start is larger than the original length
4475     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4476     generate_negative_guard(orig_tail, bailout, &orig_tail);
4477 
4478     if (bailout->req() > 1) {
4479       PreserveJVMState pjvms(this);
4480       set_control(_gvn.transform(bailout));
4481       uncommon_trap(Deoptimization::Reason_intrinsic,
4482                     Deoptimization::Action_maybe_recompile);
4483     }
4484 
4485     if (!stopped()) {
4486       // How many elements will we copy from the original?
4487       // The answer is MinI(orig_tail, length).
4488       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4489 
4490       // Generate a direct call to the right arraycopy function(s).
4491       // We know the copy is disjoint but we might not know if the
4492       // oop stores need checking.
4493       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4494       // This will fail a store-check if x contains any non-nulls.
4495 
4496       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4497       // loads/stores but it is legal only if we're sure the
4498       // Arrays.copyOf would succeed. So we need all input arguments
4499       // to the copyOf to be validated, including that the copy to the
4500       // new array won't trigger an ArrayStoreException. That subtype
4501       // check can be optimized if we know something on the type of
4502       // the input array from type speculation.
4503       if (_gvn.type(klass_node)->singleton()) {
4504         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4505         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4506 
4507         int test = C->static_subtype_check(superk, subk);
4508         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4509           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4510           if (t_original->speculative_type() != nullptr) {
4511             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4512           }
4513         }
4514       }
4515 
4516       bool validated = false;
4517       // Reason_class_check rather than Reason_intrinsic because we
4518       // want to intrinsify even if this traps.
4519       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4520         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4521 
4522         if (not_subtype_ctrl != top()) {
4523           PreserveJVMState pjvms(this);
4524           set_control(not_subtype_ctrl);
4525           uncommon_trap(Deoptimization::Reason_class_check,
4526                         Deoptimization::Action_make_not_entrant);
4527           assert(stopped(), "Should be stopped");
4528         }
4529         validated = true;
4530       }
4531 
4532       if (!stopped()) {
4533         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4534 
4535         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4536                                                 load_object_klass(original), klass_node);
4537         if (!is_copyOfRange) {
4538           ac->set_copyof(validated);
4539         } else {
4540           ac->set_copyofrange(validated);
4541         }
4542         Node* n = _gvn.transform(ac);
4543         if (n == ac) {
4544           ac->connect_outputs(this);
4545         } else {
4546           assert(validated, "shouldn't transform if all arguments not validated");
4547           set_all_memory(n);
4548         }
4549       }
4550     }
4551   } // original reexecute is set back here
4552 
4553   C->set_has_split_ifs(true); // Has chance for split-if optimization
4554   if (!stopped()) {
4555     set_result(newcopy);
4556   }
4557   return true;
4558 }
4559 
4560 
4561 //----------------------generate_virtual_guard---------------------------
4562 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4563 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4564                                              RegionNode* slow_region) {
4565   ciMethod* method = callee();
4566   int vtable_index = method->vtable_index();
4567   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4568          "bad index %d", vtable_index);
4569   // Get the Method* out of the appropriate vtable entry.
4570   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4571                      vtable_index*vtableEntry::size_in_bytes() +
4572                      in_bytes(vtableEntry::method_offset());
4573   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4574   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4575 
4576   // Compare the target method with the expected method (e.g., Object.hashCode).
4577   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4578 
4579   Node* native_call = makecon(native_call_addr);
4580   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4581   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4582 
4583   return generate_slow_guard(test_native, slow_region);
4584 }
4585 
4586 //-----------------------generate_method_call----------------------------
4587 // Use generate_method_call to make a slow-call to the real
4588 // method if the fast path fails.  An alternative would be to
4589 // use a stub like OptoRuntime::slow_arraycopy_Java.
4590 // This only works for expanding the current library call,
4591 // not another intrinsic.  (E.g., don't use this for making an
4592 // arraycopy call inside of the copyOf intrinsic.)
4593 CallJavaNode*
4594 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4595   // When compiling the intrinsic method itself, do not use this technique.
4596   guarantee(callee() != C->method(), "cannot make slow-call to self");
4597 
4598   ciMethod* method = callee();
4599   // ensure the JVMS we have will be correct for this call
4600   guarantee(method_id == method->intrinsic_id(), "must match");
4601 
4602   const TypeFunc* tf = TypeFunc::make(method);
4603   if (res_not_null) {
4604     assert(tf->return_type() == T_OBJECT, "");
4605     const TypeTuple* range = tf->range();
4606     const Type** fields = TypeTuple::fields(range->cnt());
4607     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4608     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4609     tf = TypeFunc::make(tf->domain(), new_range);
4610   }
4611   CallJavaNode* slow_call;
4612   if (is_static) {
4613     assert(!is_virtual, "");
4614     slow_call = new CallStaticJavaNode(C, tf,
4615                            SharedRuntime::get_resolve_static_call_stub(), method);
4616   } else if (is_virtual) {
4617     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4618     int vtable_index = Method::invalid_vtable_index;
4619     if (UseInlineCaches) {
4620       // Suppress the vtable call
4621     } else {
4622       // hashCode and clone are not a miranda methods,
4623       // so the vtable index is fixed.
4624       // No need to use the linkResolver to get it.
4625        vtable_index = method->vtable_index();
4626        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4627               "bad index %d", vtable_index);
4628     }
4629     slow_call = new CallDynamicJavaNode(tf,
4630                           SharedRuntime::get_resolve_virtual_call_stub(),
4631                           method, vtable_index);
4632   } else {  // neither virtual nor static:  opt_virtual
4633     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4634     slow_call = new CallStaticJavaNode(C, tf,
4635                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4636     slow_call->set_optimized_virtual(true);
4637   }
4638   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4639     // To be able to issue a direct call (optimized virtual or virtual)
4640     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4641     // about the method being invoked should be attached to the call site to
4642     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4643     slow_call->set_override_symbolic_info(true);
4644   }
4645   set_arguments_for_java_call(slow_call);
4646   set_edges_for_java_call(slow_call);
4647   return slow_call;
4648 }
4649 
4650 
4651 /**
4652  * Build special case code for calls to hashCode on an object. This call may
4653  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4654  * slightly different code.
4655  */
4656 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4657   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4658   assert(!(is_virtual && is_static), "either virtual, special, or static");
4659 
4660   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4661 
4662   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4663   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4664   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4665   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4666   Node* obj = nullptr;
4667   if (!is_static) {
4668     // Check for hashing null object
4669     obj = null_check_receiver();
4670     if (stopped())  return true;        // unconditionally null
4671     result_reg->init_req(_null_path, top());
4672     result_val->init_req(_null_path, top());
4673   } else {
4674     // Do a null check, and return zero if null.
4675     // System.identityHashCode(null) == 0
4676     obj = argument(0);
4677     Node* null_ctl = top();
4678     obj = null_check_oop(obj, &null_ctl);
4679     result_reg->init_req(_null_path, null_ctl);
4680     result_val->init_req(_null_path, _gvn.intcon(0));
4681   }
4682 
4683   // Unconditionally null?  Then return right away.
4684   if (stopped()) {
4685     set_control( result_reg->in(_null_path));
4686     if (!stopped())
4687       set_result(result_val->in(_null_path));
4688     return true;
4689   }
4690 
4691   // We only go to the fast case code if we pass a number of guards.  The
4692   // paths which do not pass are accumulated in the slow_region.
4693   RegionNode* slow_region = new RegionNode(1);
4694   record_for_igvn(slow_region);
4695 
4696   // If this is a virtual call, we generate a funny guard.  We pull out
4697   // the vtable entry corresponding to hashCode() from the target object.
4698   // If the target method which we are calling happens to be the native
4699   // Object hashCode() method, we pass the guard.  We do not need this
4700   // guard for non-virtual calls -- the caller is known to be the native
4701   // Object hashCode().
4702   if (is_virtual) {
4703     // After null check, get the object's klass.
4704     Node* obj_klass = load_object_klass(obj);
4705     generate_virtual_guard(obj_klass, slow_region);
4706   }
4707 
4708   // Get the header out of the object, use LoadMarkNode when available
4709   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4710   // The control of the load must be null. Otherwise, the load can move before
4711   // the null check after castPP removal.
4712   Node* no_ctrl = nullptr;
4713   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4714 
4715   if (!UseObjectMonitorTable) {
4716     // Test the header to see if it is safe to read w.r.t. locking.
4717     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4718     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4719     if (LockingMode == LM_LIGHTWEIGHT) {
4720       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4721       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4722       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4723 
4724       generate_slow_guard(test_monitor, slow_region);
4725     } else {
4726       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4727       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4728       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4729 
4730       generate_slow_guard(test_not_unlocked, slow_region);
4731     }
4732   }
4733 
4734   // Get the hash value and check to see that it has been properly assigned.
4735   // We depend on hash_mask being at most 32 bits and avoid the use of
4736   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4737   // vm: see markWord.hpp.
4738   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4739   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4740   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4741   // This hack lets the hash bits live anywhere in the mark object now, as long
4742   // as the shift drops the relevant bits into the low 32 bits.  Note that
4743   // Java spec says that HashCode is an int so there's no point in capturing
4744   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4745   hshifted_header      = ConvX2I(hshifted_header);
4746   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4747 
4748   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4749   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4750   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4751 
4752   generate_slow_guard(test_assigned, slow_region);
4753 
4754   Node* init_mem = reset_memory();
4755   // fill in the rest of the null path:
4756   result_io ->init_req(_null_path, i_o());
4757   result_mem->init_req(_null_path, init_mem);
4758 
4759   result_val->init_req(_fast_path, hash_val);
4760   result_reg->init_req(_fast_path, control());
4761   result_io ->init_req(_fast_path, i_o());
4762   result_mem->init_req(_fast_path, init_mem);
4763 
4764   // Generate code for the slow case.  We make a call to hashCode().
4765   set_control(_gvn.transform(slow_region));
4766   if (!stopped()) {
4767     // No need for PreserveJVMState, because we're using up the present state.
4768     set_all_memory(init_mem);
4769     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4770     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
4771     Node* slow_result = set_results_for_java_call(slow_call);
4772     // this->control() comes from set_results_for_java_call
4773     result_reg->init_req(_slow_path, control());
4774     result_val->init_req(_slow_path, slow_result);
4775     result_io  ->set_req(_slow_path, i_o());
4776     result_mem ->set_req(_slow_path, reset_memory());
4777   }
4778 
4779   // Return the combined state.
4780   set_i_o(        _gvn.transform(result_io)  );
4781   set_all_memory( _gvn.transform(result_mem));
4782 
4783   set_result(result_reg, result_val);
4784   return true;
4785 }
4786 
4787 //---------------------------inline_native_getClass----------------------------
4788 // public final native Class<?> java.lang.Object.getClass();
4789 //
4790 // Build special case code for calls to getClass on an object.
4791 bool LibraryCallKit::inline_native_getClass() {
4792   Node* obj = null_check_receiver();
4793   if (stopped())  return true;
4794   set_result(load_mirror_from_klass(load_object_klass(obj)));
4795   return true;
4796 }
4797 
4798 //-----------------inline_native_Reflection_getCallerClass---------------------
4799 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4800 //
4801 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4802 //
4803 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4804 // in that it must skip particular security frames and checks for
4805 // caller sensitive methods.
4806 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4807 #ifndef PRODUCT
4808   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4809     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4810   }
4811 #endif
4812 
4813   if (!jvms()->has_method()) {
4814 #ifndef PRODUCT
4815     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4816       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4817     }
4818 #endif
4819     return false;
4820   }
4821 
4822   // Walk back up the JVM state to find the caller at the required
4823   // depth.
4824   JVMState* caller_jvms = jvms();
4825 
4826   // Cf. JVM_GetCallerClass
4827   // NOTE: Start the loop at depth 1 because the current JVM state does
4828   // not include the Reflection.getCallerClass() frame.
4829   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
4830     ciMethod* m = caller_jvms->method();
4831     switch (n) {
4832     case 0:
4833       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4834       break;
4835     case 1:
4836       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4837       if (!m->caller_sensitive()) {
4838 #ifndef PRODUCT
4839         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4840           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4841         }
4842 #endif
4843         return false;  // bail-out; let JVM_GetCallerClass do the work
4844       }
4845       break;
4846     default:
4847       if (!m->is_ignored_by_security_stack_walk()) {
4848         // We have reached the desired frame; return the holder class.
4849         // Acquire method holder as java.lang.Class and push as constant.
4850         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4851         ciInstance* caller_mirror = caller_klass->java_mirror();
4852         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4853 
4854 #ifndef PRODUCT
4855         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4856           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4857           tty->print_cr("  JVM state at this point:");
4858           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4859             ciMethod* m = jvms()->of_depth(i)->method();
4860             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4861           }
4862         }
4863 #endif
4864         return true;
4865       }
4866       break;
4867     }
4868   }
4869 
4870 #ifndef PRODUCT
4871   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4872     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4873     tty->print_cr("  JVM state at this point:");
4874     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4875       ciMethod* m = jvms()->of_depth(i)->method();
4876       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4877     }
4878   }
4879 #endif
4880 
4881   return false;  // bail-out; let JVM_GetCallerClass do the work
4882 }
4883 
4884 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4885   Node* arg = argument(0);
4886   Node* result = nullptr;
4887 
4888   switch (id) {
4889   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4890   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4891   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4892   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4893   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
4894   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
4895 
4896   case vmIntrinsics::_doubleToLongBits: {
4897     // two paths (plus control) merge in a wood
4898     RegionNode *r = new RegionNode(3);
4899     Node *phi = new PhiNode(r, TypeLong::LONG);
4900 
4901     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4902     // Build the boolean node
4903     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4904 
4905     // Branch either way.
4906     // NaN case is less traveled, which makes all the difference.
4907     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4908     Node *opt_isnan = _gvn.transform(ifisnan);
4909     assert( opt_isnan->is_If(), "Expect an IfNode");
4910     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4911     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4912 
4913     set_control(iftrue);
4914 
4915     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4916     Node *slow_result = longcon(nan_bits); // return NaN
4917     phi->init_req(1, _gvn.transform( slow_result ));
4918     r->init_req(1, iftrue);
4919 
4920     // Else fall through
4921     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4922     set_control(iffalse);
4923 
4924     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4925     r->init_req(2, iffalse);
4926 
4927     // Post merge
4928     set_control(_gvn.transform(r));
4929     record_for_igvn(r);
4930 
4931     C->set_has_split_ifs(true); // Has chance for split-if optimization
4932     result = phi;
4933     assert(result->bottom_type()->isa_long(), "must be");
4934     break;
4935   }
4936 
4937   case vmIntrinsics::_floatToIntBits: {
4938     // two paths (plus control) merge in a wood
4939     RegionNode *r = new RegionNode(3);
4940     Node *phi = new PhiNode(r, TypeInt::INT);
4941 
4942     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4943     // Build the boolean node
4944     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4945 
4946     // Branch either way.
4947     // NaN case is less traveled, which makes all the difference.
4948     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4949     Node *opt_isnan = _gvn.transform(ifisnan);
4950     assert( opt_isnan->is_If(), "Expect an IfNode");
4951     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4952     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4953 
4954     set_control(iftrue);
4955 
4956     static const jint nan_bits = 0x7fc00000;
4957     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4958     phi->init_req(1, _gvn.transform( slow_result ));
4959     r->init_req(1, iftrue);
4960 
4961     // Else fall through
4962     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4963     set_control(iffalse);
4964 
4965     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4966     r->init_req(2, iffalse);
4967 
4968     // Post merge
4969     set_control(_gvn.transform(r));
4970     record_for_igvn(r);
4971 
4972     C->set_has_split_ifs(true); // Has chance for split-if optimization
4973     result = phi;
4974     assert(result->bottom_type()->isa_int(), "must be");
4975     break;
4976   }
4977 
4978   default:
4979     fatal_unexpected_iid(id);
4980     break;
4981   }
4982   set_result(_gvn.transform(result));
4983   return true;
4984 }
4985 
4986 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
4987   Node* arg = argument(0);
4988   Node* result = nullptr;
4989 
4990   switch (id) {
4991   case vmIntrinsics::_floatIsInfinite:
4992     result = new IsInfiniteFNode(arg);
4993     break;
4994   case vmIntrinsics::_floatIsFinite:
4995     result = new IsFiniteFNode(arg);
4996     break;
4997   case vmIntrinsics::_doubleIsInfinite:
4998     result = new IsInfiniteDNode(arg);
4999     break;
5000   case vmIntrinsics::_doubleIsFinite:
5001     result = new IsFiniteDNode(arg);
5002     break;
5003   default:
5004     fatal_unexpected_iid(id);
5005     break;
5006   }
5007   set_result(_gvn.transform(result));
5008   return true;
5009 }
5010 
5011 //----------------------inline_unsafe_copyMemory-------------------------
5012 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
5013 
5014 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
5015   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
5016   const Type*       base_t = gvn.type(base);
5017 
5018   bool in_native = (base_t == TypePtr::NULL_PTR);
5019   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
5020   bool is_mixed  = !in_heap && !in_native;
5021 
5022   if (is_mixed) {
5023     return true; // mixed accesses can touch both on-heap and off-heap memory
5024   }
5025   if (in_heap) {
5026     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
5027     if (!is_prim_array) {
5028       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
5029       // there's not enough type information available to determine proper memory slice for it.
