1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciUtilities.inline.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/vectornode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 125 if (C->log()) { 126 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 127 vmIntrinsics::name_at(intrinsic_id()), 128 (is_virtual() ? " virtual='1'" : ""), 129 C->unique() - nodes); 130 } 131 // Push the result from the inlined method onto the stack. 132 kit.push_result(); 133 return kit.transfer_exceptions_into_jvms(); 134 } 135 136 // The intrinsic bailed out 137 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 138 if (jvms->has_method()) { 139 // Not a root compile. 140 const char* msg; 141 if (callee->intrinsic_candidate()) { 142 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 143 } else { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 145 : "failed to inline (intrinsic), method not annotated"; 146 } 147 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 148 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 149 } else { 150 // Root compile 151 ResourceMark rm; 152 stringStream msg_stream; 153 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 154 vmIntrinsics::name_at(intrinsic_id()), 155 is_virtual() ? " (virtual)" : "", bci); 156 const char *msg = msg_stream.freeze(); 157 log_debug(jit, inlining)("%s", msg); 158 if (C->print_intrinsics() || C->print_inlining()) { 159 tty->print("%s", msg); 160 } 161 } 162 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 163 164 return nullptr; 165 } 166 167 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 168 LibraryCallKit kit(jvms, this); 169 Compile* C = kit.C; 170 int nodes = C->unique(); 171 _last_predicate = predicate; 172 #ifndef PRODUCT 173 assert(is_predicated() && predicate < predicates_count(), "sanity"); 174 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 175 char buf[1000]; 176 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 177 tty->print_cr("Predicate for intrinsic %s", str); 178 } 179 #endif 180 ciMethod* callee = kit.callee(); 181 const int bci = kit.bci(); 182 183 Node* slow_ctl = kit.try_to_predicate(predicate); 184 if (!kit.failing()) { 185 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 186 : "(intrinsic, predicate)"; 187 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 188 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 189 190 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 191 if (C->log()) { 192 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 193 vmIntrinsics::name_at(intrinsic_id()), 194 (is_virtual() ? " virtual='1'" : ""), 195 C->unique() - nodes); 196 } 197 return slow_ctl; // Could be null if the check folds. 198 } 199 200 // The intrinsic bailed out 201 if (jvms->has_method()) { 202 // Not a root compile. 203 const char* msg = "failed to generate predicate for intrinsic"; 204 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 205 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 206 } else { 207 // Root compile 208 ResourceMark rm; 209 stringStream msg_stream; 210 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 211 vmIntrinsics::name_at(intrinsic_id()), 212 is_virtual() ? " (virtual)" : "", bci); 213 const char *msg = msg_stream.freeze(); 214 log_debug(jit, inlining)("%s", msg); 215 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 216 } 217 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 218 return nullptr; 219 } 220 221 bool LibraryCallKit::try_to_inline(int predicate) { 222 // Handle symbolic names for otherwise undistinguished boolean switches: 223 const bool is_store = true; 224 const bool is_compress = true; 225 const bool is_static = true; 226 const bool is_volatile = true; 227 228 if (!jvms()->has_method()) { 229 // Root JVMState has a null method. 230 assert(map()->memory()->Opcode() == Op_Parm, ""); 231 // Insert the memory aliasing node 232 set_all_memory(reset_memory()); 233 } 234 assert(merged_memory(), ""); 235 236 switch (intrinsic_id()) { 237 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 238 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 239 case vmIntrinsics::_getClass: return inline_native_getClass(); 240 241 case vmIntrinsics::_ceil: 242 case vmIntrinsics::_floor: 243 case vmIntrinsics::_rint: 244 case vmIntrinsics::_dsin: 245 case vmIntrinsics::_dcos: 246 case vmIntrinsics::_dtan: 247 case vmIntrinsics::_dtanh: 248 case vmIntrinsics::_dabs: 249 case vmIntrinsics::_fabs: 250 case vmIntrinsics::_iabs: 251 case vmIntrinsics::_labs: 252 case vmIntrinsics::_datan2: 253 case vmIntrinsics::_dsqrt: 254 case vmIntrinsics::_dsqrt_strict: 255 case vmIntrinsics::_dexp: 256 case vmIntrinsics::_dlog: 257 case vmIntrinsics::_dlog10: 258 case vmIntrinsics::_dpow: 259 case vmIntrinsics::_dcopySign: 260 case vmIntrinsics::_fcopySign: 261 case vmIntrinsics::_dsignum: 262 case vmIntrinsics::_roundF: 263 case vmIntrinsics::_roundD: 264 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 265 266 case vmIntrinsics::_notify: 267 case vmIntrinsics::_notifyAll: 268 return inline_notify(intrinsic_id()); 269 270 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 271 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 272 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 273 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 274 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 275 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 276 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 277 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 278 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 279 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 280 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 281 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 282 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 283 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 284 285 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 286 287 case vmIntrinsics::_arraySort: return inline_array_sort(); 288 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 289 290 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 291 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 292 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 293 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 294 295 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 296 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 297 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 298 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 299 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 300 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 301 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 302 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 303 304 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 305 306 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 307 308 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 309 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 310 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 311 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 312 313 case vmIntrinsics::_compressStringC: 314 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 315 case vmIntrinsics::_inflateStringC: 316 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 317 318 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 319 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 320 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 321 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 322 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 323 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 324 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 325 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 326 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 327 328 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 329 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 330 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 331 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 332 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 333 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 334 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 335 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 336 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 337 338 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 339 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 340 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 341 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 342 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 343 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 344 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 345 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 346 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 347 348 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 349 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 350 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 351 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 352 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 353 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 354 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 355 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 356 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 357 358 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 359 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 360 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 361 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 362 363 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 364 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 365 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 366 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 367 368 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 369 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 370 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 371 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 372 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 373 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 374 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 375 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 376 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 377 378 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 379 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 380 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 381 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 382 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 383 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 384 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 385 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 386 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 387 388 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 389 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 390 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 391 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 392 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 393 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 394 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 395 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 396 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 397 398 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 399 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 400 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 401 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 402 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 403 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 404 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 405 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 406 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 407 408 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 409 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 410 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 411 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 412 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 413 414 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 415 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 416 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 417 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 418 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 419 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 420 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 421 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 422 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 423 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 424 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 425 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 426 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 427 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 428 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 429 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 430 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 431 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 432 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 433 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 434 435 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 436 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 437 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 438 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 439 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 440 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 441 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 442 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 443 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 444 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 445 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 446 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 447 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 448 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 449 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 450 451 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 452 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 453 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 454 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 455 456 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 457 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 458 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 459 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 460 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 461 462 case vmIntrinsics::_loadFence: 463 case vmIntrinsics::_storeFence: 464 case vmIntrinsics::_storeStoreFence: 465 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 466 467 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 468 469 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 470 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 471 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 472 473 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 474 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 475 476 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 477 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 478 479 #if INCLUDE_JVMTI 480 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 481 "notifyJvmtiStart", true, false); 482 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 483 "notifyJvmtiEnd", false, true); 484 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 485 "notifyJvmtiMount", false, false); 486 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 487 "notifyJvmtiUnmount", false, false); 488 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 489 #endif 490 491 #ifdef JFR_HAVE_INTRINSICS 492 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 493 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 494 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 495 #endif 496 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 497 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 498 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 499 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 500 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 501 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 502 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 503 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 504 case vmIntrinsics::_getLength: return inline_native_getLength(); 505 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 506 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 507 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 508 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 509 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 510 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 511 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 512 513 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 514 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 515 516 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 517 518 case vmIntrinsics::_isInstance: 519 case vmIntrinsics::_isHidden: 520 case vmIntrinsics::_getSuperclass: 521 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 522 523 case vmIntrinsics::_floatToRawIntBits: 524 case vmIntrinsics::_floatToIntBits: 525 case vmIntrinsics::_intBitsToFloat: 526 case vmIntrinsics::_doubleToRawLongBits: 527 case vmIntrinsics::_doubleToLongBits: 528 case vmIntrinsics::_longBitsToDouble: 529 case vmIntrinsics::_floatToFloat16: 530 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 531 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 532 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 533 case vmIntrinsics::_floatIsFinite: 534 case vmIntrinsics::_floatIsInfinite: 535 case vmIntrinsics::_doubleIsFinite: 536 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 537 538 case vmIntrinsics::_numberOfLeadingZeros_i: 539 case vmIntrinsics::_numberOfLeadingZeros_l: 540 case vmIntrinsics::_numberOfTrailingZeros_i: 541 case vmIntrinsics::_numberOfTrailingZeros_l: 542 case vmIntrinsics::_bitCount_i: 543 case vmIntrinsics::_bitCount_l: 544 case vmIntrinsics::_reverse_i: 545 case vmIntrinsics::_reverse_l: 546 case vmIntrinsics::_reverseBytes_i: 547 case vmIntrinsics::_reverseBytes_l: 548 case vmIntrinsics::_reverseBytes_s: 549 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 550 551 case vmIntrinsics::_compress_i: 552 case vmIntrinsics::_compress_l: 553 case vmIntrinsics::_expand_i: 554 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 555 556 case vmIntrinsics::_compareUnsigned_i: 557 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 558 559 case vmIntrinsics::_divideUnsigned_i: 560 case vmIntrinsics::_divideUnsigned_l: 561 case vmIntrinsics::_remainderUnsigned_i: 562 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 563 564 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 565 566 case vmIntrinsics::_Reference_get: return inline_reference_get(); 567 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 568 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 569 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 570 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 571 572 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 573 574 case vmIntrinsics::_aescrypt_encryptBlock: 575 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 576 577 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 578 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 579 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 580 581 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 582 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 583 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 584 585 case vmIntrinsics::_counterMode_AESCrypt: 586 return inline_counterMode_AESCrypt(intrinsic_id()); 587 588 case vmIntrinsics::_galoisCounterMode_AESCrypt: 589 return inline_galoisCounterMode_AESCrypt(); 590 591 case vmIntrinsics::_md5_implCompress: 592 case vmIntrinsics::_sha_implCompress: 593 case vmIntrinsics::_sha2_implCompress: 594 case vmIntrinsics::_sha5_implCompress: 595 case vmIntrinsics::_sha3_implCompress: 596 return inline_digestBase_implCompress(intrinsic_id()); 597 case vmIntrinsics::_double_keccak: 598 return inline_double_keccak(); 599 600 case vmIntrinsics::_digestBase_implCompressMB: 601 return inline_digestBase_implCompressMB(predicate); 602 603 case vmIntrinsics::_multiplyToLen: 604 return inline_multiplyToLen(); 605 606 case vmIntrinsics::_squareToLen: 607 return inline_squareToLen(); 608 609 case vmIntrinsics::_mulAdd: 610 return inline_mulAdd(); 611 612 case vmIntrinsics::_montgomeryMultiply: 613 return inline_montgomeryMultiply(); 614 case vmIntrinsics::_montgomerySquare: 615 return inline_montgomerySquare(); 616 617 case vmIntrinsics::_bigIntegerRightShiftWorker: 618 return inline_bigIntegerShift(true); 619 case vmIntrinsics::_bigIntegerLeftShiftWorker: 620 return inline_bigIntegerShift(false); 621 622 case vmIntrinsics::_vectorizedMismatch: 623 return inline_vectorizedMismatch(); 624 625 case vmIntrinsics::_ghash_processBlocks: 626 return inline_ghash_processBlocks(); 627 case vmIntrinsics::_chacha20Block: 628 return inline_chacha20Block(); 629 case vmIntrinsics::_kyberNtt: 630 return inline_kyberNtt(); 631 case vmIntrinsics::_kyberInverseNtt: 632 return inline_kyberInverseNtt(); 633 case vmIntrinsics::_kyberNttMult: 634 return inline_kyberNttMult(); 635 case vmIntrinsics::_kyberAddPoly_2: 636 return inline_kyberAddPoly_2(); 637 case vmIntrinsics::_kyberAddPoly_3: 638 return inline_kyberAddPoly_3(); 639 case vmIntrinsics::_kyber12To16: 640 return inline_kyber12To16(); 641 case vmIntrinsics::_kyberBarrettReduce: 642 return inline_kyberBarrettReduce(); 643 case vmIntrinsics::_dilithiumAlmostNtt: 644 return inline_dilithiumAlmostNtt(); 645 case vmIntrinsics::_dilithiumAlmostInverseNtt: 646 return inline_dilithiumAlmostInverseNtt(); 647 case vmIntrinsics::_dilithiumNttMult: 648 return inline_dilithiumNttMult(); 649 case vmIntrinsics::_dilithiumMontMulByConstant: 650 return inline_dilithiumMontMulByConstant(); 651 case vmIntrinsics::_dilithiumDecomposePoly: 652 return inline_dilithiumDecomposePoly(); 653 case vmIntrinsics::_base64_encodeBlock: 654 return inline_base64_encodeBlock(); 655 case vmIntrinsics::_base64_decodeBlock: 656 return inline_base64_decodeBlock(); 657 case vmIntrinsics::_poly1305_processBlocks: 658 return inline_poly1305_processBlocks(); 659 case vmIntrinsics::_intpoly_montgomeryMult_P256: 660 return inline_intpoly_montgomeryMult_P256(); 661 case vmIntrinsics::_intpoly_assign: 662 return inline_intpoly_assign(); 663 case vmIntrinsics::_encodeISOArray: 664 case vmIntrinsics::_encodeByteISOArray: 665 return inline_encodeISOArray(false); 666 case vmIntrinsics::_encodeAsciiArray: 667 return inline_encodeISOArray(true); 668 669 case vmIntrinsics::_updateCRC32: 670 return inline_updateCRC32(); 671 case vmIntrinsics::_updateBytesCRC32: 672 return inline_updateBytesCRC32(); 673 case vmIntrinsics::_updateByteBufferCRC32: 674 return inline_updateByteBufferCRC32(); 675 676 case vmIntrinsics::_updateBytesCRC32C: 677 return inline_updateBytesCRC32C(); 678 case vmIntrinsics::_updateDirectByteBufferCRC32C: 679 return inline_updateDirectByteBufferCRC32C(); 680 681 case vmIntrinsics::_updateBytesAdler32: 682 return inline_updateBytesAdler32(); 683 case vmIntrinsics::_updateByteBufferAdler32: 684 return inline_updateByteBufferAdler32(); 685 686 case vmIntrinsics::_profileBoolean: 687 return inline_profileBoolean(); 688 case vmIntrinsics::_isCompileConstant: 689 return inline_isCompileConstant(); 690 691 case vmIntrinsics::_countPositives: 692 return inline_countPositives(); 693 694 case vmIntrinsics::_fmaD: 695 case vmIntrinsics::_fmaF: 696 return inline_fma(intrinsic_id()); 697 698 case vmIntrinsics::_isDigit: 699 case vmIntrinsics::_isLowerCase: 700 case vmIntrinsics::_isUpperCase: 701 case vmIntrinsics::_isWhitespace: 702 return inline_character_compare(intrinsic_id()); 703 704 case vmIntrinsics::_min: 705 case vmIntrinsics::_max: 706 case vmIntrinsics::_min_strict: 707 case vmIntrinsics::_max_strict: 708 case vmIntrinsics::_minL: 709 case vmIntrinsics::_maxL: 710 case vmIntrinsics::_minF: 711 case vmIntrinsics::_maxF: 712 case vmIntrinsics::_minD: 713 case vmIntrinsics::_maxD: 714 case vmIntrinsics::_minF_strict: 715 case vmIntrinsics::_maxF_strict: 716 case vmIntrinsics::_minD_strict: 717 case vmIntrinsics::_maxD_strict: 718 return inline_min_max(intrinsic_id()); 719 720 case vmIntrinsics::_VectorUnaryOp: 721 return inline_vector_nary_operation(1); 722 case vmIntrinsics::_VectorBinaryOp: 723 return inline_vector_nary_operation(2); 724 case vmIntrinsics::_VectorTernaryOp: 725 return inline_vector_nary_operation(3); 726 case vmIntrinsics::_VectorFromBitsCoerced: 727 return inline_vector_frombits_coerced(); 728 case vmIntrinsics::_VectorMaskOp: 729 return inline_vector_mask_operation(); 730 case vmIntrinsics::_VectorLoadOp: 731 return inline_vector_mem_operation(/*is_store=*/false); 732 case vmIntrinsics::_VectorLoadMaskedOp: 733 return inline_vector_mem_masked_operation(/*is_store*/false); 734 case vmIntrinsics::_VectorStoreOp: 735 return inline_vector_mem_operation(/*is_store=*/true); 736 case vmIntrinsics::_VectorStoreMaskedOp: 737 return inline_vector_mem_masked_operation(/*is_store=*/true); 738 case vmIntrinsics::_VectorGatherOp: 739 return inline_vector_gather_scatter(/*is_scatter*/ false); 740 case vmIntrinsics::_VectorScatterOp: 741 return inline_vector_gather_scatter(/*is_scatter*/ true); 742 case vmIntrinsics::_VectorReductionCoerced: 743 return inline_vector_reduction(); 744 case vmIntrinsics::_VectorTest: 745 return inline_vector_test(); 746 case vmIntrinsics::_VectorBlend: 747 return inline_vector_blend(); 748 case vmIntrinsics::_VectorRearrange: 749 return inline_vector_rearrange(); 750 case vmIntrinsics::_VectorSelectFrom: 751 return inline_vector_select_from(); 752 case vmIntrinsics::_VectorCompare: 753 return inline_vector_compare(); 754 case vmIntrinsics::_VectorBroadcastInt: 755 return inline_vector_broadcast_int(); 756 case vmIntrinsics::_VectorConvert: 757 return inline_vector_convert(); 758 case vmIntrinsics::_VectorInsert: 759 return inline_vector_insert(); 760 case vmIntrinsics::_VectorExtract: 761 return inline_vector_extract(); 762 case vmIntrinsics::_VectorCompressExpand: 763 return inline_vector_compress_expand(); 764 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 765 return inline_vector_select_from_two_vectors(); 766 case vmIntrinsics::_IndexVector: 767 return inline_index_vector(); 768 case vmIntrinsics::_IndexPartiallyInUpperRange: 769 return inline_index_partially_in_upper_range(); 770 771 case vmIntrinsics::_getObjectSize: 772 return inline_getObjectSize(); 773 774 case vmIntrinsics::_blackhole: 775 return inline_blackhole(); 776 777 default: 778 // If you get here, it may be that someone has added a new intrinsic 779 // to the list in vmIntrinsics.hpp without implementing it here. 780 #ifndef PRODUCT 781 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 782 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 783 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 784 } 785 #endif 786 return false; 787 } 788 } 789 790 Node* LibraryCallKit::try_to_predicate(int predicate) { 791 if (!jvms()->has_method()) { 792 // Root JVMState has a null method. 793 assert(map()->memory()->Opcode() == Op_Parm, ""); 794 // Insert the memory aliasing node 795 set_all_memory(reset_memory()); 796 } 797 assert(merged_memory(), ""); 798 799 switch (intrinsic_id()) { 800 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 801 return inline_cipherBlockChaining_AESCrypt_predicate(false); 802 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 803 return inline_cipherBlockChaining_AESCrypt_predicate(true); 804 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 805 return inline_electronicCodeBook_AESCrypt_predicate(false); 806 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 807 return inline_electronicCodeBook_AESCrypt_predicate(true); 808 case vmIntrinsics::_counterMode_AESCrypt: 809 return inline_counterMode_AESCrypt_predicate(); 810 case vmIntrinsics::_digestBase_implCompressMB: 811 return inline_digestBase_implCompressMB_predicate(predicate); 812 case vmIntrinsics::_galoisCounterMode_AESCrypt: 813 return inline_galoisCounterMode_AESCrypt_predicate(); 814 815 default: 816 // If you get here, it may be that someone has added a new intrinsic 817 // to the list in vmIntrinsics.hpp without implementing it here. 818 #ifndef PRODUCT 819 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 820 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 821 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 822 } 823 #endif 824 Node* slow_ctl = control(); 825 set_control(top()); // No fast path intrinsic 826 return slow_ctl; 827 } 828 } 829 830 //------------------------------set_result------------------------------- 831 // Helper function for finishing intrinsics. 832 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 833 record_for_igvn(region); 834 set_control(_gvn.transform(region)); 835 set_result( _gvn.transform(value)); 836 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 837 } 838 839 //------------------------------generate_guard--------------------------- 840 // Helper function for generating guarded fast-slow graph structures. 841 // The given 'test', if true, guards a slow path. If the test fails 842 // then a fast path can be taken. (We generally hope it fails.) 843 // In all cases, GraphKit::control() is updated to the fast path. 844 // The returned value represents the control for the slow path. 845 // The return value is never 'top'; it is either a valid control 846 // or null if it is obvious that the slow path can never be taken. 847 // Also, if region and the slow control are not null, the slow edge 848 // is appended to the region. 849 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 850 if (stopped()) { 851 // Already short circuited. 852 return nullptr; 853 } 854 855 // Build an if node and its projections. 856 // If test is true we take the slow path, which we assume is uncommon. 857 if (_gvn.type(test) == TypeInt::ZERO) { 858 // The slow branch is never taken. No need to build this guard. 859 return nullptr; 860 } 861 862 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 863 864 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 865 if (if_slow == top()) { 866 // The slow branch is never taken. No need to build this guard. 867 return nullptr; 868 } 869 870 if (region != nullptr) 871 region->add_req(if_slow); 872 873 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 874 set_control(if_fast); 875 876 return if_slow; 877 } 878 879 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 880 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 881 } 882 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 883 return generate_guard(test, region, PROB_FAIR); 884 } 885 886 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 887 Node* *pos_index) { 888 if (stopped()) 889 return nullptr; // already stopped 890 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 891 return nullptr; // index is already adequately typed 892 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 893 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 894 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 895 if (is_neg != nullptr && pos_index != nullptr) { 896 // Emulate effect of Parse::adjust_map_after_if. 897 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 898 (*pos_index) = _gvn.transform(ccast); 899 } 900 return is_neg; 901 } 902 903 // Make sure that 'position' is a valid limit index, in [0..length]. 904 // There are two equivalent plans for checking this: 905 // A. (offset + copyLength) unsigned<= arrayLength 906 // B. offset <= (arrayLength - copyLength) 907 // We require that all of the values above, except for the sum and 908 // difference, are already known to be non-negative. 909 // Plan A is robust in the face of overflow, if offset and copyLength 910 // are both hugely positive. 911 // 912 // Plan B is less direct and intuitive, but it does not overflow at 913 // all, since the difference of two non-negatives is always 914 // representable. Whenever Java methods must perform the equivalent 915 // check they generally use Plan B instead of Plan A. 916 // For the moment we use Plan A. 917 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 918 Node* subseq_length, 919 Node* array_length, 920 RegionNode* region) { 921 if (stopped()) 922 return nullptr; // already stopped 923 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 924 if (zero_offset && subseq_length->eqv_uncast(array_length)) 925 return nullptr; // common case of whole-array copy 926 Node* last = subseq_length; 927 if (!zero_offset) // last += offset 928 last = _gvn.transform(new AddINode(last, offset)); 929 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 930 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 931 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 932 return is_over; 933 } 934 935 // Emit range checks for the given String.value byte array 936 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 937 if (stopped()) { 938 return; // already stopped 939 } 940 RegionNode* bailout = new RegionNode(1); 941 record_for_igvn(bailout); 942 if (char_count) { 943 // Convert char count to byte count 944 count = _gvn.transform(new LShiftINode(count, intcon(1))); 945 } 946 947 // Offset and count must not be negative 948 generate_negative_guard(offset, bailout); 949 generate_negative_guard(count, bailout); 950 // Offset + count must not exceed length of array 951 generate_limit_guard(offset, count, load_array_length(array), bailout); 952 953 if (bailout->req() > 1) { 954 PreserveJVMState pjvms(this); 955 set_control(_gvn.transform(bailout)); 956 uncommon_trap(Deoptimization::Reason_intrinsic, 957 Deoptimization::Action_maybe_recompile); 958 } 959 } 960 961 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 962 bool is_immutable) { 963 ciKlass* thread_klass = env()->Thread_klass(); 964 const Type* thread_type 965 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 966 967 Node* thread = _gvn.transform(new ThreadLocalNode()); 968 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 969 tls_output = thread; 970 971 Node* thread_obj_handle 972 = (is_immutable 973 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 974 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 975 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 976 thread_obj_handle = _gvn.transform(thread_obj_handle); 977 978 DecoratorSet decorators = IN_NATIVE; 979 if (is_immutable) { 980 decorators |= C2_IMMUTABLE_MEMORY; 981 } 982 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 983 } 984 985 //--------------------------generate_current_thread-------------------- 986 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 987 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 988 /*is_immutable*/false); 989 } 990 991 //--------------------------generate_virtual_thread-------------------- 992 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 993 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 994 !C->method()->changes_current_thread()); 995 } 996 997 //------------------------------make_string_method_node------------------------ 998 // Helper method for String intrinsic functions. This version is called with 999 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1000 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1001 // containing the lengths of str1 and str2. 1002 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1003 Node* result = nullptr; 1004 switch (opcode) { 1005 case Op_StrIndexOf: 1006 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1007 str1_start, cnt1, str2_start, cnt2, ae); 1008 break; 1009 case Op_StrComp: 1010 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1011 str1_start, cnt1, str2_start, cnt2, ae); 1012 break; 1013 case Op_StrEquals: 1014 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1015 // Use the constant length if there is one because optimized match rule may exist. 1016 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1017 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1018 break; 1019 default: 1020 ShouldNotReachHere(); 1021 return nullptr; 1022 } 1023 1024 // All these intrinsics have checks. 1025 C->set_has_split_ifs(true); // Has chance for split-if optimization 1026 clear_upper_avx(); 1027 1028 return _gvn.transform(result); 1029 } 1030 1031 //------------------------------inline_string_compareTo------------------------ 1032 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1033 Node* arg1 = argument(0); 1034 Node* arg2 = argument(1); 1035 1036 arg1 = must_be_not_null(arg1, true); 1037 arg2 = must_be_not_null(arg2, true); 1038 1039 // Get start addr and length of first argument 1040 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1041 Node* arg1_cnt = load_array_length(arg1); 1042 1043 // Get start addr and length of second argument 1044 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1045 Node* arg2_cnt = load_array_length(arg2); 1046 1047 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1048 set_result(result); 1049 return true; 1050 } 1051 1052 //------------------------------inline_string_equals------------------------ 1053 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1054 Node* arg1 = argument(0); 1055 Node* arg2 = argument(1); 1056 1057 // paths (plus control) merge 1058 RegionNode* region = new RegionNode(3); 1059 Node* phi = new PhiNode(region, TypeInt::BOOL); 1060 1061 if (!stopped()) { 1062 1063 arg1 = must_be_not_null(arg1, true); 1064 arg2 = must_be_not_null(arg2, true); 1065 1066 // Get start addr and length of first argument 1067 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1068 Node* arg1_cnt = load_array_length(arg1); 1069 1070 // Get start addr and length of second argument 1071 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1072 Node* arg2_cnt = load_array_length(arg2); 1073 1074 // Check for arg1_cnt != arg2_cnt 1075 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1076 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1077 Node* if_ne = generate_slow_guard(bol, nullptr); 1078 if (if_ne != nullptr) { 1079 phi->init_req(2, intcon(0)); 1080 region->init_req(2, if_ne); 1081 } 1082 1083 // Check for count == 0 is done by assembler code for StrEquals. 