1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciSymbols.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/rootnode.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/vectornode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 125 if (C->log()) { 126 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 127 vmIntrinsics::name_at(intrinsic_id()), 128 (is_virtual() ? " virtual='1'" : ""), 129 C->unique() - nodes); 130 } 131 // Push the result from the inlined method onto the stack. 132 kit.push_result(); 133 return kit.transfer_exceptions_into_jvms(); 134 } 135 136 // The intrinsic bailed out 137 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 138 if (jvms->has_method()) { 139 // Not a root compile. 140 const char* msg; 141 if (callee->intrinsic_candidate()) { 142 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 143 } else { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 145 : "failed to inline (intrinsic), method not annotated"; 146 } 147 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 148 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 149 } else { 150 // Root compile 151 ResourceMark rm; 152 stringStream msg_stream; 153 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 154 vmIntrinsics::name_at(intrinsic_id()), 155 is_virtual() ? " (virtual)" : "", bci); 156 const char *msg = msg_stream.freeze(); 157 log_debug(jit, inlining)("%s", msg); 158 if (C->print_intrinsics() || C->print_inlining()) { 159 tty->print("%s", msg); 160 } 161 } 162 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 163 164 return nullptr; 165 } 166 167 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 168 LibraryCallKit kit(jvms, this); 169 Compile* C = kit.C; 170 int nodes = C->unique(); 171 _last_predicate = predicate; 172 #ifndef PRODUCT 173 assert(is_predicated() && predicate < predicates_count(), "sanity"); 174 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 175 char buf[1000]; 176 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 177 tty->print_cr("Predicate for intrinsic %s", str); 178 } 179 #endif 180 ciMethod* callee = kit.callee(); 181 const int bci = kit.bci(); 182 183 Node* slow_ctl = kit.try_to_predicate(predicate); 184 if (!kit.failing()) { 185 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 186 : "(intrinsic, predicate)"; 187 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 188 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 189 190 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 191 if (C->log()) { 192 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 193 vmIntrinsics::name_at(intrinsic_id()), 194 (is_virtual() ? " virtual='1'" : ""), 195 C->unique() - nodes); 196 } 197 return slow_ctl; // Could be null if the check folds. 198 } 199 200 // The intrinsic bailed out 201 if (jvms->has_method()) { 202 // Not a root compile. 203 const char* msg = "failed to generate predicate for intrinsic"; 204 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 205 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 206 } else { 207 // Root compile 208 ResourceMark rm; 209 stringStream msg_stream; 210 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 211 vmIntrinsics::name_at(intrinsic_id()), 212 is_virtual() ? " (virtual)" : "", bci); 213 const char *msg = msg_stream.freeze(); 214 log_debug(jit, inlining)("%s", msg); 215 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 216 } 217 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 218 return nullptr; 219 } 220 221 bool LibraryCallKit::try_to_inline(int predicate) { 222 // Handle symbolic names for otherwise undistinguished boolean switches: 223 const bool is_store = true; 224 const bool is_compress = true; 225 const bool is_static = true; 226 const bool is_volatile = true; 227 228 if (!jvms()->has_method()) { 229 // Root JVMState has a null method. 230 assert(map()->memory()->Opcode() == Op_Parm, ""); 231 // Insert the memory aliasing node 232 set_all_memory(reset_memory()); 233 } 234 assert(merged_memory(), ""); 235 236 switch (intrinsic_id()) { 237 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 238 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 239 case vmIntrinsics::_getClass: return inline_native_getClass(); 240 241 case vmIntrinsics::_ceil: 242 case vmIntrinsics::_floor: 243 case vmIntrinsics::_rint: 244 case vmIntrinsics::_dsin: 245 case vmIntrinsics::_dcos: 246 case vmIntrinsics::_dtan: 247 case vmIntrinsics::_dtanh: 248 case vmIntrinsics::_dcbrt: 249 case vmIntrinsics::_dabs: 250 case vmIntrinsics::_fabs: 251 case vmIntrinsics::_iabs: 252 case vmIntrinsics::_labs: 253 case vmIntrinsics::_datan2: 254 case vmIntrinsics::_dsqrt: 255 case vmIntrinsics::_dsqrt_strict: 256 case vmIntrinsics::_dexp: 257 case vmIntrinsics::_dlog: 258 case vmIntrinsics::_dlog10: 259 case vmIntrinsics::_dpow: 260 case vmIntrinsics::_dcopySign: 261 case vmIntrinsics::_fcopySign: 262 case vmIntrinsics::_dsignum: 263 case vmIntrinsics::_roundF: 264 case vmIntrinsics::_roundD: 265 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 266 267 case vmIntrinsics::_notify: 268 case vmIntrinsics::_notifyAll: 269 return inline_notify(intrinsic_id()); 270 271 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 272 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 273 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 274 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 275 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 276 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 277 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 278 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 279 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 280 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 281 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 282 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 283 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 284 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 285 286 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 287 288 case vmIntrinsics::_arraySort: return inline_array_sort(); 289 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 290 291 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 292 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 293 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 294 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 295 296 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 297 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 298 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 299 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 300 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 301 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 302 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 303 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 304 305 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 306 307 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 308 309 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 310 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 311 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 312 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 313 314 case vmIntrinsics::_compressStringC: 315 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 316 case vmIntrinsics::_inflateStringC: 317 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 318 319 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 320 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 321 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 322 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 323 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 324 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 325 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 326 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 327 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 328 329 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 330 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 331 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 332 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 333 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 334 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 335 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 336 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 337 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 338 339 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 340 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 341 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 342 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 343 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 344 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 345 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 346 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 347 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 348 349 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 350 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 351 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 352 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 353 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 354 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 355 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 356 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 357 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 358 359 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 360 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 361 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 362 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 363 364 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 365 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 366 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 367 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 368 369 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 370 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 371 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 372 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 373 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 374 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 375 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 376 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 377 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 378 379 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 380 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 381 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 382 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 383 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 384 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 385 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 386 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 387 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 388 389 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 390 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 391 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 392 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 393 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 394 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 395 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 396 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 397 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 398 399 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 400 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 401 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 402 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 403 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 404 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 405 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 406 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 407 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 408 409 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 410 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 411 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 412 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 413 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 414 415 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 416 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 417 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 418 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 419 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 420 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 421 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 422 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 423 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 424 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 425 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 426 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 427 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 428 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 429 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 430 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 431 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 432 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 433 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 434 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 435 436 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 437 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 438 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 439 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 440 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 441 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 442 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 443 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 444 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 445 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 446 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 447 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 448 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 449 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 450 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 451 452 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 453 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 454 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 455 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 456 457 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 458 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 459 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 460 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 461 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 462 463 case vmIntrinsics::_loadFence: 464 case vmIntrinsics::_storeFence: 465 case vmIntrinsics::_storeStoreFence: 466 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 467 468 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 469 470 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 471 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 472 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 473 474 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 475 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 476 477 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 478 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 479 480 #if INCLUDE_JVMTI 481 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 482 "notifyJvmtiStart", true, false); 483 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 484 "notifyJvmtiEnd", false, true); 485 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 486 "notifyJvmtiMount", false, false); 487 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 488 "notifyJvmtiUnmount", false, false); 489 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 490 #endif 491 492 #ifdef JFR_HAVE_INTRINSICS 493 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 494 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 495 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 496 #endif 497 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 498 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 499 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 500 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 501 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 502 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 503 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 504 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 505 case vmIntrinsics::_getLength: return inline_native_getLength(); 506 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 507 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 508 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 509 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 510 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 511 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 512 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 513 514 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 515 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 516 517 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 518 519 case vmIntrinsics::_isInstance: 520 case vmIntrinsics::_isHidden: 521 case vmIntrinsics::_getSuperclass: 522 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 523 524 case vmIntrinsics::_floatToRawIntBits: 525 case vmIntrinsics::_floatToIntBits: 526 case vmIntrinsics::_intBitsToFloat: 527 case vmIntrinsics::_doubleToRawLongBits: 528 case vmIntrinsics::_doubleToLongBits: 529 case vmIntrinsics::_longBitsToDouble: 530 case vmIntrinsics::_floatToFloat16: 531 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 532 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 533 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 534 case vmIntrinsics::_floatIsFinite: 535 case vmIntrinsics::_floatIsInfinite: 536 case vmIntrinsics::_doubleIsFinite: 537 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 538 539 case vmIntrinsics::_numberOfLeadingZeros_i: 540 case vmIntrinsics::_numberOfLeadingZeros_l: 541 case vmIntrinsics::_numberOfTrailingZeros_i: 542 case vmIntrinsics::_numberOfTrailingZeros_l: 543 case vmIntrinsics::_bitCount_i: 544 case vmIntrinsics::_bitCount_l: 545 case vmIntrinsics::_reverse_i: 546 case vmIntrinsics::_reverse_l: 547 case vmIntrinsics::_reverseBytes_i: 548 case vmIntrinsics::_reverseBytes_l: 549 case vmIntrinsics::_reverseBytes_s: 550 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 551 552 case vmIntrinsics::_compress_i: 553 case vmIntrinsics::_compress_l: 554 case vmIntrinsics::_expand_i: 555 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 556 557 case vmIntrinsics::_compareUnsigned_i: 558 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 559 560 case vmIntrinsics::_divideUnsigned_i: 561 case vmIntrinsics::_divideUnsigned_l: 562 case vmIntrinsics::_remainderUnsigned_i: 563 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 564 565 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 566 567 case vmIntrinsics::_Reference_get0: return inline_reference_get0(); 568 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 569 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 570 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 571 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 572 573 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 574 575 case vmIntrinsics::_aescrypt_encryptBlock: 576 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 577 578 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 579 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 580 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 581 582 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 583 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 584 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 585 586 case vmIntrinsics::_counterMode_AESCrypt: 587 return inline_counterMode_AESCrypt(intrinsic_id()); 588 589 case vmIntrinsics::_galoisCounterMode_AESCrypt: 590 return inline_galoisCounterMode_AESCrypt(); 591 592 case vmIntrinsics::_md5_implCompress: 593 case vmIntrinsics::_sha_implCompress: 594 case vmIntrinsics::_sha2_implCompress: 595 case vmIntrinsics::_sha5_implCompress: 596 case vmIntrinsics::_sha3_implCompress: 597 return inline_digestBase_implCompress(intrinsic_id()); 598 case vmIntrinsics::_double_keccak: 599 return inline_double_keccak(); 600 601 case vmIntrinsics::_digestBase_implCompressMB: 602 return inline_digestBase_implCompressMB(predicate); 603 604 case vmIntrinsics::_multiplyToLen: 605 return inline_multiplyToLen(); 606 607 case vmIntrinsics::_squareToLen: 608 return inline_squareToLen(); 609 610 case vmIntrinsics::_mulAdd: 611 return inline_mulAdd(); 612 613 case vmIntrinsics::_montgomeryMultiply: 614 return inline_montgomeryMultiply(); 615 case vmIntrinsics::_montgomerySquare: 616 return inline_montgomerySquare(); 617 618 case vmIntrinsics::_bigIntegerRightShiftWorker: 619 return inline_bigIntegerShift(true); 620 case vmIntrinsics::_bigIntegerLeftShiftWorker: 621 return inline_bigIntegerShift(false); 622 623 case vmIntrinsics::_vectorizedMismatch: 624 return inline_vectorizedMismatch(); 625 626 case vmIntrinsics::_ghash_processBlocks: 627 return inline_ghash_processBlocks(); 628 case vmIntrinsics::_chacha20Block: 629 return inline_chacha20Block(); 630 case vmIntrinsics::_kyberNtt: 631 return inline_kyberNtt(); 632 case vmIntrinsics::_kyberInverseNtt: 633 return inline_kyberInverseNtt(); 634 case vmIntrinsics::_kyberNttMult: 635 return inline_kyberNttMult(); 636 case vmIntrinsics::_kyberAddPoly_2: 637 return inline_kyberAddPoly_2(); 638 case vmIntrinsics::_kyberAddPoly_3: 639 return inline_kyberAddPoly_3(); 640 case vmIntrinsics::_kyber12To16: 641 return inline_kyber12To16(); 642 case vmIntrinsics::_kyberBarrettReduce: 643 return inline_kyberBarrettReduce(); 644 case vmIntrinsics::_dilithiumAlmostNtt: 645 return inline_dilithiumAlmostNtt(); 646 case vmIntrinsics::_dilithiumAlmostInverseNtt: 647 return inline_dilithiumAlmostInverseNtt(); 648 case vmIntrinsics::_dilithiumNttMult: 649 return inline_dilithiumNttMult(); 650 case vmIntrinsics::_dilithiumMontMulByConstant: 651 return inline_dilithiumMontMulByConstant(); 652 case vmIntrinsics::_dilithiumDecomposePoly: 653 return inline_dilithiumDecomposePoly(); 654 case vmIntrinsics::_base64_encodeBlock: 655 return inline_base64_encodeBlock(); 656 case vmIntrinsics::_base64_decodeBlock: 657 return inline_base64_decodeBlock(); 658 case vmIntrinsics::_poly1305_processBlocks: 659 return inline_poly1305_processBlocks(); 660 case vmIntrinsics::_intpoly_montgomeryMult_P256: 661 return inline_intpoly_montgomeryMult_P256(); 662 case vmIntrinsics::_intpoly_assign: 663 return inline_intpoly_assign(); 664 case vmIntrinsics::_encodeISOArray: 665 case vmIntrinsics::_encodeByteISOArray: 666 return inline_encodeISOArray(false); 667 case vmIntrinsics::_encodeAsciiArray: 668 return inline_encodeISOArray(true); 669 670 case vmIntrinsics::_updateCRC32: 671 return inline_updateCRC32(); 672 case vmIntrinsics::_updateBytesCRC32: 673 return inline_updateBytesCRC32(); 674 case vmIntrinsics::_updateByteBufferCRC32: 675 return inline_updateByteBufferCRC32(); 676 677 case vmIntrinsics::_updateBytesCRC32C: 678 return inline_updateBytesCRC32C(); 679 case vmIntrinsics::_updateDirectByteBufferCRC32C: 680 return inline_updateDirectByteBufferCRC32C(); 681 682 case vmIntrinsics::_updateBytesAdler32: 683 return inline_updateBytesAdler32(); 684 case vmIntrinsics::_updateByteBufferAdler32: 685 return inline_updateByteBufferAdler32(); 686 687 case vmIntrinsics::_profileBoolean: 688 return inline_profileBoolean(); 689 case vmIntrinsics::_isCompileConstant: 690 return inline_isCompileConstant(); 691 692 case vmIntrinsics::_countPositives: 693 return inline_countPositives(); 694 695 case vmIntrinsics::_fmaD: 696 case vmIntrinsics::_fmaF: 697 return inline_fma(intrinsic_id()); 698 699 case vmIntrinsics::_isDigit: 700 case vmIntrinsics::_isLowerCase: 701 case vmIntrinsics::_isUpperCase: 702 case vmIntrinsics::_isWhitespace: 703 return inline_character_compare(intrinsic_id()); 704 705 case vmIntrinsics::_min: 706 case vmIntrinsics::_max: 707 case vmIntrinsics::_min_strict: 708 case vmIntrinsics::_max_strict: 709 case vmIntrinsics::_minL: 710 case vmIntrinsics::_maxL: 711 case vmIntrinsics::_minF: 712 case vmIntrinsics::_maxF: 713 case vmIntrinsics::_minD: 714 case vmIntrinsics::_maxD: 715 case vmIntrinsics::_minF_strict: 716 case vmIntrinsics::_maxF_strict: 717 case vmIntrinsics::_minD_strict: 718 case vmIntrinsics::_maxD_strict: 719 return inline_min_max(intrinsic_id()); 720 721 case vmIntrinsics::_VectorUnaryOp: 722 return inline_vector_nary_operation(1); 723 case vmIntrinsics::_VectorBinaryOp: 724 return inline_vector_nary_operation(2); 725 case vmIntrinsics::_VectorUnaryLibOp: 726 return inline_vector_call(1); 727 case vmIntrinsics::_VectorBinaryLibOp: 728 return inline_vector_call(2); 729 case vmIntrinsics::_VectorTernaryOp: 730 return inline_vector_nary_operation(3); 731 case vmIntrinsics::_VectorFromBitsCoerced: 732 return inline_vector_frombits_coerced(); 733 case vmIntrinsics::_VectorMaskOp: 734 return inline_vector_mask_operation(); 735 case vmIntrinsics::_VectorLoadOp: 736 return inline_vector_mem_operation(/*is_store=*/false); 737 case vmIntrinsics::_VectorLoadMaskedOp: 738 return inline_vector_mem_masked_operation(/*is_store*/false); 739 case vmIntrinsics::_VectorStoreOp: 740 return inline_vector_mem_operation(/*is_store=*/true); 741 case vmIntrinsics::_VectorStoreMaskedOp: 742 return inline_vector_mem_masked_operation(/*is_store=*/true); 743 case vmIntrinsics::_VectorGatherOp: 744 return inline_vector_gather_scatter(/*is_scatter*/ false); 745 case vmIntrinsics::_VectorScatterOp: 746 return inline_vector_gather_scatter(/*is_scatter*/ true); 747 case vmIntrinsics::_VectorReductionCoerced: 748 return inline_vector_reduction(); 749 case vmIntrinsics::_VectorTest: 750 return inline_vector_test(); 751 case vmIntrinsics::_VectorBlend: 752 return inline_vector_blend(); 753 case vmIntrinsics::_VectorRearrange: 754 return inline_vector_rearrange(); 755 case vmIntrinsics::_VectorSelectFrom: 756 return inline_vector_select_from(); 757 case vmIntrinsics::_VectorCompare: 758 return inline_vector_compare(); 759 case vmIntrinsics::_VectorBroadcastInt: 760 return inline_vector_broadcast_int(); 761 case vmIntrinsics::_VectorConvert: 762 return inline_vector_convert(); 763 case vmIntrinsics::_VectorInsert: 764 return inline_vector_insert(); 765 case vmIntrinsics::_VectorExtract: 766 return inline_vector_extract(); 767 case vmIntrinsics::_VectorCompressExpand: 768 return inline_vector_compress_expand(); 769 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 770 return inline_vector_select_from_two_vectors(); 771 case vmIntrinsics::_IndexVector: 772 return inline_index_vector(); 773 case vmIntrinsics::_IndexPartiallyInUpperRange: 774 return inline_index_partially_in_upper_range(); 775 776 case vmIntrinsics::_getObjectSize: 777 return inline_getObjectSize(); 778 779 case vmIntrinsics::_blackhole: 780 return inline_blackhole(); 781 782 default: 783 // If you get here, it may be that someone has added a new intrinsic 784 // to the list in vmIntrinsics.hpp without implementing it here. 785 #ifndef PRODUCT 786 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 787 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 788 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 789 } 790 #endif 791 return false; 792 } 793 } 794 795 Node* LibraryCallKit::try_to_predicate(int predicate) { 796 if (!jvms()->has_method()) { 797 // Root JVMState has a null method. 798 assert(map()->memory()->Opcode() == Op_Parm, ""); 799 // Insert the memory aliasing node 800 set_all_memory(reset_memory()); 801 } 802 assert(merged_memory(), ""); 803 804 switch (intrinsic_id()) { 805 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 806 return inline_cipherBlockChaining_AESCrypt_predicate(false); 807 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 808 return inline_cipherBlockChaining_AESCrypt_predicate(true); 809 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 810 return inline_electronicCodeBook_AESCrypt_predicate(false); 811 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 812 return inline_electronicCodeBook_AESCrypt_predicate(true); 813 case vmIntrinsics::_counterMode_AESCrypt: 814 return inline_counterMode_AESCrypt_predicate(); 815 case vmIntrinsics::_digestBase_implCompressMB: 816 return inline_digestBase_implCompressMB_predicate(predicate); 817 case vmIntrinsics::_galoisCounterMode_AESCrypt: 818 return inline_galoisCounterMode_AESCrypt_predicate(); 819 820 default: 821 // If you get here, it may be that someone has added a new intrinsic 822 // to the list in vmIntrinsics.hpp without implementing it here. 823 #ifndef PRODUCT 824 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 825 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 826 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 827 } 828 #endif 829 Node* slow_ctl = control(); 830 set_control(top()); // No fast path intrinsic 831 return slow_ctl; 832 } 833 } 834 835 //------------------------------set_result------------------------------- 836 // Helper function for finishing intrinsics. 837 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 838 record_for_igvn(region); 839 set_control(_gvn.transform(region)); 840 set_result( _gvn.transform(value)); 841 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 842 } 843 844 //------------------------------generate_guard--------------------------- 845 // Helper function for generating guarded fast-slow graph structures. 846 // The given 'test', if true, guards a slow path. If the test fails 847 // then a fast path can be taken. (We generally hope it fails.) 848 // In all cases, GraphKit::control() is updated to the fast path. 849 // The returned value represents the control for the slow path. 850 // The return value is never 'top'; it is either a valid control 851 // or null if it is obvious that the slow path can never be taken. 852 // Also, if region and the slow control are not null, the slow edge 853 // is appended to the region. 854 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 855 if (stopped()) { 856 // Already short circuited. 857 return nullptr; 858 } 859 860 // Build an if node and its projections. 861 // If test is true we take the slow path, which we assume is uncommon. 862 if (_gvn.type(test) == TypeInt::ZERO) { 863 // The slow branch is never taken. No need to build this guard. 864 return nullptr; 865 } 866 867 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 868 869 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 870 if (if_slow == top()) { 871 // The slow branch is never taken. No need to build this guard. 872 return nullptr; 873 } 874 875 if (region != nullptr) 876 region->add_req(if_slow); 877 878 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 879 set_control(if_fast); 880 881 return if_slow; 882 } 883 884 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 885 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 886 } 887 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 888 return generate_guard(test, region, PROB_FAIR); 889 } 890 891 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 892 Node* *pos_index) { 893 if (stopped()) 894 return nullptr; // already stopped 895 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 896 return nullptr; // index is already adequately typed 897 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 898 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 899 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 900 if (is_neg != nullptr && pos_index != nullptr) { 901 // Emulate effect of Parse::adjust_map_after_if. 902 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 903 (*pos_index) = _gvn.transform(ccast); 904 } 905 return is_neg; 906 } 907 908 // Make sure that 'position' is a valid limit index, in [0..length]. 909 // There are two equivalent plans for checking this: 910 // A. (offset + copyLength) unsigned<= arrayLength 911 // B. offset <= (arrayLength - copyLength) 912 // We require that all of the values above, except for the sum and 913 // difference, are already known to be non-negative. 914 // Plan A is robust in the face of overflow, if offset and copyLength 915 // are both hugely positive. 916 // 917 // Plan B is less direct and intuitive, but it does not overflow at 918 // all, since the difference of two non-negatives is always 919 // representable. Whenever Java methods must perform the equivalent 920 // check they generally use Plan B instead of Plan A. 921 // For the moment we use Plan A. 922 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 923 Node* subseq_length, 924 Node* array_length, 925 RegionNode* region) { 926 if (stopped()) 927 return nullptr; // already stopped 928 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 929 if (zero_offset && subseq_length->eqv_uncast(array_length)) 930 return nullptr; // common case of whole-array copy 931 Node* last = subseq_length; 932 if (!zero_offset) // last += offset 933 last = _gvn.transform(new AddINode(last, offset)); 934 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 935 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 936 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 937 return is_over; 938 } 939 940 // Emit range checks for the given String.value byte array 941 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 942 if (stopped()) { 943 return; // already stopped 944 } 945 RegionNode* bailout = new RegionNode(1); 946 record_for_igvn(bailout); 947 if (char_count) { 948 // Convert char count to byte count 949 count = _gvn.transform(new LShiftINode(count, intcon(1))); 950 } 951 952 // Offset and count must not be negative 953 generate_negative_guard(offset, bailout); 954 generate_negative_guard(count, bailout); 955 // Offset + count must not exceed length of array 956 generate_limit_guard(offset, count, load_array_length(array), bailout); 957 958 if (bailout->req() > 1) { 959 PreserveJVMState pjvms(this); 960 set_control(_gvn.transform(bailout)); 961 uncommon_trap(Deoptimization::Reason_intrinsic, 962 Deoptimization::Action_maybe_recompile); 963 } 964 } 965 966 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 967 bool is_immutable) { 968 ciKlass* thread_klass = env()->Thread_klass(); 969 const Type* thread_type 970 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 971 972 Node* thread = _gvn.transform(new ThreadLocalNode()); 973 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 974 tls_output = thread; 975 976 Node* thread_obj_handle 977 = (is_immutable 978 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 979 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 980 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 981 thread_obj_handle = _gvn.transform(thread_obj_handle); 982 983 DecoratorSet decorators = IN_NATIVE; 984 if (is_immutable) { 985 decorators |= C2_IMMUTABLE_MEMORY; 986 } 987 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 988 } 989 990 //--------------------------generate_current_thread-------------------- 991 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 992 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 993 /*is_immutable*/false); 994 } 995 996 //--------------------------generate_virtual_thread-------------------- 997 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 998 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 999 !C->method()->changes_current_thread()); 1000 } 1001 1002 //------------------------------make_string_method_node------------------------ 1003 // Helper method for String intrinsic functions. This version is called with 1004 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1005 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1006 // containing the lengths of str1 and str2. 1007 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1008 Node* result = nullptr; 1009 switch (opcode) { 1010 case Op_StrIndexOf: 1011 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1012 str1_start, cnt1, str2_start, cnt2, ae); 1013 break; 1014 case Op_StrComp: 1015 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1016 str1_start, cnt1, str2_start, cnt2, ae); 1017 break; 1018 case Op_StrEquals: 1019 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1020 // Use the constant length if there is one because optimized match rule may exist. 1021 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1022 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1023 break; 1024 default: 1025 ShouldNotReachHere(); 1026 return nullptr; 1027 } 1028 1029 // All these intrinsics have checks. 1030 C->set_has_split_ifs(true); // Has chance for split-if optimization 1031 clear_upper_avx(); 1032 1033 return _gvn.transform(result); 1034 } 1035 1036 //------------------------------inline_string_compareTo------------------------ 1037 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1038 Node* arg1 = argument(0); 1039 Node* arg2 = argument(1); 1040 1041 arg1 = must_be_not_null(arg1, true); 1042 arg2 = must_be_not_null(arg2, true); 1043 1044 // Get start addr and length of first argument 1045 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1046 Node* arg1_cnt = load_array_length(arg1); 1047 1048 // Get start addr and length of second argument 1049 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1050 Node* arg2_cnt = load_array_length(arg2); 1051 1052 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1053 set_result(result); 1054 return true; 1055 } 1056 1057 //------------------------------inline_string_equals------------------------ 1058 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1059 Node* arg1 = argument(0); 1060 Node* arg2 = argument(1); 1061 1062 // paths (plus control) merge 1063 RegionNode* region = new RegionNode(3); 1064 Node* phi = new PhiNode(region, TypeInt::BOOL); 1065 1066 if (!stopped()) { 1067 1068 arg1 = must_be_not_null(arg1, true); 1069 arg2 = must_be_not_null(arg2, true); 1070 1071 // Get start addr and length of first argument 1072 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1073 Node* arg1_cnt = load_array_length(arg1); 1074 1075 // Get start addr and length of second argument 1076 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1077 Node* arg2_cnt = load_array_length(arg2); 1078 1079 // Check for arg1_cnt != arg2_cnt 1080 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1081 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1082 Node* if_ne = generate_slow_guard(bol, nullptr); 1083 if (if_ne != nullptr) { 1084 phi->init_req(2, intcon(0)); 1085 region->init_req(2, if_ne); 1086 } 1087 1088 // Check for count == 0 is done by assembler code for StrEquals. 