1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/jvmtiThreadState.hpp"
  55 #include "prims/unsafe.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/objectMonitor.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/powerOfTwo.hpp"
  62 
  63 //---------------------------make_vm_intrinsic----------------------------
  64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  65   vmIntrinsicID id = m->intrinsic_id();
  66   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  67 
  68   if (!m->is_loaded()) {
  69     // Do not attempt to inline unloaded methods.
  70     return nullptr;
  71   }
  72 
  73   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  74   bool is_available = false;
  75 
  76   {
  77     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  78     // the compiler must transition to '_thread_in_vm' state because both
  79     // methods access VM-internal data.
  80     VM_ENTRY_MARK;
  81     methodHandle mh(THREAD, m->get_Method());
  82     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  83     if (is_available && is_virtual) {
  84       is_available = vmIntrinsics::does_virtual_dispatch(id);
  85     }
  86   }
  87 
  88   if (is_available) {
  89     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  90     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  91     return new LibraryIntrinsic(m, is_virtual,
  92                                 vmIntrinsics::predicates_needed(id),
  93                                 vmIntrinsics::does_virtual_dispatch(id),
  94                                 id);
  95   } else {
  96     return nullptr;
  97   }
  98 }
  99 
 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 101   LibraryCallKit kit(jvms, this);
 102   Compile* C = kit.C;
 103   int nodes = C->unique();
 104 #ifndef PRODUCT
 105   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 106     char buf[1000];
 107     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 108     tty->print_cr("Intrinsic %s", str);
 109   }
 110 #endif
 111   ciMethod* callee = kit.callee();
 112   const int bci    = kit.bci();
 113 #ifdef ASSERT
 114   Node* ctrl = kit.control();
 115 #endif
 116   // Try to inline the intrinsic.
 117   if (callee->check_intrinsic_candidate() &&
 118       kit.try_to_inline(_last_predicate)) {
 119     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 120                                           : "(intrinsic)";
 121     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 122     if (C->print_intrinsics() || C->print_inlining()) {
 123       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 124     }
 125     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 126     if (C->log()) {
 127       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 128                      vmIntrinsics::name_at(intrinsic_id()),
 129                      (is_virtual() ? " virtual='1'" : ""),
 130                      C->unique() - nodes);
 131     }
 132     // Push the result from the inlined method onto the stack.
 133     kit.push_result();
 134     C->print_inlining_update(this);
 135     return kit.transfer_exceptions_into_jvms();
 136   }
 137 
 138   // The intrinsic bailed out
 139   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 140   if (jvms->has_method()) {
 141     // Not a root compile.
 142     const char* msg;
 143     if (callee->intrinsic_candidate()) {
 144       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 145     } else {
 146       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 147                          : "failed to inline (intrinsic), method not annotated";
 148     }
 149     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 150     if (C->print_intrinsics() || C->print_inlining()) {
 151       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 152     }
 153   } else {
 154     // Root compile
 155     ResourceMark rm;
 156     stringStream msg_stream;
 157     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 158                      vmIntrinsics::name_at(intrinsic_id()),
 159                      is_virtual() ? " (virtual)" : "", bci);
 160     const char *msg = msg_stream.freeze();
 161     log_debug(jit, inlining)("%s", msg);
 162     if (C->print_intrinsics() || C->print_inlining()) {
 163       tty->print("%s", msg);
 164     }
 165   }
 166   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 167   C->print_inlining_update(this);
 168 
 169   return nullptr;
 170 }
 171 
 172 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 173   LibraryCallKit kit(jvms, this);
 174   Compile* C = kit.C;
 175   int nodes = C->unique();
 176   _last_predicate = predicate;
 177 #ifndef PRODUCT
 178   assert(is_predicated() && predicate < predicates_count(), "sanity");
 179   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 180     char buf[1000];
 181     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 182     tty->print_cr("Predicate for intrinsic %s", str);
 183   }
 184 #endif
 185   ciMethod* callee = kit.callee();
 186   const int bci    = kit.bci();
 187 
 188   Node* slow_ctl = kit.try_to_predicate(predicate);
 189   if (!kit.failing()) {
 190     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 191                                           : "(intrinsic, predicate)";
 192     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 193     if (C->print_intrinsics() || C->print_inlining()) {
 194       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 195     }
 196     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 197     if (C->log()) {
 198       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 199                      vmIntrinsics::name_at(intrinsic_id()),
 200                      (is_virtual() ? " virtual='1'" : ""),
 201                      C->unique() - nodes);
 202     }
 203     return slow_ctl; // Could be null if the check folds.
 204   }
 205 
 206   // The intrinsic bailed out
 207   if (jvms->has_method()) {
 208     // Not a root compile.
 209     const char* msg = "failed to generate predicate for intrinsic";
 210     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 211     if (C->print_intrinsics() || C->print_inlining()) {
 212       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 213     }
 214   } else {
 215     // Root compile
 216     ResourceMark rm;
 217     stringStream msg_stream;
 218     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 219                      vmIntrinsics::name_at(intrinsic_id()),
 220                      is_virtual() ? " (virtual)" : "", bci);
 221     const char *msg = msg_stream.freeze();
 222     log_debug(jit, inlining)("%s", msg);
 223     if (C->print_intrinsics() || C->print_inlining()) {
 224       C->print_inlining_stream()->print("%s", msg);
 225     }
 226   }
 227   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 228   return nullptr;
 229 }
 230 
 231 bool LibraryCallKit::try_to_inline(int predicate) {
 232   // Handle symbolic names for otherwise undistinguished boolean switches:
 233   const bool is_store       = true;
 234   const bool is_compress    = true;
 235   const bool is_static      = true;
 236   const bool is_volatile    = true;
 237 
 238   if (!jvms()->has_method()) {
 239     // Root JVMState has a null method.
 240     assert(map()->memory()->Opcode() == Op_Parm, "");
 241     // Insert the memory aliasing node
 242     set_all_memory(reset_memory());
 243   }
 244   assert(merged_memory(), "");
 245 
 246   switch (intrinsic_id()) {
 247   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 248   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 249   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 250 
 251   case vmIntrinsics::_ceil:
 252   case vmIntrinsics::_floor:
 253   case vmIntrinsics::_rint:
 254   case vmIntrinsics::_dsin:
 255   case vmIntrinsics::_dcos:
 256   case vmIntrinsics::_dtan:
 257   case vmIntrinsics::_dtanh:
 258   case vmIntrinsics::_dabs:
 259   case vmIntrinsics::_fabs:
 260   case vmIntrinsics::_iabs:
 261   case vmIntrinsics::_labs:
 262   case vmIntrinsics::_datan2:
 263   case vmIntrinsics::_dsqrt:
 264   case vmIntrinsics::_dsqrt_strict:
 265   case vmIntrinsics::_dexp:
 266   case vmIntrinsics::_dlog:
 267   case vmIntrinsics::_dlog10:
 268   case vmIntrinsics::_dpow:
 269   case vmIntrinsics::_dcopySign:
 270   case vmIntrinsics::_fcopySign:
 271   case vmIntrinsics::_dsignum:
 272   case vmIntrinsics::_roundF:
 273   case vmIntrinsics::_roundD:
 274   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 275 
 276   case vmIntrinsics::_notify:
 277   case vmIntrinsics::_notifyAll:
 278     return inline_notify(intrinsic_id());
 279 
 280   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 281   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 282   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 283   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 284   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 285   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 286   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 287   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 288   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 289   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 290   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 291   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 292   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 293   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 294 
 295   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 296 
 297   case vmIntrinsics::_arraySort:                return inline_array_sort();
 298   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 299 
 300   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 301   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 302   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 303   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 304 
 305   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 306   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 307   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 308   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 309   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 310   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 311   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 312   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 313 
 314   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 315 
 316   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 317 
 318   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 319   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 320   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 321   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 322 
 323   case vmIntrinsics::_compressStringC:
 324   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 325   case vmIntrinsics::_inflateStringC:
 326   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 327 
 328   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 337 
 338   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 339   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 340   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 341   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 342   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 343   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 344   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 345   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 346   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 347 
 348   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 357 
 358   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 359   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 360   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 361   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 362   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 363   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 364   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 365   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 366   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 367 
 368   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 369   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 370   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 371   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 372 
 373   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 374   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 375   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 376   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 377 
 378   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 379   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 380   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 381   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 382   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 383   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 384   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 385   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 386   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 387 
 388   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 389   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 390   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 391   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 392   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 393   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 394   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 395   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 396   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 397 
 398   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 399   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 400   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 401   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 402   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 403   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 404   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 405   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 406   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 407 
 408   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 409   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 410   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 411   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 412   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 413   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 414   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 415   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 416   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 417 
 418   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 419   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 420   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 421   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 422   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 423 
 424   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 425   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 426   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 427   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 428   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 429   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 430   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 431   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 432   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 433   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 434   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 435   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 436   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 437   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 438   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 439   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 440   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 441   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 442   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 443   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 444 