5030       return true;
5031     }
5032   }
5033   return false;
5034 }
5035 
5036 bool LibraryCallKit::inline_unsafe_copyMemory() {
5037   if (callee()->is_static())  return false;  // caller must have the capability!
5038   null_check_receiver();  // null-check receiver
5039   if (stopped())  return true;
5040 
5041   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5042 
5043   Node* src_base =         argument(1);  // type: oop
5044   Node* src_off  = ConvL2X(argument(2)); // type: long
5045   Node* dst_base =         argument(4);  // type: oop
5046   Node* dst_off  = ConvL2X(argument(5)); // type: long
5047   Node* size     = ConvL2X(argument(7)); // type: long
5048 
5049   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5050          "fieldOffset must be byte-scaled");
5051 
5052   Node* src_addr = make_unsafe_address(src_base, src_off);
5053   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5054 
5055   Node* thread = _gvn.transform(new ThreadLocalNode());
5056   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5057   BasicType doing_unsafe_access_bt = T_BYTE;
5058   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5059 
5060   // update volatile field
5061   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5062 
5063   int flags = RC_LEAF | RC_NO_FP;
5064 
5065   const TypePtr* dst_type = TypePtr::BOTTOM;
5066 
5067   // Adjust memory effects of the runtime call based on input values.
5068   if (!has_wide_mem(_gvn, src_addr, src_base) &&
5069       !has_wide_mem(_gvn, dst_addr, dst_base)) {
5070     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5071 
5072     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5073     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5074       flags |= RC_NARROW_MEM; // narrow in memory
5075     }
5076   }
5077 
5078   // Call it.  Note that the length argument is not scaled.
5079   make_runtime_call(flags,
5080                     OptoRuntime::fast_arraycopy_Type(),
5081                     StubRoutines::unsafe_arraycopy(),
5082                     "unsafe_arraycopy",
5083                     dst_type,
5084                     src_addr, dst_addr, size XTOP);
5085 
5086   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5087 
5088   return true;
5089 }
5090 
5091 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5092 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5093 bool LibraryCallKit::inline_unsafe_setMemory() {
5094   if (callee()->is_static())  return false;  // caller must have the capability!
5095   null_check_receiver();  // null-check receiver
5096   if (stopped())  return true;
5097 
5098   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5099 
5100   Node* dst_base =         argument(1);  // type: oop
5101   Node* dst_off  = ConvL2X(argument(2)); // type: long
5102   Node* size     = ConvL2X(argument(4)); // type: long
5103   Node* byte     =         argument(6);  // type: byte
5104 
5105   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5106          "fieldOffset must be byte-scaled");
5107 
5108   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5109 
5110   Node* thread = _gvn.transform(new ThreadLocalNode());
5111   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5112   BasicType doing_unsafe_access_bt = T_BYTE;
5113   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5114 
5115   // update volatile field
5116   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5117 
5118   int flags = RC_LEAF | RC_NO_FP;
5119 
5120   const TypePtr* dst_type = TypePtr::BOTTOM;
5121 
5122   // Adjust memory effects of the runtime call based on input values.
5123   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5124     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5125 
5126     flags |= RC_NARROW_MEM; // narrow in memory
5127   }
5128 
5129   // Call it.  Note that the length argument is not scaled.
5130   make_runtime_call(flags,
5131                     OptoRuntime::make_setmemory_Type(),
5132                     StubRoutines::unsafe_setmemory(),
5133                     "unsafe_setmemory",
5134                     dst_type,
5135                     dst_addr, size XTOP, byte);
5136 
5137   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5138 
5139   return true;
5140 }
5141 
5142 #undef XTOP
5143 
5144 //------------------------clone_coping-----------------------------------
5145 // Helper function for inline_native_clone.
5146 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5147   assert(obj_size != nullptr, "");
5148   Node* raw_obj = alloc_obj->in(1);
5149   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5150 
5151   AllocateNode* alloc = nullptr;
5152   if (ReduceBulkZeroing &&
5153       // If we are implementing an array clone without knowing its source type
5154       // (can happen when compiling the array-guarded branch of a reflective
5155       // Object.clone() invocation), initialize the array within the allocation.
5156       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5157       // to a runtime clone call that assumes fully initialized source arrays.
5158       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5159     // We will be completely responsible for initializing this object -
5160     // mark Initialize node as complete.
5161     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5162     // The object was just allocated - there should be no any stores!
5163     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5164     // Mark as complete_with_arraycopy so that on AllocateNode
5165     // expansion, we know this AllocateNode is initialized by an array
5166     // copy and a StoreStore barrier exists after the array copy.
5167     alloc->initialization()->set_complete_with_arraycopy();
5168   }
5169 
5170   Node* size = _gvn.transform(obj_size);
5171   access_clone(obj, alloc_obj, size, is_array);
5172 
5173   // Do not let reads from the cloned object float above the arraycopy.
5174   if (alloc != nullptr) {
5175     // Do not let stores that initialize this object be reordered with
5176     // a subsequent store that would make this object accessible by
5177     // other threads.
5178     // Record what AllocateNode this StoreStore protects so that
5179     // escape analysis can go from the MemBarStoreStoreNode to the
5180     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5181     // based on the escape status of the AllocateNode.
5182     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5183   } else {
5184     insert_mem_bar(Op_MemBarCPUOrder);
5185   }
5186 }
5187 
5188 //------------------------inline_native_clone----------------------------
5189 // protected native Object java.lang.Object.clone();
5190 //
5191 // Here are the simple edge cases:
5192 //  null receiver => normal trap
5193 //  virtual and clone was overridden => slow path to out-of-line clone
5194 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5195 //
5196 // The general case has two steps, allocation and copying.
5197 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5198 //
5199 // Copying also has two cases, oop arrays and everything else.
5200 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5201 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5202 //
5203 // These steps fold up nicely if and when the cloned object's klass
5204 // can be sharply typed as an object array, a type array, or an instance.
5205 //
5206 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5207   PhiNode* result_val;
5208 
5209   // Set the reexecute bit for the interpreter to reexecute
5210   // the bytecode that invokes Object.clone if deoptimization happens.
5211   { PreserveReexecuteState preexecs(this);
5212     jvms()->set_should_reexecute(true);
5213 
5214     Node* obj = null_check_receiver();
5215     if (stopped())  return true;
5216 
5217     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5218 
5219     // If we are going to clone an instance, we need its exact type to
5220     // know the number and types of fields to convert the clone to
5221     // loads/stores. Maybe a speculative type can help us.
5222     if (!obj_type->klass_is_exact() &&
5223         obj_type->speculative_type() != nullptr &&
5224         obj_type->speculative_type()->is_instance_klass()) {
5225       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5226       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5227           !spec_ik->has_injected_fields()) {
5228         if (!obj_type->isa_instptr() ||
5229             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5230           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5231         }
5232       }
5233     }
5234 
5235     // Conservatively insert a memory barrier on all memory slices.
5236     // Do not let writes into the original float below the clone.
5237     insert_mem_bar(Op_MemBarCPUOrder);
5238 
5239     // paths into result_reg:
5240     enum {
5241       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5242       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5243       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5244       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5245       PATH_LIMIT
5246     };
5247     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5248     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5249     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5250     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5251     record_for_igvn(result_reg);
5252 
5253     Node* obj_klass = load_object_klass(obj);
5254     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5255     if (array_ctl != nullptr) {
5256       // It's an array.
5257       PreserveJVMState pjvms(this);
5258       set_control(array_ctl);
5259       Node* obj_length = load_array_length(obj);
5260       Node* array_size = nullptr; // Size of the array without object alignment padding.
5261       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5262 
5263       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5264       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5265         // If it is an oop array, it requires very special treatment,
5266         // because gc barriers are required when accessing the array.
5267         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5268         if (is_obja != nullptr) {
5269           PreserveJVMState pjvms2(this);
5270           set_control(is_obja);
5271           // Generate a direct call to the right arraycopy function(s).
5272           // Clones are always tightly coupled.
5273           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5274           ac->set_clone_oop_array();
5275           Node* n = _gvn.transform(ac);
5276           assert(n == ac, "cannot disappear");
5277           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5278 
5279           result_reg->init_req(_objArray_path, control());
5280           result_val->init_req(_objArray_path, alloc_obj);
5281           result_i_o ->set_req(_objArray_path, i_o());
5282           result_mem ->set_req(_objArray_path, reset_memory());
5283         }
5284       }
5285       // Otherwise, there are no barriers to worry about.
5286       // (We can dispense with card marks if we know the allocation
5287       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5288       //  causes the non-eden paths to take compensating steps to
5289       //  simulate a fresh allocation, so that no further
5290       //  card marks are required in compiled code to initialize
5291       //  the object.)
5292 
5293       if (!stopped()) {
5294         copy_to_clone(obj, alloc_obj, array_size, true);
5295 
5296         // Present the results of the copy.
5297         result_reg->init_req(_array_path, control());
5298         result_val->init_req(_array_path, alloc_obj);
5299         result_i_o ->set_req(_array_path, i_o());
5300         result_mem ->set_req(_array_path, reset_memory());
5301       }
5302     }
5303 
5304     // We only go to the instance fast case code if we pass a number of guards.
5305     // The paths which do not pass are accumulated in the slow_region.
5306     RegionNode* slow_region = new RegionNode(1);
5307     record_for_igvn(slow_region);
5308     if (!stopped()) {
5309       // It's an instance (we did array above).  Make the slow-path tests.
5310       // If this is a virtual call, we generate a funny guard.  We grab
5311       // the vtable entry corresponding to clone() from the target object.
5312       // If the target method which we are calling happens to be the
5313       // Object clone() method, we pass the guard.  We do not need this
5314       // guard for non-virtual calls; the caller is known to be the native
5315       // Object clone().
5316       if (is_virtual) {
5317         generate_virtual_guard(obj_klass, slow_region);
5318       }
5319 
5320       // The object must be easily cloneable and must not have a finalizer.
5321       // Both of these conditions may be checked in a single test.
5322       // We could optimize the test further, but we don't care.
5323       generate_misc_flags_guard(obj_klass,
5324                                 // Test both conditions:
5325                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5326                                 // Must be cloneable but not finalizer:
5327                                 KlassFlags::_misc_is_cloneable_fast,
5328                                 slow_region);
5329     }
5330 
5331     if (!stopped()) {
5332       // It's an instance, and it passed the slow-path tests.
5333       PreserveJVMState pjvms(this);
5334       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5335       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5336       // is reexecuted if deoptimization occurs and there could be problems when merging
5337       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5338       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5339 
5340       copy_to_clone(obj, alloc_obj, obj_size, false);
5341 
5342       // Present the results of the slow call.
5343       result_reg->init_req(_instance_path, control());
5344       result_val->init_req(_instance_path, alloc_obj);
5345       result_i_o ->set_req(_instance_path, i_o());
5346       result_mem ->set_req(_instance_path, reset_memory());
5347     }
5348 
5349     // Generate code for the slow case.  We make a call to clone().
5350     set_control(_gvn.transform(slow_region));
5351     if (!stopped()) {
5352       PreserveJVMState pjvms(this);
5353       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5354       // We need to deoptimize on exception (see comment above)
5355       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5356       // this->control() comes from set_results_for_java_call
5357       result_reg->init_req(_slow_path, control());
5358       result_val->init_req(_slow_path, slow_result);
5359       result_i_o ->set_req(_slow_path, i_o());
5360       result_mem ->set_req(_slow_path, reset_memory());
5361     }
5362 
5363     // Return the combined state.
5364     set_control(    _gvn.transform(result_reg));
5365     set_i_o(        _gvn.transform(result_i_o));
5366     set_all_memory( _gvn.transform(result_mem));
5367   } // original reexecute is set back here
5368 
5369   set_result(_gvn.transform(result_val));
5370   return true;
5371 }
5372 
5373 // If we have a tightly coupled allocation, the arraycopy may take care
5374 // of the array initialization. If one of the guards we insert between
5375 // the allocation and the arraycopy causes a deoptimization, an
5376 // uninitialized array will escape the compiled method. To prevent that
5377 // we set the JVM state for uncommon traps between the allocation and
5378 // the arraycopy to the state before the allocation so, in case of
5379 // deoptimization, we'll reexecute the allocation and the
5380 // initialization.
5381 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5382   if (alloc != nullptr) {
5383     ciMethod* trap_method = alloc->jvms()->method();
5384     int trap_bci = alloc->jvms()->bci();
5385 
5386     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5387         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5388       // Make sure there's no store between the allocation and the
5389       // arraycopy otherwise visible side effects could be rexecuted
5390       // in case of deoptimization and cause incorrect execution.
5391       bool no_interfering_store = true;
5392       Node* mem = alloc->in(TypeFunc::Memory);
5393       if (mem->is_MergeMem()) {
5394         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5395           Node* n = mms.memory();
5396           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5397             assert(n->is_Store(), "what else?");
5398             no_interfering_store = false;
5399             break;
5400           }
5401         }
5402       } else {
5403         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5404           Node* n = mms.memory();
5405           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5406             assert(n->is_Store(), "what else?");
5407             no_interfering_store = false;
5408             break;
5409           }
5410         }
5411       }
5412 
5413       if (no_interfering_store) {
5414         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5415 
5416         JVMState* saved_jvms = jvms();
5417         saved_reexecute_sp = _reexecute_sp;
5418 
5419         set_jvms(sfpt->jvms());
5420         _reexecute_sp = jvms()->sp();
5421 
5422         return saved_jvms;
5423       }
5424     }
5425   }
5426   return nullptr;
5427 }
5428 
5429 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5430 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5431 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5432   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5433   uint size = alloc->req();
5434   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5435   old_jvms->set_map(sfpt);
5436   for (uint i = 0; i < size; i++) {
5437     sfpt->init_req(i, alloc->in(i));
5438   }
5439   // re-push array length for deoptimization
5440   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5441   old_jvms->set_sp(old_jvms->sp()+1);
5442   old_jvms->set_monoff(old_jvms->monoff()+1);
5443   old_jvms->set_scloff(old_jvms->scloff()+1);
5444   old_jvms->set_endoff(old_jvms->endoff()+1);
5445   old_jvms->set_should_reexecute(true);
5446 
5447   sfpt->set_i_o(map()->i_o());
5448   sfpt->set_memory(map()->memory());
5449   sfpt->set_control(map()->control());
5450   return sfpt;
5451 }
5452 
5453 // In case of a deoptimization, we restart execution at the
5454 // allocation, allocating a new array. We would leave an uninitialized
5455 // array in the heap that GCs wouldn't expect. Move the allocation
5456 // after the traps so we don't allocate the array if we
5457 // deoptimize. This is possible because tightly_coupled_allocation()
5458 // guarantees there's no observer of the allocated array at this point
5459 // and the control flow is simple enough.