1084 1085 if (!stopped()) { 1086 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1087 phi->init_req(1, equals); 1088 region->init_req(1, control()); 1089 } 1090 } 1091 1092 // post merge 1093 set_control(_gvn.transform(region)); 1094 record_for_igvn(region); 1095 1096 set_result(_gvn.transform(phi)); 1097 return true; 1098 } 1099 1100 //------------------------------inline_array_equals---------------------------- 1101 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1102 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1103 Node* arg1 = argument(0); 1104 Node* arg2 = argument(1); 1105 1106 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1107 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1108 clear_upper_avx(); 1109 1110 return true; 1111 } 1112 1113 1114 //------------------------------inline_countPositives------------------------------ 1115 bool LibraryCallKit::inline_countPositives() { 1116 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1117 return false; 1118 } 1119 1120 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1121 // no receiver since it is static method 1122 Node* ba = argument(0); 1123 Node* offset = argument(1); 1124 Node* len = argument(2); 1125 1126 ba = must_be_not_null(ba, true); 1127 1128 // Range checks 1129 generate_string_range_check(ba, offset, len, false); 1130 if (stopped()) { 1131 return true; 1132 } 1133 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1134 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1135 set_result(_gvn.transform(result)); 1136 clear_upper_avx(); 1137 return true; 1138 } 1139 1140 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1141 Node* index = argument(0); 1142 Node* length = bt == T_INT ? argument(1) : argument(2); 1143 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1144 return false; 1145 } 1146 1147 // check that length is positive 1148 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1149 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1150 1151 { 1152 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1153 uncommon_trap(Deoptimization::Reason_intrinsic, 1154 Deoptimization::Action_make_not_entrant); 1155 } 1156 1157 if (stopped()) { 1158 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1159 return true; 1160 } 1161 1162 // length is now known positive, add a cast node to make this explicit 1163 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1164 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1165 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1166 ConstraintCastNode::RegularDependency, bt); 1167 casted_length = _gvn.transform(casted_length); 1168 replace_in_map(length, casted_length); 1169 length = casted_length; 1170 1171 // Use an unsigned comparison for the range check itself 1172 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1173 BoolTest::mask btest = BoolTest::lt; 1174 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1175 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1176 _gvn.set_type(rc, rc->Value(&_gvn)); 1177 if (!rc_bool->is_Con()) { 1178 record_for_igvn(rc); 1179 } 1180 set_control(_gvn.transform(new IfTrueNode(rc))); 1181 { 1182 PreserveJVMState pjvms(this); 1183 set_control(_gvn.transform(new IfFalseNode(rc))); 1184 uncommon_trap(Deoptimization::Reason_range_check, 1185 Deoptimization::Action_make_not_entrant); 1186 } 1187 1188 if (stopped()) { 1189 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1190 return true; 1191 } 1192 1193 // index is now known to be >= 0 and < length, cast it 1194 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1195 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1196 ConstraintCastNode::RegularDependency, bt); 1197 result = _gvn.transform(result); 1198 set_result(result); 1199 replace_in_map(index, result); 1200 return true; 1201 } 1202 1203 //------------------------------inline_string_indexOf------------------------ 1204 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1205 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1206 return false; 1207 } 1208 Node* src = argument(0); 1209 Node* tgt = argument(1); 1210 1211 // Make the merge point 1212 RegionNode* result_rgn = new RegionNode(4); 1213 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1214 1215 src = must_be_not_null(src, true); 1216 tgt = must_be_not_null(tgt, true); 1217 1218 // Get start addr and length of source string 1219 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1220 Node* src_count = load_array_length(src); 1221 1222 // Get start addr and length of substring 1223 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1224 Node* tgt_count = load_array_length(tgt); 1225 1226 Node* result = nullptr; 1227 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1228 1229 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1230 // Divide src size by 2 if String is UTF16 encoded 1231 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1232 } 1233 if (ae == StrIntrinsicNode::UU) { 1234 // Divide substring size by 2 if String is UTF16 encoded 1235 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1236 } 1237 1238 if (call_opt_stub) { 1239 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1240 StubRoutines::_string_indexof_array[ae], 1241 "stringIndexOf", TypePtr::BOTTOM, src_start, 1242 src_count, tgt_start, tgt_count); 1243 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1244 } else { 1245 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1246 result_rgn, result_phi, ae); 1247 } 1248 if (result != nullptr) { 1249 result_phi->init_req(3, result); 1250 result_rgn->init_req(3, control()); 1251 } 1252 set_control(_gvn.transform(result_rgn)); 1253 record_for_igvn(result_rgn); 1254 set_result(_gvn.transform(result_phi)); 1255 1256 return true; 1257 } 1258 1259 //-----------------------------inline_string_indexOfI----------------------- 1260 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1261 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1262 return false; 1263 } 1264 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1265 return false; 1266 } 1267 1268 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1269 Node* src = argument(0); // byte[] 1270 Node* src_count = argument(1); // char count 1271 Node* tgt = argument(2); // byte[] 1272 Node* tgt_count = argument(3); // char count 1273 Node* from_index = argument(4); // char index 1274 1275 src = must_be_not_null(src, true); 1276 tgt = must_be_not_null(tgt, true); 1277 1278 // Multiply byte array index by 2 if String is UTF16 encoded 1279 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1280 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1281 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1282 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1283 1284 // Range checks 1285 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1286 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1287 if (stopped()) { 1288 return true; 1289 } 1290 1291 RegionNode* region = new RegionNode(5); 1292 Node* phi = new PhiNode(region, TypeInt::INT); 1293 Node* result = nullptr; 1294 1295 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1296 1297 if (call_opt_stub) { 1298 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1299 StubRoutines::_string_indexof_array[ae], 1300 "stringIndexOf", TypePtr::BOTTOM, src_start, 1301 src_count, tgt_start, tgt_count); 1302 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1303 } else { 1304 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1305 region, phi, ae); 1306 } 1307 if (result != nullptr) { 1308 // The result is index relative to from_index if substring was found, -1 otherwise. 1309 // Generate code which will fold into cmove. 1310 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1311 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1312 1313 Node* if_lt = generate_slow_guard(bol, nullptr); 1314 if (if_lt != nullptr) { 1315 // result == -1 1316 phi->init_req(3, result); 1317 region->init_req(3, if_lt); 1318 } 1319 if (!stopped()) { 1320 result = _gvn.transform(new AddINode(result, from_index)); 1321 phi->init_req(4, result); 1322 region->init_req(4, control()); 1323 } 1324 } 1325 1326 set_control(_gvn.transform(region)); 1327 record_for_igvn(region); 1328 set_result(_gvn.transform(phi)); 1329 clear_upper_avx(); 1330 1331 return true; 1332 } 1333 1334 // Create StrIndexOfNode with fast path checks 1335 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1336 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1337 // Check for substr count > string count 1338 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1339 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1340 Node* if_gt = generate_slow_guard(bol, nullptr); 1341 if (if_gt != nullptr) { 1342 phi->init_req(1, intcon(-1)); 1343 region->init_req(1, if_gt); 1344 } 1345 if (!stopped()) { 1346 // Check for substr count == 0 1347 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1348 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1349 Node* if_zero = generate_slow_guard(bol, nullptr); 1350 if (if_zero != nullptr) { 1351 phi->init_req(2, intcon(0)); 1352 region->init_req(2, if_zero); 1353 } 1354 } 1355 if (!stopped()) { 1356 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1357 } 1358 return nullptr; 1359 } 1360 1361 //-----------------------------inline_string_indexOfChar----------------------- 1362 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1363 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1364 return false; 1365 } 1366 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1367 return false; 1368 } 1369 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1370 Node* src = argument(0); // byte[] 1371 Node* int_ch = argument(1); 1372 Node* from_index = argument(2); 1373 Node* max = argument(3); 1374 1375 src = must_be_not_null(src, true); 1376 1377 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1378 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1379 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1380 1381 // Range checks 1382 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1383 1384 // Check for int_ch >= 0 1385 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1386 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1387 { 1388 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1389 uncommon_trap(Deoptimization::Reason_intrinsic, 1390 Deoptimization::Action_maybe_recompile); 1391 } 1392 if (stopped()) { 1393 return true; 1394 } 1395 1396 RegionNode* region = new RegionNode(3); 1397 Node* phi = new PhiNode(region, TypeInt::INT); 1398 1399 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1400 C->set_has_split_ifs(true); // Has chance for split-if optimization 1401 _gvn.transform(result); 1402 1403 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1404 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1405 1406 Node* if_lt = generate_slow_guard(bol, nullptr); 1407 if (if_lt != nullptr) { 1408 // result == -1 1409 phi->init_req(2, result); 1410 region->init_req(2, if_lt); 1411 } 1412 if (!stopped()) { 1413 result = _gvn.transform(new AddINode(result, from_index)); 1414 phi->init_req(1, result); 1415 region->init_req(1, control()); 1416 } 1417 set_control(_gvn.transform(region)); 1418 record_for_igvn(region); 1419 set_result(_gvn.transform(phi)); 1420 clear_upper_avx(); 1421 1422 return true; 1423 } 1424 //---------------------------inline_string_copy--------------------- 1425 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1426 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1427 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1428 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1429 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1430 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1431 bool LibraryCallKit::inline_string_copy(bool compress) { 1432 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1433 return false; 1434 } 1435 int nargs = 5; // 2 oops, 3 ints 1436 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1437 1438 Node* src = argument(0); 1439 Node* src_offset = argument(1); 1440 Node* dst = argument(2); 1441 Node* dst_offset = argument(3); 1442 Node* length = argument(4); 1443 1444 // Check for allocation before we add nodes that would confuse 1445 // tightly_coupled_allocation() 1446 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1447 1448 // Figure out the size and type of the elements we will be copying. 1449 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1450 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1451 if (src_type == nullptr || dst_type == nullptr) { 1452 return false; 1453 } 1454 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1455 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1456 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1457 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1458 "Unsupported array types for inline_string_copy"); 1459 1460 src = must_be_not_null(src, true); 1461 dst = must_be_not_null(dst, true); 1462 1463 // Convert char[] offsets to byte[] offsets 1464 bool convert_src = (compress && src_elem == T_BYTE); 1465 bool convert_dst = (!compress && dst_elem == T_BYTE); 1466 if (convert_src) { 1467 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1468 } else if (convert_dst) { 1469 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1470 } 1471 1472 // Range checks 1473 generate_string_range_check(src, src_offset, length, convert_src); 1474 generate_string_range_check(dst, dst_offset, length, convert_dst); 1475 if (stopped()) { 1476 return true; 1477 } 1478 1479 Node* src_start = array_element_address(src, src_offset, src_elem); 1480 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1481 // 'src_start' points to src array + scaled offset 1482 // 'dst_start' points to dst array + scaled offset 1483 Node* count = nullptr; 1484 if (compress) { 1485 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1486 } else { 1487 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1488 } 1489 1490 if (alloc != nullptr) { 1491 if (alloc->maybe_set_complete(&_gvn)) { 1492 // "You break it, you buy it." 1493 InitializeNode* init = alloc->initialization(); 1494 assert(init->is_complete(), "we just did this"); 1495 init->set_complete_with_arraycopy(); 1496 assert(dst->is_CheckCastPP(), "sanity"); 1497 assert(dst->in(0)->in(0) == init, "dest pinned"); 1498 } 1499 // Do not let stores that initialize this object be reordered with 1500 // a subsequent store that would make this object accessible by 1501 // other threads. 1502 // Record what AllocateNode this StoreStore protects so that 1503 // escape analysis can go from the MemBarStoreStoreNode to the 1504 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1505 // based on the escape status of the AllocateNode. 1506 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1507 } 1508 if (compress) { 1509 set_result(_gvn.transform(count)); 1510 } 1511 clear_upper_avx(); 1512 1513 return true; 1514 } 1515 1516 #ifdef _LP64 1517 #define XTOP ,top() /*additional argument*/ 1518 #else //_LP64 1519 #define XTOP /*no additional argument*/ 1520 #endif //_LP64 1521 1522 //------------------------inline_string_toBytesU-------------------------- 1523 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1524 bool LibraryCallKit::inline_string_toBytesU() { 1525 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1526 return false; 1527 } 1528 // Get the arguments. 1529 Node* value = argument(0); 1530 Node* offset = argument(1); 1531 Node* length = argument(2); 1532 1533 Node* newcopy = nullptr; 1534 1535 // Set the original stack and the reexecute bit for the interpreter to reexecute 1536 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1537 { PreserveReexecuteState preexecs(this); 1538 jvms()->set_should_reexecute(true); 1539 1540 // Check if a null path was taken unconditionally. 1541 value = null_check(value); 1542 1543 RegionNode* bailout = new RegionNode(1); 1544 record_for_igvn(bailout); 1545 1546 // Range checks 1547 generate_negative_guard(offset, bailout); 1548 generate_negative_guard(length, bailout); 1549 generate_limit_guard(offset, length, load_array_length(value), bailout); 1550 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1551 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1552 1553 if (bailout->req() > 1) { 1554 PreserveJVMState pjvms(this); 1555 set_control(_gvn.transform(bailout)); 1556 uncommon_trap(Deoptimization::Reason_intrinsic, 1557 Deoptimization::Action_maybe_recompile); 1558 } 1559 if (stopped()) { 1560 return true; 1561 } 1562 1563 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1564 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1565 newcopy = new_array(klass_node, size, 0); // no arguments to push 1566 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1567 guarantee(alloc != nullptr, "created above"); 1568 1569 // Calculate starting addresses. 1570 Node* src_start = array_element_address(value, offset, T_CHAR); 1571 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1572 1573 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1574 const TypeInt* toffset = gvn().type(offset)->is_int(); 1575 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1576 1577 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1578 const char* copyfunc_name = "arraycopy"; 1579 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1580 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1581 OptoRuntime::fast_arraycopy_Type(), 1582 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1583 src_start, dst_start, ConvI2X(length) XTOP); 1584 // Do not let reads from the cloned object float above the arraycopy. 1585 if (alloc->maybe_set_complete(&_gvn)) { 1586 // "You break it, you buy it." 1587 InitializeNode* init = alloc->initialization(); 1588 assert(init->is_complete(), "we just did this"); 1589 init->set_complete_with_arraycopy(); 1590 assert(newcopy->is_CheckCastPP(), "sanity"); 1591 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1592 } 1593 // Do not let stores that initialize this object be reordered with 1594 // a subsequent store that would make this object accessible by 1595 // other threads. 1596 // Record what AllocateNode this StoreStore protects so that 1597 // escape analysis can go from the MemBarStoreStoreNode to the 1598 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1599 // based on the escape status of the AllocateNode. 1600 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1601 } // original reexecute is set back here 1602 1603 C->set_has_split_ifs(true); // Has chance for split-if optimization 1604 if (!stopped()) { 1605 set_result(newcopy); 1606 } 1607 clear_upper_avx(); 1608 1609 return true; 1610 } 1611 1612 //------------------------inline_string_getCharsU-------------------------- 1613 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1614 bool LibraryCallKit::inline_string_getCharsU() { 1615 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1616 return false; 1617 } 1618 1619 // Get the arguments. 1620 Node* src = argument(0); 1621 Node* src_begin = argument(1); 1622 Node* src_end = argument(2); // exclusive offset (i < src_end) 1623 Node* dst = argument(3); 1624 Node* dst_begin = argument(4); 1625 1626 // Check for allocation before we add nodes that would confuse 1627 // tightly_coupled_allocation() 1628 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1629 1630 // Check if a null path was taken unconditionally. 1631 src = null_check(src); 1632 dst = null_check(dst); 1633 if (stopped()) { 1634 return true; 1635 } 1636 1637 // Get length and convert char[] offset to byte[] offset 1638 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1639 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1640 1641 // Range checks 1642 generate_string_range_check(src, src_begin, length, true); 1643 generate_string_range_check(dst, dst_begin, length, false); 1644 if (stopped()) { 1645 return true; 1646 } 1647 1648 if (!stopped()) { 1649 // Calculate starting addresses. 1650 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1651 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1652 1653 // Check if array addresses are aligned to HeapWordSize 1654 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1655 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1656 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1657 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1658 1659 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1660 const char* copyfunc_name = "arraycopy"; 1661 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1662 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1663 OptoRuntime::fast_arraycopy_Type(), 1664 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1665 src_start, dst_start, ConvI2X(length) XTOP); 1666 // Do not let reads from the cloned object float above the arraycopy. 1667 if (alloc != nullptr) { 1668 if (alloc->maybe_set_complete(&_gvn)) { 1669 // "You break it, you buy it." 1670 InitializeNode* init = alloc->initialization(); 1671 assert(init->is_complete(), "we just did this"); 1672 init->set_complete_with_arraycopy(); 1673 assert(dst->is_CheckCastPP(), "sanity"); 1674 assert(dst->in(0)->in(0) == init, "dest pinned"); 1675 } 1676 // Do not let stores that initialize this object be reordered with 1677 // a subsequent store that would make this object accessible by 1678 // other threads. 1679 // Record what AllocateNode this StoreStore protects so that 1680 // escape analysis can go from the MemBarStoreStoreNode to the 1681 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1682 // based on the escape status of the AllocateNode. 1683 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1684 } else { 1685 insert_mem_bar(Op_MemBarCPUOrder); 1686 } 1687 } 1688 1689 C->set_has_split_ifs(true); // Has chance for split-if optimization 1690 return true; 1691 } 1692 1693 //----------------------inline_string_char_access---------------------------- 1694 // Store/Load char to/from byte[] array. 1695 // static void StringUTF16.putChar(byte[] val, int index, int c) 1696 // static char StringUTF16.getChar(byte[] val, int index) 1697 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1698 Node* value = argument(0); 1699 Node* index = argument(1); 1700 Node* ch = is_store ? argument(2) : nullptr; 1701 1702 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1703 // correctly requires matched array shapes. 1704 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1705 "sanity: byte[] and char[] bases agree"); 1706 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1707 "sanity: byte[] and char[] scales agree"); 1708 1709 // Bail when getChar over constants is requested: constant folding would 1710 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1711 // Java method would constant fold nicely instead. 1712 if (!is_store && value->is_Con() && index->is_Con()) { 1713 return false; 1714 } 1715 1716 // Save state and restore on bailout 1717 uint old_sp = sp(); 1718 SafePointNode* old_map = clone_map(); 1719 1720 value = must_be_not_null(value, true); 1721 1722 Node* adr = array_element_address(value, index, T_CHAR); 1723 if (adr->is_top()) { 1724 set_map(old_map); 1725 set_sp(old_sp); 1726 return false; 1727 } 1728 destruct_map_clone(old_map); 1729 if (is_store) { 1730 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1731 } else { 1732 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1733 set_result(ch); 1734 } 1735 return true; 1736 } 1737 1738 1739 //------------------------------inline_math----------------------------------- 1740 // public static double Math.abs(double) 1741 // public static double Math.sqrt(double) 1742 // public static double Math.log(double) 1743 // public static double Math.log10(double) 1744 // public static double Math.round(double) 1745 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1746 Node* arg = argument(0); 1747 Node* n = nullptr; 1748 switch (id) { 1749 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1750 case vmIntrinsics::_dsqrt: 1751 case vmIntrinsics::_dsqrt_strict: 1752 n = new SqrtDNode(C, control(), arg); break; 1753 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1754 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1755 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1756 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1757 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1758 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1759 default: fatal_unexpected_iid(id); break; 1760 } 1761 set_result(_gvn.transform(n)); 1762 return true; 1763 } 1764 1765 //------------------------------inline_math----------------------------------- 1766 // public static float Math.abs(float) 1767 // public static int Math.abs(int) 1768 // public static long Math.abs(long) 1769 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1770 Node* arg = argument(0); 1771 Node* n = nullptr; 1772 switch (id) { 1773 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1774 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1775 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1776 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1777 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1778 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1779 default: fatal_unexpected_iid(id); break; 1780 } 1781 set_result(_gvn.transform(n)); 1782 return true; 1783 } 1784 1785 //------------------------------runtime_math----------------------------- 1786 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1787 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1788 "must be (DD)D or (D)D type"); 1789 1790 // Inputs 1791 Node* a = argument(0); 1792 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1793 1794 const TypePtr* no_memory_effects = nullptr; 1795 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1796 no_memory_effects, 1797 a, top(), b, b ? top() : nullptr); 1798 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1799 #ifdef ASSERT 1800 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1801 assert(value_top == top(), "second value must be top"); 1802 #endif 1803 1804 set_result(value); 1805 return true; 1806 } 1807 1808 //------------------------------inline_math_pow----------------------------- 1809 bool LibraryCallKit::inline_math_pow() { 1810 Node* exp = argument(2); 1811 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1812 if (d != nullptr) { 1813 if (d->getd() == 2.0) { 1814 // Special case: pow(x, 2.0) => x * x 1815 Node* base = argument(0); 1816 set_result(_gvn.transform(new MulDNode(base, base))); 1817 return true; 1818 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1819 // Special case: pow(x, 0.5) => sqrt(x) 1820 Node* base = argument(0); 1821 Node* zero = _gvn.zerocon(T_DOUBLE); 1822 1823 RegionNode* region = new RegionNode(3); 1824 Node* phi = new PhiNode(region, Type::DOUBLE); 1825 1826 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1827 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1828 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1829 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1830 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1831 1832 Node* if_pow = generate_slow_guard(test, nullptr); 1833 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1834 phi->init_req(1, value_sqrt); 1835 region->init_req(1, control()); 1836 1837 if (if_pow != nullptr) { 1838 set_control(if_pow); 1839 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1840 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1841 const TypePtr* no_memory_effects = nullptr; 1842 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1843 no_memory_effects, base, top(), exp, top()); 1844 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1845 #ifdef ASSERT 1846 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1847 assert(value_top == top(), "second value must be top"); 1848 #endif 1849 phi->init_req(2, value_pow); 1850 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1851 } 1852 1853 C->set_has_split_ifs(true); // Has chance for split-if optimization 1854 set_control(_gvn.transform(region)); 1855 record_for_igvn(region); 1856 set_result(_gvn.transform(phi)); 1857 1858 return true; 1859 } 1860 } 1861 1862 return StubRoutines::dpow() != nullptr ? 1863 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1864 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1865 } 1866 1867 //------------------------------inline_math_native----------------------------- 1868 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1869 switch (id) { 1870 case vmIntrinsics::_dsin: 1871 return StubRoutines::dsin() != nullptr ? 1872 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1873 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1874 case vmIntrinsics::_dcos: 1875 return StubRoutines::dcos() != nullptr ? 1876 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1877 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1878 case vmIntrinsics::_dtan: 1879 return StubRoutines::dtan() != nullptr ? 1880 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1881 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1882 case vmIntrinsics::_dtanh: 1883 return StubRoutines::dtanh() != nullptr ? 1884 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1885 case vmIntrinsics::_dexp: 1886 return StubRoutines::dexp() != nullptr ? 1887 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1888 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1889 case vmIntrinsics::_dlog: 1890 return StubRoutines::dlog() != nullptr ? 1891 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1892 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1893 case vmIntrinsics::_dlog10: 1894 return StubRoutines::dlog10() != nullptr ? 1895 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1896 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1897 1898 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1899 case vmIntrinsics::_ceil: 1900 case vmIntrinsics::_floor: 1901 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1902 1903 case vmIntrinsics::_dsqrt: 1904 case vmIntrinsics::_dsqrt_strict: 1905 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1906 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1907 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1908 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1909 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1910 1911 case vmIntrinsics::_dpow: return inline_math_pow(); 1912 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1913 case vmIntrinsics::_fcopySign: return inline_math(id); 1914 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1915 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1916 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1917 1918 // These intrinsics are not yet correctly implemented 1919 case vmIntrinsics::_datan2: 1920 return false; 1921 1922 default: 1923 fatal_unexpected_iid(id); 1924 return false; 1925 } 1926 } 1927 1928 //----------------------------inline_notify-----------------------------------* 1929 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1930 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1931 address func; 1932 if (id == vmIntrinsics::_notify) { 1933 func = OptoRuntime::monitor_notify_Java(); 1934 } else { 1935 func = OptoRuntime::monitor_notifyAll_Java(); 1936 } 1937 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1938 make_slow_call_ex(call, env()->Throwable_klass(), false); 1939 return true; 1940 } 1941 1942 1943 //----------------------------inline_min_max----------------------------------- 1944 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1945 Node* a = nullptr; 1946 Node* b = nullptr; 1947 Node* n = nullptr; 1948 switch (id) { 1949 case vmIntrinsics::_min: 1950 case vmIntrinsics::_max: 1951 case vmIntrinsics::_minF: 1952 case vmIntrinsics::_maxF: 1953 case vmIntrinsics::_minF_strict: 1954 case vmIntrinsics::_maxF_strict: 1955 case vmIntrinsics::_min_strict: 1956 case vmIntrinsics::_max_strict: 1957 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1958 a = argument(0); 1959 b = argument(1); 1960 break; 1961 case vmIntrinsics::_minD: 1962 case vmIntrinsics::_maxD: 1963 case vmIntrinsics::_minD_strict: 1964 case vmIntrinsics::_maxD_strict: 1965 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1966 a = argument(0); 1967 b = argument(2); 1968 break; 1969 case vmIntrinsics::_minL: 1970 case vmIntrinsics::_maxL: 1971 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1972 a = argument(0); 1973 b = argument(2); 1974 break; 1975 default: 1976 fatal_unexpected_iid(id); 1977 break; 1978 } 1979 1980 switch (id) { 1981 case vmIntrinsics::_min: 1982 case vmIntrinsics::_min_strict: 1983 n = new MinINode(a, b); 1984 break; 1985 case vmIntrinsics::_max: 1986 case vmIntrinsics::_max_strict: 1987 n = new MaxINode(a, b); 1988 break; 1989 case vmIntrinsics::_minF: 1990 case vmIntrinsics::_minF_strict: 1991 n = new MinFNode(a, b); 1992 break; 1993 case vmIntrinsics::_maxF: 1994 case vmIntrinsics::_maxF_strict: 1995 n = new MaxFNode(a, b); 1996 break; 1997 case vmIntrinsics::_minD: 1998 case vmIntrinsics::_minD_strict: 1999 n = new MinDNode(a, b); 2000 break; 2001 case vmIntrinsics::_maxD: 2002 case vmIntrinsics::_maxD_strict: 2003 n = new MaxDNode(a, b); 2004 break; 2005 case vmIntrinsics::_minL: 2006 n = new MinLNode(_gvn.C, a, b); 2007 break; 2008 case vmIntrinsics::_maxL: 2009 n = new MaxLNode(_gvn.C, a, b); 2010 break; 2011 default: 2012 fatal_unexpected_iid(id); 2013 break; 2014 } 2015 2016 set_result(_gvn.transform(n)); 2017 return true; 2018 } 2019 2020 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) { 2021 if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic, 2022 env()->ArithmeticException_instance())) { 2023 // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces), 2024 // so let's bail out intrinsic rather than risking deopting again. 2025 return false; 2026 } 2027 2028 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2029 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2030 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2031 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2032 2033 { 2034 PreserveJVMState pjvms(this); 2035 PreserveReexecuteState preexecs(this); 2036 jvms()->set_should_reexecute(true); 2037 2038 set_control(slow_path); 2039 set_i_o(i_o()); 2040 2041 builtin_throw(Deoptimization::Reason_intrinsic, 2042 env()->ArithmeticException_instance(), 2043 /*allow_too_many_traps*/ false); 2044 } 2045 2046 set_control(fast_path); 2047 set_result(math); 2048 return true; 2049 } 2050 2051 template <typename OverflowOp> 2052 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2053 typedef typename OverflowOp::MathOp MathOp; 2054 2055 MathOp* mathOp = new MathOp(arg1, arg2); 2056 Node* operation = _gvn.transform( mathOp ); 2057 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2058 return inline_math_mathExact(operation, ofcheck); 2059 } 2060 2061 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2062 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2063 } 2064 2065 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2066 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2067 } 2068 2069 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2070 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2071 } 2072 2073 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2074 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2075 } 2076 2077 bool LibraryCallKit::inline_math_negateExactI() { 2078 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2079 } 2080 2081 bool LibraryCallKit::inline_math_negateExactL() { 2082 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2083 } 2084 2085 bool LibraryCallKit::inline_math_multiplyExactI() { 2086 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2087 } 2088 2089 bool LibraryCallKit::inline_math_multiplyExactL() { 2090 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2091 } 2092 2093 bool LibraryCallKit::inline_math_multiplyHigh() { 2094 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2095 return true; 2096 } 2097 2098 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2099 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2100 return true; 2101 } 2102 2103 inline int 2104 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2105 const TypePtr* base_type = TypePtr::NULL_PTR; 2106 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2107 if (base_type == nullptr) { 2108 // Unknown type. 2109 return Type::AnyPtr; 2110 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2111 // Since this is a null+long form, we have to switch to a rawptr. 2112 base = _gvn.transform(new CastX2PNode(offset)); 2113 offset = MakeConX(0); 2114 return Type::RawPtr; 2115 } else if (base_type->base() == Type::RawPtr) { 2116 return Type::RawPtr; 2117 } else if (base_type->isa_oopptr()) { 2118 // Base is never null => always a heap address. 2119 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2120 return Type::OopPtr; 2121 } 2122 // Offset is small => always a heap address. 2123 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2124 if (offset_type != nullptr && 2125 base_type->offset() == 0 && // (should always be?) 2126 offset_type->_lo >= 0 && 2127 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2128 return Type::OopPtr; 2129 } else if (type == T_OBJECT) { 2130 // off heap access to an oop doesn't make any sense. Has to be on 2131 // heap. 2132 return Type::OopPtr; 2133 } 2134 // Otherwise, it might either be oop+off or null+addr. 2135 return Type::AnyPtr; 2136 } else { 2137 // No information: 2138 return Type::AnyPtr; 2139 } 2140 } 2141 2142 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2143 Node* uncasted_base = base; 2144 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2145 if (kind == Type::RawPtr) { 2146 return basic_plus_adr(top(), uncasted_base, offset); 2147 } else if (kind == Type::AnyPtr) { 2148 assert(base == uncasted_base, "unexpected base change"); 2149 if (can_cast) { 2150 if (!_gvn.type(base)->speculative_maybe_null() && 2151 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2152 // According to profiling, this access is always on 2153 // heap. Casting the base to not null and thus avoiding membars 2154 // around the access should allow better optimizations 2155 Node* null_ctl = top(); 2156 base = null_check_oop(base, &null_ctl, true, true, true); 2157 assert(null_ctl->is_top(), "no null control here"); 2158 return basic_plus_adr(base, offset); 2159 } else if (_gvn.type(base)->speculative_always_null() && 2160 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2161 // According to profiling, this access is always off 2162 // heap. 2163 base = null_assert(base); 2164 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2165 offset = MakeConX(0); 2166 return basic_plus_adr(top(), raw_base, offset); 2167 } 2168 } 2169 // We don't know if it's an on heap or off heap access. Fall back 2170 // to raw memory access. 2171 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2172 return basic_plus_adr(top(), raw, offset); 2173 } else { 2174 assert(base == uncasted_base, "unexpected base change"); 2175 // We know it's an on heap access so base can't be null 2176 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2177 base = must_be_not_null(base, true); 2178 } 2179 return basic_plus_adr(base, offset); 2180 } 2181 } 2182 2183 //--------------------------inline_number_methods----------------------------- 2184 // inline int Integer.numberOfLeadingZeros(int) 2185 // inline int Long.numberOfLeadingZeros(long) 2186 // 2187 // inline int Integer.numberOfTrailingZeros(int) 2188 // inline int Long.numberOfTrailingZeros(long) 2189 // 2190 // inline int Integer.bitCount(int) 2191 // inline int Long.bitCount(long) 2192 // 2193 // inline char Character.reverseBytes(char) 2194 // inline short Short.reverseBytes(short) 2195 // inline int Integer.reverseBytes(int) 2196 // inline long Long.reverseBytes(long) 2197 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2198 Node* arg = argument(0); 2199 Node* n = nullptr; 2200 switch (id) { 2201 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2202 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2203 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2204 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2205 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2206 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2207 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2208 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2209 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2210 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2211 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2212 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2213 default: fatal_unexpected_iid(id); break; 2214 } 2215 set_result(_gvn.transform(n)); 2216 return true; 2217 } 2218 2219 //--------------------------inline_bitshuffle_methods----------------------------- 2220 // inline int Integer.compress(int, int) 2221 // inline int Integer.expand(int, int) 2222 // inline long Long.compress(long, long) 2223 // inline long Long.expand(long, long) 2224 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2225 Node* n = nullptr; 2226 switch (id) { 2227 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2228 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2229 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2230 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2231 default: fatal_unexpected_iid(id); break; 2232 } 2233 set_result(_gvn.transform(n)); 2234 return true; 2235 } 2236 2237 //--------------------------inline_number_methods----------------------------- 2238 // inline int Integer.compareUnsigned(int, int) 2239 // inline int Long.compareUnsigned(long, long) 2240 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2241 Node* arg1 = argument(0); 2242 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2243 Node* n = nullptr; 2244 switch (id) { 2245 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2246 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2247 default: fatal_unexpected_iid(id); break; 2248 } 2249 set_result(_gvn.transform(n)); 2250 return true; 2251 } 2252 2253 //--------------------------inline_unsigned_divmod_methods----------------------------- 2254 // inline int Integer.divideUnsigned(int, int) 2255 // inline int Integer.remainderUnsigned(int, int) 2256 // inline long Long.divideUnsigned(long, long) 2257 // inline long Long.remainderUnsigned(long, long) 2258 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2259 Node* n = nullptr; 2260 switch (id) { 2261 case vmIntrinsics::_divideUnsigned_i: { 2262 zero_check_int(argument(1)); 2263 // Compile-time detect of null-exception 2264 if (stopped()) { 2265 return true; // keep the graph constructed so far 2266 } 2267 n = new UDivINode(control(), argument(0), argument(1)); 2268 break; 2269 } 2270 case vmIntrinsics::_divideUnsigned_l: { 2271 zero_check_long(argument(2)); 2272 // Compile-time detect of null-exception 2273 if (stopped()) { 2274 return true; // keep the graph constructed so far 2275 } 2276 n = new UDivLNode(control(), argument(0), argument(2)); 2277 break; 2278 } 2279 case vmIntrinsics::_remainderUnsigned_i: { 2280 zero_check_int(argument(1)); 2281 // Compile-time detect of null-exception 2282 if (stopped()) { 2283 return true; // keep the graph constructed so far 2284 } 2285 n = new UModINode(control(), argument(0), argument(1)); 2286 break; 2287 } 2288 case vmIntrinsics::_remainderUnsigned_l: { 2289 zero_check_long(argument(2)); 2290 // Compile-time detect of null-exception 2291 if (stopped()) { 2292 return true; // keep the graph constructed so far 2293 } 2294 n = new UModLNode(control(), argument(0), argument(2)); 2295 break; 2296 } 2297 default: fatal_unexpected_iid(id); break; 2298 } 2299 set_result(_gvn.transform(n)); 2300 return true; 2301 } 2302 2303 //----------------------------inline_unsafe_access---------------------------- 2304 2305 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2306 // Attempt to infer a sharper value type from the offset and base type. 2307 ciKlass* sharpened_klass = nullptr; 2308 2309 // See if it is an instance field, with an object type. 2310 if (alias_type->field() != nullptr) { 2311 if (alias_type->field()->type()->is_klass()) { 2312 sharpened_klass = alias_type->field()->type()->as_klass(); 2313 } 2314 } 2315 2316 const TypeOopPtr* result = nullptr; 2317 // See if it is a narrow oop array. 2318 if (adr_type->isa_aryptr()) { 2319 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2320 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2321 if (elem_type != nullptr && elem_type->is_loaded()) { 2322 // Sharpen the value type. 2323 result = elem_type; 2324 } 2325 } 2326 } 2327 2328 // The sharpened class might be unloaded if there is no class loader 2329 // contraint in place. 