 445   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 446   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 447   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 448   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 449   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 450   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 451   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 452   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 453   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 454   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 455   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 456   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 457   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 458   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 459   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 460 
 461   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 462   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 463   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 464   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 465 
 466   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 467   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 468   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 469   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 470   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 471 
 472   case vmIntrinsics::_loadFence:
 473   case vmIntrinsics::_storeFence:
 474   case vmIntrinsics::_storeStoreFence:
 475   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 476 
 477   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 478 
 479   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 480   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 481   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 482 
 483   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 484   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 485 
 486   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 487   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 488 
 489 #if INCLUDE_JVMTI
 490   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 491                                                                                          "notifyJvmtiStart", true, false);
 492   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 493                                                                                          "notifyJvmtiEnd", false, true);
 494   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 495                                                                                          "notifyJvmtiMount", false, false);
 496   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 497                                                                                          "notifyJvmtiUnmount", false, false);
 498   case vmIntrinsics::_notifyJvmtiVThreadHideFrames:     return inline_native_notify_jvmti_hide();
 499   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 500 #endif
 501 
 502 #ifdef JFR_HAVE_INTRINSICS
 503   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 504   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 505   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 506 #endif
 507   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 508   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 509   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 510   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 511   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 512   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 513   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 514   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 515   case vmIntrinsics::_getLength:                return inline_native_getLength();
 516   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 517   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 518   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 519   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 520   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 521   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 522   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 523 
 524   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 525   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 526 
 527   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 528 
 529   case vmIntrinsics::_isInstance:
 530   case vmIntrinsics::_getModifiers:
 531   case vmIntrinsics::_isInterface:
 532   case vmIntrinsics::_isArray:
 533   case vmIntrinsics::_isPrimitive:
 534   case vmIntrinsics::_isHidden:
 535   case vmIntrinsics::_getSuperclass:
 536   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 537 
 538   case vmIntrinsics::_floatToRawIntBits:
 539   case vmIntrinsics::_floatToIntBits:
 540   case vmIntrinsics::_intBitsToFloat:
 541   case vmIntrinsics::_doubleToRawLongBits:
 542   case vmIntrinsics::_doubleToLongBits:
 543   case vmIntrinsics::_longBitsToDouble:
 544   case vmIntrinsics::_floatToFloat16:
 545   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 546 
 547   case vmIntrinsics::_floatIsFinite:
 548   case vmIntrinsics::_floatIsInfinite:
 549   case vmIntrinsics::_doubleIsFinite:
 550   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 551 
 552   case vmIntrinsics::_numberOfLeadingZeros_i:
 553   case vmIntrinsics::_numberOfLeadingZeros_l:
 554   case vmIntrinsics::_numberOfTrailingZeros_i:
 555   case vmIntrinsics::_numberOfTrailingZeros_l:
 556   case vmIntrinsics::_bitCount_i:
 557   case vmIntrinsics::_bitCount_l:
 558   case vmIntrinsics::_reverse_i:
 559   case vmIntrinsics::_reverse_l:
 560   case vmIntrinsics::_reverseBytes_i:
 561   case vmIntrinsics::_reverseBytes_l:
 562   case vmIntrinsics::_reverseBytes_s:
 563   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 564 
 565   case vmIntrinsics::_compress_i:
 566   case vmIntrinsics::_compress_l:
 567   case vmIntrinsics::_expand_i:
 568   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 569 
 570   case vmIntrinsics::_compareUnsigned_i:
 571   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 572 
 573   case vmIntrinsics::_divideUnsigned_i:
 574   case vmIntrinsics::_divideUnsigned_l:
 575   case vmIntrinsics::_remainderUnsigned_i:
 576   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 577 
 578   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 579 
 580   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 581   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 582   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 583   case vmIntrinsics::_Reference_clear0:         return inline_reference_clear0(false);
 584   case vmIntrinsics::_PhantomReference_clear0:  return inline_reference_clear0(true);
 585 
 586   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 587 
 588   case vmIntrinsics::_aescrypt_encryptBlock:
 589   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 590 
 591   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 592   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 593     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 594 
 595   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 596   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 597     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 598 
 599   case vmIntrinsics::_counterMode_AESCrypt:
 600     return inline_counterMode_AESCrypt(intrinsic_id());
 601 
 602   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 603     return inline_galoisCounterMode_AESCrypt();
 604 
 605   case vmIntrinsics::_md5_implCompress:
 606   case vmIntrinsics::_sha_implCompress:
 607   case vmIntrinsics::_sha2_implCompress:
 608   case vmIntrinsics::_sha5_implCompress:
 609   case vmIntrinsics::_sha3_implCompress:
 610     return inline_digestBase_implCompress(intrinsic_id());
 611 
 612   case vmIntrinsics::_digestBase_implCompressMB:
 613     return inline_digestBase_implCompressMB(predicate);
 614 
 615   case vmIntrinsics::_multiplyToLen:
 616     return inline_multiplyToLen();
 617 
 618   case vmIntrinsics::_squareToLen:
 619     return inline_squareToLen();
 620 
 621   case vmIntrinsics::_mulAdd:
 622     return inline_mulAdd();
 623 
 624   case vmIntrinsics::_montgomeryMultiply:
 625     return inline_montgomeryMultiply();
 626   case vmIntrinsics::_montgomerySquare:
 627     return inline_montgomerySquare();
 628 
 629   case vmIntrinsics::_bigIntegerRightShiftWorker:
 630     return inline_bigIntegerShift(true);
 631   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 632     return inline_bigIntegerShift(false);
 633 
 634   case vmIntrinsics::_vectorizedMismatch:
 635     return inline_vectorizedMismatch();
 636 
 637   case vmIntrinsics::_ghash_processBlocks:
 638     return inline_ghash_processBlocks();
 639   case vmIntrinsics::_chacha20Block:
 640     return inline_chacha20Block();
 641   case vmIntrinsics::_base64_encodeBlock:
 642     return inline_base64_encodeBlock();
 643   case vmIntrinsics::_base64_decodeBlock:
 644     return inline_base64_decodeBlock();
 645   case vmIntrinsics::_poly1305_processBlocks:
 646     return inline_poly1305_processBlocks();
 647   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 648     return inline_intpoly_montgomeryMult_P256();
 649   case vmIntrinsics::_intpoly_assign:
 650     return inline_intpoly_assign();
 651   case vmIntrinsics::_encodeISOArray:
 652   case vmIntrinsics::_encodeByteISOArray:
 653     return inline_encodeISOArray(false);
 654   case vmIntrinsics::_encodeAsciiArray:
 655     return inline_encodeISOArray(true);
 656 
 657   case vmIntrinsics::_updateCRC32:
 658     return inline_updateCRC32();
 659   case vmIntrinsics::_updateBytesCRC32:
 660     return inline_updateBytesCRC32();
 661   case vmIntrinsics::_updateByteBufferCRC32:
 662     return inline_updateByteBufferCRC32();
 663 
 664   case vmIntrinsics::_updateBytesCRC32C:
 665     return inline_updateBytesCRC32C();
 666   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 667     return inline_updateDirectByteBufferCRC32C();
 668 
 669   case vmIntrinsics::_updateBytesAdler32:
 670     return inline_updateBytesAdler32();
 671   case vmIntrinsics::_updateByteBufferAdler32:
 672     return inline_updateByteBufferAdler32();
 673 
 674   case vmIntrinsics::_profileBoolean:
 675     return inline_profileBoolean();
 676   case vmIntrinsics::_isCompileConstant:
 677     return inline_isCompileConstant();
 678 
 679   case vmIntrinsics::_countPositives:
 680     return inline_countPositives();
 681 
 682   case vmIntrinsics::_fmaD:
 683   case vmIntrinsics::_fmaF:
 684     return inline_fma(intrinsic_id());
 685 
 686   case vmIntrinsics::_isDigit:
 687   case vmIntrinsics::_isLowerCase:
 688   case vmIntrinsics::_isUpperCase:
 689   case vmIntrinsics::_isWhitespace:
 690     return inline_character_compare(intrinsic_id());
 691 
 692   case vmIntrinsics::_min:
 693   case vmIntrinsics::_max:
 694   case vmIntrinsics::_min_strict:
 695   case vmIntrinsics::_max_strict:
 696     return inline_min_max(intrinsic_id());
 697 
 698   case vmIntrinsics::_maxF:
 699   case vmIntrinsics::_minF:
 700   case vmIntrinsics::_maxD:
 701   case vmIntrinsics::_minD:
 702   case vmIntrinsics::_maxF_strict:
 703   case vmIntrinsics::_minF_strict:
 704   case vmIntrinsics::_maxD_strict:
 705   case vmIntrinsics::_minD_strict:
 706       return inline_fp_min_max(intrinsic_id());
 707 
 708   case vmIntrinsics::_VectorUnaryOp:
 709     return inline_vector_nary_operation(1);
 710   case vmIntrinsics::_VectorBinaryOp:
 711     return inline_vector_nary_operation(2);
 712   case vmIntrinsics::_VectorTernaryOp:
 713     return inline_vector_nary_operation(3);
 714   case vmIntrinsics::_VectorFromBitsCoerced:
 715     return inline_vector_frombits_coerced();
 716   case vmIntrinsics::_VectorShuffleIota:
 717     return inline_vector_shuffle_iota();
 718   case vmIntrinsics::_VectorMaskOp:
 719     return inline_vector_mask_operation();
 720   case vmIntrinsics::_VectorShuffleToVector:
 721     return inline_vector_shuffle_to_vector();
 722   case vmIntrinsics::_VectorWrapShuffleIndexes:
 723     return inline_vector_wrap_shuffle_indexes();
 724   case vmIntrinsics::_VectorLoadOp:
 725     return inline_vector_mem_operation(/*is_store=*/false);
 726   case vmIntrinsics::_VectorLoadMaskedOp:
 727     return inline_vector_mem_masked_operation(/*is_store*/false);
 728   case vmIntrinsics::_VectorStoreOp:
 729     return inline_vector_mem_operation(/*is_store=*/true);
 730   case vmIntrinsics::_VectorStoreMaskedOp:
 731     return inline_vector_mem_masked_operation(/*is_store=*/true);
 732   case vmIntrinsics::_VectorGatherOp:
 733     return inline_vector_gather_scatter(/*is_scatter*/ false);
 734   case vmIntrinsics::_VectorScatterOp:
 735     return inline_vector_gather_scatter(/*is_scatter*/ true);
 736   case vmIntrinsics::_VectorReductionCoerced:
 737     return inline_vector_reduction();
 738   case vmIntrinsics::_VectorTest:
 739     return inline_vector_test();
 740   case vmIntrinsics::_VectorBlend:
 741     return inline_vector_blend();
 742   case vmIntrinsics::_VectorRearrange:
 743     return inline_vector_rearrange();
 744   case vmIntrinsics::_VectorSelectFrom:
 745     return inline_vector_select_from();
 746   case vmIntrinsics::_VectorCompare:
 747     return inline_vector_compare();
 748   case vmIntrinsics::_VectorBroadcastInt:
 749     return inline_vector_broadcast_int();
 750   case vmIntrinsics::_VectorConvert:
 751     return inline_vector_convert();
 752   case vmIntrinsics::_VectorInsert:
 753     return inline_vector_insert();
 754   case vmIntrinsics::_VectorExtract:
 755     return inline_vector_extract();
 756   case vmIntrinsics::_VectorCompressExpand:
 757     return inline_vector_compress_expand();
 758   case vmIntrinsics::_VectorSelectFromTwoVectorOp:
 759     return inline_vector_select_from_two_vectors();
 760   case vmIntrinsics::_IndexVector:
 761     return inline_index_vector();
 762   case vmIntrinsics::_IndexPartiallyInUpperRange:
 763     return inline_index_partially_in_upper_range();
 764 
 765   case vmIntrinsics::_getObjectSize:
 766     return inline_getObjectSize();
 767 
 768   case vmIntrinsics::_blackhole:
 769     return inline_blackhole();
 770 
 771   default:
 772     // If you get here, it may be that someone has added a new intrinsic
 773     // to the list in vmIntrinsics.hpp without implementing it here.
 774 #ifndef PRODUCT
 775     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 776       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 777                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 778     }
 779 #endif
 780     return false;
 781   }
 782 }
 783 
 784 Node* LibraryCallKit::try_to_predicate(int predicate) {
 785   if (!jvms()->has_method()) {
 786     // Root JVMState has a null method.
 787     assert(map()->memory()->Opcode() == Op_Parm, "");
 788     // Insert the memory aliasing node
 789     set_all_memory(reset_memory());
 790   }
 791   assert(merged_memory(), "");
 792 
 793   switch (intrinsic_id()) {
 794   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 795     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 796   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 797     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 798   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 799     return inline_electronicCodeBook_AESCrypt_predicate(false);
 800   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 801     return inline_electronicCodeBook_AESCrypt_predicate(true);
 802   case vmIntrinsics::_counterMode_AESCrypt:
 803     return inline_counterMode_AESCrypt_predicate();
 804   case vmIntrinsics::_digestBase_implCompressMB:
 805     return inline_digestBase_implCompressMB_predicate(predicate);
 806   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 807     return inline_galoisCounterMode_AESCrypt_predicate();
 808 
 809   default:
 810     // If you get here, it may be that someone has added a new intrinsic
 811     // to the list in vmIntrinsics.hpp without implementing it here.