5460 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5461                                                     int saved_reexecute_sp, uint new_idx) {
5462   if (saved_jvms_before_guards != nullptr && !stopped()) {
5463     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5464 
5465     assert(alloc != nullptr, "only with a tightly coupled allocation");
5466     // restore JVM state to the state at the arraycopy
5467     saved_jvms_before_guards->map()->set_control(map()->control());
5468     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5469     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5470     // If we've improved the types of some nodes (null check) while
5471     // emitting the guards, propagate them to the current state
5472     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5473     set_jvms(saved_jvms_before_guards);
5474     _reexecute_sp = saved_reexecute_sp;
5475 
5476     // Remove the allocation from above the guards
5477     CallProjections callprojs;
5478     alloc->extract_projections(&callprojs, true);
5479     InitializeNode* init = alloc->initialization();
5480     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5481     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5482     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5483 
5484     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5485     // the allocation (i.e. is only valid if the allocation succeeds):
5486     // 1) replace CastIINode with AllocateArrayNode's length here
5487     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5488     //
5489     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5490     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5491     Node* init_control = init->proj_out(TypeFunc::Control);
5492     Node* alloc_length = alloc->Ideal_length();
5493 #ifdef ASSERT
5494     Node* prev_cast = nullptr;
5495 #endif
5496     for (uint i = 0; i < init_control->outcnt(); i++) {
5497       Node* init_out = init_control->raw_out(i);
5498       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5499 #ifdef ASSERT
5500         if (prev_cast == nullptr) {
5501           prev_cast = init_out;
5502         } else {
5503           if (prev_cast->cmp(*init_out) == false) {
5504             prev_cast->dump();
5505             init_out->dump();
5506             assert(false, "not equal CastIINode");
5507           }
5508         }
5509 #endif
5510         C->gvn_replace_by(init_out, alloc_length);
5511       }
5512     }
5513     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5514 
5515     // move the allocation here (after the guards)
5516     _gvn.hash_delete(alloc);
5517     alloc->set_req(TypeFunc::Control, control());
5518     alloc->set_req(TypeFunc::I_O, i_o());
5519     Node *mem = reset_memory();
5520     set_all_memory(mem);
5521     alloc->set_req(TypeFunc::Memory, mem);
5522     set_control(init->proj_out_or_null(TypeFunc::Control));
5523     set_i_o(callprojs.fallthrough_ioproj);
5524 
5525     // Update memory as done in GraphKit::set_output_for_allocation()
5526     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5527     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5528     if (ary_type->isa_aryptr() && length_type != nullptr) {
5529       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5530     }
5531     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5532     int            elemidx  = C->get_alias_index(telemref);
5533     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5534     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5535 
5536     Node* allocx = _gvn.transform(alloc);
5537     assert(allocx == alloc, "where has the allocation gone?");
5538     assert(dest->is_CheckCastPP(), "not an allocation result?");
5539 
5540     _gvn.hash_delete(dest);
5541     dest->set_req(0, control());
5542     Node* destx = _gvn.transform(dest);
5543     assert(destx == dest, "where has the allocation result gone?");
5544 
5545     array_ideal_length(alloc, ary_type, true);
5546   }
5547 }
5548 
5549 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5550 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5551 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5552 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5553 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5554 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5555 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5556                                                                        JVMState* saved_jvms_before_guards) {
5557   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5558     // There is at least one unrelated uncommon trap which needs to be replaced.
5559     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5560 
5561     JVMState* saved_jvms = jvms();
5562     const int saved_reexecute_sp = _reexecute_sp;
5563     set_jvms(sfpt->jvms());
5564     _reexecute_sp = jvms()->sp();
5565 
5566     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5567 
5568     // Restore state
5569     set_jvms(saved_jvms);
5570     _reexecute_sp = saved_reexecute_sp;
5571   }
5572 }
5573 
5574 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5575 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5576 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5577   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5578   while (if_proj->is_IfProj()) {
5579     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5580     if (uncommon_trap != nullptr) {
5581       create_new_uncommon_trap(uncommon_trap);
5582     }
5583     assert(if_proj->in(0)->is_If(), "must be If");
5584     if_proj = if_proj->in(0)->in(0);
5585   }
5586   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5587          "must have reached control projection of init node");
5588 }
5589 
5590 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5591   const int trap_request = uncommon_trap_call->uncommon_trap_request();
5592   assert(trap_request != 0, "no valid UCT trap request");
5593   PreserveJVMState pjvms(this);
5594   set_control(uncommon_trap_call->in(0));
5595   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5596                 Deoptimization::trap_request_action(trap_request));
5597   assert(stopped(), "Should be stopped");
5598   _gvn.hash_delete(uncommon_trap_call);
5599   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5600 }
5601 
5602 // Common checks for array sorting intrinsics arguments.
5603 // Returns `true` if checks passed.
5604 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
5605   // check address of the class
5606   if (elementType == nullptr || elementType->is_top()) {
5607     return false;  // dead path
5608   }
5609   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5610   if (elem_klass == nullptr) {
5611     return false;  // dead path
5612   }
5613   // java_mirror_type() returns non-null for compile-time Class constants only
5614   ciType* elem_type = elem_klass->java_mirror_type();
5615   if (elem_type == nullptr) {
5616     return false;
5617   }
5618   bt = elem_type->basic_type();
5619   // Disable the intrinsic if the CPU does not support SIMD sort
5620   if (!Matcher::supports_simd_sort(bt)) {
5621     return false;
5622   }
5623   // check address of the array
5624   if (obj == nullptr || obj->is_top()) {
5625     return false;  // dead path
5626   }
5627   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5628   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
5629     return false; // failed input validation
5630   }
5631   return true;
5632 }
5633 
5634 //------------------------------inline_array_partition-----------------------
5635 bool LibraryCallKit::inline_array_partition() {
5636   address stubAddr = StubRoutines::select_array_partition_function();
5637   if (stubAddr == nullptr) {
5638     return false; // Intrinsic's stub is not implemented on this platform
5639   }
5640   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
5641 
5642   // no receiver because it is a static method
5643   Node* elementType     = argument(0);
5644   Node* obj             = argument(1);
5645   Node* offset          = argument(2); // long
5646   Node* fromIndex       = argument(4);
5647   Node* toIndex         = argument(5);
5648   Node* indexPivot1     = argument(6);
5649   Node* indexPivot2     = argument(7);
5650   // PartitionOperation:  argument(8) is ignored
5651 
5652   Node* pivotIndices = nullptr;
5653   BasicType bt = T_ILLEGAL;
5654 
5655   if (!check_array_sort_arguments(elementType, obj, bt)) {
5656     return false;
5657   }
5658   null_check(obj);
5659   // If obj is dead, only null-path is taken.
5660   if (stopped()) {
5661     return true;
5662   }
5663   // Set the original stack and the reexecute bit for the interpreter to reexecute
5664   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
5665   { PreserveReexecuteState preexecs(this);
5666     jvms()->set_should_reexecute(true);
5667 
5668     Node* obj_adr = make_unsafe_address(obj, offset);
5669 
5670     // create the pivotIndices array of type int and size = 2
5671     Node* size = intcon(2);
5672     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
5673     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
5674     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
5675     guarantee(alloc != nullptr, "created above");
5676     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
5677 
5678     // pass the basic type enum to the stub
5679     Node* elemType = intcon(bt);
5680 
5681     // Call the stub
5682     const char *stubName = "array_partition_stub";
5683     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
5684                       stubAddr, stubName, TypePtr::BOTTOM,
5685                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
5686                       indexPivot1, indexPivot2);
5687 
5688   } // original reexecute is set back here
5689 
5690   if (!stopped()) {
5691     set_result(pivotIndices);
5692   }
5693 
5694   return true;
5695 }
5696 
5697 
5698 //------------------------------inline_array_sort-----------------------
5699 bool LibraryCallKit::inline_array_sort() {
5700   address stubAddr = StubRoutines::select_arraysort_function();
5701   if (stubAddr == nullptr) {
5702     return false; // Intrinsic's stub is not implemented on this platform
5703   }
5704   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
5705 
5706   // no receiver because it is a static method
5707   Node* elementType     = argument(0);
5708   Node* obj             = argument(1);
5709   Node* offset          = argument(2); // long
5710   Node* fromIndex       = argument(4);
5711   Node* toIndex         = argument(5);
5712   // SortOperation:       argument(6) is ignored
5713 
5714   BasicType bt = T_ILLEGAL;
5715 
5716   if (!check_array_sort_arguments(elementType, obj, bt)) {
5717     return false;
5718   }
5719   null_check(obj);
5720   // If obj is dead, only null-path is taken.
5721   if (stopped()) {
5722     return true;
5723   }
5724   Node* obj_adr = make_unsafe_address(obj, offset);
5725 
5726   // pass the basic type enum to the stub
5727   Node* elemType = intcon(bt);
5728 
5729   // Call the stub.
5730   const char *stubName = "arraysort_stub";
5731   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
5732                     stubAddr, stubName, TypePtr::BOTTOM,
5733                     obj_adr, elemType, fromIndex, toIndex);
5734 
5735   return true;
5736 }
5737 
5738 
5739 //------------------------------inline_arraycopy-----------------------
5740 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5741 //                                                      Object dest, int destPos,
5742 //                                                      int length);
5743 bool LibraryCallKit::inline_arraycopy() {
5744   // Get the arguments.
5745   Node* src         = argument(0);  // type: oop
5746   Node* src_offset  = argument(1);  // type: int
5747   Node* dest        = argument(2);  // type: oop
5748   Node* dest_offset = argument(3);  // type: int
5749   Node* length      = argument(4);  // type: int
5750 
5751   uint new_idx = C->unique();
5752 
5753   // Check for allocation before we add nodes that would confuse
5754   // tightly_coupled_allocation()
5755   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
5756 
5757   int saved_reexecute_sp = -1;
5758   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5759   // See arraycopy_restore_alloc_state() comment
5760   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5761   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
5762   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
5763   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
5764 
5765   // The following tests must be performed
5766   // (1) src and dest are arrays.
5767   // (2) src and dest arrays must have elements of the same BasicType
5768   // (3) src and dest must not be null.
5769   // (4) src_offset must not be negative.
5770   // (5) dest_offset must not be negative.
5771   // (6) length must not be negative.
5772   // (7) src_offset + length must not exceed length of src.
5773   // (8) dest_offset + length must not exceed length of dest.
5774   // (9) each element of an oop array must be assignable
5775 
5776   // (3) src and dest must not be null.
5777   // always do this here because we need the JVM state for uncommon traps
5778   Node* null_ctl = top();
5779   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
5780   assert(null_ctl->is_top(), "no null control here");
5781   dest = null_check(dest, T_ARRAY);
5782 
5783   if (!can_emit_guards) {
5784     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
5785     // guards but the arraycopy node could still take advantage of a
5786     // tightly allocated allocation. tightly_coupled_allocation() is
5787     // called again to make sure it takes the null check above into
5788     // account: the null check is mandatory and if it caused an
5789     // uncommon trap to be emitted then the allocation can't be
5790     // considered tightly coupled in this context.
5791     alloc = tightly_coupled_allocation(dest);
5792   }
5793 
5794   bool validated = false;
5795 
5796   const Type* src_type  = _gvn.type(src);
5797   const Type* dest_type = _gvn.type(dest);
5798   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5799   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5800 
5801   // Do we have the type of src?
5802   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5803   // Do we have the type of dest?
5804   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5805   // Is the type for src from speculation?
5806   bool src_spec = false;
5807   // Is the type for dest from speculation?
5808   bool dest_spec = false;
5809 
5810   if ((!has_src || !has_dest) && can_emit_guards) {
5811     // We don't have sufficient type information, let's see if
5812     // speculative types can help. We need to have types for both src
5813     // and dest so that it pays off.
5814 
5815     // Do we already have or could we have type information for src
5816     bool could_have_src = has_src;
5817     // Do we already have or could we have type information for dest
5818     bool could_have_dest = has_dest;
5819 
5820     ciKlass* src_k = nullptr;
5821     if (!has_src) {
5822       src_k = src_type->speculative_type_not_null();
5823       if (src_k != nullptr && src_k->is_array_klass()) {
5824         could_have_src = true;
5825       }
5826     }
5827 
5828     ciKlass* dest_k = nullptr;
5829     if (!has_dest) {
5830       dest_k = dest_type->speculative_type_not_null();
5831       if (dest_k != nullptr && dest_k->is_array_klass()) {
5832         could_have_dest = true;
5833       }
5834     }
5835 
5836     if (could_have_src && could_have_dest) {
5837       // This is going to pay off so emit the required guards
5838       if (!has_src) {
5839         src = maybe_cast_profiled_obj(src, src_k, true);
5840         src_type  = _gvn.type(src);
5841         top_src  = src_type->isa_aryptr();
5842         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5843         src_spec = true;
5844       }
5845       if (!has_dest) {
5846         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5847         dest_type  = _gvn.type(dest);
5848         top_dest  = dest_type->isa_aryptr();
5849         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5850         dest_spec = true;
5851       }
5852     }
5853   }
5854 
5855   if (has_src && has_dest && can_emit_guards) {
5856     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5857     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5858     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5859     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5860 
5861     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5862       // If both arrays are object arrays then having the exact types
5863       // for both will remove the need for a subtype check at runtime
5864       // before the call and may make it possible to pick a faster copy
5865       // routine (without a subtype check on every element)
5866       // Do we have the exact type of src?
5867       bool could_have_src = src_spec;
5868       // Do we have the exact type of dest?
5869       bool could_have_dest = dest_spec;
5870       ciKlass* src_k = nullptr;
5871       ciKlass* dest_k = nullptr;
5872       if (!src_spec) {
5873         src_k = src_type->speculative_type_not_null();
5874         if (src_k != nullptr && src_k->is_array_klass()) {
5875           could_have_src = true;
5876         }
5877       }
5878       if (!dest_spec) {
5879         dest_k = dest_type->speculative_type_not_null();
5880         if (dest_k != nullptr && dest_k->is_array_klass()) {
5881           could_have_dest = true;
5882         }
5883       }
5884       if (could_have_src && could_have_dest) {
5885         // If we can have both exact types, emit the missing guards
5886         if (could_have_src && !src_spec) {
5887           src = maybe_cast_profiled_obj(src, src_k, true);
5888         }
5889         if (could_have_dest && !dest_spec) {
5890           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5891         }
5892       }
5893     }
5894   }
5895 
5896   ciMethod* trap_method = method();
5897   int trap_bci = bci();
5898   if (saved_jvms_before_guards != nullptr) {
5899     trap_method = alloc->jvms()->method();
5900     trap_bci = alloc->jvms()->bci();
5901   }
5902 
5903   bool negative_length_guard_generated = false;
5904 
5905   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5906       can_emit_guards &&
5907       !src->is_top() && !dest->is_top()) {
5908     // validate arguments: enables transformation the ArrayCopyNode
5909     validated = true;
5910 
5911     RegionNode* slow_region = new RegionNode(1);
5912     record_for_igvn(slow_region);
5913 
5914     // (1) src and dest are arrays.
5915     generate_non_array_guard(load_object_klass(src), slow_region);
5916     generate_non_array_guard(load_object_klass(dest), slow_region);
5917 
5918     // (2) src and dest arrays must have elements of the same BasicType
5919     // done at macro expansion or at Ideal transformation time
5920 
5921     // (4) src_offset must not be negative.
5922     generate_negative_guard(src_offset, slow_region);
5923 
5924     // (5) dest_offset must not be negative.
5925     generate_negative_guard(dest_offset, slow_region);
5926 
5927     // (7) src_offset + length must not exceed length of src.
5928     generate_limit_guard(src_offset, length,
5929                          load_array_length(src),
5930                          slow_region);
5931 
5932     // (8) dest_offset + length must not exceed length of dest.
5933     generate_limit_guard(dest_offset, length,
5934                          load_array_length(dest),
5935                          slow_region);
5936 
5937     // (6) length must not be negative.
5938     // This is also checked in generate_arraycopy() during macro expansion, but
5939     // we also have to check it here for the case where the ArrayCopyNode will
5940     // be eliminated by Escape Analysis.