2330 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2331 // Sharpen the value type. 2332 result = TypeOopPtr::make_from_klass(sharpened_klass); 2333 } 2334 if (result != nullptr) { 2335 #ifndef PRODUCT 2336 if (C->print_intrinsics() || C->print_inlining()) { 2337 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2338 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2339 } 2340 #endif 2341 } 2342 return result; 2343 } 2344 2345 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2346 switch (kind) { 2347 case Relaxed: 2348 return MO_UNORDERED; 2349 case Opaque: 2350 return MO_RELAXED; 2351 case Acquire: 2352 return MO_ACQUIRE; 2353 case Release: 2354 return MO_RELEASE; 2355 case Volatile: 2356 return MO_SEQ_CST; 2357 default: 2358 ShouldNotReachHere(); 2359 return 0; 2360 } 2361 } 2362 2363 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2364 if (callee()->is_static()) return false; // caller must have the capability! 2365 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2366 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2367 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2368 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2369 2370 if (is_reference_type(type)) { 2371 decorators |= ON_UNKNOWN_OOP_REF; 2372 } 2373 2374 if (unaligned) { 2375 decorators |= C2_UNALIGNED; 2376 } 2377 2378 #ifndef PRODUCT 2379 { 2380 ResourceMark rm; 2381 // Check the signatures. 2382 ciSignature* sig = callee()->signature(); 2383 #ifdef ASSERT 2384 if (!is_store) { 2385 // Object getReference(Object base, int/long offset), etc. 2386 BasicType rtype = sig->return_type()->basic_type(); 2387 assert(rtype == type, "getter must return the expected value"); 2388 assert(sig->count() == 2, "oop getter has 2 arguments"); 2389 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2390 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2391 } else { 2392 // void putReference(Object base, int/long offset, Object x), etc. 2393 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2394 assert(sig->count() == 3, "oop putter has 3 arguments"); 2395 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2396 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2397 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2398 assert(vtype == type, "putter must accept the expected value"); 2399 } 2400 #endif // ASSERT 2401 } 2402 #endif //PRODUCT 2403 2404 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2405 2406 Node* receiver = argument(0); // type: oop 2407 2408 // Build address expression. 2409 Node* heap_base_oop = top(); 2410 2411 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2412 Node* base = argument(1); // type: oop 2413 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2414 Node* offset = argument(2); // type: long 2415 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2416 // to be plain byte offsets, which are also the same as those accepted 2417 // by oopDesc::field_addr. 2418 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2419 "fieldOffset must be byte-scaled"); 2420 // 32-bit machines ignore the high half! 2421 offset = ConvL2X(offset); 2422 2423 // Save state and restore on bailout 2424 uint old_sp = sp(); 2425 SafePointNode* old_map = clone_map(); 2426 2427 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2428 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2429 2430 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2431 if (type != T_OBJECT) { 2432 decorators |= IN_NATIVE; // off-heap primitive access 2433 } else { 2434 set_map(old_map); 2435 set_sp(old_sp); 2436 return false; // off-heap oop accesses are not supported 2437 } 2438 } else { 2439 heap_base_oop = base; // on-heap or mixed access 2440 } 2441 2442 // Can base be null? Otherwise, always on-heap access. 2443 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2444 2445 if (!can_access_non_heap) { 2446 decorators |= IN_HEAP; 2447 } 2448 2449 Node* val = is_store ? argument(4) : nullptr; 2450 2451 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2452 if (adr_type == TypePtr::NULL_PTR) { 2453 set_map(old_map); 2454 set_sp(old_sp); 2455 return false; // off-heap access with zero address 2456 } 2457 2458 // Try to categorize the address. 2459 Compile::AliasType* alias_type = C->alias_type(adr_type); 2460 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2461 2462 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2463 alias_type->adr_type() == TypeAryPtr::RANGE) { 2464 set_map(old_map); 2465 set_sp(old_sp); 2466 return false; // not supported 2467 } 2468 2469 bool mismatched = false; 2470 BasicType bt = alias_type->basic_type(); 2471 if (bt != T_ILLEGAL) { 2472 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2473 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2474 // Alias type doesn't differentiate between byte[] and boolean[]). 2475 // Use address type to get the element type. 2476 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2477 } 2478 if (is_reference_type(bt, true)) { 2479 // accessing an array field with getReference is not a mismatch 2480 bt = T_OBJECT; 2481 } 2482 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2483 // Don't intrinsify mismatched object accesses 2484 set_map(old_map); 2485 set_sp(old_sp); 2486 return false; 2487 } 2488 mismatched = (bt != type); 2489 } else if (alias_type->adr_type()->isa_oopptr()) { 2490 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2491 } 2492 2493 destruct_map_clone(old_map); 2494 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2495 2496 if (mismatched) { 2497 decorators |= C2_MISMATCHED; 2498 } 2499 2500 // First guess at the value type. 2501 const Type *value_type = Type::get_const_basic_type(type); 2502 2503 // Figure out the memory ordering. 2504 decorators |= mo_decorator_for_access_kind(kind); 2505 2506 if (!is_store && type == T_OBJECT) { 2507 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2508 if (tjp != nullptr) { 2509 value_type = tjp; 2510 } 2511 } 2512 2513 receiver = null_check(receiver); 2514 if (stopped()) { 2515 return true; 2516 } 2517 // Heap pointers get a null-check from the interpreter, 2518 // as a courtesy. However, this is not guaranteed by Unsafe, 2519 // and it is not possible to fully distinguish unintended nulls 2520 // from intended ones in this API. 2521 2522 if (!is_store) { 2523 Node* p = nullptr; 2524 // Try to constant fold a load from a constant field 2525 ciField* field = alias_type->field(); 2526 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2527 // final or stable field 2528 p = make_constant_from_field(field, heap_base_oop); 2529 } 2530 2531 if (p == nullptr) { // Could not constant fold the load 2532 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2533 // Normalize the value returned by getBoolean in the following cases 2534 if (type == T_BOOLEAN && 2535 (mismatched || 2536 heap_base_oop == top() || // - heap_base_oop is null or 2537 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2538 // and the unsafe access is made to large offset 2539 // (i.e., larger than the maximum offset necessary for any 2540 // field access) 2541 ) { 2542 IdealKit ideal = IdealKit(this); 2543 #define __ ideal. 2544 IdealVariable normalized_result(ideal); 2545 __ declarations_done(); 2546 __ set(normalized_result, p); 2547 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2548 __ set(normalized_result, ideal.ConI(1)); 2549 ideal.end_if(); 2550 final_sync(ideal); 2551 p = __ value(normalized_result); 2552 #undef __ 2553 } 2554 } 2555 if (type == T_ADDRESS) { 2556 p = gvn().transform(new CastP2XNode(nullptr, p)); 2557 p = ConvX2UL(p); 2558 } 2559 // The load node has the control of the preceding MemBarCPUOrder. All 2560 // following nodes will have the control of the MemBarCPUOrder inserted at 2561 // the end of this method. So, pushing the load onto the stack at a later 2562 // point is fine. 2563 set_result(p); 2564 } else { 2565 if (bt == T_ADDRESS) { 2566 // Repackage the long as a pointer. 2567 val = ConvL2X(val); 2568 val = gvn().transform(new CastX2PNode(val)); 2569 } 2570 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2571 } 2572 2573 return true; 2574 } 2575 2576 //----------------------------inline_unsafe_load_store---------------------------- 2577 // This method serves a couple of different customers (depending on LoadStoreKind): 2578 // 2579 // LS_cmp_swap: 2580 // 2581 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2582 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2583 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2584 // 2585 // LS_cmp_swap_weak: 2586 // 2587 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2588 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2589 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2590 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2591 // 2592 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2593 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2594 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2595 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2596 // 2597 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2598 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2599 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2600 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2601 // 2602 // LS_cmp_exchange: 2603 // 2604 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2605 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2606 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2607 // 2608 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2609 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2610 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2611 // 2612 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2613 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2614 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2615 // 2616 // LS_get_add: 2617 // 2618 // int getAndAddInt( Object o, long offset, int delta) 2619 // long getAndAddLong(Object o, long offset, long delta) 2620 // 2621 // LS_get_set: 2622 // 2623 // int getAndSet(Object o, long offset, int newValue) 2624 // long getAndSet(Object o, long offset, long newValue) 2625 // Object getAndSet(Object o, long offset, Object newValue) 2626 // 2627 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2628 // This basic scheme here is the same as inline_unsafe_access, but 2629 // differs in enough details that combining them would make the code 2630 // overly confusing. (This is a true fact! I originally combined 2631 // them, but even I was confused by it!) As much code/comments as 2632 // possible are retained from inline_unsafe_access though to make 2633 // the correspondences clearer. - dl 2634 2635 if (callee()->is_static()) return false; // caller must have the capability! 2636 2637 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2638 decorators |= mo_decorator_for_access_kind(access_kind); 2639 2640 #ifndef PRODUCT 2641 BasicType rtype; 2642 { 2643 ResourceMark rm; 2644 // Check the signatures. 2645 ciSignature* sig = callee()->signature(); 2646 rtype = sig->return_type()->basic_type(); 2647 switch(kind) { 2648 case LS_get_add: 2649 case LS_get_set: { 2650 // Check the signatures. 2651 #ifdef ASSERT 2652 assert(rtype == type, "get and set must return the expected type"); 2653 assert(sig->count() == 3, "get and set has 3 arguments"); 2654 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2655 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2656 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2657 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2658 #endif // ASSERT 2659 break; 2660 } 2661 case LS_cmp_swap: 2662 case LS_cmp_swap_weak: { 2663 // Check the signatures. 2664 #ifdef ASSERT 2665 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2666 assert(sig->count() == 4, "CAS has 4 arguments"); 2667 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2668 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2669 #endif // ASSERT 2670 break; 2671 } 2672 case LS_cmp_exchange: { 2673 // Check the signatures. 2674 #ifdef ASSERT 2675 assert(rtype == type, "CAS must return the expected type"); 2676 assert(sig->count() == 4, "CAS has 4 arguments"); 2677 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2678 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2679 #endif // ASSERT 2680 break; 2681 } 2682 default: 2683 ShouldNotReachHere(); 2684 } 2685 } 2686 #endif //PRODUCT 2687 2688 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2689 2690 // Get arguments: 2691 Node* receiver = nullptr; 2692 Node* base = nullptr; 2693 Node* offset = nullptr; 2694 Node* oldval = nullptr; 2695 Node* newval = nullptr; 2696 switch(kind) { 2697 case LS_cmp_swap: 2698 case LS_cmp_swap_weak: 2699 case LS_cmp_exchange: { 2700 const bool two_slot_type = type2size[type] == 2; 2701 receiver = argument(0); // type: oop 2702 base = argument(1); // type: oop 2703 offset = argument(2); // type: long 2704 oldval = argument(4); // type: oop, int, or long 2705 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2706 break; 2707 } 2708 case LS_get_add: 2709 case LS_get_set: { 2710 receiver = argument(0); // type: oop 2711 base = argument(1); // type: oop 2712 offset = argument(2); // type: long 2713 oldval = nullptr; 2714 newval = argument(4); // type: oop, int, or long 2715 break; 2716 } 2717 default: 2718 ShouldNotReachHere(); 2719 } 2720 2721 // Build field offset expression. 2722 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2723 // to be plain byte offsets, which are also the same as those accepted 2724 // by oopDesc::field_addr. 2725 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2726 // 32-bit machines ignore the high half of long offsets 2727 offset = ConvL2X(offset); 2728 // Save state and restore on bailout 2729 uint old_sp = sp(); 2730 SafePointNode* old_map = clone_map(); 2731 Node* adr = make_unsafe_address(base, offset,type, false); 2732 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2733 2734 Compile::AliasType* alias_type = C->alias_type(adr_type); 2735 BasicType bt = alias_type->basic_type(); 2736 if (bt != T_ILLEGAL && 2737 (is_reference_type(bt) != (type == T_OBJECT))) { 2738 // Don't intrinsify mismatched object accesses. 2739 set_map(old_map); 2740 set_sp(old_sp); 2741 return false; 2742 } 2743 2744 destruct_map_clone(old_map); 2745 2746 // For CAS, unlike inline_unsafe_access, there seems no point in 2747 // trying to refine types. Just use the coarse types here. 2748 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2749 const Type *value_type = Type::get_const_basic_type(type); 2750 2751 switch (kind) { 2752 case LS_get_set: 2753 case LS_cmp_exchange: { 2754 if (type == T_OBJECT) { 2755 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2756 if (tjp != nullptr) { 2757 value_type = tjp; 2758 } 2759 } 2760 break; 2761 } 2762 case LS_cmp_swap: 2763 case LS_cmp_swap_weak: 2764 case LS_get_add: 2765 break; 2766 default: 2767 ShouldNotReachHere(); 2768 } 2769 2770 // Null check receiver. 2771 receiver = null_check(receiver); 2772 if (stopped()) { 2773 return true; 2774 } 2775 2776 int alias_idx = C->get_alias_index(adr_type); 2777 2778 if (is_reference_type(type)) { 2779 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2780 2781 // Transformation of a value which could be null pointer (CastPP #null) 2782 // could be delayed during Parse (for example, in adjust_map_after_if()). 2783 // Execute transformation here to avoid barrier generation in such case. 2784 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2785 newval = _gvn.makecon(TypePtr::NULL_PTR); 2786 2787 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2788 // Refine the value to a null constant, when it is known to be null 2789 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2790 } 2791 } 2792 2793 Node* result = nullptr; 2794 switch (kind) { 2795 case LS_cmp_exchange: { 2796 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2797 oldval, newval, value_type, type, decorators); 2798 break; 2799 } 2800 case LS_cmp_swap_weak: 2801 decorators |= C2_WEAK_CMPXCHG; 2802 case LS_cmp_swap: { 2803 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2804 oldval, newval, value_type, type, decorators); 2805 break; 2806 } 2807 case LS_get_set: { 2808 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2809 newval, value_type, type, decorators); 2810 break; 2811 } 2812 case LS_get_add: { 2813 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2814 newval, value_type, type, decorators); 2815 break; 2816 } 2817 default: 2818 ShouldNotReachHere(); 2819 } 2820 2821 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2822 set_result(result); 2823 return true; 2824 } 2825 2826 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2827 // Regardless of form, don't allow previous ld/st to move down, 2828 // then issue acquire, release, or volatile mem_bar. 2829 insert_mem_bar(Op_MemBarCPUOrder); 2830 switch(id) { 2831 case vmIntrinsics::_loadFence: 2832 insert_mem_bar(Op_LoadFence); 2833 return true; 2834 case vmIntrinsics::_storeFence: 2835 insert_mem_bar(Op_StoreFence); 2836 return true; 2837 case vmIntrinsics::_storeStoreFence: 2838 insert_mem_bar(Op_StoreStoreFence); 2839 return true; 2840 case vmIntrinsics::_fullFence: 2841 insert_mem_bar(Op_MemBarVolatile); 2842 return true; 2843 default: 2844 fatal_unexpected_iid(id); 2845 return false; 2846 } 2847 } 2848 2849 bool LibraryCallKit::inline_onspinwait() { 2850 insert_mem_bar(Op_OnSpinWait); 2851 return true; 2852 } 2853 2854 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2855 if (!kls->is_Con()) { 2856 return true; 2857 } 2858 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2859 if (klsptr == nullptr) { 2860 return true; 2861 } 2862 ciInstanceKlass* ik = klsptr->instance_klass(); 2863 // don't need a guard for a klass that is already initialized 2864 return !ik->is_initialized(); 2865 } 2866 2867 //----------------------------inline_unsafe_writeback0------------------------- 2868 // public native void Unsafe.writeback0(long address) 2869 bool LibraryCallKit::inline_unsafe_writeback0() { 2870 if (!Matcher::has_match_rule(Op_CacheWB)) { 2871 return false; 2872 } 2873 #ifndef PRODUCT 2874 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2875 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2876 ciSignature* sig = callee()->signature(); 2877 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2878 #endif 2879 null_check_receiver(); // null-check, then ignore 2880 Node *addr = argument(1); 2881 addr = new CastX2PNode(addr); 2882 addr = _gvn.transform(addr); 2883 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2884 flush = _gvn.transform(flush); 2885 set_memory(flush, TypeRawPtr::BOTTOM); 2886 return true; 2887 } 2888 2889 //----------------------------inline_unsafe_writeback0------------------------- 2890 // public native void Unsafe.writeback0(long address) 2891 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2892 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2893 return false; 2894 } 2895 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2896 return false; 2897 } 2898 #ifndef PRODUCT 2899 assert(Matcher::has_match_rule(Op_CacheWB), 2900 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2901 : "found match rule for CacheWBPostSync but not CacheWB")); 2902 2903 #endif 2904 null_check_receiver(); // null-check, then ignore 2905 Node *sync; 2906 if (is_pre) { 2907 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2908 } else { 2909 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2910 } 2911 sync = _gvn.transform(sync); 2912 set_memory(sync, TypeRawPtr::BOTTOM); 2913 return true; 2914 } 2915 2916 //----------------------------inline_unsafe_allocate--------------------------- 2917 // public native Object Unsafe.allocateInstance(Class<?> cls); 2918 bool LibraryCallKit::inline_unsafe_allocate() { 2919 2920 #if INCLUDE_JVMTI 2921 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2922 return false; 2923 } 2924 #endif //INCLUDE_JVMTI 2925 2926 if (callee()->is_static()) return false; // caller must have the capability! 2927 2928 null_check_receiver(); // null-check, then ignore 2929 Node* cls = null_check(argument(1)); 2930 if (stopped()) return true; 2931 2932 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2933 kls = null_check(kls); 2934 if (stopped()) return true; // argument was like int.class 2935 2936 #if INCLUDE_JVMTI 2937 // Don't try to access new allocated obj in the intrinsic. 2938 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2939 // Deoptimize and allocate in interpreter instead. 2940 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2941 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2942 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2943 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2944 { 2945 BuildCutout unless(this, tst, PROB_MAX); 2946 uncommon_trap(Deoptimization::Reason_intrinsic, 2947 Deoptimization::Action_make_not_entrant); 2948 } 2949 if (stopped()) { 2950 return true; 2951 } 2952 #endif //INCLUDE_JVMTI 2953 2954 Node* test = nullptr; 2955 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2956 // Note: The argument might still be an illegal value like 2957 // Serializable.class or Object[].class. The runtime will handle it. 2958 // But we must make an explicit check for initialization. 2959 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2960 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2961 // can generate code to load it as unsigned byte. 2962 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 2963 Node* bits = intcon(InstanceKlass::fully_initialized); 2964 test = _gvn.transform(new SubINode(inst, bits)); 2965 // The 'test' is non-zero if we need to take a slow path. 2966 } 2967 2968 Node* obj = new_instance(kls, test); 2969 set_result(obj); 2970 return true; 2971 } 2972 2973 //------------------------inline_native_time_funcs-------------- 2974 // inline code for System.currentTimeMillis() and System.nanoTime() 2975 // these have the same type and signature 2976 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2977 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2978 const TypePtr* no_memory_effects = nullptr; 2979 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2980 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2981 #ifdef ASSERT 2982 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2983 assert(value_top == top(), "second value must be top"); 2984 #endif 2985 set_result(value); 2986 return true; 2987 } 2988 2989 2990 #if INCLUDE_JVMTI 2991 2992 // When notifications are disabled then just update the VTMS transition bit and return. 2993 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2994 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2995 if (!DoJVMTIVirtualThreadTransitions) { 2996 return true; 2997 } 2998 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2999 IdealKit ideal(this); 3000 3001 Node* ONE = ideal.ConI(1); 3002 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3003 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3004 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3005 3006 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3007 sync_kit(ideal); 3008 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3009 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3010 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3011 ideal.sync_kit(this); 3012 } ideal.else_(); { 3013 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3014 Node* thread = ideal.thread(); 3015 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3016 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3017 3018 sync_kit(ideal); 3019 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3020 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3021 3022 ideal.sync_kit(this); 3023 } ideal.end_if(); 3024 final_sync(ideal); 3025 3026 return true; 3027 } 3028 3029 // Always update the is_disable_suspend bit. 3030 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3031 if (!DoJVMTIVirtualThreadTransitions) { 3032 return true; 3033 } 3034 IdealKit ideal(this); 3035 3036 { 3037 // unconditionally update the is_disable_suspend bit in current JavaThread 3038 Node* thread = ideal.thread(); 3039 Node* arg = _gvn.transform(argument(0)); // argument for notification 3040 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3041 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3042 3043 sync_kit(ideal); 3044 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3045 ideal.sync_kit(this); 3046 } 3047 final_sync(ideal); 3048 3049 return true; 3050 } 3051 3052 #endif // INCLUDE_JVMTI 3053 3054 #ifdef JFR_HAVE_INTRINSICS 3055 3056 /** 3057 * if oop->klass != null 3058 * // normal class 3059 * epoch = _epoch_state ? 2 : 1 3060 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3061 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3062 * } 3063 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3064 * else 3065 * // primitive class 3066 * if oop->array_klass != null 3067 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3068 * else 3069 * id = LAST_TYPE_ID + 1 // void class path 3070 * if (!signaled) 3071 * signaled = true 3072 */ 3073 bool LibraryCallKit::inline_native_classID() { 3074 Node* cls = argument(0); 3075 3076 IdealKit ideal(this); 3077 #define __ ideal. 3078 IdealVariable result(ideal); __ declarations_done(); 3079 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3080 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3081 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3082 3083 3084 __ if_then(kls, BoolTest::ne, null()); { 3085 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3086 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3087 3088 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3089 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3090 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3091 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3092 mask = _gvn.transform(new OrLNode(mask, epoch)); 3093 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3094 3095 float unlikely = PROB_UNLIKELY(0.999); 3096 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3097 sync_kit(ideal); 3098 make_runtime_call(RC_LEAF, 3099 OptoRuntime::class_id_load_barrier_Type(), 3100 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3101 "class id load barrier", 3102 TypePtr::BOTTOM, 3103 kls); 3104 ideal.sync_kit(this); 3105 } __ end_if(); 3106 3107 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3108 } __ else_(); { 3109 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3110 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3111 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3112 __ if_then(array_kls, BoolTest::ne, null()); { 3113 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3114 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3115 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3116 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3117 } __ else_(); { 3118 // void class case 3119 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3120 } __ end_if(); 3121 3122 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3123 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3124 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3125 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3126 } __ end_if(); 3127 } __ end_if(); 3128 3129 final_sync(ideal); 3130 set_result(ideal.value(result)); 3131 #undef __ 3132 return true; 3133 } 3134 3135 //------------------------inline_native_jvm_commit------------------ 3136 bool LibraryCallKit::inline_native_jvm_commit() { 3137 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3138 3139 // Save input memory and i_o state. 3140 Node* input_memory_state = reset_memory(); 3141 set_all_memory(input_memory_state); 3142 Node* input_io_state = i_o(); 3143 3144 // TLS. 3145 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3146 // Jfr java buffer. 3147 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3148 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3149 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3150 3151 // Load the current value of the notified field in the JfrThreadLocal. 3152 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3153 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3154 3155 // Test for notification. 3156 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3157 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3158 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3159 3160 // True branch, is notified. 3161 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3162 set_control(is_notified); 3163 3164 // Reset notified state. 3165 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3166 Node* notified_reset_memory = reset_memory(); 3167 3168 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3169 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3170 // Convert the machine-word to a long. 3171 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3172 3173 // False branch, not notified. 3174 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3175 set_control(not_notified); 3176 set_all_memory(input_memory_state); 3177 3178 // Arg is the next position as a long. 3179 Node* arg = argument(0); 3180 // Convert long to machine-word. 3181 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3182 3183 // Store the next_position to the underlying jfr java buffer. 3184 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3185 3186 Node* commit_memory = reset_memory(); 3187 set_all_memory(commit_memory); 3188 3189 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3190 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3191 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3192 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3193 3194 // And flags with lease constant. 3195 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3196 3197 // Branch on lease to conditionalize returning the leased java buffer. 3198 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3199 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3200 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3201 3202 // False branch, not a lease. 3203 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3204 3205 // True branch, is lease. 3206 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3207 set_control(is_lease); 3208 3209 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3210 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3211 OptoRuntime::void_void_Type(), 3212 SharedRuntime::jfr_return_lease(), 3213 "return_lease", TypePtr::BOTTOM); 3214 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3215 3216 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3217 record_for_igvn(lease_compare_rgn); 3218 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3219 record_for_igvn(lease_compare_mem); 3220 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3221 record_for_igvn(lease_compare_io); 3222 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3223 record_for_igvn(lease_result_value); 3224 3225 // Update control and phi nodes. 3226 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3227 lease_compare_rgn->init_req(_false_path, not_lease); 3228 3229 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3230 lease_compare_mem->init_req(_false_path, commit_memory); 3231 3232 lease_compare_io->init_req(_true_path, i_o()); 3233 lease_compare_io->init_req(_false_path, input_io_state); 3234 3235 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3236 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3237 3238 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3239 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3240 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3241 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3242 3243 // Update control and phi nodes. 3244 result_rgn->init_req(_true_path, is_notified); 3245 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3246 3247 result_mem->init_req(_true_path, notified_reset_memory); 3248 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3249 3250 result_io->init_req(_true_path, input_io_state); 3251 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3252 3253 result_value->init_req(_true_path, current_pos); 3254 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3255 3256 // Set output state. 3257 set_control(_gvn.transform(result_rgn)); 3258 set_all_memory(_gvn.transform(result_mem)); 3259 set_i_o(_gvn.transform(result_io)); 3260 set_result(result_rgn, result_value); 3261 return true; 3262 } 3263 3264 /* 3265 * The intrinsic is a model of this pseudo-code: 3266 * 3267 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3268 * jobject h_event_writer = tl->java_event_writer(); 3269 * if (h_event_writer == nullptr) { 3270 * return nullptr; 3271 * } 3272 * oop threadObj = Thread::threadObj(); 3273 * oop vthread = java_lang_Thread::vthread(threadObj); 3274 * traceid tid; 3275 * bool pinVirtualThread; 3276 * bool excluded; 3277 * if (vthread != threadObj) { // i.e. current thread is virtual 3278 * tid = java_lang_Thread::tid(vthread); 3279 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3280 * pinVirtualThread = VMContinuations; 3281 * excluded = vthread_epoch_raw & excluded_mask; 3282 * if (!excluded) { 3283 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3284 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3285 * if (vthread_epoch != current_epoch) { 3286 * write_checkpoint(); 3287 * } 3288 * } 3289 * } else { 3290 * tid = java_lang_Thread::tid(threadObj); 3291 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3292 * pinVirtualThread = false; 3293 * excluded = thread_epoch_raw & excluded_mask; 3294 * } 3295 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3296 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3297 * if (tid_in_event_writer != tid) { 3298 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3299 * setField(event_writer, "excluded", excluded); 3300 * setField(event_writer, "threadID", tid); 3301 * } 3302 * return event_writer 3303 */ 3304 bool LibraryCallKit::inline_native_getEventWriter() { 3305 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3306 3307 // Save input memory and i_o state. 3308 Node* input_memory_state = reset_memory(); 3309 set_all_memory(input_memory_state); 3310 Node* input_io_state = i_o(); 3311 3312 // The most significant bit of the u2 is used to denote thread exclusion 3313 Node* excluded_shift = _gvn.intcon(15); 3314 Node* excluded_mask = _gvn.intcon(1 << 15); 3315 // The epoch generation is the range [1-32767] 3316 Node* epoch_mask = _gvn.intcon(32767); 3317 3318 // TLS 3319 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3320 3321 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3322 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3323 3324 // Load the eventwriter jobject handle. 3325 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3326 3327 // Null check the jobject handle. 3328 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3329 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3330 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3331 3332 // False path, jobj is null. 3333 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3334 3335 // True path, jobj is not null. 3336 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3337 3338 set_control(jobj_is_not_null); 3339 3340 // Load the threadObj for the CarrierThread. 3341 Node* threadObj = generate_current_thread(tls_ptr); 3342 3343 // Load the vthread. 3344 Node* vthread = generate_virtual_thread(tls_ptr); 3345 3346 // If vthread != threadObj, this is a virtual thread. 3347 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3348 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3349 IfNode* iff_vthread_not_equal_threadObj = 3350 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3351 3352 // False branch, fallback to threadObj. 3353 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3354 set_control(vthread_equal_threadObj); 3355 3356 // Load the tid field from the vthread object. 3357 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3358 3359 // Load the raw epoch value from the threadObj. 3360 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3361 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3362 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3363 TypeInt::CHAR, T_CHAR, 3364 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3365 3366 // Mask off the excluded information from the epoch. 3367 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3368 3369 // True branch, this is a virtual thread. 3370 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3371 set_control(vthread_not_equal_threadObj); 3372 3373 // Load the tid field from the vthread object. 3374 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3375 3376 // Continuation support determines if a virtual thread should be pinned. 3377 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3378 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3379 3380 // Load the raw epoch value from the vthread. 3381 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3382 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3383 TypeInt::CHAR, T_CHAR, 3384 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3385 3386 // Mask off the excluded information from the epoch. 3387 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3388 3389 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3390 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3391 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3392 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3393 3394 // False branch, vthread is excluded, no need to write epoch info. 3395 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3396 3397 // True branch, vthread is included, update epoch info. 3398 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3399 set_control(included); 3400 3401 // Get epoch value. 3402 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3403 3404 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3405 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3406 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3407 3408 // Compare the epoch in the vthread to the current epoch generation. 3409 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3410 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3411 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3412 3413 // False path, epoch is equal, checkpoint information is valid. 3414 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3415 3416 // True path, epoch is not equal, write a checkpoint for the vthread. 3417 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3418 3419 set_control(epoch_is_not_equal); 3420 3421 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3422 // The call also updates the native thread local thread id and the vthread with the current epoch. 3423 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3424 OptoRuntime::jfr_write_checkpoint_Type(), 3425 SharedRuntime::jfr_write_checkpoint(), 3426 "write_checkpoint", TypePtr::BOTTOM); 3427 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3428 3429 // vthread epoch != current epoch 3430 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3431 record_for_igvn(epoch_compare_rgn); 3432 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3433 record_for_igvn(epoch_compare_mem); 3434 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3435 record_for_igvn(epoch_compare_io); 3436 3437 // Update control and phi nodes. 3438 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3439 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3440 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3441 epoch_compare_mem->init_req(_false_path, input_memory_state); 3442 epoch_compare_io->init_req(_true_path, i_o()); 3443 epoch_compare_io->init_req(_false_path, input_io_state); 3444 3445 // excluded != true 3446 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3447 record_for_igvn(exclude_compare_rgn); 3448 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3449 record_for_igvn(exclude_compare_mem); 3450 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3451 record_for_igvn(exclude_compare_io); 3452 3453 // Update control and phi nodes. 3454 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3455 exclude_compare_rgn->init_req(_false_path, excluded); 3456 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3457 exclude_compare_mem->init_req(_false_path, input_memory_state); 3458 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3459 exclude_compare_io->init_req(_false_path, input_io_state); 3460 3461 // vthread != threadObj 3462 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3463 record_for_igvn(vthread_compare_rgn); 3464 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3465 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3466 record_for_igvn(vthread_compare_io); 3467 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3468 record_for_igvn(tid); 3469 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3470 record_for_igvn(exclusion); 3471 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3472 record_for_igvn(pinVirtualThread); 3473 3474 // Update control and phi nodes. 3475 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3476 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3477 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3478 vthread_compare_mem->init_req(_false_path, input_memory_state); 3479 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3480 vthread_compare_io->init_req(_false_path, input_io_state); 3481 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3482 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3483 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3484 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3485 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3486 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3487 3488 // Update branch state. 3489 set_control(_gvn.transform(vthread_compare_rgn)); 3490 set_all_memory(_gvn.transform(vthread_compare_mem)); 3491 set_i_o(_gvn.transform(vthread_compare_io)); 3492 3493 // Load the event writer oop by dereferencing the jobject handle. 