 812 #ifndef PRODUCT
 813     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 814       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 815                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 816     }
 817 #endif
 818     Node* slow_ctl = control();
 819     set_control(top()); // No fast path intrinsic
 820     return slow_ctl;
 821   }
 822 }
 823 
 824 //------------------------------set_result-------------------------------
 825 // Helper function for finishing intrinsics.
 826 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 827   record_for_igvn(region);
 828   set_control(_gvn.transform(region));
 829   set_result( _gvn.transform(value));
 830   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 831 }
 832 
 833 //------------------------------generate_guard---------------------------
 834 // Helper function for generating guarded fast-slow graph structures.
 835 // The given 'test', if true, guards a slow path.  If the test fails
 836 // then a fast path can be taken.  (We generally hope it fails.)
 837 // In all cases, GraphKit::control() is updated to the fast path.
 838 // The returned value represents the control for the slow path.
 839 // The return value is never 'top'; it is either a valid control
 840 // or null if it is obvious that the slow path can never be taken.
 841 // Also, if region and the slow control are not null, the slow edge
 842 // is appended to the region.
 843 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 844   if (stopped()) {
 845     // Already short circuited.
 846     return nullptr;
 847   }
 848 
 849   // Build an if node and its projections.
 850   // If test is true we take the slow path, which we assume is uncommon.
 851   if (_gvn.type(test) == TypeInt::ZERO) {
 852     // The slow branch is never taken.  No need to build this guard.
 853     return nullptr;
 854   }
 855 
 856   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 857 
 858   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 859   if (if_slow == top()) {
 860     // The slow branch is never taken.  No need to build this guard.
 861     return nullptr;
 862   }
 863 
 864   if (region != nullptr)
 865     region->add_req(if_slow);
 866 
 867   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 868   set_control(if_fast);
 869 
 870   return if_slow;
 871 }
 872 
 873 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 874   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 875 }
 876 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 877   return generate_guard(test, region, PROB_FAIR);
 878 }
 879 
 880 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 881                                                      Node* *pos_index) {
 882   if (stopped())
 883     return nullptr;                // already stopped
 884   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 885     return nullptr;                // index is already adequately typed
 886   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 887   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 888   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 889   if (is_neg != nullptr && pos_index != nullptr) {
 890     // Emulate effect of Parse::adjust_map_after_if.
 891     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 892     (*pos_index) = _gvn.transform(ccast);
 893   }
 894   return is_neg;
 895 }
 896 
 897 // Make sure that 'position' is a valid limit index, in [0..length].
 898 // There are two equivalent plans for checking this:
 899 //   A. (offset + copyLength)  unsigned<=  arrayLength
 900 //   B. offset  <=  (arrayLength - copyLength)
 901 // We require that all of the values above, except for the sum and
 902 // difference, are already known to be non-negative.
 903 // Plan A is robust in the face of overflow, if offset and copyLength
 904 // are both hugely positive.
 905 //
 906 // Plan B is less direct and intuitive, but it does not overflow at
 907 // all, since the difference of two non-negatives is always
 908 // representable.  Whenever Java methods must perform the equivalent
 909 // check they generally use Plan B instead of Plan A.
 910 // For the moment we use Plan A.
 911 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 912                                                   Node* subseq_length,
 913                                                   Node* array_length,
 914                                                   RegionNode* region) {
 915   if (stopped())
 916     return nullptr;                // already stopped
 917   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 918   if (zero_offset && subseq_length->eqv_uncast(array_length))
 919     return nullptr;                // common case of whole-array copy
 920   Node* last = subseq_length;
 921   if (!zero_offset)             // last += offset
 922     last = _gvn.transform(new AddINode(last, offset));
 923   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 924   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 925   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 926   return is_over;
 927 }
 928 
 929 // Emit range checks for the given String.value byte array
 930 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 931   if (stopped()) {
 932     return; // already stopped
 933   }
 934   RegionNode* bailout = new RegionNode(1);
 935   record_for_igvn(bailout);
 936   if (char_count) {
 937     // Convert char count to byte count
 938     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 939   }
 940 
 941   // Offset and count must not be negative
 942   generate_negative_guard(offset, bailout);
 943   generate_negative_guard(count, bailout);
 944   // Offset + count must not exceed length of array
 945   generate_limit_guard(offset, count, load_array_length(array), bailout);
 946 
 947   if (bailout->req() > 1) {
 948     PreserveJVMState pjvms(this);
 949     set_control(_gvn.transform(bailout));
 950     uncommon_trap(Deoptimization::Reason_intrinsic,
 951                   Deoptimization::Action_maybe_recompile);
 952   }
 953 }
 954 
 955 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 956                                             bool is_immutable) {
 957   ciKlass* thread_klass = env()->Thread_klass();
 958   const Type* thread_type
 959     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 960 
 961   Node* thread = _gvn.transform(new ThreadLocalNode());
 962   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 963   tls_output = thread;
 964 
 965   Node* thread_obj_handle
 966     = (is_immutable
 967       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
 968         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 969       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 970   thread_obj_handle = _gvn.transform(thread_obj_handle);
 971 
 972   DecoratorSet decorators = IN_NATIVE;
 973   if (is_immutable) {
 974     decorators |= C2_IMMUTABLE_MEMORY;
 975   }
 976   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 977 }
 978 
 979 //--------------------------generate_current_thread--------------------
 980 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 981   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 982                                /*is_immutable*/false);
 983 }
 984 
 985 //--------------------------generate_virtual_thread--------------------
 986 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 987   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 988                                !C->method()->changes_current_thread());
 989 }
 990 
 991 //------------------------------make_string_method_node------------------------
 992 // Helper method for String intrinsic functions. This version is called with
 993 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 994 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 995 // containing the lengths of str1 and str2.
 996 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 997   Node* result = nullptr;
 998   switch (opcode) {
 999   case Op_StrIndexOf:
1000     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1001                                 str1_start, cnt1, str2_start, cnt2, ae);
1002     break;
1003   case Op_StrComp:
1004     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1005                              str1_start, cnt1, str2_start, cnt2, ae);
1006     break;
1007   case Op_StrEquals:
1008     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1009     // Use the constant length if there is one because optimized match rule may exist.
1010     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1011                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1012     break;
1013   default:
1014     ShouldNotReachHere();
1015     return nullptr;
1016   }
1017 
1018   // All these intrinsics have checks.
1019   C->set_has_split_ifs(true); // Has chance for split-if optimization
1020   clear_upper_avx();
1021 
1022   return _gvn.transform(result);
1023 }
1024 
1025 //------------------------------inline_string_compareTo------------------------
1026 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1027   Node* arg1 = argument(0);
1028   Node* arg2 = argument(1);
1029 
1030   arg1 = must_be_not_null(arg1, true);
1031   arg2 = must_be_not_null(arg2, true);
1032 
1033   // Get start addr and length of first argument
1034   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1035   Node* arg1_cnt    = load_array_length(arg1);
1036 
1037   // Get start addr and length of second argument
1038   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1039   Node* arg2_cnt    = load_array_length(arg2);
1040 
1041   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1042   set_result(result);
1043   return true;
1044 }
1045 
1046 //------------------------------inline_string_equals------------------------
1047 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1048   Node* arg1 = argument(0);
1049   Node* arg2 = argument(1);
1050 
1051   // paths (plus control) merge
1052   RegionNode* region = new RegionNode(3);
1053   Node* phi = new PhiNode(region, TypeInt::BOOL);
1054 
1055   if (!stopped()) {
1056 
1057     arg1 = must_be_not_null(arg1, true);
1058     arg2 = must_be_not_null(arg2, true);
1059 
1060     // Get start addr and length of first argument
1061     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1062     Node* arg1_cnt    = load_array_length(arg1);
1063 
1064     // Get start addr and length of second argument
1065     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1066     Node* arg2_cnt    = load_array_length(arg2);
1067 
1068     // Check for arg1_cnt != arg2_cnt
1069     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1070     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1071     Node* if_ne = generate_slow_guard(bol, nullptr);
1072     if (if_ne != nullptr) {
1073       phi->init_req(2, intcon(0));
1074       region->init_req(2, if_ne);
1075     }
1076 
1077     // Check for count == 0 is done by assembler code for StrEquals.