5941     if (EliminateAllocations) {
5942       generate_negative_guard(length, slow_region);
5943       negative_length_guard_generated = true;
5944     }
5945 
5946     // (9) each element of an oop array must be assignable
5947     Node* dest_klass = load_object_klass(dest);
5948     if (src != dest) {
5949       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
5950 
5951       if (not_subtype_ctrl != top()) {
5952         PreserveJVMState pjvms(this);
5953         set_control(not_subtype_ctrl);
5954         uncommon_trap(Deoptimization::Reason_intrinsic,
5955                       Deoptimization::Action_make_not_entrant);
5956         assert(stopped(), "Should be stopped");
5957       }
5958     }
5959     {
5960       PreserveJVMState pjvms(this);
5961       set_control(_gvn.transform(slow_region));
5962       uncommon_trap(Deoptimization::Reason_intrinsic,
5963                     Deoptimization::Action_make_not_entrant);
5964       assert(stopped(), "Should be stopped");
5965     }
5966 
5967     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5968     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5969     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5970     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5971   }
5972 
5973   if (stopped()) {
5974     return true;
5975   }
5976 
5977   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
5978                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5979                                           // so the compiler has a chance to eliminate them: during macro expansion,
5980                                           // we have to set their control (CastPP nodes are eliminated).
5981                                           load_object_klass(src), load_object_klass(dest),
5982                                           load_array_length(src), load_array_length(dest));
5983 
5984   ac->set_arraycopy(validated);
5985 
5986   Node* n = _gvn.transform(ac);
5987   if (n == ac) {
5988     ac->connect_outputs(this);
5989   } else {
5990     assert(validated, "shouldn't transform if all arguments not validated");
5991     set_all_memory(n);
5992   }
5993   clear_upper_avx();
5994 
5995 
5996   return true;
5997 }
5998 
5999 
6000 // Helper function which determines if an arraycopy immediately follows
6001 // an allocation, with no intervening tests or other escapes for the object.
6002 AllocateArrayNode*
6003 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
6004   if (stopped())             return nullptr;  // no fast path
6005   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
6006 
6007   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
6008   if (alloc == nullptr)  return nullptr;
6009 
6010   Node* rawmem = memory(Compile::AliasIdxRaw);
6011   // Is the allocation's memory state untouched?
6012   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
6013     // Bail out if there have been raw-memory effects since the allocation.
6014     // (Example:  There might have been a call or safepoint.)
6015     return nullptr;
6016   }
6017   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
6018   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
6019     return nullptr;
6020   }
6021 
6022   // There must be no unexpected observers of this allocation.
6023   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
6024     Node* obs = ptr->fast_out(i);
6025     if (obs != this->map()) {
6026       return nullptr;
6027     }
6028   }
6029 
6030   // This arraycopy must unconditionally follow the allocation of the ptr.
6031   Node* alloc_ctl = ptr->in(0);
6032   Node* ctl = control();
6033   while (ctl != alloc_ctl) {
6034     // There may be guards which feed into the slow_region.
6035     // Any other control flow means that we might not get a chance
6036     // to finish initializing the allocated object.
6037     // Various low-level checks bottom out in uncommon traps. These
6038     // are considered safe since we've already checked above that
6039     // there is no unexpected observer of this allocation.
6040     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6041       assert(ctl->in(0)->is_If(), "must be If");
6042       ctl = ctl->in(0)->in(0);
6043     } else {
6044       return nullptr;
6045     }
6046   }
6047 
6048   // If we get this far, we have an allocation which immediately
6049   // precedes the arraycopy, and we can take over zeroing the new object.
6050   // The arraycopy will finish the initialization, and provide
6051   // a new control state to which we will anchor the destination pointer.
6052 
6053   return alloc;
6054 }
6055 
6056 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6057   if (node->is_IfProj()) {
6058     Node* other_proj = node->as_IfProj()->other_if_proj();
6059     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6060       Node* obs = other_proj->fast_out(j);
6061       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6062           (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) {
6063         return obs->as_CallStaticJava();
6064       }
6065     }
6066   }
6067   return nullptr;
6068 }
6069 
6070 //-------------inline_encodeISOArray-----------------------------------
6071 // encode char[] to byte[] in ISO_8859_1 or ASCII
6072 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6073   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6074   // no receiver since it is static method
6075   Node *src         = argument(0);
6076   Node *src_offset  = argument(1);
6077   Node *dst         = argument(2);
6078   Node *dst_offset  = argument(3);
6079   Node *length      = argument(4);
6080 
6081   src = must_be_not_null(src, true);
6082   dst = must_be_not_null(dst, true);
6083 
6084   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6085   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6086   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6087       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6088     // failed array check
6089     return false;
6090   }
6091 
6092   // Figure out the size and type of the elements we will be copying.
6093   BasicType src_elem = src_type->elem()->array_element_basic_type();
6094   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6095   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6096     return false;
6097   }
6098 
6099   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6100   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6101   // 'src_start' points to src array + scaled offset
6102   // 'dst_start' points to dst array + scaled offset
6103 
6104   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6105   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6106   enc = _gvn.transform(enc);
6107   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6108   set_memory(res_mem, mtype);
6109   set_result(enc);
6110   clear_upper_avx();
6111 
6112   return true;
6113 }
6114 
6115 //-------------inline_multiplyToLen-----------------------------------
6116 bool LibraryCallKit::inline_multiplyToLen() {
6117   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6118 
6119   address stubAddr = StubRoutines::multiplyToLen();
6120   if (stubAddr == nullptr) {
6121     return false; // Intrinsic's stub is not implemented on this platform
6122   }
6123   const char* stubName = "multiplyToLen";
6124 
6125   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6126 
6127   // no receiver because it is a static method
6128   Node* x    = argument(0);
6129   Node* xlen = argument(1);
6130   Node* y    = argument(2);
6131   Node* ylen = argument(3);
6132   Node* z    = argument(4);
6133 
6134   x = must_be_not_null(x, true);
6135   y = must_be_not_null(y, true);
6136 
6137   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6138   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6139   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6140       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6141     // failed array check
6142     return false;
6143   }
6144 
6145   BasicType x_elem = x_type->elem()->array_element_basic_type();
6146   BasicType y_elem = y_type->elem()->array_element_basic_type();
6147   if (x_elem != T_INT || y_elem != T_INT) {
6148     return false;
6149   }
6150 
6151   Node* x_start = array_element_address(x, intcon(0), x_elem);
6152   Node* y_start = array_element_address(y, intcon(0), y_elem);
6153   // 'x_start' points to x array + scaled xlen
6154   // 'y_start' points to y array + scaled ylen
6155 
6156   Node* z_start = array_element_address(z, intcon(0), T_INT);
6157 
6158   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6159                                  OptoRuntime::multiplyToLen_Type(),
6160                                  stubAddr, stubName, TypePtr::BOTTOM,
6161                                  x_start, xlen, y_start, ylen, z_start);
6162 
6163   C->set_has_split_ifs(true); // Has chance for split-if optimization
6164   set_result(z);
6165   return true;
6166 }
6167 
6168 //-------------inline_squareToLen------------------------------------
6169 bool LibraryCallKit::inline_squareToLen() {
6170   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6171 
6172   address stubAddr = StubRoutines::squareToLen();
6173   if (stubAddr == nullptr) {
6174     return false; // Intrinsic's stub is not implemented on this platform
6175   }
6176   const char* stubName = "squareToLen";
6177 
6178   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6179 
6180   Node* x    = argument(0);
6181   Node* len  = argument(1);
6182   Node* z    = argument(2);
6183   Node* zlen = argument(3);
6184 
6185   x = must_be_not_null(x, true);
6186   z = must_be_not_null(z, true);
6187 
6188   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6189   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6190   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6191       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6192     // failed array check
6193     return false;
6194   }
6195 
6196   BasicType x_elem = x_type->elem()->array_element_basic_type();
6197   BasicType z_elem = z_type->elem()->array_element_basic_type();
6198   if (x_elem != T_INT || z_elem != T_INT) {
6199     return false;
6200   }
6201 
6202 
6203   Node* x_start = array_element_address(x, intcon(0), x_elem);
6204   Node* z_start = array_element_address(z, intcon(0), z_elem);
6205 
6206   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6207                                   OptoRuntime::squareToLen_Type(),
6208                                   stubAddr, stubName, TypePtr::BOTTOM,
6209                                   x_start, len, z_start, zlen);
6210 
6211   set_result(z);
6212   return true;
6213 }
6214 
6215 //-------------inline_mulAdd------------------------------------------
6216 bool LibraryCallKit::inline_mulAdd() {
6217   assert(UseMulAddIntrinsic, "not implemented on this platform");
6218 
6219   address stubAddr = StubRoutines::mulAdd();
6220   if (stubAddr == nullptr) {
6221     return false; // Intrinsic's stub is not implemented on this platform
6222   }
6223   const char* stubName = "mulAdd";
6224 
6225   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6226 
6227   Node* out      = argument(0);
6228   Node* in       = argument(1);
6229   Node* offset   = argument(2);
6230   Node* len      = argument(3);
6231   Node* k        = argument(4);
6232 
6233   in = must_be_not_null(in, true);
6234   out = must_be_not_null(out, true);
6235 
6236   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6237   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6238   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6239        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6240     // failed array check
6241     return false;
6242   }
6243 
6244   BasicType out_elem = out_type->elem()->array_element_basic_type();
6245   BasicType in_elem = in_type->elem()->array_element_basic_type();
6246   if (out_elem != T_INT || in_elem != T_INT) {
6247     return false;
6248   }
6249 
6250   Node* outlen = load_array_length(out);
6251   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6252   Node* out_start = array_element_address(out, intcon(0), out_elem);
6253   Node* in_start = array_element_address(in, intcon(0), in_elem);
6254 
6255   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6256                                   OptoRuntime::mulAdd_Type(),
6257                                   stubAddr, stubName, TypePtr::BOTTOM,
6258                                   out_start,in_start, new_offset, len, k);
6259   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6260   set_result(result);
6261   return true;
6262 }
6263 
6264 //-------------inline_montgomeryMultiply-----------------------------------
6265 bool LibraryCallKit::inline_montgomeryMultiply() {
6266   address stubAddr = StubRoutines::montgomeryMultiply();
6267   if (stubAddr == nullptr) {
6268     return false; // Intrinsic's stub is not implemented on this platform
6269   }
6270 
6271   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6272   const char* stubName = "montgomery_multiply";
6273 
6274   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6275 
6276   Node* a    = argument(0);
6277   Node* b    = argument(1);
6278   Node* n    = argument(2);
6279   Node* len  = argument(3);
6280   Node* inv  = argument(4);
6281   Node* m    = argument(6);
6282 
6283   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6284   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6285   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6286   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6287   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6288       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6289       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6290       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6291     // failed array check
6292     return false;
6293   }
6294 
6295   BasicType a_elem = a_type->elem()->array_element_basic_type();
6296   BasicType b_elem = b_type->elem()->array_element_basic_type();
6297   BasicType n_elem = n_type->elem()->array_element_basic_type();
6298   BasicType m_elem = m_type->elem()->array_element_basic_type();
6299   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6300     return false;
6301   }
6302 
6303   // Make the call
6304   {
6305     Node* a_start = array_element_address(a, intcon(0), a_elem);
6306     Node* b_start = array_element_address(b, intcon(0), b_elem);
6307     Node* n_start = array_element_address(n, intcon(0), n_elem);
6308     Node* m_start = array_element_address(m, intcon(0), m_elem);
6309 
6310     Node* call = make_runtime_call(RC_LEAF,
6311                                    OptoRuntime::montgomeryMultiply_Type(),
6312                                    stubAddr, stubName, TypePtr::BOTTOM,
6313                                    a_start, b_start, n_start, len, inv, top(),
6314                                    m_start);
6315     set_result(m);
6316   }
6317 
6318   return true;
6319 }
6320 
6321 bool LibraryCallKit::inline_montgomerySquare() {
6322   address stubAddr = StubRoutines::montgomerySquare();
6323   if (stubAddr == nullptr) {
6324     return false; // Intrinsic's stub is not implemented on this platform
6325   }
6326 
6327   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6328   const char* stubName = "montgomery_square";
6329 
6330   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6331 
6332   Node* a    = argument(0);
6333   Node* n    = argument(1);
6334   Node* len  = argument(2);
6335   Node* inv  = argument(3);
6336   Node* m    = argument(5);
6337 
6338   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6339   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6340   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6341   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6342       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6343       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6344     // failed array check
6345     return false;
6346   }
6347 
6348   BasicType a_elem = a_type->elem()->array_element_basic_type();
6349   BasicType n_elem = n_type->elem()->array_element_basic_type();
6350   BasicType m_elem = m_type->elem()->array_element_basic_type();
6351   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6352     return false;
6353   }
6354 
6355   // Make the call
6356   {
6357     Node* a_start = array_element_address(a, intcon(0), a_elem);
6358     Node* n_start = array_element_address(n, intcon(0), n_elem);
6359     Node* m_start = array_element_address(m, intcon(0), m_elem);
6360 
6361     Node* call = make_runtime_call(RC_LEAF,
6362                                    OptoRuntime::montgomerySquare_Type(),
6363                                    stubAddr, stubName, TypePtr::BOTTOM,
6364                                    a_start, n_start, len, inv, top(),
6365                                    m_start);
6366     set_result(m);
6367   }
6368 
6369   return true;
6370 }
6371 
6372 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6373   address stubAddr = nullptr;
6374   const char* stubName = nullptr;
6375 
6376   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6377   if (stubAddr == nullptr) {
6378     return false; // Intrinsic's stub is not implemented on this platform
6379   }
6380 
6381   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6382 
6383   assert(callee()->signature()->size() == 5, "expected 5 arguments");
6384 
6385   Node* newArr = argument(0);
6386   Node* oldArr = argument(1);
6387   Node* newIdx = argument(2);
6388   Node* shiftCount = argument(3);
6389   Node* numIter = argument(4);
6390 
6391   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6392   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6393   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6394       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6395     return false;
6396   }
6397 
6398   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6399   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6400   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6401     return false;
6402   }
6403 
6404   // Make the call
6405   {
6406     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6407     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6408 
6409     Node* call = make_runtime_call(RC_LEAF,
6410                                    OptoRuntime::bigIntegerShift_Type(),
6411                                    stubAddr,
6412                                    stubName,
6413                                    TypePtr::BOTTOM,
6414                                    newArr_start,
6415                                    oldArr_start,
6416                                    newIdx,
6417                                    shiftCount,
6418                                    numIter);
6419   }
6420 
6421   return true;
6422 }
6423 
6424 //-------------inline_vectorizedMismatch------------------------------
6425 bool LibraryCallKit::inline_vectorizedMismatch() {
6426   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6427 
6428   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6429   Node* obja    = argument(0); // Object
6430   Node* aoffset = argument(1); // long
6431   Node* objb    = argument(3); // Object
6432   Node* boffset = argument(4); // long
6433   Node* length  = argument(6); // int
6434   Node* scale   = argument(7); // int
6435 
6436   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6437   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6438   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6439       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6440       scale == top()) {
6441     return false; // failed input validation
6442   }
6443 
6444   Node* obja_adr = make_unsafe_address(obja, aoffset);
6445   Node* objb_adr = make_unsafe_address(objb, boffset);
6446 
6447   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6448   //
6449   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
6450   //    if (length <= inline_limit) {
6451   //      inline_path:
6452   //        vmask   = VectorMaskGen length
6453   //        vload1  = LoadVectorMasked obja, vmask
6454   //        vload2  = LoadVectorMasked objb, vmask
6455   //        result1 = VectorCmpMasked vload1, vload2, vmask
6456   //    } else {
6457   //      call_stub_path:
6458   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6459   //    }
6460   //    exit_block:
6461   //      return Phi(result1, result2);
6462   //
6463   enum { inline_path = 1,  // input is small enough to process it all at once
6464          stub_path   = 2,  // input is too large; call into the VM
6465          PATH_LIMIT  = 3
6466   };
6467 
6468   Node* exit_block = new RegionNode(PATH_LIMIT);
6469   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6470   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6471 
6472   Node* call_stub_path = control();
6473 
6474   BasicType elem_bt = T_ILLEGAL;
6475 
6476   const TypeInt* scale_t = _gvn.type(scale)->is_int();
6477   if (scale_t->is_con()) {
6478     switch (scale_t->get_con()) {
6479       case 0: elem_bt = T_BYTE;  break;
6480       case 1: elem_bt = T_SHORT; break;
6481       case 2: elem_bt = T_INT;   break;
6482       case 3: elem_bt = T_LONG;  break;
6483 
6484       default: elem_bt = T_ILLEGAL; break; // not supported
6485     }
6486   }
6487 
6488   int inline_limit = 0;
6489   bool do_partial_inline = false;
6490 
6491   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6492     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6493     do_partial_inline = inline_limit >= 16;
6494   }
6495 
6496   if (do_partial_inline) {
6497     assert(elem_bt != T_ILLEGAL, "sanity");
6498 
6499     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
6500         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6501         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
6502 
6503       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6504       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6505       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6506 
6507       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6508 
6509       if (!stopped()) {
6510         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6511 
6512         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6513         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6514         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6515         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6516 
6517         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6518         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6519         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6520         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6521 
6522         exit_block->init_req(inline_path, control());
6523         memory_phi->init_req(inline_path, map()->memory());
6524         result_phi->init_req(inline_path, result);
6525 
6526         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6527         clear_upper_avx();
6528       }
6529     }
6530   }
6531 
6532   if (call_stub_path != nullptr) {
6533     set_control(call_stub_path);
6534 
6535     Node* call = make_runtime_call(RC_LEAF,
6536                                    OptoRuntime::vectorizedMismatch_Type(),
6537                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6538                                    obja_adr, objb_adr, length, scale);
6539 
6540     exit_block->init_req(stub_path, control());
6541     memory_phi->init_req(stub_path, map()->memory());
6542     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6543   }
6544 
6545   exit_block = _gvn.transform(exit_block);
6546   memory_phi = _gvn.transform(memory_phi);
6547   result_phi = _gvn.transform(result_phi);
6548 
6549   set_control(exit_block);
6550   set_all_memory(memory_phi);
6551   set_result(result_phi);
6552 
6553   return true;
6554 }
6555 
6556 //------------------------------inline_vectorizedHashcode----------------------------
6557 bool LibraryCallKit::inline_vectorizedHashCode() {
6558   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6559 
6560   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6561   Node* array          = argument(0);
6562   Node* offset         = argument(1);
6563   Node* length         = argument(2);
6564   Node* initialValue   = argument(3);
6565   Node* basic_type     = argument(4);
6566 
6567   if (basic_type == top()) {
6568     return false; // failed input validation
6569   }
6570 
6571   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6572   if (!basic_type_t->is_con()) {
6573     return false; // Only intrinsify if mode argument is constant
6574   }
6575 
6576   array = must_be_not_null(array, true);
6577 
6578   BasicType bt = (BasicType)basic_type_t->get_con();
6579 
6580   // Resolve address of first element
6581   Node* array_start = array_element_address(array, offset, bt);
6582 
6583   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6584     array_start, length, initialValue, basic_type)));
6585   clear_upper_avx();
6586 
6587   return true;
6588 }
6589 
6590 /**
6591  * Calculate CRC32 for byte.