1089 1090 if (!stopped()) { 1091 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1092 phi->init_req(1, equals); 1093 region->init_req(1, control()); 1094 } 1095 } 1096 1097 // post merge 1098 set_control(_gvn.transform(region)); 1099 record_for_igvn(region); 1100 1101 set_result(_gvn.transform(phi)); 1102 return true; 1103 } 1104 1105 //------------------------------inline_array_equals---------------------------- 1106 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1107 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1108 Node* arg1 = argument(0); 1109 Node* arg2 = argument(1); 1110 1111 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1112 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1113 clear_upper_avx(); 1114 1115 return true; 1116 } 1117 1118 1119 //------------------------------inline_countPositives------------------------------ 1120 bool LibraryCallKit::inline_countPositives() { 1121 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1122 return false; 1123 } 1124 1125 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1126 // no receiver since it is static method 1127 Node* ba = argument(0); 1128 Node* offset = argument(1); 1129 Node* len = argument(2); 1130 1131 ba = must_be_not_null(ba, true); 1132 1133 // Range checks 1134 generate_string_range_check(ba, offset, len, false); 1135 if (stopped()) { 1136 return true; 1137 } 1138 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1139 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1140 set_result(_gvn.transform(result)); 1141 clear_upper_avx(); 1142 return true; 1143 } 1144 1145 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1146 Node* index = argument(0); 1147 Node* length = bt == T_INT ? argument(1) : argument(2); 1148 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1149 return false; 1150 } 1151 1152 // check that length is positive 1153 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1154 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1155 1156 { 1157 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1158 uncommon_trap(Deoptimization::Reason_intrinsic, 1159 Deoptimization::Action_make_not_entrant); 1160 } 1161 1162 if (stopped()) { 1163 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1164 return true; 1165 } 1166 1167 // length is now known positive, add a cast node to make this explicit 1168 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1169 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1170 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1171 ConstraintCastNode::RegularDependency, bt); 1172 casted_length = _gvn.transform(casted_length); 1173 replace_in_map(length, casted_length); 1174 length = casted_length; 1175 1176 // Use an unsigned comparison for the range check itself 1177 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1178 BoolTest::mask btest = BoolTest::lt; 1179 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1180 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1181 _gvn.set_type(rc, rc->Value(&_gvn)); 1182 if (!rc_bool->is_Con()) { 1183 record_for_igvn(rc); 1184 } 1185 set_control(_gvn.transform(new IfTrueNode(rc))); 1186 { 1187 PreserveJVMState pjvms(this); 1188 set_control(_gvn.transform(new IfFalseNode(rc))); 1189 uncommon_trap(Deoptimization::Reason_range_check, 1190 Deoptimization::Action_make_not_entrant); 1191 } 1192 1193 if (stopped()) { 1194 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1195 return true; 1196 } 1197 1198 // index is now known to be >= 0 and < length, cast it 1199 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1200 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1201 ConstraintCastNode::RegularDependency, bt); 1202 result = _gvn.transform(result); 1203 set_result(result); 1204 replace_in_map(index, result); 1205 return true; 1206 } 1207 1208 //------------------------------inline_string_indexOf------------------------ 1209 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1210 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1211 return false; 1212 } 1213 Node* src = argument(0); 1214 Node* tgt = argument(1); 1215 1216 // Make the merge point 1217 RegionNode* result_rgn = new RegionNode(4); 1218 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1219 1220 src = must_be_not_null(src, true); 1221 tgt = must_be_not_null(tgt, true); 1222 1223 // Get start addr and length of source string 1224 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1225 Node* src_count = load_array_length(src); 1226 1227 // Get start addr and length of substring 1228 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1229 Node* tgt_count = load_array_length(tgt); 1230 1231 Node* result = nullptr; 1232 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1233 1234 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1235 // Divide src size by 2 if String is UTF16 encoded 1236 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1237 } 1238 if (ae == StrIntrinsicNode::UU) { 1239 // Divide substring size by 2 if String is UTF16 encoded 1240 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1241 } 1242 1243 if (call_opt_stub) { 1244 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1245 StubRoutines::_string_indexof_array[ae], 1246 "stringIndexOf", TypePtr::BOTTOM, src_start, 1247 src_count, tgt_start, tgt_count); 1248 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1249 } else { 1250 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1251 result_rgn, result_phi, ae); 1252 } 1253 if (result != nullptr) { 1254 result_phi->init_req(3, result); 1255 result_rgn->init_req(3, control()); 1256 } 1257 set_control(_gvn.transform(result_rgn)); 1258 record_for_igvn(result_rgn); 1259 set_result(_gvn.transform(result_phi)); 1260 1261 return true; 1262 } 1263 1264 //-----------------------------inline_string_indexOfI----------------------- 1265 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1266 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1267 return false; 1268 } 1269 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1270 return false; 1271 } 1272 1273 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1274 Node* src = argument(0); // byte[] 1275 Node* src_count = argument(1); // char count 1276 Node* tgt = argument(2); // byte[] 1277 Node* tgt_count = argument(3); // char count 1278 Node* from_index = argument(4); // char index 1279 1280 src = must_be_not_null(src, true); 1281 tgt = must_be_not_null(tgt, true); 1282 1283 // Multiply byte array index by 2 if String is UTF16 encoded 1284 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1285 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1286 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1287 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1288 1289 // Range checks 1290 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1291 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1292 if (stopped()) { 1293 return true; 1294 } 1295 1296 RegionNode* region = new RegionNode(5); 1297 Node* phi = new PhiNode(region, TypeInt::INT); 1298 Node* result = nullptr; 1299 1300 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1301 1302 if (call_opt_stub) { 1303 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1304 StubRoutines::_string_indexof_array[ae], 1305 "stringIndexOf", TypePtr::BOTTOM, src_start, 1306 src_count, tgt_start, tgt_count); 1307 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1308 } else { 1309 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1310 region, phi, ae); 1311 } 1312 if (result != nullptr) { 1313 // The result is index relative to from_index if substring was found, -1 otherwise. 1314 // Generate code which will fold into cmove. 1315 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1316 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1317 1318 Node* if_lt = generate_slow_guard(bol, nullptr); 1319 if (if_lt != nullptr) { 1320 // result == -1 1321 phi->init_req(3, result); 1322 region->init_req(3, if_lt); 1323 } 1324 if (!stopped()) { 1325 result = _gvn.transform(new AddINode(result, from_index)); 1326 phi->init_req(4, result); 1327 region->init_req(4, control()); 1328 } 1329 } 1330 1331 set_control(_gvn.transform(region)); 1332 record_for_igvn(region); 1333 set_result(_gvn.transform(phi)); 1334 clear_upper_avx(); 1335 1336 return true; 1337 } 1338 1339 // Create StrIndexOfNode with fast path checks 1340 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1341 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1342 // Check for substr count > string count 1343 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1344 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1345 Node* if_gt = generate_slow_guard(bol, nullptr); 1346 if (if_gt != nullptr) { 1347 phi->init_req(1, intcon(-1)); 1348 region->init_req(1, if_gt); 1349 } 1350 if (!stopped()) { 1351 // Check for substr count == 0 1352 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1353 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1354 Node* if_zero = generate_slow_guard(bol, nullptr); 1355 if (if_zero != nullptr) { 1356 phi->init_req(2, intcon(0)); 1357 region->init_req(2, if_zero); 1358 } 1359 } 1360 if (!stopped()) { 1361 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1362 } 1363 return nullptr; 1364 } 1365 1366 //-----------------------------inline_string_indexOfChar----------------------- 1367 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1368 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1369 return false; 1370 } 1371 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1372 return false; 1373 } 1374 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1375 Node* src = argument(0); // byte[] 1376 Node* int_ch = argument(1); 1377 Node* from_index = argument(2); 1378 Node* max = argument(3); 1379 1380 src = must_be_not_null(src, true); 1381 1382 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1383 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1384 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1385 1386 // Range checks 1387 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1388 1389 // Check for int_ch >= 0 1390 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1391 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1392 { 1393 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1394 uncommon_trap(Deoptimization::Reason_intrinsic, 1395 Deoptimization::Action_maybe_recompile); 1396 } 1397 if (stopped()) { 1398 return true; 1399 } 1400 1401 RegionNode* region = new RegionNode(3); 1402 Node* phi = new PhiNode(region, TypeInt::INT); 1403 1404 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1405 C->set_has_split_ifs(true); // Has chance for split-if optimization 1406 _gvn.transform(result); 1407 1408 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1409 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1410 1411 Node* if_lt = generate_slow_guard(bol, nullptr); 1412 if (if_lt != nullptr) { 1413 // result == -1 1414 phi->init_req(2, result); 1415 region->init_req(2, if_lt); 1416 } 1417 if (!stopped()) { 1418 result = _gvn.transform(new AddINode(result, from_index)); 1419 phi->init_req(1, result); 1420 region->init_req(1, control()); 1421 } 1422 set_control(_gvn.transform(region)); 1423 record_for_igvn(region); 1424 set_result(_gvn.transform(phi)); 1425 clear_upper_avx(); 1426 1427 return true; 1428 } 1429 //---------------------------inline_string_copy--------------------- 1430 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1431 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1432 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1433 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1434 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1435 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1436 bool LibraryCallKit::inline_string_copy(bool compress) { 1437 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1438 return false; 1439 } 1440 int nargs = 5; // 2 oops, 3 ints 1441 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1442 1443 Node* src = argument(0); 1444 Node* src_offset = argument(1); 1445 Node* dst = argument(2); 1446 Node* dst_offset = argument(3); 1447 Node* length = argument(4); 1448 1449 // Check for allocation before we add nodes that would confuse 1450 // tightly_coupled_allocation() 1451 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1452 1453 // Figure out the size and type of the elements we will be copying. 1454 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1455 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1456 if (src_type == nullptr || dst_type == nullptr) { 1457 return false; 1458 } 1459 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1460 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1461 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1462 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1463 "Unsupported array types for inline_string_copy"); 1464 1465 src = must_be_not_null(src, true); 1466 dst = must_be_not_null(dst, true); 1467 1468 // Convert char[] offsets to byte[] offsets 1469 bool convert_src = (compress && src_elem == T_BYTE); 1470 bool convert_dst = (!compress && dst_elem == T_BYTE); 1471 if (convert_src) { 1472 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1473 } else if (convert_dst) { 1474 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1475 } 1476 1477 // Range checks 1478 generate_string_range_check(src, src_offset, length, convert_src); 1479 generate_string_range_check(dst, dst_offset, length, convert_dst); 1480 if (stopped()) { 1481 return true; 1482 } 1483 1484 Node* src_start = array_element_address(src, src_offset, src_elem); 1485 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1486 // 'src_start' points to src array + scaled offset 1487 // 'dst_start' points to dst array + scaled offset 1488 Node* count = nullptr; 1489 if (compress) { 1490 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1491 } else { 1492 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1493 } 1494 1495 if (alloc != nullptr) { 1496 if (alloc->maybe_set_complete(&_gvn)) { 1497 // "You break it, you buy it." 1498 InitializeNode* init = alloc->initialization(); 1499 assert(init->is_complete(), "we just did this"); 1500 init->set_complete_with_arraycopy(); 1501 assert(dst->is_CheckCastPP(), "sanity"); 1502 assert(dst->in(0)->in(0) == init, "dest pinned"); 1503 } 1504 // Do not let stores that initialize this object be reordered with 1505 // a subsequent store that would make this object accessible by 1506 // other threads. 1507 // Record what AllocateNode this StoreStore protects so that 1508 // escape analysis can go from the MemBarStoreStoreNode to the 1509 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1510 // based on the escape status of the AllocateNode. 1511 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1512 } 1513 if (compress) { 1514 set_result(_gvn.transform(count)); 1515 } 1516 clear_upper_avx(); 1517 1518 return true; 1519 } 1520 1521 #ifdef _LP64 1522 #define XTOP ,top() /*additional argument*/ 1523 #else //_LP64 1524 #define XTOP /*no additional argument*/ 1525 #endif //_LP64 1526 1527 //------------------------inline_string_toBytesU-------------------------- 1528 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1529 bool LibraryCallKit::inline_string_toBytesU() { 1530 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1531 return false; 1532 } 1533 // Get the arguments. 1534 Node* value = argument(0); 1535 Node* offset = argument(1); 1536 Node* length = argument(2); 1537 1538 Node* newcopy = nullptr; 1539 1540 // Set the original stack and the reexecute bit for the interpreter to reexecute 1541 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1542 { PreserveReexecuteState preexecs(this); 1543 jvms()->set_should_reexecute(true); 1544 1545 // Check if a null path was taken unconditionally. 1546 value = null_check(value); 1547 1548 RegionNode* bailout = new RegionNode(1); 1549 record_for_igvn(bailout); 1550 1551 // Range checks 1552 generate_negative_guard(offset, bailout); 1553 generate_negative_guard(length, bailout); 1554 generate_limit_guard(offset, length, load_array_length(value), bailout); 1555 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1556 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1557 1558 if (bailout->req() > 1) { 1559 PreserveJVMState pjvms(this); 1560 set_control(_gvn.transform(bailout)); 1561 uncommon_trap(Deoptimization::Reason_intrinsic, 1562 Deoptimization::Action_maybe_recompile); 1563 } 1564 if (stopped()) { 1565 return true; 1566 } 1567 1568 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1569 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1570 newcopy = new_array(klass_node, size, 0); // no arguments to push 1571 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1572 guarantee(alloc != nullptr, "created above"); 1573 1574 // Calculate starting addresses. 1575 Node* src_start = array_element_address(value, offset, T_CHAR); 1576 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1577 1578 // Check if dst array address is aligned to HeapWordSize 1579 bool aligned = (arrayOopDesc::base_offset_in_bytes(T_BYTE) % HeapWordSize == 0); 1580 // If true, then check if src array address is aligned to HeapWordSize 1581 if (aligned) { 1582 const TypeInt* toffset = gvn().type(offset)->is_int(); 1583 aligned = toffset->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_CHAR) + 1584 toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1585 } 1586 1587 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1588 const char* copyfunc_name = "arraycopy"; 1589 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1590 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1591 OptoRuntime::fast_arraycopy_Type(), 1592 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1593 src_start, dst_start, ConvI2X(length) XTOP); 1594 // Do not let reads from the cloned object float above the arraycopy. 1595 if (alloc->maybe_set_complete(&_gvn)) { 1596 // "You break it, you buy it." 1597 InitializeNode* init = alloc->initialization(); 1598 assert(init->is_complete(), "we just did this"); 1599 init->set_complete_with_arraycopy(); 1600 assert(newcopy->is_CheckCastPP(), "sanity"); 1601 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1602 } 1603 // Do not let stores that initialize this object be reordered with 1604 // a subsequent store that would make this object accessible by 1605 // other threads. 1606 // Record what AllocateNode this StoreStore protects so that 1607 // escape analysis can go from the MemBarStoreStoreNode to the 1608 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1609 // based on the escape status of the AllocateNode. 1610 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1611 } // original reexecute is set back here 1612 1613 C->set_has_split_ifs(true); // Has chance for split-if optimization 1614 if (!stopped()) { 1615 set_result(newcopy); 1616 } 1617 clear_upper_avx(); 1618 1619 return true; 1620 } 1621 1622 //------------------------inline_string_getCharsU-------------------------- 1623 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1624 bool LibraryCallKit::inline_string_getCharsU() { 1625 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1626 return false; 1627 } 1628 1629 // Get the arguments. 1630 Node* src = argument(0); 1631 Node* src_begin = argument(1); 1632 Node* src_end = argument(2); // exclusive offset (i < src_end) 1633 Node* dst = argument(3); 1634 Node* dst_begin = argument(4); 1635 1636 // Check for allocation before we add nodes that would confuse 1637 // tightly_coupled_allocation() 1638 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1639 1640 // Check if a null path was taken unconditionally. 1641 src = null_check(src); 1642 dst = null_check(dst); 1643 if (stopped()) { 1644 return true; 1645 } 1646 1647 // Get length and convert char[] offset to byte[] offset 1648 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1649 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1650 1651 // Range checks 1652 generate_string_range_check(src, src_begin, length, true); 1653 generate_string_range_check(dst, dst_begin, length, false); 1654 if (stopped()) { 1655 return true; 1656 } 1657 1658 if (!stopped()) { 1659 // Calculate starting addresses. 1660 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1661 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1662 1663 // Check if array addresses are aligned to HeapWordSize 1664 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1665 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1666 bool aligned = tsrc->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_BYTE) + tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1667 tdst->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_CHAR) + tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1668 1669 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1670 const char* copyfunc_name = "arraycopy"; 1671 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1672 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1673 OptoRuntime::fast_arraycopy_Type(), 1674 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1675 src_start, dst_start, ConvI2X(length) XTOP); 1676 // Do not let reads from the cloned object float above the arraycopy. 1677 if (alloc != nullptr) { 1678 if (alloc->maybe_set_complete(&_gvn)) { 1679 // "You break it, you buy it." 1680 InitializeNode* init = alloc->initialization(); 1681 assert(init->is_complete(), "we just did this"); 1682 init->set_complete_with_arraycopy(); 1683 assert(dst->is_CheckCastPP(), "sanity"); 1684 assert(dst->in(0)->in(0) == init, "dest pinned"); 1685 } 1686 // Do not let stores that initialize this object be reordered with 1687 // a subsequent store that would make this object accessible by 1688 // other threads. 1689 // Record what AllocateNode this StoreStore protects so that 1690 // escape analysis can go from the MemBarStoreStoreNode to the 1691 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1692 // based on the escape status of the AllocateNode. 1693 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1694 } else { 1695 insert_mem_bar(Op_MemBarCPUOrder); 1696 } 1697 } 1698 1699 C->set_has_split_ifs(true); // Has chance for split-if optimization 1700 return true; 1701 } 1702 1703 //----------------------inline_string_char_access---------------------------- 1704 // Store/Load char to/from byte[] array. 1705 // static void StringUTF16.putChar(byte[] val, int index, int c) 1706 // static char StringUTF16.getChar(byte[] val, int index) 1707 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1708 Node* value = argument(0); 1709 Node* index = argument(1); 1710 Node* ch = is_store ? argument(2) : nullptr; 1711 1712 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1713 // correctly requires matched array shapes. 1714 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1715 "sanity: byte[] and char[] bases agree"); 1716 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1717 "sanity: byte[] and char[] scales agree"); 1718 1719 // Bail when getChar over constants is requested: constant folding would 1720 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1721 // Java method would constant fold nicely instead. 1722 if (!is_store && value->is_Con() && index->is_Con()) { 1723 return false; 1724 } 1725 1726 // Save state and restore on bailout 1727 uint old_sp = sp(); 1728 SafePointNode* old_map = clone_map(); 1729 1730 value = must_be_not_null(value, true); 1731 1732 Node* adr = array_element_address(value, index, T_CHAR); 1733 if (adr->is_top()) { 1734 set_map(old_map); 1735 set_sp(old_sp); 1736 return false; 1737 } 1738 destruct_map_clone(old_map); 1739 if (is_store) { 1740 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1741 } else { 1742 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1743 set_result(ch); 1744 } 1745 return true; 1746 } 1747 1748 1749 //------------------------------inline_math----------------------------------- 1750 // public static double Math.abs(double) 1751 // public static double Math.sqrt(double) 1752 // public static double Math.log(double) 1753 // public static double Math.log10(double) 1754 // public static double Math.round(double) 1755 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1756 Node* arg = argument(0); 1757 Node* n = nullptr; 1758 switch (id) { 1759 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1760 case vmIntrinsics::_dsqrt: 1761 case vmIntrinsics::_dsqrt_strict: 1762 n = new SqrtDNode(C, control(), arg); break; 1763 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1764 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1765 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1766 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1767 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1768 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1769 default: fatal_unexpected_iid(id); break; 1770 } 1771 set_result(_gvn.transform(n)); 1772 return true; 1773 } 1774 1775 //------------------------------inline_math----------------------------------- 1776 // public static float Math.abs(float) 1777 // public static int Math.abs(int) 1778 // public static long Math.abs(long) 1779 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1780 Node* arg = argument(0); 1781 Node* n = nullptr; 1782 switch (id) { 1783 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1784 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1785 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1786 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1787 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1788 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1789 default: fatal_unexpected_iid(id); break; 1790 } 1791 set_result(_gvn.transform(n)); 1792 return true; 1793 } 1794 1795 //------------------------------runtime_math----------------------------- 1796 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1797 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1798 "must be (DD)D or (D)D type"); 1799 1800 // Inputs 1801 Node* a = argument(0); 1802 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1803 1804 const TypePtr* no_memory_effects = nullptr; 1805 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1806 no_memory_effects, 1807 a, top(), b, b ? top() : nullptr); 1808 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1809 #ifdef ASSERT 1810 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1811 assert(value_top == top(), "second value must be top"); 1812 #endif 1813 1814 set_result(value); 1815 return true; 1816 } 1817 1818 //------------------------------inline_math_pow----------------------------- 1819 bool LibraryCallKit::inline_math_pow() { 1820 Node* exp = argument(2); 1821 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1822 if (d != nullptr) { 1823 if (d->getd() == 2.0) { 1824 // Special case: pow(x, 2.0) => x * x 1825 Node* base = argument(0); 1826 set_result(_gvn.transform(new MulDNode(base, base))); 1827 return true; 1828 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1829 // Special case: pow(x, 0.5) => sqrt(x) 1830 Node* base = argument(0); 1831 Node* zero = _gvn.zerocon(T_DOUBLE); 1832 1833 RegionNode* region = new RegionNode(3); 1834 Node* phi = new PhiNode(region, Type::DOUBLE); 1835 1836 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1837 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1838 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1839 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1840 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1841 1842 Node* if_pow = generate_slow_guard(test, nullptr); 1843 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1844 phi->init_req(1, value_sqrt); 1845 region->init_req(1, control()); 1846 1847 if (if_pow != nullptr) { 1848 set_control(if_pow); 1849 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1850 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1851 const TypePtr* no_memory_effects = nullptr; 1852 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1853 no_memory_effects, base, top(), exp, top()); 1854 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1855 #ifdef ASSERT 1856 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1857 assert(value_top == top(), "second value must be top"); 1858 #endif 1859 phi->init_req(2, value_pow); 1860 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1861 } 1862 1863 C->set_has_split_ifs(true); // Has chance for split-if optimization 1864 set_control(_gvn.transform(region)); 1865 record_for_igvn(region); 1866 set_result(_gvn.transform(phi)); 1867 1868 return true; 1869 } 1870 } 1871 1872 return StubRoutines::dpow() != nullptr ? 1873 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1874 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1875 } 1876 1877 //------------------------------inline_math_native----------------------------- 1878 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1879 switch (id) { 1880 case vmIntrinsics::_dsin: 1881 return StubRoutines::dsin() != nullptr ? 1882 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1883 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1884 case vmIntrinsics::_dcos: 1885 return StubRoutines::dcos() != nullptr ? 1886 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1887 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1888 case vmIntrinsics::_dtan: 1889 return StubRoutines::dtan() != nullptr ? 1890 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1891 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1892 case vmIntrinsics::_dtanh: 1893 return StubRoutines::dtanh() != nullptr ? 1894 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1895 case vmIntrinsics::_dcbrt: 1896 return StubRoutines::dcbrt() != nullptr ? 1897 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcbrt(), "dcbrt") : false; 1898 case vmIntrinsics::_dexp: 1899 return StubRoutines::dexp() != nullptr ? 1900 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1901 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1902 case vmIntrinsics::_dlog: 1903 return StubRoutines::dlog() != nullptr ? 1904 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1905 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1906 case vmIntrinsics::_dlog10: 1907 return StubRoutines::dlog10() != nullptr ? 1908 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1909 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1910 1911 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1912 case vmIntrinsics::_ceil: 1913 case vmIntrinsics::_floor: 1914 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1915 1916 case vmIntrinsics::_dsqrt: 1917 case vmIntrinsics::_dsqrt_strict: 1918 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1919 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1920 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1921 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1922 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1923 1924 case vmIntrinsics::_dpow: return inline_math_pow(); 1925 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1926 case vmIntrinsics::_fcopySign: return inline_math(id); 1927 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1928 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1929 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1930 1931 // These intrinsics are not yet correctly implemented 1932 case vmIntrinsics::_datan2: 1933 return false; 1934 1935 default: 1936 fatal_unexpected_iid(id); 1937 return false; 1938 } 1939 } 1940 1941 //----------------------------inline_notify-----------------------------------* 1942 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1943 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1944 address func; 1945 if (id == vmIntrinsics::_notify) { 1946 func = OptoRuntime::monitor_notify_Java(); 1947 } else { 1948 func = OptoRuntime::monitor_notifyAll_Java(); 1949 } 1950 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1951 make_slow_call_ex(call, env()->Throwable_klass(), false); 1952 return true; 1953 } 1954 1955 1956 //----------------------------inline_min_max----------------------------------- 1957 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1958 Node* a = nullptr; 1959 Node* b = nullptr; 1960 Node* n = nullptr; 1961 switch (id) { 1962 case vmIntrinsics::_min: 1963 case vmIntrinsics::_max: 1964 case vmIntrinsics::_minF: 1965 case vmIntrinsics::_maxF: 1966 case vmIntrinsics::_minF_strict: 1967 case vmIntrinsics::_maxF_strict: 1968 case vmIntrinsics::_min_strict: 1969 case vmIntrinsics::_max_strict: 1970 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1971 a = argument(0); 1972 b = argument(1); 1973 break; 1974 case vmIntrinsics::_minD: 1975 case vmIntrinsics::_maxD: 1976 case vmIntrinsics::_minD_strict: 1977 case vmIntrinsics::_maxD_strict: 1978 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1979 a = argument(0); 1980 b = argument(2); 1981 break; 1982 case vmIntrinsics::_minL: 1983 case vmIntrinsics::_maxL: 1984 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1985 a = argument(0); 1986 b = argument(2); 1987 break; 1988 default: 1989 fatal_unexpected_iid(id); 1990 break; 1991 } 1992 1993 switch (id) { 1994 case vmIntrinsics::_min: 1995 case vmIntrinsics::_min_strict: 1996 n = new MinINode(a, b); 1997 break; 1998 case vmIntrinsics::_max: 1999 case vmIntrinsics::_max_strict: 2000 n = new MaxINode(a, b); 2001 break; 2002 case vmIntrinsics::_minF: 2003 case vmIntrinsics::_minF_strict: 2004 n = new MinFNode(a, b); 2005 break; 2006 case vmIntrinsics::_maxF: 2007 case vmIntrinsics::_maxF_strict: 2008 n = new MaxFNode(a, b); 2009 break; 2010 case vmIntrinsics::_minD: 2011 case vmIntrinsics::_minD_strict: 2012 n = new MinDNode(a, b); 2013 break; 2014 case vmIntrinsics::_maxD: 2015 case vmIntrinsics::_maxD_strict: 2016 n = new MaxDNode(a, b); 2017 break; 2018 case vmIntrinsics::_minL: 2019 n = new MinLNode(_gvn.C, a, b); 2020 break; 2021 case vmIntrinsics::_maxL: 2022 n = new MaxLNode(_gvn.C, a, b); 2023 break; 2024 default: 2025 fatal_unexpected_iid(id); 2026 break; 2027 } 2028 2029 set_result(_gvn.transform(n)); 2030 return true; 2031 } 2032 2033 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) { 2034 if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic, 2035 env()->ArithmeticException_instance())) { 2036 // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces), 2037 // so let's bail out intrinsic rather than risking deopting again. 2038 return false; 2039 } 2040 2041 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2042 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2043 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2044 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2045 2046 { 2047 PreserveJVMState pjvms(this); 2048 PreserveReexecuteState preexecs(this); 2049 jvms()->set_should_reexecute(true); 2050 2051 set_control(slow_path); 2052 set_i_o(i_o()); 2053 2054 builtin_throw(Deoptimization::Reason_intrinsic, 2055 env()->ArithmeticException_instance(), 2056 /*allow_too_many_traps*/ false); 2057 } 2058 2059 set_control(fast_path); 2060 set_result(math); 2061 return true; 2062 } 2063 2064 template <typename OverflowOp> 2065 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2066 typedef typename OverflowOp::MathOp MathOp; 2067 2068 MathOp* mathOp = new MathOp(arg1, arg2); 2069 Node* operation = _gvn.transform( mathOp ); 2070 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2071 return inline_math_mathExact(operation, ofcheck); 2072 } 2073 2074 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2075 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2076 } 2077 2078 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2079 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2080 } 2081 2082 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2083 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2084 } 2085 2086 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2087 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2088 } 2089 2090 bool LibraryCallKit::inline_math_negateExactI() { 2091 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2092 } 2093 2094 bool LibraryCallKit::inline_math_negateExactL() { 2095 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2096 } 2097 2098 bool LibraryCallKit::inline_math_multiplyExactI() { 2099 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2100 } 2101 2102 bool LibraryCallKit::inline_math_multiplyExactL() { 2103 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2104 } 2105 2106 bool LibraryCallKit::inline_math_multiplyHigh() { 2107 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2108 return true; 2109 } 2110 2111 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2112 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2113 return true; 2114 } 2115 2116 inline int 2117 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2118 const TypePtr* base_type = TypePtr::NULL_PTR; 2119 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2120 if (base_type == nullptr) { 2121 // Unknown type. 2122 return Type::AnyPtr; 2123 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2124 // Since this is a null+long form, we have to switch to a rawptr. 2125 base = _gvn.transform(new CastX2PNode(offset)); 2126 offset = MakeConX(0); 2127 return Type::RawPtr; 2128 } else if (base_type->base() == Type::RawPtr) { 2129 return Type::RawPtr; 2130 } else if (base_type->isa_oopptr()) { 2131 // Base is never null => always a heap address. 2132 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2133 return Type::OopPtr; 2134 } 2135 // Offset is small => always a heap address. 2136 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2137 if (offset_type != nullptr && 2138 base_type->offset() == 0 && // (should always be?) 2139 offset_type->_lo >= 0 && 2140 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2141 return Type::OopPtr; 2142 } else if (type == T_OBJECT) { 2143 // off heap access to an oop doesn't make any sense. Has to be on 2144 // heap. 2145 return Type::OopPtr; 2146 } 2147 // Otherwise, it might either be oop+off or null+addr. 2148 return Type::AnyPtr; 2149 } else { 2150 // No information: 2151 return Type::AnyPtr; 2152 } 2153 } 2154 2155 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2156 Node* uncasted_base = base; 2157 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2158 if (kind == Type::RawPtr) { 2159 return basic_plus_adr(top(), uncasted_base, offset); 2160 } else if (kind == Type::AnyPtr) { 2161 assert(base == uncasted_base, "unexpected base change"); 2162 if (can_cast) { 2163 if (!_gvn.type(base)->speculative_maybe_null() && 2164 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2165 // According to profiling, this access is always on 2166 // heap. Casting the base to not null and thus avoiding membars 2167 // around the access should allow better optimizations 2168 Node* null_ctl = top(); 2169 base = null_check_oop(base, &null_ctl, true, true, true); 2170 assert(null_ctl->is_top(), "no null control here"); 2171 return basic_plus_adr(base, offset); 2172 } else if (_gvn.type(base)->speculative_always_null() && 2173 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2174 // According to profiling, this access is always off 2175 // heap. 2176 base = null_assert(base); 2177 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2178 offset = MakeConX(0); 2179 return basic_plus_adr(top(), raw_base, offset); 2180 } 2181 } 2182 // We don't know if it's an on heap or off heap access. Fall back 2183 // to raw memory access. 2184 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2185 return basic_plus_adr(top(), raw, offset); 2186 } else { 2187 assert(base == uncasted_base, "unexpected base change"); 2188 // We know it's an on heap access so base can't be null 2189 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2190 base = must_be_not_null(base, true); 2191 } 2192 return basic_plus_adr(base, offset); 2193 } 2194 } 2195 2196 //--------------------------inline_number_methods----------------------------- 2197 // inline int Integer.numberOfLeadingZeros(int) 2198 // inline int Long.numberOfLeadingZeros(long) 2199 // 2200 // inline int Integer.numberOfTrailingZeros(int) 2201 // inline int Long.numberOfTrailingZeros(long) 2202 // 2203 // inline int Integer.bitCount(int) 2204 // inline int Long.bitCount(long) 2205 // 2206 // inline char Character.reverseBytes(char) 2207 // inline short Short.reverseBytes(short) 2208 // inline int Integer.reverseBytes(int) 2209 // inline long Long.reverseBytes(long) 2210 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2211 Node* arg = argument(0); 2212 Node* n = nullptr; 2213 switch (id) { 2214 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2215 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2216 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2217 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2218 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2219 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2220 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2221 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2222 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2223 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2224 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2225 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2226 default: fatal_unexpected_iid(id); break; 2227 } 2228 set_result(_gvn.transform(n)); 2229 return true; 2230 } 2231 2232 //--------------------------inline_bitshuffle_methods----------------------------- 2233 // inline int Integer.compress(int, int) 2234 // inline int Integer.expand(int, int) 2235 // inline long Long.compress(long, long) 2236 // inline long Long.expand(long, long) 2237 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2238 Node* n = nullptr; 2239 switch (id) { 2240 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2241 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2242 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2243 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2244 default: fatal_unexpected_iid(id); break; 2245 } 2246 set_result(_gvn.transform(n)); 2247 return true; 2248 } 2249 2250 //--------------------------inline_number_methods----------------------------- 2251 // inline int Integer.compareUnsigned(int, int) 2252 // inline int Long.compareUnsigned(long, long) 2253 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2254 Node* arg1 = argument(0); 2255 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2256 Node* n = nullptr; 2257 switch (id) { 2258 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2259 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2260 default: fatal_unexpected_iid(id); break; 2261 } 2262 set_result(_gvn.transform(n)); 2263 return true; 2264 } 2265 2266 //--------------------------inline_unsigned_divmod_methods----------------------------- 2267 // inline int Integer.divideUnsigned(int, int) 2268 // inline int Integer.remainderUnsigned(int, int) 2269 // inline long Long.divideUnsigned(long, long) 2270 // inline long Long.remainderUnsigned(long, long) 2271 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2272 Node* n = nullptr; 2273 switch (id) { 2274 case vmIntrinsics::_divideUnsigned_i: { 2275 zero_check_int(argument(1)); 2276 // Compile-time detect of null-exception 2277 if (stopped()) { 2278 return true; // keep the graph constructed so far 2279 } 2280 n = new UDivINode(control(), argument(0), argument(1)); 2281 break; 2282 } 2283 case vmIntrinsics::_divideUnsigned_l: { 2284 zero_check_long(argument(2)); 2285 // Compile-time detect of null-exception 2286 if (stopped()) { 2287 return true; // keep the graph constructed so far 2288 } 2289 n = new UDivLNode(control(), argument(0), argument(2)); 2290 break; 2291 } 2292 case vmIntrinsics::_remainderUnsigned_i: { 2293 zero_check_int(argument(1)); 2294 // Compile-time detect of null-exception 2295 if (stopped()) { 2296 return true; // keep the graph constructed so far 2297 } 2298 n = new UModINode(control(), argument(0), argument(1)); 2299 break; 2300 } 2301 case vmIntrinsics::_remainderUnsigned_l: { 2302 zero_check_long(argument(2)); 2303 // Compile-time detect of null-exception 2304 if (stopped()) { 2305 return true; // keep the graph constructed so far 2306 } 2307 n = new UModLNode(control(), argument(0), argument(2)); 2308 break; 2309 } 2310 default: fatal_unexpected_iid(id); break; 2311 } 2312 set_result(_gvn.transform(n)); 2313 return true; 2314 } 2315 2316 //----------------------------inline_unsafe_access---------------------------- 2317 2318 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2319 // Attempt to infer a sharper value type from the offset and base type. 2320 ciKlass* sharpened_klass = nullptr; 2321 2322 // See if it is an instance field, with an object type. 2323 if (alias_type->field() != nullptr) { 2324 if (alias_type->field()->type()->is_klass()) { 2325 sharpened_klass = alias_type->field()->type()->as_klass(); 2326 } 2327 } 2328 2329 const TypeOopPtr* result = nullptr; 2330 // See if it is a narrow oop array. 