1078 
1079     if (!stopped()) {
1080       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1081       phi->init_req(1, equals);
1082       region->init_req(1, control());
1083     }
1084   }
1085 
1086   // post merge
1087   set_control(_gvn.transform(region));
1088   record_for_igvn(region);
1089 
1090   set_result(_gvn.transform(phi));
1091   return true;
1092 }
1093 
1094 //------------------------------inline_array_equals----------------------------
1095 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1096   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1097   Node* arg1 = argument(0);
1098   Node* arg2 = argument(1);
1099 
1100   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1101   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1102   clear_upper_avx();
1103 
1104   return true;
1105 }
1106 
1107 
1108 //------------------------------inline_countPositives------------------------------
1109 bool LibraryCallKit::inline_countPositives() {
1110   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1111     return false;
1112   }
1113 
1114   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1115   // no receiver since it is static method
1116   Node* ba         = argument(0);
1117   Node* offset     = argument(1);
1118   Node* len        = argument(2);
1119 
1120   ba = must_be_not_null(ba, true);
1121 
1122   // Range checks
1123   generate_string_range_check(ba, offset, len, false);
1124   if (stopped()) {
1125     return true;
1126   }
1127   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1128   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1129   set_result(_gvn.transform(result));
1130   clear_upper_avx();
1131   return true;
1132 }
1133 
1134 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1135   Node* index = argument(0);
1136   Node* length = bt == T_INT ? argument(1) : argument(2);
1137   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1138     return false;
1139   }
1140 
1141   // check that length is positive
1142   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1143   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1144 
1145   {
1146     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1147     uncommon_trap(Deoptimization::Reason_intrinsic,
1148                   Deoptimization::Action_make_not_entrant);
1149   }
1150 
1151   if (stopped()) {
1152     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1153     return true;
1154   }
1155 
1156   // length is now known positive, add a cast node to make this explicit
1157   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1158   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1159       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1160       ConstraintCastNode::RegularDependency, bt);
1161   casted_length = _gvn.transform(casted_length);
1162   replace_in_map(length, casted_length);
1163   length = casted_length;
1164 
1165   // Use an unsigned comparison for the range check itself
1166   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1167   BoolTest::mask btest = BoolTest::lt;
1168   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1169   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1170   _gvn.set_type(rc, rc->Value(&_gvn));
1171   if (!rc_bool->is_Con()) {
1172     record_for_igvn(rc);
1173   }
1174   set_control(_gvn.transform(new IfTrueNode(rc)));
1175   {
1176     PreserveJVMState pjvms(this);
1177     set_control(_gvn.transform(new IfFalseNode(rc)));
1178     uncommon_trap(Deoptimization::Reason_range_check,
1179                   Deoptimization::Action_make_not_entrant);
1180   }
1181 
1182   if (stopped()) {
1183     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1184     return true;
1185   }
1186 
1187   // index is now known to be >= 0 and < length, cast it
1188   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1189       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1190       ConstraintCastNode::RegularDependency, bt);
1191   result = _gvn.transform(result);
1192   set_result(result);
1193   replace_in_map(index, result);
1194   return true;
1195 }
1196 
1197 //------------------------------inline_string_indexOf------------------------
1198 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1199   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1200     return false;
1201   }
1202   Node* src = argument(0);
1203   Node* tgt = argument(1);
1204 
1205   // Make the merge point
1206   RegionNode* result_rgn = new RegionNode(4);
1207   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1208 
1209   src = must_be_not_null(src, true);
1210   tgt = must_be_not_null(tgt, true);
1211 
1212   // Get start addr and length of source string
1213   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1214   Node* src_count = load_array_length(src);
1215 
1216   // Get start addr and length of substring
1217   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1218   Node* tgt_count = load_array_length(tgt);
1219 
1220   Node* result = nullptr;
1221   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1222 
1223   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1224     // Divide src size by 2 if String is UTF16 encoded
1225     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1226   }
1227   if (ae == StrIntrinsicNode::UU) {
1228     // Divide substring size by 2 if String is UTF16 encoded
1229     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1230   }
1231 
1232   if (call_opt_stub) {
1233     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1234                                    StubRoutines::_string_indexof_array[ae],
1235                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1236                                    src_count, tgt_start, tgt_count);
1237     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1238   } else {
1239     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1240                                result_rgn, result_phi, ae);
1241   }
1242   if (result != nullptr) {
1243     result_phi->init_req(3, result);
1244     result_rgn->init_req(3, control());
1245   }
1246   set_control(_gvn.transform(result_rgn));
1247   record_for_igvn(result_rgn);
1248   set_result(_gvn.transform(result_phi));
1249 
1250   return true;
1251 }
1252 
1253 //-----------------------------inline_string_indexOfI-----------------------
1254 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1255   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1256     return false;
1257   }
1258   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1259     return false;
1260   }
1261 
1262   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1263   Node* src         = argument(0); // byte[]
1264   Node* src_count   = argument(1); // char count
1265   Node* tgt         = argument(2); // byte[]
1266   Node* tgt_count   = argument(3); // char count
1267   Node* from_index  = argument(4); // char index
1268 
1269   src = must_be_not_null(src, true);
1270   tgt = must_be_not_null(tgt, true);
1271 
1272   // Multiply byte array index by 2 if String is UTF16 encoded
1273   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1274   src_count = _gvn.transform(new SubINode(src_count, from_index));
1275   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1276   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1277 
1278   // Range checks
1279   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1280   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1281   if (stopped()) {
1282     return true;
1283   }
1284 
1285   RegionNode* region = new RegionNode(5);
1286   Node* phi = new PhiNode(region, TypeInt::INT);
1287   Node* result = nullptr;
1288 
1289   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1290 
1291   if (call_opt_stub) {
1292     assert(arrayOopDesc::base_offset_in_bytes(T_BYTE) >= 16, "Needed for indexOf");
1293     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1294                                    StubRoutines::_string_indexof_array[ae],
1295                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1296                                    src_count, tgt_start, tgt_count);
1297     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1298   } else {
1299     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1300                                region, phi, ae);
1301   }
1302   if (result != nullptr) {
1303     // The result is index relative to from_index if substring was found, -1 otherwise.
1304     // Generate code which will fold into cmove.
1305     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1306     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1307 
1308     Node* if_lt = generate_slow_guard(bol, nullptr);
1309     if (if_lt != nullptr) {
1310       // result == -1
1311       phi->init_req(3, result);
1312       region->init_req(3, if_lt);
1313     }
1314     if (!stopped()) {
1315       result = _gvn.transform(new AddINode(result, from_index));
1316       phi->init_req(4, result);
1317       region->init_req(4, control());
1318     }
1319   }
1320 
1321   set_control(_gvn.transform(region));
1322   record_for_igvn(region);
1323   set_result(_gvn.transform(phi));
1324   clear_upper_avx();
1325 
1326   return true;
1327 }
1328 
1329 // Create StrIndexOfNode with fast path checks
1330 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1331                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1332   // Check for substr count > string count
1333   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1334   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1335   Node* if_gt = generate_slow_guard(bol, nullptr);
1336   if (if_gt != nullptr) {
1337     phi->init_req(1, intcon(-1));
1338     region->init_req(1, if_gt);
1339   }
1340   if (!stopped()) {
1341     // Check for substr count == 0
1342     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1343     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1344     Node* if_zero = generate_slow_guard(bol, nullptr);
1345     if (if_zero != nullptr) {
1346       phi->init_req(2, intcon(0));
1347       region->init_req(2, if_zero);
1348     }
1349   }
1350   if (!stopped()) {
1351     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1352   }
1353   return nullptr;
1354 }
1355 
1356 //-----------------------------inline_string_indexOfChar-----------------------
1357 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1358   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1359     return false;
1360   }
1361   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1362     return false;
1363   }
1364   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1365   Node* src         = argument(0); // byte[]
1366   Node* int_ch      = argument(1);
1367   Node* from_index  = argument(2);
1368   Node* max         = argument(3);
1369 
1370   src = must_be_not_null(src, true);
1371 
1372   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1373   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1374   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1375 
1376   // Range checks
1377   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1378 
1379   // Check for int_ch >= 0
1380   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1381   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1382   {
1383     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1384     uncommon_trap(Deoptimization::Reason_intrinsic,
1385                   Deoptimization::Action_maybe_recompile);
1386   }
1387   if (stopped()) {
1388     return true;
1389   }
1390 
1391   RegionNode* region = new RegionNode(3);
1392   Node* phi = new PhiNode(region, TypeInt::INT);
1393 
1394   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1395   C->set_has_split_ifs(true); // Has chance for split-if optimization
1396   _gvn.transform(result);
1397 
1398   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1399   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1400 
1401   Node* if_lt = generate_slow_guard(bol, nullptr);
1402   if (if_lt != nullptr) {
1403     // result == -1
1404     phi->init_req(2, result);
1405     region->init_req(2, if_lt);
1406   }
1407   if (!stopped()) {
1408     result = _gvn.transform(new AddINode(result, from_index));
1409     phi->init_req(1, result);
1410     region->init_req(1, control());
1411   }
1412   set_control(_gvn.transform(region));
1413   record_for_igvn(region);
1414   set_result(_gvn.transform(phi));
1415   clear_upper_avx();
1416 
1417   return true;
1418 }
1419 //---------------------------inline_string_copy---------------------
1420 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1421 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1422 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1423 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1424 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1425 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1426 bool LibraryCallKit::inline_string_copy(bool compress) {
1427   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1428     return false;
1429   }
1430   int nargs = 5;  // 2 oops, 3 ints
1431   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1432 
1433   Node* src         = argument(0);
1434   Node* src_offset  = argument(1);
1435   Node* dst         = argument(2);
1436   Node* dst_offset  = argument(3);
1437   Node* length      = argument(4);
1438 
1439   // Check for allocation before we add nodes that would confuse
1440   // tightly_coupled_allocation()
1441   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1442 
1443   // Figure out the size and type of the elements we will be copying.
1444   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1445   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1446   if (src_type == nullptr || dst_type == nullptr) {
1447     return false;
1448   }
1449   BasicType src_elem = src_type->elem()->array_element_basic_type();
1450   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1451   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1452          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1453          "Unsupported array types for inline_string_copy");
1454 
1455   src = must_be_not_null(src, true);
1456   dst = must_be_not_null(dst, true);
1457 
1458   // Convert char[] offsets to byte[] offsets
1459   bool convert_src = (compress && src_elem == T_BYTE);
1460   bool convert_dst = (!compress && dst_elem == T_BYTE);
1461   if (convert_src) {
1462     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1463   } else if (convert_dst) {
1464     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1465   }
1466 
1467   // Range checks
1468   generate_string_range_check(src, src_offset, length, convert_src);
1469   generate_string_range_check(dst, dst_offset, length, convert_dst);
1470   if (stopped()) {
1471     return true;
1472   }
1473 
1474   Node* src_start = array_element_address(src, src_offset, src_elem);
1475   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1476   // 'src_start' points to src array + scaled offset
1477   // 'dst_start' points to dst array + scaled offset
1478   Node* count = nullptr;
1479   if (compress) {
1480     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1481   } else {
1482     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1483   }
1484 
1485   if (alloc != nullptr) {
1486     if (alloc->maybe_set_complete(&_gvn)) {
1487       // "You break it, you buy it."
1488       InitializeNode* init = alloc->initialization();
1489       assert(init->is_complete(), "we just did this");
1490       init->set_complete_with_arraycopy();
1491       assert(dst->is_CheckCastPP(), "sanity");
1492       assert(dst->in(0)->in(0) == init, "dest pinned");
1493     }
1494     // Do not let stores that initialize this object be reordered with
1495     // a subsequent store that would make this object accessible by
1496     // other threads.
1497     // Record what AllocateNode this StoreStore protects so that
1498     // escape analysis can go from the MemBarStoreStoreNode to the
1499     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1500     // based on the escape status of the AllocateNode.
1501     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1502   }
1503   if (compress) {
1504     set_result(_gvn.transform(count));
1505   }
1506   clear_upper_avx();
1507 
1508   return true;
1509 }
1510 
1511 #ifdef _LP64
1512 #define XTOP ,top() /*additional argument*/
1513 #else  //_LP64
1514 #define XTOP        /*no additional argument*/
1515 #endif //_LP64
1516 
1517 //------------------------inline_string_toBytesU--------------------------
1518 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1519 bool LibraryCallKit::inline_string_toBytesU() {
1520   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1521     return false;
1522   }
1523   // Get the arguments.
1524   Node* value     = argument(0);
1525   Node* offset    = argument(1);
1526   Node* length    = argument(2);
1527 
1528   Node* newcopy = nullptr;
1529 
1530   // Set the original stack and the reexecute bit for the interpreter to reexecute
1531   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1532   { PreserveReexecuteState preexecs(this);
1533     jvms()->set_should_reexecute(true);
1534 
1535     // Check if a null path was taken unconditionally.