3494 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3495 assert(klass_EventWriter->is_loaded(), "invariant"); 3496 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3497 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3498 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3499 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3500 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3501 3502 // Load the current thread id from the event writer object. 3503 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3504 // Get the field offset to, conditionally, store an updated tid value later. 3505 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3506 // Get the field offset to, conditionally, store an updated exclusion value later. 3507 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3508 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3509 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3510 3511 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3512 record_for_igvn(event_writer_tid_compare_rgn); 3513 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3514 record_for_igvn(event_writer_tid_compare_mem); 3515 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3516 record_for_igvn(event_writer_tid_compare_io); 3517 3518 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3519 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3520 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3521 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3522 3523 // False path, tids are the same. 3524 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3525 3526 // True path, tid is not equal, need to update the tid in the event writer. 3527 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3528 record_for_igvn(tid_is_not_equal); 3529 3530 // Store the pin state to the event writer. 3531 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3532 3533 // Store the exclusion state to the event writer. 3534 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3535 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3536 3537 // Store the tid to the event writer. 3538 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3539 3540 // Update control and phi nodes. 3541 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3542 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3543 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3544 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3545 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3546 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3547 3548 // Result of top level CFG, Memory, IO and Value. 3549 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3550 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3551 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3552 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3553 3554 // Result control. 3555 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3556 result_rgn->init_req(_false_path, jobj_is_null); 3557 3558 // Result memory. 3559 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3560 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3561 3562 // Result IO. 3563 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3564 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3565 3566 // Result value. 3567 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3568 result_value->init_req(_false_path, null()); // return null 3569 3570 // Set output state. 3571 set_control(_gvn.transform(result_rgn)); 3572 set_all_memory(_gvn.transform(result_mem)); 3573 set_i_o(_gvn.transform(result_io)); 3574 set_result(result_rgn, result_value); 3575 return true; 3576 } 3577 3578 /* 3579 * The intrinsic is a model of this pseudo-code: 3580 * 3581 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3582 * if (carrierThread != thread) { // is virtual thread 3583 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3584 * bool excluded = vthread_epoch_raw & excluded_mask; 3585 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3586 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3587 * if (!excluded) { 3588 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3589 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3590 * } 3591 * Atomic::release_store(&tl->_vthread, true); 3592 * return; 3593 * } 3594 * Atomic::release_store(&tl->_vthread, false); 3595 */ 3596 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3597 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3598 3599 Node* input_memory_state = reset_memory(); 3600 set_all_memory(input_memory_state); 3601 3602 // The most significant bit of the u2 is used to denote thread exclusion 3603 Node* excluded_mask = _gvn.intcon(1 << 15); 3604 // The epoch generation is the range [1-32767] 3605 Node* epoch_mask = _gvn.intcon(32767); 3606 3607 Node* const carrierThread = generate_current_thread(jt); 3608 // If thread != carrierThread, this is a virtual thread. 3609 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3610 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3611 IfNode* iff_thread_not_equal_carrierThread = 3612 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3613 3614 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3615 3616 // False branch, is carrierThread. 3617 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3618 // Store release 3619 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3620 3621 set_all_memory(input_memory_state); 3622 3623 // True branch, is virtual thread. 3624 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3625 set_control(thread_not_equal_carrierThread); 3626 3627 // Load the raw epoch value from the vthread. 3628 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3629 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3630 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3631 3632 // Mask off the excluded information from the epoch. 3633 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3634 3635 // Load the tid field from the thread. 3636 Node* tid = load_field_from_object(thread, "tid", "J"); 3637 3638 // Store the vthread tid to the jfr thread local. 3639 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3640 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3641 3642 // Branch is_excluded to conditionalize updating the epoch . 3643 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3644 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3645 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3646 3647 // True branch, vthread is excluded, no need to write epoch info. 3648 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3649 set_control(excluded); 3650 Node* vthread_is_excluded = _gvn.intcon(1); 3651 3652 // False branch, vthread is included, update epoch info. 3653 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3654 set_control(included); 3655 Node* vthread_is_included = _gvn.intcon(0); 3656 3657 // Get epoch value. 3658 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3659 3660 // Store the vthread epoch to the jfr thread local. 3661 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3662 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3663 3664 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3665 record_for_igvn(excluded_rgn); 3666 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3667 record_for_igvn(excluded_mem); 3668 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3669 record_for_igvn(exclusion); 3670 3671 // Merge the excluded control and memory. 3672 excluded_rgn->init_req(_true_path, excluded); 3673 excluded_rgn->init_req(_false_path, included); 3674 excluded_mem->init_req(_true_path, tid_memory); 3675 excluded_mem->init_req(_false_path, included_memory); 3676 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3677 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3678 3679 // Set intermediate state. 3680 set_control(_gvn.transform(excluded_rgn)); 3681 set_all_memory(excluded_mem); 3682 3683 // Store the vthread exclusion state to the jfr thread local. 3684 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3685 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3686 3687 // Store release 3688 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3689 3690 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3691 record_for_igvn(thread_compare_rgn); 3692 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3693 record_for_igvn(thread_compare_mem); 3694 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3695 record_for_igvn(vthread); 3696 3697 // Merge the thread_compare control and memory. 3698 thread_compare_rgn->init_req(_true_path, control()); 3699 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3700 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3701 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3702 3703 // Set output state. 3704 set_control(_gvn.transform(thread_compare_rgn)); 3705 set_all_memory(_gvn.transform(thread_compare_mem)); 3706 } 3707 3708 #endif // JFR_HAVE_INTRINSICS 3709 3710 //------------------------inline_native_currentCarrierThread------------------ 3711 bool LibraryCallKit::inline_native_currentCarrierThread() { 3712 Node* junk = nullptr; 3713 set_result(generate_current_thread(junk)); 3714 return true; 3715 } 3716 3717 //------------------------inline_native_currentThread------------------ 3718 bool LibraryCallKit::inline_native_currentThread() { 3719 Node* junk = nullptr; 3720 set_result(generate_virtual_thread(junk)); 3721 return true; 3722 } 3723 3724 //------------------------inline_native_setVthread------------------ 3725 bool LibraryCallKit::inline_native_setCurrentThread() { 3726 assert(C->method()->changes_current_thread(), 3727 "method changes current Thread but is not annotated ChangesCurrentThread"); 3728 Node* arr = argument(1); 3729 Node* thread = _gvn.transform(new ThreadLocalNode()); 3730 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3731 Node* thread_obj_handle 3732 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3733 thread_obj_handle = _gvn.transform(thread_obj_handle); 3734 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3735 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3736 3737 // Change the _monitor_owner_id of the JavaThread 3738 Node* tid = load_field_from_object(arr, "tid", "J"); 3739 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3740 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3741 3742 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3743 return true; 3744 } 3745 3746 const Type* LibraryCallKit::scopedValueCache_type() { 3747 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3748 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3749 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3750 3751 // Because we create the scopedValue cache lazily we have to make the 3752 // type of the result BotPTR. 3753 bool xk = etype->klass_is_exact(); 3754 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3755 return objects_type; 3756 } 3757 3758 Node* LibraryCallKit::scopedValueCache_helper() { 3759 Node* thread = _gvn.transform(new ThreadLocalNode()); 3760 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3761 // We cannot use immutable_memory() because we might flip onto a 3762 // different carrier thread, at which point we'll need to use that 3763 // carrier thread's cache. 3764 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3765 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3766 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3767 } 3768 3769 //------------------------inline_native_scopedValueCache------------------ 3770 bool LibraryCallKit::inline_native_scopedValueCache() { 3771 Node* cache_obj_handle = scopedValueCache_helper(); 3772 const Type* objects_type = scopedValueCache_type(); 3773 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3774 3775 return true; 3776 } 3777 3778 //------------------------inline_native_setScopedValueCache------------------ 3779 bool LibraryCallKit::inline_native_setScopedValueCache() { 3780 Node* arr = argument(0); 3781 Node* cache_obj_handle = scopedValueCache_helper(); 3782 const Type* objects_type = scopedValueCache_type(); 3783 3784 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3785 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3786 3787 return true; 3788 } 3789 3790 //------------------------inline_native_Continuation_pin and unpin----------- 3791 3792 // Shared implementation routine for both pin and unpin. 3793 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3794 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3795 3796 // Save input memory. 3797 Node* input_memory_state = reset_memory(); 3798 set_all_memory(input_memory_state); 3799 3800 // TLS 3801 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3802 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3803 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3804 3805 // Null check the last continuation object. 3806 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3807 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3808 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3809 3810 // False path, last continuation is null. 3811 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3812 3813 // True path, last continuation is not null. 3814 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3815 3816 set_control(continuation_is_not_null); 3817 3818 // Load the pin count from the last continuation. 3819 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3820 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3821 3822 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3823 Node* pin_count_rhs; 3824 if (unpin) { 3825 pin_count_rhs = _gvn.intcon(0); 3826 } else { 3827 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3828 } 3829 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3830 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3831 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3832 3833 // True branch, pin count over/underflow. 3834 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3835 { 3836 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3837 // which will throw IllegalStateException for pin count over/underflow. 3838 // No memory changed so far - we can use memory create by reset_memory() 3839 // at the beginning of this intrinsic. No need to call reset_memory() again. 3840 PreserveJVMState pjvms(this); 3841 set_control(pin_count_over_underflow); 3842 uncommon_trap(Deoptimization::Reason_intrinsic, 3843 Deoptimization::Action_none); 3844 assert(stopped(), "invariant"); 3845 } 3846 3847 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3848 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3849 set_control(valid_pin_count); 3850 3851 Node* next_pin_count; 3852 if (unpin) { 3853 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3854 } else { 3855 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3856 } 3857 3858 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 3859 3860 // Result of top level CFG and Memory. 3861 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3862 record_for_igvn(result_rgn); 3863 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3864 record_for_igvn(result_mem); 3865 3866 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3867 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3868 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3869 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3870 3871 // Set output state. 3872 set_control(_gvn.transform(result_rgn)); 3873 set_all_memory(_gvn.transform(result_mem)); 3874 3875 return true; 3876 } 3877 3878 //---------------------------load_mirror_from_klass---------------------------- 3879 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3880 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3881 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3882 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3883 // mirror = ((OopHandle)mirror)->resolve(); 3884 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3885 } 3886 3887 //-----------------------load_klass_from_mirror_common------------------------- 3888 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3889 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3890 // and branch to the given path on the region. 3891 // If never_see_null, take an uncommon trap on null, so we can optimistically 3892 // compile for the non-null case. 3893 // If the region is null, force never_see_null = true. 3894 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3895 bool never_see_null, 3896 RegionNode* region, 3897 int null_path, 3898 int offset) { 3899 if (region == nullptr) never_see_null = true; 3900 Node* p = basic_plus_adr(mirror, offset); 3901 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3902 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3903 Node* null_ctl = top(); 3904 kls = null_check_oop(kls, &null_ctl, never_see_null); 3905 if (region != nullptr) { 3906 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3907 region->init_req(null_path, null_ctl); 3908 } else { 3909 assert(null_ctl == top(), "no loose ends"); 3910 } 3911 return kls; 3912 } 3913 3914 //--------------------(inline_native_Class_query helpers)--------------------- 3915 // Use this for JVM_ACC_INTERFACE. 3916 // Fall through if (mods & mask) == bits, take the guard otherwise. 3917 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3918 ByteSize offset, const Type* type, BasicType bt) { 3919 // Branch around if the given klass has the given modifier bit set. 3920 // Like generate_guard, adds a new path onto the region. 3921 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3922 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3923 Node* mask = intcon(modifier_mask); 3924 Node* bits = intcon(modifier_bits); 3925 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3926 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3927 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3928 return generate_fair_guard(bol, region); 3929 } 3930 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3931 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3932 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 3933 } 3934 3935 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3936 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3937 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3938 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3939 } 3940 3941 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3942 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3943 } 3944 3945 //-------------------------inline_native_Class_query------------------- 3946 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3947 const Type* return_type = TypeInt::BOOL; 3948 Node* prim_return_value = top(); // what happens if it's a primitive class? 3949 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3950 bool expect_prim = false; // most of these guys expect to work on refs 3951 3952 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3953 3954 Node* mirror = argument(0); 3955 Node* obj = top(); 3956 3957 switch (id) { 3958 case vmIntrinsics::_isInstance: 3959 // nothing is an instance of a primitive type 3960 prim_return_value = intcon(0); 3961 obj = argument(1); 3962 break; 3963 case vmIntrinsics::_isHidden: 3964 prim_return_value = intcon(0); 3965 break; 3966 case vmIntrinsics::_getSuperclass: 3967 prim_return_value = null(); 3968 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3969 break; 3970 case vmIntrinsics::_getClassAccessFlags: 3971 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3972 return_type = TypeInt::CHAR; 3973 break; 3974 default: 3975 fatal_unexpected_iid(id); 3976 break; 3977 } 3978 3979 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3980 if (mirror_con == nullptr) return false; // cannot happen? 3981 3982 #ifndef PRODUCT 3983 if (C->print_intrinsics() || C->print_inlining()) { 3984 ciType* k = mirror_con->java_mirror_type(); 3985 if (k) { 3986 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3987 k->print_name(); 3988 tty->cr(); 3989 } 3990 } 3991 #endif 3992 3993 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3994 RegionNode* region = new RegionNode(PATH_LIMIT); 3995 record_for_igvn(region); 3996 PhiNode* phi = new PhiNode(region, return_type); 3997 3998 // The mirror will never be null of Reflection.getClassAccessFlags, however 3999 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4000 // if it is. See bug 4774291. 4001 4002 // For Reflection.getClassAccessFlags(), the null check occurs in 4003 // the wrong place; see inline_unsafe_access(), above, for a similar 4004 // situation. 4005 mirror = null_check(mirror); 4006 // If mirror or obj is dead, only null-path is taken. 4007 if (stopped()) return true; 4008 4009 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4010 4011 // Now load the mirror's klass metaobject, and null-check it. 4012 // Side-effects region with the control path if the klass is null. 4013 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4014 // If kls is null, we have a primitive mirror. 4015 phi->init_req(_prim_path, prim_return_value); 4016 if (stopped()) { set_result(region, phi); return true; } 4017 bool safe_for_replace = (region->in(_prim_path) == top()); 4018 4019 Node* p; // handy temp 4020 Node* null_ctl; 4021 4022 // Now that we have the non-null klass, we can perform the real query. 4023 // For constant classes, the query will constant-fold in LoadNode::Value. 4024 Node* query_value = top(); 4025 switch (id) { 4026 case vmIntrinsics::_isInstance: 4027 // nothing is an instance of a primitive type 4028 query_value = gen_instanceof(obj, kls, safe_for_replace); 4029 break; 4030 4031 case vmIntrinsics::_isHidden: 4032 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4033 if (generate_hidden_class_guard(kls, region) != nullptr) 4034 // A guard was added. If the guard is taken, it was an hidden class. 4035 phi->add_req(intcon(1)); 4036 // If we fall through, it's a plain class. 4037 query_value = intcon(0); 4038 break; 4039 4040 4041 case vmIntrinsics::_getSuperclass: 4042 // The rules here are somewhat unfortunate, but we can still do better 4043 // with random logic than with a JNI call. 4044 // Interfaces store null or Object as _super, but must report null. 4045 // Arrays store an intermediate super as _super, but must report Object. 4046 // Other types can report the actual _super. 4047 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4048 if (generate_interface_guard(kls, region) != nullptr) 4049 // A guard was added. If the guard is taken, it was an interface. 4050 phi->add_req(null()); 4051 if (generate_array_guard(kls, region) != nullptr) 4052 // A guard was added. If the guard is taken, it was an array. 4053 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4054 // If we fall through, it's a plain class. Get its _super. 4055 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4056 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4057 null_ctl = top(); 4058 kls = null_check_oop(kls, &null_ctl); 4059 if (null_ctl != top()) { 4060 // If the guard is taken, Object.superClass is null (both klass and mirror). 4061 region->add_req(null_ctl); 4062 phi ->add_req(null()); 4063 } 4064 if (!stopped()) { 4065 query_value = load_mirror_from_klass(kls); 4066 } 4067 break; 4068 4069 case vmIntrinsics::_getClassAccessFlags: 4070 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4071 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4072 break; 4073 4074 default: 4075 fatal_unexpected_iid(id); 4076 break; 4077 } 4078 4079 // Fall-through is the normal case of a query to a real class. 4080 phi->init_req(1, query_value); 4081 region->init_req(1, control()); 4082 4083 C->set_has_split_ifs(true); // Has chance for split-if optimization 4084 set_result(region, phi); 4085 return true; 4086 } 4087 4088 //-------------------------inline_Class_cast------------------- 4089 bool LibraryCallKit::inline_Class_cast() { 4090 Node* mirror = argument(0); // Class 4091 Node* obj = argument(1); 4092 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4093 if (mirror_con == nullptr) { 4094 return false; // dead path (mirror->is_top()). 4095 } 4096 if (obj == nullptr || obj->is_top()) { 4097 return false; // dead path 4098 } 4099 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4100 4101 // First, see if Class.cast() can be folded statically. 4102 // java_mirror_type() returns non-null for compile-time Class constants. 4103 ciType* tm = mirror_con->java_mirror_type(); 4104 if (tm != nullptr && tm->is_klass() && 4105 tp != nullptr) { 4106 if (!tp->is_loaded()) { 4107 // Don't use intrinsic when class is not loaded. 4108 return false; 4109 } else { 4110 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4111 if (static_res == Compile::SSC_always_true) { 4112 // isInstance() is true - fold the code. 4113 set_result(obj); 4114 return true; 4115 } else if (static_res == Compile::SSC_always_false) { 4116 // Don't use intrinsic, have to throw ClassCastException. 4117 // If the reference is null, the non-intrinsic bytecode will 4118 // be optimized appropriately. 4119 return false; 4120 } 4121 } 4122 } 4123 4124 // Bailout intrinsic and do normal inlining if exception path is frequent. 4125 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4126 return false; 4127 } 4128 4129 // Generate dynamic checks. 4130 // Class.cast() is java implementation of _checkcast bytecode. 4131 // Do checkcast (Parse::do_checkcast()) optimizations here. 4132 4133 mirror = null_check(mirror); 4134 // If mirror is dead, only null-path is taken. 4135 if (stopped()) { 4136 return true; 4137 } 4138 4139 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4140 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4141 RegionNode* region = new RegionNode(PATH_LIMIT); 4142 record_for_igvn(region); 4143 4144 // Now load the mirror's klass metaobject, and null-check it. 4145 // If kls is null, we have a primitive mirror and 4146 // nothing is an instance of a primitive type. 4147 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4148 4149 Node* res = top(); 4150 if (!stopped()) { 4151 Node* bad_type_ctrl = top(); 4152 // Do checkcast optimizations. 4153 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4154 region->init_req(_bad_type_path, bad_type_ctrl); 4155 } 4156 if (region->in(_prim_path) != top() || 4157 region->in(_bad_type_path) != top()) { 4158 // Let Interpreter throw ClassCastException. 4159 PreserveJVMState pjvms(this); 4160 set_control(_gvn.transform(region)); 4161 uncommon_trap(Deoptimization::Reason_intrinsic, 4162 Deoptimization::Action_maybe_recompile); 4163 } 4164 if (!stopped()) { 4165 set_result(res); 4166 } 4167 return true; 4168 } 4169 4170 4171 //--------------------------inline_native_subtype_check------------------------ 4172 // This intrinsic takes the JNI calls out of the heart of 4173 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4174 bool LibraryCallKit::inline_native_subtype_check() { 4175 // Pull both arguments off the stack. 4176 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4177 args[0] = argument(0); 4178 args[1] = argument(1); 4179 Node* klasses[2]; // corresponding Klasses: superk, subk 4180 klasses[0] = klasses[1] = top(); 4181 4182 enum { 4183 // A full decision tree on {superc is prim, subc is prim}: 4184 _prim_0_path = 1, // {P,N} => false 4185 // {P,P} & superc!=subc => false 4186 _prim_same_path, // {P,P} & superc==subc => true 4187 _prim_1_path, // {N,P} => false 4188 _ref_subtype_path, // {N,N} & subtype check wins => true 4189 _both_ref_path, // {N,N} & subtype check loses => false 4190 PATH_LIMIT 4191 }; 4192 4193 RegionNode* region = new RegionNode(PATH_LIMIT); 4194 Node* phi = new PhiNode(region, TypeInt::BOOL); 4195 record_for_igvn(region); 4196 4197 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4198 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4199 int class_klass_offset = java_lang_Class::klass_offset(); 4200 4201 // First null-check both mirrors and load each mirror's klass metaobject. 4202 int which_arg; 4203 for (which_arg = 0; which_arg <= 1; which_arg++) { 4204 Node* arg = args[which_arg]; 4205 arg = null_check(arg); 4206 if (stopped()) break; 4207 args[which_arg] = arg; 4208 4209 Node* p = basic_plus_adr(arg, class_klass_offset); 4210 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4211 klasses[which_arg] = _gvn.transform(kls); 4212 } 4213 4214 // Having loaded both klasses, test each for null. 4215 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4216 for (which_arg = 0; which_arg <= 1; which_arg++) { 4217 Node* kls = klasses[which_arg]; 4218 Node* null_ctl = top(); 4219 kls = null_check_oop(kls, &null_ctl, never_see_null); 4220 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4221 region->init_req(prim_path, null_ctl); 4222 if (stopped()) break; 4223 klasses[which_arg] = kls; 4224 } 4225 4226 if (!stopped()) { 4227 // now we have two reference types, in klasses[0..1] 4228 Node* subk = klasses[1]; // the argument to isAssignableFrom 4229 Node* superk = klasses[0]; // the receiver 4230 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4231 // now we have a successful reference subtype check 4232 region->set_req(_ref_subtype_path, control()); 4233 } 4234 4235 // If both operands are primitive (both klasses null), then 4236 // we must return true when they are identical primitives. 4237 // It is convenient to test this after the first null klass check. 4238 set_control(region->in(_prim_0_path)); // go back to first null check 4239 if (!stopped()) { 4240 // Since superc is primitive, make a guard for the superc==subc case. 4241 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4242 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4243 generate_guard(bol_eq, region, PROB_FAIR); 4244 if (region->req() == PATH_LIMIT+1) { 4245 // A guard was added. If the added guard is taken, superc==subc. 4246 region->swap_edges(PATH_LIMIT, _prim_same_path); 4247 region->del_req(PATH_LIMIT); 4248 } 4249 region->set_req(_prim_0_path, control()); // Not equal after all. 4250 } 4251 4252 // these are the only paths that produce 'true': 4253 phi->set_req(_prim_same_path, intcon(1)); 4254 phi->set_req(_ref_subtype_path, intcon(1)); 4255 4256 // pull together the cases: 4257 assert(region->req() == PATH_LIMIT, "sane region"); 4258 for (uint i = 1; i < region->req(); i++) { 4259 Node* ctl = region->in(i); 4260 if (ctl == nullptr || ctl == top()) { 4261 region->set_req(i, top()); 4262 phi ->set_req(i, top()); 4263 } else if (phi->in(i) == nullptr) { 4264 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4265 } 4266 } 4267 4268 set_control(_gvn.transform(region)); 4269 set_result(_gvn.transform(phi)); 4270 return true; 4271 } 4272 4273 //---------------------generate_array_guard_common------------------------ 4274 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4275 bool obj_array, bool not_array, Node** obj) { 4276 4277 if (stopped()) { 4278 return nullptr; 4279 } 4280 4281 // If obj_array/non_array==false/false: 4282 // Branch around if the given klass is in fact an array (either obj or prim). 4283 // If obj_array/non_array==false/true: 4284 // Branch around if the given klass is not an array klass of any kind. 4285 // If obj_array/non_array==true/true: 4286 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4287 // If obj_array/non_array==true/false: 4288 // Branch around if the kls is an oop array (Object[] or subtype) 4289 // 4290 // Like generate_guard, adds a new path onto the region. 4291 jint layout_con = 0; 4292 Node* layout_val = get_layout_helper(kls, layout_con); 4293 if (layout_val == nullptr) { 4294 bool query = (obj_array 4295 ? Klass::layout_helper_is_objArray(layout_con) 4296 : Klass::layout_helper_is_array(layout_con)); 4297 if (query == not_array) { 4298 return nullptr; // never a branch 4299 } else { // always a branch 4300 Node* always_branch = control(); 4301 if (region != nullptr) 4302 region->add_req(always_branch); 4303 set_control(top()); 4304 return always_branch; 4305 } 4306 } 4307 // Now test the correct condition. 4308 jint nval = (obj_array 4309 ? (jint)(Klass::_lh_array_tag_type_value 4310 << Klass::_lh_array_tag_shift) 4311 : Klass::_lh_neutral_value); 4312 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4313 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4314 // invert the test if we are looking for a non-array 4315 if (not_array) btest = BoolTest(btest).negate(); 4316 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4317 Node* ctrl = generate_fair_guard(bol, region); 4318 Node* is_array_ctrl = not_array ? control() : ctrl; 4319 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4320 // Keep track of the fact that 'obj' is an array to prevent 4321 // array specific accesses from floating above the guard. 4322 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4323 } 4324 return ctrl; 4325 } 4326 4327 4328 //-----------------------inline_native_newArray-------------------------- 4329 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4330 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4331 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4332 Node* mirror; 4333 Node* count_val; 4334 if (uninitialized) { 4335 null_check_receiver(); 4336 mirror = argument(1); 4337 count_val = argument(2); 4338 } else { 4339 mirror = argument(0); 4340 count_val = argument(1); 4341 } 4342 4343 mirror = null_check(mirror); 4344 // If mirror or obj is dead, only null-path is taken. 4345 if (stopped()) return true; 4346 4347 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4348 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4349 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4350 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4351 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4352 4353 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4354 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4355 result_reg, _slow_path); 4356 Node* normal_ctl = control(); 4357 Node* no_array_ctl = result_reg->in(_slow_path); 4358 4359 // Generate code for the slow case. We make a call to newArray(). 4360 set_control(no_array_ctl); 4361 if (!stopped()) { 4362 // Either the input type is void.class, or else the 4363 // array klass has not yet been cached. Either the 4364 // ensuing call will throw an exception, or else it 4365 // will cache the array klass for next time. 4366 PreserveJVMState pjvms(this); 4367 CallJavaNode* slow_call = nullptr; 4368 if (uninitialized) { 4369 // Generate optimized virtual call (holder class 'Unsafe' is final) 4370 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4371 } else { 4372 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4373 } 4374 Node* slow_result = set_results_for_java_call(slow_call); 4375 // this->control() comes from set_results_for_java_call 4376 result_reg->set_req(_slow_path, control()); 4377 result_val->set_req(_slow_path, slow_result); 4378 result_io ->set_req(_slow_path, i_o()); 4379 result_mem->set_req(_slow_path, reset_memory()); 4380 } 4381 4382 set_control(normal_ctl); 4383 if (!stopped()) { 4384 // Normal case: The array type has been cached in the java.lang.Class. 4385 // The following call works fine even if the array type is polymorphic. 4386 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4387 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4388 result_reg->init_req(_normal_path, control()); 4389 result_val->init_req(_normal_path, obj); 4390 result_io ->init_req(_normal_path, i_o()); 4391 result_mem->init_req(_normal_path, reset_memory()); 4392 4393 if (uninitialized) { 4394 // Mark the allocation so that zeroing is skipped 4395 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4396 alloc->maybe_set_complete(&_gvn); 4397 } 4398 } 4399 4400 // Return the combined state. 4401 set_i_o( _gvn.transform(result_io) ); 4402 set_all_memory( _gvn.transform(result_mem)); 4403 4404 C->set_has_split_ifs(true); // Has chance for split-if optimization 4405 set_result(result_reg, result_val); 4406 return true; 4407 } 4408 4409 //----------------------inline_native_getLength-------------------------- 4410 // public static native int java.lang.reflect.Array.getLength(Object array); 4411 bool LibraryCallKit::inline_native_getLength() { 4412 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4413 4414 Node* array = null_check(argument(0)); 4415 // If array is dead, only null-path is taken. 4416 if (stopped()) return true; 4417 4418 // Deoptimize if it is a non-array. 4419 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4420 4421 if (non_array != nullptr) { 4422 PreserveJVMState pjvms(this); 4423 set_control(non_array); 4424 uncommon_trap(Deoptimization::Reason_intrinsic, 4425 Deoptimization::Action_maybe_recompile); 4426 } 4427 4428 // If control is dead, only non-array-path is taken. 4429 if (stopped()) return true; 4430 4431 // The works fine even if the array type is polymorphic. 4432 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4433 Node* result = load_array_length(array); 4434 4435 C->set_has_split_ifs(true); // Has chance for split-if optimization 4436 set_result(result); 4437 return true; 4438 } 4439 4440 //------------------------inline_array_copyOf---------------------------- 4441 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4442 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4443 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4444 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4445 4446 // Get the arguments. 4447 Node* original = argument(0); 4448 Node* start = is_copyOfRange? argument(1): intcon(0); 4449 Node* end = is_copyOfRange? argument(2): argument(1); 4450 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4451 4452 Node* newcopy = nullptr; 4453 4454 // Set the original stack and the reexecute bit for the interpreter to reexecute 4455 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4456 { PreserveReexecuteState preexecs(this); 4457 jvms()->set_should_reexecute(true); 4458 4459 array_type_mirror = null_check(array_type_mirror); 4460 original = null_check(original); 4461 4462 // Check if a null path was taken unconditionally. 4463 if (stopped()) return true; 4464 4465 Node* orig_length = load_array_length(original); 4466 4467 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4468 klass_node = null_check(klass_node); 4469 4470 RegionNode* bailout = new RegionNode(1); 4471 record_for_igvn(bailout); 4472 4473 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4474 // Bail out if that is so. 4475 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4476 if (not_objArray != nullptr) { 4477 // Improve the klass node's type from the new optimistic assumption: 4478 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4479 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4480 Node* cast = new CastPPNode(control(), klass_node, akls); 4481 klass_node = _gvn.transform(cast); 4482 } 4483 4484 // Bail out if either start or end is negative. 4485 generate_negative_guard(start, bailout, &start); 4486 generate_negative_guard(end, bailout, &end); 4487 4488 Node* length = end; 4489 if (_gvn.type(start) != TypeInt::ZERO) { 4490 length = _gvn.transform(new SubINode(end, start)); 4491 } 4492 4493 // Bail out if length is negative (i.e., if start > end). 4494 // Without this the new_array would throw 4495 // NegativeArraySizeException but IllegalArgumentException is what 4496 // should be thrown 4497 generate_negative_guard(length, bailout, &length); 4498 4499 // Bail out if start is larger than the original length 4500 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4501 generate_negative_guard(orig_tail, bailout, &orig_tail); 4502 4503 if (bailout->req() > 1) { 4504 PreserveJVMState pjvms(this); 4505 set_control(_gvn.transform(bailout)); 4506 uncommon_trap(Deoptimization::Reason_intrinsic, 4507 Deoptimization::Action_maybe_recompile); 4508 } 4509 4510 if (!stopped()) { 4511 // How many elements will we copy from the original? 4512 // The answer is MinI(orig_tail, length). 4513 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4514 4515 // Generate a direct call to the right arraycopy function(s). 4516 // We know the copy is disjoint but we might not know if the 4517 // oop stores need checking. 4518 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4519 // This will fail a store-check if x contains any non-nulls. 4520 4521 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4522 // loads/stores but it is legal only if we're sure the 4523 // Arrays.copyOf would succeed. So we need all input arguments 4524 // to the copyOf to be validated, including that the copy to the 4525 // new array won't trigger an ArrayStoreException. That subtype 4526 // check can be optimized if we know something on the type of 4527 // the input array from type speculation. 4528 if (_gvn.type(klass_node)->singleton()) { 4529 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4530 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4531 4532 int test = C->static_subtype_check(superk, subk); 4533 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4534 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4535 if (t_original->speculative_type() != nullptr) { 4536 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4537 } 4538 } 4539 } 4540 4541 bool validated = false; 4542 // Reason_class_check rather than Reason_intrinsic because we 4543 // want to intrinsify even if this traps. 