2331 if (adr_type->isa_aryptr()) { 2332 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2333 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2334 if (elem_type != nullptr && elem_type->is_loaded()) { 2335 // Sharpen the value type. 2336 result = elem_type; 2337 } 2338 } 2339 } 2340 2341 // The sharpened class might be unloaded if there is no class loader 2342 // contraint in place. 2343 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2344 // Sharpen the value type. 2345 result = TypeOopPtr::make_from_klass(sharpened_klass); 2346 } 2347 if (result != nullptr) { 2348 #ifndef PRODUCT 2349 if (C->print_intrinsics() || C->print_inlining()) { 2350 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2351 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2352 } 2353 #endif 2354 } 2355 return result; 2356 } 2357 2358 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2359 switch (kind) { 2360 case Relaxed: 2361 return MO_UNORDERED; 2362 case Opaque: 2363 return MO_RELAXED; 2364 case Acquire: 2365 return MO_ACQUIRE; 2366 case Release: 2367 return MO_RELEASE; 2368 case Volatile: 2369 return MO_SEQ_CST; 2370 default: 2371 ShouldNotReachHere(); 2372 return 0; 2373 } 2374 } 2375 2376 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2377 if (callee()->is_static()) return false; // caller must have the capability! 2378 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2379 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2380 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2381 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2382 2383 if (is_reference_type(type)) { 2384 decorators |= ON_UNKNOWN_OOP_REF; 2385 } 2386 2387 if (unaligned) { 2388 decorators |= C2_UNALIGNED; 2389 } 2390 2391 #ifndef PRODUCT 2392 { 2393 ResourceMark rm; 2394 // Check the signatures. 2395 ciSignature* sig = callee()->signature(); 2396 #ifdef ASSERT 2397 if (!is_store) { 2398 // Object getReference(Object base, int/long offset), etc. 2399 BasicType rtype = sig->return_type()->basic_type(); 2400 assert(rtype == type, "getter must return the expected value"); 2401 assert(sig->count() == 2, "oop getter has 2 arguments"); 2402 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2403 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2404 } else { 2405 // void putReference(Object base, int/long offset, Object x), etc. 2406 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2407 assert(sig->count() == 3, "oop putter has 3 arguments"); 2408 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2409 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2410 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2411 assert(vtype == type, "putter must accept the expected value"); 2412 } 2413 #endif // ASSERT 2414 } 2415 #endif //PRODUCT 2416 2417 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2418 2419 Node* receiver = argument(0); // type: oop 2420 2421 // Build address expression. 2422 Node* heap_base_oop = top(); 2423 2424 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2425 Node* base = argument(1); // type: oop 2426 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2427 Node* offset = argument(2); // type: long 2428 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2429 // to be plain byte offsets, which are also the same as those accepted 2430 // by oopDesc::field_addr. 2431 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2432 "fieldOffset must be byte-scaled"); 2433 // 32-bit machines ignore the high half! 2434 offset = ConvL2X(offset); 2435 2436 // Save state and restore on bailout 2437 uint old_sp = sp(); 2438 SafePointNode* old_map = clone_map(); 2439 2440 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2441 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2442 2443 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2444 if (type != T_OBJECT) { 2445 decorators |= IN_NATIVE; // off-heap primitive access 2446 } else { 2447 set_map(old_map); 2448 set_sp(old_sp); 2449 return false; // off-heap oop accesses are not supported 2450 } 2451 } else { 2452 heap_base_oop = base; // on-heap or mixed access 2453 } 2454 2455 // Can base be null? Otherwise, always on-heap access. 2456 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2457 2458 if (!can_access_non_heap) { 2459 decorators |= IN_HEAP; 2460 } 2461 2462 Node* val = is_store ? argument(4) : nullptr; 2463 2464 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2465 if (adr_type == TypePtr::NULL_PTR) { 2466 set_map(old_map); 2467 set_sp(old_sp); 2468 return false; // off-heap access with zero address 2469 } 2470 2471 // Try to categorize the address. 2472 Compile::AliasType* alias_type = C->alias_type(adr_type); 2473 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2474 2475 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2476 alias_type->adr_type() == TypeAryPtr::RANGE) { 2477 set_map(old_map); 2478 set_sp(old_sp); 2479 return false; // not supported 2480 } 2481 2482 bool mismatched = false; 2483 BasicType bt = alias_type->basic_type(); 2484 if (bt != T_ILLEGAL) { 2485 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2486 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2487 // Alias type doesn't differentiate between byte[] and boolean[]). 2488 // Use address type to get the element type. 2489 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2490 } 2491 if (is_reference_type(bt, true)) { 2492 // accessing an array field with getReference is not a mismatch 2493 bt = T_OBJECT; 2494 } 2495 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2496 // Don't intrinsify mismatched object accesses 2497 set_map(old_map); 2498 set_sp(old_sp); 2499 return false; 2500 } 2501 mismatched = (bt != type); 2502 } else if (alias_type->adr_type()->isa_oopptr()) { 2503 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2504 } 2505 2506 destruct_map_clone(old_map); 2507 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2508 2509 if (mismatched) { 2510 decorators |= C2_MISMATCHED; 2511 } 2512 2513 // First guess at the value type. 2514 const Type *value_type = Type::get_const_basic_type(type); 2515 2516 // Figure out the memory ordering. 2517 decorators |= mo_decorator_for_access_kind(kind); 2518 2519 if (!is_store && type == T_OBJECT) { 2520 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2521 if (tjp != nullptr) { 2522 value_type = tjp; 2523 } 2524 } 2525 2526 receiver = null_check(receiver); 2527 if (stopped()) { 2528 return true; 2529 } 2530 // Heap pointers get a null-check from the interpreter, 2531 // as a courtesy. However, this is not guaranteed by Unsafe, 2532 // and it is not possible to fully distinguish unintended nulls 2533 // from intended ones in this API. 2534 2535 if (!is_store) { 2536 Node* p = nullptr; 2537 // Try to constant fold a load from a constant field 2538 ciField* field = alias_type->field(); 2539 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2540 // final or stable field 2541 p = make_constant_from_field(field, heap_base_oop); 2542 } 2543 2544 if (p == nullptr) { // Could not constant fold the load 2545 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2546 // Normalize the value returned by getBoolean in the following cases 2547 if (type == T_BOOLEAN && 2548 (mismatched || 2549 heap_base_oop == top() || // - heap_base_oop is null or 2550 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2551 // and the unsafe access is made to large offset 2552 // (i.e., larger than the maximum offset necessary for any 2553 // field access) 2554 ) { 2555 IdealKit ideal = IdealKit(this); 2556 #define __ ideal. 2557 IdealVariable normalized_result(ideal); 2558 __ declarations_done(); 2559 __ set(normalized_result, p); 2560 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2561 __ set(normalized_result, ideal.ConI(1)); 2562 ideal.end_if(); 2563 final_sync(ideal); 2564 p = __ value(normalized_result); 2565 #undef __ 2566 } 2567 } 2568 if (type == T_ADDRESS) { 2569 p = gvn().transform(new CastP2XNode(nullptr, p)); 2570 p = ConvX2UL(p); 2571 } 2572 // The load node has the control of the preceding MemBarCPUOrder. All 2573 // following nodes will have the control of the MemBarCPUOrder inserted at 2574 // the end of this method. So, pushing the load onto the stack at a later 2575 // point is fine. 2576 set_result(p); 2577 } else { 2578 if (bt == T_ADDRESS) { 2579 // Repackage the long as a pointer. 2580 val = ConvL2X(val); 2581 val = gvn().transform(new CastX2PNode(val)); 2582 } 2583 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2584 } 2585 2586 return true; 2587 } 2588 2589 //----------------------------inline_unsafe_load_store---------------------------- 2590 // This method serves a couple of different customers (depending on LoadStoreKind): 2591 // 2592 // LS_cmp_swap: 2593 // 2594 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2595 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2596 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2597 // 2598 // LS_cmp_swap_weak: 2599 // 2600 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2601 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2602 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2603 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2604 // 2605 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2606 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2607 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2608 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2609 // 2610 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2611 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2612 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2613 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2614 // 2615 // LS_cmp_exchange: 2616 // 2617 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2618 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2619 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2620 // 2621 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2622 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2623 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2624 // 2625 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2626 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2627 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2628 // 2629 // LS_get_add: 2630 // 2631 // int getAndAddInt( Object o, long offset, int delta) 2632 // long getAndAddLong(Object o, long offset, long delta) 2633 // 2634 // LS_get_set: 2635 // 2636 // int getAndSet(Object o, long offset, int newValue) 2637 // long getAndSet(Object o, long offset, long newValue) 2638 // Object getAndSet(Object o, long offset, Object newValue) 2639 // 2640 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2641 // This basic scheme here is the same as inline_unsafe_access, but 2642 // differs in enough details that combining them would make the code 2643 // overly confusing. (This is a true fact! I originally combined 2644 // them, but even I was confused by it!) As much code/comments as 2645 // possible are retained from inline_unsafe_access though to make 2646 // the correspondences clearer. - dl 2647 2648 if (callee()->is_static()) return false; // caller must have the capability! 2649 2650 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2651 decorators |= mo_decorator_for_access_kind(access_kind); 2652 2653 #ifndef PRODUCT 2654 BasicType rtype; 2655 { 2656 ResourceMark rm; 2657 // Check the signatures. 2658 ciSignature* sig = callee()->signature(); 2659 rtype = sig->return_type()->basic_type(); 2660 switch(kind) { 2661 case LS_get_add: 2662 case LS_get_set: { 2663 // Check the signatures. 2664 #ifdef ASSERT 2665 assert(rtype == type, "get and set must return the expected type"); 2666 assert(sig->count() == 3, "get and set has 3 arguments"); 2667 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2668 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2669 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2670 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2671 #endif // ASSERT 2672 break; 2673 } 2674 case LS_cmp_swap: 2675 case LS_cmp_swap_weak: { 2676 // Check the signatures. 2677 #ifdef ASSERT 2678 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2679 assert(sig->count() == 4, "CAS has 4 arguments"); 2680 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2681 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2682 #endif // ASSERT 2683 break; 2684 } 2685 case LS_cmp_exchange: { 2686 // Check the signatures. 2687 #ifdef ASSERT 2688 assert(rtype == type, "CAS must return the expected type"); 2689 assert(sig->count() == 4, "CAS has 4 arguments"); 2690 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2691 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2692 #endif // ASSERT 2693 break; 2694 } 2695 default: 2696 ShouldNotReachHere(); 2697 } 2698 } 2699 #endif //PRODUCT 2700 2701 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2702 2703 // Get arguments: 2704 Node* receiver = nullptr; 2705 Node* base = nullptr; 2706 Node* offset = nullptr; 2707 Node* oldval = nullptr; 2708 Node* newval = nullptr; 2709 switch(kind) { 2710 case LS_cmp_swap: 2711 case LS_cmp_swap_weak: 2712 case LS_cmp_exchange: { 2713 const bool two_slot_type = type2size[type] == 2; 2714 receiver = argument(0); // type: oop 2715 base = argument(1); // type: oop 2716 offset = argument(2); // type: long 2717 oldval = argument(4); // type: oop, int, or long 2718 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2719 break; 2720 } 2721 case LS_get_add: 2722 case LS_get_set: { 2723 receiver = argument(0); // type: oop 2724 base = argument(1); // type: oop 2725 offset = argument(2); // type: long 2726 oldval = nullptr; 2727 newval = argument(4); // type: oop, int, or long 2728 break; 2729 } 2730 default: 2731 ShouldNotReachHere(); 2732 } 2733 2734 // Build field offset expression. 2735 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2736 // to be plain byte offsets, which are also the same as those accepted 2737 // by oopDesc::field_addr. 2738 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2739 // 32-bit machines ignore the high half of long offsets 2740 offset = ConvL2X(offset); 2741 // Save state and restore on bailout 2742 uint old_sp = sp(); 2743 SafePointNode* old_map = clone_map(); 2744 Node* adr = make_unsafe_address(base, offset,type, false); 2745 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2746 2747 Compile::AliasType* alias_type = C->alias_type(adr_type); 2748 BasicType bt = alias_type->basic_type(); 2749 if (bt != T_ILLEGAL && 2750 (is_reference_type(bt) != (type == T_OBJECT))) { 2751 // Don't intrinsify mismatched object accesses. 2752 set_map(old_map); 2753 set_sp(old_sp); 2754 return false; 2755 } 2756 2757 destruct_map_clone(old_map); 2758 2759 // For CAS, unlike inline_unsafe_access, there seems no point in 2760 // trying to refine types. Just use the coarse types here. 2761 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2762 const Type *value_type = Type::get_const_basic_type(type); 2763 2764 switch (kind) { 2765 case LS_get_set: 2766 case LS_cmp_exchange: { 2767 if (type == T_OBJECT) { 2768 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2769 if (tjp != nullptr) { 2770 value_type = tjp; 2771 } 2772 } 2773 break; 2774 } 2775 case LS_cmp_swap: 2776 case LS_cmp_swap_weak: 2777 case LS_get_add: 2778 break; 2779 default: 2780 ShouldNotReachHere(); 2781 } 2782 2783 // Null check receiver. 2784 receiver = null_check(receiver); 2785 if (stopped()) { 2786 return true; 2787 } 2788 2789 int alias_idx = C->get_alias_index(adr_type); 2790 2791 if (is_reference_type(type)) { 2792 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2793 2794 // Transformation of a value which could be null pointer (CastPP #null) 2795 // could be delayed during Parse (for example, in adjust_map_after_if()). 2796 // Execute transformation here to avoid barrier generation in such case. 2797 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2798 newval = _gvn.makecon(TypePtr::NULL_PTR); 2799 2800 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2801 // Refine the value to a null constant, when it is known to be null 2802 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2803 } 2804 } 2805 2806 Node* result = nullptr; 2807 switch (kind) { 2808 case LS_cmp_exchange: { 2809 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2810 oldval, newval, value_type, type, decorators); 2811 break; 2812 } 2813 case LS_cmp_swap_weak: 2814 decorators |= C2_WEAK_CMPXCHG; 2815 case LS_cmp_swap: { 2816 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2817 oldval, newval, value_type, type, decorators); 2818 break; 2819 } 2820 case LS_get_set: { 2821 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2822 newval, value_type, type, decorators); 2823 break; 2824 } 2825 case LS_get_add: { 2826 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2827 newval, value_type, type, decorators); 2828 break; 2829 } 2830 default: 2831 ShouldNotReachHere(); 2832 } 2833 2834 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2835 set_result(result); 2836 return true; 2837 } 2838 2839 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2840 // Regardless of form, don't allow previous ld/st to move down, 2841 // then issue acquire, release, or volatile mem_bar. 2842 insert_mem_bar(Op_MemBarCPUOrder); 2843 switch(id) { 2844 case vmIntrinsics::_loadFence: 2845 insert_mem_bar(Op_LoadFence); 2846 return true; 2847 case vmIntrinsics::_storeFence: 2848 insert_mem_bar(Op_StoreFence); 2849 return true; 2850 case vmIntrinsics::_storeStoreFence: 2851 insert_mem_bar(Op_StoreStoreFence); 2852 return true; 2853 case vmIntrinsics::_fullFence: 2854 insert_mem_bar(Op_MemBarVolatile); 2855 return true; 2856 default: 2857 fatal_unexpected_iid(id); 2858 return false; 2859 } 2860 } 2861 2862 bool LibraryCallKit::inline_onspinwait() { 2863 insert_mem_bar(Op_OnSpinWait); 2864 return true; 2865 } 2866 2867 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2868 if (!kls->is_Con()) { 2869 return true; 2870 } 2871 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2872 if (klsptr == nullptr) { 2873 return true; 2874 } 2875 ciInstanceKlass* ik = klsptr->instance_klass(); 2876 // don't need a guard for a klass that is already initialized 2877 return !ik->is_initialized(); 2878 } 2879 2880 //----------------------------inline_unsafe_writeback0------------------------- 2881 // public native void Unsafe.writeback0(long address) 2882 bool LibraryCallKit::inline_unsafe_writeback0() { 2883 if (!Matcher::has_match_rule(Op_CacheWB)) { 2884 return false; 2885 } 2886 #ifndef PRODUCT 2887 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2888 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2889 ciSignature* sig = callee()->signature(); 2890 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2891 #endif 2892 null_check_receiver(); // null-check, then ignore 2893 Node *addr = argument(1); 2894 addr = new CastX2PNode(addr); 2895 addr = _gvn.transform(addr); 2896 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2897 flush = _gvn.transform(flush); 2898 set_memory(flush, TypeRawPtr::BOTTOM); 2899 return true; 2900 } 2901 2902 //----------------------------inline_unsafe_writeback0------------------------- 2903 // public native void Unsafe.writeback0(long address) 2904 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2905 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2906 return false; 2907 } 2908 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2909 return false; 2910 } 2911 #ifndef PRODUCT 2912 assert(Matcher::has_match_rule(Op_CacheWB), 2913 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2914 : "found match rule for CacheWBPostSync but not CacheWB")); 2915 2916 #endif 2917 null_check_receiver(); // null-check, then ignore 2918 Node *sync; 2919 if (is_pre) { 2920 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2921 } else { 2922 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2923 } 2924 sync = _gvn.transform(sync); 2925 set_memory(sync, TypeRawPtr::BOTTOM); 2926 return true; 2927 } 2928 2929 //----------------------------inline_unsafe_allocate--------------------------- 2930 // public native Object Unsafe.allocateInstance(Class<?> cls); 2931 bool LibraryCallKit::inline_unsafe_allocate() { 2932 2933 #if INCLUDE_JVMTI 2934 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2935 return false; 2936 } 2937 #endif //INCLUDE_JVMTI 2938 2939 if (callee()->is_static()) return false; // caller must have the capability! 2940 2941 null_check_receiver(); // null-check, then ignore 2942 Node* cls = null_check(argument(1)); 2943 if (stopped()) return true; 2944 2945 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2946 kls = null_check(kls); 2947 if (stopped()) return true; // argument was like int.class 2948 2949 #if INCLUDE_JVMTI 2950 // Don't try to access new allocated obj in the intrinsic. 2951 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2952 // Deoptimize and allocate in interpreter instead. 2953 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2954 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2955 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2956 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2957 { 2958 BuildCutout unless(this, tst, PROB_MAX); 2959 uncommon_trap(Deoptimization::Reason_intrinsic, 2960 Deoptimization::Action_make_not_entrant); 2961 } 2962 if (stopped()) { 2963 return true; 2964 } 2965 #endif //INCLUDE_JVMTI 2966 2967 Node* test = nullptr; 2968 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2969 // Note: The argument might still be an illegal value like 2970 // Serializable.class or Object[].class. The runtime will handle it. 2971 // But we must make an explicit check for initialization. 2972 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2973 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2974 // can generate code to load it as unsigned byte. 2975 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 2976 Node* bits = intcon(InstanceKlass::fully_initialized); 2977 test = _gvn.transform(new SubINode(inst, bits)); 2978 // The 'test' is non-zero if we need to take a slow path. 2979 } 2980 2981 Node* obj = new_instance(kls, test); 2982 set_result(obj); 2983 return true; 2984 } 2985 2986 //------------------------inline_native_time_funcs-------------- 2987 // inline code for System.currentTimeMillis() and System.nanoTime() 2988 // these have the same type and signature 2989 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2990 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2991 const TypePtr* no_memory_effects = nullptr; 2992 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2993 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2994 #ifdef ASSERT 2995 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2996 assert(value_top == top(), "second value must be top"); 2997 #endif 2998 set_result(value); 2999 return true; 3000 } 3001 3002 3003 #if INCLUDE_JVMTI 3004 3005 // When notifications are disabled then just update the VTMS transition bit and return. 3006 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3007 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3008 if (!DoJVMTIVirtualThreadTransitions) { 3009 return true; 3010 } 3011 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3012 IdealKit ideal(this); 3013 3014 Node* ONE = ideal.ConI(1); 3015 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3016 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3017 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3018 3019 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3020 sync_kit(ideal); 3021 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3022 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3023 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3024 ideal.sync_kit(this); 3025 } ideal.else_(); { 3026 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3027 Node* thread = ideal.thread(); 3028 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3029 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3030 3031 sync_kit(ideal); 3032 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3033 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3034 3035 ideal.sync_kit(this); 3036 } ideal.end_if(); 3037 final_sync(ideal); 3038 3039 return true; 3040 } 3041 3042 // Always update the is_disable_suspend bit. 3043 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3044 if (!DoJVMTIVirtualThreadTransitions) { 3045 return true; 3046 } 3047 IdealKit ideal(this); 3048 3049 { 3050 // unconditionally update the is_disable_suspend bit in current JavaThread 3051 Node* thread = ideal.thread(); 3052 Node* arg = _gvn.transform(argument(0)); // argument for notification 3053 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3054 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3055 3056 sync_kit(ideal); 3057 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3058 ideal.sync_kit(this); 3059 } 3060 final_sync(ideal); 3061 3062 return true; 3063 } 3064 3065 #endif // INCLUDE_JVMTI 3066 3067 #ifdef JFR_HAVE_INTRINSICS 3068 3069 /** 3070 * if oop->klass != null 3071 * // normal class 3072 * epoch = _epoch_state ? 2 : 1 3073 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3074 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3075 * } 3076 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3077 * else 3078 * // primitive class 3079 * if oop->array_klass != null 3080 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3081 * else 3082 * id = LAST_TYPE_ID + 1 // void class path 3083 * if (!signaled) 3084 * signaled = true 3085 */ 3086 bool LibraryCallKit::inline_native_classID() { 3087 Node* cls = argument(0); 3088 3089 IdealKit ideal(this); 3090 #define __ ideal. 3091 IdealVariable result(ideal); __ declarations_done(); 3092 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3093 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3094 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3095 3096 3097 __ if_then(kls, BoolTest::ne, null()); { 3098 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3099 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3100 3101 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3102 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3103 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3104 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3105 mask = _gvn.transform(new OrLNode(mask, epoch)); 3106 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3107 3108 float unlikely = PROB_UNLIKELY(0.999); 3109 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3110 sync_kit(ideal); 3111 make_runtime_call(RC_LEAF, 3112 OptoRuntime::class_id_load_barrier_Type(), 3113 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3114 "class id load barrier", 3115 TypePtr::BOTTOM, 3116 kls); 3117 ideal.sync_kit(this); 3118 } __ end_if(); 3119 3120 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3121 } __ else_(); { 3122 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3123 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3124 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3125 __ if_then(array_kls, BoolTest::ne, null()); { 3126 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3127 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3128 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3129 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3130 } __ else_(); { 3131 // void class case 3132 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3133 } __ end_if(); 3134 3135 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3136 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3137 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3138 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3139 } __ end_if(); 3140 } __ end_if(); 3141 3142 final_sync(ideal); 3143 set_result(ideal.value(result)); 3144 #undef __ 3145 return true; 3146 } 3147 3148 //------------------------inline_native_jvm_commit------------------ 3149 bool LibraryCallKit::inline_native_jvm_commit() { 3150 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3151 3152 // Save input memory and i_o state. 3153 Node* input_memory_state = reset_memory(); 3154 set_all_memory(input_memory_state); 3155 Node* input_io_state = i_o(); 3156 3157 // TLS. 3158 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3159 // Jfr java buffer. 3160 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3161 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3162 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3163 3164 // Load the current value of the notified field in the JfrThreadLocal. 3165 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3166 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3167 3168 // Test for notification. 3169 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3170 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3171 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3172 3173 // True branch, is notified. 3174 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3175 set_control(is_notified); 3176 3177 // Reset notified state. 3178 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3179 Node* notified_reset_memory = reset_memory(); 3180 3181 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3182 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3183 // Convert the machine-word to a long. 3184 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3185 3186 // False branch, not notified. 3187 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3188 set_control(not_notified); 3189 set_all_memory(input_memory_state); 3190 3191 // Arg is the next position as a long. 3192 Node* arg = argument(0); 3193 // Convert long to machine-word. 3194 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3195 3196 // Store the next_position to the underlying jfr java buffer. 3197 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3198 3199 Node* commit_memory = reset_memory(); 3200 set_all_memory(commit_memory); 3201 3202 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3203 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3204 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3205 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3206 3207 // And flags with lease constant. 3208 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3209 3210 // Branch on lease to conditionalize returning the leased java buffer. 3211 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3212 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3213 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3214 3215 // False branch, not a lease. 3216 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3217 3218 // True branch, is lease. 3219 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3220 set_control(is_lease); 3221 3222 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3223 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3224 OptoRuntime::void_void_Type(), 3225 SharedRuntime::jfr_return_lease(), 3226 "return_lease", TypePtr::BOTTOM); 3227 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3228 3229 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3230 record_for_igvn(lease_compare_rgn); 3231 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3232 record_for_igvn(lease_compare_mem); 3233 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3234 record_for_igvn(lease_compare_io); 3235 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3236 record_for_igvn(lease_result_value); 3237 3238 // Update control and phi nodes. 3239 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3240 lease_compare_rgn->init_req(_false_path, not_lease); 3241 3242 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3243 lease_compare_mem->init_req(_false_path, commit_memory); 3244 3245 lease_compare_io->init_req(_true_path, i_o()); 3246 lease_compare_io->init_req(_false_path, input_io_state); 3247 3248 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3249 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3250 3251 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3252 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3253 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3254 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3255 3256 // Update control and phi nodes. 3257 result_rgn->init_req(_true_path, is_notified); 3258 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3259 3260 result_mem->init_req(_true_path, notified_reset_memory); 3261 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3262 3263 result_io->init_req(_true_path, input_io_state); 3264 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3265 3266 result_value->init_req(_true_path, current_pos); 3267 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3268 3269 // Set output state. 3270 set_control(_gvn.transform(result_rgn)); 3271 set_all_memory(_gvn.transform(result_mem)); 3272 set_i_o(_gvn.transform(result_io)); 3273 set_result(result_rgn, result_value); 3274 return true; 3275 } 3276 3277 /* 3278 * The intrinsic is a model of this pseudo-code: 3279 * 3280 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3281 * jobject h_event_writer = tl->java_event_writer(); 3282 * if (h_event_writer == nullptr) { 3283 * return nullptr; 3284 * } 3285 * oop threadObj = Thread::threadObj(); 3286 * oop vthread = java_lang_Thread::vthread(threadObj); 3287 * traceid tid; 3288 * bool pinVirtualThread; 3289 * bool excluded; 3290 * if (vthread != threadObj) { // i.e. current thread is virtual 3291 * tid = java_lang_Thread::tid(vthread); 3292 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3293 * pinVirtualThread = VMContinuations; 3294 * excluded = vthread_epoch_raw & excluded_mask; 3295 * if (!excluded) { 3296 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3297 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3298 * if (vthread_epoch != current_epoch) { 3299 * write_checkpoint(); 3300 * } 3301 * } 3302 * } else { 3303 * tid = java_lang_Thread::tid(threadObj); 3304 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3305 * pinVirtualThread = false; 3306 * excluded = thread_epoch_raw & excluded_mask; 3307 * } 3308 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3309 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3310 * if (tid_in_event_writer != tid) { 3311 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3312 * setField(event_writer, "excluded", excluded); 3313 * setField(event_writer, "threadID", tid); 3314 * } 3315 * return event_writer 3316 */ 3317 bool LibraryCallKit::inline_native_getEventWriter() { 3318 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3319 3320 // Save input memory and i_o state. 3321 Node* input_memory_state = reset_memory(); 3322 set_all_memory(input_memory_state); 3323 Node* input_io_state = i_o(); 3324 3325 // The most significant bit of the u2 is used to denote thread exclusion 3326 Node* excluded_shift = _gvn.intcon(15); 3327 Node* excluded_mask = _gvn.intcon(1 << 15); 3328 // The epoch generation is the range [1-32767] 3329 Node* epoch_mask = _gvn.intcon(32767); 3330 3331 // TLS 3332 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3333 3334 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3335 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3336 3337 // Load the eventwriter jobject handle. 3338 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3339 3340 // Null check the jobject handle. 3341 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3342 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3343 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3344 3345 // False path, jobj is null. 3346 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3347 3348 // True path, jobj is not null. 3349 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3350 3351 set_control(jobj_is_not_null); 3352 3353 // Load the threadObj for the CarrierThread. 3354 Node* threadObj = generate_current_thread(tls_ptr); 3355 3356 // Load the vthread. 3357 Node* vthread = generate_virtual_thread(tls_ptr); 3358 3359 // If vthread != threadObj, this is a virtual thread. 3360 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3361 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3362 IfNode* iff_vthread_not_equal_threadObj = 3363 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3364 3365 // False branch, fallback to threadObj. 3366 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3367 set_control(vthread_equal_threadObj); 3368 3369 // Load the tid field from the vthread object. 3370 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3371 3372 // Load the raw epoch value from the threadObj. 3373 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3374 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3375 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3376 TypeInt::CHAR, T_CHAR, 3377 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3378 3379 // Mask off the excluded information from the epoch. 3380 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3381 3382 // True branch, this is a virtual thread. 3383 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3384 set_control(vthread_not_equal_threadObj); 3385 3386 // Load the tid field from the vthread object. 3387 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3388 3389 // Continuation support determines if a virtual thread should be pinned. 3390 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3391 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3392 3393 // Load the raw epoch value from the vthread. 3394 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3395 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3396 TypeInt::CHAR, T_CHAR, 3397 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3398 3399 // Mask off the excluded information from the epoch. 3400 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3401 3402 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3403 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3404 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3405 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3406 3407 // False branch, vthread is excluded, no need to write epoch info. 3408 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3409 3410 // True branch, vthread is included, update epoch info. 3411 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3412 set_control(included); 3413 3414 // Get epoch value. 3415 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3416 3417 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3418 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3419 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3420 3421 // Compare the epoch in the vthread to the current epoch generation. 3422 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3423 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3424 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3425 3426 // False path, epoch is equal, checkpoint information is valid. 3427 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3428 3429 // True path, epoch is not equal, write a checkpoint for the vthread. 3430 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3431 3432 set_control(epoch_is_not_equal); 3433 3434 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3435 // The call also updates the native thread local thread id and the vthread with the current epoch. 3436 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3437 OptoRuntime::jfr_write_checkpoint_Type(), 3438 SharedRuntime::jfr_write_checkpoint(), 3439 "write_checkpoint", TypePtr::BOTTOM); 3440 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3441 3442 // vthread epoch != current epoch 3443 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3444 record_for_igvn(epoch_compare_rgn); 3445 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3446 record_for_igvn(epoch_compare_mem); 3447 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3448 record_for_igvn(epoch_compare_io); 3449 3450 // Update control and phi nodes. 3451 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3452 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3453 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3454 epoch_compare_mem->init_req(_false_path, input_memory_state); 3455 epoch_compare_io->init_req(_true_path, i_o()); 3456 epoch_compare_io->init_req(_false_path, input_io_state); 3457 3458 // excluded != true 3459 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3460 record_for_igvn(exclude_compare_rgn); 3461 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3462 record_for_igvn(exclude_compare_mem); 3463 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3464 record_for_igvn(exclude_compare_io); 3465 3466 // Update control and phi nodes. 3467 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3468 exclude_compare_rgn->init_req(_false_path, excluded); 3469 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3470 exclude_compare_mem->init_req(_false_path, input_memory_state); 3471 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3472 exclude_compare_io->init_req(_false_path, input_io_state); 3473 3474 // vthread != threadObj 3475 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3476 record_for_igvn(vthread_compare_rgn); 3477 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3478 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3479 record_for_igvn(vthread_compare_io); 3480 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3481 record_for_igvn(tid); 3482 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3483 record_for_igvn(exclusion); 3484 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3485 record_for_igvn(pinVirtualThread); 3486 3487 // Update control and phi nodes. 3488 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3489 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3490 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3491 vthread_compare_mem->init_req(_false_path, input_memory_state); 3492 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3493 vthread_compare_io->init_req(_false_path, input_io_state); 3494 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3495 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3496 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3497 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3498 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3499 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3500 3501 // Update branch state. 