6592  * int java.util.zip.CRC32.update(int crc, int b)
6593  */
6594 bool LibraryCallKit::inline_updateCRC32() {
6595   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6596   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6597   // no receiver since it is static method
6598   Node* crc  = argument(0); // type: int
6599   Node* b    = argument(1); // type: int
6600 
6601   /*
6602    *    int c = ~ crc;
6603    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6604    *    b = b ^ (c >>> 8);
6605    *    crc = ~b;
6606    */
6607 
6608   Node* M1 = intcon(-1);
6609   crc = _gvn.transform(new XorINode(crc, M1));
6610   Node* result = _gvn.transform(new XorINode(crc, b));
6611   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
6612 
6613   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6614   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
6615   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6616   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6617 
6618   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
6619   result = _gvn.transform(new XorINode(crc, result));
6620   result = _gvn.transform(new XorINode(result, M1));
6621   set_result(result);
6622   return true;
6623 }
6624 
6625 /**
6626  * Calculate CRC32 for byte[] array.
6627  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6628  */
6629 bool LibraryCallKit::inline_updateBytesCRC32() {
6630   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6631   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6632   // no receiver since it is static method
6633   Node* crc     = argument(0); // type: int
6634   Node* src     = argument(1); // type: oop
6635   Node* offset  = argument(2); // type: int
6636   Node* length  = argument(3); // type: int
6637 
6638   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6639   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6640     // failed array check
6641     return false;
6642   }
6643 
6644   // Figure out the size and type of the elements we will be copying.
6645   BasicType src_elem = src_type->elem()->array_element_basic_type();
6646   if (src_elem != T_BYTE) {
6647     return false;
6648   }
6649 
6650   // 'src_start' points to src array + scaled offset
6651   src = must_be_not_null(src, true);
6652   Node* src_start = array_element_address(src, offset, src_elem);
6653 
6654   // We assume that range check is done by caller.
6655   // TODO: generate range check (offset+length < src.length) in debug VM.
6656 
6657   // Call the stub.
6658   address stubAddr = StubRoutines::updateBytesCRC32();
6659   const char *stubName = "updateBytesCRC32";
6660 
6661   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6662                                  stubAddr, stubName, TypePtr::BOTTOM,
6663                                  crc, src_start, length);
6664   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6665   set_result(result);
6666   return true;
6667 }
6668 
6669 /**
6670  * Calculate CRC32 for ByteBuffer.
6671  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6672  */
6673 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6674   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6675   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6676   // no receiver since it is static method
6677   Node* crc     = argument(0); // type: int
6678   Node* src     = argument(1); // type: long
6679   Node* offset  = argument(3); // type: int
6680   Node* length  = argument(4); // type: int
6681 
6682   src = ConvL2X(src);  // adjust Java long to machine word
6683   Node* base = _gvn.transform(new CastX2PNode(src));
6684   offset = ConvI2X(offset);
6685 
6686   // 'src_start' points to src array + scaled offset
6687   Node* src_start = basic_plus_adr(top(), base, offset);
6688 
6689   // Call the stub.
6690   address stubAddr = StubRoutines::updateBytesCRC32();
6691   const char *stubName = "updateBytesCRC32";
6692 
6693   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6694                                  stubAddr, stubName, TypePtr::BOTTOM,
6695                                  crc, src_start, length);
6696   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6697   set_result(result);
6698   return true;
6699 }
6700 
6701 //------------------------------get_table_from_crc32c_class-----------------------
6702 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6703   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6704   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
6705 
6706   return table;
6707 }
6708 
6709 //------------------------------inline_updateBytesCRC32C-----------------------
6710 //
6711 // Calculate CRC32C for byte[] array.
6712 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6713 //
6714 bool LibraryCallKit::inline_updateBytesCRC32C() {
6715   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6716   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6717   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6718   // no receiver since it is a static method
6719   Node* crc     = argument(0); // type: int
6720   Node* src     = argument(1); // type: oop
6721   Node* offset  = argument(2); // type: int
6722   Node* end     = argument(3); // type: int
6723 
6724   Node* length = _gvn.transform(new SubINode(end, offset));
6725 
6726   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6727   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6728     // failed array check
6729     return false;
6730   }
6731 
6732   // Figure out the size and type of the elements we will be copying.
6733   BasicType src_elem = src_type->elem()->array_element_basic_type();
6734   if (src_elem != T_BYTE) {
6735     return false;
6736   }
6737 
6738   // 'src_start' points to src array + scaled offset
6739   src = must_be_not_null(src, true);
6740   Node* src_start = array_element_address(src, offset, src_elem);
6741 
6742   // static final int[] byteTable in class CRC32C
6743   Node* table = get_table_from_crc32c_class(callee()->holder());
6744   table = must_be_not_null(table, true);
6745   Node* table_start = array_element_address(table, intcon(0), T_INT);
6746 
6747   // We assume that range check is done by caller.
6748   // TODO: generate range check (offset+length < src.length) in debug VM.
6749 
6750   // Call the stub.
6751   address stubAddr = StubRoutines::updateBytesCRC32C();
6752   const char *stubName = "updateBytesCRC32C";
6753 
6754   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6755                                  stubAddr, stubName, TypePtr::BOTTOM,
6756                                  crc, src_start, length, table_start);
6757   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6758   set_result(result);
6759   return true;
6760 }
6761 
6762 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
6763 //
6764 // Calculate CRC32C for DirectByteBuffer.
6765 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
6766 //
6767 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
6768   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6769   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
6770   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6771   // no receiver since it is a static method
6772   Node* crc     = argument(0); // type: int
6773   Node* src     = argument(1); // type: long
6774   Node* offset  = argument(3); // type: int
6775   Node* end     = argument(4); // type: int
6776 
6777   Node* length = _gvn.transform(new SubINode(end, offset));
6778 
6779   src = ConvL2X(src);  // adjust Java long to machine word
6780   Node* base = _gvn.transform(new CastX2PNode(src));
6781   offset = ConvI2X(offset);
6782 
6783   // 'src_start' points to src array + scaled offset
6784   Node* src_start = basic_plus_adr(top(), base, offset);
6785 
6786   // static final int[] byteTable in class CRC32C
6787   Node* table = get_table_from_crc32c_class(callee()->holder());
6788   table = must_be_not_null(table, true);
6789   Node* table_start = array_element_address(table, intcon(0), T_INT);
6790 
6791   // Call the stub.
6792   address stubAddr = StubRoutines::updateBytesCRC32C();
6793   const char *stubName = "updateBytesCRC32C";
6794 
6795   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6796                                  stubAddr, stubName, TypePtr::BOTTOM,
6797                                  crc, src_start, length, table_start);
6798   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6799   set_result(result);
6800   return true;
6801 }
6802 
6803 //------------------------------inline_updateBytesAdler32----------------------
6804 //
6805 // Calculate Adler32 checksum for byte[] array.
6806 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6807 //
6808 bool LibraryCallKit::inline_updateBytesAdler32() {
6809   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6810   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6811   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6812   // no receiver since it is static method
6813   Node* crc     = argument(0); // type: int
6814   Node* src     = argument(1); // type: oop
6815   Node* offset  = argument(2); // type: int
6816   Node* length  = argument(3); // type: int
6817 
6818   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6819   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6820     // failed array check
6821     return false;
6822   }
6823 
6824   // Figure out the size and type of the elements we will be copying.
6825   BasicType src_elem = src_type->elem()->array_element_basic_type();
6826   if (src_elem != T_BYTE) {
6827     return false;
6828   }
6829 
6830   // 'src_start' points to src array + scaled offset
6831   Node* src_start = array_element_address(src, offset, src_elem);
6832 
6833   // We assume that range check is done by caller.
6834   // TODO: generate range check (offset+length < src.length) in debug VM.
6835 
6836   // Call the stub.
6837   address stubAddr = StubRoutines::updateBytesAdler32();
6838   const char *stubName = "updateBytesAdler32";
6839 
6840   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6841                                  stubAddr, stubName, TypePtr::BOTTOM,
6842                                  crc, src_start, length);
6843   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6844   set_result(result);
6845   return true;
6846 }
6847 
6848 //------------------------------inline_updateByteBufferAdler32---------------
6849 //
6850 // Calculate Adler32 checksum for DirectByteBuffer.
6851 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6852 //
6853 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6854   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6855   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6856   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6857   // no receiver since it is static method
6858   Node* crc     = argument(0); // type: int
6859   Node* src     = argument(1); // type: long
6860   Node* offset  = argument(3); // type: int
6861   Node* length  = argument(4); // type: int
6862 
6863   src = ConvL2X(src);  // adjust Java long to machine word
6864   Node* base = _gvn.transform(new CastX2PNode(src));
6865   offset = ConvI2X(offset);
6866 
6867   // 'src_start' points to src array + scaled offset
6868   Node* src_start = basic_plus_adr(top(), base, offset);
6869 
6870   // Call the stub.
6871   address stubAddr = StubRoutines::updateBytesAdler32();
6872   const char *stubName = "updateBytesAdler32";
6873 
6874   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6875                                  stubAddr, stubName, TypePtr::BOTTOM,
6876                                  crc, src_start, length);
6877 
6878   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6879   set_result(result);
6880   return true;
6881 }
6882 
6883 //----------------------------inline_reference_get----------------------------
6884 // public T java.lang.ref.Reference.get();
6885 bool LibraryCallKit::inline_reference_get() {
6886   const int referent_offset = java_lang_ref_Reference::referent_offset();
6887 
6888   // Get the argument:
6889   Node* reference_obj = null_check_receiver();
6890   if (stopped()) return true;
6891 
6892   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
6893   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6894                                         decorators, /*is_static*/ false, nullptr);
6895   if (result == nullptr) return false;
6896 
6897   // Add memory barrier to prevent commoning reads from this field
6898   // across safepoint since GC can change its value.
6899   insert_mem_bar(Op_MemBarCPUOrder);
6900 
6901   set_result(result);
6902   return true;
6903 }
6904 
6905 //----------------------------inline_reference_refersTo0----------------------------
6906 // bool java.lang.ref.Reference.refersTo0();
6907 // bool java.lang.ref.PhantomReference.refersTo0();
6908 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
6909   // Get arguments:
6910   Node* reference_obj = null_check_receiver();
6911   Node* other_obj = argument(1);
6912   if (stopped()) return true;
6913 
6914   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6915   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6916   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6917                                           decorators, /*is_static*/ false, nullptr);
6918   if (referent == nullptr) return false;
6919 
6920   // Add memory barrier to prevent commoning reads from this field
6921   // across safepoint since GC can change its value.
6922   insert_mem_bar(Op_MemBarCPUOrder);
6923 
6924   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
6925   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6926   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
6927 
6928   RegionNode* region = new RegionNode(3);
6929   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
6930 
6931   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
6932   region->init_req(1, if_true);
6933   phi->init_req(1, intcon(1));
6934 
6935   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
6936   region->init_req(2, if_false);
6937   phi->init_req(2, intcon(0));
6938 
6939   set_control(_gvn.transform(region));
6940   record_for_igvn(region);
6941   set_result(_gvn.transform(phi));
6942   return true;
6943 }
6944 
6945 //----------------------------inline_reference_clear0----------------------------
6946 // void java.lang.ref.Reference.clear0();
6947 // void java.lang.ref.PhantomReference.clear0();
6948 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) {
6949   // This matches the implementation in JVM_ReferenceClear, see the comments there.
6950 
6951   // Get arguments
6952   Node* reference_obj = null_check_receiver();
6953   if (stopped()) return true;
6954 
6955   // Common access parameters
6956   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6957   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6958   Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset());
6959   const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr();
6960   const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass());
6961 
6962   Node* referent = access_load_at(reference_obj,
6963                                   referent_field_addr,
6964                                   referent_field_addr_type,
6965                                   val_type,
6966                                   T_OBJECT,
6967                                   decorators);
6968 
6969   IdealKit ideal(this);
6970 #define __ ideal.
6971   __ if_then(referent, BoolTest::ne, null());
6972     sync_kit(ideal);
6973     access_store_at(reference_obj,
6974                     referent_field_addr,
6975                     referent_field_addr_type,
6976                     null(),
6977                     val_type,
6978                     T_OBJECT,
6979                     decorators);
6980     __ sync_kit(this);
6981   __ end_if();
6982   final_sync(ideal);
6983 #undef __
6984 
6985   return true;
6986 }
6987 
6988 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
6989                                              DecoratorSet decorators, bool is_static,
6990                                              ciInstanceKlass* fromKls) {
6991   if (fromKls == nullptr) {
6992     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6993     assert(tinst != nullptr, "obj is null");
6994     assert(tinst->is_loaded(), "obj is not loaded");
6995     fromKls = tinst->instance_klass();
6996   } else {
6997     assert(is_static, "only for static field access");
6998   }
6999   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7000                                               ciSymbol::make(fieldTypeString),
7001                                               is_static);
7002 
7003   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
7004   if (field == nullptr) return (Node *) nullptr;
7005 
7006   if (is_static) {
7007     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7008     fromObj = makecon(tip);
7009   }
7010 
7011   // Next code  copied from Parse::do_get_xxx():
7012 
7013   // Compute address and memory type.