1536     value = null_check(value);
1537 
1538     RegionNode* bailout = new RegionNode(1);
1539     record_for_igvn(bailout);
1540 
1541     // Range checks
1542     generate_negative_guard(offset, bailout);
1543     generate_negative_guard(length, bailout);
1544     generate_limit_guard(offset, length, load_array_length(value), bailout);
1545     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1546     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1547 
1548     if (bailout->req() > 1) {
1549       PreserveJVMState pjvms(this);
1550       set_control(_gvn.transform(bailout));
1551       uncommon_trap(Deoptimization::Reason_intrinsic,
1552                     Deoptimization::Action_maybe_recompile);
1553     }
1554     if (stopped()) {
1555       return true;
1556     }
1557 
1558     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1559     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1560     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1561     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1562     guarantee(alloc != nullptr, "created above");
1563 
1564     // Calculate starting addresses.
1565     Node* src_start = array_element_address(value, offset, T_CHAR);
1566     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1567 
1568     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1569     const TypeInt* toffset = gvn().type(offset)->is_int();
1570     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1571 
1572     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1573     const char* copyfunc_name = "arraycopy";
1574     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1575     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1576                       OptoRuntime::fast_arraycopy_Type(),
1577                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1578                       src_start, dst_start, ConvI2X(length) XTOP);
1579     // Do not let reads from the cloned object float above the arraycopy.
1580     if (alloc->maybe_set_complete(&_gvn)) {
1581       // "You break it, you buy it."
1582       InitializeNode* init = alloc->initialization();
1583       assert(init->is_complete(), "we just did this");
1584       init->set_complete_with_arraycopy();
1585       assert(newcopy->is_CheckCastPP(), "sanity");
1586       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1587     }
1588     // Do not let stores that initialize this object be reordered with
1589     // a subsequent store that would make this object accessible by
1590     // other threads.
1591     // Record what AllocateNode this StoreStore protects so that
1592     // escape analysis can go from the MemBarStoreStoreNode to the
1593     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1594     // based on the escape status of the AllocateNode.
1595     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1596   } // original reexecute is set back here
1597 
1598   C->set_has_split_ifs(true); // Has chance for split-if optimization
1599   if (!stopped()) {
1600     set_result(newcopy);
1601   }
1602   clear_upper_avx();
1603 
1604   return true;
1605 }
1606 
1607 //------------------------inline_string_getCharsU--------------------------
1608 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1609 bool LibraryCallKit::inline_string_getCharsU() {
1610   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1611     return false;
1612   }
1613 
1614   // Get the arguments.
1615   Node* src       = argument(0);
1616   Node* src_begin = argument(1);
1617   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1618   Node* dst       = argument(3);
1619   Node* dst_begin = argument(4);
1620 
1621   // Check for allocation before we add nodes that would confuse
1622   // tightly_coupled_allocation()
1623   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1624 
1625   // Check if a null path was taken unconditionally.
1626   src = null_check(src);
1627   dst = null_check(dst);
1628   if (stopped()) {
1629     return true;
1630   }
1631 
1632   // Get length and convert char[] offset to byte[] offset
1633   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1634   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1635 
1636   // Range checks
1637   generate_string_range_check(src, src_begin, length, true);
1638   generate_string_range_check(dst, dst_begin, length, false);
1639   if (stopped()) {
1640     return true;
1641   }
1642 
1643   if (!stopped()) {
1644     // Calculate starting addresses.
1645     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1646     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1647 
1648     // Check if array addresses are aligned to HeapWordSize
1649     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1650     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1651     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1652                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1653 
1654     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1655     const char* copyfunc_name = "arraycopy";
1656     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1657     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1658                       OptoRuntime::fast_arraycopy_Type(),
1659                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1660                       src_start, dst_start, ConvI2X(length) XTOP);
1661     // Do not let reads from the cloned object float above the arraycopy.
1662     if (alloc != nullptr) {
1663       if (alloc->maybe_set_complete(&_gvn)) {
1664         // "You break it, you buy it."
1665         InitializeNode* init = alloc->initialization();
1666         assert(init->is_complete(), "we just did this");
1667         init->set_complete_with_arraycopy();
1668         assert(dst->is_CheckCastPP(), "sanity");
1669         assert(dst->in(0)->in(0) == init, "dest pinned");
1670       }
1671       // Do not let stores that initialize this object be reordered with
1672       // a subsequent store that would make this object accessible by
1673       // other threads.
1674       // Record what AllocateNode this StoreStore protects so that
1675       // escape analysis can go from the MemBarStoreStoreNode to the
1676       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1677       // based on the escape status of the AllocateNode.
1678       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1679     } else {
1680       insert_mem_bar(Op_MemBarCPUOrder);
1681     }
1682   }
1683 
1684   C->set_has_split_ifs(true); // Has chance for split-if optimization
1685   return true;
1686 }
1687 
1688 //----------------------inline_string_char_access----------------------------
1689 // Store/Load char to/from byte[] array.
1690 // static void StringUTF16.putChar(byte[] val, int index, int c)
1691 // static char StringUTF16.getChar(byte[] val, int index)
1692 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1693   Node* value  = argument(0);
1694   Node* index  = argument(1);
1695   Node* ch = is_store ? argument(2) : nullptr;
1696 
1697   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1698   // correctly requires matched array shapes.
1699   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1700           "sanity: byte[] and char[] bases agree");
1701   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1702           "sanity: byte[] and char[] scales agree");
1703 
1704   // Bail when getChar over constants is requested: constant folding would
1705   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1706   // Java method would constant fold nicely instead.
1707   if (!is_store && value->is_Con() && index->is_Con()) {
1708     return false;
1709   }
1710 
1711   // Save state and restore on bailout
1712   uint old_sp = sp();
1713   SafePointNode* old_map = clone_map();
1714 
1715   value = must_be_not_null(value, true);
1716 
1717   Node* adr = array_element_address(value, index, T_CHAR);
1718   if (adr->is_top()) {
1719     set_map(old_map);
1720     set_sp(old_sp);
1721     return false;
1722   }
1723   destruct_map_clone(old_map);
1724   if (is_store) {
1725     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1726   } else {
1727     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1728     set_result(ch);
1729   }
1730   return true;
1731 }
1732 
1733 //--------------------------round_double_node--------------------------------
1734 // Round a double node if necessary.
1735 Node* LibraryCallKit::round_double_node(Node* n) {
1736   if (Matcher::strict_fp_requires_explicit_rounding) {
1737 #ifdef IA32
1738     if (UseSSE < 2) {
1739       n = _gvn.transform(new RoundDoubleNode(nullptr, n));
1740     }
1741 #else
1742     Unimplemented();
1743 #endif // IA32
1744   }
1745   return n;
1746 }
1747 
1748 //------------------------------inline_math-----------------------------------
1749 // public static double Math.abs(double)
1750 // public static double Math.sqrt(double)
1751 // public static double Math.log(double)
1752 // public static double Math.log10(double)
1753 // public static double Math.round(double)
1754 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1755   Node* arg = round_double_node(argument(0));
1756   Node* n = nullptr;
1757   switch (id) {
1758   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1759   case vmIntrinsics::_dsqrt:
1760   case vmIntrinsics::_dsqrt_strict:
1761                               n = new SqrtDNode(C, control(),  arg);  break;
1762   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1763   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1764   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1765   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1766   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break;
1767   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1768   default:  fatal_unexpected_iid(id);  break;
1769   }
1770   set_result(_gvn.transform(n));
1771   return true;
1772 }
1773 
1774 //------------------------------inline_math-----------------------------------
1775 // public static float Math.abs(float)
1776 // public static int Math.abs(int)
1777 // public static long Math.abs(long)
1778 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1779   Node* arg = argument(0);
1780   Node* n = nullptr;
1781   switch (id) {
1782   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1783   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1784   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1785   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1786   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1787   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1788   default:  fatal_unexpected_iid(id);  break;
1789   }
1790   set_result(_gvn.transform(n));
1791   return true;
1792 }
1793 
1794 //------------------------------runtime_math-----------------------------
1795 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1796   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1797          "must be (DD)D or (D)D type");
1798 
1799   // Inputs
1800   Node* a = round_double_node(argument(0));
1801   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr;
1802 
1803   const TypePtr* no_memory_effects = nullptr;
1804   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1805                                  no_memory_effects,
1806                                  a, top(), b, b ? top() : nullptr);
1807   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1808 #ifdef ASSERT
1809   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1810   assert(value_top == top(), "second value must be top");
1811 #endif
1812 
1813   set_result(value);
1814   return true;
1815 }
1816 
1817 //------------------------------inline_math_pow-----------------------------
1818 bool LibraryCallKit::inline_math_pow() {
1819   Node* exp = round_double_node(argument(2));
1820   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1821   if (d != nullptr) {
1822     if (d->getd() == 2.0) {
1823       // Special case: pow(x, 2.0) => x * x
1824       Node* base = round_double_node(argument(0));
1825       set_result(_gvn.transform(new MulDNode(base, base)));
1826       return true;
1827     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1828       // Special case: pow(x, 0.5) => sqrt(x)
1829       Node* base = round_double_node(argument(0));
1830       Node* zero = _gvn.zerocon(T_DOUBLE);
1831 
1832       RegionNode* region = new RegionNode(3);
1833       Node* phi = new PhiNode(region, Type::DOUBLE);
1834 
1835       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1836       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1837       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1838       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1839       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1840 
1841       Node* if_pow = generate_slow_guard(test, nullptr);
1842       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1843       phi->init_req(1, value_sqrt);
1844       region->init_req(1, control());
1845 
1846       if (if_pow != nullptr) {
1847         set_control(if_pow);
1848         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1849                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1850         const TypePtr* no_memory_effects = nullptr;
1851         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1852                                        no_memory_effects, base, top(), exp, top());
1853         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1854 #ifdef ASSERT
1855         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1856         assert(value_top == top(), "second value must be top");
1857 #endif
1858         phi->init_req(2, value_pow);
1859         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1860       }
1861 
1862       C->set_has_split_ifs(true); // Has chance for split-if optimization
1863       set_control(_gvn.transform(region));
1864       record_for_igvn(region);
1865       set_result(_gvn.transform(phi));
1866 
1867       return true;
1868     }
1869   }
1870 
1871   return StubRoutines::dpow() != nullptr ?
1872     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1873     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1874 }
1875 
1876 //------------------------------inline_math_native-----------------------------
1877 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1878   switch (id) {
1879   case vmIntrinsics::_dsin:
1880     return StubRoutines::dsin() != nullptr ?
1881       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1882       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1883   case vmIntrinsics::_dcos:
1884     return StubRoutines::dcos() != nullptr ?
1885       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1886       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1887   case vmIntrinsics::_dtan:
1888     return StubRoutines::dtan() != nullptr ?
1889       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1890       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1891   case vmIntrinsics::_dtanh:
1892     return StubRoutines::dtanh() != nullptr ?
1893       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false;
1894   case vmIntrinsics::_dexp:
1895     return StubRoutines::dexp() != nullptr ?
1896       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1897       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1898   case vmIntrinsics::_dlog:
1899     return StubRoutines::dlog() != nullptr ?