3502 set_control(_gvn.transform(vthread_compare_rgn)); 3503 set_all_memory(_gvn.transform(vthread_compare_mem)); 3504 set_i_o(_gvn.transform(vthread_compare_io)); 3505 3506 // Load the event writer oop by dereferencing the jobject handle. 3507 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3508 assert(klass_EventWriter->is_loaded(), "invariant"); 3509 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3510 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3511 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3512 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3513 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3514 3515 // Load the current thread id from the event writer object. 3516 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3517 // Get the field offset to, conditionally, store an updated tid value later. 3518 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3519 // Get the field offset to, conditionally, store an updated exclusion value later. 3520 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3521 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3522 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3523 3524 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3525 record_for_igvn(event_writer_tid_compare_rgn); 3526 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3527 record_for_igvn(event_writer_tid_compare_mem); 3528 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3529 record_for_igvn(event_writer_tid_compare_io); 3530 3531 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3532 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3533 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3534 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3535 3536 // False path, tids are the same. 3537 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3538 3539 // True path, tid is not equal, need to update the tid in the event writer. 3540 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3541 record_for_igvn(tid_is_not_equal); 3542 3543 // Store the pin state to the event writer. 3544 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3545 3546 // Store the exclusion state to the event writer. 3547 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3548 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3549 3550 // Store the tid to the event writer. 3551 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3552 3553 // Update control and phi nodes. 3554 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3555 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3556 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3557 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3558 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3559 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3560 3561 // Result of top level CFG, Memory, IO and Value. 3562 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3563 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3564 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3565 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3566 3567 // Result control. 3568 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3569 result_rgn->init_req(_false_path, jobj_is_null); 3570 3571 // Result memory. 3572 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3573 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3574 3575 // Result IO. 3576 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3577 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3578 3579 // Result value. 3580 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3581 result_value->init_req(_false_path, null()); // return null 3582 3583 // Set output state. 3584 set_control(_gvn.transform(result_rgn)); 3585 set_all_memory(_gvn.transform(result_mem)); 3586 set_i_o(_gvn.transform(result_io)); 3587 set_result(result_rgn, result_value); 3588 return true; 3589 } 3590 3591 /* 3592 * The intrinsic is a model of this pseudo-code: 3593 * 3594 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3595 * if (carrierThread != thread) { // is virtual thread 3596 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3597 * bool excluded = vthread_epoch_raw & excluded_mask; 3598 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3599 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3600 * if (!excluded) { 3601 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3602 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3603 * } 3604 * Atomic::release_store(&tl->_vthread, true); 3605 * return; 3606 * } 3607 * Atomic::release_store(&tl->_vthread, false); 3608 */ 3609 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3610 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3611 3612 Node* input_memory_state = reset_memory(); 3613 set_all_memory(input_memory_state); 3614 3615 // The most significant bit of the u2 is used to denote thread exclusion 3616 Node* excluded_mask = _gvn.intcon(1 << 15); 3617 // The epoch generation is the range [1-32767] 3618 Node* epoch_mask = _gvn.intcon(32767); 3619 3620 Node* const carrierThread = generate_current_thread(jt); 3621 // If thread != carrierThread, this is a virtual thread. 3622 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3623 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3624 IfNode* iff_thread_not_equal_carrierThread = 3625 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3626 3627 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3628 3629 // False branch, is carrierThread. 3630 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3631 // Store release 3632 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3633 3634 set_all_memory(input_memory_state); 3635 3636 // True branch, is virtual thread. 3637 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3638 set_control(thread_not_equal_carrierThread); 3639 3640 // Load the raw epoch value from the vthread. 3641 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3642 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3643 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3644 3645 // Mask off the excluded information from the epoch. 3646 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3647 3648 // Load the tid field from the thread. 3649 Node* tid = load_field_from_object(thread, "tid", "J"); 3650 3651 // Store the vthread tid to the jfr thread local. 3652 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3653 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3654 3655 // Branch is_excluded to conditionalize updating the epoch . 3656 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3657 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3658 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3659 3660 // True branch, vthread is excluded, no need to write epoch info. 3661 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3662 set_control(excluded); 3663 Node* vthread_is_excluded = _gvn.intcon(1); 3664 3665 // False branch, vthread is included, update epoch info. 3666 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3667 set_control(included); 3668 Node* vthread_is_included = _gvn.intcon(0); 3669 3670 // Get epoch value. 3671 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3672 3673 // Store the vthread epoch to the jfr thread local. 3674 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3675 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3676 3677 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3678 record_for_igvn(excluded_rgn); 3679 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3680 record_for_igvn(excluded_mem); 3681 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3682 record_for_igvn(exclusion); 3683 3684 // Merge the excluded control and memory. 3685 excluded_rgn->init_req(_true_path, excluded); 3686 excluded_rgn->init_req(_false_path, included); 3687 excluded_mem->init_req(_true_path, tid_memory); 3688 excluded_mem->init_req(_false_path, included_memory); 3689 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3690 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3691 3692 // Set intermediate state. 3693 set_control(_gvn.transform(excluded_rgn)); 3694 set_all_memory(excluded_mem); 3695 3696 // Store the vthread exclusion state to the jfr thread local. 3697 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3698 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3699 3700 // Store release 3701 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3702 3703 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3704 record_for_igvn(thread_compare_rgn); 3705 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3706 record_for_igvn(thread_compare_mem); 3707 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3708 record_for_igvn(vthread); 3709 3710 // Merge the thread_compare control and memory. 3711 thread_compare_rgn->init_req(_true_path, control()); 3712 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3713 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3714 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3715 3716 // Set output state. 3717 set_control(_gvn.transform(thread_compare_rgn)); 3718 set_all_memory(_gvn.transform(thread_compare_mem)); 3719 } 3720 3721 #endif // JFR_HAVE_INTRINSICS 3722 3723 //------------------------inline_native_currentCarrierThread------------------ 3724 bool LibraryCallKit::inline_native_currentCarrierThread() { 3725 Node* junk = nullptr; 3726 set_result(generate_current_thread(junk)); 3727 return true; 3728 } 3729 3730 //------------------------inline_native_currentThread------------------ 3731 bool LibraryCallKit::inline_native_currentThread() { 3732 Node* junk = nullptr; 3733 set_result(generate_virtual_thread(junk)); 3734 return true; 3735 } 3736 3737 //------------------------inline_native_setVthread------------------ 3738 bool LibraryCallKit::inline_native_setCurrentThread() { 3739 assert(C->method()->changes_current_thread(), 3740 "method changes current Thread but is not annotated ChangesCurrentThread"); 3741 Node* arr = argument(1); 3742 Node* thread = _gvn.transform(new ThreadLocalNode()); 3743 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3744 Node* thread_obj_handle 3745 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3746 thread_obj_handle = _gvn.transform(thread_obj_handle); 3747 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3748 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3749 3750 // Change the _monitor_owner_id of the JavaThread 3751 Node* tid = load_field_from_object(arr, "tid", "J"); 3752 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3753 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3754 3755 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3756 return true; 3757 } 3758 3759 const Type* LibraryCallKit::scopedValueCache_type() { 3760 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3761 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3762 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3763 3764 // Because we create the scopedValue cache lazily we have to make the 3765 // type of the result BotPTR. 3766 bool xk = etype->klass_is_exact(); 3767 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3768 return objects_type; 3769 } 3770 3771 Node* LibraryCallKit::scopedValueCache_helper() { 3772 Node* thread = _gvn.transform(new ThreadLocalNode()); 3773 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3774 // We cannot use immutable_memory() because we might flip onto a 3775 // different carrier thread, at which point we'll need to use that 3776 // carrier thread's cache. 3777 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3778 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3779 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3780 } 3781 3782 //------------------------inline_native_scopedValueCache------------------ 3783 bool LibraryCallKit::inline_native_scopedValueCache() { 3784 Node* cache_obj_handle = scopedValueCache_helper(); 3785 const Type* objects_type = scopedValueCache_type(); 3786 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3787 3788 return true; 3789 } 3790 3791 //------------------------inline_native_setScopedValueCache------------------ 3792 bool LibraryCallKit::inline_native_setScopedValueCache() { 3793 Node* arr = argument(0); 3794 Node* cache_obj_handle = scopedValueCache_helper(); 3795 const Type* objects_type = scopedValueCache_type(); 3796 3797 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3798 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3799 3800 return true; 3801 } 3802 3803 //------------------------inline_native_Continuation_pin and unpin----------- 3804 3805 // Shared implementation routine for both pin and unpin. 3806 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3807 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3808 3809 // Save input memory. 3810 Node* input_memory_state = reset_memory(); 3811 set_all_memory(input_memory_state); 3812 3813 // TLS 3814 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3815 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3816 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3817 3818 // Null check the last continuation object. 3819 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3820 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3821 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3822 3823 // False path, last continuation is null. 3824 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3825 3826 // True path, last continuation is not null. 3827 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3828 3829 set_control(continuation_is_not_null); 3830 3831 // Load the pin count from the last continuation. 3832 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3833 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3834 3835 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3836 Node* pin_count_rhs; 3837 if (unpin) { 3838 pin_count_rhs = _gvn.intcon(0); 3839 } else { 3840 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3841 } 3842 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3843 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3844 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3845 3846 // True branch, pin count over/underflow. 3847 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3848 { 3849 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3850 // which will throw IllegalStateException for pin count over/underflow. 3851 // No memory changed so far - we can use memory create by reset_memory() 3852 // at the beginning of this intrinsic. No need to call reset_memory() again. 3853 PreserveJVMState pjvms(this); 3854 set_control(pin_count_over_underflow); 3855 uncommon_trap(Deoptimization::Reason_intrinsic, 3856 Deoptimization::Action_none); 3857 assert(stopped(), "invariant"); 3858 } 3859 3860 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3861 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3862 set_control(valid_pin_count); 3863 3864 Node* next_pin_count; 3865 if (unpin) { 3866 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3867 } else { 3868 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3869 } 3870 3871 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 3872 3873 // Result of top level CFG and Memory. 3874 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3875 record_for_igvn(result_rgn); 3876 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3877 record_for_igvn(result_mem); 3878 3879 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3880 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3881 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3882 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3883 3884 // Set output state. 3885 set_control(_gvn.transform(result_rgn)); 3886 set_all_memory(_gvn.transform(result_mem)); 3887 3888 return true; 3889 } 3890 3891 //---------------------------load_mirror_from_klass---------------------------- 3892 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3893 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3894 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3895 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3896 // mirror = ((OopHandle)mirror)->resolve(); 3897 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3898 } 3899 3900 //-----------------------load_klass_from_mirror_common------------------------- 3901 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3902 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3903 // and branch to the given path on the region. 3904 // If never_see_null, take an uncommon trap on null, so we can optimistically 3905 // compile for the non-null case. 3906 // If the region is null, force never_see_null = true. 3907 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3908 bool never_see_null, 3909 RegionNode* region, 3910 int null_path, 3911 int offset) { 3912 if (region == nullptr) never_see_null = true; 3913 Node* p = basic_plus_adr(mirror, offset); 3914 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3915 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3916 Node* null_ctl = top(); 3917 kls = null_check_oop(kls, &null_ctl, never_see_null); 3918 if (region != nullptr) { 3919 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3920 region->init_req(null_path, null_ctl); 3921 } else { 3922 assert(null_ctl == top(), "no loose ends"); 3923 } 3924 return kls; 3925 } 3926 3927 //--------------------(inline_native_Class_query helpers)--------------------- 3928 // Use this for JVM_ACC_INTERFACE. 3929 // Fall through if (mods & mask) == bits, take the guard otherwise. 3930 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3931 ByteSize offset, const Type* type, BasicType bt) { 3932 // Branch around if the given klass has the given modifier bit set. 3933 // Like generate_guard, adds a new path onto the region. 3934 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3935 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3936 Node* mask = intcon(modifier_mask); 3937 Node* bits = intcon(modifier_bits); 3938 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3939 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3940 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3941 return generate_fair_guard(bol, region); 3942 } 3943 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3944 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3945 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 3946 } 3947 3948 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3949 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3950 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3951 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3952 } 3953 3954 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3955 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3956 } 3957 3958 //-------------------------inline_native_Class_query------------------- 3959 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3960 const Type* return_type = TypeInt::BOOL; 3961 Node* prim_return_value = top(); // what happens if it's a primitive class? 3962 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3963 bool expect_prim = false; // most of these guys expect to work on refs 3964 3965 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3966 3967 Node* mirror = argument(0); 3968 Node* obj = top(); 3969 3970 switch (id) { 3971 case vmIntrinsics::_isInstance: 3972 // nothing is an instance of a primitive type 3973 prim_return_value = intcon(0); 3974 obj = argument(1); 3975 break; 3976 case vmIntrinsics::_isHidden: 3977 prim_return_value = intcon(0); 3978 break; 3979 case vmIntrinsics::_getSuperclass: 3980 prim_return_value = null(); 3981 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3982 break; 3983 case vmIntrinsics::_getClassAccessFlags: 3984 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3985 return_type = TypeInt::CHAR; 3986 break; 3987 default: 3988 fatal_unexpected_iid(id); 3989 break; 3990 } 3991 3992 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3993 if (mirror_con == nullptr) return false; // cannot happen? 3994 3995 #ifndef PRODUCT 3996 if (C->print_intrinsics() || C->print_inlining()) { 3997 ciType* k = mirror_con->java_mirror_type(); 3998 if (k) { 3999 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 4000 k->print_name(); 4001 tty->cr(); 4002 } 4003 } 4004 #endif 4005 4006 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 4007 RegionNode* region = new RegionNode(PATH_LIMIT); 4008 record_for_igvn(region); 4009 PhiNode* phi = new PhiNode(region, return_type); 4010 4011 // The mirror will never be null of Reflection.getClassAccessFlags, however 4012 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4013 // if it is. See bug 4774291. 4014 4015 // For Reflection.getClassAccessFlags(), the null check occurs in 4016 // the wrong place; see inline_unsafe_access(), above, for a similar 4017 // situation. 4018 mirror = null_check(mirror); 4019 // If mirror or obj is dead, only null-path is taken. 4020 if (stopped()) return true; 4021 4022 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4023 4024 // Now load the mirror's klass metaobject, and null-check it. 4025 // Side-effects region with the control path if the klass is null. 4026 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4027 // If kls is null, we have a primitive mirror. 4028 phi->init_req(_prim_path, prim_return_value); 4029 if (stopped()) { set_result(region, phi); return true; } 4030 bool safe_for_replace = (region->in(_prim_path) == top()); 4031 4032 Node* p; // handy temp 4033 Node* null_ctl; 4034 4035 // Now that we have the non-null klass, we can perform the real query. 4036 // For constant classes, the query will constant-fold in LoadNode::Value. 4037 Node* query_value = top(); 4038 switch (id) { 4039 case vmIntrinsics::_isInstance: 4040 // nothing is an instance of a primitive type 4041 query_value = gen_instanceof(obj, kls, safe_for_replace); 4042 break; 4043 4044 case vmIntrinsics::_isHidden: 4045 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4046 if (generate_hidden_class_guard(kls, region) != nullptr) 4047 // A guard was added. If the guard is taken, it was an hidden class. 4048 phi->add_req(intcon(1)); 4049 // If we fall through, it's a plain class. 4050 query_value = intcon(0); 4051 break; 4052 4053 4054 case vmIntrinsics::_getSuperclass: 4055 // The rules here are somewhat unfortunate, but we can still do better 4056 // with random logic than with a JNI call. 4057 // Interfaces store null or Object as _super, but must report null. 4058 // Arrays store an intermediate super as _super, but must report Object. 4059 // Other types can report the actual _super. 4060 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4061 if (generate_interface_guard(kls, region) != nullptr) 4062 // A guard was added. If the guard is taken, it was an interface. 4063 phi->add_req(null()); 4064 if (generate_array_guard(kls, region) != nullptr) 4065 // A guard was added. If the guard is taken, it was an array. 4066 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4067 // If we fall through, it's a plain class. Get its _super. 4068 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4069 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4070 null_ctl = top(); 4071 kls = null_check_oop(kls, &null_ctl); 4072 if (null_ctl != top()) { 4073 // If the guard is taken, Object.superClass is null (both klass and mirror). 4074 region->add_req(null_ctl); 4075 phi ->add_req(null()); 4076 } 4077 if (!stopped()) { 4078 query_value = load_mirror_from_klass(kls); 4079 } 4080 break; 4081 4082 case vmIntrinsics::_getClassAccessFlags: 4083 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4084 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4085 break; 4086 4087 default: 4088 fatal_unexpected_iid(id); 4089 break; 4090 } 4091 4092 // Fall-through is the normal case of a query to a real class. 4093 phi->init_req(1, query_value); 4094 region->init_req(1, control()); 4095 4096 C->set_has_split_ifs(true); // Has chance for split-if optimization 4097 set_result(region, phi); 4098 return true; 4099 } 4100 4101 //-------------------------inline_Class_cast------------------- 4102 bool LibraryCallKit::inline_Class_cast() { 4103 Node* mirror = argument(0); // Class 4104 Node* obj = argument(1); 4105 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4106 if (mirror_con == nullptr) { 4107 return false; // dead path (mirror->is_top()). 4108 } 4109 if (obj == nullptr || obj->is_top()) { 4110 return false; // dead path 4111 } 4112 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4113 4114 // First, see if Class.cast() can be folded statically. 4115 // java_mirror_type() returns non-null for compile-time Class constants. 4116 ciType* tm = mirror_con->java_mirror_type(); 4117 if (tm != nullptr && tm->is_klass() && 4118 tp != nullptr) { 4119 if (!tp->is_loaded()) { 4120 // Don't use intrinsic when class is not loaded. 4121 return false; 4122 } else { 4123 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4124 if (static_res == Compile::SSC_always_true) { 4125 // isInstance() is true - fold the code. 4126 set_result(obj); 4127 return true; 4128 } else if (static_res == Compile::SSC_always_false) { 4129 // Don't use intrinsic, have to throw ClassCastException. 4130 // If the reference is null, the non-intrinsic bytecode will 4131 // be optimized appropriately. 4132 return false; 4133 } 4134 } 4135 } 4136 4137 // Bailout intrinsic and do normal inlining if exception path is frequent. 4138 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4139 return false; 4140 } 4141 4142 // Generate dynamic checks. 4143 // Class.cast() is java implementation of _checkcast bytecode. 4144 // Do checkcast (Parse::do_checkcast()) optimizations here. 4145 4146 mirror = null_check(mirror); 4147 // If mirror is dead, only null-path is taken. 4148 if (stopped()) { 4149 return true; 4150 } 4151 4152 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4153 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4154 RegionNode* region = new RegionNode(PATH_LIMIT); 4155 record_for_igvn(region); 4156 4157 // Now load the mirror's klass metaobject, and null-check it. 4158 // If kls is null, we have a primitive mirror and 4159 // nothing is an instance of a primitive type. 4160 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4161 4162 Node* res = top(); 4163 if (!stopped()) { 4164 Node* bad_type_ctrl = top(); 4165 // Do checkcast optimizations. 4166 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4167 region->init_req(_bad_type_path, bad_type_ctrl); 4168 } 4169 if (region->in(_prim_path) != top() || 4170 region->in(_bad_type_path) != top()) { 4171 // Let Interpreter throw ClassCastException. 4172 PreserveJVMState pjvms(this); 4173 set_control(_gvn.transform(region)); 4174 uncommon_trap(Deoptimization::Reason_intrinsic, 4175 Deoptimization::Action_maybe_recompile); 4176 } 4177 if (!stopped()) { 4178 set_result(res); 4179 } 4180 return true; 4181 } 4182 4183 4184 //--------------------------inline_native_subtype_check------------------------ 4185 // This intrinsic takes the JNI calls out of the heart of 4186 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4187 bool LibraryCallKit::inline_native_subtype_check() { 4188 // Pull both arguments off the stack. 4189 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4190 args[0] = argument(0); 4191 args[1] = argument(1); 4192 Node* klasses[2]; // corresponding Klasses: superk, subk 4193 klasses[0] = klasses[1] = top(); 4194 4195 enum { 4196 // A full decision tree on {superc is prim, subc is prim}: 4197 _prim_0_path = 1, // {P,N} => false 4198 // {P,P} & superc!=subc => false 4199 _prim_same_path, // {P,P} & superc==subc => true 4200 _prim_1_path, // {N,P} => false 4201 _ref_subtype_path, // {N,N} & subtype check wins => true 4202 _both_ref_path, // {N,N} & subtype check loses => false 4203 PATH_LIMIT 4204 }; 4205 4206 RegionNode* region = new RegionNode(PATH_LIMIT); 4207 Node* phi = new PhiNode(region, TypeInt::BOOL); 4208 record_for_igvn(region); 4209 4210 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4211 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4212 int class_klass_offset = java_lang_Class::klass_offset(); 4213 4214 // First null-check both mirrors and load each mirror's klass metaobject. 4215 int which_arg; 4216 for (which_arg = 0; which_arg <= 1; which_arg++) { 4217 Node* arg = args[which_arg]; 4218 arg = null_check(arg); 4219 if (stopped()) break; 4220 args[which_arg] = arg; 4221 4222 Node* p = basic_plus_adr(arg, class_klass_offset); 4223 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4224 klasses[which_arg] = _gvn.transform(kls); 4225 } 4226 4227 // Having loaded both klasses, test each for null. 4228 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4229 for (which_arg = 0; which_arg <= 1; which_arg++) { 4230 Node* kls = klasses[which_arg]; 4231 Node* null_ctl = top(); 4232 kls = null_check_oop(kls, &null_ctl, never_see_null); 4233 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4234 region->init_req(prim_path, null_ctl); 4235 if (stopped()) break; 4236 klasses[which_arg] = kls; 4237 } 4238 4239 if (!stopped()) { 4240 // now we have two reference types, in klasses[0..1] 4241 Node* subk = klasses[1]; // the argument to isAssignableFrom 4242 Node* superk = klasses[0]; // the receiver 4243 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4244 // now we have a successful reference subtype check 4245 region->set_req(_ref_subtype_path, control()); 4246 } 4247 4248 // If both operands are primitive (both klasses null), then 4249 // we must return true when they are identical primitives. 4250 // It is convenient to test this after the first null klass check. 4251 set_control(region->in(_prim_0_path)); // go back to first null check 4252 if (!stopped()) { 4253 // Since superc is primitive, make a guard for the superc==subc case. 4254 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4255 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4256 generate_guard(bol_eq, region, PROB_FAIR); 4257 if (region->req() == PATH_LIMIT+1) { 4258 // A guard was added. If the added guard is taken, superc==subc. 4259 region->swap_edges(PATH_LIMIT, _prim_same_path); 4260 region->del_req(PATH_LIMIT); 4261 } 4262 region->set_req(_prim_0_path, control()); // Not equal after all. 4263 } 4264 4265 // these are the only paths that produce 'true': 4266 phi->set_req(_prim_same_path, intcon(1)); 4267 phi->set_req(_ref_subtype_path, intcon(1)); 4268 4269 // pull together the cases: 4270 assert(region->req() == PATH_LIMIT, "sane region"); 4271 for (uint i = 1; i < region->req(); i++) { 4272 Node* ctl = region->in(i); 4273 if (ctl == nullptr || ctl == top()) { 4274 region->set_req(i, top()); 4275 phi ->set_req(i, top()); 4276 } else if (phi->in(i) == nullptr) { 4277 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4278 } 4279 } 4280 4281 set_control(_gvn.transform(region)); 4282 set_result(_gvn.transform(phi)); 4283 return true; 4284 } 4285 4286 //---------------------generate_array_guard_common------------------------ 4287 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4288 bool obj_array, bool not_array, Node** obj) { 4289 4290 if (stopped()) { 4291 return nullptr; 4292 } 4293 4294 // If obj_array/non_array==false/false: 4295 // Branch around if the given klass is in fact an array (either obj or prim). 4296 // If obj_array/non_array==false/true: 4297 // Branch around if the given klass is not an array klass of any kind. 4298 // If obj_array/non_array==true/true: 4299 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4300 // If obj_array/non_array==true/false: 4301 // Branch around if the kls is an oop array (Object[] or subtype) 4302 // 4303 // Like generate_guard, adds a new path onto the region. 4304 jint layout_con = 0; 4305 Node* layout_val = get_layout_helper(kls, layout_con); 4306 if (layout_val == nullptr) { 4307 bool query = (obj_array 4308 ? Klass::layout_helper_is_objArray(layout_con) 4309 : Klass::layout_helper_is_array(layout_con)); 4310 if (query == not_array) { 4311 return nullptr; // never a branch 4312 } else { // always a branch 4313 Node* always_branch = control(); 4314 if (region != nullptr) 4315 region->add_req(always_branch); 4316 set_control(top()); 4317 return always_branch; 4318 } 4319 } 4320 // Now test the correct condition. 4321 jint nval = (obj_array 4322 ? (jint)(Klass::_lh_array_tag_type_value 4323 << Klass::_lh_array_tag_shift) 4324 : Klass::_lh_neutral_value); 4325 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4326 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4327 // invert the test if we are looking for a non-array 4328 if (not_array) btest = BoolTest(btest).negate(); 4329 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4330 Node* ctrl = generate_fair_guard(bol, region); 4331 Node* is_array_ctrl = not_array ? control() : ctrl; 4332 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4333 // Keep track of the fact that 'obj' is an array to prevent 4334 // array specific accesses from floating above the guard. 4335 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4336 } 4337 return ctrl; 4338 } 4339 4340 4341 //-----------------------inline_native_newArray-------------------------- 4342 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4343 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4344 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4345 Node* mirror; 4346 Node* count_val; 4347 if (uninitialized) { 4348 null_check_receiver(); 4349 mirror = argument(1); 4350 count_val = argument(2); 4351 } else { 4352 mirror = argument(0); 4353 count_val = argument(1); 4354 } 4355 4356 mirror = null_check(mirror); 4357 // If mirror or obj is dead, only null-path is taken. 4358 if (stopped()) return true; 4359 4360 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4361 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4362 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4363 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4364 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4365 4366 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4367 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4368 result_reg, _slow_path); 4369 Node* normal_ctl = control(); 4370 Node* no_array_ctl = result_reg->in(_slow_path); 4371 4372 // Generate code for the slow case. We make a call to newArray(). 4373 set_control(no_array_ctl); 4374 if (!stopped()) { 4375 // Either the input type is void.class, or else the 4376 // array klass has not yet been cached. Either the 4377 // ensuing call will throw an exception, or else it 4378 // will cache the array klass for next time. 4379 PreserveJVMState pjvms(this); 4380 CallJavaNode* slow_call = nullptr; 4381 if (uninitialized) { 4382 // Generate optimized virtual call (holder class 'Unsafe' is final) 4383 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4384 } else { 4385 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4386 } 4387 Node* slow_result = set_results_for_java_call(slow_call); 4388 // this->control() comes from set_results_for_java_call 4389 result_reg->set_req(_slow_path, control()); 4390 result_val->set_req(_slow_path, slow_result); 4391 result_io ->set_req(_slow_path, i_o()); 4392 result_mem->set_req(_slow_path, reset_memory()); 4393 } 4394 4395 set_control(normal_ctl); 4396 if (!stopped()) { 4397 // Normal case: The array type has been cached in the java.lang.Class. 4398 // The following call works fine even if the array type is polymorphic. 4399 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4400 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4401 result_reg->init_req(_normal_path, control()); 4402 result_val->init_req(_normal_path, obj); 4403 result_io ->init_req(_normal_path, i_o()); 4404 result_mem->init_req(_normal_path, reset_memory()); 4405 4406 if (uninitialized) { 4407 // Mark the allocation so that zeroing is skipped 4408 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4409 alloc->maybe_set_complete(&_gvn); 4410 } 4411 } 4412 4413 // Return the combined state. 4414 set_i_o( _gvn.transform(result_io) ); 4415 set_all_memory( _gvn.transform(result_mem)); 4416 4417 C->set_has_split_ifs(true); // Has chance for split-if optimization 4418 set_result(result_reg, result_val); 4419 return true; 4420 } 4421 4422 //----------------------inline_native_getLength-------------------------- 4423 // public static native int java.lang.reflect.Array.getLength(Object array); 4424 bool LibraryCallKit::inline_native_getLength() { 4425 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4426 4427 Node* array = null_check(argument(0)); 4428 // If array is dead, only null-path is taken. 4429 if (stopped()) return true; 4430 4431 // Deoptimize if it is a non-array. 4432 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4433 4434 if (non_array != nullptr) { 4435 PreserveJVMState pjvms(this); 4436 set_control(non_array); 4437 uncommon_trap(Deoptimization::Reason_intrinsic, 4438 Deoptimization::Action_maybe_recompile); 4439 } 4440 4441 // If control is dead, only non-array-path is taken. 4442 if (stopped()) return true; 4443 4444 // The works fine even if the array type is polymorphic. 4445 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4446 Node* result = load_array_length(array); 4447 4448 C->set_has_split_ifs(true); // Has chance for split-if optimization 4449 set_result(result); 4450 return true; 4451 } 4452 4453 //------------------------inline_array_copyOf---------------------------- 4454 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4455 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4456 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4457 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4458 4459 // Get the arguments. 4460 Node* original = argument(0); 4461 Node* start = is_copyOfRange? argument(1): intcon(0); 4462 Node* end = is_copyOfRange? argument(2): argument(1); 4463 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4464 4465 Node* newcopy = nullptr; 4466 4467 // Set the original stack and the reexecute bit for the interpreter to reexecute 4468 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4469 { PreserveReexecuteState preexecs(this); 4470 jvms()->set_should_reexecute(true); 4471 4472 array_type_mirror = null_check(array_type_mirror); 4473 original = null_check(original); 4474 4475 // Check if a null path was taken unconditionally. 4476 if (stopped()) return true; 4477 4478 Node* orig_length = load_array_length(original); 4479 4480 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4481 klass_node = null_check(klass_node); 4482 4483 RegionNode* bailout = new RegionNode(1); 4484 record_for_igvn(bailout); 4485 4486 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4487 // Bail out if that is so. 4488 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4489 if (not_objArray != nullptr) { 4490 // Improve the klass node's type from the new optimistic assumption: 4491 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4492 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4493 Node* cast = new CastPPNode(control(), klass_node, akls); 4494 klass_node = _gvn.transform(cast); 4495 } 4496 4497 // Bail out if either start or end is negative. 4498 generate_negative_guard(start, bailout, &start); 4499 generate_negative_guard(end, bailout, &end); 4500 4501 Node* length = end; 4502 if (_gvn.type(start) != TypeInt::ZERO) { 4503 length = _gvn.transform(new SubINode(end, start)); 4504 } 4505 4506 // Bail out if length is negative (i.e., if start > end). 4507 // Without this the new_array would throw 4508 // NegativeArraySizeException but IllegalArgumentException is what 4509 // should be thrown 4510 generate_negative_guard(length, bailout, &length); 4511 4512 // Bail out if start is larger than the original length 4513 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4514 generate_negative_guard(orig_tail, bailout, &orig_tail); 4515 4516 if (bailout->req() > 1) { 4517 PreserveJVMState pjvms(this); 4518 set_control(_gvn.transform(bailout)); 4519 uncommon_trap(Deoptimization::Reason_intrinsic, 4520 Deoptimization::Action_maybe_recompile); 4521 } 4522 4523 if (!stopped()) { 4524 // How many elements will we copy from the original? 4525 // The answer is MinI(orig_tail, length). 4526 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4527 4528 // Generate a direct call to the right arraycopy function(s). 4529 // We know the copy is disjoint but we might not know if the 4530 // oop stores need checking. 4531 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4532 // This will fail a store-check if x contains any non-nulls. 4533 4534 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4535 // loads/stores but it is legal only if we're sure the 4536 // Arrays.copyOf would succeed. So we need all input arguments 4537 // to the copyOf to be validated, including that the copy to the 4538 // new array won't trigger an ArrayStoreException. That subtype 4539 // check can be optimized if we know something on the type of 4540 // the input array from type speculation. 4541 if (_gvn.type(klass_node)->singleton()) { 4542 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4543 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4544 4545 int test = C->static_subtype_check(superk, subk); 4546 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4547 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4548 if (t_original->speculative_type() != nullptr) { 4549 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4550 } 4551 } 4552 } 4553 4554 bool validated = false; 4555 // Reason_class_check rather than Reason_intrinsic because we 4556 // want to intrinsify even if this traps. 