4544 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4545 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4546 4547 if (not_subtype_ctrl != top()) { 4548 PreserveJVMState pjvms(this); 4549 set_control(not_subtype_ctrl); 4550 uncommon_trap(Deoptimization::Reason_class_check, 4551 Deoptimization::Action_make_not_entrant); 4552 assert(stopped(), "Should be stopped"); 4553 } 4554 validated = true; 4555 } 4556 4557 if (!stopped()) { 4558 newcopy = new_array(klass_node, length, 0); // no arguments to push 4559 4560 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4561 load_object_klass(original), klass_node); 4562 if (!is_copyOfRange) { 4563 ac->set_copyof(validated); 4564 } else { 4565 ac->set_copyofrange(validated); 4566 } 4567 Node* n = _gvn.transform(ac); 4568 if (n == ac) { 4569 ac->connect_outputs(this); 4570 } else { 4571 assert(validated, "shouldn't transform if all arguments not validated"); 4572 set_all_memory(n); 4573 } 4574 } 4575 } 4576 } // original reexecute is set back here 4577 4578 C->set_has_split_ifs(true); // Has chance for split-if optimization 4579 if (!stopped()) { 4580 set_result(newcopy); 4581 } 4582 return true; 4583 } 4584 4585 4586 //----------------------generate_virtual_guard--------------------------- 4587 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4588 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4589 RegionNode* slow_region) { 4590 ciMethod* method = callee(); 4591 int vtable_index = method->vtable_index(); 4592 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4593 "bad index %d", vtable_index); 4594 // Get the Method* out of the appropriate vtable entry. 4595 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4596 vtable_index*vtableEntry::size_in_bytes() + 4597 in_bytes(vtableEntry::method_offset()); 4598 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4599 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4600 4601 // Compare the target method with the expected method (e.g., Object.hashCode). 4602 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4603 4604 Node* native_call = makecon(native_call_addr); 4605 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4606 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4607 4608 return generate_slow_guard(test_native, slow_region); 4609 } 4610 4611 //-----------------------generate_method_call---------------------------- 4612 // Use generate_method_call to make a slow-call to the real 4613 // method if the fast path fails. An alternative would be to 4614 // use a stub like OptoRuntime::slow_arraycopy_Java. 4615 // This only works for expanding the current library call, 4616 // not another intrinsic. (E.g., don't use this for making an 4617 // arraycopy call inside of the copyOf intrinsic.) 4618 CallJavaNode* 4619 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4620 // When compiling the intrinsic method itself, do not use this technique. 4621 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4622 4623 ciMethod* method = callee(); 4624 // ensure the JVMS we have will be correct for this call 4625 guarantee(method_id == method->intrinsic_id(), "must match"); 4626 4627 const TypeFunc* tf = TypeFunc::make(method); 4628 if (res_not_null) { 4629 assert(tf->return_type() == T_OBJECT, ""); 4630 const TypeTuple* range = tf->range(); 4631 const Type** fields = TypeTuple::fields(range->cnt()); 4632 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4633 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4634 tf = TypeFunc::make(tf->domain(), new_range); 4635 } 4636 CallJavaNode* slow_call; 4637 if (is_static) { 4638 assert(!is_virtual, ""); 4639 slow_call = new CallStaticJavaNode(C, tf, 4640 SharedRuntime::get_resolve_static_call_stub(), method); 4641 } else if (is_virtual) { 4642 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4643 int vtable_index = Method::invalid_vtable_index; 4644 if (UseInlineCaches) { 4645 // Suppress the vtable call 4646 } else { 4647 // hashCode and clone are not a miranda methods, 4648 // so the vtable index is fixed. 4649 // No need to use the linkResolver to get it. 4650 vtable_index = method->vtable_index(); 4651 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4652 "bad index %d", vtable_index); 4653 } 4654 slow_call = new CallDynamicJavaNode(tf, 4655 SharedRuntime::get_resolve_virtual_call_stub(), 4656 method, vtable_index); 4657 } else { // neither virtual nor static: opt_virtual 4658 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4659 slow_call = new CallStaticJavaNode(C, tf, 4660 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4661 slow_call->set_optimized_virtual(true); 4662 } 4663 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4664 // To be able to issue a direct call (optimized virtual or virtual) 4665 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4666 // about the method being invoked should be attached to the call site to 4667 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4668 slow_call->set_override_symbolic_info(true); 4669 } 4670 set_arguments_for_java_call(slow_call); 4671 set_edges_for_java_call(slow_call); 4672 return slow_call; 4673 } 4674 4675 4676 /** 4677 * Build special case code for calls to hashCode on an object. This call may 4678 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4679 * slightly different code. 4680 */ 4681 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4682 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4683 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4684 4685 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4686 4687 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4688 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4689 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4690 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4691 Node* obj = nullptr; 4692 if (!is_static) { 4693 // Check for hashing null object 4694 obj = null_check_receiver(); 4695 if (stopped()) return true; // unconditionally null 4696 result_reg->init_req(_null_path, top()); 4697 result_val->init_req(_null_path, top()); 4698 } else { 4699 // Do a null check, and return zero if null. 4700 // System.identityHashCode(null) == 0 4701 obj = argument(0); 4702 Node* null_ctl = top(); 4703 obj = null_check_oop(obj, &null_ctl); 4704 result_reg->init_req(_null_path, null_ctl); 4705 result_val->init_req(_null_path, _gvn.intcon(0)); 4706 } 4707 4708 // Unconditionally null? Then return right away. 4709 if (stopped()) { 4710 set_control( result_reg->in(_null_path)); 4711 if (!stopped()) 4712 set_result(result_val->in(_null_path)); 4713 return true; 4714 } 4715 4716 // We only go to the fast case code if we pass a number of guards. The 4717 // paths which do not pass are accumulated in the slow_region. 4718 RegionNode* slow_region = new RegionNode(1); 4719 record_for_igvn(slow_region); 4720 4721 // If this is a virtual call, we generate a funny guard. We pull out 4722 // the vtable entry corresponding to hashCode() from the target object. 4723 // If the target method which we are calling happens to be the native 4724 // Object hashCode() method, we pass the guard. We do not need this 4725 // guard for non-virtual calls -- the caller is known to be the native 4726 // Object hashCode(). 4727 if (is_virtual) { 4728 // After null check, get the object's klass. 4729 Node* obj_klass = load_object_klass(obj); 4730 generate_virtual_guard(obj_klass, slow_region); 4731 } 4732 4733 // Get the header out of the object, use LoadMarkNode when available 4734 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4735 // The control of the load must be null. Otherwise, the load can move before 4736 // the null check after castPP removal. 4737 Node* no_ctrl = nullptr; 4738 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4739 4740 if (!UseObjectMonitorTable) { 4741 // Test the header to see if it is safe to read w.r.t. locking. 4742 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4743 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4744 if (LockingMode == LM_LIGHTWEIGHT) { 4745 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4746 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4747 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4748 4749 generate_slow_guard(test_monitor, slow_region); 4750 } else { 4751 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4752 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4753 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4754 4755 generate_slow_guard(test_not_unlocked, slow_region); 4756 } 4757 } 4758 4759 // Get the hash value and check to see that it has been properly assigned. 4760 // We depend on hash_mask being at most 32 bits and avoid the use of 4761 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4762 // vm: see markWord.hpp. 4763 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4764 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4765 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4766 // This hack lets the hash bits live anywhere in the mark object now, as long 4767 // as the shift drops the relevant bits into the low 32 bits. Note that 4768 // Java spec says that HashCode is an int so there's no point in capturing 4769 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4770 hshifted_header = ConvX2I(hshifted_header); 4771 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4772 4773 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4774 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4775 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4776 4777 generate_slow_guard(test_assigned, slow_region); 4778 4779 Node* init_mem = reset_memory(); 4780 // fill in the rest of the null path: 4781 result_io ->init_req(_null_path, i_o()); 4782 result_mem->init_req(_null_path, init_mem); 4783 4784 result_val->init_req(_fast_path, hash_val); 4785 result_reg->init_req(_fast_path, control()); 4786 result_io ->init_req(_fast_path, i_o()); 4787 result_mem->init_req(_fast_path, init_mem); 4788 4789 // Generate code for the slow case. We make a call to hashCode(). 4790 set_control(_gvn.transform(slow_region)); 4791 if (!stopped()) { 4792 // No need for PreserveJVMState, because we're using up the present state. 4793 set_all_memory(init_mem); 4794 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4795 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4796 Node* slow_result = set_results_for_java_call(slow_call); 4797 // this->control() comes from set_results_for_java_call 4798 result_reg->init_req(_slow_path, control()); 4799 result_val->init_req(_slow_path, slow_result); 4800 result_io ->set_req(_slow_path, i_o()); 4801 result_mem ->set_req(_slow_path, reset_memory()); 4802 } 4803 4804 // Return the combined state. 4805 set_i_o( _gvn.transform(result_io) ); 4806 set_all_memory( _gvn.transform(result_mem)); 4807 4808 set_result(result_reg, result_val); 4809 return true; 4810 } 4811 4812 //---------------------------inline_native_getClass---------------------------- 4813 // public final native Class<?> java.lang.Object.getClass(); 4814 // 4815 // Build special case code for calls to getClass on an object. 4816 bool LibraryCallKit::inline_native_getClass() { 4817 Node* obj = null_check_receiver(); 4818 if (stopped()) return true; 4819 set_result(load_mirror_from_klass(load_object_klass(obj))); 4820 return true; 4821 } 4822 4823 //-----------------inline_native_Reflection_getCallerClass--------------------- 4824 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4825 // 4826 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4827 // 4828 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4829 // in that it must skip particular security frames and checks for 4830 // caller sensitive methods. 4831 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4832 #ifndef PRODUCT 4833 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4834 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4835 } 4836 #endif 4837 4838 if (!jvms()->has_method()) { 4839 #ifndef PRODUCT 4840 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4841 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4842 } 4843 #endif 4844 return false; 4845 } 4846 4847 // Walk back up the JVM state to find the caller at the required 4848 // depth. 4849 JVMState* caller_jvms = jvms(); 4850 4851 // Cf. JVM_GetCallerClass 4852 // NOTE: Start the loop at depth 1 because the current JVM state does 4853 // not include the Reflection.getCallerClass() frame. 4854 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4855 ciMethod* m = caller_jvms->method(); 4856 switch (n) { 4857 case 0: 4858 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4859 break; 4860 case 1: 4861 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4862 if (!m->caller_sensitive()) { 4863 #ifndef PRODUCT 4864 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4865 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4866 } 4867 #endif 4868 return false; // bail-out; let JVM_GetCallerClass do the work 4869 } 4870 break; 4871 default: 4872 if (!m->is_ignored_by_security_stack_walk()) { 4873 // We have reached the desired frame; return the holder class. 4874 // Acquire method holder as java.lang.Class and push as constant. 4875 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4876 ciInstance* caller_mirror = caller_klass->java_mirror(); 4877 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4878 4879 #ifndef PRODUCT 4880 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4881 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4882 tty->print_cr(" JVM state at this point:"); 4883 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4884 ciMethod* m = jvms()->of_depth(i)->method(); 4885 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4886 } 4887 } 4888 #endif 4889 return true; 4890 } 4891 break; 4892 } 4893 } 4894 4895 #ifndef PRODUCT 4896 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4897 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4898 tty->print_cr(" JVM state at this point:"); 4899 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4900 ciMethod* m = jvms()->of_depth(i)->method(); 4901 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4902 } 4903 } 4904 #endif 4905 4906 return false; // bail-out; let JVM_GetCallerClass do the work 4907 } 4908 4909 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4910 Node* arg = argument(0); 4911 Node* result = nullptr; 4912 4913 switch (id) { 4914 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4915 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4916 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4917 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4918 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4919 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4920 4921 case vmIntrinsics::_doubleToLongBits: { 4922 // two paths (plus control) merge in a wood 4923 RegionNode *r = new RegionNode(3); 4924 Node *phi = new PhiNode(r, TypeLong::LONG); 4925 4926 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4927 // Build the boolean node 4928 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4929 4930 // Branch either way. 4931 // NaN case is less traveled, which makes all the difference. 4932 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4933 Node *opt_isnan = _gvn.transform(ifisnan); 4934 assert( opt_isnan->is_If(), "Expect an IfNode"); 4935 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4936 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4937 4938 set_control(iftrue); 4939 4940 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4941 Node *slow_result = longcon(nan_bits); // return NaN 4942 phi->init_req(1, _gvn.transform( slow_result )); 4943 r->init_req(1, iftrue); 4944 4945 // Else fall through 4946 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4947 set_control(iffalse); 4948 4949 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4950 r->init_req(2, iffalse); 4951 4952 // Post merge 4953 set_control(_gvn.transform(r)); 4954 record_for_igvn(r); 4955 4956 C->set_has_split_ifs(true); // Has chance for split-if optimization 4957 result = phi; 4958 assert(result->bottom_type()->isa_long(), "must be"); 4959 break; 4960 } 4961 4962 case vmIntrinsics::_floatToIntBits: { 4963 // two paths (plus control) merge in a wood 4964 RegionNode *r = new RegionNode(3); 4965 Node *phi = new PhiNode(r, TypeInt::INT); 4966 4967 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4968 // Build the boolean node 4969 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4970 4971 // Branch either way. 4972 // NaN case is less traveled, which makes all the difference. 4973 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4974 Node *opt_isnan = _gvn.transform(ifisnan); 4975 assert( opt_isnan->is_If(), "Expect an IfNode"); 4976 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4977 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4978 4979 set_control(iftrue); 4980 4981 static const jint nan_bits = 0x7fc00000; 4982 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4983 phi->init_req(1, _gvn.transform( slow_result )); 4984 r->init_req(1, iftrue); 4985 4986 // Else fall through 4987 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4988 set_control(iffalse); 4989 4990 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4991 r->init_req(2, iffalse); 4992 4993 // Post merge 4994 set_control(_gvn.transform(r)); 4995 record_for_igvn(r); 4996 4997 C->set_has_split_ifs(true); // Has chance for split-if optimization 4998 result = phi; 4999 assert(result->bottom_type()->isa_int(), "must be"); 5000 break; 5001 } 5002 5003 default: 5004 fatal_unexpected_iid(id); 5005 break; 5006 } 5007 set_result(_gvn.transform(result)); 5008 return true; 5009 } 5010 5011 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5012 Node* arg = argument(0); 5013 Node* result = nullptr; 5014 5015 switch (id) { 5016 case vmIntrinsics::_floatIsInfinite: 5017 result = new IsInfiniteFNode(arg); 5018 break; 5019 case vmIntrinsics::_floatIsFinite: 5020 result = new IsFiniteFNode(arg); 5021 break; 5022 case vmIntrinsics::_doubleIsInfinite: 5023 result = new IsInfiniteDNode(arg); 5024 break; 5025 case vmIntrinsics::_doubleIsFinite: 5026 result = new IsFiniteDNode(arg); 5027 break; 5028 default: 5029 fatal_unexpected_iid(id); 5030 break; 5031 } 5032 set_result(_gvn.transform(result)); 5033 return true; 5034 } 5035 5036 //----------------------inline_unsafe_copyMemory------------------------- 5037 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5038 5039 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5040 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5041 const Type* base_t = gvn.type(base); 5042 5043 bool in_native = (base_t == TypePtr::NULL_PTR); 5044 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5045 bool is_mixed = !in_heap && !in_native; 5046 5047 if (is_mixed) { 5048 return true; // mixed accesses can touch both on-heap and off-heap memory 5049 } 5050 if (in_heap) { 5051 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5052 if (!is_prim_array) { 5053 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5054 // there's not enough type information available to determine proper memory slice for it. 5055 return true; 5056 } 5057 } 5058 return false; 5059 } 5060 5061 bool LibraryCallKit::inline_unsafe_copyMemory() { 5062 if (callee()->is_static()) return false; // caller must have the capability! 5063 null_check_receiver(); // null-check receiver 5064 if (stopped()) return true; 5065 5066 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5067 5068 Node* src_base = argument(1); // type: oop 5069 Node* src_off = ConvL2X(argument(2)); // type: long 5070 Node* dst_base = argument(4); // type: oop 5071 Node* dst_off = ConvL2X(argument(5)); // type: long 5072 Node* size = ConvL2X(argument(7)); // type: long 5073 5074 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5075 "fieldOffset must be byte-scaled"); 5076 5077 Node* src_addr = make_unsafe_address(src_base, src_off); 5078 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5079 5080 Node* thread = _gvn.transform(new ThreadLocalNode()); 5081 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5082 BasicType doing_unsafe_access_bt = T_BYTE; 5083 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5084 5085 // update volatile field 5086 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5087 5088 int flags = RC_LEAF | RC_NO_FP; 5089 5090 const TypePtr* dst_type = TypePtr::BOTTOM; 5091 5092 // Adjust memory effects of the runtime call based on input values. 5093 if (!has_wide_mem(_gvn, src_addr, src_base) && 5094 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5095 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5096 5097 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5098 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5099 flags |= RC_NARROW_MEM; // narrow in memory 5100 } 5101 } 5102 5103 // Call it. Note that the length argument is not scaled. 5104 make_runtime_call(flags, 5105 OptoRuntime::fast_arraycopy_Type(), 5106 StubRoutines::unsafe_arraycopy(), 5107 "unsafe_arraycopy", 5108 dst_type, 5109 src_addr, dst_addr, size XTOP); 5110 5111 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5112 5113 return true; 5114 } 5115 5116 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5117 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5118 bool LibraryCallKit::inline_unsafe_setMemory() { 5119 if (callee()->is_static()) return false; // caller must have the capability! 5120 null_check_receiver(); // null-check receiver 5121 if (stopped()) return true; 5122 5123 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5124 5125 Node* dst_base = argument(1); // type: oop 5126 Node* dst_off = ConvL2X(argument(2)); // type: long 5127 Node* size = ConvL2X(argument(4)); // type: long 5128 Node* byte = argument(6); // type: byte 5129 5130 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5131 "fieldOffset must be byte-scaled"); 5132 5133 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5134 5135 Node* thread = _gvn.transform(new ThreadLocalNode()); 5136 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5137 BasicType doing_unsafe_access_bt = T_BYTE; 5138 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5139 5140 // update volatile field 5141 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5142 5143 int flags = RC_LEAF | RC_NO_FP; 5144 5145 const TypePtr* dst_type = TypePtr::BOTTOM; 5146 5147 // Adjust memory effects of the runtime call based on input values. 5148 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5149 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5150 5151 flags |= RC_NARROW_MEM; // narrow in memory 5152 } 5153 5154 // Call it. Note that the length argument is not scaled. 5155 make_runtime_call(flags, 5156 OptoRuntime::unsafe_setmemory_Type(), 5157 StubRoutines::unsafe_setmemory(), 5158 "unsafe_setmemory", 5159 dst_type, 5160 dst_addr, size XTOP, byte); 5161 5162 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5163 5164 return true; 5165 } 5166 5167 #undef XTOP 5168 5169 //------------------------clone_coping----------------------------------- 5170 // Helper function for inline_native_clone. 5171 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5172 assert(obj_size != nullptr, ""); 5173 Node* raw_obj = alloc_obj->in(1); 5174 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5175 5176 AllocateNode* alloc = nullptr; 5177 if (ReduceBulkZeroing && 5178 // If we are implementing an array clone without knowing its source type 5179 // (can happen when compiling the array-guarded branch of a reflective 5180 // Object.clone() invocation), initialize the array within the allocation. 5181 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5182 // to a runtime clone call that assumes fully initialized source arrays. 5183 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5184 // We will be completely responsible for initializing this object - 5185 // mark Initialize node as complete. 5186 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5187 // The object was just allocated - there should be no any stores! 5188 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5189 // Mark as complete_with_arraycopy so that on AllocateNode 5190 // expansion, we know this AllocateNode is initialized by an array 5191 // copy and a StoreStore barrier exists after the array copy. 5192 alloc->initialization()->set_complete_with_arraycopy(); 5193 } 5194 5195 Node* size = _gvn.transform(obj_size); 5196 access_clone(obj, alloc_obj, size, is_array); 5197 5198 // Do not let reads from the cloned object float above the arraycopy. 5199 if (alloc != nullptr) { 5200 // Do not let stores that initialize this object be reordered with 5201 // a subsequent store that would make this object accessible by 5202 // other threads. 5203 // Record what AllocateNode this StoreStore protects so that 5204 // escape analysis can go from the MemBarStoreStoreNode to the 5205 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5206 // based on the escape status of the AllocateNode. 5207 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5208 } else { 5209 insert_mem_bar(Op_MemBarCPUOrder); 5210 } 5211 } 5212 5213 //------------------------inline_native_clone---------------------------- 5214 // protected native Object java.lang.Object.clone(); 5215 // 5216 // Here are the simple edge cases: 5217 // null receiver => normal trap 5218 // virtual and clone was overridden => slow path to out-of-line clone 5219 // not cloneable or finalizer => slow path to out-of-line Object.clone 5220 // 5221 // The general case has two steps, allocation and copying. 5222 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5223 // 5224 // Copying also has two cases, oop arrays and everything else. 5225 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5226 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5227 // 5228 // These steps fold up nicely if and when the cloned object's klass 5229 // can be sharply typed as an object array, a type array, or an instance. 5230 // 5231 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5232 PhiNode* result_val; 5233 5234 // Set the reexecute bit for the interpreter to reexecute 5235 // the bytecode that invokes Object.clone if deoptimization happens. 5236 { PreserveReexecuteState preexecs(this); 5237 jvms()->set_should_reexecute(true); 5238 5239 Node* obj = null_check_receiver(); 5240 if (stopped()) return true; 5241 5242 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5243 5244 // If we are going to clone an instance, we need its exact type to 5245 // know the number and types of fields to convert the clone to 5246 // loads/stores. Maybe a speculative type can help us. 5247 if (!obj_type->klass_is_exact() && 5248 obj_type->speculative_type() != nullptr && 5249 obj_type->speculative_type()->is_instance_klass()) { 5250 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5251 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5252 !spec_ik->has_injected_fields()) { 5253 if (!obj_type->isa_instptr() || 5254 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5255 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5256 } 5257 } 5258 } 5259 5260 // Conservatively insert a memory barrier on all memory slices. 5261 // Do not let writes into the original float below the clone. 5262 insert_mem_bar(Op_MemBarCPUOrder); 5263 5264 // paths into result_reg: 5265 enum { 5266 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5267 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5268 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5269 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5270 PATH_LIMIT 5271 }; 5272 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5273 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5274 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5275 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5276 record_for_igvn(result_reg); 5277 5278 Node* obj_klass = load_object_klass(obj); 5279 Node* array_obj = obj; 5280 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5281 if (array_ctl != nullptr) { 5282 // It's an array. 5283 PreserveJVMState pjvms(this); 5284 set_control(array_ctl); 5285 Node* obj_length = load_array_length(array_obj); 5286 Node* array_size = nullptr; // Size of the array without object alignment padding. 5287 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5288 5289 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5290 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5291 // If it is an oop array, it requires very special treatment, 5292 // because gc barriers are required when accessing the array. 5293 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5294 if (is_obja != nullptr) { 5295 PreserveJVMState pjvms2(this); 5296 set_control(is_obja); 5297 // Generate a direct call to the right arraycopy function(s). 5298 // Clones are always tightly coupled. 5299 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5300 ac->set_clone_oop_array(); 5301 Node* n = _gvn.transform(ac); 5302 assert(n == ac, "cannot disappear"); 5303 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5304 5305 result_reg->init_req(_objArray_path, control()); 5306 result_val->init_req(_objArray_path, alloc_obj); 5307 result_i_o ->set_req(_objArray_path, i_o()); 5308 result_mem ->set_req(_objArray_path, reset_memory()); 5309 } 5310 } 5311 // Otherwise, there are no barriers to worry about. 5312 // (We can dispense with card marks if we know the allocation 5313 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5314 // causes the non-eden paths to take compensating steps to 5315 // simulate a fresh allocation, so that no further 5316 // card marks are required in compiled code to initialize 5317 // the object.) 5318 5319 if (!stopped()) { 5320 copy_to_clone(array_obj, alloc_obj, array_size, true); 5321 5322 // Present the results of the copy. 5323 result_reg->init_req(_array_path, control()); 5324 result_val->init_req(_array_path, alloc_obj); 5325 result_i_o ->set_req(_array_path, i_o()); 5326 result_mem ->set_req(_array_path, reset_memory()); 5327 } 5328 } 5329 5330 // We only go to the instance fast case code if we pass a number of guards. 5331 // The paths which do not pass are accumulated in the slow_region. 5332 RegionNode* slow_region = new RegionNode(1); 5333 record_for_igvn(slow_region); 5334 if (!stopped()) { 5335 // It's an instance (we did array above). Make the slow-path tests. 5336 // If this is a virtual call, we generate a funny guard. We grab 5337 // the vtable entry corresponding to clone() from the target object. 5338 // If the target method which we are calling happens to be the 5339 // Object clone() method, we pass the guard. We do not need this 5340 // guard for non-virtual calls; the caller is known to be the native 5341 // Object clone(). 5342 if (is_virtual) { 5343 generate_virtual_guard(obj_klass, slow_region); 5344 } 5345 5346 // The object must be easily cloneable and must not have a finalizer. 5347 // Both of these conditions may be checked in a single test. 5348 // We could optimize the test further, but we don't care. 5349 generate_misc_flags_guard(obj_klass, 5350 // Test both conditions: 5351 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5352 // Must be cloneable but not finalizer: 5353 KlassFlags::_misc_is_cloneable_fast, 5354 slow_region); 5355 } 5356 5357 if (!stopped()) { 5358 // It's an instance, and it passed the slow-path tests. 5359 PreserveJVMState pjvms(this); 5360 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5361 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5362 // is reexecuted if deoptimization occurs and there could be problems when merging 5363 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5364 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5365 5366 copy_to_clone(obj, alloc_obj, obj_size, false); 5367 5368 // Present the results of the slow call. 5369 result_reg->init_req(_instance_path, control()); 5370 result_val->init_req(_instance_path, alloc_obj); 5371 result_i_o ->set_req(_instance_path, i_o()); 5372 result_mem ->set_req(_instance_path, reset_memory()); 5373 } 5374 5375 // Generate code for the slow case. We make a call to clone(). 5376 set_control(_gvn.transform(slow_region)); 5377 if (!stopped()) { 5378 PreserveJVMState pjvms(this); 5379 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5380 // We need to deoptimize on exception (see comment above) 5381 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5382 // this->control() comes from set_results_for_java_call 5383 result_reg->init_req(_slow_path, control()); 5384 result_val->init_req(_slow_path, slow_result); 5385 result_i_o ->set_req(_slow_path, i_o()); 5386 result_mem ->set_req(_slow_path, reset_memory()); 5387 } 5388 5389 // Return the combined state. 5390 set_control( _gvn.transform(result_reg)); 5391 set_i_o( _gvn.transform(result_i_o)); 5392 set_all_memory( _gvn.transform(result_mem)); 5393 } // original reexecute is set back here 5394 5395 set_result(_gvn.transform(result_val)); 5396 return true; 5397 } 5398 5399 // If we have a tightly coupled allocation, the arraycopy may take care 5400 // of the array initialization. If one of the guards we insert between 5401 // the allocation and the arraycopy causes a deoptimization, an 5402 // uninitialized array will escape the compiled method. To prevent that 5403 // we set the JVM state for uncommon traps between the allocation and 5404 // the arraycopy to the state before the allocation so, in case of 5405 // deoptimization, we'll reexecute the allocation and the 5406 // initialization. 5407 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5408 if (alloc != nullptr) { 5409 ciMethod* trap_method = alloc->jvms()->method(); 5410 int trap_bci = alloc->jvms()->bci(); 5411 5412 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5413 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5414 // Make sure there's no store between the allocation and the 5415 // arraycopy otherwise visible side effects could be rexecuted 5416 // in case of deoptimization and cause incorrect execution. 5417 bool no_interfering_store = true; 5418 Node* mem = alloc->in(TypeFunc::Memory); 5419 if (mem->is_MergeMem()) { 5420 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5421 Node* n = mms.memory(); 5422 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5423 assert(n->is_Store(), "what else?"); 5424 no_interfering_store = false; 5425 break; 5426 } 5427 } 5428 } else { 5429 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5430 Node* n = mms.memory(); 5431 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5432 assert(n->is_Store(), "what else?"); 5433 no_interfering_store = false; 5434 break; 5435 } 5436 } 5437 } 5438 5439 if (no_interfering_store) { 5440 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5441 5442 JVMState* saved_jvms = jvms(); 5443 saved_reexecute_sp = _reexecute_sp; 5444 5445 set_jvms(sfpt->jvms()); 5446 _reexecute_sp = jvms()->sp(); 5447 5448 return saved_jvms; 5449 } 5450 } 5451 } 5452 return nullptr; 5453 } 5454 5455 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5456 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5457 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5458 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5459 uint size = alloc->req(); 5460 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5461 old_jvms->set_map(sfpt); 5462 for (uint i = 0; i < size; i++) { 5463 sfpt->init_req(i, alloc->in(i)); 5464 } 5465 // re-push array length for deoptimization 5466 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5467 old_jvms->set_sp(old_jvms->sp()+1); 5468 old_jvms->set_monoff(old_jvms->monoff()+1); 5469 old_jvms->set_scloff(old_jvms->scloff()+1); 5470 old_jvms->set_endoff(old_jvms->endoff()+1); 5471 old_jvms->set_should_reexecute(true); 5472 5473 sfpt->set_i_o(map()->i_o()); 5474 sfpt->set_memory(map()->memory()); 5475 sfpt->set_control(map()->control()); 5476 return sfpt; 5477 } 5478 5479 // In case of a deoptimization, we restart execution at the 5480 // allocation, allocating a new array. We would leave an uninitialized 5481 // array in the heap that GCs wouldn't expect. Move the allocation 5482 // after the traps so we don't allocate the array if we 5483 // deoptimize. This is possible because tightly_coupled_allocation() 5484 // guarantees there's no observer of the allocated array at this point 5485 // and the control flow is simple enough. 5486 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5487 int saved_reexecute_sp, uint new_idx) { 5488 if (saved_jvms_before_guards != nullptr && !stopped()) { 5489 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5490 5491 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5492 // restore JVM state to the state at the arraycopy 5493 saved_jvms_before_guards->map()->set_control(map()->control()); 5494 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5495 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5496 // If we've improved the types of some nodes (null check) while 5497 // emitting the guards, propagate them to the current state 5498 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5499 set_jvms(saved_jvms_before_guards); 5500 _reexecute_sp = saved_reexecute_sp; 5501 5502 // Remove the allocation from above the guards 5503 CallProjections callprojs; 5504 alloc->extract_projections(&callprojs, true); 5505 InitializeNode* init = alloc->initialization(); 5506 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5507 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5508 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5509 5510 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5511 // the allocation (i.e. is only valid if the allocation succeeds): 5512 // 1) replace CastIINode with AllocateArrayNode's length here 5513 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5514 // 5515 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5516 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5517 Node* init_control = init->proj_out(TypeFunc::Control); 5518 Node* alloc_length = alloc->Ideal_length(); 5519 #ifdef ASSERT 5520 Node* prev_cast = nullptr; 5521 #endif 5522 for (uint i = 0; i < init_control->outcnt(); i++) { 5523 Node* init_out = init_control->raw_out(i); 5524 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5525 #ifdef ASSERT 5526 if (prev_cast == nullptr) { 5527 prev_cast = init_out; 5528 } else { 5529 if (prev_cast->cmp(*init_out) == false) { 5530 prev_cast->dump(); 5531 init_out->dump(); 5532 assert(false, "not equal CastIINode"); 5533 } 5534 } 5535 #endif 5536 C->gvn_replace_by(init_out, alloc_length); 5537 } 5538 } 5539 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5540 5541 // move the allocation here (after the guards) 5542 _gvn.hash_delete(alloc); 5543 alloc->set_req(TypeFunc::Control, control()); 5544 alloc->set_req(TypeFunc::I_O, i_o()); 5545 Node *mem = reset_memory(); 5546 set_all_memory(mem); 5547 alloc->set_req(TypeFunc::Memory, mem); 5548 set_control(init->proj_out_or_null(TypeFunc::Control)); 5549 set_i_o(callprojs.fallthrough_ioproj); 5550 5551 // Update memory as done in GraphKit::set_output_for_allocation() 5552 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5553 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5554 if (ary_type->isa_aryptr() && length_type != nullptr) { 5555 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5556 } 5557 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5558 int elemidx = C->get_alias_index(telemref); 5559 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5560 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5561 5562 Node* allocx = _gvn.transform(alloc); 5563 assert(allocx == alloc, "where has the allocation gone?"); 5564 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5565 5566 _gvn.hash_delete(dest); 5567 dest->set_req(0, control()); 5568 Node* destx = _gvn.transform(dest); 5569 assert(destx == dest, "where has the allocation result gone?"); 5570 5571 array_ideal_length(alloc, ary_type, true); 5572 } 5573 } 5574 5575 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5576 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5577 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5578 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5579 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5580 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5581 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5582 JVMState* saved_jvms_before_guards) { 5583 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5584 // There is at least one unrelated uncommon trap which needs to be replaced. 5585 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5586 5587 JVMState* saved_jvms = jvms(); 5588 const int saved_reexecute_sp = _reexecute_sp; 5589 set_jvms(sfpt->jvms()); 5590 _reexecute_sp = jvms()->sp(); 5591 5592 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5593 5594 // Restore state 5595 set_jvms(saved_jvms); 5596 _reexecute_sp = saved_reexecute_sp; 5597 } 5598 } 5599 5600 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5601 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5602 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5603 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5604 while (if_proj->is_IfProj()) { 5605 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5606 if (uncommon_trap != nullptr) { 5607 create_new_uncommon_trap(uncommon_trap); 5608 } 5609 assert(if_proj->in(0)->is_If(), "must be If"); 5610 if_proj = if_proj->in(0)->in(0); 5611 } 5612 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5613 "must have reached control projection of init node"); 5614 } 5615 5616 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5617 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5618 assert(trap_request != 0, "no valid UCT trap request"); 5619 PreserveJVMState pjvms(this); 5620 set_control(uncommon_trap_call->in(0)); 5621 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5622 Deoptimization::trap_request_action(trap_request)); 5623 assert(stopped(), "Should be stopped"); 5624 _gvn.hash_delete(uncommon_trap_call); 5625 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5626 } 5627 5628 // Common checks for array sorting intrinsics arguments. 5629 // Returns `true` if checks passed. 