7014   int offset  = field->offset_in_bytes();
7015   bool is_vol = field->is_volatile();
7016   ciType* field_klass = field->type();
7017   assert(field_klass->is_loaded(), "should be loaded");
7018   const TypePtr* adr_type = C->alias_type(field)->adr_type();
7019   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7020   BasicType bt = field->layout_type();
7021 
7022   // Build the resultant type of the load
7023   const Type *type;
7024   if (bt == T_OBJECT) {
7025     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
7026   } else {
7027     type = Type::get_const_basic_type(bt);
7028   }
7029 
7030   if (is_vol) {
7031     decorators |= MO_SEQ_CST;
7032   }
7033 
7034   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
7035 }
7036 
7037 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7038                                                  bool is_exact /* true */, bool is_static /* false */,
7039                                                  ciInstanceKlass * fromKls /* nullptr */) {
7040   if (fromKls == nullptr) {
7041     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7042     assert(tinst != nullptr, "obj is null");
7043     assert(tinst->is_loaded(), "obj is not loaded");
7044     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7045     fromKls = tinst->instance_klass();
7046   }
7047   else {
7048     assert(is_static, "only for static field access");
7049   }
7050   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7051     ciSymbol::make(fieldTypeString),
7052     is_static);
7053 
7054   assert(field != nullptr, "undefined field");
7055   assert(!field->is_volatile(), "not defined for volatile fields");
7056 
7057   if (is_static) {
7058     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7059     fromObj = makecon(tip);
7060   }
7061 
7062   // Next code  copied from Parse::do_get_xxx():
7063 
7064   // Compute address and memory type.
7065   int offset = field->offset_in_bytes();
7066   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7067 
7068   return adr;
7069 }
7070 
7071 //------------------------------inline_aescrypt_Block-----------------------
7072 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7073   address stubAddr = nullptr;
7074   const char *stubName;
7075   assert(UseAES, "need AES instruction support");
7076 
7077   switch(id) {
7078   case vmIntrinsics::_aescrypt_encryptBlock:
7079     stubAddr = StubRoutines::aescrypt_encryptBlock();
7080     stubName = "aescrypt_encryptBlock";
7081     break;
7082   case vmIntrinsics::_aescrypt_decryptBlock:
7083     stubAddr = StubRoutines::aescrypt_decryptBlock();
7084     stubName = "aescrypt_decryptBlock";
7085     break;
7086   default:
7087     break;
7088   }
7089   if (stubAddr == nullptr) return false;
7090 
7091   Node* aescrypt_object = argument(0);
7092   Node* src             = argument(1);
7093   Node* src_offset      = argument(2);
7094   Node* dest            = argument(3);
7095   Node* dest_offset     = argument(4);
7096 
7097   src = must_be_not_null(src, true);
7098   dest = must_be_not_null(dest, true);
7099 
7100   // (1) src and dest are arrays.
7101   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7102   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7103   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7104          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7105 
7106   // for the quick and dirty code we will skip all the checks.
7107   // we are just trying to get the call to be generated.
7108   Node* src_start  = src;
7109   Node* dest_start = dest;
7110   if (src_offset != nullptr || dest_offset != nullptr) {
7111     assert(src_offset != nullptr && dest_offset != nullptr, "");
7112     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7113     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7114   }
7115 
7116   // now need to get the start of its expanded key array
7117   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7118   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7119   if (k_start == nullptr) return false;
7120 
7121   // Call the stub.
7122   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7123                     stubAddr, stubName, TypePtr::BOTTOM,
7124                     src_start, dest_start, k_start);
7125 
7126   return true;
7127 }
7128 
7129 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7130 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7131   address stubAddr = nullptr;
7132   const char *stubName = nullptr;
7133 
7134   assert(UseAES, "need AES instruction support");
7135 
7136   switch(id) {
7137   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7138     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7139     stubName = "cipherBlockChaining_encryptAESCrypt";
7140     break;
7141   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7142     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7143     stubName = "cipherBlockChaining_decryptAESCrypt";
7144     break;
7145   default:
7146     break;
7147   }
7148   if (stubAddr == nullptr) return false;
7149 
7150   Node* cipherBlockChaining_object = argument(0);
7151   Node* src                        = argument(1);
7152   Node* src_offset                 = argument(2);
7153   Node* len                        = argument(3);
7154   Node* dest                       = argument(4);
7155   Node* dest_offset                = argument(5);
7156 
7157   src = must_be_not_null(src, false);
7158   dest = must_be_not_null(dest, false);
7159 
7160   // (1) src and dest are arrays.
7161   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7162   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7163   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7164          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7165 
7166   // checks are the responsibility of the caller
7167   Node* src_start  = src;
7168   Node* dest_start = dest;
7169   if (src_offset != nullptr || dest_offset != nullptr) {
7170     assert(src_offset != nullptr && dest_offset != nullptr, "");
7171     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7172     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7173   }
7174 
7175   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7176   // (because of the predicated logic executed earlier).
7177   // so we cast it here safely.
7178   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7179 
7180   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7181   if (embeddedCipherObj == nullptr) return false;
7182 
7183   // cast it to what we know it will be at runtime
7184   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7185   assert(tinst != nullptr, "CBC obj is null");
7186   assert(tinst->is_loaded(), "CBC obj is not loaded");
7187   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7188   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7189 
7190   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7191   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7192   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7193   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7194   aescrypt_object = _gvn.transform(aescrypt_object);
7195 
7196   // we need to get the start of the aescrypt_object's expanded key array
7197   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7198   if (k_start == nullptr) return false;
7199 
7200   // similarly, get the start address of the r vector
7201   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7202   if (objRvec == nullptr) return false;
7203   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7204 
7205   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7206   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7207                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7208                                      stubAddr, stubName, TypePtr::BOTTOM,
7209                                      src_start, dest_start, k_start, r_start, len);
7210 
7211   // return cipher length (int)
7212   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7213   set_result(retvalue);
7214   return true;
7215 }
7216 
7217 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7218 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7219   address stubAddr = nullptr;
7220   const char *stubName = nullptr;
7221 
7222   assert(UseAES, "need AES instruction support");
7223 
7224   switch (id) {
7225   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7226     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7227     stubName = "electronicCodeBook_encryptAESCrypt";
7228     break;
7229   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7230     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7231     stubName = "electronicCodeBook_decryptAESCrypt";
7232     break;
7233   default:
7234     break;
7235   }
7236 
7237   if (stubAddr == nullptr) return false;
7238 
7239   Node* electronicCodeBook_object = argument(0);
7240   Node* src                       = argument(1);
7241   Node* src_offset                = argument(2);
7242   Node* len                       = argument(3);
7243   Node* dest                      = argument(4);
7244   Node* dest_offset               = argument(5);
7245 
7246   // (1) src and dest are arrays.
7247   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7248   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7249   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7250          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7251 
7252   // checks are the responsibility of the caller
7253   Node* src_start = src;
7254   Node* dest_start = dest;
7255   if (src_offset != nullptr || dest_offset != nullptr) {
7256     assert(src_offset != nullptr && dest_offset != nullptr, "");
7257     src_start = array_element_address(src, src_offset, T_BYTE);
7258     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7259   }
7260 
7261   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7262   // (because of the predicated logic executed earlier).
7263   // so we cast it here safely.
7264   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7265 
7266   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7267   if (embeddedCipherObj == nullptr) return false;
7268 
7269   // cast it to what we know it will be at runtime
7270   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7271   assert(tinst != nullptr, "ECB obj is null");
7272   assert(tinst->is_loaded(), "ECB obj is not loaded");
7273   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7274   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7275 
7276   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7277   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7278   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7279   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7280   aescrypt_object = _gvn.transform(aescrypt_object);
7281 
7282   // we need to get the start of the aescrypt_object's expanded key array
7283   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7284   if (k_start == nullptr) return false;
7285 
7286   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7287   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7288                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7289                                      stubAddr, stubName, TypePtr::BOTTOM,
7290                                      src_start, dest_start, k_start, len);
7291 
7292   // return cipher length (int)
7293   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7294   set_result(retvalue);
7295   return true;
7296 }
7297 
7298 //------------------------------inline_counterMode_AESCrypt-----------------------
7299 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7300   assert(UseAES, "need AES instruction support");
7301   if (!UseAESCTRIntrinsics) return false;
7302 
7303   address stubAddr = nullptr;
7304   const char *stubName = nullptr;
7305   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7306     stubAddr = StubRoutines::counterMode_AESCrypt();
7307     stubName = "counterMode_AESCrypt";
7308   }
7309   if (stubAddr == nullptr) return false;
7310 
7311   Node* counterMode_object = argument(0);
7312   Node* src = argument(1);
7313   Node* src_offset = argument(2);
7314   Node* len = argument(3);
7315   Node* dest = argument(4);
7316   Node* dest_offset = argument(5);
7317 
7318   // (1) src and dest are arrays.
7319   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7320   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7321   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7322          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7323 
7324   // checks are the responsibility of the caller
7325   Node* src_start = src;
7326   Node* dest_start = dest;
7327   if (src_offset != nullptr || dest_offset != nullptr) {
7328     assert(src_offset != nullptr && dest_offset != nullptr, "");
7329     src_start = array_element_address(src, src_offset, T_BYTE);
7330     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7331   }
7332 
7333   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7334   // (because of the predicated logic executed earlier).
7335   // so we cast it here safely.
7336   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7337   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7338   if (embeddedCipherObj == nullptr) return false;
7339   // cast it to what we know it will be at runtime
7340   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7341   assert(tinst != nullptr, "CTR obj is null");
7342   assert(tinst->is_loaded(), "CTR obj is not loaded");
7343   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7344   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7345   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7346   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7347   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7348   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7349   aescrypt_object = _gvn.transform(aescrypt_object);
7350   // we need to get the start of the aescrypt_object's expanded key array
7351   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7352   if (k_start == nullptr) return false;
7353   // similarly, get the start address of the r vector
7354   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7355   if (obj_counter == nullptr) return false;
7356   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7357 
7358   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7359   if (saved_encCounter == nullptr) return false;
7360   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7361   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7362 
7363   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7364   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7365                                      OptoRuntime::counterMode_aescrypt_Type(),
7366                                      stubAddr, stubName, TypePtr::BOTTOM,
7367                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7368 
7369   // return cipher length (int)
7370   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7371   set_result(retvalue);
7372   return true;
7373 }
7374 
7375 //------------------------------get_key_start_from_aescrypt_object-----------------------
7376 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7377 #if defined(PPC64) || defined(S390) || defined(RISCV64)
7378   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7379   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7380   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7381   // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7382   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7383   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7384   if (objSessionK == nullptr) {
7385     return (Node *) nullptr;
7386   }
7387   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7388 #else
7389   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7390 #endif // PPC64
7391   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7392   if (objAESCryptKey == nullptr) return (Node *) nullptr;
7393 
7394   // now have the array, need to get the start address of the K array
7395   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7396   return k_start;
7397 }
7398 
7399 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7400 // Return node representing slow path of predicate check.
7401 // the pseudo code we want to emulate with this predicate is:
7402 // for encryption:
7403 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7404 // for decryption:
7405 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7406 //    note cipher==plain is more conservative than the original java code but that's OK
7407 //
7408 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7409   // The receiver was checked for null already.
7410   Node* objCBC = argument(0);
7411 
7412   Node* src = argument(1);
7413   Node* dest = argument(4);
7414 
7415   // Load embeddedCipher field of CipherBlockChaining object.
7416   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7417 
7418   // get AESCrypt klass for instanceOf check
7419   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7420   // will have same classloader as CipherBlockChaining object
7421   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7422   assert(tinst != nullptr, "CBCobj is null");
7423   assert(tinst->is_loaded(), "CBCobj is not loaded");
7424 
7425   // we want to do an instanceof comparison against the AESCrypt class
7426   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7427   if (!klass_AESCrypt->is_loaded()) {
7428     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7429     Node* ctrl = control();
7430     set_control(top()); // no regular fast path
7431     return ctrl;
7432   }
7433 
7434   src = must_be_not_null(src, true);
7435   dest = must_be_not_null(dest, true);
7436 
7437   // Resolve oops to stable for CmpP below.
7438   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7439 
7440   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7441   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
7442   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7443 
7444   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7445 
7446   // for encryption, we are done
7447   if (!decrypting)
7448     return instof_false;  // even if it is null
7449 
7450   // for decryption, we need to add a further check to avoid
7451   // taking the intrinsic path when cipher and plain are the same
7452   // see the original java code for why.
7453   RegionNode* region = new RegionNode(3);
7454   region->init_req(1, instof_false);
7455 
7456   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7457   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7458   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7459   region->init_req(2, src_dest_conjoint);
7460 
7461   record_for_igvn(region);
7462   return _gvn.transform(region);
7463 }
7464 
7465 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7466 // Return node representing slow path of predicate check.
7467 // the pseudo code we want to emulate with this predicate is:
7468 // for encryption:
7469 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7470 // for decryption:
7471 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7472 //    note cipher==plain is more conservative than the original java code but that's OK
7473 //
7474 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7475   // The receiver was checked for null already.
7476   Node* objECB = argument(0);
7477 
7478   // Load embeddedCipher field of ElectronicCodeBook object.
7479   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7480 
7481   // get AESCrypt klass for instanceOf check
7482   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7483   // will have same classloader as ElectronicCodeBook object
7484   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7485   assert(tinst != nullptr, "ECBobj is null");
7486   assert(tinst->is_loaded(), "ECBobj is not loaded");
7487 
7488   // we want to do an instanceof comparison against the AESCrypt class
7489   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7490   if (!klass_AESCrypt->is_loaded()) {
7491     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7492     Node* ctrl = control();
7493     set_control(top()); // no regular fast path
7494     return ctrl;
7495   }
7496   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7497 
7498   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7499   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7500   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7501 
7502   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7503 
7504   // for encryption, we are done
7505   if (!decrypting)
7506     return instof_false;  // even if it is null
7507 
7508   // for decryption, we need to add a further check to avoid
7509   // taking the intrinsic path when cipher and plain are the same
7510   // see the original java code for why.
7511   RegionNode* region = new RegionNode(3);
7512   region->init_req(1, instof_false);
7513   Node* src = argument(1);
7514   Node* dest = argument(4);
7515   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7516   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7517   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7518   region->init_req(2, src_dest_conjoint);
7519 
7520   record_for_igvn(region);
7521   return _gvn.transform(region);
7522 }
7523 
7524 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7525 // Return node representing slow path of predicate check.
7526 // the pseudo code we want to emulate with this predicate is:
7527 // for encryption:
7528 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7529 // for decryption:
7530 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7531 //    note cipher==plain is more conservative than the original java code but that's OK
7532 //
7533 
7534 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7535   // The receiver was checked for null already.
7536   Node* objCTR = argument(0);
7537 
7538   // Load embeddedCipher field of CipherBlockChaining object.