4557 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4558 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4559 4560 if (not_subtype_ctrl != top()) { 4561 PreserveJVMState pjvms(this); 4562 set_control(not_subtype_ctrl); 4563 uncommon_trap(Deoptimization::Reason_class_check, 4564 Deoptimization::Action_make_not_entrant); 4565 assert(stopped(), "Should be stopped"); 4566 } 4567 validated = true; 4568 } 4569 4570 if (!stopped()) { 4571 newcopy = new_array(klass_node, length, 0); // no arguments to push 4572 4573 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4574 load_object_klass(original), klass_node); 4575 if (!is_copyOfRange) { 4576 ac->set_copyof(validated); 4577 } else { 4578 ac->set_copyofrange(validated); 4579 } 4580 Node* n = _gvn.transform(ac); 4581 if (n == ac) { 4582 ac->connect_outputs(this); 4583 } else { 4584 assert(validated, "shouldn't transform if all arguments not validated"); 4585 set_all_memory(n); 4586 } 4587 } 4588 } 4589 } // original reexecute is set back here 4590 4591 C->set_has_split_ifs(true); // Has chance for split-if optimization 4592 if (!stopped()) { 4593 set_result(newcopy); 4594 } 4595 return true; 4596 } 4597 4598 4599 //----------------------generate_virtual_guard--------------------------- 4600 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4601 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4602 RegionNode* slow_region) { 4603 ciMethod* method = callee(); 4604 int vtable_index = method->vtable_index(); 4605 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4606 "bad index %d", vtable_index); 4607 // Get the Method* out of the appropriate vtable entry. 4608 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4609 vtable_index*vtableEntry::size_in_bytes() + 4610 in_bytes(vtableEntry::method_offset()); 4611 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4612 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4613 4614 // Compare the target method with the expected method (e.g., Object.hashCode). 4615 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4616 4617 Node* native_call = makecon(native_call_addr); 4618 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4619 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4620 4621 return generate_slow_guard(test_native, slow_region); 4622 } 4623 4624 //-----------------------generate_method_call---------------------------- 4625 // Use generate_method_call to make a slow-call to the real 4626 // method if the fast path fails. An alternative would be to 4627 // use a stub like OptoRuntime::slow_arraycopy_Java. 4628 // This only works for expanding the current library call, 4629 // not another intrinsic. (E.g., don't use this for making an 4630 // arraycopy call inside of the copyOf intrinsic.) 4631 CallJavaNode* 4632 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4633 // When compiling the intrinsic method itself, do not use this technique. 4634 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4635 4636 ciMethod* method = callee(); 4637 // ensure the JVMS we have will be correct for this call 4638 guarantee(method_id == method->intrinsic_id(), "must match"); 4639 4640 const TypeFunc* tf = TypeFunc::make(method); 4641 if (res_not_null) { 4642 assert(tf->return_type() == T_OBJECT, ""); 4643 const TypeTuple* range = tf->range(); 4644 const Type** fields = TypeTuple::fields(range->cnt()); 4645 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4646 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4647 tf = TypeFunc::make(tf->domain(), new_range); 4648 } 4649 CallJavaNode* slow_call; 4650 if (is_static) { 4651 assert(!is_virtual, ""); 4652 slow_call = new CallStaticJavaNode(C, tf, 4653 SharedRuntime::get_resolve_static_call_stub(), method); 4654 } else if (is_virtual) { 4655 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4656 int vtable_index = Method::invalid_vtable_index; 4657 if (UseInlineCaches) { 4658 // Suppress the vtable call 4659 } else { 4660 // hashCode and clone are not a miranda methods, 4661 // so the vtable index is fixed. 4662 // No need to use the linkResolver to get it. 4663 vtable_index = method->vtable_index(); 4664 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4665 "bad index %d", vtable_index); 4666 } 4667 slow_call = new CallDynamicJavaNode(tf, 4668 SharedRuntime::get_resolve_virtual_call_stub(), 4669 method, vtable_index); 4670 } else { // neither virtual nor static: opt_virtual 4671 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4672 slow_call = new CallStaticJavaNode(C, tf, 4673 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4674 slow_call->set_optimized_virtual(true); 4675 } 4676 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4677 // To be able to issue a direct call (optimized virtual or virtual) 4678 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4679 // about the method being invoked should be attached to the call site to 4680 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4681 slow_call->set_override_symbolic_info(true); 4682 } 4683 set_arguments_for_java_call(slow_call); 4684 set_edges_for_java_call(slow_call); 4685 return slow_call; 4686 } 4687 4688 4689 /** 4690 * Build special case code for calls to hashCode on an object. This call may 4691 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4692 * slightly different code. 4693 */ 4694 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4695 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4696 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4697 4698 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4699 4700 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4701 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4702 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4703 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4704 Node* obj = nullptr; 4705 if (!is_static) { 4706 // Check for hashing null object 4707 obj = null_check_receiver(); 4708 if (stopped()) return true; // unconditionally null 4709 result_reg->init_req(_null_path, top()); 4710 result_val->init_req(_null_path, top()); 4711 } else { 4712 // Do a null check, and return zero if null. 4713 // System.identityHashCode(null) == 0 4714 obj = argument(0); 4715 Node* null_ctl = top(); 4716 obj = null_check_oop(obj, &null_ctl); 4717 result_reg->init_req(_null_path, null_ctl); 4718 result_val->init_req(_null_path, _gvn.intcon(0)); 4719 } 4720 4721 // Unconditionally null? Then return right away. 4722 if (stopped()) { 4723 set_control( result_reg->in(_null_path)); 4724 if (!stopped()) 4725 set_result(result_val->in(_null_path)); 4726 return true; 4727 } 4728 4729 // We only go to the fast case code if we pass a number of guards. The 4730 // paths which do not pass are accumulated in the slow_region. 4731 RegionNode* slow_region = new RegionNode(1); 4732 record_for_igvn(slow_region); 4733 4734 // If this is a virtual call, we generate a funny guard. We pull out 4735 // the vtable entry corresponding to hashCode() from the target object. 4736 // If the target method which we are calling happens to be the native 4737 // Object hashCode() method, we pass the guard. We do not need this 4738 // guard for non-virtual calls -- the caller is known to be the native 4739 // Object hashCode(). 4740 if (is_virtual) { 4741 // After null check, get the object's klass. 4742 Node* obj_klass = load_object_klass(obj); 4743 generate_virtual_guard(obj_klass, slow_region); 4744 } 4745 4746 // Get the header out of the object, use LoadMarkNode when available 4747 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4748 // The control of the load must be null. Otherwise, the load can move before 4749 // the null check after castPP removal. 4750 Node* no_ctrl = nullptr; 4751 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4752 4753 if (!UseObjectMonitorTable) { 4754 // Test the header to see if it is safe to read w.r.t. locking. 4755 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4756 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4757 if (LockingMode == LM_LIGHTWEIGHT) { 4758 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4759 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4760 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4761 4762 generate_slow_guard(test_monitor, slow_region); 4763 } else { 4764 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4765 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4766 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4767 4768 generate_slow_guard(test_not_unlocked, slow_region); 4769 } 4770 } 4771 4772 // Get the hash value and check to see that it has been properly assigned. 4773 // We depend on hash_mask being at most 32 bits and avoid the use of 4774 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4775 // vm: see markWord.hpp. 4776 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4777 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4778 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4779 // This hack lets the hash bits live anywhere in the mark object now, as long 4780 // as the shift drops the relevant bits into the low 32 bits. Note that 4781 // Java spec says that HashCode is an int so there's no point in capturing 4782 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4783 hshifted_header = ConvX2I(hshifted_header); 4784 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4785 4786 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4787 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4788 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4789 4790 generate_slow_guard(test_assigned, slow_region); 4791 4792 Node* init_mem = reset_memory(); 4793 // fill in the rest of the null path: 4794 result_io ->init_req(_null_path, i_o()); 4795 result_mem->init_req(_null_path, init_mem); 4796 4797 result_val->init_req(_fast_path, hash_val); 4798 result_reg->init_req(_fast_path, control()); 4799 result_io ->init_req(_fast_path, i_o()); 4800 result_mem->init_req(_fast_path, init_mem); 4801 4802 // Generate code for the slow case. We make a call to hashCode(). 4803 set_control(_gvn.transform(slow_region)); 4804 if (!stopped()) { 4805 // No need for PreserveJVMState, because we're using up the present state. 4806 set_all_memory(init_mem); 4807 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4808 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4809 Node* slow_result = set_results_for_java_call(slow_call); 4810 // this->control() comes from set_results_for_java_call 4811 result_reg->init_req(_slow_path, control()); 4812 result_val->init_req(_slow_path, slow_result); 4813 result_io ->set_req(_slow_path, i_o()); 4814 result_mem ->set_req(_slow_path, reset_memory()); 4815 } 4816 4817 // Return the combined state. 4818 set_i_o( _gvn.transform(result_io) ); 4819 set_all_memory( _gvn.transform(result_mem)); 4820 4821 set_result(result_reg, result_val); 4822 return true; 4823 } 4824 4825 //---------------------------inline_native_getClass---------------------------- 4826 // public final native Class<?> java.lang.Object.getClass(); 4827 // 4828 // Build special case code for calls to getClass on an object. 4829 bool LibraryCallKit::inline_native_getClass() { 4830 Node* obj = null_check_receiver(); 4831 if (stopped()) return true; 4832 set_result(load_mirror_from_klass(load_object_klass(obj))); 4833 return true; 4834 } 4835 4836 //-----------------inline_native_Reflection_getCallerClass--------------------- 4837 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4838 // 4839 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4840 // 4841 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4842 // in that it must skip particular security frames and checks for 4843 // caller sensitive methods. 4844 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4845 #ifndef PRODUCT 4846 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4847 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4848 } 4849 #endif 4850 4851 if (!jvms()->has_method()) { 4852 #ifndef PRODUCT 4853 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4854 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4855 } 4856 #endif 4857 return false; 4858 } 4859 4860 // Walk back up the JVM state to find the caller at the required 4861 // depth. 4862 JVMState* caller_jvms = jvms(); 4863 4864 // Cf. JVM_GetCallerClass 4865 // NOTE: Start the loop at depth 1 because the current JVM state does 4866 // not include the Reflection.getCallerClass() frame. 4867 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4868 ciMethod* m = caller_jvms->method(); 4869 switch (n) { 4870 case 0: 4871 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4872 break; 4873 case 1: 4874 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4875 if (!m->caller_sensitive()) { 4876 #ifndef PRODUCT 4877 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4878 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4879 } 4880 #endif 4881 return false; // bail-out; let JVM_GetCallerClass do the work 4882 } 4883 break; 4884 default: 4885 if (!m->is_ignored_by_security_stack_walk()) { 4886 // We have reached the desired frame; return the holder class. 4887 // Acquire method holder as java.lang.Class and push as constant. 4888 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4889 ciInstance* caller_mirror = caller_klass->java_mirror(); 4890 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4891 4892 #ifndef PRODUCT 4893 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4894 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4895 tty->print_cr(" JVM state at this point:"); 4896 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4897 ciMethod* m = jvms()->of_depth(i)->method(); 4898 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4899 } 4900 } 4901 #endif 4902 return true; 4903 } 4904 break; 4905 } 4906 } 4907 4908 #ifndef PRODUCT 4909 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4910 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4911 tty->print_cr(" JVM state at this point:"); 4912 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4913 ciMethod* m = jvms()->of_depth(i)->method(); 4914 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4915 } 4916 } 4917 #endif 4918 4919 return false; // bail-out; let JVM_GetCallerClass do the work 4920 } 4921 4922 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4923 Node* arg = argument(0); 4924 Node* result = nullptr; 4925 4926 switch (id) { 4927 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4928 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4929 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4930 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4931 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4932 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4933 4934 case vmIntrinsics::_doubleToLongBits: { 4935 // two paths (plus control) merge in a wood 4936 RegionNode *r = new RegionNode(3); 4937 Node *phi = new PhiNode(r, TypeLong::LONG); 4938 4939 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4940 // Build the boolean node 4941 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4942 4943 // Branch either way. 4944 // NaN case is less traveled, which makes all the difference. 4945 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4946 Node *opt_isnan = _gvn.transform(ifisnan); 4947 assert( opt_isnan->is_If(), "Expect an IfNode"); 4948 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4949 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4950 4951 set_control(iftrue); 4952 4953 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4954 Node *slow_result = longcon(nan_bits); // return NaN 4955 phi->init_req(1, _gvn.transform( slow_result )); 4956 r->init_req(1, iftrue); 4957 4958 // Else fall through 4959 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4960 set_control(iffalse); 4961 4962 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4963 r->init_req(2, iffalse); 4964 4965 // Post merge 4966 set_control(_gvn.transform(r)); 4967 record_for_igvn(r); 4968 4969 C->set_has_split_ifs(true); // Has chance for split-if optimization 4970 result = phi; 4971 assert(result->bottom_type()->isa_long(), "must be"); 4972 break; 4973 } 4974 4975 case vmIntrinsics::_floatToIntBits: { 4976 // two paths (plus control) merge in a wood 4977 RegionNode *r = new RegionNode(3); 4978 Node *phi = new PhiNode(r, TypeInt::INT); 4979 4980 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4981 // Build the boolean node 4982 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4983 4984 // Branch either way. 4985 // NaN case is less traveled, which makes all the difference. 4986 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4987 Node *opt_isnan = _gvn.transform(ifisnan); 4988 assert( opt_isnan->is_If(), "Expect an IfNode"); 4989 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4990 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4991 4992 set_control(iftrue); 4993 4994 static const jint nan_bits = 0x7fc00000; 4995 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4996 phi->init_req(1, _gvn.transform( slow_result )); 4997 r->init_req(1, iftrue); 4998 4999 // Else fall through 5000 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5001 set_control(iffalse); 5002 5003 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 5004 r->init_req(2, iffalse); 5005 5006 // Post merge 5007 set_control(_gvn.transform(r)); 5008 record_for_igvn(r); 5009 5010 C->set_has_split_ifs(true); // Has chance for split-if optimization 5011 result = phi; 5012 assert(result->bottom_type()->isa_int(), "must be"); 5013 break; 5014 } 5015 5016 default: 5017 fatal_unexpected_iid(id); 5018 break; 5019 } 5020 set_result(_gvn.transform(result)); 5021 return true; 5022 } 5023 5024 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5025 Node* arg = argument(0); 5026 Node* result = nullptr; 5027 5028 switch (id) { 5029 case vmIntrinsics::_floatIsInfinite: 5030 result = new IsInfiniteFNode(arg); 5031 break; 5032 case vmIntrinsics::_floatIsFinite: 5033 result = new IsFiniteFNode(arg); 5034 break; 5035 case vmIntrinsics::_doubleIsInfinite: 5036 result = new IsInfiniteDNode(arg); 5037 break; 5038 case vmIntrinsics::_doubleIsFinite: 5039 result = new IsFiniteDNode(arg); 5040 break; 5041 default: 5042 fatal_unexpected_iid(id); 5043 break; 5044 } 5045 set_result(_gvn.transform(result)); 5046 return true; 5047 } 5048 5049 //----------------------inline_unsafe_copyMemory------------------------- 5050 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5051 5052 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5053 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5054 const Type* base_t = gvn.type(base); 5055 5056 bool in_native = (base_t == TypePtr::NULL_PTR); 5057 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5058 bool is_mixed = !in_heap && !in_native; 5059 5060 if (is_mixed) { 5061 return true; // mixed accesses can touch both on-heap and off-heap memory 5062 } 5063 if (in_heap) { 5064 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5065 if (!is_prim_array) { 5066 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5067 // there's not enough type information available to determine proper memory slice for it. 5068 return true; 5069 } 5070 } 5071 return false; 5072 } 5073 5074 bool LibraryCallKit::inline_unsafe_copyMemory() { 5075 if (callee()->is_static()) return false; // caller must have the capability! 5076 null_check_receiver(); // null-check receiver 5077 if (stopped()) return true; 5078 5079 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5080 5081 Node* src_base = argument(1); // type: oop 5082 Node* src_off = ConvL2X(argument(2)); // type: long 5083 Node* dst_base = argument(4); // type: oop 5084 Node* dst_off = ConvL2X(argument(5)); // type: long 5085 Node* size = ConvL2X(argument(7)); // type: long 5086 5087 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5088 "fieldOffset must be byte-scaled"); 5089 5090 Node* src_addr = make_unsafe_address(src_base, src_off); 5091 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5092 5093 Node* thread = _gvn.transform(new ThreadLocalNode()); 5094 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5095 BasicType doing_unsafe_access_bt = T_BYTE; 5096 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5097 5098 // update volatile field 5099 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5100 5101 int flags = RC_LEAF | RC_NO_FP; 5102 5103 const TypePtr* dst_type = TypePtr::BOTTOM; 5104 5105 // Adjust memory effects of the runtime call based on input values. 5106 if (!has_wide_mem(_gvn, src_addr, src_base) && 5107 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5108 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5109 5110 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5111 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5112 flags |= RC_NARROW_MEM; // narrow in memory 5113 } 5114 } 5115 5116 // Call it. Note that the length argument is not scaled. 5117 make_runtime_call(flags, 5118 OptoRuntime::fast_arraycopy_Type(), 5119 StubRoutines::unsafe_arraycopy(), 5120 "unsafe_arraycopy", 5121 dst_type, 5122 src_addr, dst_addr, size XTOP); 5123 5124 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5125 5126 return true; 5127 } 5128 5129 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5130 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5131 bool LibraryCallKit::inline_unsafe_setMemory() { 5132 if (callee()->is_static()) return false; // caller must have the capability! 5133 null_check_receiver(); // null-check receiver 5134 if (stopped()) return true; 5135 5136 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5137 5138 Node* dst_base = argument(1); // type: oop 5139 Node* dst_off = ConvL2X(argument(2)); // type: long 5140 Node* size = ConvL2X(argument(4)); // type: long 5141 Node* byte = argument(6); // type: byte 5142 5143 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5144 "fieldOffset must be byte-scaled"); 5145 5146 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5147 5148 Node* thread = _gvn.transform(new ThreadLocalNode()); 5149 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5150 BasicType doing_unsafe_access_bt = T_BYTE; 5151 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5152 5153 // update volatile field 5154 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5155 5156 int flags = RC_LEAF | RC_NO_FP; 5157 5158 const TypePtr* dst_type = TypePtr::BOTTOM; 5159 5160 // Adjust memory effects of the runtime call based on input values. 5161 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5162 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5163 5164 flags |= RC_NARROW_MEM; // narrow in memory 5165 } 5166 5167 // Call it. Note that the length argument is not scaled. 5168 make_runtime_call(flags, 5169 OptoRuntime::unsafe_setmemory_Type(), 5170 StubRoutines::unsafe_setmemory(), 5171 "unsafe_setmemory", 5172 dst_type, 5173 dst_addr, size XTOP, byte); 5174 5175 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5176 5177 return true; 5178 } 5179 5180 #undef XTOP 5181 5182 //------------------------clone_coping----------------------------------- 5183 // Helper function for inline_native_clone. 5184 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5185 assert(obj_size != nullptr, ""); 5186 Node* raw_obj = alloc_obj->in(1); 5187 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5188 5189 AllocateNode* alloc = nullptr; 5190 if (ReduceBulkZeroing && 5191 // If we are implementing an array clone without knowing its source type 5192 // (can happen when compiling the array-guarded branch of a reflective 5193 // Object.clone() invocation), initialize the array within the allocation. 5194 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5195 // to a runtime clone call that assumes fully initialized source arrays. 5196 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5197 // We will be completely responsible for initializing this object - 5198 // mark Initialize node as complete. 5199 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5200 // The object was just allocated - there should be no any stores! 5201 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5202 // Mark as complete_with_arraycopy so that on AllocateNode 5203 // expansion, we know this AllocateNode is initialized by an array 5204 // copy and a StoreStore barrier exists after the array copy. 5205 alloc->initialization()->set_complete_with_arraycopy(); 5206 } 5207 5208 Node* size = _gvn.transform(obj_size); 5209 access_clone(obj, alloc_obj, size, is_array); 5210 5211 // Do not let reads from the cloned object float above the arraycopy. 5212 if (alloc != nullptr) { 5213 // Do not let stores that initialize this object be reordered with 5214 // a subsequent store that would make this object accessible by 5215 // other threads. 5216 // Record what AllocateNode this StoreStore protects so that 5217 // escape analysis can go from the MemBarStoreStoreNode to the 5218 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5219 // based on the escape status of the AllocateNode. 5220 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5221 } else { 5222 insert_mem_bar(Op_MemBarCPUOrder); 5223 } 5224 } 5225 5226 //------------------------inline_native_clone---------------------------- 5227 // protected native Object java.lang.Object.clone(); 5228 // 5229 // Here are the simple edge cases: 5230 // null receiver => normal trap 5231 // virtual and clone was overridden => slow path to out-of-line clone 5232 // not cloneable or finalizer => slow path to out-of-line Object.clone 5233 // 5234 // The general case has two steps, allocation and copying. 5235 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5236 // 5237 // Copying also has two cases, oop arrays and everything else. 5238 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5239 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5240 // 5241 // These steps fold up nicely if and when the cloned object's klass 5242 // can be sharply typed as an object array, a type array, or an instance. 5243 // 5244 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5245 PhiNode* result_val; 5246 5247 // Set the reexecute bit for the interpreter to reexecute 5248 // the bytecode that invokes Object.clone if deoptimization happens. 5249 { PreserveReexecuteState preexecs(this); 5250 jvms()->set_should_reexecute(true); 5251 5252 Node* obj = null_check_receiver(); 5253 if (stopped()) return true; 5254 5255 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5256 5257 // If we are going to clone an instance, we need its exact type to 5258 // know the number and types of fields to convert the clone to 5259 // loads/stores. Maybe a speculative type can help us. 5260 if (!obj_type->klass_is_exact() && 5261 obj_type->speculative_type() != nullptr && 5262 obj_type->speculative_type()->is_instance_klass()) { 5263 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5264 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5265 !spec_ik->has_injected_fields()) { 5266 if (!obj_type->isa_instptr() || 5267 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5268 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5269 } 5270 } 5271 } 5272 5273 // Conservatively insert a memory barrier on all memory slices. 5274 // Do not let writes into the original float below the clone. 5275 insert_mem_bar(Op_MemBarCPUOrder); 5276 5277 // paths into result_reg: 5278 enum { 5279 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5280 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5281 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5282 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5283 PATH_LIMIT 5284 }; 5285 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5286 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5287 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5288 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5289 record_for_igvn(result_reg); 5290 5291 Node* obj_klass = load_object_klass(obj); 5292 Node* array_obj = obj; 5293 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5294 if (array_ctl != nullptr) { 5295 // It's an array. 5296 PreserveJVMState pjvms(this); 5297 set_control(array_ctl); 5298 Node* obj_length = load_array_length(array_obj); 5299 Node* array_size = nullptr; // Size of the array without object alignment padding. 5300 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5301 5302 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5303 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5304 // If it is an oop array, it requires very special treatment, 5305 // because gc barriers are required when accessing the array. 5306 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5307 if (is_obja != nullptr) { 5308 PreserveJVMState pjvms2(this); 5309 set_control(is_obja); 5310 // Generate a direct call to the right arraycopy function(s). 5311 // Clones are always tightly coupled. 5312 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5313 ac->set_clone_oop_array(); 5314 Node* n = _gvn.transform(ac); 5315 assert(n == ac, "cannot disappear"); 5316 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5317 5318 result_reg->init_req(_objArray_path, control()); 5319 result_val->init_req(_objArray_path, alloc_obj); 5320 result_i_o ->set_req(_objArray_path, i_o()); 5321 result_mem ->set_req(_objArray_path, reset_memory()); 5322 } 5323 } 5324 // Otherwise, there are no barriers to worry about. 5325 // (We can dispense with card marks if we know the allocation 5326 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5327 // causes the non-eden paths to take compensating steps to 5328 // simulate a fresh allocation, so that no further 5329 // card marks are required in compiled code to initialize 5330 // the object.) 5331 5332 if (!stopped()) { 5333 copy_to_clone(array_obj, alloc_obj, array_size, true); 5334 5335 // Present the results of the copy. 5336 result_reg->init_req(_array_path, control()); 5337 result_val->init_req(_array_path, alloc_obj); 5338 result_i_o ->set_req(_array_path, i_o()); 5339 result_mem ->set_req(_array_path, reset_memory()); 5340 } 5341 } 5342 5343 // We only go to the instance fast case code if we pass a number of guards. 5344 // The paths which do not pass are accumulated in the slow_region. 5345 RegionNode* slow_region = new RegionNode(1); 5346 record_for_igvn(slow_region); 5347 if (!stopped()) { 5348 // It's an instance (we did array above). Make the slow-path tests. 5349 // If this is a virtual call, we generate a funny guard. We grab 5350 // the vtable entry corresponding to clone() from the target object. 5351 // If the target method which we are calling happens to be the 5352 // Object clone() method, we pass the guard. We do not need this 5353 // guard for non-virtual calls; the caller is known to be the native 5354 // Object clone(). 5355 if (is_virtual) { 5356 generate_virtual_guard(obj_klass, slow_region); 5357 } 5358 5359 // The object must be easily cloneable and must not have a finalizer. 5360 // Both of these conditions may be checked in a single test. 5361 // We could optimize the test further, but we don't care. 5362 generate_misc_flags_guard(obj_klass, 5363 // Test both conditions: 5364 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5365 // Must be cloneable but not finalizer: 5366 KlassFlags::_misc_is_cloneable_fast, 5367 slow_region); 5368 } 5369 5370 if (!stopped()) { 5371 // It's an instance, and it passed the slow-path tests. 5372 PreserveJVMState pjvms(this); 5373 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5374 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5375 // is reexecuted if deoptimization occurs and there could be problems when merging 5376 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5377 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5378 5379 copy_to_clone(obj, alloc_obj, obj_size, false); 5380 5381 // Present the results of the slow call. 5382 result_reg->init_req(_instance_path, control()); 5383 result_val->init_req(_instance_path, alloc_obj); 5384 result_i_o ->set_req(_instance_path, i_o()); 5385 result_mem ->set_req(_instance_path, reset_memory()); 5386 } 5387 5388 // Generate code for the slow case. We make a call to clone(). 5389 set_control(_gvn.transform(slow_region)); 5390 if (!stopped()) { 5391 PreserveJVMState pjvms(this); 5392 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5393 // We need to deoptimize on exception (see comment above) 5394 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5395 // this->control() comes from set_results_for_java_call 5396 result_reg->init_req(_slow_path, control()); 5397 result_val->init_req(_slow_path, slow_result); 5398 result_i_o ->set_req(_slow_path, i_o()); 5399 result_mem ->set_req(_slow_path, reset_memory()); 5400 } 5401 5402 // Return the combined state. 5403 set_control( _gvn.transform(result_reg)); 5404 set_i_o( _gvn.transform(result_i_o)); 5405 set_all_memory( _gvn.transform(result_mem)); 5406 } // original reexecute is set back here 5407 5408 set_result(_gvn.transform(result_val)); 5409 return true; 5410 } 5411 5412 // If we have a tightly coupled allocation, the arraycopy may take care 5413 // of the array initialization. If one of the guards we insert between 5414 // the allocation and the arraycopy causes a deoptimization, an 5415 // uninitialized array will escape the compiled method. To prevent that 5416 // we set the JVM state for uncommon traps between the allocation and 5417 // the arraycopy to the state before the allocation so, in case of 5418 // deoptimization, we'll reexecute the allocation and the 5419 // initialization. 5420 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5421 if (alloc != nullptr) { 5422 ciMethod* trap_method = alloc->jvms()->method(); 5423 int trap_bci = alloc->jvms()->bci(); 5424 5425 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5426 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5427 // Make sure there's no store between the allocation and the 5428 // arraycopy otherwise visible side effects could be rexecuted 5429 // in case of deoptimization and cause incorrect execution. 5430 bool no_interfering_store = true; 5431 Node* mem = alloc->in(TypeFunc::Memory); 5432 if (mem->is_MergeMem()) { 5433 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5434 Node* n = mms.memory(); 5435 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5436 assert(n->is_Store(), "what else?"); 5437 no_interfering_store = false; 5438 break; 5439 } 5440 } 5441 } else { 5442 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5443 Node* n = mms.memory(); 5444 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5445 assert(n->is_Store(), "what else?"); 5446 no_interfering_store = false; 5447 break; 5448 } 5449 } 5450 } 5451 5452 if (no_interfering_store) { 5453 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5454 5455 JVMState* saved_jvms = jvms(); 5456 saved_reexecute_sp = _reexecute_sp; 5457 5458 set_jvms(sfpt->jvms()); 5459 _reexecute_sp = jvms()->sp(); 5460 5461 return saved_jvms; 5462 } 5463 } 5464 } 5465 return nullptr; 5466 } 5467 5468 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5469 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5470 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5471 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5472 uint size = alloc->req(); 5473 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5474 old_jvms->set_map(sfpt); 5475 for (uint i = 0; i < size; i++) { 5476 sfpt->init_req(i, alloc->in(i)); 5477 } 5478 // re-push array length for deoptimization 5479 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5480 old_jvms->set_sp(old_jvms->sp()+1); 5481 old_jvms->set_monoff(old_jvms->monoff()+1); 5482 old_jvms->set_scloff(old_jvms->scloff()+1); 5483 old_jvms->set_endoff(old_jvms->endoff()+1); 5484 old_jvms->set_should_reexecute(true); 5485 5486 sfpt->set_i_o(map()->i_o()); 5487 sfpt->set_memory(map()->memory()); 5488 sfpt->set_control(map()->control()); 5489 return sfpt; 5490 } 5491 5492 // In case of a deoptimization, we restart execution at the 5493 // allocation, allocating a new array. We would leave an uninitialized 5494 // array in the heap that GCs wouldn't expect. Move the allocation 5495 // after the traps so we don't allocate the array if we 5496 // deoptimize. This is possible because tightly_coupled_allocation() 5497 // guarantees there's no observer of the allocated array at this point 5498 // and the control flow is simple enough. 5499 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5500 int saved_reexecute_sp, uint new_idx) { 5501 if (saved_jvms_before_guards != nullptr && !stopped()) { 5502 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5503 5504 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5505 // restore JVM state to the state at the arraycopy 5506 saved_jvms_before_guards->map()->set_control(map()->control()); 5507 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5508 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5509 // If we've improved the types of some nodes (null check) while 5510 // emitting the guards, propagate them to the current state 5511 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5512 set_jvms(saved_jvms_before_guards); 5513 _reexecute_sp = saved_reexecute_sp; 5514 5515 // Remove the allocation from above the guards 5516 CallProjections callprojs; 5517 alloc->extract_projections(&callprojs, true); 5518 InitializeNode* init = alloc->initialization(); 5519 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5520 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5521 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5522 5523 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5524 // the allocation (i.e. is only valid if the allocation succeeds): 5525 // 1) replace CastIINode with AllocateArrayNode's length here 5526 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5527 // 5528 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5529 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5530 Node* init_control = init->proj_out(TypeFunc::Control); 5531 Node* alloc_length = alloc->Ideal_length(); 5532 #ifdef ASSERT 5533 Node* prev_cast = nullptr; 5534 #endif 5535 for (uint i = 0; i < init_control->outcnt(); i++) { 5536 Node* init_out = init_control->raw_out(i); 5537 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5538 #ifdef ASSERT 5539 if (prev_cast == nullptr) { 5540 prev_cast = init_out; 5541 } else { 5542 if (prev_cast->cmp(*init_out) == false) { 5543 prev_cast->dump(); 5544 init_out->dump(); 5545 assert(false, "not equal CastIINode"); 5546 } 5547 } 5548 #endif 5549 C->gvn_replace_by(init_out, alloc_length); 5550 } 5551 } 5552 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5553 5554 // move the allocation here (after the guards) 5555 _gvn.hash_delete(alloc); 5556 alloc->set_req(TypeFunc::Control, control()); 5557 alloc->set_req(TypeFunc::I_O, i_o()); 5558 Node *mem = reset_memory(); 5559 set_all_memory(mem); 5560 alloc->set_req(TypeFunc::Memory, mem); 5561 set_control(init->proj_out_or_null(TypeFunc::Control)); 5562 set_i_o(callprojs.fallthrough_ioproj); 5563 5564 // Update memory as done in GraphKit::set_output_for_allocation() 5565 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5566 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5567 if (ary_type->isa_aryptr() && length_type != nullptr) { 5568 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5569 } 5570 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5571 int elemidx = C->get_alias_index(telemref); 5572 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5573 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5574 5575 Node* allocx = _gvn.transform(alloc); 5576 assert(allocx == alloc, "where has the allocation gone?"); 5577 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5578 5579 _gvn.hash_delete(dest); 5580 dest->set_req(0, control()); 5581 Node* destx = _gvn.transform(dest); 5582 assert(destx == dest, "where has the allocation result gone?"); 5583 5584 array_ideal_length(alloc, ary_type, true); 5585 } 5586 } 5587 5588 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5589 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5590 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5591 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5592 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5593 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5594 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5595 JVMState* saved_jvms_before_guards) { 5596 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5597 // There is at least one unrelated uncommon trap which needs to be replaced. 5598 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5599 5600 JVMState* saved_jvms = jvms(); 5601 const int saved_reexecute_sp = _reexecute_sp; 5602 set_jvms(sfpt->jvms()); 5603 _reexecute_sp = jvms()->sp(); 5604 5605 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5606 5607 // Restore state 5608 set_jvms(saved_jvms); 5609 _reexecute_sp = saved_reexecute_sp; 5610 } 5611 } 5612 5613 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5614 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5615 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5616 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5617 while (if_proj->is_IfProj()) { 5618 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5619 if (uncommon_trap != nullptr) { 5620 create_new_uncommon_trap(uncommon_trap); 5621 } 5622 assert(if_proj->in(0)->is_If(), "must be If"); 5623 if_proj = if_proj->in(0)->in(0); 5624 } 5625 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5626 "must have reached control projection of init node"); 5627 } 5628 5629 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5630 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5631 assert(trap_request != 0, "no valid UCT trap request"); 5632 PreserveJVMState pjvms(this); 5633 set_control(uncommon_trap_call->in(0)); 5634 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5635 Deoptimization::trap_request_action(trap_request)); 5636 assert(stopped(), "Should be stopped"); 5637 _gvn.hash_delete(uncommon_trap_call); 5638 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5639 } 5640 5641 // Common checks for array sorting intrinsics arguments. 5642 // Returns `true` if checks passed. 