5630 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5631 // check address of the class 5632 if (elementType == nullptr || elementType->is_top()) { 5633 return false; // dead path 5634 } 5635 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5636 if (elem_klass == nullptr) { 5637 return false; // dead path 5638 } 5639 // java_mirror_type() returns non-null for compile-time Class constants only 5640 ciType* elem_type = elem_klass->java_mirror_type(); 5641 if (elem_type == nullptr) { 5642 return false; 5643 } 5644 bt = elem_type->basic_type(); 5645 // Disable the intrinsic if the CPU does not support SIMD sort 5646 if (!Matcher::supports_simd_sort(bt)) { 5647 return false; 5648 } 5649 // check address of the array 5650 if (obj == nullptr || obj->is_top()) { 5651 return false; // dead path 5652 } 5653 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5654 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5655 return false; // failed input validation 5656 } 5657 return true; 5658 } 5659 5660 //------------------------------inline_array_partition----------------------- 5661 bool LibraryCallKit::inline_array_partition() { 5662 address stubAddr = StubRoutines::select_array_partition_function(); 5663 if (stubAddr == nullptr) { 5664 return false; // Intrinsic's stub is not implemented on this platform 5665 } 5666 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5667 5668 // no receiver because it is a static method 5669 Node* elementType = argument(0); 5670 Node* obj = argument(1); 5671 Node* offset = argument(2); // long 5672 Node* fromIndex = argument(4); 5673 Node* toIndex = argument(5); 5674 Node* indexPivot1 = argument(6); 5675 Node* indexPivot2 = argument(7); 5676 // PartitionOperation: argument(8) is ignored 5677 5678 Node* pivotIndices = nullptr; 5679 BasicType bt = T_ILLEGAL; 5680 5681 if (!check_array_sort_arguments(elementType, obj, bt)) { 5682 return false; 5683 } 5684 null_check(obj); 5685 // If obj is dead, only null-path is taken. 5686 if (stopped()) { 5687 return true; 5688 } 5689 // Set the original stack and the reexecute bit for the interpreter to reexecute 5690 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5691 { PreserveReexecuteState preexecs(this); 5692 jvms()->set_should_reexecute(true); 5693 5694 Node* obj_adr = make_unsafe_address(obj, offset); 5695 5696 // create the pivotIndices array of type int and size = 2 5697 Node* size = intcon(2); 5698 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5699 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5700 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5701 guarantee(alloc != nullptr, "created above"); 5702 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5703 5704 // pass the basic type enum to the stub 5705 Node* elemType = intcon(bt); 5706 5707 // Call the stub 5708 const char *stubName = "array_partition_stub"; 5709 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5710 stubAddr, stubName, TypePtr::BOTTOM, 5711 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5712 indexPivot1, indexPivot2); 5713 5714 } // original reexecute is set back here 5715 5716 if (!stopped()) { 5717 set_result(pivotIndices); 5718 } 5719 5720 return true; 5721 } 5722 5723 5724 //------------------------------inline_array_sort----------------------- 5725 bool LibraryCallKit::inline_array_sort() { 5726 address stubAddr = StubRoutines::select_arraysort_function(); 5727 if (stubAddr == nullptr) { 5728 return false; // Intrinsic's stub is not implemented on this platform 5729 } 5730 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5731 5732 // no receiver because it is a static method 5733 Node* elementType = argument(0); 5734 Node* obj = argument(1); 5735 Node* offset = argument(2); // long 5736 Node* fromIndex = argument(4); 5737 Node* toIndex = argument(5); 5738 // SortOperation: argument(6) is ignored 5739 5740 BasicType bt = T_ILLEGAL; 5741 5742 if (!check_array_sort_arguments(elementType, obj, bt)) { 5743 return false; 5744 } 5745 null_check(obj); 5746 // If obj is dead, only null-path is taken. 5747 if (stopped()) { 5748 return true; 5749 } 5750 Node* obj_adr = make_unsafe_address(obj, offset); 5751 5752 // pass the basic type enum to the stub 5753 Node* elemType = intcon(bt); 5754 5755 // Call the stub. 5756 const char *stubName = "arraysort_stub"; 5757 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5758 stubAddr, stubName, TypePtr::BOTTOM, 5759 obj_adr, elemType, fromIndex, toIndex); 5760 5761 return true; 5762 } 5763 5764 5765 //------------------------------inline_arraycopy----------------------- 5766 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5767 // Object dest, int destPos, 5768 // int length); 5769 bool LibraryCallKit::inline_arraycopy() { 5770 // Get the arguments. 5771 Node* src = argument(0); // type: oop 5772 Node* src_offset = argument(1); // type: int 5773 Node* dest = argument(2); // type: oop 5774 Node* dest_offset = argument(3); // type: int 5775 Node* length = argument(4); // type: int 5776 5777 uint new_idx = C->unique(); 5778 5779 // Check for allocation before we add nodes that would confuse 5780 // tightly_coupled_allocation() 5781 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5782 5783 int saved_reexecute_sp = -1; 5784 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5785 // See arraycopy_restore_alloc_state() comment 5786 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5787 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5788 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5789 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5790 5791 // The following tests must be performed 5792 // (1) src and dest are arrays. 5793 // (2) src and dest arrays must have elements of the same BasicType 5794 // (3) src and dest must not be null. 5795 // (4) src_offset must not be negative. 5796 // (5) dest_offset must not be negative. 5797 // (6) length must not be negative. 5798 // (7) src_offset + length must not exceed length of src. 5799 // (8) dest_offset + length must not exceed length of dest. 5800 // (9) each element of an oop array must be assignable 5801 5802 // (3) src and dest must not be null. 5803 // always do this here because we need the JVM state for uncommon traps 5804 Node* null_ctl = top(); 5805 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5806 assert(null_ctl->is_top(), "no null control here"); 5807 dest = null_check(dest, T_ARRAY); 5808 5809 if (!can_emit_guards) { 5810 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5811 // guards but the arraycopy node could still take advantage of a 5812 // tightly allocated allocation. tightly_coupled_allocation() is 5813 // called again to make sure it takes the null check above into 5814 // account: the null check is mandatory and if it caused an 5815 // uncommon trap to be emitted then the allocation can't be 5816 // considered tightly coupled in this context. 5817 alloc = tightly_coupled_allocation(dest); 5818 } 5819 5820 bool validated = false; 5821 5822 const Type* src_type = _gvn.type(src); 5823 const Type* dest_type = _gvn.type(dest); 5824 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5825 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5826 5827 // Do we have the type of src? 5828 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5829 // Do we have the type of dest? 5830 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5831 // Is the type for src from speculation? 5832 bool src_spec = false; 5833 // Is the type for dest from speculation? 5834 bool dest_spec = false; 5835 5836 if ((!has_src || !has_dest) && can_emit_guards) { 5837 // We don't have sufficient type information, let's see if 5838 // speculative types can help. We need to have types for both src 5839 // and dest so that it pays off. 5840 5841 // Do we already have or could we have type information for src 5842 bool could_have_src = has_src; 5843 // Do we already have or could we have type information for dest 5844 bool could_have_dest = has_dest; 5845 5846 ciKlass* src_k = nullptr; 5847 if (!has_src) { 5848 src_k = src_type->speculative_type_not_null(); 5849 if (src_k != nullptr && src_k->is_array_klass()) { 5850 could_have_src = true; 5851 } 5852 } 5853 5854 ciKlass* dest_k = nullptr; 5855 if (!has_dest) { 5856 dest_k = dest_type->speculative_type_not_null(); 5857 if (dest_k != nullptr && dest_k->is_array_klass()) { 5858 could_have_dest = true; 5859 } 5860 } 5861 5862 if (could_have_src && could_have_dest) { 5863 // This is going to pay off so emit the required guards 5864 if (!has_src) { 5865 src = maybe_cast_profiled_obj(src, src_k, true); 5866 src_type = _gvn.type(src); 5867 top_src = src_type->isa_aryptr(); 5868 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5869 src_spec = true; 5870 } 5871 if (!has_dest) { 5872 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5873 dest_type = _gvn.type(dest); 5874 top_dest = dest_type->isa_aryptr(); 5875 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5876 dest_spec = true; 5877 } 5878 } 5879 } 5880 5881 if (has_src && has_dest && can_emit_guards) { 5882 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5883 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5884 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5885 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5886 5887 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5888 // If both arrays are object arrays then having the exact types 5889 // for both will remove the need for a subtype check at runtime 5890 // before the call and may make it possible to pick a faster copy 5891 // routine (without a subtype check on every element) 5892 // Do we have the exact type of src? 5893 bool could_have_src = src_spec; 5894 // Do we have the exact type of dest? 5895 bool could_have_dest = dest_spec; 5896 ciKlass* src_k = nullptr; 5897 ciKlass* dest_k = nullptr; 5898 if (!src_spec) { 5899 src_k = src_type->speculative_type_not_null(); 5900 if (src_k != nullptr && src_k->is_array_klass()) { 5901 could_have_src = true; 5902 } 5903 } 5904 if (!dest_spec) { 5905 dest_k = dest_type->speculative_type_not_null(); 5906 if (dest_k != nullptr && dest_k->is_array_klass()) { 5907 could_have_dest = true; 5908 } 5909 } 5910 if (could_have_src && could_have_dest) { 5911 // If we can have both exact types, emit the missing guards 5912 if (could_have_src && !src_spec) { 5913 src = maybe_cast_profiled_obj(src, src_k, true); 5914 } 5915 if (could_have_dest && !dest_spec) { 5916 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5917 } 5918 } 5919 } 5920 } 5921 5922 ciMethod* trap_method = method(); 5923 int trap_bci = bci(); 5924 if (saved_jvms_before_guards != nullptr) { 5925 trap_method = alloc->jvms()->method(); 5926 trap_bci = alloc->jvms()->bci(); 5927 } 5928 5929 bool negative_length_guard_generated = false; 5930 5931 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5932 can_emit_guards && 5933 !src->is_top() && !dest->is_top()) { 5934 // validate arguments: enables transformation the ArrayCopyNode 5935 validated = true; 5936 5937 RegionNode* slow_region = new RegionNode(1); 5938 record_for_igvn(slow_region); 5939 5940 // (1) src and dest are arrays. 5941 generate_non_array_guard(load_object_klass(src), slow_region, &src); 5942 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 5943 5944 // (2) src and dest arrays must have elements of the same BasicType 5945 // done at macro expansion or at Ideal transformation time 5946 5947 // (4) src_offset must not be negative. 5948 generate_negative_guard(src_offset, slow_region); 5949 5950 // (5) dest_offset must not be negative. 5951 generate_negative_guard(dest_offset, slow_region); 5952 5953 // (7) src_offset + length must not exceed length of src. 5954 generate_limit_guard(src_offset, length, 5955 load_array_length(src), 5956 slow_region); 5957 5958 // (8) dest_offset + length must not exceed length of dest. 5959 generate_limit_guard(dest_offset, length, 5960 load_array_length(dest), 5961 slow_region); 5962 5963 // (6) length must not be negative. 5964 // This is also checked in generate_arraycopy() during macro expansion, but 5965 // we also have to check it here for the case where the ArrayCopyNode will 5966 // be eliminated by Escape Analysis. 5967 if (EliminateAllocations) { 5968 generate_negative_guard(length, slow_region); 5969 negative_length_guard_generated = true; 5970 } 5971 5972 // (9) each element of an oop array must be assignable 5973 Node* dest_klass = load_object_klass(dest); 5974 if (src != dest) { 5975 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5976 5977 if (not_subtype_ctrl != top()) { 5978 PreserveJVMState pjvms(this); 5979 set_control(not_subtype_ctrl); 5980 uncommon_trap(Deoptimization::Reason_intrinsic, 5981 Deoptimization::Action_make_not_entrant); 5982 assert(stopped(), "Should be stopped"); 5983 } 5984 } 5985 { 5986 PreserveJVMState pjvms(this); 5987 set_control(_gvn.transform(slow_region)); 5988 uncommon_trap(Deoptimization::Reason_intrinsic, 5989 Deoptimization::Action_make_not_entrant); 5990 assert(stopped(), "Should be stopped"); 5991 } 5992 5993 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5994 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5995 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5996 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5997 } 5998 5999 if (stopped()) { 6000 return true; 6001 } 6002 6003 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6004 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6005 // so the compiler has a chance to eliminate them: during macro expansion, 6006 // we have to set their control (CastPP nodes are eliminated). 6007 load_object_klass(src), load_object_klass(dest), 6008 load_array_length(src), load_array_length(dest)); 6009 6010 ac->set_arraycopy(validated); 6011 6012 Node* n = _gvn.transform(ac); 6013 if (n == ac) { 6014 ac->connect_outputs(this); 6015 } else { 6016 assert(validated, "shouldn't transform if all arguments not validated"); 6017 set_all_memory(n); 6018 } 6019 clear_upper_avx(); 6020 6021 6022 return true; 6023 } 6024 6025 6026 // Helper function which determines if an arraycopy immediately follows 6027 // an allocation, with no intervening tests or other escapes for the object. 6028 AllocateArrayNode* 6029 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6030 if (stopped()) return nullptr; // no fast path 6031 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6032 6033 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6034 if (alloc == nullptr) return nullptr; 6035 6036 Node* rawmem = memory(Compile::AliasIdxRaw); 6037 // Is the allocation's memory state untouched? 6038 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6039 // Bail out if there have been raw-memory effects since the allocation. 6040 // (Example: There might have been a call or safepoint.) 6041 return nullptr; 6042 } 6043 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6044 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6045 return nullptr; 6046 } 6047 6048 // There must be no unexpected observers of this allocation. 6049 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6050 Node* obs = ptr->fast_out(i); 6051 if (obs != this->map()) { 6052 return nullptr; 6053 } 6054 } 6055 6056 // This arraycopy must unconditionally follow the allocation of the ptr. 6057 Node* alloc_ctl = ptr->in(0); 6058 Node* ctl = control(); 6059 while (ctl != alloc_ctl) { 6060 // There may be guards which feed into the slow_region. 6061 // Any other control flow means that we might not get a chance 6062 // to finish initializing the allocated object. 6063 // Various low-level checks bottom out in uncommon traps. These 6064 // are considered safe since we've already checked above that 6065 // there is no unexpected observer of this allocation. 6066 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6067 assert(ctl->in(0)->is_If(), "must be If"); 6068 ctl = ctl->in(0)->in(0); 6069 } else { 6070 return nullptr; 6071 } 6072 } 6073 6074 // If we get this far, we have an allocation which immediately 6075 // precedes the arraycopy, and we can take over zeroing the new object. 6076 // The arraycopy will finish the initialization, and provide 6077 // a new control state to which we will anchor the destination pointer. 6078 6079 return alloc; 6080 } 6081 6082 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6083 if (node->is_IfProj()) { 6084 Node* other_proj = node->as_IfProj()->other_if_proj(); 6085 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6086 Node* obs = other_proj->fast_out(j); 6087 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6088 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6089 return obs->as_CallStaticJava(); 6090 } 6091 } 6092 } 6093 return nullptr; 6094 } 6095 6096 //-------------inline_encodeISOArray----------------------------------- 6097 // encode char[] to byte[] in ISO_8859_1 or ASCII 6098 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6099 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6100 // no receiver since it is static method 6101 Node *src = argument(0); 6102 Node *src_offset = argument(1); 6103 Node *dst = argument(2); 6104 Node *dst_offset = argument(3); 6105 Node *length = argument(4); 6106 6107 src = must_be_not_null(src, true); 6108 dst = must_be_not_null(dst, true); 6109 6110 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6111 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6112 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6113 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6114 // failed array check 6115 return false; 6116 } 6117 6118 // Figure out the size and type of the elements we will be copying. 6119 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6120 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6121 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6122 return false; 6123 } 6124 6125 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6126 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6127 // 'src_start' points to src array + scaled offset 6128 // 'dst_start' points to dst array + scaled offset 6129 6130 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6131 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6132 enc = _gvn.transform(enc); 6133 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6134 set_memory(res_mem, mtype); 6135 set_result(enc); 6136 clear_upper_avx(); 6137 6138 return true; 6139 } 6140 6141 //-------------inline_multiplyToLen----------------------------------- 6142 bool LibraryCallKit::inline_multiplyToLen() { 6143 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6144 6145 address stubAddr = StubRoutines::multiplyToLen(); 6146 if (stubAddr == nullptr) { 6147 return false; // Intrinsic's stub is not implemented on this platform 6148 } 6149 const char* stubName = "multiplyToLen"; 6150 6151 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6152 6153 // no receiver because it is a static method 6154 Node* x = argument(0); 6155 Node* xlen = argument(1); 6156 Node* y = argument(2); 6157 Node* ylen = argument(3); 6158 Node* z = argument(4); 6159 6160 x = must_be_not_null(x, true); 6161 y = must_be_not_null(y, true); 6162 6163 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6164 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6165 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6166 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6167 // failed array check 6168 return false; 6169 } 6170 6171 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6172 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6173 if (x_elem != T_INT || y_elem != T_INT) { 6174 return false; 6175 } 6176 6177 Node* x_start = array_element_address(x, intcon(0), x_elem); 6178 Node* y_start = array_element_address(y, intcon(0), y_elem); 6179 // 'x_start' points to x array + scaled xlen 6180 // 'y_start' points to y array + scaled ylen 6181 6182 Node* z_start = array_element_address(z, intcon(0), T_INT); 6183 6184 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6185 OptoRuntime::multiplyToLen_Type(), 6186 stubAddr, stubName, TypePtr::BOTTOM, 6187 x_start, xlen, y_start, ylen, z_start); 6188 6189 C->set_has_split_ifs(true); // Has chance for split-if optimization 6190 set_result(z); 6191 return true; 6192 } 6193 6194 //-------------inline_squareToLen------------------------------------ 6195 bool LibraryCallKit::inline_squareToLen() { 6196 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6197 6198 address stubAddr = StubRoutines::squareToLen(); 6199 if (stubAddr == nullptr) { 6200 return false; // Intrinsic's stub is not implemented on this platform 6201 } 6202 const char* stubName = "squareToLen"; 6203 6204 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6205 6206 Node* x = argument(0); 6207 Node* len = argument(1); 6208 Node* z = argument(2); 6209 Node* zlen = argument(3); 6210 6211 x = must_be_not_null(x, true); 6212 z = must_be_not_null(z, true); 6213 6214 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6215 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6216 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6217 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6218 // failed array check 6219 return false; 6220 } 6221 6222 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6223 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6224 if (x_elem != T_INT || z_elem != T_INT) { 6225 return false; 6226 } 6227 6228 6229 Node* x_start = array_element_address(x, intcon(0), x_elem); 6230 Node* z_start = array_element_address(z, intcon(0), z_elem); 6231 6232 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6233 OptoRuntime::squareToLen_Type(), 6234 stubAddr, stubName, TypePtr::BOTTOM, 6235 x_start, len, z_start, zlen); 6236 6237 set_result(z); 6238 return true; 6239 } 6240 6241 //-------------inline_mulAdd------------------------------------------ 6242 bool LibraryCallKit::inline_mulAdd() { 6243 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6244 6245 address stubAddr = StubRoutines::mulAdd(); 6246 if (stubAddr == nullptr) { 6247 return false; // Intrinsic's stub is not implemented on this platform 6248 } 6249 const char* stubName = "mulAdd"; 6250 6251 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6252 6253 Node* out = argument(0); 6254 Node* in = argument(1); 6255 Node* offset = argument(2); 6256 Node* len = argument(3); 6257 Node* k = argument(4); 6258 6259 in = must_be_not_null(in, true); 6260 out = must_be_not_null(out, true); 6261 6262 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6263 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6264 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6265 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6266 // failed array check 6267 return false; 6268 } 6269 6270 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6271 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6272 if (out_elem != T_INT || in_elem != T_INT) { 6273 return false; 6274 } 6275 6276 Node* outlen = load_array_length(out); 6277 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6278 Node* out_start = array_element_address(out, intcon(0), out_elem); 6279 Node* in_start = array_element_address(in, intcon(0), in_elem); 6280 6281 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6282 OptoRuntime::mulAdd_Type(), 6283 stubAddr, stubName, TypePtr::BOTTOM, 6284 out_start,in_start, new_offset, len, k); 6285 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6286 set_result(result); 6287 return true; 6288 } 6289 6290 //-------------inline_montgomeryMultiply----------------------------------- 6291 bool LibraryCallKit::inline_montgomeryMultiply() { 6292 address stubAddr = StubRoutines::montgomeryMultiply(); 6293 if (stubAddr == nullptr) { 6294 return false; // Intrinsic's stub is not implemented on this platform 6295 } 6296 6297 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6298 const char* stubName = "montgomery_multiply"; 6299 6300 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6301 6302 Node* a = argument(0); 6303 Node* b = argument(1); 6304 Node* n = argument(2); 6305 Node* len = argument(3); 6306 Node* inv = argument(4); 6307 Node* m = argument(6); 6308 6309 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6310 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6311 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6312 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6313 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6314 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6315 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6316 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6317 // failed array check 6318 return false; 6319 } 6320 6321 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6322 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6323 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6324 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6325 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6326 return false; 6327 } 6328 6329 // Make the call 6330 { 6331 Node* a_start = array_element_address(a, intcon(0), a_elem); 6332 Node* b_start = array_element_address(b, intcon(0), b_elem); 6333 Node* n_start = array_element_address(n, intcon(0), n_elem); 6334 Node* m_start = array_element_address(m, intcon(0), m_elem); 6335 6336 Node* call = make_runtime_call(RC_LEAF, 6337 OptoRuntime::montgomeryMultiply_Type(), 6338 stubAddr, stubName, TypePtr::BOTTOM, 6339 a_start, b_start, n_start, len, inv, top(), 6340 m_start); 6341 set_result(m); 6342 } 6343 6344 return true; 6345 } 6346 6347 bool LibraryCallKit::inline_montgomerySquare() { 6348 address stubAddr = StubRoutines::montgomerySquare(); 6349 if (stubAddr == nullptr) { 6350 return false; // Intrinsic's stub is not implemented on this platform 6351 } 6352 6353 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6354 const char* stubName = "montgomery_square"; 6355 6356 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6357 6358 Node* a = argument(0); 6359 Node* n = argument(1); 6360 Node* len = argument(2); 6361 Node* inv = argument(3); 6362 Node* m = argument(5); 6363 6364 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6365 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6366 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6367 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6368 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6369 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6370 // failed array check 6371 return false; 6372 } 6373 6374 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6375 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6376 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6377 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6378 return false; 6379 } 6380 6381 // Make the call 6382 { 6383 Node* a_start = array_element_address(a, intcon(0), a_elem); 6384 Node* n_start = array_element_address(n, intcon(0), n_elem); 6385 Node* m_start = array_element_address(m, intcon(0), m_elem); 6386 6387 Node* call = make_runtime_call(RC_LEAF, 6388 OptoRuntime::montgomerySquare_Type(), 6389 stubAddr, stubName, TypePtr::BOTTOM, 6390 a_start, n_start, len, inv, top(), 6391 m_start); 6392 set_result(m); 6393 } 6394 6395 return true; 6396 } 6397 6398 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6399 address stubAddr = nullptr; 6400 const char* stubName = nullptr; 6401 6402 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6403 if (stubAddr == nullptr) { 6404 return false; // Intrinsic's stub is not implemented on this platform 6405 } 6406 6407 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6408 6409 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6410 6411 Node* newArr = argument(0); 6412 Node* oldArr = argument(1); 6413 Node* newIdx = argument(2); 6414 Node* shiftCount = argument(3); 6415 Node* numIter = argument(4); 6416 6417 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6418 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6419 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6420 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6421 return false; 6422 } 6423 6424 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6425 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6426 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6427 return false; 6428 } 6429 6430 // Make the call 6431 { 6432 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6433 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6434 6435 Node* call = make_runtime_call(RC_LEAF, 6436 OptoRuntime::bigIntegerShift_Type(), 6437 stubAddr, 6438 stubName, 6439 TypePtr::BOTTOM, 6440 newArr_start, 6441 oldArr_start, 6442 newIdx, 6443 shiftCount, 6444 numIter); 6445 } 6446 6447 return true; 6448 } 6449 6450 //-------------inline_vectorizedMismatch------------------------------ 6451 bool LibraryCallKit::inline_vectorizedMismatch() { 6452 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6453 6454 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6455 Node* obja = argument(0); // Object 6456 Node* aoffset = argument(1); // long 6457 Node* objb = argument(3); // Object 6458 Node* boffset = argument(4); // long 6459 Node* length = argument(6); // int 6460 Node* scale = argument(7); // int 6461 6462 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6463 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6464 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6465 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6466 scale == top()) { 6467 return false; // failed input validation 6468 } 6469 6470 Node* obja_adr = make_unsafe_address(obja, aoffset); 6471 Node* objb_adr = make_unsafe_address(objb, boffset); 6472 6473 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6474 // 6475 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6476 // if (length <= inline_limit) { 6477 // inline_path: 6478 // vmask = VectorMaskGen length 6479 // vload1 = LoadVectorMasked obja, vmask 6480 // vload2 = LoadVectorMasked objb, vmask 6481 // result1 = VectorCmpMasked vload1, vload2, vmask 6482 // } else { 6483 // call_stub_path: 6484 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6485 // } 6486 // exit_block: 6487 // return Phi(result1, result2); 6488 // 6489 enum { inline_path = 1, // input is small enough to process it all at once 6490 stub_path = 2, // input is too large; call into the VM 6491 PATH_LIMIT = 3 6492 }; 6493 6494 Node* exit_block = new RegionNode(PATH_LIMIT); 6495 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6496 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6497 6498 Node* call_stub_path = control(); 6499 6500 BasicType elem_bt = T_ILLEGAL; 6501 6502 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6503 if (scale_t->is_con()) { 6504 switch (scale_t->get_con()) { 6505 case 0: elem_bt = T_BYTE; break; 6506 case 1: elem_bt = T_SHORT; break; 6507 case 2: elem_bt = T_INT; break; 6508 case 3: elem_bt = T_LONG; break; 6509 6510 default: elem_bt = T_ILLEGAL; break; // not supported 6511 } 6512 } 6513 6514 int inline_limit = 0; 6515 bool do_partial_inline = false; 6516 6517 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6518 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6519 do_partial_inline = inline_limit >= 16; 6520 } 6521 6522 if (do_partial_inline) { 6523 assert(elem_bt != T_ILLEGAL, "sanity"); 6524 6525 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6526 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6527 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6528 6529 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6530 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6531 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6532 6533 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6534 6535 if (!stopped()) { 6536 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6537 6538 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6539 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6540 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6541 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6542 6543 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6544 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6545 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6546 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6547 6548 exit_block->init_req(inline_path, control()); 6549 memory_phi->init_req(inline_path, map()->memory()); 6550 result_phi->init_req(inline_path, result); 6551 6552 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6553 clear_upper_avx(); 6554 } 6555 } 6556 } 6557 6558 if (call_stub_path != nullptr) { 6559 set_control(call_stub_path); 6560 6561 Node* call = make_runtime_call(RC_LEAF, 6562 OptoRuntime::vectorizedMismatch_Type(), 6563 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6564 obja_adr, objb_adr, length, scale); 6565 6566 exit_block->init_req(stub_path, control()); 6567 memory_phi->init_req(stub_path, map()->memory()); 6568 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6569 } 6570 6571 exit_block = _gvn.transform(exit_block); 6572 memory_phi = _gvn.transform(memory_phi); 6573 result_phi = _gvn.transform(result_phi); 6574 6575 set_control(exit_block); 6576 set_all_memory(memory_phi); 6577 set_result(result_phi); 6578 6579 return true; 6580 } 6581 6582 //------------------------------inline_vectorizedHashcode---------------------------- 6583 bool LibraryCallKit::inline_vectorizedHashCode() { 6584 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6585 6586 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6587 Node* array = argument(0); 6588 Node* offset = argument(1); 6589 Node* length = argument(2); 6590 Node* initialValue = argument(3); 6591 Node* basic_type = argument(4); 6592 6593 if (basic_type == top()) { 6594 return false; // failed input validation 6595 } 6596 6597 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6598 if (!basic_type_t->is_con()) { 6599 return false; // Only intrinsify if mode argument is constant 6600 } 6601 6602 array = must_be_not_null(array, true); 6603 6604 BasicType bt = (BasicType)basic_type_t->get_con(); 6605 6606 // Resolve address of first element 6607 Node* array_start = array_element_address(array, offset, bt); 6608 6609 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6610 array_start, length, initialValue, basic_type))); 6611 clear_upper_avx(); 6612 6613 return true; 6614 } 6615 6616 /** 6617 * Calculate CRC32 for byte. 6618 * int java.util.zip.CRC32.update(int crc, int b) 6619 */ 6620 bool LibraryCallKit::inline_updateCRC32() { 6621 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6622 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6623 // no receiver since it is static method 6624 Node* crc = argument(0); // type: int 6625 Node* b = argument(1); // type: int 6626 6627 /* 6628 * int c = ~ crc; 6629 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6630 * b = b ^ (c >>> 8); 6631 * crc = ~b; 6632 */ 6633 6634 Node* M1 = intcon(-1); 6635 crc = _gvn.transform(new XorINode(crc, M1)); 6636 Node* result = _gvn.transform(new XorINode(crc, b)); 6637 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6638 6639 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6640 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6641 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6642 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6643 6644 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6645 result = _gvn.transform(new XorINode(crc, result)); 6646 result = _gvn.transform(new XorINode(result, M1)); 6647 set_result(result); 6648 return true; 6649 } 6650 6651 /** 6652 * Calculate CRC32 for byte[] array. 6653 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6654 */ 6655 bool LibraryCallKit::inline_updateBytesCRC32() { 6656 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6657 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6658 // no receiver since it is static method 6659 Node* crc = argument(0); // type: int 6660 Node* src = argument(1); // type: oop 6661 Node* offset = argument(2); // type: int 6662 Node* length = argument(3); // type: int 6663 6664 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6665 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6666 // failed array check 6667 return false; 6668 } 6669 6670 // Figure out the size and type of the elements we will be copying. 6671 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6672 if (src_elem != T_BYTE) { 6673 return false; 6674 } 6675 6676 // 'src_start' points to src array + scaled offset 6677 src = must_be_not_null(src, true); 6678 Node* src_start = array_element_address(src, offset, src_elem); 6679 6680 // We assume that range check is done by caller. 6681 // TODO: generate range check (offset+length < src.length) in debug VM. 6682 6683 // Call the stub. 6684 address stubAddr = StubRoutines::updateBytesCRC32(); 6685 const char *stubName = "updateBytesCRC32"; 6686 6687 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6688 stubAddr, stubName, TypePtr::BOTTOM, 6689 crc, src_start, length); 6690 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6691 set_result(result); 6692 return true; 6693 } 6694 6695 /** 6696 * Calculate CRC32 for ByteBuffer. 6697 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6698 */ 6699 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6700 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6701 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6702 // no receiver since it is static method 6703 Node* crc = argument(0); // type: int 6704 Node* src = argument(1); // type: long 6705 Node* offset = argument(3); // type: int 6706 Node* length = argument(4); // type: int 6707 6708 src = ConvL2X(src); // adjust Java long to machine word 6709 Node* base = _gvn.transform(new CastX2PNode(src)); 6710 offset = ConvI2X(offset); 6711 6712 // 'src_start' points to src array + scaled offset 6713 Node* src_start = basic_plus_adr(top(), base, offset); 6714 6715 // Call the stub. 6716 address stubAddr = StubRoutines::updateBytesCRC32(); 6717 const char *stubName = "updateBytesCRC32"; 6718 6719 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6720 stubAddr, stubName, TypePtr::BOTTOM, 6721 crc, src_start, length); 6722 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6723 set_result(result); 6724 return true; 6725 } 6726 6727 //------------------------------get_table_from_crc32c_class----------------------- 6728 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6729 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6730 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6731 6732 return table; 6733 } 6734 6735 //------------------------------inline_updateBytesCRC32C----------------------- 6736 // 6737 // Calculate CRC32C for byte[] array. 6738 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6739 // 6740 bool LibraryCallKit::inline_updateBytesCRC32C() { 6741 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6742 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6743 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6744 // no receiver since it is a static method 6745 Node* crc = argument(0); // type: int 6746 Node* src = argument(1); // type: oop 6747 Node* offset = argument(2); // type: int 6748 Node* end = argument(3); // type: int 6749 6750 Node* length = _gvn.transform(new SubINode(end, offset)); 6751 6752 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6753 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6754 // failed array check 6755 return false; 6756 } 6757 6758 // Figure out the size and type of the elements we will be copying. 6759 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6760 if (src_elem != T_BYTE) { 6761 return false; 6762 } 6763 6764 // 'src_start' points to src array + scaled offset 6765 src = must_be_not_null(src, true); 6766 Node* src_start = array_element_address(src, offset, src_elem); 6767 6768 // static final int[] byteTable in class CRC32C 6769 Node* table = get_table_from_crc32c_class(callee()->holder()); 6770 table = must_be_not_null(table, true); 6771 Node* table_start = array_element_address(table, intcon(0), T_INT); 6772 6773 // We assume that range check is done by caller. 6774 // TODO: generate range check (offset+length < src.length) in debug VM. 6775 6776 // Call the stub. 6777 address stubAddr = StubRoutines::updateBytesCRC32C(); 6778 const char *stubName = "updateBytesCRC32C"; 6779 6780 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6781 stubAddr, stubName, TypePtr::BOTTOM, 6782 crc, src_start, length, table_start); 6783 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6784 set_result(result); 6785 return true; 6786 } 6787 6788 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6789 // 6790 // Calculate CRC32C for DirectByteBuffer. 6791 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6792 // 6793 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6794 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6795 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6796 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6797 // no receiver since it is a static method 6798 Node* crc = argument(0); // type: int 6799 Node* src = argument(1); // type: long 6800 Node* offset = argument(3); // type: int 6801 Node* end = argument(4); // type: int 6802 6803 Node* length = _gvn.transform(new SubINode(end, offset)); 6804 6805 src = ConvL2X(src); // adjust Java long to machine word 6806 Node* base = _gvn.transform(new CastX2PNode(src)); 6807 offset = ConvI2X(offset); 6808 6809 // 'src_start' points to src array + scaled offset 6810 Node* src_start = basic_plus_adr(top(), base, offset); 6811 6812 // static final int[] byteTable in class CRC32C 6813 Node* table = get_table_from_crc32c_class(callee()->holder()); 6814 table = must_be_not_null(table, true); 6815 Node* table_start = array_element_address(table, intcon(0), T_INT); 6816 6817 // Call the stub. 6818 address stubAddr = StubRoutines::updateBytesCRC32C(); 6819 const char *stubName = "updateBytesCRC32C"; 6820 6821 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6822 stubAddr, stubName, TypePtr::BOTTOM, 6823 crc, src_start, length, table_start); 6824 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6825 set_result(result); 6826 return true; 6827 } 6828 6829 //------------------------------inline_updateBytesAdler32---------------------- 6830 // 6831 // Calculate Adler32 checksum for byte[] array. 