7539   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7540 
7541   // get AESCrypt klass for instanceOf check
7542   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7543   // will have same classloader as CipherBlockChaining object
7544   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7545   assert(tinst != nullptr, "CTRobj is null");
7546   assert(tinst->is_loaded(), "CTRobj is not loaded");
7547 
7548   // we want to do an instanceof comparison against the AESCrypt class
7549   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7550   if (!klass_AESCrypt->is_loaded()) {
7551     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7552     Node* ctrl = control();
7553     set_control(top()); // no regular fast path
7554     return ctrl;
7555   }
7556 
7557   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7558   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7559   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7560   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7561   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7562 
7563   return instof_false; // even if it is null
7564 }
7565 
7566 //------------------------------inline_ghash_processBlocks
7567 bool LibraryCallKit::inline_ghash_processBlocks() {
7568   address stubAddr;
7569   const char *stubName;
7570   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7571 
7572   stubAddr = StubRoutines::ghash_processBlocks();
7573   stubName = "ghash_processBlocks";
7574 
7575   Node* data           = argument(0);
7576   Node* offset         = argument(1);
7577   Node* len            = argument(2);
7578   Node* state          = argument(3);
7579   Node* subkeyH        = argument(4);
7580 
7581   state = must_be_not_null(state, true);
7582   subkeyH = must_be_not_null(subkeyH, true);
7583   data = must_be_not_null(data, true);
7584 
7585   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
7586   assert(state_start, "state is null");
7587   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
7588   assert(subkeyH_start, "subkeyH is null");
7589   Node* data_start  = array_element_address(data, offset, T_BYTE);
7590   assert(data_start, "data is null");
7591 
7592   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7593                                   OptoRuntime::ghash_processBlocks_Type(),
7594                                   stubAddr, stubName, TypePtr::BOTTOM,
7595                                   state_start, subkeyH_start, data_start, len);
7596   return true;
7597 }
7598 
7599 //------------------------------inline_chacha20Block
7600 bool LibraryCallKit::inline_chacha20Block() {
7601   address stubAddr;
7602   const char *stubName;
7603   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7604 
7605   stubAddr = StubRoutines::chacha20Block();
7606   stubName = "chacha20Block";
7607 
7608   Node* state          = argument(0);
7609   Node* result         = argument(1);
7610 
7611   state = must_be_not_null(state, true);
7612   result = must_be_not_null(result, true);
7613 
7614   Node* state_start  = array_element_address(state, intcon(0), T_INT);
7615   assert(state_start, "state is null");
7616   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
7617   assert(result_start, "result is null");
7618 
7619   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7620                                   OptoRuntime::chacha20Block_Type(),
7621                                   stubAddr, stubName, TypePtr::BOTTOM,
7622                                   state_start, result_start);
7623   // return key stream length (int)
7624   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7625   set_result(retvalue);
7626   return true;
7627 }
7628 
7629 bool LibraryCallKit::inline_base64_encodeBlock() {
7630   address stubAddr;
7631   const char *stubName;
7632   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7633   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
7634   stubAddr = StubRoutines::base64_encodeBlock();
7635   stubName = "encodeBlock";
7636 
7637   if (!stubAddr) return false;
7638   Node* base64obj = argument(0);
7639   Node* src = argument(1);
7640   Node* offset = argument(2);
7641   Node* len = argument(3);
7642   Node* dest = argument(4);
7643   Node* dp = argument(5);
7644   Node* isURL = argument(6);
7645 
7646   src = must_be_not_null(src, true);
7647   dest = must_be_not_null(dest, true);
7648 
7649   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7650   assert(src_start, "source array is null");
7651   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7652   assert(dest_start, "destination array is null");
7653 
7654   Node* base64 = make_runtime_call(RC_LEAF,
7655                                    OptoRuntime::base64_encodeBlock_Type(),
7656                                    stubAddr, stubName, TypePtr::BOTTOM,
7657                                    src_start, offset, len, dest_start, dp, isURL);
7658   return true;
7659 }
7660 
7661 bool LibraryCallKit::inline_base64_decodeBlock() {
7662   address stubAddr;
7663   const char *stubName;
7664   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7665   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
7666   stubAddr = StubRoutines::base64_decodeBlock();
7667   stubName = "decodeBlock";
7668 
7669   if (!stubAddr) return false;
7670   Node* base64obj = argument(0);
7671   Node* src = argument(1);
7672   Node* src_offset = argument(2);
7673   Node* len = argument(3);
7674   Node* dest = argument(4);
7675   Node* dest_offset = argument(5);
7676   Node* isURL = argument(6);
7677   Node* isMIME = argument(7);
7678 
7679   src = must_be_not_null(src, true);
7680   dest = must_be_not_null(dest, true);
7681 
7682   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7683   assert(src_start, "source array is null");
7684   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7685   assert(dest_start, "destination array is null");
7686 
7687   Node* call = make_runtime_call(RC_LEAF,
7688                                  OptoRuntime::base64_decodeBlock_Type(),
7689                                  stubAddr, stubName, TypePtr::BOTTOM,
7690                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
7691   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7692   set_result(result);
7693   return true;
7694 }
7695 
7696 bool LibraryCallKit::inline_poly1305_processBlocks() {
7697   address stubAddr;
7698   const char *stubName;
7699   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
7700   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
7701   stubAddr = StubRoutines::poly1305_processBlocks();
7702   stubName = "poly1305_processBlocks";
7703 
7704   if (!stubAddr) return false;
7705   null_check_receiver();  // null-check receiver
7706   if (stopped())  return true;
7707 
7708   Node* input = argument(1);
7709   Node* input_offset = argument(2);
7710   Node* len = argument(3);
7711   Node* alimbs = argument(4);
7712   Node* rlimbs = argument(5);
7713 
7714   input = must_be_not_null(input, true);
7715   alimbs = must_be_not_null(alimbs, true);
7716   rlimbs = must_be_not_null(rlimbs, true);
7717 
7718   Node* input_start = array_element_address(input, input_offset, T_BYTE);
7719   assert(input_start, "input array is null");
7720   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
7721   assert(acc_start, "acc array is null");
7722   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
7723   assert(r_start, "r array is null");
7724 
7725   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7726                                  OptoRuntime::poly1305_processBlocks_Type(),
7727                                  stubAddr, stubName, TypePtr::BOTTOM,
7728                                  input_start, len, acc_start, r_start);
7729   return true;
7730 }
7731 
7732 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
7733   address stubAddr;
7734   const char *stubName;
7735   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7736   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
7737   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
7738   stubName = "intpoly_montgomeryMult_P256";
7739 
7740   if (!stubAddr) return false;
7741   null_check_receiver();  // null-check receiver
7742   if (stopped())  return true;
7743 
7744   Node* a = argument(1);
7745   Node* b = argument(2);
7746   Node* r = argument(3);
7747 
7748   a = must_be_not_null(a, true);
7749   b = must_be_not_null(b, true);
7750   r = must_be_not_null(r, true);
7751 
7752   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7753   assert(a_start, "a array is NULL");
7754   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7755   assert(b_start, "b array is NULL");
7756   Node* r_start = array_element_address(r, intcon(0), T_LONG);
7757   assert(r_start, "r array is NULL");
7758 
7759   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7760                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
7761                                  stubAddr, stubName, TypePtr::BOTTOM,
7762                                  a_start, b_start, r_start);
7763   return true;
7764 }
7765 
7766 bool LibraryCallKit::inline_intpoly_assign() {
7767   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7768   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
7769   const char *stubName = "intpoly_assign";
7770   address stubAddr = StubRoutines::intpoly_assign();
7771   if (!stubAddr) return false;
7772 
7773   Node* set = argument(0);
7774   Node* a = argument(1);
7775   Node* b = argument(2);
7776   Node* arr_length = load_array_length(a);
7777 
7778   a = must_be_not_null(a, true);
7779   b = must_be_not_null(b, true);
7780 
7781   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7782   assert(a_start, "a array is NULL");
7783   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7784   assert(b_start, "b array is NULL");
7785 
7786   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7787                                  OptoRuntime::intpoly_assign_Type(),
7788                                  stubAddr, stubName, TypePtr::BOTTOM,
7789                                  set, a_start, b_start, arr_length);
7790   return true;
7791 }
7792 
7793 //------------------------------inline_digestBase_implCompress-----------------------
7794 //
7795 // Calculate MD5 for single-block byte[] array.
7796 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
7797 //
7798 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
7799 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
7800 //
7801 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
7802 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
7803 //
7804 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
7805 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
7806 //
7807 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
7808 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
7809 //
7810 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
7811   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
7812 
7813   Node* digestBase_obj = argument(0);
7814   Node* src            = argument(1); // type oop
7815   Node* ofs            = argument(2); // type int
7816 
7817   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7818   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7819     // failed array check
7820     return false;
7821   }
7822   // Figure out the size and type of the elements we will be copying.
7823   BasicType src_elem = src_type->elem()->array_element_basic_type();
7824   if (src_elem != T_BYTE) {
7825     return false;
7826   }
7827   // 'src_start' points to src array + offset
7828   src = must_be_not_null(src, true);
7829   Node* src_start = array_element_address(src, ofs, src_elem);
7830   Node* state = nullptr;
7831   Node* block_size = nullptr;
7832   address stubAddr;
7833   const char *stubName;
7834 
7835   switch(id) {
7836   case vmIntrinsics::_md5_implCompress:
7837     assert(UseMD5Intrinsics, "need MD5 instruction support");
7838     state = get_state_from_digest_object(digestBase_obj, T_INT);
7839     stubAddr = StubRoutines::md5_implCompress();
7840     stubName = "md5_implCompress";
7841     break;
7842   case vmIntrinsics::_sha_implCompress:
7843     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
7844     state = get_state_from_digest_object(digestBase_obj, T_INT);
7845     stubAddr = StubRoutines::sha1_implCompress();
7846     stubName = "sha1_implCompress";
7847     break;
7848   case vmIntrinsics::_sha2_implCompress:
7849     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
7850     state = get_state_from_digest_object(digestBase_obj, T_INT);
7851     stubAddr = StubRoutines::sha256_implCompress();
7852     stubName = "sha256_implCompress";
7853     break;
7854   case vmIntrinsics::_sha5_implCompress:
7855     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
7856     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7857     stubAddr = StubRoutines::sha512_implCompress();
7858     stubName = "sha512_implCompress";
7859     break;
7860   case vmIntrinsics::_sha3_implCompress:
7861     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
7862     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7863     stubAddr = StubRoutines::sha3_implCompress();
7864     stubName = "sha3_implCompress";
7865     block_size = get_block_size_from_digest_object(digestBase_obj);
7866     if (block_size == nullptr) return false;
7867     break;
7868   default:
7869     fatal_unexpected_iid(id);
7870     return false;
7871   }
7872   if (state == nullptr) return false;
7873 
7874   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
7875   if (stubAddr == nullptr) return false;
7876 
7877   // Call the stub.
7878   Node* call;
7879   if (block_size == nullptr) {
7880     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
7881                              stubAddr, stubName, TypePtr::BOTTOM,
7882                              src_start, state);
7883   } else {
7884     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
7885                              stubAddr, stubName, TypePtr::BOTTOM,
7886                              src_start, state, block_size);
7887   }
7888 
7889   return true;
7890 }
7891 
7892 //------------------------------inline_digestBase_implCompressMB-----------------------
7893 //
7894 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
7895 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
7896 //
7897 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
7898   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
7899          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
7900   assert((uint)predicate < 5, "sanity");
7901   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
7902 
7903   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
7904   Node* src            = argument(1); // byte[] array
7905   Node* ofs            = argument(2); // type int
7906   Node* limit          = argument(3); // type int
7907 
7908   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7909   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7910     // failed array check
7911     return false;
7912   }
7913   // Figure out the size and type of the elements we will be copying.
7914   BasicType src_elem = src_type->elem()->array_element_basic_type();
7915   if (src_elem != T_BYTE) {
7916     return false;
7917   }
7918   // 'src_start' points to src array + offset
7919   src = must_be_not_null(src, false);
7920   Node* src_start = array_element_address(src, ofs, src_elem);
7921 
7922   const char* klass_digestBase_name = nullptr;
7923   const char* stub_name = nullptr;
7924   address     stub_addr = nullptr;
7925   BasicType elem_type = T_INT;
7926 
7927   switch (predicate) {
7928   case 0:
7929     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
7930       klass_digestBase_name = "sun/security/provider/MD5";
7931       stub_name = "md5_implCompressMB";
7932       stub_addr = StubRoutines::md5_implCompressMB();
7933     }
7934     break;
7935   case 1:
7936     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
7937       klass_digestBase_name = "sun/security/provider/SHA";
7938       stub_name = "sha1_implCompressMB";
7939       stub_addr = StubRoutines::sha1_implCompressMB();
7940     }
7941     break;
7942   case 2:
7943     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
7944       klass_digestBase_name = "sun/security/provider/SHA2";
7945       stub_name = "sha256_implCompressMB";
7946       stub_addr = StubRoutines::sha256_implCompressMB();
7947     }
7948     break;
7949   case 3:
7950     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
7951       klass_digestBase_name = "sun/security/provider/SHA5";
7952       stub_name = "sha512_implCompressMB";
7953       stub_addr = StubRoutines::sha512_implCompressMB();
7954       elem_type = T_LONG;
7955     }
7956     break;
7957   case 4:
7958     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
7959       klass_digestBase_name = "sun/security/provider/SHA3";
7960       stub_name = "sha3_implCompressMB";
7961       stub_addr = StubRoutines::sha3_implCompressMB();
7962       elem_type = T_LONG;
7963     }
7964     break;
7965   default:
7966     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
7967   }
7968   if (klass_digestBase_name != nullptr) {
7969     assert(stub_addr != nullptr, "Stub is generated");
7970     if (stub_addr == nullptr) return false;
7971 
7972     // get DigestBase klass to lookup for SHA klass
7973     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
7974     assert(tinst != nullptr, "digestBase_obj is not instance???");
7975     assert(tinst->is_loaded(), "DigestBase is not loaded");
7976 
7977     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
7978     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
7979     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
7980     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
7981   }
7982   return false;
7983 }
7984 
7985 //------------------------------inline_digestBase_implCompressMB-----------------------
7986 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
7987                                                       BasicType elem_type, address stubAddr, const char *stubName,
7988                                                       Node* src_start, Node* ofs, Node* limit) {
7989   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
7990   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7991   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
7992   digest_obj = _gvn.transform(digest_obj);
7993 
7994   Node* state = get_state_from_digest_object(digest_obj, elem_type);
7995   if (state == nullptr) return false;
7996 
7997   Node* block_size = nullptr;
7998   if (strcmp("sha3_implCompressMB", stubName) == 0) {
7999     block_size = get_block_size_from_digest_object(digest_obj);
8000     if (block_size == nullptr) return false;
8001   }
8002 
8003   // Call the stub.
8004   Node* call;
8005   if (block_size == nullptr) {
8006     call = make_runtime_call(RC_LEAF|RC_NO_FP,
8007                              OptoRuntime::digestBase_implCompressMB_Type(false),
8008                              stubAddr, stubName, TypePtr::BOTTOM,
8009                              src_start, state, ofs, limit);
8010   } else {
8011      call = make_runtime_call(RC_LEAF|RC_NO_FP,
8012                              OptoRuntime::digestBase_implCompressMB_Type(true),
8013                              stubAddr, stubName, TypePtr::BOTTOM,
8014                              src_start, state, block_size, ofs, limit);
8015   }
8016 
8017   // return ofs (int)
8018   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8019   set_result(result);
8020 
8021   return true;
8022 }
8023 
8024 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
8025 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
8026   assert(UseAES, "need AES instruction support");
8027   address stubAddr = nullptr;
8028   const char *stubName = nullptr;
8029   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
8030   stubName = "galoisCounterMode_AESCrypt";
8031 
8032   if (stubAddr == nullptr) return false;
8033 
8034   Node* in      = argument(0);
8035   Node* inOfs   = argument(1);
8036   Node* len     = argument(2);
8037   Node* ct      = argument(3);
8038   Node* ctOfs   = argument(4);
8039   Node* out     = argument(5);
8040   Node* outOfs  = argument(6);
8041   Node* gctr_object = argument(7);
8042   Node* ghash_object = argument(8);
8043 
8044   // (1) in, ct and out are arrays.
8045   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
8046   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
8047   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
8048   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
8049           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
8050          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
8051 
8052   // checks are the responsibility of the caller
8053   Node* in_start = in;
8054   Node* ct_start = ct;
8055   Node* out_start = out;
8056   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
8057     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
8058     in_start = array_element_address(in, inOfs, T_BYTE);
8059     ct_start = array_element_address(ct, ctOfs, T_BYTE);
8060     out_start = array_element_address(out, outOfs, T_BYTE);
8061   }
8062 
8063   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8064   // (because of the predicated logic executed earlier).
8065   // so we cast it here safely.
8066   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8067   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8068   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
8069   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
8070   Node* state = load_field_from_object(ghash_object, "state", "[J");
8071 
8072   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
8073     return false;
8074   }
8075   // cast it to what we know it will be at runtime
8076   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
8077   assert(tinst != nullptr, "GCTR obj is null");
8078   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8079   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8080   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8081   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8082   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8083   const TypeOopPtr* xtype = aklass->as_instance_type();
8084   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8085   aescrypt_object = _gvn.transform(aescrypt_object);
8086   // we need to get the start of the aescrypt_object's expanded key array
8087   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8088   if (k_start == nullptr) return false;
8089   // similarly, get the start address of the r vector
8090   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
8091   Node* state_start = array_element_address(state, intcon(0), T_LONG);
8092   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
8093 
8094 
8095   // Call the stub, passing params
8096   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8097                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
8098                                stubAddr, stubName, TypePtr::BOTTOM,
8099                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
8100 
8101   // return cipher length (int)
8102   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
8103   set_result(retvalue);
8104 
8105   return true;
8106 }
8107 
8108 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
8109 // Return node representing slow path of predicate check.