5643 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5644 // check address of the class 5645 if (elementType == nullptr || elementType->is_top()) { 5646 return false; // dead path 5647 } 5648 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5649 if (elem_klass == nullptr) { 5650 return false; // dead path 5651 } 5652 // java_mirror_type() returns non-null for compile-time Class constants only 5653 ciType* elem_type = elem_klass->java_mirror_type(); 5654 if (elem_type == nullptr) { 5655 return false; 5656 } 5657 bt = elem_type->basic_type(); 5658 // Disable the intrinsic if the CPU does not support SIMD sort 5659 if (!Matcher::supports_simd_sort(bt)) { 5660 return false; 5661 } 5662 // check address of the array 5663 if (obj == nullptr || obj->is_top()) { 5664 return false; // dead path 5665 } 5666 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5667 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5668 return false; // failed input validation 5669 } 5670 return true; 5671 } 5672 5673 //------------------------------inline_array_partition----------------------- 5674 bool LibraryCallKit::inline_array_partition() { 5675 address stubAddr = StubRoutines::select_array_partition_function(); 5676 if (stubAddr == nullptr) { 5677 return false; // Intrinsic's stub is not implemented on this platform 5678 } 5679 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5680 5681 // no receiver because it is a static method 5682 Node* elementType = argument(0); 5683 Node* obj = argument(1); 5684 Node* offset = argument(2); // long 5685 Node* fromIndex = argument(4); 5686 Node* toIndex = argument(5); 5687 Node* indexPivot1 = argument(6); 5688 Node* indexPivot2 = argument(7); 5689 // PartitionOperation: argument(8) is ignored 5690 5691 Node* pivotIndices = nullptr; 5692 BasicType bt = T_ILLEGAL; 5693 5694 if (!check_array_sort_arguments(elementType, obj, bt)) { 5695 return false; 5696 } 5697 null_check(obj); 5698 // If obj is dead, only null-path is taken. 5699 if (stopped()) { 5700 return true; 5701 } 5702 // Set the original stack and the reexecute bit for the interpreter to reexecute 5703 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5704 { PreserveReexecuteState preexecs(this); 5705 jvms()->set_should_reexecute(true); 5706 5707 Node* obj_adr = make_unsafe_address(obj, offset); 5708 5709 // create the pivotIndices array of type int and size = 2 5710 Node* size = intcon(2); 5711 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5712 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5713 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5714 guarantee(alloc != nullptr, "created above"); 5715 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5716 5717 // pass the basic type enum to the stub 5718 Node* elemType = intcon(bt); 5719 5720 // Call the stub 5721 const char *stubName = "array_partition_stub"; 5722 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5723 stubAddr, stubName, TypePtr::BOTTOM, 5724 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5725 indexPivot1, indexPivot2); 5726 5727 } // original reexecute is set back here 5728 5729 if (!stopped()) { 5730 set_result(pivotIndices); 5731 } 5732 5733 return true; 5734 } 5735 5736 5737 //------------------------------inline_array_sort----------------------- 5738 bool LibraryCallKit::inline_array_sort() { 5739 address stubAddr = StubRoutines::select_arraysort_function(); 5740 if (stubAddr == nullptr) { 5741 return false; // Intrinsic's stub is not implemented on this platform 5742 } 5743 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5744 5745 // no receiver because it is a static method 5746 Node* elementType = argument(0); 5747 Node* obj = argument(1); 5748 Node* offset = argument(2); // long 5749 Node* fromIndex = argument(4); 5750 Node* toIndex = argument(5); 5751 // SortOperation: argument(6) is ignored 5752 5753 BasicType bt = T_ILLEGAL; 5754 5755 if (!check_array_sort_arguments(elementType, obj, bt)) { 5756 return false; 5757 } 5758 null_check(obj); 5759 // If obj is dead, only null-path is taken. 5760 if (stopped()) { 5761 return true; 5762 } 5763 Node* obj_adr = make_unsafe_address(obj, offset); 5764 5765 // pass the basic type enum to the stub 5766 Node* elemType = intcon(bt); 5767 5768 // Call the stub. 5769 const char *stubName = "arraysort_stub"; 5770 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5771 stubAddr, stubName, TypePtr::BOTTOM, 5772 obj_adr, elemType, fromIndex, toIndex); 5773 5774 return true; 5775 } 5776 5777 5778 //------------------------------inline_arraycopy----------------------- 5779 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5780 // Object dest, int destPos, 5781 // int length); 5782 bool LibraryCallKit::inline_arraycopy() { 5783 // Get the arguments. 5784 Node* src = argument(0); // type: oop 5785 Node* src_offset = argument(1); // type: int 5786 Node* dest = argument(2); // type: oop 5787 Node* dest_offset = argument(3); // type: int 5788 Node* length = argument(4); // type: int 5789 5790 uint new_idx = C->unique(); 5791 5792 // Check for allocation before we add nodes that would confuse 5793 // tightly_coupled_allocation() 5794 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5795 5796 int saved_reexecute_sp = -1; 5797 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5798 // See arraycopy_restore_alloc_state() comment 5799 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5800 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5801 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5802 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5803 5804 // The following tests must be performed 5805 // (1) src and dest are arrays. 5806 // (2) src and dest arrays must have elements of the same BasicType 5807 // (3) src and dest must not be null. 5808 // (4) src_offset must not be negative. 5809 // (5) dest_offset must not be negative. 5810 // (6) length must not be negative. 5811 // (7) src_offset + length must not exceed length of src. 5812 // (8) dest_offset + length must not exceed length of dest. 5813 // (9) each element of an oop array must be assignable 5814 5815 // (3) src and dest must not be null. 5816 // always do this here because we need the JVM state for uncommon traps 5817 Node* null_ctl = top(); 5818 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5819 assert(null_ctl->is_top(), "no null control here"); 5820 dest = null_check(dest, T_ARRAY); 5821 5822 if (!can_emit_guards) { 5823 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5824 // guards but the arraycopy node could still take advantage of a 5825 // tightly allocated allocation. tightly_coupled_allocation() is 5826 // called again to make sure it takes the null check above into 5827 // account: the null check is mandatory and if it caused an 5828 // uncommon trap to be emitted then the allocation can't be 5829 // considered tightly coupled in this context. 5830 alloc = tightly_coupled_allocation(dest); 5831 } 5832 5833 bool validated = false; 5834 5835 const Type* src_type = _gvn.type(src); 5836 const Type* dest_type = _gvn.type(dest); 5837 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5838 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5839 5840 // Do we have the type of src? 5841 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5842 // Do we have the type of dest? 5843 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5844 // Is the type for src from speculation? 5845 bool src_spec = false; 5846 // Is the type for dest from speculation? 5847 bool dest_spec = false; 5848 5849 if ((!has_src || !has_dest) && can_emit_guards) { 5850 // We don't have sufficient type information, let's see if 5851 // speculative types can help. We need to have types for both src 5852 // and dest so that it pays off. 5853 5854 // Do we already have or could we have type information for src 5855 bool could_have_src = has_src; 5856 // Do we already have or could we have type information for dest 5857 bool could_have_dest = has_dest; 5858 5859 ciKlass* src_k = nullptr; 5860 if (!has_src) { 5861 src_k = src_type->speculative_type_not_null(); 5862 if (src_k != nullptr && src_k->is_array_klass()) { 5863 could_have_src = true; 5864 } 5865 } 5866 5867 ciKlass* dest_k = nullptr; 5868 if (!has_dest) { 5869 dest_k = dest_type->speculative_type_not_null(); 5870 if (dest_k != nullptr && dest_k->is_array_klass()) { 5871 could_have_dest = true; 5872 } 5873 } 5874 5875 if (could_have_src && could_have_dest) { 5876 // This is going to pay off so emit the required guards 5877 if (!has_src) { 5878 src = maybe_cast_profiled_obj(src, src_k, true); 5879 src_type = _gvn.type(src); 5880 top_src = src_type->isa_aryptr(); 5881 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5882 src_spec = true; 5883 } 5884 if (!has_dest) { 5885 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5886 dest_type = _gvn.type(dest); 5887 top_dest = dest_type->isa_aryptr(); 5888 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5889 dest_spec = true; 5890 } 5891 } 5892 } 5893 5894 if (has_src && has_dest && can_emit_guards) { 5895 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5896 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5897 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5898 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5899 5900 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5901 // If both arrays are object arrays then having the exact types 5902 // for both will remove the need for a subtype check at runtime 5903 // before the call and may make it possible to pick a faster copy 5904 // routine (without a subtype check on every element) 5905 // Do we have the exact type of src? 5906 bool could_have_src = src_spec; 5907 // Do we have the exact type of dest? 5908 bool could_have_dest = dest_spec; 5909 ciKlass* src_k = nullptr; 5910 ciKlass* dest_k = nullptr; 5911 if (!src_spec) { 5912 src_k = src_type->speculative_type_not_null(); 5913 if (src_k != nullptr && src_k->is_array_klass()) { 5914 could_have_src = true; 5915 } 5916 } 5917 if (!dest_spec) { 5918 dest_k = dest_type->speculative_type_not_null(); 5919 if (dest_k != nullptr && dest_k->is_array_klass()) { 5920 could_have_dest = true; 5921 } 5922 } 5923 if (could_have_src && could_have_dest) { 5924 // If we can have both exact types, emit the missing guards 5925 if (could_have_src && !src_spec) { 5926 src = maybe_cast_profiled_obj(src, src_k, true); 5927 } 5928 if (could_have_dest && !dest_spec) { 5929 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5930 } 5931 } 5932 } 5933 } 5934 5935 ciMethod* trap_method = method(); 5936 int trap_bci = bci(); 5937 if (saved_jvms_before_guards != nullptr) { 5938 trap_method = alloc->jvms()->method(); 5939 trap_bci = alloc->jvms()->bci(); 5940 } 5941 5942 bool negative_length_guard_generated = false; 5943 5944 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5945 can_emit_guards && 5946 !src->is_top() && !dest->is_top()) { 5947 // validate arguments: enables transformation the ArrayCopyNode 5948 validated = true; 5949 5950 RegionNode* slow_region = new RegionNode(1); 5951 record_for_igvn(slow_region); 5952 5953 // (1) src and dest are arrays. 5954 generate_non_array_guard(load_object_klass(src), slow_region, &src); 5955 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 5956 5957 // (2) src and dest arrays must have elements of the same BasicType 5958 // done at macro expansion or at Ideal transformation time 5959 5960 // (4) src_offset must not be negative. 5961 generate_negative_guard(src_offset, slow_region); 5962 5963 // (5) dest_offset must not be negative. 5964 generate_negative_guard(dest_offset, slow_region); 5965 5966 // (7) src_offset + length must not exceed length of src. 5967 generate_limit_guard(src_offset, length, 5968 load_array_length(src), 5969 slow_region); 5970 5971 // (8) dest_offset + length must not exceed length of dest. 5972 generate_limit_guard(dest_offset, length, 5973 load_array_length(dest), 5974 slow_region); 5975 5976 // (6) length must not be negative. 5977 // This is also checked in generate_arraycopy() during macro expansion, but 5978 // we also have to check it here for the case where the ArrayCopyNode will 5979 // be eliminated by Escape Analysis. 5980 if (EliminateAllocations) { 5981 generate_negative_guard(length, slow_region); 5982 negative_length_guard_generated = true; 5983 } 5984 5985 // (9) each element of an oop array must be assignable 5986 Node* dest_klass = load_object_klass(dest); 5987 if (src != dest) { 5988 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5989 5990 if (not_subtype_ctrl != top()) { 5991 PreserveJVMState pjvms(this); 5992 set_control(not_subtype_ctrl); 5993 uncommon_trap(Deoptimization::Reason_intrinsic, 5994 Deoptimization::Action_make_not_entrant); 5995 assert(stopped(), "Should be stopped"); 5996 } 5997 } 5998 { 5999 PreserveJVMState pjvms(this); 6000 set_control(_gvn.transform(slow_region)); 6001 uncommon_trap(Deoptimization::Reason_intrinsic, 6002 Deoptimization::Action_make_not_entrant); 6003 assert(stopped(), "Should be stopped"); 6004 } 6005 6006 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 6007 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 6008 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6009 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6010 } 6011 6012 if (stopped()) { 6013 return true; 6014 } 6015 6016 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6017 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6018 // so the compiler has a chance to eliminate them: during macro expansion, 6019 // we have to set their control (CastPP nodes are eliminated). 6020 load_object_klass(src), load_object_klass(dest), 6021 load_array_length(src), load_array_length(dest)); 6022 6023 ac->set_arraycopy(validated); 6024 6025 Node* n = _gvn.transform(ac); 6026 if (n == ac) { 6027 ac->connect_outputs(this); 6028 } else { 6029 assert(validated, "shouldn't transform if all arguments not validated"); 6030 set_all_memory(n); 6031 } 6032 clear_upper_avx(); 6033 6034 6035 return true; 6036 } 6037 6038 6039 // Helper function which determines if an arraycopy immediately follows 6040 // an allocation, with no intervening tests or other escapes for the object. 6041 AllocateArrayNode* 6042 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6043 if (stopped()) return nullptr; // no fast path 6044 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6045 6046 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6047 if (alloc == nullptr) return nullptr; 6048 6049 Node* rawmem = memory(Compile::AliasIdxRaw); 6050 // Is the allocation's memory state untouched? 6051 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6052 // Bail out if there have been raw-memory effects since the allocation. 6053 // (Example: There might have been a call or safepoint.) 6054 return nullptr; 6055 } 6056 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6057 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6058 return nullptr; 6059 } 6060 6061 // There must be no unexpected observers of this allocation. 6062 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6063 Node* obs = ptr->fast_out(i); 6064 if (obs != this->map()) { 6065 return nullptr; 6066 } 6067 } 6068 6069 // This arraycopy must unconditionally follow the allocation of the ptr. 6070 Node* alloc_ctl = ptr->in(0); 6071 Node* ctl = control(); 6072 while (ctl != alloc_ctl) { 6073 // There may be guards which feed into the slow_region. 6074 // Any other control flow means that we might not get a chance 6075 // to finish initializing the allocated object. 6076 // Various low-level checks bottom out in uncommon traps. These 6077 // are considered safe since we've already checked above that 6078 // there is no unexpected observer of this allocation. 6079 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6080 assert(ctl->in(0)->is_If(), "must be If"); 6081 ctl = ctl->in(0)->in(0); 6082 } else { 6083 return nullptr; 6084 } 6085 } 6086 6087 // If we get this far, we have an allocation which immediately 6088 // precedes the arraycopy, and we can take over zeroing the new object. 6089 // The arraycopy will finish the initialization, and provide 6090 // a new control state to which we will anchor the destination pointer. 6091 6092 return alloc; 6093 } 6094 6095 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6096 if (node->is_IfProj()) { 6097 Node* other_proj = node->as_IfProj()->other_if_proj(); 6098 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6099 Node* obs = other_proj->fast_out(j); 6100 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6101 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6102 return obs->as_CallStaticJava(); 6103 } 6104 } 6105 } 6106 return nullptr; 6107 } 6108 6109 //-------------inline_encodeISOArray----------------------------------- 6110 // encode char[] to byte[] in ISO_8859_1 or ASCII 6111 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6112 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6113 // no receiver since it is static method 6114 Node *src = argument(0); 6115 Node *src_offset = argument(1); 6116 Node *dst = argument(2); 6117 Node *dst_offset = argument(3); 6118 Node *length = argument(4); 6119 6120 src = must_be_not_null(src, true); 6121 dst = must_be_not_null(dst, true); 6122 6123 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6124 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6125 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6126 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6127 // failed array check 6128 return false; 6129 } 6130 6131 // Figure out the size and type of the elements we will be copying. 6132 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6133 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6134 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6135 return false; 6136 } 6137 6138 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6139 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6140 // 'src_start' points to src array + scaled offset 6141 // 'dst_start' points to dst array + scaled offset 6142 6143 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6144 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6145 enc = _gvn.transform(enc); 6146 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6147 set_memory(res_mem, mtype); 6148 set_result(enc); 6149 clear_upper_avx(); 6150 6151 return true; 6152 } 6153 6154 //-------------inline_multiplyToLen----------------------------------- 6155 bool LibraryCallKit::inline_multiplyToLen() { 6156 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6157 6158 address stubAddr = StubRoutines::multiplyToLen(); 6159 if (stubAddr == nullptr) { 6160 return false; // Intrinsic's stub is not implemented on this platform 6161 } 6162 const char* stubName = "multiplyToLen"; 6163 6164 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6165 6166 // no receiver because it is a static method 6167 Node* x = argument(0); 6168 Node* xlen = argument(1); 6169 Node* y = argument(2); 6170 Node* ylen = argument(3); 6171 Node* z = argument(4); 6172 6173 x = must_be_not_null(x, true); 6174 y = must_be_not_null(y, true); 6175 6176 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6177 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6178 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6179 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6180 // failed array check 6181 return false; 6182 } 6183 6184 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6185 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6186 if (x_elem != T_INT || y_elem != T_INT) { 6187 return false; 6188 } 6189 6190 Node* x_start = array_element_address(x, intcon(0), x_elem); 6191 Node* y_start = array_element_address(y, intcon(0), y_elem); 6192 // 'x_start' points to x array + scaled xlen 6193 // 'y_start' points to y array + scaled ylen 6194 6195 Node* z_start = array_element_address(z, intcon(0), T_INT); 6196 6197 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6198 OptoRuntime::multiplyToLen_Type(), 6199 stubAddr, stubName, TypePtr::BOTTOM, 6200 x_start, xlen, y_start, ylen, z_start); 6201 6202 C->set_has_split_ifs(true); // Has chance for split-if optimization 6203 set_result(z); 6204 return true; 6205 } 6206 6207 //-------------inline_squareToLen------------------------------------ 6208 bool LibraryCallKit::inline_squareToLen() { 6209 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6210 6211 address stubAddr = StubRoutines::squareToLen(); 6212 if (stubAddr == nullptr) { 6213 return false; // Intrinsic's stub is not implemented on this platform 6214 } 6215 const char* stubName = "squareToLen"; 6216 6217 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6218 6219 Node* x = argument(0); 6220 Node* len = argument(1); 6221 Node* z = argument(2); 6222 Node* zlen = argument(3); 6223 6224 x = must_be_not_null(x, true); 6225 z = must_be_not_null(z, true); 6226 6227 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6228 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6229 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6230 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6231 // failed array check 6232 return false; 6233 } 6234 6235 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6236 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6237 if (x_elem != T_INT || z_elem != T_INT) { 6238 return false; 6239 } 6240 6241 6242 Node* x_start = array_element_address(x, intcon(0), x_elem); 6243 Node* z_start = array_element_address(z, intcon(0), z_elem); 6244 6245 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6246 OptoRuntime::squareToLen_Type(), 6247 stubAddr, stubName, TypePtr::BOTTOM, 6248 x_start, len, z_start, zlen); 6249 6250 set_result(z); 6251 return true; 6252 } 6253 6254 //-------------inline_mulAdd------------------------------------------ 6255 bool LibraryCallKit::inline_mulAdd() { 6256 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6257 6258 address stubAddr = StubRoutines::mulAdd(); 6259 if (stubAddr == nullptr) { 6260 return false; // Intrinsic's stub is not implemented on this platform 6261 } 6262 const char* stubName = "mulAdd"; 6263 6264 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6265 6266 Node* out = argument(0); 6267 Node* in = argument(1); 6268 Node* offset = argument(2); 6269 Node* len = argument(3); 6270 Node* k = argument(4); 6271 6272 in = must_be_not_null(in, true); 6273 out = must_be_not_null(out, true); 6274 6275 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6276 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6277 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6278 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6279 // failed array check 6280 return false; 6281 } 6282 6283 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6284 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6285 if (out_elem != T_INT || in_elem != T_INT) { 6286 return false; 6287 } 6288 6289 Node* outlen = load_array_length(out); 6290 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6291 Node* out_start = array_element_address(out, intcon(0), out_elem); 6292 Node* in_start = array_element_address(in, intcon(0), in_elem); 6293 6294 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6295 OptoRuntime::mulAdd_Type(), 6296 stubAddr, stubName, TypePtr::BOTTOM, 6297 out_start,in_start, new_offset, len, k); 6298 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6299 set_result(result); 6300 return true; 6301 } 6302 6303 //-------------inline_montgomeryMultiply----------------------------------- 6304 bool LibraryCallKit::inline_montgomeryMultiply() { 6305 address stubAddr = StubRoutines::montgomeryMultiply(); 6306 if (stubAddr == nullptr) { 6307 return false; // Intrinsic's stub is not implemented on this platform 6308 } 6309 6310 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6311 const char* stubName = "montgomery_multiply"; 6312 6313 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6314 6315 Node* a = argument(0); 6316 Node* b = argument(1); 6317 Node* n = argument(2); 6318 Node* len = argument(3); 6319 Node* inv = argument(4); 6320 Node* m = argument(6); 6321 6322 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6323 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6324 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6325 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6326 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6327 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6328 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6329 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6330 // failed array check 6331 return false; 6332 } 6333 6334 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6335 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6336 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6337 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6338 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6339 return false; 6340 } 6341 6342 // Make the call 6343 { 6344 Node* a_start = array_element_address(a, intcon(0), a_elem); 6345 Node* b_start = array_element_address(b, intcon(0), b_elem); 6346 Node* n_start = array_element_address(n, intcon(0), n_elem); 6347 Node* m_start = array_element_address(m, intcon(0), m_elem); 6348 6349 Node* call = make_runtime_call(RC_LEAF, 6350 OptoRuntime::montgomeryMultiply_Type(), 6351 stubAddr, stubName, TypePtr::BOTTOM, 6352 a_start, b_start, n_start, len, inv, top(), 6353 m_start); 6354 set_result(m); 6355 } 6356 6357 return true; 6358 } 6359 6360 bool LibraryCallKit::inline_montgomerySquare() { 6361 address stubAddr = StubRoutines::montgomerySquare(); 6362 if (stubAddr == nullptr) { 6363 return false; // Intrinsic's stub is not implemented on this platform 6364 } 6365 6366 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6367 const char* stubName = "montgomery_square"; 6368 6369 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6370 6371 Node* a = argument(0); 6372 Node* n = argument(1); 6373 Node* len = argument(2); 6374 Node* inv = argument(3); 6375 Node* m = argument(5); 6376 6377 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6378 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6379 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6380 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6381 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6382 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6383 // failed array check 6384 return false; 6385 } 6386 6387 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6388 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6389 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6390 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6391 return false; 6392 } 6393 6394 // Make the call 6395 { 6396 Node* a_start = array_element_address(a, intcon(0), a_elem); 6397 Node* n_start = array_element_address(n, intcon(0), n_elem); 6398 Node* m_start = array_element_address(m, intcon(0), m_elem); 6399 6400 Node* call = make_runtime_call(RC_LEAF, 6401 OptoRuntime::montgomerySquare_Type(), 6402 stubAddr, stubName, TypePtr::BOTTOM, 6403 a_start, n_start, len, inv, top(), 6404 m_start); 6405 set_result(m); 6406 } 6407 6408 return true; 6409 } 6410 6411 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6412 address stubAddr = nullptr; 6413 const char* stubName = nullptr; 6414 6415 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6416 if (stubAddr == nullptr) { 6417 return false; // Intrinsic's stub is not implemented on this platform 6418 } 6419 6420 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6421 6422 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6423 6424 Node* newArr = argument(0); 6425 Node* oldArr = argument(1); 6426 Node* newIdx = argument(2); 6427 Node* shiftCount = argument(3); 6428 Node* numIter = argument(4); 6429 6430 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6431 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6432 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6433 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6434 return false; 6435 } 6436 6437 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6438 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6439 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6440 return false; 6441 } 6442 6443 // Make the call 6444 { 6445 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6446 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6447 6448 Node* call = make_runtime_call(RC_LEAF, 6449 OptoRuntime::bigIntegerShift_Type(), 6450 stubAddr, 6451 stubName, 6452 TypePtr::BOTTOM, 6453 newArr_start, 6454 oldArr_start, 6455 newIdx, 6456 shiftCount, 6457 numIter); 6458 } 6459 6460 return true; 6461 } 6462 6463 //-------------inline_vectorizedMismatch------------------------------ 6464 bool LibraryCallKit::inline_vectorizedMismatch() { 6465 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6466 6467 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6468 Node* obja = argument(0); // Object 6469 Node* aoffset = argument(1); // long 6470 Node* objb = argument(3); // Object 6471 Node* boffset = argument(4); // long 6472 Node* length = argument(6); // int 6473 Node* scale = argument(7); // int 6474 6475 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6476 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6477 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6478 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6479 scale == top()) { 6480 return false; // failed input validation 6481 } 6482 6483 Node* obja_adr = make_unsafe_address(obja, aoffset); 6484 Node* objb_adr = make_unsafe_address(objb, boffset); 6485 6486 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6487 // 6488 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6489 // if (length <= inline_limit) { 6490 // inline_path: 6491 // vmask = VectorMaskGen length 6492 // vload1 = LoadVectorMasked obja, vmask 6493 // vload2 = LoadVectorMasked objb, vmask 6494 // result1 = VectorCmpMasked vload1, vload2, vmask 6495 // } else { 6496 // call_stub_path: 6497 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6498 // } 6499 // exit_block: 6500 // return Phi(result1, result2); 6501 // 6502 enum { inline_path = 1, // input is small enough to process it all at once 6503 stub_path = 2, // input is too large; call into the VM 6504 PATH_LIMIT = 3 6505 }; 6506 6507 Node* exit_block = new RegionNode(PATH_LIMIT); 6508 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6509 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6510 6511 Node* call_stub_path = control(); 6512 6513 BasicType elem_bt = T_ILLEGAL; 6514 6515 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6516 if (scale_t->is_con()) { 6517 switch (scale_t->get_con()) { 6518 case 0: elem_bt = T_BYTE; break; 6519 case 1: elem_bt = T_SHORT; break; 6520 case 2: elem_bt = T_INT; break; 6521 case 3: elem_bt = T_LONG; break; 6522 6523 default: elem_bt = T_ILLEGAL; break; // not supported 6524 } 6525 } 6526 6527 int inline_limit = 0; 6528 bool do_partial_inline = false; 6529 6530 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6531 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6532 do_partial_inline = inline_limit >= 16; 6533 } 6534 6535 if (do_partial_inline) { 6536 assert(elem_bt != T_ILLEGAL, "sanity"); 6537 6538 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6539 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6540 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6541 6542 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6543 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6544 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6545 6546 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6547 6548 if (!stopped()) { 6549 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6550 6551 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6552 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6553 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6554 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6555 6556 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6557 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6558 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6559 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6560 6561 exit_block->init_req(inline_path, control()); 6562 memory_phi->init_req(inline_path, map()->memory()); 6563 result_phi->init_req(inline_path, result); 6564 6565 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6566 clear_upper_avx(); 6567 } 6568 } 6569 } 6570 6571 if (call_stub_path != nullptr) { 6572 set_control(call_stub_path); 6573 6574 Node* call = make_runtime_call(RC_LEAF, 6575 OptoRuntime::vectorizedMismatch_Type(), 6576 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6577 obja_adr, objb_adr, length, scale); 6578 6579 exit_block->init_req(stub_path, control()); 6580 memory_phi->init_req(stub_path, map()->memory()); 6581 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6582 } 6583 6584 exit_block = _gvn.transform(exit_block); 6585 memory_phi = _gvn.transform(memory_phi); 6586 result_phi = _gvn.transform(result_phi); 6587 6588 record_for_igvn(exit_block); 6589 record_for_igvn(memory_phi); 6590 record_for_igvn(result_phi); 6591 6592 set_control(exit_block); 6593 set_all_memory(memory_phi); 6594 set_result(result_phi); 6595 6596 return true; 6597 } 6598 6599 //------------------------------inline_vectorizedHashcode---------------------------- 6600 bool LibraryCallKit::inline_vectorizedHashCode() { 6601 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6602 6603 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6604 Node* array = argument(0); 6605 Node* offset = argument(1); 6606 Node* length = argument(2); 6607 Node* initialValue = argument(3); 6608 Node* basic_type = argument(4); 6609 6610 if (basic_type == top()) { 6611 return false; // failed input validation 6612 } 6613 6614 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6615 if (!basic_type_t->is_con()) { 6616 return false; // Only intrinsify if mode argument is constant 6617 } 6618 6619 array = must_be_not_null(array, true); 6620 6621 BasicType bt = (BasicType)basic_type_t->get_con(); 6622 6623 // Resolve address of first element 6624 Node* array_start = array_element_address(array, offset, bt); 6625 6626 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6627 array_start, length, initialValue, basic_type))); 6628 clear_upper_avx(); 6629 6630 return true; 6631 } 6632 6633 /** 6634 * Calculate CRC32 for byte. 6635 * int java.util.zip.CRC32.update(int crc, int b) 6636 */ 6637 bool LibraryCallKit::inline_updateCRC32() { 6638 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6639 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6640 // no receiver since it is static method 6641 Node* crc = argument(0); // type: int 6642 Node* b = argument(1); // type: int 6643 6644 /* 6645 * int c = ~ crc; 6646 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6647 * b = b ^ (c >>> 8); 6648 * crc = ~b; 6649 */ 6650 6651 Node* M1 = intcon(-1); 6652 crc = _gvn.transform(new XorINode(crc, M1)); 6653 Node* result = _gvn.transform(new XorINode(crc, b)); 6654 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6655 6656 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6657 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6658 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6659 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6660 6661 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6662 result = _gvn.transform(new XorINode(crc, result)); 6663 result = _gvn.transform(new XorINode(result, M1)); 6664 set_result(result); 6665 return true; 6666 } 6667 6668 /** 6669 * Calculate CRC32 for byte[] array. 6670 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6671 */ 6672 bool LibraryCallKit::inline_updateBytesCRC32() { 6673 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6674 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6675 // no receiver since it is static method 6676 Node* crc = argument(0); // type: int 6677 Node* src = argument(1); // type: oop 6678 Node* offset = argument(2); // type: int 6679 Node* length = argument(3); // type: int 6680 6681 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6682 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6683 // failed array check 6684 return false; 6685 } 6686 6687 // Figure out the size and type of the elements we will be copying. 6688 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6689 if (src_elem != T_BYTE) { 6690 return false; 6691 } 6692 6693 // 'src_start' points to src array + scaled offset 6694 src = must_be_not_null(src, true); 6695 Node* src_start = array_element_address(src, offset, src_elem); 6696 6697 // We assume that range check is done by caller. 6698 // TODO: generate range check (offset+length < src.length) in debug VM. 6699 6700 // Call the stub. 6701 address stubAddr = StubRoutines::updateBytesCRC32(); 6702 const char *stubName = "updateBytesCRC32"; 6703 6704 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6705 stubAddr, stubName, TypePtr::BOTTOM, 6706 crc, src_start, length); 6707 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6708 set_result(result); 6709 return true; 6710 } 6711 6712 /** 6713 * Calculate CRC32 for ByteBuffer. 6714 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6715 */ 6716 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6717 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6718 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6719 // no receiver since it is static method 6720 Node* crc = argument(0); // type: int 6721 Node* src = argument(1); // type: long 6722 Node* offset = argument(3); // type: int 6723 Node* length = argument(4); // type: int 6724 6725 src = ConvL2X(src); // adjust Java long to machine word 6726 Node* base = _gvn.transform(new CastX2PNode(src)); 6727 offset = ConvI2X(offset); 6728 6729 // 'src_start' points to src array + scaled offset 6730 Node* src_start = basic_plus_adr(top(), base, offset); 6731 6732 // Call the stub. 6733 address stubAddr = StubRoutines::updateBytesCRC32(); 6734 const char *stubName = "updateBytesCRC32"; 6735 6736 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6737 stubAddr, stubName, TypePtr::BOTTOM, 6738 crc, src_start, length); 6739 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6740 set_result(result); 6741 return true; 6742 } 6743 6744 //------------------------------get_table_from_crc32c_class----------------------- 6745 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6746 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6747 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6748 6749 return table; 6750 } 6751 6752 //------------------------------inline_updateBytesCRC32C----------------------- 6753 // 6754 // Calculate CRC32C for byte[] array. 6755 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6756 // 6757 bool LibraryCallKit::inline_updateBytesCRC32C() { 6758 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6759 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6760 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6761 // no receiver since it is a static method 6762 Node* crc = argument(0); // type: int 6763 Node* src = argument(1); // type: oop 6764 Node* offset = argument(2); // type: int 6765 Node* end = argument(3); // type: int 6766 6767 Node* length = _gvn.transform(new SubINode(end, offset)); 6768 6769 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6770 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6771 // failed array check 6772 return false; 6773 } 6774 6775 // Figure out the size and type of the elements we will be copying. 6776 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6777 if (src_elem != T_BYTE) { 6778 return false; 6779 } 6780 6781 // 'src_start' points to src array + scaled offset 6782 src = must_be_not_null(src, true); 6783 Node* src_start = array_element_address(src, offset, src_elem); 6784 6785 // static final int[] byteTable in class CRC32C 6786 Node* table = get_table_from_crc32c_class(callee()->holder()); 6787 table = must_be_not_null(table, true); 6788 Node* table_start = array_element_address(table, intcon(0), T_INT); 6789 6790 // We assume that range check is done by caller. 6791 // TODO: generate range check (offset+length < src.length) in debug VM. 6792 6793 // Call the stub. 6794 address stubAddr = StubRoutines::updateBytesCRC32C(); 6795 const char *stubName = "updateBytesCRC32C"; 6796 6797 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6798 stubAddr, stubName, TypePtr::BOTTOM, 6799 crc, src_start, length, table_start); 6800 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6801 set_result(result); 6802 return true; 6803 } 6804 6805 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6806 // 6807 // Calculate CRC32C for DirectByteBuffer. 6808 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6809 // 6810 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6811 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6812 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6813 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6814 // no receiver since it is a static method 6815 Node* crc = argument(0); // type: int 6816 Node* src = argument(1); // type: long 6817 Node* offset = argument(3); // type: int 6818 Node* end = argument(4); // type: int 6819 6820 Node* length = _gvn.transform(new SubINode(end, offset)); 6821 6822 src = ConvL2X(src); // adjust Java long to machine word 6823 Node* base = _gvn.transform(new CastX2PNode(src)); 6824 offset = ConvI2X(offset); 6825 6826 // 'src_start' points to src array + scaled offset 6827 Node* src_start = basic_plus_adr(top(), base, offset); 6828 6829 // static final int[] byteTable in class CRC32C 6830 Node* table = get_table_from_crc32c_class(callee()->holder()); 6831 table = must_be_not_null(table, true); 6832 Node* table_start = array_element_address(table, intcon(0), T_INT); 6833 6834 // Call the stub. 6835 address stubAddr = StubRoutines::updateBytesCRC32C(); 6836 const char *stubName = "updateBytesCRC32C"; 6837 6838 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6839 stubAddr, stubName, TypePtr::BOTTOM, 6840 crc, src_start, length, table_start); 6841 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6842 set_result(result); 6843 return true; 6844 } 6845 6846 //------------------------------inline_updateBytesAdler32---------------------- 6847 // 6848 // Calculate Adler32 checksum for byte[] array. 