6832 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6833 // 6834 bool LibraryCallKit::inline_updateBytesAdler32() { 6835 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6836 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6837 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6838 // no receiver since it is static method 6839 Node* crc = argument(0); // type: int 6840 Node* src = argument(1); // type: oop 6841 Node* offset = argument(2); // type: int 6842 Node* length = argument(3); // type: int 6843 6844 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6845 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6846 // failed array check 6847 return false; 6848 } 6849 6850 // Figure out the size and type of the elements we will be copying. 6851 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6852 if (src_elem != T_BYTE) { 6853 return false; 6854 } 6855 6856 // 'src_start' points to src array + scaled offset 6857 Node* src_start = array_element_address(src, offset, src_elem); 6858 6859 // We assume that range check is done by caller. 6860 // TODO: generate range check (offset+length < src.length) in debug VM. 6861 6862 // Call the stub. 6863 address stubAddr = StubRoutines::updateBytesAdler32(); 6864 const char *stubName = "updateBytesAdler32"; 6865 6866 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6867 stubAddr, stubName, TypePtr::BOTTOM, 6868 crc, src_start, length); 6869 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6870 set_result(result); 6871 return true; 6872 } 6873 6874 //------------------------------inline_updateByteBufferAdler32--------------- 6875 // 6876 // Calculate Adler32 checksum for DirectByteBuffer. 6877 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6878 // 6879 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6880 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6881 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6882 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6883 // no receiver since it is static method 6884 Node* crc = argument(0); // type: int 6885 Node* src = argument(1); // type: long 6886 Node* offset = argument(3); // type: int 6887 Node* length = argument(4); // type: int 6888 6889 src = ConvL2X(src); // adjust Java long to machine word 6890 Node* base = _gvn.transform(new CastX2PNode(src)); 6891 offset = ConvI2X(offset); 6892 6893 // 'src_start' points to src array + scaled offset 6894 Node* src_start = basic_plus_adr(top(), base, offset); 6895 6896 // Call the stub. 6897 address stubAddr = StubRoutines::updateBytesAdler32(); 6898 const char *stubName = "updateBytesAdler32"; 6899 6900 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6901 stubAddr, stubName, TypePtr::BOTTOM, 6902 crc, src_start, length); 6903 6904 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6905 set_result(result); 6906 return true; 6907 } 6908 6909 //----------------------------inline_reference_get---------------------------- 6910 // public T java.lang.ref.Reference.get(); 6911 bool LibraryCallKit::inline_reference_get() { 6912 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6913 6914 // Get the argument: 6915 Node* reference_obj = null_check_receiver(); 6916 if (stopped()) return true; 6917 6918 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6919 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6920 decorators, /*is_static*/ false, nullptr); 6921 if (result == nullptr) return false; 6922 6923 // Add memory barrier to prevent commoning reads from this field 6924 // across safepoint since GC can change its value. 6925 insert_mem_bar(Op_MemBarCPUOrder); 6926 6927 set_result(result); 6928 return true; 6929 } 6930 6931 //----------------------------inline_reference_refersTo0---------------------------- 6932 // bool java.lang.ref.Reference.refersTo0(); 6933 // bool java.lang.ref.PhantomReference.refersTo0(); 6934 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6935 // Get arguments: 6936 Node* reference_obj = null_check_receiver(); 6937 Node* other_obj = argument(1); 6938 if (stopped()) return true; 6939 6940 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6941 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6942 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6943 decorators, /*is_static*/ false, nullptr); 6944 if (referent == nullptr) return false; 6945 6946 // Add memory barrier to prevent commoning reads from this field 6947 // across safepoint since GC can change its value. 6948 insert_mem_bar(Op_MemBarCPUOrder); 6949 6950 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6951 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6952 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6953 6954 RegionNode* region = new RegionNode(3); 6955 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6956 6957 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6958 region->init_req(1, if_true); 6959 phi->init_req(1, intcon(1)); 6960 6961 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6962 region->init_req(2, if_false); 6963 phi->init_req(2, intcon(0)); 6964 6965 set_control(_gvn.transform(region)); 6966 record_for_igvn(region); 6967 set_result(_gvn.transform(phi)); 6968 return true; 6969 } 6970 6971 //----------------------------inline_reference_clear0---------------------------- 6972 // void java.lang.ref.Reference.clear0(); 6973 // void java.lang.ref.PhantomReference.clear0(); 6974 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 6975 // This matches the implementation in JVM_ReferenceClear, see the comments there. 6976 6977 // Get arguments 6978 Node* reference_obj = null_check_receiver(); 6979 if (stopped()) return true; 6980 6981 // Common access parameters 6982 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6983 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6984 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 6985 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 6986 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 6987 6988 Node* referent = access_load_at(reference_obj, 6989 referent_field_addr, 6990 referent_field_addr_type, 6991 val_type, 6992 T_OBJECT, 6993 decorators); 6994 6995 IdealKit ideal(this); 6996 #define __ ideal. 6997 __ if_then(referent, BoolTest::ne, null()); 6998 sync_kit(ideal); 6999 access_store_at(reference_obj, 7000 referent_field_addr, 7001 referent_field_addr_type, 7002 null(), 7003 val_type, 7004 T_OBJECT, 7005 decorators); 7006 __ sync_kit(this); 7007 __ end_if(); 7008 final_sync(ideal); 7009 #undef __ 7010 7011 return true; 7012 } 7013 7014 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7015 DecoratorSet decorators, bool is_static, 7016 ciInstanceKlass* fromKls) { 7017 if (fromKls == nullptr) { 7018 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7019 assert(tinst != nullptr, "obj is null"); 7020 assert(tinst->is_loaded(), "obj is not loaded"); 7021 fromKls = tinst->instance_klass(); 7022 } else { 7023 assert(is_static, "only for static field access"); 7024 } 7025 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7026 ciSymbol::make(fieldTypeString), 7027 is_static); 7028 7029 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7030 if (field == nullptr) return (Node *) nullptr; 7031 7032 if (is_static) { 7033 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7034 fromObj = makecon(tip); 7035 } 7036 7037 // Next code copied from Parse::do_get_xxx(): 7038 7039 // Compute address and memory type. 7040 int offset = field->offset_in_bytes(); 7041 bool is_vol = field->is_volatile(); 7042 ciType* field_klass = field->type(); 7043 assert(field_klass->is_loaded(), "should be loaded"); 7044 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7045 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7046 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7047 "slice of address and input slice don't match"); 7048 BasicType bt = field->layout_type(); 7049 7050 // Build the resultant type of the load 7051 const Type *type; 7052 if (bt == T_OBJECT) { 7053 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7054 } else { 7055 type = Type::get_const_basic_type(bt); 7056 } 7057 7058 if (is_vol) { 7059 decorators |= MO_SEQ_CST; 7060 } 7061 7062 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7063 } 7064 7065 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7066 bool is_exact /* true */, bool is_static /* false */, 7067 ciInstanceKlass * fromKls /* nullptr */) { 7068 if (fromKls == nullptr) { 7069 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7070 assert(tinst != nullptr, "obj is null"); 7071 assert(tinst->is_loaded(), "obj is not loaded"); 7072 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7073 fromKls = tinst->instance_klass(); 7074 } 7075 else { 7076 assert(is_static, "only for static field access"); 7077 } 7078 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7079 ciSymbol::make(fieldTypeString), 7080 is_static); 7081 7082 assert(field != nullptr, "undefined field"); 7083 assert(!field->is_volatile(), "not defined for volatile fields"); 7084 7085 if (is_static) { 7086 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7087 fromObj = makecon(tip); 7088 } 7089 7090 // Next code copied from Parse::do_get_xxx(): 7091 7092 // Compute address and memory type. 7093 int offset = field->offset_in_bytes(); 7094 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7095 7096 return adr; 7097 } 7098 7099 //------------------------------inline_aescrypt_Block----------------------- 7100 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7101 address stubAddr = nullptr; 7102 const char *stubName; 7103 assert(UseAES, "need AES instruction support"); 7104 7105 switch(id) { 7106 case vmIntrinsics::_aescrypt_encryptBlock: 7107 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7108 stubName = "aescrypt_encryptBlock"; 7109 break; 7110 case vmIntrinsics::_aescrypt_decryptBlock: 7111 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7112 stubName = "aescrypt_decryptBlock"; 7113 break; 7114 default: 7115 break; 7116 } 7117 if (stubAddr == nullptr) return false; 7118 7119 Node* aescrypt_object = argument(0); 7120 Node* src = argument(1); 7121 Node* src_offset = argument(2); 7122 Node* dest = argument(3); 7123 Node* dest_offset = argument(4); 7124 7125 src = must_be_not_null(src, true); 7126 dest = must_be_not_null(dest, true); 7127 7128 // (1) src and dest are arrays. 7129 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7130 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7131 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7132 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7133 7134 // for the quick and dirty code we will skip all the checks. 7135 // we are just trying to get the call to be generated. 7136 Node* src_start = src; 7137 Node* dest_start = dest; 7138 if (src_offset != nullptr || dest_offset != nullptr) { 7139 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7140 src_start = array_element_address(src, src_offset, T_BYTE); 7141 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7142 } 7143 7144 // now need to get the start of its expanded key array 7145 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7146 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7147 if (k_start == nullptr) return false; 7148 7149 // Call the stub. 7150 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7151 stubAddr, stubName, TypePtr::BOTTOM, 7152 src_start, dest_start, k_start); 7153 7154 return true; 7155 } 7156 7157 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7158 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7159 address stubAddr = nullptr; 7160 const char *stubName = nullptr; 7161 7162 assert(UseAES, "need AES instruction support"); 7163 7164 switch(id) { 7165 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7166 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7167 stubName = "cipherBlockChaining_encryptAESCrypt"; 7168 break; 7169 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7170 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7171 stubName = "cipherBlockChaining_decryptAESCrypt"; 7172 break; 7173 default: 7174 break; 7175 } 7176 if (stubAddr == nullptr) return false; 7177 7178 Node* cipherBlockChaining_object = argument(0); 7179 Node* src = argument(1); 7180 Node* src_offset = argument(2); 7181 Node* len = argument(3); 7182 Node* dest = argument(4); 7183 Node* dest_offset = argument(5); 7184 7185 src = must_be_not_null(src, false); 7186 dest = must_be_not_null(dest, false); 7187 7188 // (1) src and dest are arrays. 7189 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7190 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7191 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7192 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7193 7194 // checks are the responsibility of the caller 7195 Node* src_start = src; 7196 Node* dest_start = dest; 7197 if (src_offset != nullptr || dest_offset != nullptr) { 7198 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7199 src_start = array_element_address(src, src_offset, T_BYTE); 7200 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7201 } 7202 7203 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7204 // (because of the predicated logic executed earlier). 7205 // so we cast it here safely. 7206 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7207 7208 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7209 if (embeddedCipherObj == nullptr) return false; 7210 7211 // cast it to what we know it will be at runtime 7212 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7213 assert(tinst != nullptr, "CBC obj is null"); 7214 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7215 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7216 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7217 7218 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7219 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7220 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7221 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7222 aescrypt_object = _gvn.transform(aescrypt_object); 7223 7224 // we need to get the start of the aescrypt_object's expanded key array 7225 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7226 if (k_start == nullptr) return false; 7227 7228 // similarly, get the start address of the r vector 7229 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7230 if (objRvec == nullptr) return false; 7231 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7232 7233 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7234 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7235 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7236 stubAddr, stubName, TypePtr::BOTTOM, 7237 src_start, dest_start, k_start, r_start, len); 7238 7239 // return cipher length (int) 7240 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7241 set_result(retvalue); 7242 return true; 7243 } 7244 7245 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7246 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7247 address stubAddr = nullptr; 7248 const char *stubName = nullptr; 7249 7250 assert(UseAES, "need AES instruction support"); 7251 7252 switch (id) { 7253 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7254 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7255 stubName = "electronicCodeBook_encryptAESCrypt"; 7256 break; 7257 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7258 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7259 stubName = "electronicCodeBook_decryptAESCrypt"; 7260 break; 7261 default: 7262 break; 7263 } 7264 7265 if (stubAddr == nullptr) return false; 7266 7267 Node* electronicCodeBook_object = argument(0); 7268 Node* src = argument(1); 7269 Node* src_offset = argument(2); 7270 Node* len = argument(3); 7271 Node* dest = argument(4); 7272 Node* dest_offset = argument(5); 7273 7274 // (1) src and dest are arrays. 7275 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7276 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7277 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7278 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7279 7280 // checks are the responsibility of the caller 7281 Node* src_start = src; 7282 Node* dest_start = dest; 7283 if (src_offset != nullptr || dest_offset != nullptr) { 7284 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7285 src_start = array_element_address(src, src_offset, T_BYTE); 7286 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7287 } 7288 7289 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7290 // (because of the predicated logic executed earlier). 7291 // so we cast it here safely. 7292 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7293 7294 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7295 if (embeddedCipherObj == nullptr) return false; 7296 7297 // cast it to what we know it will be at runtime 7298 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7299 assert(tinst != nullptr, "ECB obj is null"); 7300 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7301 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7302 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7303 7304 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7305 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7306 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7307 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7308 aescrypt_object = _gvn.transform(aescrypt_object); 7309 7310 // we need to get the start of the aescrypt_object's expanded key array 7311 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7312 if (k_start == nullptr) return false; 7313 7314 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7315 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7316 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7317 stubAddr, stubName, TypePtr::BOTTOM, 7318 src_start, dest_start, k_start, len); 7319 7320 // return cipher length (int) 7321 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7322 set_result(retvalue); 7323 return true; 7324 } 7325 7326 //------------------------------inline_counterMode_AESCrypt----------------------- 7327 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7328 assert(UseAES, "need AES instruction support"); 7329 if (!UseAESCTRIntrinsics) return false; 7330 7331 address stubAddr = nullptr; 7332 const char *stubName = nullptr; 7333 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7334 stubAddr = StubRoutines::counterMode_AESCrypt(); 7335 stubName = "counterMode_AESCrypt"; 7336 } 7337 if (stubAddr == nullptr) return false; 7338 7339 Node* counterMode_object = argument(0); 7340 Node* src = argument(1); 7341 Node* src_offset = argument(2); 7342 Node* len = argument(3); 7343 Node* dest = argument(4); 7344 Node* dest_offset = argument(5); 7345 7346 // (1) src and dest are arrays. 7347 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7348 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7349 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7350 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7351 7352 // checks are the responsibility of the caller 7353 Node* src_start = src; 7354 Node* dest_start = dest; 7355 if (src_offset != nullptr || dest_offset != nullptr) { 7356 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7357 src_start = array_element_address(src, src_offset, T_BYTE); 7358 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7359 } 7360 7361 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7362 // (because of the predicated logic executed earlier). 7363 // so we cast it here safely. 7364 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7365 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7366 if (embeddedCipherObj == nullptr) return false; 7367 // cast it to what we know it will be at runtime 7368 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7369 assert(tinst != nullptr, "CTR obj is null"); 7370 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7371 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7372 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7373 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7374 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7375 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7376 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7377 aescrypt_object = _gvn.transform(aescrypt_object); 7378 // we need to get the start of the aescrypt_object's expanded key array 7379 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7380 if (k_start == nullptr) return false; 7381 // similarly, get the start address of the r vector 7382 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7383 if (obj_counter == nullptr) return false; 7384 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7385 7386 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7387 if (saved_encCounter == nullptr) return false; 7388 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7389 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7390 7391 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7392 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7393 OptoRuntime::counterMode_aescrypt_Type(), 7394 stubAddr, stubName, TypePtr::BOTTOM, 7395 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7396 7397 // return cipher length (int) 7398 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7399 set_result(retvalue); 7400 return true; 7401 } 7402 7403 //------------------------------get_key_start_from_aescrypt_object----------------------- 7404 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7405 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7406 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7407 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7408 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7409 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7410 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7411 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7412 if (objSessionK == nullptr) { 7413 return (Node *) nullptr; 7414 } 7415 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7416 #else 7417 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7418 #endif // PPC64 7419 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7420 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7421 7422 // now have the array, need to get the start address of the K array 7423 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7424 return k_start; 7425 } 7426 7427 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7428 // Return node representing slow path of predicate check. 7429 // the pseudo code we want to emulate with this predicate is: 7430 // for encryption: 7431 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7432 // for decryption: 7433 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7434 // note cipher==plain is more conservative than the original java code but that's OK 7435 // 7436 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7437 // The receiver was checked for null already. 7438 Node* objCBC = argument(0); 7439 7440 Node* src = argument(1); 7441 Node* dest = argument(4); 7442 7443 // Load embeddedCipher field of CipherBlockChaining object. 7444 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7445 7446 // get AESCrypt klass for instanceOf check 7447 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7448 // will have same classloader as CipherBlockChaining object 7449 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7450 assert(tinst != nullptr, "CBCobj is null"); 7451 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7452 7453 // we want to do an instanceof comparison against the AESCrypt class 7454 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7455 if (!klass_AESCrypt->is_loaded()) { 7456 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7457 Node* ctrl = control(); 7458 set_control(top()); // no regular fast path 7459 return ctrl; 7460 } 7461 7462 src = must_be_not_null(src, true); 7463 dest = must_be_not_null(dest, true); 7464 7465 // Resolve oops to stable for CmpP below. 7466 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7467 7468 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7469 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7470 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7471 7472 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7473 7474 // for encryption, we are done 7475 if (!decrypting) 7476 return instof_false; // even if it is null 7477 7478 // for decryption, we need to add a further check to avoid 7479 // taking the intrinsic path when cipher and plain are the same 7480 // see the original java code for why. 7481 RegionNode* region = new RegionNode(3); 7482 region->init_req(1, instof_false); 7483 7484 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7485 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7486 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7487 region->init_req(2, src_dest_conjoint); 7488 7489 record_for_igvn(region); 7490 return _gvn.transform(region); 7491 } 7492 7493 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7494 // Return node representing slow path of predicate check. 7495 // the pseudo code we want to emulate with this predicate is: 7496 // for encryption: 7497 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7498 // for decryption: 7499 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7500 // note cipher==plain is more conservative than the original java code but that's OK 7501 // 7502 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7503 // The receiver was checked for null already. 7504 Node* objECB = argument(0); 7505 7506 // Load embeddedCipher field of ElectronicCodeBook object. 7507 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7508 7509 // get AESCrypt klass for instanceOf check 7510 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7511 // will have same classloader as ElectronicCodeBook object 7512 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7513 assert(tinst != nullptr, "ECBobj is null"); 7514 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7515 7516 // we want to do an instanceof comparison against the AESCrypt class 7517 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7518 if (!klass_AESCrypt->is_loaded()) { 7519 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7520 Node* ctrl = control(); 7521 set_control(top()); // no regular fast path 7522 return ctrl; 7523 } 7524 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7525 7526 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7527 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7528 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7529 7530 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7531 7532 // for encryption, we are done 7533 if (!decrypting) 7534 return instof_false; // even if it is null 7535 7536 // for decryption, we need to add a further check to avoid 7537 // taking the intrinsic path when cipher and plain are the same 7538 // see the original java code for why. 7539 RegionNode* region = new RegionNode(3); 7540 region->init_req(1, instof_false); 7541 Node* src = argument(1); 7542 Node* dest = argument(4); 7543 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7544 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7545 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7546 region->init_req(2, src_dest_conjoint); 7547 7548 record_for_igvn(region); 7549 return _gvn.transform(region); 7550 } 7551 7552 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7553 // Return node representing slow path of predicate check. 7554 // the pseudo code we want to emulate with this predicate is: 7555 // for encryption: 7556 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7557 // for decryption: 7558 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7559 // note cipher==plain is more conservative than the original java code but that's OK 7560 // 7561 7562 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7563 // The receiver was checked for null already. 7564 Node* objCTR = argument(0); 7565 7566 // Load embeddedCipher field of CipherBlockChaining object. 7567 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7568 7569 // get AESCrypt klass for instanceOf check 7570 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7571 // will have same classloader as CipherBlockChaining object 7572 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7573 assert(tinst != nullptr, "CTRobj is null"); 7574 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7575 7576 // we want to do an instanceof comparison against the AESCrypt class 7577 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7578 if (!klass_AESCrypt->is_loaded()) { 7579 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7580 Node* ctrl = control(); 7581 set_control(top()); // no regular fast path 7582 return ctrl; 7583 } 7584 7585 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7586 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7587 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7588 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7589 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7590 7591 return instof_false; // even if it is null 7592 } 7593 7594 //------------------------------inline_ghash_processBlocks 7595 bool LibraryCallKit::inline_ghash_processBlocks() { 7596 address stubAddr; 7597 const char *stubName; 7598 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7599 7600 stubAddr = StubRoutines::ghash_processBlocks(); 7601 stubName = "ghash_processBlocks"; 7602 7603 Node* data = argument(0); 7604 Node* offset = argument(1); 7605 Node* len = argument(2); 7606 Node* state = argument(3); 7607 Node* subkeyH = argument(4); 7608 7609 state = must_be_not_null(state, true); 7610 subkeyH = must_be_not_null(subkeyH, true); 7611 data = must_be_not_null(data, true); 7612 7613 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7614 assert(state_start, "state is null"); 7615 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7616 assert(subkeyH_start, "subkeyH is null"); 7617 Node* data_start = array_element_address(data, offset, T_BYTE); 7618 assert(data_start, "data is null"); 7619 7620 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7621 OptoRuntime::ghash_processBlocks_Type(), 7622 stubAddr, stubName, TypePtr::BOTTOM, 7623 state_start, subkeyH_start, data_start, len); 7624 return true; 7625 } 7626 7627 //------------------------------inline_chacha20Block 7628 bool LibraryCallKit::inline_chacha20Block() { 7629 address stubAddr; 7630 const char *stubName; 7631 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7632 7633 stubAddr = StubRoutines::chacha20Block(); 7634 stubName = "chacha20Block"; 7635 7636 Node* state = argument(0); 7637 Node* result = argument(1); 7638 7639 state = must_be_not_null(state, true); 7640 result = must_be_not_null(result, true); 7641 7642 Node* state_start = array_element_address(state, intcon(0), T_INT); 7643 assert(state_start, "state is null"); 7644 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7645 assert(result_start, "result is null"); 7646 7647 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7648 OptoRuntime::chacha20Block_Type(), 7649 stubAddr, stubName, TypePtr::BOTTOM, 7650 state_start, result_start); 7651 // return key stream length (int) 7652 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7653 set_result(retvalue); 7654 return true; 7655 } 7656 7657 //------------------------------inline_kyberNtt 7658 bool LibraryCallKit::inline_kyberNtt() { 7659 address stubAddr; 7660 const char *stubName; 7661 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7662 assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters"); 7663 7664 stubAddr = StubRoutines::kyberNtt(); 7665 stubName = "kyberNtt"; 7666 if (!stubAddr) return false; 7667 7668 Node* coeffs = argument(0); 7669 Node* ntt_zetas = argument(1); 7670 7671 coeffs = must_be_not_null(coeffs, true); 7672 ntt_zetas = must_be_not_null(ntt_zetas, true); 7673 7674 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7675 assert(coeffs_start, "coeffs is null"); 7676 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_SHORT); 7677 assert(ntt_zetas_start, "ntt_zetas is null"); 7678 Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7679 OptoRuntime::kyberNtt_Type(), 7680 stubAddr, stubName, TypePtr::BOTTOM, 7681 coeffs_start, ntt_zetas_start); 7682 // return an int 7683 Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms)); 7684 set_result(retvalue); 7685 return true; 7686 } 7687 7688 //------------------------------inline_kyberInverseNtt 7689 bool LibraryCallKit::inline_kyberInverseNtt() { 7690 address stubAddr; 7691 const char *stubName; 7692 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7693 assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters"); 7694 7695 stubAddr = StubRoutines::kyberInverseNtt(); 7696 stubName = "kyberInverseNtt"; 7697 if (!stubAddr) return false; 7698 7699 Node* coeffs = argument(0); 7700 Node* zetas = argument(1); 7701 7702 coeffs = must_be_not_null(coeffs, true); 7703 zetas = must_be_not_null(zetas, true); 7704 7705 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7706 assert(coeffs_start, "coeffs is null"); 7707 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 7708 assert(zetas_start, "inverseNtt_zetas is null"); 7709 Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7710 OptoRuntime::kyberInverseNtt_Type(), 7711 stubAddr, stubName, TypePtr::BOTTOM, 7712 coeffs_start, zetas_start); 7713 7714 // return an int 7715 Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms)); 7716 set_result(retvalue); 7717 return true; 7718 } 7719 7720 //------------------------------inline_kyberNttMult 7721 bool LibraryCallKit::inline_kyberNttMult() { 7722 address stubAddr; 7723 const char *stubName; 7724 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7725 assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters"); 7726 7727 stubAddr = StubRoutines::kyberNttMult(); 7728 stubName = "kyberNttMult"; 7729 if (!stubAddr) return false; 7730 7731 Node* result = argument(0); 7732 Node* ntta = argument(1); 7733 Node* nttb = argument(2); 7734 Node* zetas = argument(3); 7735 7736 result = must_be_not_null(result, true); 7737 ntta = must_be_not_null(ntta, true); 7738 nttb = must_be_not_null(nttb, true); 7739 zetas = must_be_not_null(zetas, true); 7740 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7741 assert(result_start, "result is null"); 7742 Node* ntta_start = array_element_address(ntta, intcon(0), T_SHORT); 7743 assert(ntta_start, "ntta is null"); 7744 Node* nttb_start = array_element_address(nttb, intcon(0), T_SHORT); 7745 assert(nttb_start, "nttb is null"); 7746 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 7747 assert(zetas_start, "nttMult_zetas is null"); 7748 Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7749 OptoRuntime::kyberNttMult_Type(), 7750 stubAddr, stubName, TypePtr::BOTTOM, 7751 result_start, ntta_start, nttb_start, 7752 zetas_start); 7753 7754 // return an int 7755 Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms)); 7756 set_result(retvalue); 7757 7758 return true; 7759 } 7760 7761 //------------------------------inline_kyberAddPoly_2 7762 bool LibraryCallKit::inline_kyberAddPoly_2() { 7763 address stubAddr; 7764 const char *stubName; 7765 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7766 assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters"); 7767 7768 stubAddr = StubRoutines::kyberAddPoly_2(); 7769 stubName = "kyberAddPoly_2"; 7770 if (!stubAddr) return false; 7771 7772 Node* result = argument(0); 7773 Node* a = argument(1); 7774 Node* b = argument(2); 7775 7776 result = must_be_not_null(result, true); 7777 a = must_be_not_null(a, true); 7778 b = must_be_not_null(b, true); 7779 7780 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7781 assert(result_start, "result is null"); 7782 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 7783 assert(a_start, "a is null"); 7784 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 7785 assert(b_start, "b is null"); 7786 Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP, 7787 OptoRuntime::kyberAddPoly_2_Type(), 7788 stubAddr, stubName, TypePtr::BOTTOM, 7789 result_start, a_start, b_start); 7790 // return an int 7791 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms)); 7792 set_result(retvalue); 7793 return true; 7794 } 7795 7796 //------------------------------inline_kyberAddPoly_3 7797 bool LibraryCallKit::inline_kyberAddPoly_3() { 7798 address stubAddr; 7799 const char *stubName; 7800 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7801 assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters"); 7802 7803 stubAddr = StubRoutines::kyberAddPoly_3(); 7804 stubName = "kyberAddPoly_3"; 7805 if (!stubAddr) return false; 7806 7807 Node* result = argument(0); 7808 Node* a = argument(1); 7809 Node* b = argument(2); 7810 Node* c = argument(3); 7811 7812 result = must_be_not_null(result, true); 7813 a = must_be_not_null(a, true); 7814 b = must_be_not_null(b, true); 7815 c = must_be_not_null(c, true); 7816 7817 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7818 assert(result_start, "result is null"); 7819 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 7820 assert(a_start, "a is null"); 7821 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 7822 assert(b_start, "b is null"); 7823 Node* c_start = array_element_address(c, intcon(0), T_SHORT); 7824 assert(c_start, "c is null"); 7825 Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP, 7826 OptoRuntime::kyberAddPoly_3_Type(), 7827 stubAddr, stubName, TypePtr::BOTTOM, 7828 result_start, a_start, b_start, c_start); 7829 // return an int 7830 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms)); 7831 set_result(retvalue); 7832 return true; 7833 } 7834 7835 //------------------------------inline_kyber12To16 7836 bool LibraryCallKit::inline_kyber12To16() { 7837 address stubAddr; 7838 const char *stubName; 7839 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7840 assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters"); 7841 7842 stubAddr = StubRoutines::kyber12To16(); 7843 stubName = "kyber12To16"; 7844 if (!stubAddr) return false; 7845 7846 Node* condensed = argument(0); 7847 Node* condensedOffs = argument(1); 7848 Node* parsed = argument(2); 7849 Node* parsedLength = argument(3); 7850 7851 condensed = must_be_not_null(condensed, true); 7852 parsed = must_be_not_null(parsed, true); 7853 7854 Node* condensed_start = array_element_address(condensed, intcon(0), T_BYTE); 7855 assert(condensed_start, "condensed is null"); 7856 Node* parsed_start = array_element_address(parsed, intcon(0), T_SHORT); 7857 assert(parsed_start, "parsed is null"); 7858 Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP, 7859 OptoRuntime::kyber12To16_Type(), 7860 stubAddr, stubName, TypePtr::BOTTOM, 7861 condensed_start, condensedOffs, parsed_start, parsedLength); 7862 // return an int 7863 Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms)); 7864 set_result(retvalue); 7865 return true; 7866 7867 } 7868 7869 //------------------------------inline_kyberBarrettReduce 7870 bool LibraryCallKit::inline_kyberBarrettReduce() { 7871 address stubAddr; 7872 const char *stubName; 7873 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7874 assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters"); 7875 7876 stubAddr = StubRoutines::kyberBarrettReduce(); 7877 stubName = "kyberBarrettReduce"; 7878 if (!stubAddr) return false; 7879 7880 Node* coeffs = argument(0); 7881 7882 coeffs = must_be_not_null(coeffs, true); 7883 7884 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7885 assert(coeffs_start, "coeffs is null"); 7886 Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP, 7887 OptoRuntime::kyberBarrettReduce_Type(), 7888 stubAddr, stubName, TypePtr::BOTTOM, 7889 coeffs_start); 7890 // return an int 7891 Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms)); 7892 set_result(retvalue); 7893 return true; 7894 } 7895 7896 //------------------------------inline_dilithiumAlmostNtt 7897 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 7898 address stubAddr; 7899 const char *stubName; 7900 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7901 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 7902 7903 stubAddr = StubRoutines::dilithiumAlmostNtt(); 7904 stubName = "dilithiumAlmostNtt"; 7905 if (!stubAddr) return false; 7906 7907 Node* coeffs = argument(0); 7908 Node* ntt_zetas = argument(1); 7909 7910 coeffs = must_be_not_null(coeffs, true); 7911 ntt_zetas = must_be_not_null(ntt_zetas, true); 7912 7913 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7914 assert(coeffs_start, "coeffs is null"); 7915 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 7916 assert(ntt_zetas_start, "ntt_zetas is null"); 7917 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7918 OptoRuntime::dilithiumAlmostNtt_Type(), 7919 stubAddr, stubName, TypePtr::BOTTOM, 7920 coeffs_start, ntt_zetas_start); 7921 // return an int 7922 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 7923 set_result(retvalue); 7924 return true; 7925 } 7926 7927 //------------------------------inline_dilithiumAlmostInverseNtt 7928 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 7929 address stubAddr; 7930 const char *stubName; 7931 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7932 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 7933 7934 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 7935 stubName = "dilithiumAlmostInverseNtt"; 7936 if (!stubAddr) return false; 7937 7938 Node* coeffs = argument(0); 7939 Node* zetas = argument(1); 7940 7941 coeffs = must_be_not_null(coeffs, true); 7942 zetas = must_be_not_null(zetas, true); 7943 7944 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7945 