1900       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1901       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1902   case vmIntrinsics::_dlog10:
1903     return StubRoutines::dlog10() != nullptr ?
1904       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1905       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1906 
1907   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1908   case vmIntrinsics::_ceil:
1909   case vmIntrinsics::_floor:
1910   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1911 
1912   case vmIntrinsics::_dsqrt:
1913   case vmIntrinsics::_dsqrt_strict:
1914                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1915   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1916   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1917   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1918   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1919 
1920   case vmIntrinsics::_dpow:      return inline_math_pow();
1921   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1922   case vmIntrinsics::_fcopySign: return inline_math(id);
1923   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1924   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1925   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1926 
1927    // These intrinsics are not yet correctly implemented
1928   case vmIntrinsics::_datan2:
1929     return false;
1930 
1931   default:
1932     fatal_unexpected_iid(id);
1933     return false;
1934   }
1935 }
1936 
1937 //----------------------------inline_notify-----------------------------------*
1938 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1939   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1940   address func;
1941   if (id == vmIntrinsics::_notify) {
1942     func = OptoRuntime::monitor_notify_Java();
1943   } else {
1944     func = OptoRuntime::monitor_notifyAll_Java();
1945   }
1946   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1947   make_slow_call_ex(call, env()->Throwable_klass(), false);
1948   return true;
1949 }
1950 
1951 
1952 //----------------------------inline_min_max-----------------------------------
1953 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1954   set_result(generate_min_max(id, argument(0), argument(1)));
1955   return true;
1956 }
1957 
1958 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1959   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1960   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1961   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1962   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1963 
1964   {
1965     PreserveJVMState pjvms(this);
1966     PreserveReexecuteState preexecs(this);
1967     jvms()->set_should_reexecute(true);
1968 
1969     set_control(slow_path);
1970     set_i_o(i_o());
1971 
1972     uncommon_trap(Deoptimization::Reason_intrinsic,
1973                   Deoptimization::Action_none);
1974   }
1975 
1976   set_control(fast_path);
1977   set_result(math);
1978 }
1979 
1980 template <typename OverflowOp>
1981 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1982   typedef typename OverflowOp::MathOp MathOp;
1983 
1984   MathOp* mathOp = new MathOp(arg1, arg2);
1985   Node* operation = _gvn.transform( mathOp );
1986   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1987   inline_math_mathExact(operation, ofcheck);
1988   return true;
1989 }
1990 
1991 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1992   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1993 }
1994 
1995 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1996   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1997 }
1998 
1999 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2000   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2001 }
2002 
2003 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2004   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2005 }
2006 
2007 bool LibraryCallKit::inline_math_negateExactI() {
2008   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2009 }
2010 
2011 bool LibraryCallKit::inline_math_negateExactL() {
2012   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2013 }
2014 
2015 bool LibraryCallKit::inline_math_multiplyExactI() {
2016   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2017 }
2018 
2019 bool LibraryCallKit::inline_math_multiplyExactL() {
2020   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2021 }
2022 
2023 bool LibraryCallKit::inline_math_multiplyHigh() {
2024   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2025   return true;
2026 }
2027 
2028 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2029   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2030   return true;
2031 }
2032 
2033 Node*
2034 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2035   Node* result_val = nullptr;
2036   switch (id) {
2037   case vmIntrinsics::_min:
2038   case vmIntrinsics::_min_strict:
2039     result_val = _gvn.transform(new MinINode(x0, y0));
2040     break;
2041   case vmIntrinsics::_max:
2042   case vmIntrinsics::_max_strict:
2043     result_val = _gvn.transform(new MaxINode(x0, y0));
2044     break;
2045   default:
2046     fatal_unexpected_iid(id);
2047     break;
2048   }
2049   return result_val;
2050 }
2051 
2052 inline int
2053 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2054   const TypePtr* base_type = TypePtr::NULL_PTR;
2055   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2056   if (base_type == nullptr) {
2057     // Unknown type.
2058     return Type::AnyPtr;
2059   } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) {
2060     // Since this is a null+long form, we have to switch to a rawptr.
2061     base   = _gvn.transform(new CastX2PNode(offset));
2062     offset = MakeConX(0);
2063     return Type::RawPtr;
2064   } else if (base_type->base() == Type::RawPtr) {
2065     return Type::RawPtr;
2066   } else if (base_type->isa_oopptr()) {
2067     // Base is never null => always a heap address.
2068     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2069       return Type::OopPtr;
2070     }
2071     // Offset is small => always a heap address.
2072     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2073     if (offset_type != nullptr &&
2074         base_type->offset() == 0 &&     // (should always be?)
2075         offset_type->_lo >= 0 &&
2076         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2077       return Type::OopPtr;
2078     } else if (type == T_OBJECT) {
2079       // off heap access to an oop doesn't make any sense. Has to be on
2080       // heap.
2081       return Type::OopPtr;
2082     }
2083     // Otherwise, it might either be oop+off or null+addr.
2084     return Type::AnyPtr;
2085   } else {
2086     // No information:
2087     return Type::AnyPtr;
2088   }
2089 }
2090 
2091 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2092   Node* uncasted_base = base;
2093   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2094   if (kind == Type::RawPtr) {
2095     return basic_plus_adr(top(), uncasted_base, offset);
2096   } else if (kind == Type::AnyPtr) {
2097     assert(base == uncasted_base, "unexpected base change");
2098     if (can_cast) {
2099       if (!_gvn.type(base)->speculative_maybe_null() &&
2100           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2101         // According to profiling, this access is always on
2102         // heap. Casting the base to not null and thus avoiding membars
2103         // around the access should allow better optimizations
2104         Node* null_ctl = top();
2105         base = null_check_oop(base, &null_ctl, true, true, true);
2106         assert(null_ctl->is_top(), "no null control here");
2107         return basic_plus_adr(base, offset);
2108       } else if (_gvn.type(base)->speculative_always_null() &&
2109                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2110         // According to profiling, this access is always off
2111         // heap.
2112         base = null_assert(base);
2113         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2114         offset = MakeConX(0);
2115         return basic_plus_adr(top(), raw_base, offset);
2116       }
2117     }
2118     // We don't know if it's an on heap or off heap access. Fall back
2119     // to raw memory access.
2120     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2121     return basic_plus_adr(top(), raw, offset);
2122   } else {
2123     assert(base == uncasted_base, "unexpected base change");
2124     // We know it's an on heap access so base can't be null
2125     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2126       base = must_be_not_null(base, true);
2127     }
2128     return basic_plus_adr(base, offset);
2129   }
2130 }
2131 
2132 //--------------------------inline_number_methods-----------------------------
2133 // inline int     Integer.numberOfLeadingZeros(int)
2134 // inline int        Long.numberOfLeadingZeros(long)
2135 //
2136 // inline int     Integer.numberOfTrailingZeros(int)
2137 // inline int        Long.numberOfTrailingZeros(long)
2138 //
2139 // inline int     Integer.bitCount(int)
2140 // inline int        Long.bitCount(long)
2141 //
2142 // inline char  Character.reverseBytes(char)
2143 // inline short     Short.reverseBytes(short)
2144 // inline int     Integer.reverseBytes(int)
2145 // inline long       Long.reverseBytes(long)
2146 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2147   Node* arg = argument(0);
2148   Node* n = nullptr;
2149   switch (id) {
2150   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2151   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2152   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2153   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2154   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2155   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2156   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(nullptr, arg);  break;
2157   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( nullptr, arg);  break;
2158   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( nullptr, arg);  break;
2159   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( nullptr, arg);  break;
2160   case vmIntrinsics::_reverse_i:                n = new ReverseINode(nullptr, arg); break;
2161   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(nullptr, arg); break;
2162   default:  fatal_unexpected_iid(id);  break;
2163   }
2164   set_result(_gvn.transform(n));
2165   return true;
2166 }
2167 
2168 //--------------------------inline_bitshuffle_methods-----------------------------
2169 // inline int Integer.compress(int, int)
2170 // inline int Integer.expand(int, int)
2171 // inline long Long.compress(long, long)
2172 // inline long Long.expand(long, long)
2173 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2174   Node* n = nullptr;
2175   switch (id) {
2176     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2177     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2178     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2179     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2180     default:  fatal_unexpected_iid(id);  break;
2181   }
2182   set_result(_gvn.transform(n));
2183   return true;
2184 }
2185 
2186 //--------------------------inline_number_methods-----------------------------
2187 // inline int Integer.compareUnsigned(int, int)
2188 // inline int    Long.compareUnsigned(long, long)
2189 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2190   Node* arg1 = argument(0);
2191   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2192   Node* n = nullptr;
2193   switch (id) {
2194     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2195     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2196     default:  fatal_unexpected_iid(id);  break;
2197   }
2198   set_result(_gvn.transform(n));
2199   return true;
2200 }
2201 
2202 //--------------------------inline_unsigned_divmod_methods-----------------------------
2203 // inline int Integer.divideUnsigned(int, int)
2204 // inline int Integer.remainderUnsigned(int, int)
2205 // inline long Long.divideUnsigned(long, long)
2206 // inline long Long.remainderUnsigned(long, long)
2207 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2208   Node* n = nullptr;
2209   switch (id) {
2210     case vmIntrinsics::_divideUnsigned_i: {
2211       zero_check_int(argument(1));
2212       // Compile-time detect of null-exception
2213       if (stopped()) {
2214         return true; // keep the graph constructed so far
2215       }
2216       n = new UDivINode(control(), argument(0), argument(1));
2217       break;
2218     }
2219     case vmIntrinsics::_divideUnsigned_l: {
2220       zero_check_long(argument(2));
2221       // Compile-time detect of null-exception
2222       if (stopped()) {
2223         return true; // keep the graph constructed so far
2224       }
2225       n = new UDivLNode(control(), argument(0), argument(2));
2226       break;
2227     }
2228     case vmIntrinsics::_remainderUnsigned_i: {
2229       zero_check_int(argument(1));
2230       // Compile-time detect of null-exception
2231       if (stopped()) {
2232         return true; // keep the graph constructed so far
2233       }
2234       n = new UModINode(control(), argument(0), argument(1));
2235       break;
2236     }
2237     case vmIntrinsics::_remainderUnsigned_l: {
2238       zero_check_long(argument(2));
2239       // Compile-time detect of null-exception
2240       if (stopped()) {
2241         return true; // keep the graph constructed so far
2242       }
2243       n = new UModLNode(control(), argument(0), argument(2));
2244       break;
2245     }
2246     default:  fatal_unexpected_iid(id);  break;
2247   }
2248   set_result(_gvn.transform(n));
2249   return true;
2250 }
2251 
2252 //----------------------------inline_unsafe_access----------------------------
2253 
2254 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2255   // Attempt to infer a sharper value type from the offset and base type.
2256   ciKlass* sharpened_klass = nullptr;
2257 
2258   // See if it is an instance field, with an object type.