8110 // the pseudo code we want to emulate with this predicate is:
8111 // for encryption:
8112 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8113 // for decryption:
8114 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8115 //    note cipher==plain is more conservative than the original java code but that's OK
8116 //
8117 
8118 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
8119   // The receiver was checked for null already.
8120   Node* objGCTR = argument(7);
8121   // Load embeddedCipher field of GCTR object.
8122   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8123   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
8124 
8125   // get AESCrypt klass for instanceOf check
8126   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8127   // will have same classloader as CipherBlockChaining object
8128   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
8129   assert(tinst != nullptr, "GCTR obj is null");
8130   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8131 
8132   // we want to do an instanceof comparison against the AESCrypt class
8133   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8134   if (!klass_AESCrypt->is_loaded()) {
8135     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8136     Node* ctrl = control();
8137     set_control(top()); // no regular fast path
8138     return ctrl;
8139   }
8140 
8141   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8142   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8143   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8144   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8145   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8146 
8147   return instof_false; // even if it is null
8148 }
8149 
8150 //------------------------------get_state_from_digest_object-----------------------
8151 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
8152   const char* state_type;
8153   switch (elem_type) {
8154     case T_BYTE: state_type = "[B"; break;
8155     case T_INT:  state_type = "[I"; break;
8156     case T_LONG: state_type = "[J"; break;
8157     default: ShouldNotReachHere();
8158   }
8159   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
8160   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
8161   if (digest_state == nullptr) return (Node *) nullptr;
8162 
8163   // now have the array, need to get the start address of the state array
8164   Node* state = array_element_address(digest_state, intcon(0), elem_type);
8165   return state;
8166 }
8167 
8168 //------------------------------get_block_size_from_sha3_object----------------------------------
8169 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
8170   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
8171   assert (block_size != nullptr, "sanity");
8172   return block_size;
8173 }
8174 
8175 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8176 // Return node representing slow path of predicate check.
8177 // the pseudo code we want to emulate with this predicate is:
8178 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
8179 //
8180 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8181   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8182          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8183   assert((uint)predicate < 5, "sanity");
8184 
8185   // The receiver was checked for null already.
8186   Node* digestBaseObj = argument(0);
8187 
8188   // get DigestBase klass for instanceOf check
8189   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8190   assert(tinst != nullptr, "digestBaseObj is null");
8191   assert(tinst->is_loaded(), "DigestBase is not loaded");
8192 
8193   const char* klass_name = nullptr;
8194   switch (predicate) {
8195   case 0:
8196     if (UseMD5Intrinsics) {
8197       // we want to do an instanceof comparison against the MD5 class
8198       klass_name = "sun/security/provider/MD5";
8199     }
8200     break;
8201   case 1:
8202     if (UseSHA1Intrinsics) {
8203       // we want to do an instanceof comparison against the SHA class
8204       klass_name = "sun/security/provider/SHA";
8205     }
8206     break;
8207   case 2:
8208     if (UseSHA256Intrinsics) {
8209       // we want to do an instanceof comparison against the SHA2 class
8210       klass_name = "sun/security/provider/SHA2";
8211     }
8212     break;
8213   case 3:
8214     if (UseSHA512Intrinsics) {
8215       // we want to do an instanceof comparison against the SHA5 class
8216       klass_name = "sun/security/provider/SHA5";
8217     }
8218     break;
8219   case 4:
8220     if (UseSHA3Intrinsics) {
8221       // we want to do an instanceof comparison against the SHA3 class
8222       klass_name = "sun/security/provider/SHA3";
8223     }
8224     break;
8225   default:
8226     fatal("unknown SHA intrinsic predicate: %d", predicate);
8227   }
8228 
8229   ciKlass* klass = nullptr;
8230   if (klass_name != nullptr) {
8231     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
8232   }
8233   if ((klass == nullptr) || !klass->is_loaded()) {
8234     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8235     Node* ctrl = control();
8236     set_control(top()); // no intrinsic path
8237     return ctrl;
8238   }
8239   ciInstanceKlass* instklass = klass->as_instance_klass();
8240 
8241   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
8242   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8243   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8244   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8245 
8246   return instof_false;  // even if it is null
8247 }
8248 
8249 //-------------inline_fma-----------------------------------
8250 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8251   Node *a = nullptr;
8252   Node *b = nullptr;
8253   Node *c = nullptr;
8254   Node* result = nullptr;
8255   switch (id) {
8256   case vmIntrinsics::_fmaD:
8257     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8258     // no receiver since it is static method
8259     a = round_double_node(argument(0));
8260     b = round_double_node(argument(2));
8261     c = round_double_node(argument(4));
8262     result = _gvn.transform(new FmaDNode(control(), a, b, c));
8263     break;
8264   case vmIntrinsics::_fmaF:
8265     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8266     a = argument(0);
8267     b = argument(1);
8268     c = argument(2);
8269     result = _gvn.transform(new FmaFNode(control(), a, b, c));
8270     break;
8271   default:
8272     fatal_unexpected_iid(id);  break;
8273   }
8274   set_result(result);
8275   return true;
8276 }
8277 
8278 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8279   // argument(0) is receiver
8280   Node* codePoint = argument(1);
8281   Node* n = nullptr;
8282 
8283   switch (id) {
8284     case vmIntrinsics::_isDigit :
8285       n = new DigitNode(control(), codePoint);
8286       break;
8287     case vmIntrinsics::_isLowerCase :
8288       n = new LowerCaseNode(control(), codePoint);
8289       break;
8290     case vmIntrinsics::_isUpperCase :
8291       n = new UpperCaseNode(control(), codePoint);
8292       break;
8293     case vmIntrinsics::_isWhitespace :
8294       n = new WhitespaceNode(control(), codePoint);
8295       break;
8296     default:
8297       fatal_unexpected_iid(id);
8298   }
8299 
8300   set_result(_gvn.transform(n));
8301   return true;
8302 }
8303 
8304 //------------------------------inline_fp_min_max------------------------------
8305 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
8306 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
8307 
8308   // The intrinsic should be used only when the API branches aren't predictable,
8309   // the last one performing the most important comparison. The following heuristic
8310   // uses the branch statistics to eventually bail out if necessary.
8311 
8312   ciMethodData *md = callee()->method_data();
8313 
8314   if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) {
8315     ciCallProfile cp = caller()->call_profile_at_bci(bci());
8316 
8317     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
8318       // Bail out if the call-site didn't contribute enough to the statistics.
8319       return false;
8320     }
8321 
8322     uint taken = 0, not_taken = 0;
8323 
8324     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
8325       if (p->is_BranchData()) {
8326         taken = ((ciBranchData*)p)->taken();
8327         not_taken = ((ciBranchData*)p)->not_taken();
8328       }
8329     }
8330 
8331     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
8332     balance = balance < 0 ? -balance : balance;
8333     if ( balance > 0.2 ) {
8334       // Bail out if the most important branch is predictable enough.
8335       return false;
8336     }
8337   }
8338 */
8339 
8340   Node *a = nullptr;
8341   Node *b = nullptr;
8342   Node *n = nullptr;
8343   switch (id) {
8344   case vmIntrinsics::_maxF:
8345   case vmIntrinsics::_minF:
8346   case vmIntrinsics::_maxF_strict:
8347   case vmIntrinsics::_minF_strict:
8348     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
8349     a = argument(0);
8350     b = argument(1);
8351     break;
8352   case vmIntrinsics::_maxD:
8353   case vmIntrinsics::_minD:
8354   case vmIntrinsics::_maxD_strict:
8355   case vmIntrinsics::_minD_strict:
8356     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
8357     a = round_double_node(argument(0));
8358     b = round_double_node(argument(2));
8359     break;
8360   default:
8361     fatal_unexpected_iid(id);
8362     break;
8363   }
8364   switch (id) {
8365   case vmIntrinsics::_maxF:
8366   case vmIntrinsics::_maxF_strict:
8367     n = new MaxFNode(a, b);
8368     break;
8369   case vmIntrinsics::_minF:
8370   case vmIntrinsics::_minF_strict:
8371     n = new MinFNode(a, b);
8372     break;
8373   case vmIntrinsics::_maxD:
8374   case vmIntrinsics::_maxD_strict:
8375     n = new MaxDNode(a, b);
8376     break;
8377   case vmIntrinsics::_minD:
8378   case vmIntrinsics::_minD_strict:
8379     n = new MinDNode(a, b);
8380     break;
8381   default:
8382     fatal_unexpected_iid(id);
8383     break;
8384   }
8385   set_result(_gvn.transform(n));
8386   return true;
8387 }
8388 
8389 bool LibraryCallKit::inline_profileBoolean() {
8390   Node* counts = argument(1);
8391   const TypeAryPtr* ary = nullptr;
8392   ciArray* aobj = nullptr;
8393   if (counts->is_Con()
8394       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8395       && (aobj = ary->const_oop()->as_array()) != nullptr
8396       && (aobj->length() == 2)) {
8397     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8398     jint false_cnt = aobj->element_value(0).as_int();
8399     jint  true_cnt = aobj->element_value(1).as_int();
8400 
8401     if (C->log() != nullptr) {
8402       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8403                      false_cnt, true_cnt);
8404     }
8405 
8406     if (false_cnt + true_cnt == 0) {
8407       // According to profile, never executed.
8408       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8409                           Deoptimization::Action_reinterpret);
8410       return true;
8411     }
8412 
8413     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8414     // is a number of each value occurrences.
8415     Node* result = argument(0);
8416     if (false_cnt == 0 || true_cnt == 0) {
8417       // According to profile, one value has been never seen.
8418       int expected_val = (false_cnt == 0) ? 1 : 0;
8419 
8420       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8421       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8422 
8423       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8424       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8425       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8426 
8427       { // Slow path: uncommon trap for never seen value and then reexecute
8428         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8429         // the value has been seen at least once.
8430         PreserveJVMState pjvms(this);
8431         PreserveReexecuteState preexecs(this);
8432         jvms()->set_should_reexecute(true);
8433 
8434         set_control(slow_path);
8435         set_i_o(i_o());
8436 
8437         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8438                             Deoptimization::Action_reinterpret);
8439       }
8440       // The guard for never seen value enables sharpening of the result and
8441       // returning a constant. It allows to eliminate branches on the same value
8442       // later on.
8443       set_control(fast_path);
8444       result = intcon(expected_val);
8445     }
8446     // Stop profiling.
8447     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8448     // By replacing method body with profile data (represented as ProfileBooleanNode
8449     // on IR level) we effectively disable profiling.
8450     // It enables full speed execution once optimized code is generated.
8451     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8452     C->record_for_igvn(profile);
8453     set_result(profile);
8454     return true;
8455   } else {
8456     // Continue profiling.
8457     // Profile data isn't available at the moment. So, execute method's bytecode version.
8458     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8459     // is compiled and counters aren't available since corresponding MethodHandle
8460     // isn't a compile-time constant.
8461     return false;
8462   }
8463 }
8464 
8465 bool LibraryCallKit::inline_isCompileConstant() {
8466   Node* n = argument(0);
8467   set_result(n->is_Con() ? intcon(1) : intcon(0));
8468   return true;
8469 }
8470 
8471 //------------------------------- inline_getObjectSize --------------------------------------
8472 //
8473 // Calculate the runtime size of the object/array.
8474 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8475 //
8476 bool LibraryCallKit::inline_getObjectSize() {
8477   Node* obj = argument(3);
8478   Node* klass_node = load_object_klass(obj);
8479 
8480   jint  layout_con = Klass::_lh_neutral_value;
8481   Node* layout_val = get_layout_helper(klass_node, layout_con);
8482   int   layout_is_con = (layout_val == nullptr);
8483 
8484   if (layout_is_con) {
8485     // Layout helper is constant, can figure out things at compile time.
8486 
8487     if (Klass::layout_helper_is_instance(layout_con)) {
8488       // Instance case:  layout_con contains the size itself.
8489       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8490       set_result(size);
8491     } else {
8492       // Array case: size is round(header + element_size*arraylength).
8493       // Since arraylength is different for every array instance, we have to
8494       // compute the whole thing at runtime.
8495 
8496       Node* arr_length = load_array_length(obj);
8497 
8498       int round_mask = MinObjAlignmentInBytes - 1;
8499       int hsize  = Klass::layout_helper_header_size(layout_con);
8500       int eshift = Klass::layout_helper_log2_element_size(layout_con);
8501 
8502       if ((round_mask & ~right_n_bits(eshift)) == 0) {
8503         round_mask = 0;  // strength-reduce it if it goes away completely
8504       }
8505       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8506       Node* header_size = intcon(hsize + round_mask);
8507 
8508       Node* lengthx = ConvI2X(arr_length);
8509       Node* headerx = ConvI2X(header_size);
8510 
8511       Node* abody = lengthx;
8512       if (eshift != 0) {
8513         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8514       }
8515       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8516       if (round_mask != 0) {
8517         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8518       }
8519       size = ConvX2L(size);
8520       set_result(size);
8521     }
8522   } else {
8523     // Layout helper is not constant, need to test for array-ness at runtime.
8524 
8525     enum { _instance_path = 1, _array_path, PATH_LIMIT };
8526     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8527     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8528     record_for_igvn(result_reg);
8529 
8530     Node* array_ctl = generate_array_guard(klass_node, nullptr);
8531     if (array_ctl != nullptr) {
8532       // Array case: size is round(header + element_size*arraylength).
8533       // Since arraylength is different for every array instance, we have to
8534       // compute the whole thing at runtime.
8535 
8536       PreserveJVMState pjvms(this);
8537       set_control(array_ctl);
8538       Node* arr_length = load_array_length(obj);
8539 
8540       int round_mask = MinObjAlignmentInBytes - 1;
8541       Node* mask = intcon(round_mask);
8542 
8543       Node* hss = intcon(Klass::_lh_header_size_shift);
8544       Node* hsm = intcon(Klass::_lh_header_size_mask);
8545       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
8546       header_size = _gvn.transform(new AndINode(header_size, hsm));
8547       header_size = _gvn.transform(new AddINode(header_size, mask));
8548 
8549       // There is no need to mask or shift this value.
8550       // The semantics of LShiftINode include an implicit mask to 0x1F.
8551       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
8552       Node* elem_shift = layout_val;
8553 
8554       Node* lengthx = ConvI2X(arr_length);
8555       Node* headerx = ConvI2X(header_size);
8556 
8557       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
8558       Node* size = _gvn.transform(new AddXNode(headerx, abody));
8559       if (round_mask != 0) {
8560         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
8561       }
8562       size = ConvX2L(size);
8563 
8564       result_reg->init_req(_array_path, control());
8565       result_val->init_req(_array_path, size);
8566     }
8567 
8568     if (!stopped()) {
8569       // Instance case: the layout helper gives us instance size almost directly,
8570       // but we need to mask out the _lh_instance_slow_path_bit.
8571       Node* size = ConvI2X(layout_val);
8572       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
8573       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
8574       size = _gvn.transform(new AndXNode(size, mask));
8575       size = ConvX2L(size);
8576 
8577       result_reg->init_req(_instance_path, control());
8578       result_val->init_req(_instance_path, size);
8579     }
8580 
8581     set_result(result_reg, result_val);
8582   }
8583 
8584   return true;
8585 }
8586 
8587 //------------------------------- inline_blackhole --------------------------------------
8588 //
8589 // Make sure all arguments to this node are alive.
8590 // This matches methods that were requested to be blackholed through compile commands.
8591 //
8592 bool LibraryCallKit::inline_blackhole() {
8593   assert(callee()->is_static(), "Should have been checked before: only static methods here");
8594   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
8595   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
8596 
8597   // Blackhole node pinches only the control, not memory. This allows
8598   // the blackhole to be pinned in the loop that computes blackholed
8599   // values, but have no other side effects, like breaking the optimizations
8600   // across the blackhole.
8601 
8602   Node* bh = _gvn.transform(new BlackholeNode(control()));
8603   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
8604 
8605   // Bind call arguments as blackhole arguments to keep them alive
8606   uint nargs = callee()->arg_size();
8607   for (uint i = 0; i < nargs; i++) {
8608     bh->add_req(argument(i));
8609   }
8610 
8611   return true;
8612 }