6849 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6850 // 6851 bool LibraryCallKit::inline_updateBytesAdler32() { 6852 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6853 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6854 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6855 // no receiver since it is static method 6856 Node* crc = argument(0); // type: int 6857 Node* src = argument(1); // type: oop 6858 Node* offset = argument(2); // type: int 6859 Node* length = argument(3); // type: int 6860 6861 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6862 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6863 // failed array check 6864 return false; 6865 } 6866 6867 // Figure out the size and type of the elements we will be copying. 6868 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6869 if (src_elem != T_BYTE) { 6870 return false; 6871 } 6872 6873 // 'src_start' points to src array + scaled offset 6874 Node* src_start = array_element_address(src, offset, src_elem); 6875 6876 // We assume that range check is done by caller. 6877 // TODO: generate range check (offset+length < src.length) in debug VM. 6878 6879 // Call the stub. 6880 address stubAddr = StubRoutines::updateBytesAdler32(); 6881 const char *stubName = "updateBytesAdler32"; 6882 6883 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6884 stubAddr, stubName, TypePtr::BOTTOM, 6885 crc, src_start, length); 6886 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6887 set_result(result); 6888 return true; 6889 } 6890 6891 //------------------------------inline_updateByteBufferAdler32--------------- 6892 // 6893 // Calculate Adler32 checksum for DirectByteBuffer. 6894 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6895 // 6896 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6897 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6898 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6899 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6900 // no receiver since it is static method 6901 Node* crc = argument(0); // type: int 6902 Node* src = argument(1); // type: long 6903 Node* offset = argument(3); // type: int 6904 Node* length = argument(4); // type: int 6905 6906 src = ConvL2X(src); // adjust Java long to machine word 6907 Node* base = _gvn.transform(new CastX2PNode(src)); 6908 offset = ConvI2X(offset); 6909 6910 // 'src_start' points to src array + scaled offset 6911 Node* src_start = basic_plus_adr(top(), base, offset); 6912 6913 // Call the stub. 6914 address stubAddr = StubRoutines::updateBytesAdler32(); 6915 const char *stubName = "updateBytesAdler32"; 6916 6917 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6918 stubAddr, stubName, TypePtr::BOTTOM, 6919 crc, src_start, length); 6920 6921 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6922 set_result(result); 6923 return true; 6924 } 6925 6926 //----------------------------inline_reference_get0---------------------------- 6927 // public T java.lang.ref.Reference.get(); 6928 bool LibraryCallKit::inline_reference_get0() { 6929 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6930 6931 // Get the argument: 6932 Node* reference_obj = null_check_receiver(); 6933 if (stopped()) return true; 6934 6935 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6936 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6937 decorators, /*is_static*/ false, nullptr); 6938 if (result == nullptr) return false; 6939 6940 // Add memory barrier to prevent commoning reads from this field 6941 // across safepoint since GC can change its value. 6942 insert_mem_bar(Op_MemBarCPUOrder); 6943 6944 set_result(result); 6945 return true; 6946 } 6947 6948 //----------------------------inline_reference_refersTo0---------------------------- 6949 // bool java.lang.ref.Reference.refersTo0(); 6950 // bool java.lang.ref.PhantomReference.refersTo0(); 6951 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6952 // Get arguments: 6953 Node* reference_obj = null_check_receiver(); 6954 Node* other_obj = argument(1); 6955 if (stopped()) return true; 6956 6957 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6958 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6959 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6960 decorators, /*is_static*/ false, nullptr); 6961 if (referent == nullptr) return false; 6962 6963 // Add memory barrier to prevent commoning reads from this field 6964 // across safepoint since GC can change its value. 6965 insert_mem_bar(Op_MemBarCPUOrder); 6966 6967 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6968 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6969 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6970 6971 RegionNode* region = new RegionNode(3); 6972 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6973 6974 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6975 region->init_req(1, if_true); 6976 phi->init_req(1, intcon(1)); 6977 6978 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6979 region->init_req(2, if_false); 6980 phi->init_req(2, intcon(0)); 6981 6982 set_control(_gvn.transform(region)); 6983 record_for_igvn(region); 6984 set_result(_gvn.transform(phi)); 6985 return true; 6986 } 6987 6988 //----------------------------inline_reference_clear0---------------------------- 6989 // void java.lang.ref.Reference.clear0(); 6990 // void java.lang.ref.PhantomReference.clear0(); 6991 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 6992 // This matches the implementation in JVM_ReferenceClear, see the comments there. 6993 6994 // Get arguments 6995 Node* reference_obj = null_check_receiver(); 6996 if (stopped()) return true; 6997 6998 // Common access parameters 6999 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7000 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7001 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 7002 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 7003 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 7004 7005 Node* referent = access_load_at(reference_obj, 7006 referent_field_addr, 7007 referent_field_addr_type, 7008 val_type, 7009 T_OBJECT, 7010 decorators); 7011 7012 IdealKit ideal(this); 7013 #define __ ideal. 7014 __ if_then(referent, BoolTest::ne, null()); 7015 sync_kit(ideal); 7016 access_store_at(reference_obj, 7017 referent_field_addr, 7018 referent_field_addr_type, 7019 null(), 7020 val_type, 7021 T_OBJECT, 7022 decorators); 7023 __ sync_kit(this); 7024 __ end_if(); 7025 final_sync(ideal); 7026 #undef __ 7027 7028 return true; 7029 } 7030 7031 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7032 DecoratorSet decorators, bool is_static, 7033 ciInstanceKlass* fromKls) { 7034 if (fromKls == nullptr) { 7035 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7036 assert(tinst != nullptr, "obj is null"); 7037 assert(tinst->is_loaded(), "obj is not loaded"); 7038 fromKls = tinst->instance_klass(); 7039 } else { 7040 assert(is_static, "only for static field access"); 7041 } 7042 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7043 ciSymbol::make(fieldTypeString), 7044 is_static); 7045 7046 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7047 if (field == nullptr) return (Node *) nullptr; 7048 7049 if (is_static) { 7050 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7051 fromObj = makecon(tip); 7052 } 7053 7054 // Next code copied from Parse::do_get_xxx(): 7055 7056 // Compute address and memory type. 7057 int offset = field->offset_in_bytes(); 7058 bool is_vol = field->is_volatile(); 7059 ciType* field_klass = field->type(); 7060 assert(field_klass->is_loaded(), "should be loaded"); 7061 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7062 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7063 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7064 "slice of address and input slice don't match"); 7065 BasicType bt = field->layout_type(); 7066 7067 // Build the resultant type of the load 7068 const Type *type; 7069 if (bt == T_OBJECT) { 7070 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7071 } else { 7072 type = Type::get_const_basic_type(bt); 7073 } 7074 7075 if (is_vol) { 7076 decorators |= MO_SEQ_CST; 7077 } 7078 7079 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7080 } 7081 7082 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7083 bool is_exact /* true */, bool is_static /* false */, 7084 ciInstanceKlass * fromKls /* nullptr */) { 7085 if (fromKls == nullptr) { 7086 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7087 assert(tinst != nullptr, "obj is null"); 7088 assert(tinst->is_loaded(), "obj is not loaded"); 7089 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7090 fromKls = tinst->instance_klass(); 7091 } 7092 else { 7093 assert(is_static, "only for static field access"); 7094 } 7095 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7096 ciSymbol::make(fieldTypeString), 7097 is_static); 7098 7099 assert(field != nullptr, "undefined field"); 7100 assert(!field->is_volatile(), "not defined for volatile fields"); 7101 7102 if (is_static) { 7103 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7104 fromObj = makecon(tip); 7105 } 7106 7107 // Next code copied from Parse::do_get_xxx(): 7108 7109 // Compute address and memory type. 7110 int offset = field->offset_in_bytes(); 7111 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7112 7113 return adr; 7114 } 7115 7116 //------------------------------inline_aescrypt_Block----------------------- 7117 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7118 address stubAddr = nullptr; 7119 const char *stubName; 7120 assert(UseAES, "need AES instruction support"); 7121 7122 switch(id) { 7123 case vmIntrinsics::_aescrypt_encryptBlock: 7124 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7125 stubName = "aescrypt_encryptBlock"; 7126 break; 7127 case vmIntrinsics::_aescrypt_decryptBlock: 7128 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7129 stubName = "aescrypt_decryptBlock"; 7130 break; 7131 default: 7132 break; 7133 } 7134 if (stubAddr == nullptr) return false; 7135 7136 Node* aescrypt_object = argument(0); 7137 Node* src = argument(1); 7138 Node* src_offset = argument(2); 7139 Node* dest = argument(3); 7140 Node* dest_offset = argument(4); 7141 7142 src = must_be_not_null(src, true); 7143 dest = must_be_not_null(dest, true); 7144 7145 // (1) src and dest are arrays. 7146 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7147 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7148 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7149 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7150 7151 // for the quick and dirty code we will skip all the checks. 7152 // we are just trying to get the call to be generated. 7153 Node* src_start = src; 7154 Node* dest_start = dest; 7155 if (src_offset != nullptr || dest_offset != nullptr) { 7156 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7157 src_start = array_element_address(src, src_offset, T_BYTE); 7158 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7159 } 7160 7161 // now need to get the start of its expanded key array 7162 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7163 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7164 if (k_start == nullptr) return false; 7165 7166 // Call the stub. 7167 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7168 stubAddr, stubName, TypePtr::BOTTOM, 7169 src_start, dest_start, k_start); 7170 7171 return true; 7172 } 7173 7174 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7175 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7176 address stubAddr = nullptr; 7177 const char *stubName = nullptr; 7178 7179 assert(UseAES, "need AES instruction support"); 7180 7181 switch(id) { 7182 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7183 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7184 stubName = "cipherBlockChaining_encryptAESCrypt"; 7185 break; 7186 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7187 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7188 stubName = "cipherBlockChaining_decryptAESCrypt"; 7189 break; 7190 default: 7191 break; 7192 } 7193 if (stubAddr == nullptr) return false; 7194 7195 Node* cipherBlockChaining_object = argument(0); 7196 Node* src = argument(1); 7197 Node* src_offset = argument(2); 7198 Node* len = argument(3); 7199 Node* dest = argument(4); 7200 Node* dest_offset = argument(5); 7201 7202 src = must_be_not_null(src, false); 7203 dest = must_be_not_null(dest, false); 7204 7205 // (1) src and dest are arrays. 7206 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7207 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7208 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7209 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7210 7211 // checks are the responsibility of the caller 7212 Node* src_start = src; 7213 Node* dest_start = dest; 7214 if (src_offset != nullptr || dest_offset != nullptr) { 7215 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7216 src_start = array_element_address(src, src_offset, T_BYTE); 7217 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7218 } 7219 7220 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7221 // (because of the predicated logic executed earlier). 7222 // so we cast it here safely. 7223 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7224 7225 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7226 if (embeddedCipherObj == nullptr) return false; 7227 7228 // cast it to what we know it will be at runtime 7229 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7230 assert(tinst != nullptr, "CBC obj is null"); 7231 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7232 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7233 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7234 7235 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7236 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7237 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7238 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7239 aescrypt_object = _gvn.transform(aescrypt_object); 7240 7241 // we need to get the start of the aescrypt_object's expanded key array 7242 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7243 if (k_start == nullptr) return false; 7244 7245 // similarly, get the start address of the r vector 7246 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7247 if (objRvec == nullptr) return false; 7248 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7249 7250 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7251 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7252 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7253 stubAddr, stubName, TypePtr::BOTTOM, 7254 src_start, dest_start, k_start, r_start, len); 7255 7256 // return cipher length (int) 7257 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7258 set_result(retvalue); 7259 return true; 7260 } 7261 7262 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7263 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7264 address stubAddr = nullptr; 7265 const char *stubName = nullptr; 7266 7267 assert(UseAES, "need AES instruction support"); 7268 7269 switch (id) { 7270 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7271 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7272 stubName = "electronicCodeBook_encryptAESCrypt"; 7273 break; 7274 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7275 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7276 stubName = "electronicCodeBook_decryptAESCrypt"; 7277 break; 7278 default: 7279 break; 7280 } 7281 7282 if (stubAddr == nullptr) return false; 7283 7284 Node* electronicCodeBook_object = argument(0); 7285 Node* src = argument(1); 7286 Node* src_offset = argument(2); 7287 Node* len = argument(3); 7288 Node* dest = argument(4); 7289 Node* dest_offset = argument(5); 7290 7291 // (1) src and dest are arrays. 7292 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7293 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7294 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7295 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7296 7297 // checks are the responsibility of the caller 7298 Node* src_start = src; 7299 Node* dest_start = dest; 7300 if (src_offset != nullptr || dest_offset != nullptr) { 7301 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7302 src_start = array_element_address(src, src_offset, T_BYTE); 7303 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7304 } 7305 7306 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7307 // (because of the predicated logic executed earlier). 7308 // so we cast it here safely. 7309 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7310 7311 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7312 if (embeddedCipherObj == nullptr) return false; 7313 7314 // cast it to what we know it will be at runtime 7315 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7316 assert(tinst != nullptr, "ECB obj is null"); 7317 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7318 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7319 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7320 7321 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7322 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7323 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7324 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7325 aescrypt_object = _gvn.transform(aescrypt_object); 7326 7327 // we need to get the start of the aescrypt_object's expanded key array 7328 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7329 if (k_start == nullptr) return false; 7330 7331 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7332 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7333 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7334 stubAddr, stubName, TypePtr::BOTTOM, 7335 src_start, dest_start, k_start, len); 7336 7337 // return cipher length (int) 7338 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7339 set_result(retvalue); 7340 return true; 7341 } 7342 7343 //------------------------------inline_counterMode_AESCrypt----------------------- 7344 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7345 assert(UseAES, "need AES instruction support"); 7346 if (!UseAESCTRIntrinsics) return false; 7347 7348 address stubAddr = nullptr; 7349 const char *stubName = nullptr; 7350 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7351 stubAddr = StubRoutines::counterMode_AESCrypt(); 7352 stubName = "counterMode_AESCrypt"; 7353 } 7354 if (stubAddr == nullptr) return false; 7355 7356 Node* counterMode_object = argument(0); 7357 Node* src = argument(1); 7358 Node* src_offset = argument(2); 7359 Node* len = argument(3); 7360 Node* dest = argument(4); 7361 Node* dest_offset = argument(5); 7362 7363 // (1) src and dest are arrays. 7364 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7365 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7366 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7367 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7368 7369 // checks are the responsibility of the caller 7370 Node* src_start = src; 7371 Node* dest_start = dest; 7372 if (src_offset != nullptr || dest_offset != nullptr) { 7373 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7374 src_start = array_element_address(src, src_offset, T_BYTE); 7375 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7376 } 7377 7378 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7379 // (because of the predicated logic executed earlier). 7380 // so we cast it here safely. 7381 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7382 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7383 if (embeddedCipherObj == nullptr) return false; 7384 // cast it to what we know it will be at runtime 7385 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7386 assert(tinst != nullptr, "CTR obj is null"); 7387 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7388 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7389 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7390 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7391 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7392 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7393 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7394 aescrypt_object = _gvn.transform(aescrypt_object); 7395 // we need to get the start of the aescrypt_object's expanded key array 7396 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7397 if (k_start == nullptr) return false; 7398 // similarly, get the start address of the r vector 7399 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7400 if (obj_counter == nullptr) return false; 7401 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7402 7403 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7404 if (saved_encCounter == nullptr) return false; 7405 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7406 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7407 7408 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7409 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7410 OptoRuntime::counterMode_aescrypt_Type(), 7411 stubAddr, stubName, TypePtr::BOTTOM, 7412 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7413 7414 // return cipher length (int) 7415 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7416 set_result(retvalue); 7417 return true; 7418 } 7419 7420 //------------------------------get_key_start_from_aescrypt_object----------------------- 7421 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7422 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7423 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7424 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7425 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7426 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7427 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7428 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7429 if (objSessionK == nullptr) { 7430 return (Node *) nullptr; 7431 } 7432 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7433 #else 7434 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7435 #endif // PPC64 7436 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7437 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7438 7439 // now have the array, need to get the start address of the K array 7440 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7441 return k_start; 7442 } 7443 7444 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7445 // Return node representing slow path of predicate check. 7446 // the pseudo code we want to emulate with this predicate is: 7447 // for encryption: 7448 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7449 // for decryption: 7450 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7451 // note cipher==plain is more conservative than the original java code but that's OK 7452 // 7453 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7454 // The receiver was checked for null already. 7455 Node* objCBC = argument(0); 7456 7457 Node* src = argument(1); 7458 Node* dest = argument(4); 7459 7460 // Load embeddedCipher field of CipherBlockChaining object. 7461 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7462 7463 // get AESCrypt klass for instanceOf check 7464 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7465 // will have same classloader as CipherBlockChaining object 7466 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7467 assert(tinst != nullptr, "CBCobj is null"); 7468 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7469 7470 // we want to do an instanceof comparison against the AESCrypt class 7471 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7472 if (!klass_AESCrypt->is_loaded()) { 7473 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7474 Node* ctrl = control(); 7475 set_control(top()); // no regular fast path 7476 return ctrl; 7477 } 7478 7479 src = must_be_not_null(src, true); 7480 dest = must_be_not_null(dest, true); 7481 7482 // Resolve oops to stable for CmpP below. 7483 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7484 7485 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7486 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7487 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7488 7489 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7490 7491 // for encryption, we are done 7492 if (!decrypting) 7493 return instof_false; // even if it is null 7494 7495 // for decryption, we need to add a further check to avoid 7496 // taking the intrinsic path when cipher and plain are the same 7497 // see the original java code for why. 7498 RegionNode* region = new RegionNode(3); 7499 region->init_req(1, instof_false); 7500 7501 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7502 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7503 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7504 region->init_req(2, src_dest_conjoint); 7505 7506 record_for_igvn(region); 7507 return _gvn.transform(region); 7508 } 7509 7510 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7511 // Return node representing slow path of predicate check. 7512 // the pseudo code we want to emulate with this predicate is: 7513 // for encryption: 7514 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7515 // for decryption: 7516 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7517 // note cipher==plain is more conservative than the original java code but that's OK 7518 // 7519 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7520 // The receiver was checked for null already. 7521 Node* objECB = argument(0); 7522 7523 // Load embeddedCipher field of ElectronicCodeBook object. 7524 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7525 7526 // get AESCrypt klass for instanceOf check 7527 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7528 // will have same classloader as ElectronicCodeBook object 7529 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7530 assert(tinst != nullptr, "ECBobj is null"); 7531 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7532 7533 // we want to do an instanceof comparison against the AESCrypt class 7534 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7535 if (!klass_AESCrypt->is_loaded()) { 7536 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7537 Node* ctrl = control(); 7538 set_control(top()); // no regular fast path 7539 return ctrl; 7540 } 7541 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7542 7543 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7544 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7545 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7546 7547 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7548 7549 // for encryption, we are done 7550 if (!decrypting) 7551 return instof_false; // even if it is null 7552 7553 // for decryption, we need to add a further check to avoid 7554 // taking the intrinsic path when cipher and plain are the same 7555 // see the original java code for why. 7556 RegionNode* region = new RegionNode(3); 7557 region->init_req(1, instof_false); 7558 Node* src = argument(1); 7559 Node* dest = argument(4); 7560 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7561 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7562 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7563 region->init_req(2, src_dest_conjoint); 7564 7565 record_for_igvn(region); 7566 return _gvn.transform(region); 7567 } 7568 7569 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7570 // Return node representing slow path of predicate check. 7571 // the pseudo code we want to emulate with this predicate is: 7572 // for encryption: 7573 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7574 // for decryption: 7575 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7576 // note cipher==plain is more conservative than the original java code but that's OK 7577 // 7578 7579 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7580 // The receiver was checked for null already. 7581 Node* objCTR = argument(0); 7582 7583 // Load embeddedCipher field of CipherBlockChaining object. 7584 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7585 7586 // get AESCrypt klass for instanceOf check 7587 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7588 // will have same classloader as CipherBlockChaining object 7589 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7590 assert(tinst != nullptr, "CTRobj is null"); 7591 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7592 7593 // we want to do an instanceof comparison against the AESCrypt class 7594 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7595 if (!klass_AESCrypt->is_loaded()) { 7596 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7597 Node* ctrl = control(); 7598 set_control(top()); // no regular fast path 7599 return ctrl; 7600 } 7601 7602 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7603 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7604 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7605 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7606 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7607 7608 return instof_false; // even if it is null 7609 } 7610 7611 //------------------------------inline_ghash_processBlocks 7612 bool LibraryCallKit::inline_ghash_processBlocks() { 7613 address stubAddr; 7614 const char *stubName; 7615 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7616 7617 stubAddr = StubRoutines::ghash_processBlocks(); 7618 stubName = "ghash_processBlocks"; 7619 7620 Node* data = argument(0); 7621 Node* offset = argument(1); 7622 Node* len = argument(2); 7623 Node* state = argument(3); 7624 Node* subkeyH = argument(4); 7625 7626 state = must_be_not_null(state, true); 7627 subkeyH = must_be_not_null(subkeyH, true); 7628 data = must_be_not_null(data, true); 7629 7630 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7631 assert(state_start, "state is null"); 7632 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7633 assert(subkeyH_start, "subkeyH is null"); 7634 Node* data_start = array_element_address(data, offset, T_BYTE); 7635 assert(data_start, "data is null"); 7636 7637 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7638 OptoRuntime::ghash_processBlocks_Type(), 7639 stubAddr, stubName, TypePtr::BOTTOM, 7640 state_start, subkeyH_start, data_start, len); 7641 return true; 7642 } 7643 7644 //------------------------------inline_chacha20Block 7645 bool LibraryCallKit::inline_chacha20Block() { 7646 address stubAddr; 7647 const char *stubName; 7648 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7649 7650 stubAddr = StubRoutines::chacha20Block(); 7651 stubName = "chacha20Block"; 7652 7653 Node* state = argument(0); 7654 Node* result = argument(1); 7655 7656 state = must_be_not_null(state, true); 7657 result = must_be_not_null(result, true); 7658 7659 Node* state_start = array_element_address(state, intcon(0), T_INT); 7660 assert(state_start, "state is null"); 7661 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7662 assert(result_start, "result is null"); 7663 7664 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7665 OptoRuntime::chacha20Block_Type(), 7666 stubAddr, stubName, TypePtr::BOTTOM, 7667 state_start, result_start); 7668 // return key stream length (int) 7669 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7670 set_result(retvalue); 7671 return true; 7672 } 7673 7674 //------------------------------inline_kyberNtt 7675 bool LibraryCallKit::inline_kyberNtt() { 7676 address stubAddr; 7677 const char *stubName; 7678 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7679 assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters"); 7680 7681 stubAddr = StubRoutines::kyberNtt(); 7682 stubName = "kyberNtt"; 7683 if (!stubAddr) return false; 7684 7685 Node* coeffs = argument(0); 7686 Node* ntt_zetas = argument(1); 7687 7688 coeffs = must_be_not_null(coeffs, true); 7689 ntt_zetas = must_be_not_null(ntt_zetas, true); 7690 7691 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7692 assert(coeffs_start, "coeffs is null"); 7693 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_SHORT); 7694 assert(ntt_zetas_start, "ntt_zetas is null"); 7695 Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7696 OptoRuntime::kyberNtt_Type(), 7697 stubAddr, stubName, TypePtr::BOTTOM, 7698 coeffs_start, ntt_zetas_start); 7699 // return an int 7700 Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms)); 7701 set_result(retvalue); 7702 return true; 7703 } 7704 7705 //------------------------------inline_kyberInverseNtt 7706 bool LibraryCallKit::inline_kyberInverseNtt() { 7707 address stubAddr; 7708 const char *stubName; 7709 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7710 assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters"); 7711 7712 stubAddr = StubRoutines::kyberInverseNtt(); 7713 stubName = "kyberInverseNtt"; 7714 if (!stubAddr) return false; 7715 7716 Node* coeffs = argument(0); 7717 Node* zetas = argument(1); 7718 7719 coeffs = must_be_not_null(coeffs, true); 7720 zetas = must_be_not_null(zetas, true); 7721 7722 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7723 assert(coeffs_start, "coeffs is null"); 7724 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 7725 assert(zetas_start, "inverseNtt_zetas is null"); 7726 Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7727 OptoRuntime::kyberInverseNtt_Type(), 7728 stubAddr, stubName, TypePtr::BOTTOM, 7729 coeffs_start, zetas_start); 7730 7731 // return an int 7732 Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms)); 7733 set_result(retvalue); 7734 return true; 7735 } 7736 7737 //------------------------------inline_kyberNttMult 7738 bool LibraryCallKit::inline_kyberNttMult() { 7739 address stubAddr; 7740 const char *stubName; 7741 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7742 assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters"); 7743 7744 stubAddr = StubRoutines::kyberNttMult(); 7745 stubName = "kyberNttMult"; 7746 if (!stubAddr) return false; 7747 7748 Node* result = argument(0); 7749 Node* ntta = argument(1); 7750 Node* nttb = argument(2); 7751 Node* zetas = argument(3); 7752 7753 result = must_be_not_null(result, true); 7754 ntta = must_be_not_null(ntta, true); 7755 nttb = must_be_not_null(nttb, true); 7756 zetas = must_be_not_null(zetas, true); 7757 7758 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7759 assert(result_start, "result is null"); 7760 Node* ntta_start = array_element_address(ntta, intcon(0), T_SHORT); 7761 assert(ntta_start, "ntta is null"); 7762 Node* nttb_start = array_element_address(nttb, intcon(0), T_SHORT); 7763 assert(nttb_start, "nttb is null"); 7764 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 7765 assert(zetas_start, "nttMult_zetas is null"); 7766 Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7767 OptoRuntime::kyberNttMult_Type(), 7768 stubAddr, stubName, TypePtr::BOTTOM, 7769 result_start, ntta_start, nttb_start, 7770 zetas_start); 7771 7772 // return an int 7773 Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms)); 7774 set_result(retvalue); 7775 7776 return true; 7777 } 7778 7779 //------------------------------inline_kyberAddPoly_2 7780 bool LibraryCallKit::inline_kyberAddPoly_2() { 7781 address stubAddr; 7782 const char *stubName; 7783 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7784 assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters"); 7785 7786 stubAddr = StubRoutines::kyberAddPoly_2(); 7787 stubName = "kyberAddPoly_2"; 7788 if (!stubAddr) return false; 7789 7790 Node* result = argument(0); 7791 Node* a = argument(1); 7792 Node* b = argument(2); 7793 7794 result = must_be_not_null(result, true); 7795 a = must_be_not_null(a, true); 7796 b = must_be_not_null(b, true); 7797 7798 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7799 assert(result_start, "result is null"); 7800 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 7801 assert(a_start, "a is null"); 7802 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 7803 assert(b_start, "b is null"); 7804 Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP, 7805 OptoRuntime::kyberAddPoly_2_Type(), 7806 stubAddr, stubName, TypePtr::BOTTOM, 7807 result_start, a_start, b_start); 7808 // return an int 7809 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms)); 7810 set_result(retvalue); 7811 return true; 7812 } 7813 7814 //------------------------------inline_kyberAddPoly_3 7815 bool LibraryCallKit::inline_kyberAddPoly_3() { 7816 address stubAddr; 7817 const char *stubName; 7818 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7819 assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters"); 7820 7821 stubAddr = StubRoutines::kyberAddPoly_3(); 7822 stubName = "kyberAddPoly_3"; 7823 if (!stubAddr) return false; 7824 7825 Node* result = argument(0); 7826 Node* a = argument(1); 7827 Node* b = argument(2); 7828 Node* c = argument(3); 7829 7830 result = must_be_not_null(result, true); 7831 a = must_be_not_null(a, true); 7832 b = must_be_not_null(b, true); 7833 c = must_be_not_null(c, true); 7834 7835 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7836 assert(result_start, "result is null"); 7837 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 7838 assert(a_start, "a is null"); 7839 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 7840 assert(b_start, "b is null"); 7841 Node* c_start = array_element_address(c, intcon(0), T_SHORT); 7842 assert(c_start, "c is null"); 7843 Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP, 7844 OptoRuntime::kyberAddPoly_3_Type(), 7845 stubAddr, stubName, TypePtr::BOTTOM, 7846 result_start, a_start, b_start, c_start); 7847 // return an int 7848 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms)); 7849 set_result(retvalue); 7850 return true; 7851 } 7852 7853 //------------------------------inline_kyber12To16 7854 bool LibraryCallKit::inline_kyber12To16() { 7855 address stubAddr; 7856 const char *stubName; 7857 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7858 assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters"); 7859 7860 stubAddr = StubRoutines::kyber12To16(); 7861 stubName = "kyber12To16"; 7862 if (!stubAddr) return false; 7863 7864 Node* condensed = argument(0); 7865 Node* condensedOffs = argument(1); 7866 Node* parsed = argument(2); 7867 Node* parsedLength = argument(3); 7868 7869 condensed = must_be_not_null(condensed, true); 7870 parsed = must_be_not_null(parsed, true); 7871 7872 Node* condensed_start = array_element_address(condensed, intcon(0), T_BYTE); 7873 assert(condensed_start, "condensed is null"); 7874 Node* parsed_start = array_element_address(parsed, intcon(0), T_SHORT); 7875 assert(parsed_start, "parsed is null"); 7876 Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP, 7877 OptoRuntime::kyber12To16_Type(), 7878 stubAddr, stubName, TypePtr::BOTTOM, 7879 condensed_start, condensedOffs, parsed_start, parsedLength); 7880 // return an int 7881 Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms)); 7882 set_result(retvalue); 7883 return true; 7884 7885 } 7886 7887 //------------------------------inline_kyberBarrettReduce 7888 bool LibraryCallKit::inline_kyberBarrettReduce() { 7889 address stubAddr; 7890 const char *stubName; 7891 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7892 assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters"); 7893 7894 stubAddr = StubRoutines::kyberBarrettReduce(); 7895 stubName = "kyberBarrettReduce"; 7896 if (!stubAddr) return false; 7897 7898 Node* coeffs = argument(0); 7899 7900 coeffs = must_be_not_null(coeffs, true); 7901 7902 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7903 assert(coeffs_start, "coeffs is null"); 7904 Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP, 7905 OptoRuntime::kyberBarrettReduce_Type(), 7906 stubAddr, stubName, TypePtr::BOTTOM, 7907 coeffs_start); 7908 // return an int 7909 Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms)); 7910 set_result(retvalue); 7911 return true; 7912 } 7913 7914 //------------------------------inline_dilithiumAlmostNtt 7915 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 7916 address stubAddr; 7917 const char *stubName; 7918 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7919 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 7920 7921 stubAddr = StubRoutines::dilithiumAlmostNtt(); 7922 stubName = "dilithiumAlmostNtt"; 7923 if (!stubAddr) return false; 7924 7925 Node* coeffs = argument(0); 7926 Node* ntt_zetas = argument(1); 7927 7928 coeffs = must_be_not_null(coeffs, true); 7929 ntt_zetas = must_be_not_null(ntt_zetas, true); 7930 7931 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7932 assert(coeffs_start, "coeffs is null"); 7933 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 7934 assert(ntt_zetas_start, "ntt_zetas is null"); 7935 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7936 OptoRuntime::dilithiumAlmostNtt_Type(), 7937 stubAddr, stubName, TypePtr::BOTTOM, 7938 coeffs_start, ntt_zetas_start); 7939 // return an int 7940 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 7941 set_result(retvalue); 7942 return true; 7943 } 7944 7945 //------------------------------inline_dilithiumAlmostInverseNtt 7946 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 7947 address stubAddr; 7948 const char *stubName; 7949 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7950 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 7951 7952 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 7953 stubName = "dilithiumAlmostInverseNtt"; 7954 if (!stubAddr) return false; 7955 7956 Node* coeffs = argument(0); 7957 Node* zetas = argument(1); 7958 7959 coeffs = must_be_not_null(coeffs, true); 