2259   if (alias_type->field() != nullptr) {
2260     if (alias_type->field()->type()->is_klass()) {
2261       sharpened_klass = alias_type->field()->type()->as_klass();
2262     }
2263   }
2264 
2265   const TypeOopPtr* result = nullptr;
2266   // See if it is a narrow oop array.
2267   if (adr_type->isa_aryptr()) {
2268     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2269       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2270       if (elem_type != nullptr && elem_type->is_loaded()) {
2271         // Sharpen the value type.
2272         result = elem_type;
2273       }
2274     }
2275   }
2276 
2277   // The sharpened class might be unloaded if there is no class loader
2278   // contraint in place.
2279   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2280     // Sharpen the value type.
2281     result = TypeOopPtr::make_from_klass(sharpened_klass);
2282   }
2283   if (result != nullptr) {
2284 #ifndef PRODUCT
2285     if (C->print_intrinsics() || C->print_inlining()) {
2286       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2287       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2288     }
2289 #endif
2290   }
2291   return result;
2292 }
2293 
2294 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2295   switch (kind) {
2296       case Relaxed:
2297         return MO_UNORDERED;
2298       case Opaque:
2299         return MO_RELAXED;
2300       case Acquire:
2301         return MO_ACQUIRE;
2302       case Release:
2303         return MO_RELEASE;
2304       case Volatile:
2305         return MO_SEQ_CST;
2306       default:
2307         ShouldNotReachHere();
2308         return 0;
2309   }
2310 }
2311 
2312 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2313   if (callee()->is_static())  return false;  // caller must have the capability!
2314   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2315   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2316   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2317   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2318 
2319   if (is_reference_type(type)) {
2320     decorators |= ON_UNKNOWN_OOP_REF;
2321   }
2322 
2323   if (unaligned) {
2324     decorators |= C2_UNALIGNED;
2325   }
2326 
2327 #ifndef PRODUCT
2328   {
2329     ResourceMark rm;
2330     // Check the signatures.
2331     ciSignature* sig = callee()->signature();
2332 #ifdef ASSERT
2333     if (!is_store) {
2334       // Object getReference(Object base, int/long offset), etc.
2335       BasicType rtype = sig->return_type()->basic_type();
2336       assert(rtype == type, "getter must return the expected value");
2337       assert(sig->count() == 2, "oop getter has 2 arguments");
2338       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2339       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2340     } else {
2341       // void putReference(Object base, int/long offset, Object x), etc.
2342       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2343       assert(sig->count() == 3, "oop putter has 3 arguments");
2344       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2345       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2346       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2347       assert(vtype == type, "putter must accept the expected value");
2348     }
2349 #endif // ASSERT
2350  }
2351 #endif //PRODUCT
2352 
2353   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2354 
2355   Node* receiver = argument(0);  // type: oop
2356 
2357   // Build address expression.
2358   Node* heap_base_oop = top();
2359 
2360   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2361   Node* base = argument(1);  // type: oop
2362   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2363   Node* offset = argument(2);  // type: long
2364   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2365   // to be plain byte offsets, which are also the same as those accepted
2366   // by oopDesc::field_addr.
2367   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2368          "fieldOffset must be byte-scaled");
2369   // 32-bit machines ignore the high half!
2370   offset = ConvL2X(offset);
2371 
2372   // Save state and restore on bailout
2373   uint old_sp = sp();
2374   SafePointNode* old_map = clone_map();
2375 
2376   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2377   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2378 
2379   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2380     if (type != T_OBJECT) {
2381       decorators |= IN_NATIVE; // off-heap primitive access
2382     } else {
2383       set_map(old_map);
2384       set_sp(old_sp);
2385       return false; // off-heap oop accesses are not supported
2386     }
2387   } else {
2388     heap_base_oop = base; // on-heap or mixed access
2389   }
2390 
2391   // Can base be null? Otherwise, always on-heap access.
2392   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2393 
2394   if (!can_access_non_heap) {
2395     decorators |= IN_HEAP;
2396   }
2397 
2398   Node* val = is_store ? argument(4) : nullptr;
2399 
2400   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2401   if (adr_type == TypePtr::NULL_PTR) {
2402     set_map(old_map);
2403     set_sp(old_sp);
2404     return false; // off-heap access with zero address
2405   }
2406 
2407   // Try to categorize the address.
2408   Compile::AliasType* alias_type = C->alias_type(adr_type);
2409   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2410 
2411   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2412       alias_type->adr_type() == TypeAryPtr::RANGE) {
2413     set_map(old_map);
2414     set_sp(old_sp);
2415     return false; // not supported
2416   }
2417 
2418   bool mismatched = false;
2419   BasicType bt = alias_type->basic_type();
2420   if (bt != T_ILLEGAL) {
2421     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2422     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2423       // Alias type doesn't differentiate between byte[] and boolean[]).
2424       // Use address type to get the element type.
2425       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2426     }
2427     if (is_reference_type(bt, true)) {
2428       // accessing an array field with getReference is not a mismatch
2429       bt = T_OBJECT;
2430     }
2431     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2432       // Don't intrinsify mismatched object accesses
2433       set_map(old_map);
2434       set_sp(old_sp);
2435       return false;
2436     }
2437     mismatched = (bt != type);
2438   } else if (alias_type->adr_type()->isa_oopptr()) {
2439     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2440   }
2441 
2442   destruct_map_clone(old_map);
2443   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2444 
2445   if (mismatched) {
2446     decorators |= C2_MISMATCHED;
2447   }
2448 
2449   // First guess at the value type.
2450   const Type *value_type = Type::get_const_basic_type(type);
2451 
2452   // Figure out the memory ordering.
2453   decorators |= mo_decorator_for_access_kind(kind);
2454 
2455   if (!is_store && type == T_OBJECT) {
2456     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2457     if (tjp != nullptr) {
2458       value_type = tjp;
2459     }
2460   }
2461 
2462   receiver = null_check(receiver);
2463   if (stopped()) {
2464     return true;
2465   }
2466   // Heap pointers get a null-check from the interpreter,
2467   // as a courtesy.  However, this is not guaranteed by Unsafe,
2468   // and it is not possible to fully distinguish unintended nulls
2469   // from intended ones in this API.
2470 
2471   if (!is_store) {
2472     Node* p = nullptr;
2473     // Try to constant fold a load from a constant field
2474     ciField* field = alias_type->field();
2475     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2476       // final or stable field
2477       p = make_constant_from_field(field, heap_base_oop);
2478     }
2479 
2480     if (p == nullptr) { // Could not constant fold the load
2481       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2482       // Normalize the value returned by getBoolean in the following cases
2483       if (type == T_BOOLEAN &&
2484           (mismatched ||
2485            heap_base_oop == top() ||                  // - heap_base_oop is null or
2486            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2487                                                       //   and the unsafe access is made to large offset
2488                                                       //   (i.e., larger than the maximum offset necessary for any
2489                                                       //   field access)
2490             ) {
2491           IdealKit ideal = IdealKit(this);
2492 #define __ ideal.
2493           IdealVariable normalized_result(ideal);
2494           __ declarations_done();
2495           __ set(normalized_result, p);
2496           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2497           __ set(normalized_result, ideal.ConI(1));
2498           ideal.end_if();
2499           final_sync(ideal);
2500           p = __ value(normalized_result);
2501 #undef __
2502       }
2503     }
2504     if (type == T_ADDRESS) {
2505       p = gvn().transform(new CastP2XNode(nullptr, p));
2506       p = ConvX2UL(p);
2507     }
2508     // The load node has the control of the preceding MemBarCPUOrder.  All
2509     // following nodes will have the control of the MemBarCPUOrder inserted at
2510     // the end of this method.  So, pushing the load onto the stack at a later
2511     // point is fine.
2512     set_result(p);
2513   } else {
2514     if (bt == T_ADDRESS) {
2515       // Repackage the long as a pointer.
2516       val = ConvL2X(val);
2517       val = gvn().transform(new CastX2PNode(val));
2518     }
2519     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2520   }
2521 
2522   return true;
2523 }
2524 
2525 //----------------------------inline_unsafe_load_store----------------------------
2526 // This method serves a couple of different customers (depending on LoadStoreKind):
2527 //
2528 // LS_cmp_swap:
2529 //
2530 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2531 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2532 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2533 //
2534 // LS_cmp_swap_weak:
2535 //
2536 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2537 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2538 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2539 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2540 //
2541 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2542 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2543 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2544 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2545 //
2546 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2547 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2548 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2549 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2550 //
2551 // LS_cmp_exchange:
2552 //
2553 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2554 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2555 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2556 //
2557 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2558 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2559 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2560 //
2561 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2562 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2563 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2564 //
2565 // LS_get_add:
2566 //
2567 //   int  getAndAddInt( Object o, long offset, int  delta)
2568 //   long getAndAddLong(Object o, long offset, long delta)
2569 //
2570 // LS_get_set:
2571 //
2572 //   int    getAndSet(Object o, long offset, int    newValue)
2573 //   long   getAndSet(Object o, long offset, long   newValue)
2574 //   Object getAndSet(Object o, long offset, Object newValue)
2575 //
2576 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2577   // This basic scheme here is the same as inline_unsafe_access, but
2578   // differs in enough details that combining them would make the code
2579   // overly confusing.  (This is a true fact! I originally combined
2580   // them, but even I was confused by it!) As much code/comments as
2581   // possible are retained from inline_unsafe_access though to make
2582   // the correspondences clearer. - dl
2583 
2584   if (callee()->is_static())  return false;  // caller must have the capability!
2585 
2586   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2587   decorators |= mo_decorator_for_access_kind(access_kind);
2588 
2589 #ifndef PRODUCT
2590   BasicType rtype;
2591   {
2592     ResourceMark rm;
2593     // Check the signatures.
2594     ciSignature* sig = callee()->signature();
2595     rtype = sig->return_type()->basic_type();
2596     switch(kind) {
2597       case LS_get_add:
2598       case LS_get_set: {
2599       // Check the signatures.
2600 #ifdef ASSERT
2601       assert(rtype == type, "get and set must return the expected type");
2602       assert(sig->count() == 3, "get and set has 3 arguments");
2603       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2604       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2605       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2606       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2607 #endif // ASSERT
2608         break;
2609       }
2610       case LS_cmp_swap:
2611       case LS_cmp_swap_weak: {
2612       // Check the signatures.
2613 #ifdef ASSERT
2614       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2615       assert(sig->count() == 4, "CAS has 4 arguments");
2616       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2617       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2618 #endif // ASSERT
2619         break;
2620       }
2621       case LS_cmp_exchange: {
2622       // Check the signatures.