assert(coeffs_start, "coeffs is null"); 7946 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 7947 assert(zetas_start, "inverseNtt_zetas is null"); 7948 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7949 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 7950 stubAddr, stubName, TypePtr::BOTTOM, 7951 coeffs_start, zetas_start); 7952 // return an int 7953 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 7954 set_result(retvalue); 7955 return true; 7956 } 7957 7958 //------------------------------inline_dilithiumNttMult 7959 bool LibraryCallKit::inline_dilithiumNttMult() { 7960 address stubAddr; 7961 const char *stubName; 7962 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7963 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 7964 7965 stubAddr = StubRoutines::dilithiumNttMult(); 7966 stubName = "dilithiumNttMult"; 7967 if (!stubAddr) return false; 7968 7969 Node* result = argument(0); 7970 Node* ntta = argument(1); 7971 Node* nttb = argument(2); 7972 Node* zetas = argument(3); 7973 7974 result = must_be_not_null(result, true); 7975 ntta = must_be_not_null(ntta, true); 7976 nttb = must_be_not_null(nttb, true); 7977 zetas = must_be_not_null(zetas, true); 7978 7979 Node* result_start = array_element_address(result, intcon(0), T_INT); 7980 assert(result_start, "result is null"); 7981 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 7982 assert(ntta_start, "ntta is null"); 7983 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 7984 assert(nttb_start, "nttb is null"); 7985 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7986 OptoRuntime::dilithiumNttMult_Type(), 7987 stubAddr, stubName, TypePtr::BOTTOM, 7988 result_start, ntta_start, nttb_start); 7989 7990 // return an int 7991 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 7992 set_result(retvalue); 7993 7994 return true; 7995 } 7996 7997 //------------------------------inline_dilithiumMontMulByConstant 7998 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 7999 address stubAddr; 8000 const char *stubName; 8001 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8002 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 8003 8004 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 8005 stubName = "dilithiumMontMulByConstant"; 8006 if (!stubAddr) return false; 8007 8008 Node* coeffs = argument(0); 8009 Node* constant = argument(1); 8010 8011 coeffs = must_be_not_null(coeffs, true); 8012 8013 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8014 assert(coeffs_start, "coeffs is null"); 8015 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 8016 OptoRuntime::dilithiumMontMulByConstant_Type(), 8017 stubAddr, stubName, TypePtr::BOTTOM, 8018 coeffs_start, constant); 8019 8020 // return an int 8021 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 8022 set_result(retvalue); 8023 return true; 8024 } 8025 8026 8027 //------------------------------inline_dilithiumDecomposePoly 8028 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 8029 address stubAddr; 8030 const char *stubName; 8031 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8032 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 8033 8034 stubAddr = StubRoutines::dilithiumDecomposePoly(); 8035 stubName = "dilithiumDecomposePoly"; 8036 if (!stubAddr) return false; 8037 8038 Node* input = argument(0); 8039 Node* lowPart = argument(1); 8040 Node* highPart = argument(2); 8041 Node* twoGamma2 = argument(3); 8042 Node* multiplier = argument(4); 8043 8044 input = must_be_not_null(input, true); 8045 lowPart = must_be_not_null(lowPart, true); 8046 highPart = must_be_not_null(highPart, true); 8047 8048 Node* input_start = array_element_address(input, intcon(0), T_INT); 8049 assert(input_start, "input is null"); 8050 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 8051 assert(lowPart_start, "lowPart is null"); 8052 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 8053 assert(highPart_start, "highPart is null"); 8054 8055 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 8056 OptoRuntime::dilithiumDecomposePoly_Type(), 8057 stubAddr, stubName, TypePtr::BOTTOM, 8058 input_start, lowPart_start, highPart_start, 8059 twoGamma2, multiplier); 8060 8061 // return an int 8062 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 8063 set_result(retvalue); 8064 return true; 8065 } 8066 8067 bool LibraryCallKit::inline_base64_encodeBlock() { 8068 address stubAddr; 8069 const char *stubName; 8070 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8071 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8072 stubAddr = StubRoutines::base64_encodeBlock(); 8073 stubName = "encodeBlock"; 8074 8075 if (!stubAddr) return false; 8076 Node* base64obj = argument(0); 8077 Node* src = argument(1); 8078 Node* offset = argument(2); 8079 Node* len = argument(3); 8080 Node* dest = argument(4); 8081 Node* dp = argument(5); 8082 Node* isURL = argument(6); 8083 8084 src = must_be_not_null(src, true); 8085 dest = must_be_not_null(dest, true); 8086 8087 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8088 assert(src_start, "source array is null"); 8089 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8090 assert(dest_start, "destination array is null"); 8091 8092 Node* base64 = make_runtime_call(RC_LEAF, 8093 OptoRuntime::base64_encodeBlock_Type(), 8094 stubAddr, stubName, TypePtr::BOTTOM, 8095 src_start, offset, len, dest_start, dp, isURL); 8096 return true; 8097 } 8098 8099 bool LibraryCallKit::inline_base64_decodeBlock() { 8100 address stubAddr; 8101 const char *stubName; 8102 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8103 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8104 stubAddr = StubRoutines::base64_decodeBlock(); 8105 stubName = "decodeBlock"; 8106 8107 if (!stubAddr) return false; 8108 Node* base64obj = argument(0); 8109 Node* src = argument(1); 8110 Node* src_offset = argument(2); 8111 Node* len = argument(3); 8112 Node* dest = argument(4); 8113 Node* dest_offset = argument(5); 8114 Node* isURL = argument(6); 8115 Node* isMIME = argument(7); 8116 8117 src = must_be_not_null(src, true); 8118 dest = must_be_not_null(dest, true); 8119 8120 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8121 assert(src_start, "source array is null"); 8122 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8123 assert(dest_start, "destination array is null"); 8124 8125 Node* call = make_runtime_call(RC_LEAF, 8126 OptoRuntime::base64_decodeBlock_Type(), 8127 stubAddr, stubName, TypePtr::BOTTOM, 8128 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8129 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8130 set_result(result); 8131 return true; 8132 } 8133 8134 bool LibraryCallKit::inline_poly1305_processBlocks() { 8135 address stubAddr; 8136 const char *stubName; 8137 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8138 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8139 stubAddr = StubRoutines::poly1305_processBlocks(); 8140 stubName = "poly1305_processBlocks"; 8141 8142 if (!stubAddr) return false; 8143 null_check_receiver(); // null-check receiver 8144 if (stopped()) return true; 8145 8146 Node* input = argument(1); 8147 Node* input_offset = argument(2); 8148 Node* len = argument(3); 8149 Node* alimbs = argument(4); 8150 Node* rlimbs = argument(5); 8151 8152 input = must_be_not_null(input, true); 8153 alimbs = must_be_not_null(alimbs, true); 8154 rlimbs = must_be_not_null(rlimbs, true); 8155 8156 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8157 assert(input_start, "input array is null"); 8158 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8159 assert(acc_start, "acc array is null"); 8160 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8161 assert(r_start, "r array is null"); 8162 8163 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8164 OptoRuntime::poly1305_processBlocks_Type(), 8165 stubAddr, stubName, TypePtr::BOTTOM, 8166 input_start, len, acc_start, r_start); 8167 return true; 8168 } 8169 8170 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8171 address stubAddr; 8172 const char *stubName; 8173 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8174 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8175 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8176 stubName = "intpoly_montgomeryMult_P256"; 8177 8178 if (!stubAddr) return false; 8179 null_check_receiver(); // null-check receiver 8180 if (stopped()) return true; 8181 8182 Node* a = argument(1); 8183 Node* b = argument(2); 8184 Node* r = argument(3); 8185 8186 a = must_be_not_null(a, true); 8187 b = must_be_not_null(b, true); 8188 r = must_be_not_null(r, true); 8189 8190 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8191 assert(a_start, "a array is null"); 8192 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8193 assert(b_start, "b array is null"); 8194 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8195 assert(r_start, "r array is null"); 8196 8197 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8198 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8199 stubAddr, stubName, TypePtr::BOTTOM, 8200 a_start, b_start, r_start); 8201 return true; 8202 } 8203 8204 bool LibraryCallKit::inline_intpoly_assign() { 8205 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8206 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8207 const char *stubName = "intpoly_assign"; 8208 address stubAddr = StubRoutines::intpoly_assign(); 8209 if (!stubAddr) return false; 8210 8211 Node* set = argument(0); 8212 Node* a = argument(1); 8213 Node* b = argument(2); 8214 Node* arr_length = load_array_length(a); 8215 8216 a = must_be_not_null(a, true); 8217 b = must_be_not_null(b, true); 8218 8219 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8220 assert(a_start, "a array is null"); 8221 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8222 assert(b_start, "b array is null"); 8223 8224 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8225 OptoRuntime::intpoly_assign_Type(), 8226 stubAddr, stubName, TypePtr::BOTTOM, 8227 set, a_start, b_start, arr_length); 8228 return true; 8229 } 8230 8231 //------------------------------inline_digestBase_implCompress----------------------- 8232 // 8233 // Calculate MD5 for single-block byte[] array. 8234 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8235 // 8236 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8237 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8238 // 8239 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8240 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8241 // 8242 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8243 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8244 // 8245 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8246 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8247 // 8248 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8249 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8250 8251 Node* digestBase_obj = argument(0); 8252 Node* src = argument(1); // type oop 8253 Node* ofs = argument(2); // type int 8254 8255 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8256 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8257 // failed array check 8258 return false; 8259 } 8260 // Figure out the size and type of the elements we will be copying. 8261 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8262 if (src_elem != T_BYTE) { 8263 return false; 8264 } 8265 // 'src_start' points to src array + offset 8266 src = must_be_not_null(src, true); 8267 Node* src_start = array_element_address(src, ofs, src_elem); 8268 Node* state = nullptr; 8269 Node* block_size = nullptr; 8270 address stubAddr; 8271 const char *stubName; 8272 8273 switch(id) { 8274 case vmIntrinsics::_md5_implCompress: 8275 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8276 state = get_state_from_digest_object(digestBase_obj, T_INT); 8277 stubAddr = StubRoutines::md5_implCompress(); 8278 stubName = "md5_implCompress"; 8279 break; 8280 case vmIntrinsics::_sha_implCompress: 8281 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8282 state = get_state_from_digest_object(digestBase_obj, T_INT); 8283 stubAddr = StubRoutines::sha1_implCompress(); 8284 stubName = "sha1_implCompress"; 8285 break; 8286 case vmIntrinsics::_sha2_implCompress: 8287 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8288 state = get_state_from_digest_object(digestBase_obj, T_INT); 8289 stubAddr = StubRoutines::sha256_implCompress(); 8290 stubName = "sha256_implCompress"; 8291 break; 8292 case vmIntrinsics::_sha5_implCompress: 8293 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8294 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8295 stubAddr = StubRoutines::sha512_implCompress(); 8296 stubName = "sha512_implCompress"; 8297 break; 8298 case vmIntrinsics::_sha3_implCompress: 8299 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8300 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8301 stubAddr = StubRoutines::sha3_implCompress(); 8302 stubName = "sha3_implCompress"; 8303 block_size = get_block_size_from_digest_object(digestBase_obj); 8304 if (block_size == nullptr) return false; 8305 break; 8306 default: 8307 fatal_unexpected_iid(id); 8308 return false; 8309 } 8310 if (state == nullptr) return false; 8311 8312 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8313 if (stubAddr == nullptr) return false; 8314 8315 // Call the stub. 8316 Node* call; 8317 if (block_size == nullptr) { 8318 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8319 stubAddr, stubName, TypePtr::BOTTOM, 8320 src_start, state); 8321 } else { 8322 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8323 stubAddr, stubName, TypePtr::BOTTOM, 8324 src_start, state, block_size); 8325 } 8326 8327 return true; 8328 } 8329 8330 //------------------------------inline_double_keccak 8331 bool LibraryCallKit::inline_double_keccak() { 8332 address stubAddr; 8333 const char *stubName; 8334 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8335 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8336 8337 stubAddr = StubRoutines::double_keccak(); 8338 stubName = "double_keccak"; 8339 if (!stubAddr) return false; 8340 8341 Node* status0 = argument(0); 8342 Node* status1 = argument(1); 8343 8344 status0 = must_be_not_null(status0, true); 8345 status1 = must_be_not_null(status1, true); 8346 8347 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8348 assert(status0_start, "status0 is null"); 8349 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8350 assert(status1_start, "status1 is null"); 8351 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8352 OptoRuntime::double_keccak_Type(), 8353 stubAddr, stubName, TypePtr::BOTTOM, 8354 status0_start, status1_start); 8355 // return an int 8356 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8357 set_result(retvalue); 8358 return true; 8359 } 8360 8361 8362 //------------------------------inline_digestBase_implCompressMB----------------------- 8363 // 8364 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8365 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8366 // 8367 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8368 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8369 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8370 assert((uint)predicate < 5, "sanity"); 8371 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8372 8373 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8374 Node* src = argument(1); // byte[] array 8375 Node* ofs = argument(2); // type int 8376 Node* limit = argument(3); // type int 8377 8378 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8379 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8380 // failed array check 8381 return false; 8382 } 8383 // Figure out the size and type of the elements we will be copying. 8384 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8385 if (src_elem != T_BYTE) { 8386 return false; 8387 } 8388 // 'src_start' points to src array + offset 8389 src = must_be_not_null(src, false); 8390 Node* src_start = array_element_address(src, ofs, src_elem); 8391 8392 const char* klass_digestBase_name = nullptr; 8393 const char* stub_name = nullptr; 8394 address stub_addr = nullptr; 8395 BasicType elem_type = T_INT; 8396 8397 switch (predicate) { 8398 case 0: 8399 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8400 klass_digestBase_name = "sun/security/provider/MD5"; 8401 stub_name = "md5_implCompressMB"; 8402 stub_addr = StubRoutines::md5_implCompressMB(); 8403 } 8404 break; 8405 case 1: 8406 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8407 klass_digestBase_name = "sun/security/provider/SHA"; 8408 stub_name = "sha1_implCompressMB"; 8409 stub_addr = StubRoutines::sha1_implCompressMB(); 8410 } 8411 break; 8412 case 2: 8413 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8414 klass_digestBase_name = "sun/security/provider/SHA2"; 8415 stub_name = "sha256_implCompressMB"; 8416 stub_addr = StubRoutines::sha256_implCompressMB(); 8417 } 8418 break; 8419 case 3: 8420 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8421 klass_digestBase_name = "sun/security/provider/SHA5"; 8422 stub_name = "sha512_implCompressMB"; 8423 stub_addr = StubRoutines::sha512_implCompressMB(); 8424 elem_type = T_LONG; 8425 } 8426 break; 8427 case 4: 8428 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8429 klass_digestBase_name = "sun/security/provider/SHA3"; 8430 stub_name = "sha3_implCompressMB"; 8431 stub_addr = StubRoutines::sha3_implCompressMB(); 8432 elem_type = T_LONG; 8433 } 8434 break; 8435 default: 8436 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8437 } 8438 if (klass_digestBase_name != nullptr) { 8439 assert(stub_addr != nullptr, "Stub is generated"); 8440 if (stub_addr == nullptr) return false; 8441 8442 // get DigestBase klass to lookup for SHA klass 8443 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8444 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8445 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8446 8447 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8448 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8449 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8450 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8451 } 8452 return false; 8453 } 8454 8455 //------------------------------inline_digestBase_implCompressMB----------------------- 8456 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8457 BasicType elem_type, address stubAddr, const char *stubName, 8458 Node* src_start, Node* ofs, Node* limit) { 8459 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8460 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8461 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8462 digest_obj = _gvn.transform(digest_obj); 8463 8464 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8465 if (state == nullptr) return false; 8466 8467 Node* block_size = nullptr; 8468 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8469 block_size = get_block_size_from_digest_object(digest_obj); 8470 if (block_size == nullptr) return false; 8471 } 8472 8473 // Call the stub. 8474 Node* call; 8475 if (block_size == nullptr) { 8476 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8477 OptoRuntime::digestBase_implCompressMB_Type(false), 8478 stubAddr, stubName, TypePtr::BOTTOM, 8479 src_start, state, ofs, limit); 8480 } else { 8481 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8482 OptoRuntime::digestBase_implCompressMB_Type(true), 8483 stubAddr, stubName, TypePtr::BOTTOM, 8484 src_start, state, block_size, ofs, limit); 8485 } 8486 8487 // return ofs (int) 8488 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8489 set_result(result); 8490 8491 return true; 8492 } 8493 8494 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8495 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8496 assert(UseAES, "need AES instruction support"); 8497 address stubAddr = nullptr; 8498 const char *stubName = nullptr; 8499 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8500 stubName = "galoisCounterMode_AESCrypt"; 8501 8502 if (stubAddr == nullptr) return false; 8503 8504 Node* in = argument(0); 8505 Node* inOfs = argument(1); 8506 Node* len = argument(2); 8507 Node* ct = argument(3); 8508 Node* ctOfs = argument(4); 8509 Node* out = argument(5); 8510 Node* outOfs = argument(6); 8511 Node* gctr_object = argument(7); 8512 Node* ghash_object = argument(8); 8513 8514 // (1) in, ct and out are arrays. 8515 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8516 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8517 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8518 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8519 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8520 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8521 8522 // checks are the responsibility of the caller 8523 Node* in_start = in; 8524 Node* ct_start = ct; 8525 Node* out_start = out; 8526 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8527 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8528 in_start = array_element_address(in, inOfs, T_BYTE); 8529 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8530 out_start = array_element_address(out, outOfs, T_BYTE); 8531 } 8532 8533 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8534 // (because of the predicated logic executed earlier). 8535 // so we cast it here safely. 8536 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8537 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8538 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8539 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8540 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8541 8542 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8543 return false; 8544 } 8545 // cast it to what we know it will be at runtime 8546 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8547 assert(tinst != nullptr, "GCTR obj is null"); 8548 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8549 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8550 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8551 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8552 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8553 const TypeOopPtr* xtype = aklass->as_instance_type(); 8554 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8555 aescrypt_object = _gvn.transform(aescrypt_object); 8556 // we need to get the start of the aescrypt_object's expanded key array 8557 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8558 if (k_start == nullptr) return false; 8559 // similarly, get the start address of the r vector 8560 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8561 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8562 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8563 8564 8565 // Call the stub, passing params 8566 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8567 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8568 stubAddr, stubName, TypePtr::BOTTOM, 8569 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8570 8571 // return cipher length (int) 8572 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8573 set_result(retvalue); 8574 8575 return true; 8576 } 8577 8578 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8579 // Return node representing slow path of predicate check. 8580 // the pseudo code we want to emulate with this predicate is: 8581 // for encryption: 8582 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8583 // for decryption: 8584 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8585 // note cipher==plain is more conservative than the original java code but that's OK 8586 // 8587 8588 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8589 // The receiver was checked for null already. 8590 Node* objGCTR = argument(7); 8591 // Load embeddedCipher field of GCTR object. 8592 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8593 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8594 8595 // get AESCrypt klass for instanceOf check 8596 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8597 // will have same classloader as CipherBlockChaining object 8598 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8599 assert(tinst != nullptr, "GCTR obj is null"); 8600 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8601 8602 // we want to do an instanceof comparison against the AESCrypt class 8603 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8604 if (!klass_AESCrypt->is_loaded()) { 8605 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8606 Node* ctrl = control(); 8607 set_control(top()); // no regular fast path 8608 return ctrl; 8609 } 8610 8611 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8612 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8613 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8614 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8615 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8616 8617 return instof_false; // even if it is null 8618 } 8619 8620 //------------------------------get_state_from_digest_object----------------------- 8621 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8622 const char* state_type; 8623 switch (elem_type) { 8624 case T_BYTE: state_type = "[B"; break; 8625 case T_INT: state_type = "[I"; break; 8626 case T_LONG: state_type = "[J"; break; 8627 default: ShouldNotReachHere(); 8628 } 8629 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8630 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8631 if (digest_state == nullptr) return (Node *) nullptr; 8632 8633 // now have the array, need to get the start address of the state array 8634 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8635 return state; 8636 } 8637 8638 //------------------------------get_block_size_from_sha3_object---------------------------------- 8639 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8640 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8641 assert (block_size != nullptr, "sanity"); 8642 return block_size; 8643 } 8644 8645 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8646 // Return node representing slow path of predicate check. 8647 // the pseudo code we want to emulate with this predicate is: 8648 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8649 // 8650 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8651 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8652 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8653 assert((uint)predicate < 5, "sanity"); 8654 8655 // The receiver was checked for null already. 8656 Node* digestBaseObj = argument(0); 8657 8658 // get DigestBase klass for instanceOf check 8659 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8660 assert(tinst != nullptr, "digestBaseObj is null"); 8661 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8662 8663 const char* klass_name = nullptr; 8664 switch (predicate) { 8665 case 0: 8666 if (UseMD5Intrinsics) { 8667 // we want to do an instanceof comparison against the MD5 class 8668 klass_name = "sun/security/provider/MD5"; 8669 } 8670 break; 8671 case 1: 8672 if (UseSHA1Intrinsics) { 8673 // we want to do an instanceof comparison against the SHA class 8674 klass_name = "sun/security/provider/SHA"; 8675 } 8676 break; 8677 case 2: 8678 if (UseSHA256Intrinsics) { 8679 // we want to do an instanceof comparison against the SHA2 class 8680 klass_name = "sun/security/provider/SHA2"; 8681 } 8682 break; 8683 case 3: 8684 if (UseSHA512Intrinsics) { 8685 // we want to do an instanceof comparison against the SHA5 class 8686 klass_name = "sun/security/provider/SHA5"; 8687 } 8688 break; 8689 case 4: 8690 if (UseSHA3Intrinsics) { 8691 // we want to do an instanceof comparison against the SHA3 class 8692 klass_name = "sun/security/provider/SHA3"; 8693 } 8694 break; 8695 default: 8696 fatal("unknown SHA intrinsic predicate: %d", predicate); 8697 } 8698 8699 ciKlass* klass = nullptr; 8700 if (klass_name != nullptr) { 8701 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8702 } 8703 if ((klass == nullptr) || !klass->is_loaded()) { 8704 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8705 Node* ctrl = control(); 8706 set_control(top()); // no intrinsic path 8707 return ctrl; 8708 } 8709 ciInstanceKlass* instklass = klass->as_instance_klass(); 8710 8711 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8712 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8713 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8714 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8715 8716 return instof_false; // even if it is null 8717 } 8718 8719 //-------------inline_fma----------------------------------- 8720 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8721 Node *a = nullptr; 8722 Node *b = nullptr; 8723 Node *c = nullptr; 8724 Node* result = nullptr; 8725 switch (id) { 8726 case vmIntrinsics::_fmaD: 8727 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8728 // no receiver since it is static method 8729 a = argument(0); 8730 b = argument(2); 8731 c = argument(4); 8732 result = _gvn.transform(new FmaDNode(a, b, c)); 8733 break; 8734 case vmIntrinsics::_fmaF: 8735 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8736 a = argument(0); 8737 b = argument(1); 8738 c = argument(2); 8739 result = _gvn.transform(new FmaFNode(a, b, c)); 8740 break; 8741 default: 8742 fatal_unexpected_iid(id); break; 8743 } 8744 set_result(result); 8745 return true; 8746 } 8747 8748 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8749 // argument(0) is receiver 8750 Node* codePoint = argument(1); 8751 Node* n = nullptr; 8752 8753 switch (id) { 8754 case vmIntrinsics::_isDigit : 8755 n = new DigitNode(control(), codePoint); 8756 break; 8757 case vmIntrinsics::_isLowerCase : 8758 n = new LowerCaseNode(control(), codePoint); 8759 break; 8760 case vmIntrinsics::_isUpperCase : 8761 n = new UpperCaseNode(control(), codePoint); 8762 break; 8763 case vmIntrinsics::_isWhitespace : 8764 n = new WhitespaceNode(control(), codePoint); 8765 break; 8766 default: 8767 fatal_unexpected_iid(id); 8768 } 8769 8770 set_result(_gvn.transform(n)); 8771 return true; 8772 } 8773 8774 bool LibraryCallKit::inline_profileBoolean() { 8775 Node* counts = argument(1); 8776 const TypeAryPtr* ary = nullptr; 8777 ciArray* aobj = nullptr; 8778 if (counts->is_Con() 8779 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8780 && (aobj = ary->const_oop()->as_array()) != nullptr 8781 && (aobj->length() == 2)) { 8782 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8783 jint false_cnt = aobj->element_value(0).as_int(); 8784 jint true_cnt = aobj->element_value(1).as_int(); 8785 8786 if (C->log() != nullptr) { 8787 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8788 false_cnt, true_cnt); 8789 } 8790 8791 if (false_cnt + true_cnt == 0) { 8792 // According to profile, never executed. 8793 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8794 Deoptimization::Action_reinterpret); 8795 return true; 8796 } 8797 8798 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8799 // is a number of each value occurrences. 8800 Node* result = argument(0); 8801 if (false_cnt == 0 || true_cnt == 0) { 8802 // According to profile, one value has been never seen. 8803 int expected_val = (false_cnt == 0) ? 1 : 0; 8804 8805 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8806 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8807 8808 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8809 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8810 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8811 8812 { // Slow path: uncommon trap for never seen value and then reexecute 8813 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8814 // the value has been seen at least once. 8815 PreserveJVMState pjvms(this); 8816 PreserveReexecuteState preexecs(this); 8817 jvms()->set_should_reexecute(true); 8818 8819 set_control(slow_path); 8820 set_i_o(i_o()); 8821 8822 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8823 Deoptimization::Action_reinterpret); 8824 } 8825 // The guard for never seen value enables sharpening of the result and 8826 // returning a constant. It allows to eliminate branches on the same value 8827 // later on. 8828 set_control(fast_path); 8829 result = intcon(expected_val); 8830 } 8831 // Stop profiling. 8832 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8833 // By replacing method body with profile data (represented as ProfileBooleanNode 8834 // on IR level) we effectively disable profiling. 8835 // It enables full speed execution once optimized code is generated. 8836 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8837 C->record_for_igvn(profile); 8838 set_result(profile); 8839 return true; 8840 } else { 8841 // Continue profiling. 8842 // Profile data isn't available at the moment. So, execute method's bytecode version. 8843 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8844 // is compiled and counters aren't available since corresponding MethodHandle 8845 // isn't a compile-time constant. 8846 return false; 8847 } 8848 } 8849 8850 bool LibraryCallKit::inline_isCompileConstant() { 8851 Node* n = argument(0); 8852 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8853 return true; 8854 } 8855 8856 //------------------------------- inline_getObjectSize -------------------------------------- 8857 // 8858 // Calculate the runtime size of the object/array. 8859 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8860 // 8861 bool LibraryCallKit::inline_getObjectSize() { 8862 Node* obj = argument(3); 8863 Node* klass_node = load_object_klass(obj); 8864 8865 jint layout_con = Klass::_lh_neutral_value; 8866 Node* layout_val = get_layout_helper(klass_node, layout_con); 8867 int layout_is_con = (layout_val == nullptr); 8868 8869 if (layout_is_con) { 8870 // Layout helper is constant, can figure out things at compile time. 8871 8872 if (Klass::layout_helper_is_instance(layout_con)) { 8873 // Instance case: layout_con contains the size itself. 8874 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8875 set_result(size); 8876 } else { 8877 // Array case: size is round(header + element_size*arraylength). 8878 // Since arraylength is different for every array instance, we have to 8879 // compute the whole thing at runtime. 8880 8881 Node* arr_length = load_array_length(obj); 8882 8883 int round_mask = MinObjAlignmentInBytes - 1; 8884 int hsize = Klass::layout_helper_header_size(layout_con); 8885 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8886 8887 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8888 round_mask = 0; // strength-reduce it if it goes away completely 8889 } 8890 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8891 Node* header_size = intcon(hsize + round_mask); 8892 8893 Node* lengthx = ConvI2X(arr_length); 8894 Node* headerx = ConvI2X(header_size); 8895 8896 Node* abody = lengthx; 8897 if (eshift != 0) { 8898 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8899 } 8900 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8901 if (round_mask != 0) { 8902 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8903 } 8904 size = ConvX2L(size); 8905 set_result(size); 8906 } 8907 } else { 8908 // Layout helper is not constant, need to test for array-ness at runtime. 8909 8910 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8911 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8912 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8913 record_for_igvn(result_reg); 8914 8915 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 8916 if (array_ctl != nullptr) { 8917 // Array case: size is round(header + element_size*arraylength). 8918 // Since arraylength is different for every array instance, we have to 8919 // compute the whole thing at runtime. 8920 8921 PreserveJVMState pjvms(this); 8922 set_control(array_ctl); 8923 Node* arr_length = load_array_length(obj); 8924 8925 int round_mask = MinObjAlignmentInBytes - 1; 8926 Node* mask = intcon(round_mask); 8927 8928 Node* hss = intcon(Klass::_lh_header_size_shift); 8929 Node* hsm = intcon(Klass::_lh_header_size_mask); 8930 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8931 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8932 header_size = _gvn.transform(new AddINode(header_size, mask)); 8933 8934 // There is no need to mask or shift this value. 8935 // The semantics of LShiftINode include an implicit mask to 0x1F. 8936 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8937 Node* elem_shift = layout_val; 8938 8939 Node* lengthx = ConvI2X(arr_length); 8940 Node* headerx = ConvI2X(header_size); 8941 8942 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8943 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8944 if (round_mask != 0) { 8945 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8946 } 8947 size = ConvX2L(size); 8948 8949 result_reg->init_req(_array_path, control()); 8950 result_val->init_req(_array_path, size); 8951 } 8952 8953 if (!stopped()) { 8954 // Instance case: the layout helper gives us instance size almost directly, 8955 // but we need to mask out the _lh_instance_slow_path_bit. 8956 Node* size = ConvI2X(layout_val); 8957 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8958 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8959 size = _gvn.transform(new AndXNode(size, mask)); 8960 size = ConvX2L(size); 8961 8962 result_reg->init_req(_instance_path, control()); 8963 result_val->init_req(_instance_path, size); 8964 } 8965 8966 set_result(result_reg, result_val); 8967 } 8968 8969 return true; 8970 } 8971 8972 //------------------------------- inline_blackhole -------------------------------------- 8973 // 8974 // Make sure all arguments to this node are alive. 8975 // This matches methods that were requested to be blackholed through compile commands. 8976 // 8977 bool LibraryCallKit::inline_blackhole() { 8978 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8979 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8980 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8981 8982 // Blackhole node pinches only the control, not memory. This allows 8983 // the blackhole to be pinned in the loop that computes blackholed 8984 // values, but have no other side effects, like breaking the optimizations 8985 // across the blackhole. 8986 8987 Node* bh = _gvn.transform(new BlackholeNode(control())); 8988 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8989 8990 // Bind call arguments as blackhole arguments to keep them alive 8991 uint nargs = callee()->arg_size(); 8992 for (uint i = 0; i < nargs; i++) { 8993 bh->add_req(argument(i)); 8994 } 8995 8996 return true; 8997 } 8998 8999 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 9000 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 9001 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 9002 return nullptr; // box klass is not Float16 9003 } 9004 9005 // Null check; get notnull casted pointer 9006 Node* null_ctl = top(); 9007 Node* not_null_box = null_check_oop(box, &null_ctl, true); 9008 // If not_null_box is dead, only null-path is taken 9009 if (stopped()) { 9010 set_control(null_ctl); 9011 return nullptr; 9012 } 9013 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 9014 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 9015 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 9016 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 9017 } 9018 9019 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 9020 PreserveReexecuteState preexecs(this); 9021 jvms()->set_should_reexecute(true); 9022 9023 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 9024 Node* klass_node = makecon(klass_type); 9025 Node* box = new_instance(klass_node); 9026 9027 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 9028 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 9029 9030 Node* field_store = _gvn.transform(access_store_at(box, 9031 value_field, 9032 value_adr_type, 9033 value, 9034 TypeInt::SHORT, 9035 T_SHORT, 9036 IN_HEAP)); 9037 set_memory(field_store, value_adr_type); 9038 return box; 9039 } 9040 9041 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 9042 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 9043 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 9044 return false; 9045 } 9046 9047 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 9048 if (box_type == nullptr || box_type->const_oop() == nullptr) { 9049 return false; 9050 } 9051 9052 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 9053 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 9054 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 9055 ciSymbols::short_signature(), 9056 false); 9057 assert(field != nullptr, ""); 9058 9059 // Transformed nodes 9060 Node* fld1 = nullptr; 9061 Node* fld2 = nullptr; 9062 Node* fld3 = nullptr; 9063 switch(num_args) { 9064 case 3: 9065 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 9066 if (fld3 == nullptr) { 9067 return false; 9068 } 9069 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 9070 // fall-through 9071 case 2: 9072 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 9073 if (fld2 == nullptr) { 9074 return false; 9075 } 9076 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 9077 // fall-through 9078 case 1: 9079 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 9080 if (fld1 == nullptr) { 9081 return false; 9082 } 9083 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 9084 break; 9085 default: fatal("Unsupported number of arguments %d", num_args); 9086 } 9087 9088 Node* result = nullptr; 9089 switch (id) { 9090 // Unary operations 9091 case vmIntrinsics::_sqrt_float16: 9092 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 9093 break; 9094 // Ternary operations 9095 case vmIntrinsics::_fma_float16: 9096 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 9097 break; 9098 default: 9099 fatal_unexpected_iid(id); 9100 break; 9101 } 9102 result = _gvn.transform(new ReinterpretHF2SNode(result)); 9103 set_result(box_fp16_value(float16_box_type, field, result)); 9104 return true; 9105 } 9106