7960 zetas = must_be_not_null(zetas, true); 7961 7962 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7963 assert(coeffs_start, "coeffs is null"); 7964 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 7965 assert(zetas_start, "inverseNtt_zetas is null"); 7966 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7967 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 7968 stubAddr, stubName, TypePtr::BOTTOM, 7969 coeffs_start, zetas_start); 7970 // return an int 7971 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 7972 set_result(retvalue); 7973 return true; 7974 } 7975 7976 //------------------------------inline_dilithiumNttMult 7977 bool LibraryCallKit::inline_dilithiumNttMult() { 7978 address stubAddr; 7979 const char *stubName; 7980 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7981 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 7982 7983 stubAddr = StubRoutines::dilithiumNttMult(); 7984 stubName = "dilithiumNttMult"; 7985 if (!stubAddr) return false; 7986 7987 Node* result = argument(0); 7988 Node* ntta = argument(1); 7989 Node* nttb = argument(2); 7990 Node* zetas = argument(3); 7991 7992 result = must_be_not_null(result, true); 7993 ntta = must_be_not_null(ntta, true); 7994 nttb = must_be_not_null(nttb, true); 7995 zetas = must_be_not_null(zetas, true); 7996 7997 Node* result_start = array_element_address(result, intcon(0), T_INT); 7998 assert(result_start, "result is null"); 7999 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 8000 assert(ntta_start, "ntta is null"); 8001 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 8002 assert(nttb_start, "nttb is null"); 8003 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 8004 OptoRuntime::dilithiumNttMult_Type(), 8005 stubAddr, stubName, TypePtr::BOTTOM, 8006 result_start, ntta_start, nttb_start); 8007 8008 // return an int 8009 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 8010 set_result(retvalue); 8011 8012 return true; 8013 } 8014 8015 //------------------------------inline_dilithiumMontMulByConstant 8016 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 8017 address stubAddr; 8018 const char *stubName; 8019 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8020 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 8021 8022 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 8023 stubName = "dilithiumMontMulByConstant"; 8024 if (!stubAddr) return false; 8025 8026 Node* coeffs = argument(0); 8027 Node* constant = argument(1); 8028 8029 coeffs = must_be_not_null(coeffs, true); 8030 8031 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8032 assert(coeffs_start, "coeffs is null"); 8033 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 8034 OptoRuntime::dilithiumMontMulByConstant_Type(), 8035 stubAddr, stubName, TypePtr::BOTTOM, 8036 coeffs_start, constant); 8037 8038 // return an int 8039 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 8040 set_result(retvalue); 8041 return true; 8042 } 8043 8044 8045 //------------------------------inline_dilithiumDecomposePoly 8046 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 8047 address stubAddr; 8048 const char *stubName; 8049 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8050 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 8051 8052 stubAddr = StubRoutines::dilithiumDecomposePoly(); 8053 stubName = "dilithiumDecomposePoly"; 8054 if (!stubAddr) return false; 8055 8056 Node* input = argument(0); 8057 Node* lowPart = argument(1); 8058 Node* highPart = argument(2); 8059 Node* twoGamma2 = argument(3); 8060 Node* multiplier = argument(4); 8061 8062 input = must_be_not_null(input, true); 8063 lowPart = must_be_not_null(lowPart, true); 8064 highPart = must_be_not_null(highPart, true); 8065 8066 Node* input_start = array_element_address(input, intcon(0), T_INT); 8067 assert(input_start, "input is null"); 8068 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 8069 assert(lowPart_start, "lowPart is null"); 8070 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 8071 assert(highPart_start, "highPart is null"); 8072 8073 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 8074 OptoRuntime::dilithiumDecomposePoly_Type(), 8075 stubAddr, stubName, TypePtr::BOTTOM, 8076 input_start, lowPart_start, highPart_start, 8077 twoGamma2, multiplier); 8078 8079 // return an int 8080 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 8081 set_result(retvalue); 8082 return true; 8083 } 8084 8085 bool LibraryCallKit::inline_base64_encodeBlock() { 8086 address stubAddr; 8087 const char *stubName; 8088 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8089 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8090 stubAddr = StubRoutines::base64_encodeBlock(); 8091 stubName = "encodeBlock"; 8092 8093 if (!stubAddr) return false; 8094 Node* base64obj = argument(0); 8095 Node* src = argument(1); 8096 Node* offset = argument(2); 8097 Node* len = argument(3); 8098 Node* dest = argument(4); 8099 Node* dp = argument(5); 8100 Node* isURL = argument(6); 8101 8102 src = must_be_not_null(src, true); 8103 dest = must_be_not_null(dest, true); 8104 8105 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8106 assert(src_start, "source array is null"); 8107 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8108 assert(dest_start, "destination array is null"); 8109 8110 Node* base64 = make_runtime_call(RC_LEAF, 8111 OptoRuntime::base64_encodeBlock_Type(), 8112 stubAddr, stubName, TypePtr::BOTTOM, 8113 src_start, offset, len, dest_start, dp, isURL); 8114 return true; 8115 } 8116 8117 bool LibraryCallKit::inline_base64_decodeBlock() { 8118 address stubAddr; 8119 const char *stubName; 8120 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8121 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8122 stubAddr = StubRoutines::base64_decodeBlock(); 8123 stubName = "decodeBlock"; 8124 8125 if (!stubAddr) return false; 8126 Node* base64obj = argument(0); 8127 Node* src = argument(1); 8128 Node* src_offset = argument(2); 8129 Node* len = argument(3); 8130 Node* dest = argument(4); 8131 Node* dest_offset = argument(5); 8132 Node* isURL = argument(6); 8133 Node* isMIME = argument(7); 8134 8135 src = must_be_not_null(src, true); 8136 dest = must_be_not_null(dest, true); 8137 8138 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8139 assert(src_start, "source array is null"); 8140 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8141 assert(dest_start, "destination array is null"); 8142 8143 Node* call = make_runtime_call(RC_LEAF, 8144 OptoRuntime::base64_decodeBlock_Type(), 8145 stubAddr, stubName, TypePtr::BOTTOM, 8146 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8147 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8148 set_result(result); 8149 return true; 8150 } 8151 8152 bool LibraryCallKit::inline_poly1305_processBlocks() { 8153 address stubAddr; 8154 const char *stubName; 8155 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8156 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8157 stubAddr = StubRoutines::poly1305_processBlocks(); 8158 stubName = "poly1305_processBlocks"; 8159 8160 if (!stubAddr) return false; 8161 null_check_receiver(); // null-check receiver 8162 if (stopped()) return true; 8163 8164 Node* input = argument(1); 8165 Node* input_offset = argument(2); 8166 Node* len = argument(3); 8167 Node* alimbs = argument(4); 8168 Node* rlimbs = argument(5); 8169 8170 input = must_be_not_null(input, true); 8171 alimbs = must_be_not_null(alimbs, true); 8172 rlimbs = must_be_not_null(rlimbs, true); 8173 8174 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8175 assert(input_start, "input array is null"); 8176 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8177 assert(acc_start, "acc array is null"); 8178 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8179 assert(r_start, "r array is null"); 8180 8181 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8182 OptoRuntime::poly1305_processBlocks_Type(), 8183 stubAddr, stubName, TypePtr::BOTTOM, 8184 input_start, len, acc_start, r_start); 8185 return true; 8186 } 8187 8188 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8189 address stubAddr; 8190 const char *stubName; 8191 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8192 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8193 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8194 stubName = "intpoly_montgomeryMult_P256"; 8195 8196 if (!stubAddr) return false; 8197 null_check_receiver(); // null-check receiver 8198 if (stopped()) return true; 8199 8200 Node* a = argument(1); 8201 Node* b = argument(2); 8202 Node* r = argument(3); 8203 8204 a = must_be_not_null(a, true); 8205 b = must_be_not_null(b, true); 8206 r = must_be_not_null(r, true); 8207 8208 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8209 assert(a_start, "a array is null"); 8210 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8211 assert(b_start, "b array is null"); 8212 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8213 assert(r_start, "r array is null"); 8214 8215 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8216 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8217 stubAddr, stubName, TypePtr::BOTTOM, 8218 a_start, b_start, r_start); 8219 return true; 8220 } 8221 8222 bool LibraryCallKit::inline_intpoly_assign() { 8223 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8224 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8225 const char *stubName = "intpoly_assign"; 8226 address stubAddr = StubRoutines::intpoly_assign(); 8227 if (!stubAddr) return false; 8228 8229 Node* set = argument(0); 8230 Node* a = argument(1); 8231 Node* b = argument(2); 8232 Node* arr_length = load_array_length(a); 8233 8234 a = must_be_not_null(a, true); 8235 b = must_be_not_null(b, true); 8236 8237 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8238 assert(a_start, "a array is null"); 8239 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8240 assert(b_start, "b array is null"); 8241 8242 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8243 OptoRuntime::intpoly_assign_Type(), 8244 stubAddr, stubName, TypePtr::BOTTOM, 8245 set, a_start, b_start, arr_length); 8246 return true; 8247 } 8248 8249 //------------------------------inline_digestBase_implCompress----------------------- 8250 // 8251 // Calculate MD5 for single-block byte[] array. 8252 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8253 // 8254 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8255 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8256 // 8257 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8258 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8259 // 8260 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8261 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8262 // 8263 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8264 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8265 // 8266 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8267 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8268 8269 Node* digestBase_obj = argument(0); 8270 Node* src = argument(1); // type oop 8271 Node* ofs = argument(2); // type int 8272 8273 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8274 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8275 // failed array check 8276 return false; 8277 } 8278 // Figure out the size and type of the elements we will be copying. 8279 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8280 if (src_elem != T_BYTE) { 8281 return false; 8282 } 8283 // 'src_start' points to src array + offset 8284 src = must_be_not_null(src, true); 8285 Node* src_start = array_element_address(src, ofs, src_elem); 8286 Node* state = nullptr; 8287 Node* block_size = nullptr; 8288 address stubAddr; 8289 const char *stubName; 8290 8291 switch(id) { 8292 case vmIntrinsics::_md5_implCompress: 8293 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8294 state = get_state_from_digest_object(digestBase_obj, T_INT); 8295 stubAddr = StubRoutines::md5_implCompress(); 8296 stubName = "md5_implCompress"; 8297 break; 8298 case vmIntrinsics::_sha_implCompress: 8299 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8300 state = get_state_from_digest_object(digestBase_obj, T_INT); 8301 stubAddr = StubRoutines::sha1_implCompress(); 8302 stubName = "sha1_implCompress"; 8303 break; 8304 case vmIntrinsics::_sha2_implCompress: 8305 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8306 state = get_state_from_digest_object(digestBase_obj, T_INT); 8307 stubAddr = StubRoutines::sha256_implCompress(); 8308 stubName = "sha256_implCompress"; 8309 break; 8310 case vmIntrinsics::_sha5_implCompress: 8311 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8312 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8313 stubAddr = StubRoutines::sha512_implCompress(); 8314 stubName = "sha512_implCompress"; 8315 break; 8316 case vmIntrinsics::_sha3_implCompress: 8317 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8318 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8319 stubAddr = StubRoutines::sha3_implCompress(); 8320 stubName = "sha3_implCompress"; 8321 block_size = get_block_size_from_digest_object(digestBase_obj); 8322 if (block_size == nullptr) return false; 8323 break; 8324 default: 8325 fatal_unexpected_iid(id); 8326 return false; 8327 } 8328 if (state == nullptr) return false; 8329 8330 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8331 if (stubAddr == nullptr) return false; 8332 8333 // Call the stub. 8334 Node* call; 8335 if (block_size == nullptr) { 8336 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8337 stubAddr, stubName, TypePtr::BOTTOM, 8338 src_start, state); 8339 } else { 8340 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8341 stubAddr, stubName, TypePtr::BOTTOM, 8342 src_start, state, block_size); 8343 } 8344 8345 return true; 8346 } 8347 8348 //------------------------------inline_double_keccak 8349 bool LibraryCallKit::inline_double_keccak() { 8350 address stubAddr; 8351 const char *stubName; 8352 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8353 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8354 8355 stubAddr = StubRoutines::double_keccak(); 8356 stubName = "double_keccak"; 8357 if (!stubAddr) return false; 8358 8359 Node* status0 = argument(0); 8360 Node* status1 = argument(1); 8361 8362 status0 = must_be_not_null(status0, true); 8363 status1 = must_be_not_null(status1, true); 8364 8365 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8366 assert(status0_start, "status0 is null"); 8367 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8368 assert(status1_start, "status1 is null"); 8369 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8370 OptoRuntime::double_keccak_Type(), 8371 stubAddr, stubName, TypePtr::BOTTOM, 8372 status0_start, status1_start); 8373 // return an int 8374 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8375 set_result(retvalue); 8376 return true; 8377 } 8378 8379 8380 //------------------------------inline_digestBase_implCompressMB----------------------- 8381 // 8382 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8383 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8384 // 8385 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8386 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8387 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8388 assert((uint)predicate < 5, "sanity"); 8389 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8390 8391 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8392 Node* src = argument(1); // byte[] array 8393 Node* ofs = argument(2); // type int 8394 Node* limit = argument(3); // type int 8395 8396 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8397 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8398 // failed array check 8399 return false; 8400 } 8401 // Figure out the size and type of the elements we will be copying. 8402 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8403 if (src_elem != T_BYTE) { 8404 return false; 8405 } 8406 // 'src_start' points to src array + offset 8407 src = must_be_not_null(src, false); 8408 Node* src_start = array_element_address(src, ofs, src_elem); 8409 8410 const char* klass_digestBase_name = nullptr; 8411 const char* stub_name = nullptr; 8412 address stub_addr = nullptr; 8413 BasicType elem_type = T_INT; 8414 8415 switch (predicate) { 8416 case 0: 8417 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8418 klass_digestBase_name = "sun/security/provider/MD5"; 8419 stub_name = "md5_implCompressMB"; 8420 stub_addr = StubRoutines::md5_implCompressMB(); 8421 } 8422 break; 8423 case 1: 8424 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8425 klass_digestBase_name = "sun/security/provider/SHA"; 8426 stub_name = "sha1_implCompressMB"; 8427 stub_addr = StubRoutines::sha1_implCompressMB(); 8428 } 8429 break; 8430 case 2: 8431 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8432 klass_digestBase_name = "sun/security/provider/SHA2"; 8433 stub_name = "sha256_implCompressMB"; 8434 stub_addr = StubRoutines::sha256_implCompressMB(); 8435 } 8436 break; 8437 case 3: 8438 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8439 klass_digestBase_name = "sun/security/provider/SHA5"; 8440 stub_name = "sha512_implCompressMB"; 8441 stub_addr = StubRoutines::sha512_implCompressMB(); 8442 elem_type = T_LONG; 8443 } 8444 break; 8445 case 4: 8446 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8447 klass_digestBase_name = "sun/security/provider/SHA3"; 8448 stub_name = "sha3_implCompressMB"; 8449 stub_addr = StubRoutines::sha3_implCompressMB(); 8450 elem_type = T_LONG; 8451 } 8452 break; 8453 default: 8454 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8455 } 8456 if (klass_digestBase_name != nullptr) { 8457 assert(stub_addr != nullptr, "Stub is generated"); 8458 if (stub_addr == nullptr) return false; 8459 8460 // get DigestBase klass to lookup for SHA klass 8461 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8462 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8463 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8464 8465 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8466 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8467 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8468 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8469 } 8470 return false; 8471 } 8472 8473 //------------------------------inline_digestBase_implCompressMB----------------------- 8474 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8475 BasicType elem_type, address stubAddr, const char *stubName, 8476 Node* src_start, Node* ofs, Node* limit) { 8477 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8478 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8479 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8480 digest_obj = _gvn.transform(digest_obj); 8481 8482 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8483 if (state == nullptr) return false; 8484 8485 Node* block_size = nullptr; 8486 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8487 block_size = get_block_size_from_digest_object(digest_obj); 8488 if (block_size == nullptr) return false; 8489 } 8490 8491 // Call the stub. 8492 Node* call; 8493 if (block_size == nullptr) { 8494 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8495 OptoRuntime::digestBase_implCompressMB_Type(false), 8496 stubAddr, stubName, TypePtr::BOTTOM, 8497 src_start, state, ofs, limit); 8498 } else { 8499 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8500 OptoRuntime::digestBase_implCompressMB_Type(true), 8501 stubAddr, stubName, TypePtr::BOTTOM, 8502 src_start, state, block_size, ofs, limit); 8503 } 8504 8505 // return ofs (int) 8506 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8507 set_result(result); 8508 8509 return true; 8510 } 8511 8512 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8513 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8514 assert(UseAES, "need AES instruction support"); 8515 address stubAddr = nullptr; 8516 const char *stubName = nullptr; 8517 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8518 stubName = "galoisCounterMode_AESCrypt"; 8519 8520 if (stubAddr == nullptr) return false; 8521 8522 Node* in = argument(0); 8523 Node* inOfs = argument(1); 8524 Node* len = argument(2); 8525 Node* ct = argument(3); 8526 Node* ctOfs = argument(4); 8527 Node* out = argument(5); 8528 Node* outOfs = argument(6); 8529 Node* gctr_object = argument(7); 8530 Node* ghash_object = argument(8); 8531 8532 // (1) in, ct and out are arrays. 8533 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8534 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8535 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8536 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8537 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8538 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8539 8540 // checks are the responsibility of the caller 8541 Node* in_start = in; 8542 Node* ct_start = ct; 8543 Node* out_start = out; 8544 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8545 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8546 in_start = array_element_address(in, inOfs, T_BYTE); 8547 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8548 out_start = array_element_address(out, outOfs, T_BYTE); 8549 } 8550 8551 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8552 // (because of the predicated logic executed earlier). 8553 // so we cast it here safely. 8554 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8555 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8556 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8557 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8558 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8559 8560 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8561 return false; 8562 } 8563 // cast it to what we know it will be at runtime 8564 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8565 assert(tinst != nullptr, "GCTR obj is null"); 8566 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8567 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8568 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8569 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8570 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8571 const TypeOopPtr* xtype = aklass->as_instance_type(); 8572 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8573 aescrypt_object = _gvn.transform(aescrypt_object); 8574 // we need to get the start of the aescrypt_object's expanded key array 8575 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8576 if (k_start == nullptr) return false; 8577 // similarly, get the start address of the r vector 8578 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8579 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8580 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8581 8582 8583 // Call the stub, passing params 8584 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8585 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8586 stubAddr, stubName, TypePtr::BOTTOM, 8587 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8588 8589 // return cipher length (int) 8590 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8591 set_result(retvalue); 8592 8593 return true; 8594 } 8595 8596 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8597 // Return node representing slow path of predicate check. 8598 // the pseudo code we want to emulate with this predicate is: 8599 // for encryption: 8600 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8601 // for decryption: 8602 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8603 // note cipher==plain is more conservative than the original java code but that's OK 8604 // 8605 8606 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8607 // The receiver was checked for null already. 8608 Node* objGCTR = argument(7); 8609 // Load embeddedCipher field of GCTR object. 8610 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8611 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8612 8613 // get AESCrypt klass for instanceOf check 8614 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8615 // will have same classloader as CipherBlockChaining object 8616 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8617 assert(tinst != nullptr, "GCTR obj is null"); 8618 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8619 8620 // we want to do an instanceof comparison against the AESCrypt class 8621 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8622 if (!klass_AESCrypt->is_loaded()) { 8623 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8624 Node* ctrl = control(); 8625 set_control(top()); // no regular fast path 8626 return ctrl; 8627 } 8628 8629 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8630 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8631 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8632 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8633 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8634 8635 return instof_false; // even if it is null 8636 } 8637 8638 //------------------------------get_state_from_digest_object----------------------- 8639 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8640 const char* state_type; 8641 switch (elem_type) { 8642 case T_BYTE: state_type = "[B"; break; 8643 case T_INT: state_type = "[I"; break; 8644 case T_LONG: state_type = "[J"; break; 8645 default: ShouldNotReachHere(); 8646 } 8647 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8648 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8649 if (digest_state == nullptr) return (Node *) nullptr; 8650 8651 // now have the array, need to get the start address of the state array 8652 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8653 return state; 8654 } 8655 8656 //------------------------------get_block_size_from_sha3_object---------------------------------- 8657 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8658 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8659 assert (block_size != nullptr, "sanity"); 8660 return block_size; 8661 } 8662 8663 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8664 // Return node representing slow path of predicate check. 8665 // the pseudo code we want to emulate with this predicate is: 8666 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8667 // 8668 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8669 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8670 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8671 assert((uint)predicate < 5, "sanity"); 8672 8673 // The receiver was checked for null already. 8674 Node* digestBaseObj = argument(0); 8675 8676 // get DigestBase klass for instanceOf check 8677 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8678 assert(tinst != nullptr, "digestBaseObj is null"); 8679 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8680 8681 const char* klass_name = nullptr; 8682 switch (predicate) { 8683 case 0: 8684 if (UseMD5Intrinsics) { 8685 // we want to do an instanceof comparison against the MD5 class 8686 klass_name = "sun/security/provider/MD5"; 8687 } 8688 break; 8689 case 1: 8690 if (UseSHA1Intrinsics) { 8691 // we want to do an instanceof comparison against the SHA class 8692 klass_name = "sun/security/provider/SHA"; 8693 } 8694 break; 8695 case 2: 8696 if (UseSHA256Intrinsics) { 8697 // we want to do an instanceof comparison against the SHA2 class 8698 klass_name = "sun/security/provider/SHA2"; 8699 } 8700 break; 8701 case 3: 8702 if (UseSHA512Intrinsics) { 8703 // we want to do an instanceof comparison against the SHA5 class 8704 klass_name = "sun/security/provider/SHA5"; 8705 } 8706 break; 8707 case 4: 8708 if (UseSHA3Intrinsics) { 8709 // we want to do an instanceof comparison against the SHA3 class 8710 klass_name = "sun/security/provider/SHA3"; 8711 } 8712 break; 8713 default: 8714 fatal("unknown SHA intrinsic predicate: %d", predicate); 8715 } 8716 8717 ciKlass* klass = nullptr; 8718 if (klass_name != nullptr) { 8719 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8720 } 8721 if ((klass == nullptr) || !klass->is_loaded()) { 8722 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8723 Node* ctrl = control(); 8724 set_control(top()); // no intrinsic path 8725 return ctrl; 8726 } 8727 ciInstanceKlass* instklass = klass->as_instance_klass(); 8728 8729 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8730 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8731 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8732 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8733 8734 return instof_false; // even if it is null 8735 } 8736 8737 //-------------inline_fma----------------------------------- 8738 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8739 Node *a = nullptr; 8740 Node *b = nullptr; 8741 Node *c = nullptr; 8742 Node* result = nullptr; 8743 switch (id) { 8744 case vmIntrinsics::_fmaD: 8745 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8746 // no receiver since it is static method 8747 a = argument(0); 8748 b = argument(2); 8749 c = argument(4); 8750 result = _gvn.transform(new FmaDNode(a, b, c)); 8751 break; 8752 case vmIntrinsics::_fmaF: 8753 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8754 a = argument(0); 8755 b = argument(1); 8756 c = argument(2); 8757 result = _gvn.transform(new FmaFNode(a, b, c)); 8758 break; 8759 default: 8760 fatal_unexpected_iid(id); break; 8761 } 8762 set_result(result); 8763 return true; 8764 } 8765 8766 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8767 // argument(0) is receiver 8768 Node* codePoint = argument(1); 8769 Node* n = nullptr; 8770 8771 switch (id) { 8772 case vmIntrinsics::_isDigit : 8773 n = new DigitNode(control(), codePoint); 8774 break; 8775 case vmIntrinsics::_isLowerCase : 8776 n = new LowerCaseNode(control(), codePoint); 8777 break; 8778 case vmIntrinsics::_isUpperCase : 8779 n = new UpperCaseNode(control(), codePoint); 8780 break; 8781 case vmIntrinsics::_isWhitespace : 8782 n = new WhitespaceNode(control(), codePoint); 8783 break; 8784 default: 8785 fatal_unexpected_iid(id); 8786 } 8787 8788 set_result(_gvn.transform(n)); 8789 return true; 8790 } 8791 8792 bool LibraryCallKit::inline_profileBoolean() { 8793 Node* counts = argument(1); 8794 const TypeAryPtr* ary = nullptr; 8795 ciArray* aobj = nullptr; 8796 if (counts->is_Con() 8797 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8798 && (aobj = ary->const_oop()->as_array()) != nullptr 8799 && (aobj->length() == 2)) { 8800 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8801 jint false_cnt = aobj->element_value(0).as_int(); 8802 jint true_cnt = aobj->element_value(1).as_int(); 8803 8804 if (C->log() != nullptr) { 8805 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8806 false_cnt, true_cnt); 8807 } 8808 8809 if (false_cnt + true_cnt == 0) { 8810 // According to profile, never executed. 8811 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8812 Deoptimization::Action_reinterpret); 8813 return true; 8814 } 8815 8816 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8817 // is a number of each value occurrences. 8818 Node* result = argument(0); 8819 if (false_cnt == 0 || true_cnt == 0) { 8820 // According to profile, one value has been never seen. 8821 int expected_val = (false_cnt == 0) ? 1 : 0; 8822 8823 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8824 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8825 8826 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8827 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8828 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8829 8830 { // Slow path: uncommon trap for never seen value and then reexecute 8831 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8832 // the value has been seen at least once. 8833 PreserveJVMState pjvms(this); 8834 PreserveReexecuteState preexecs(this); 8835 jvms()->set_should_reexecute(true); 8836 8837 set_control(slow_path); 8838 set_i_o(i_o()); 8839 8840 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8841 Deoptimization::Action_reinterpret); 8842 } 8843 // The guard for never seen value enables sharpening of the result and 8844 // returning a constant. It allows to eliminate branches on the same value 8845 // later on. 8846 set_control(fast_path); 8847 result = intcon(expected_val); 8848 } 8849 // Stop profiling. 8850 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8851 // By replacing method body with profile data (represented as ProfileBooleanNode 8852 // on IR level) we effectively disable profiling. 8853 // It enables full speed execution once optimized code is generated. 8854 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8855 C->record_for_igvn(profile); 8856 set_result(profile); 8857 return true; 8858 } else { 8859 // Continue profiling. 8860 // Profile data isn't available at the moment. So, execute method's bytecode version. 8861 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8862 // is compiled and counters aren't available since corresponding MethodHandle 8863 // isn't a compile-time constant. 8864 return false; 8865 } 8866 } 8867 8868 bool LibraryCallKit::inline_isCompileConstant() { 8869 Node* n = argument(0); 8870 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8871 return true; 8872 } 8873 8874 //------------------------------- inline_getObjectSize -------------------------------------- 8875 // 8876 // Calculate the runtime size of the object/array. 8877 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8878 // 8879 bool LibraryCallKit::inline_getObjectSize() { 8880 Node* obj = argument(3); 8881 Node* klass_node = load_object_klass(obj); 8882 8883 jint layout_con = Klass::_lh_neutral_value; 8884 Node* layout_val = get_layout_helper(klass_node, layout_con); 8885 int layout_is_con = (layout_val == nullptr); 8886 8887 if (layout_is_con) { 8888 // Layout helper is constant, can figure out things at compile time. 8889 8890 if (Klass::layout_helper_is_instance(layout_con)) { 8891 // Instance case: layout_con contains the size itself. 8892 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8893 set_result(size); 8894 } else { 8895 // Array case: size is round(header + element_size*arraylength). 8896 // Since arraylength is different for every array instance, we have to 8897 // compute the whole thing at runtime. 8898 8899 Node* arr_length = load_array_length(obj); 8900 8901 int round_mask = MinObjAlignmentInBytes - 1; 8902 int hsize = Klass::layout_helper_header_size(layout_con); 8903 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8904 8905 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8906 round_mask = 0; // strength-reduce it if it goes away completely 8907 } 8908 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8909 Node* header_size = intcon(hsize + round_mask); 8910 8911 Node* lengthx = ConvI2X(arr_length); 8912 Node* headerx = ConvI2X(header_size); 8913 8914 Node* abody = lengthx; 8915 if (eshift != 0) { 8916 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8917 } 8918 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8919 if (round_mask != 0) { 8920 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8921 } 8922 size = ConvX2L(size); 8923 set_result(size); 8924 } 8925 } else { 8926 // Layout helper is not constant, need to test for array-ness at runtime. 8927 8928 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8929 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8930 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8931 record_for_igvn(result_reg); 8932 8933 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 8934 if (array_ctl != nullptr) { 8935 // Array case: size is round(header + element_size*arraylength). 8936 // Since arraylength is different for every array instance, we have to 8937 // compute the whole thing at runtime. 8938 8939 PreserveJVMState pjvms(this); 8940 set_control(array_ctl); 8941 Node* arr_length = load_array_length(obj); 8942 8943 int round_mask = MinObjAlignmentInBytes - 1; 8944 Node* mask = intcon(round_mask); 8945 8946 Node* hss = intcon(Klass::_lh_header_size_shift); 8947 Node* hsm = intcon(Klass::_lh_header_size_mask); 8948 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8949 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8950 header_size = _gvn.transform(new AddINode(header_size, mask)); 8951 8952 // There is no need to mask or shift this value. 8953 // The semantics of LShiftINode include an implicit mask to 0x1F. 8954 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8955 Node* elem_shift = layout_val; 8956 8957 Node* lengthx = ConvI2X(arr_length); 8958 Node* headerx = ConvI2X(header_size); 8959 8960 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8961 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8962 if (round_mask != 0) { 8963 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8964 } 8965 size = ConvX2L(size); 8966 8967 result_reg->init_req(_array_path, control()); 8968 result_val->init_req(_array_path, size); 8969 } 8970 8971 if (!stopped()) { 8972 // Instance case: the layout helper gives us instance size almost directly, 8973 // but we need to mask out the _lh_instance_slow_path_bit. 8974 Node* size = ConvI2X(layout_val); 8975 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8976 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8977 size = _gvn.transform(new AndXNode(size, mask)); 8978 size = ConvX2L(size); 8979 8980 result_reg->init_req(_instance_path, control()); 8981 result_val->init_req(_instance_path, size); 8982 } 8983 8984 set_result(result_reg, result_val); 8985 } 8986 8987 return true; 8988 } 8989 8990 //------------------------------- inline_blackhole -------------------------------------- 8991 // 8992 // Make sure all arguments to this node are alive. 8993 // This matches methods that were requested to be blackholed through compile commands. 8994 // 8995 bool LibraryCallKit::inline_blackhole() { 8996 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8997 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8998 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8999 9000 // Blackhole node pinches only the control, not memory. This allows 9001 // the blackhole to be pinned in the loop that computes blackholed 9002 // values, but have no other side effects, like breaking the optimizations 9003 // across the blackhole. 9004 9005 Node* bh = _gvn.transform(new BlackholeNode(control())); 9006 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 9007 9008 // Bind call arguments as blackhole arguments to keep them alive 9009 uint nargs = callee()->arg_size(); 9010 for (uint i = 0; i < nargs; i++) { 9011 bh->add_req(argument(i)); 9012 } 9013 9014 return true; 9015 } 9016 9017 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 9018 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 9019 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 9020 return nullptr; // box klass is not Float16 9021 } 9022 9023 // Null check; get notnull casted pointer 9024 Node* null_ctl = top(); 9025 Node* not_null_box = null_check_oop(box, &null_ctl, true); 9026 // If not_null_box is dead, only null-path is taken 9027 if (stopped()) { 9028 set_control(null_ctl); 9029 return nullptr; 9030 } 9031 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 9032 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 9033 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 9034 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 9035 } 9036 9037 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 9038 PreserveReexecuteState preexecs(this); 9039 jvms()->set_should_reexecute(true); 9040 9041 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 9042 Node* klass_node = makecon(klass_type); 9043 Node* box = new_instance(klass_node); 9044 9045 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 9046 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 9047 9048 Node* field_store = _gvn.transform(access_store_at(box, 9049 value_field, 9050 value_adr_type, 9051 value, 9052 TypeInt::SHORT, 9053 T_SHORT, 9054 IN_HEAP)); 9055 set_memory(field_store, value_adr_type); 9056 return box; 9057 } 9058 9059 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 9060 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 9061 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 9062 return false; 9063 } 9064 9065 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 9066 if (box_type == nullptr || box_type->const_oop() == nullptr) { 9067 return false; 9068 } 9069 9070 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 9071 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 9072 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 9073 ciSymbols::short_signature(), 9074 false); 9075 assert(field != nullptr, ""); 9076 9077 // Transformed nodes 9078 Node* fld1 = nullptr; 9079 Node* fld2 = nullptr; 9080 Node* fld3 = nullptr; 9081 switch(num_args) { 9082 case 3: 9083 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 9084 if (fld3 == nullptr) { 9085 return false; 9086 } 9087 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 9088 // fall-through 9089 case 2: 9090 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 9091 if (fld2 == nullptr) { 9092 return false; 9093 } 9094 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 9095 // fall-through 9096 case 1: 9097 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 9098 if (fld1 == nullptr) { 9099 return false; 9100 } 9101 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 9102 break; 9103 default: fatal("Unsupported number of arguments %d", num_args); 9104 } 9105 9106 Node* result = nullptr; 9107 switch (id) { 9108 // Unary operations 9109 case vmIntrinsics::_sqrt_float16: 9110 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 9111 break; 9112 // Ternary operations 9113 case vmIntrinsics::_fma_float16: 9114 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 9115 break; 9116 default: 9117 fatal_unexpected_iid(id); 9118 break; 9119 } 9120 result = _gvn.transform(new ReinterpretHF2SNode(result)); 9121 set_result(box_fp16_value(float16_box_type, field, result)); 9122 return true; 9123 } 9124