2623 #ifdef ASSERT
2624       assert(rtype == type, "CAS must return the expected type");
2625       assert(sig->count() == 4, "CAS has 4 arguments");
2626       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2627       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2628 #endif // ASSERT
2629         break;
2630       }
2631       default:
2632         ShouldNotReachHere();
2633     }
2634   }
2635 #endif //PRODUCT
2636 
2637   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2638 
2639   // Get arguments:
2640   Node* receiver = nullptr;
2641   Node* base     = nullptr;
2642   Node* offset   = nullptr;
2643   Node* oldval   = nullptr;
2644   Node* newval   = nullptr;
2645   switch(kind) {
2646     case LS_cmp_swap:
2647     case LS_cmp_swap_weak:
2648     case LS_cmp_exchange: {
2649       const bool two_slot_type = type2size[type] == 2;
2650       receiver = argument(0);  // type: oop
2651       base     = argument(1);  // type: oop
2652       offset   = argument(2);  // type: long
2653       oldval   = argument(4);  // type: oop, int, or long
2654       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2655       break;
2656     }
2657     case LS_get_add:
2658     case LS_get_set: {
2659       receiver = argument(0);  // type: oop
2660       base     = argument(1);  // type: oop
2661       offset   = argument(2);  // type: long
2662       oldval   = nullptr;
2663       newval   = argument(4);  // type: oop, int, or long
2664       break;
2665     }
2666     default:
2667       ShouldNotReachHere();
2668   }
2669 
2670   // Build field offset expression.
2671   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2672   // to be plain byte offsets, which are also the same as those accepted
2673   // by oopDesc::field_addr.
2674   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2675   // 32-bit machines ignore the high half of long offsets
2676   offset = ConvL2X(offset);
2677   // Save state and restore on bailout
2678   uint old_sp = sp();
2679   SafePointNode* old_map = clone_map();
2680   Node* adr = make_unsafe_address(base, offset,type, false);
2681   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2682 
2683   Compile::AliasType* alias_type = C->alias_type(adr_type);
2684   BasicType bt = alias_type->basic_type();
2685   if (bt != T_ILLEGAL &&
2686       (is_reference_type(bt) != (type == T_OBJECT))) {
2687     // Don't intrinsify mismatched object accesses.
2688     set_map(old_map);
2689     set_sp(old_sp);
2690     return false;
2691   }
2692 
2693   destruct_map_clone(old_map);
2694 
2695   // For CAS, unlike inline_unsafe_access, there seems no point in
2696   // trying to refine types. Just use the coarse types here.
2697   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2698   const Type *value_type = Type::get_const_basic_type(type);
2699 
2700   switch (kind) {
2701     case LS_get_set:
2702     case LS_cmp_exchange: {
2703       if (type == T_OBJECT) {
2704         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2705         if (tjp != nullptr) {
2706           value_type = tjp;
2707         }
2708       }
2709       break;
2710     }
2711     case LS_cmp_swap:
2712     case LS_cmp_swap_weak:
2713     case LS_get_add:
2714       break;
2715     default:
2716       ShouldNotReachHere();
2717   }
2718 
2719   // Null check receiver.
2720   receiver = null_check(receiver);
2721   if (stopped()) {
2722     return true;
2723   }
2724 
2725   int alias_idx = C->get_alias_index(adr_type);
2726 
2727   if (is_reference_type(type)) {
2728     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2729 
2730     // Transformation of a value which could be null pointer (CastPP #null)
2731     // could be delayed during Parse (for example, in adjust_map_after_if()).
2732     // Execute transformation here to avoid barrier generation in such case.
2733     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2734       newval = _gvn.makecon(TypePtr::NULL_PTR);
2735 
2736     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2737       // Refine the value to a null constant, when it is known to be null
2738       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2739     }
2740   }
2741 
2742   Node* result = nullptr;
2743   switch (kind) {
2744     case LS_cmp_exchange: {
2745       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2746                                             oldval, newval, value_type, type, decorators);
2747       break;
2748     }
2749     case LS_cmp_swap_weak:
2750       decorators |= C2_WEAK_CMPXCHG;
2751     case LS_cmp_swap: {
2752       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2753                                              oldval, newval, value_type, type, decorators);
2754       break;
2755     }
2756     case LS_get_set: {
2757       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2758                                      newval, value_type, type, decorators);
2759       break;
2760     }
2761     case LS_get_add: {
2762       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2763                                     newval, value_type, type, decorators);
2764       break;
2765     }
2766     default:
2767       ShouldNotReachHere();
2768   }
2769 
2770   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2771   set_result(result);
2772   return true;
2773 }
2774 
2775 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2776   // Regardless of form, don't allow previous ld/st to move down,
2777   // then issue acquire, release, or volatile mem_bar.
2778   insert_mem_bar(Op_MemBarCPUOrder);
2779   switch(id) {
2780     case vmIntrinsics::_loadFence:
2781       insert_mem_bar(Op_LoadFence);
2782       return true;
2783     case vmIntrinsics::_storeFence:
2784       insert_mem_bar(Op_StoreFence);
2785       return true;
2786     case vmIntrinsics::_storeStoreFence:
2787       insert_mem_bar(Op_StoreStoreFence);
2788       return true;
2789     case vmIntrinsics::_fullFence:
2790       insert_mem_bar(Op_MemBarVolatile);
2791       return true;
2792     default:
2793       fatal_unexpected_iid(id);
2794       return false;
2795   }
2796 }
2797 
2798 bool LibraryCallKit::inline_onspinwait() {
2799   insert_mem_bar(Op_OnSpinWait);
2800   return true;
2801 }
2802 
2803 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2804   if (!kls->is_Con()) {
2805     return true;
2806   }
2807   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2808   if (klsptr == nullptr) {
2809     return true;
2810   }
2811   ciInstanceKlass* ik = klsptr->instance_klass();
2812   // don't need a guard for a klass that is already initialized
2813   return !ik->is_initialized();
2814 }
2815 
2816 //----------------------------inline_unsafe_writeback0-------------------------
2817 // public native void Unsafe.writeback0(long address)
2818 bool LibraryCallKit::inline_unsafe_writeback0() {
2819   if (!Matcher::has_match_rule(Op_CacheWB)) {
2820     return false;
2821   }
2822 #ifndef PRODUCT
2823   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2824   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2825   ciSignature* sig = callee()->signature();
2826   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2827 #endif
2828   null_check_receiver();  // null-check, then ignore
2829   Node *addr = argument(1);
2830   addr = new CastX2PNode(addr);
2831   addr = _gvn.transform(addr);
2832   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2833   flush = _gvn.transform(flush);
2834   set_memory(flush, TypeRawPtr::BOTTOM);
2835   return true;
2836 }
2837 
2838 //----------------------------inline_unsafe_writeback0-------------------------
2839 // public native void Unsafe.writeback0(long address)
2840 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2841   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2842     return false;
2843   }
2844   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2845     return false;
2846   }
2847 #ifndef PRODUCT
2848   assert(Matcher::has_match_rule(Op_CacheWB),
2849          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2850                 : "found match rule for CacheWBPostSync but not CacheWB"));
2851 
2852 #endif
2853   null_check_receiver();  // null-check, then ignore
2854   Node *sync;
2855   if (is_pre) {
2856     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2857   } else {
2858     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2859   }
2860   sync = _gvn.transform(sync);
2861   set_memory(sync, TypeRawPtr::BOTTOM);
2862   return true;
2863 }
2864 
2865 //----------------------------inline_unsafe_allocate---------------------------
2866 // public native Object Unsafe.allocateInstance(Class<?> cls);
2867 bool LibraryCallKit::inline_unsafe_allocate() {
2868 
2869 #if INCLUDE_JVMTI
2870   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
2871     return false;
2872   }
2873 #endif //INCLUDE_JVMTI
2874 
2875   if (callee()->is_static())  return false;  // caller must have the capability!
2876 
2877   null_check_receiver();  // null-check, then ignore
2878   Node* cls = null_check(argument(1));
2879   if (stopped())  return true;
2880 
2881   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
2882   kls = null_check(kls);
2883   if (stopped())  return true;  // argument was like int.class
2884 
2885 #if INCLUDE_JVMTI
2886     // Don't try to access new allocated obj in the intrinsic.
2887     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
2888     // Deoptimize and allocate in interpreter instead.
2889     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
2890     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
2891     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
2892     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2893     {
2894       BuildCutout unless(this, tst, PROB_MAX);
2895       uncommon_trap(Deoptimization::Reason_intrinsic,
2896                     Deoptimization::Action_make_not_entrant);
2897     }
2898     if (stopped()) {
2899       return true;
2900     }
2901 #endif //INCLUDE_JVMTI
2902 
2903   Node* test = nullptr;
2904   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2905     // Note:  The argument might still be an illegal value like
2906     // Serializable.class or Object[].class.   The runtime will handle it.
2907     // But we must make an explicit check for initialization.
2908     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2909     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2910     // can generate code to load it as unsigned byte.
2911     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2912     Node* bits = intcon(InstanceKlass::fully_initialized);
2913     test = _gvn.transform(new SubINode(inst, bits));
2914     // The 'test' is non-zero if we need to take a slow path.
2915   }
2916 
2917   Node* obj = new_instance(kls, test);
2918   set_result(obj);
2919   return true;
2920 }
2921 
2922 //------------------------inline_native_time_funcs--------------
2923 // inline code for System.currentTimeMillis() and System.nanoTime()
2924 // these have the same type and signature
2925 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2926   const TypeFunc* tf = OptoRuntime::void_long_Type();
2927   const TypePtr* no_memory_effects = nullptr;
2928   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2929   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2930 #ifdef ASSERT
2931   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2932   assert(value_top == top(), "second value must be top");
2933 #endif
2934   set_result(value);
2935   return true;
2936 }
2937 
2938 
2939 #if INCLUDE_JVMTI
2940 
2941 // When notifications are disabled then just update the VTMS transition bit and return.
2942 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
2943 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
2944   if (!DoJVMTIVirtualThreadTransitions) {
2945     return true;
2946   }
2947   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
2948   IdealKit ideal(this);
2949 
2950   Node* ONE = ideal.ConI(1);
2951   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
2952   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
2953   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
2954 
2955   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
2956     sync_kit(ideal);
2957     // if notifyJvmti enabled then make a call to the given SharedRuntime function
2958     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
2959     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
2960     ideal.sync_kit(this);
2961   } ideal.else_(); {
2962     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
2963     Node* thread = ideal.thread();
2964     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
2965     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
2966 
2967     sync_kit(ideal);
2968     access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2969     access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2970 
2971     ideal.sync_kit(this);
2972   } ideal.end_if();
2973   final_sync(ideal);
2974 
2975   return true;
2976 }
2977 
2978 // Always update the temporary VTMS transition bit.
2979 bool LibraryCallKit::inline_native_notify_jvmti_hide() {
2980   if (!DoJVMTIVirtualThreadTransitions) {
2981     return true;
2982   }
2983   IdealKit ideal(this);
2984 
2985   {
2986     // unconditionally update the temporary VTMS transition bit in current JavaThread
2987     Node* thread = ideal.thread();
2988     Node* hide = _gvn.transform(argument(0)); // hide argument for temporary VTMS transition notification
2989     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset()));
2990     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
2991 
2992     sync_kit(ideal);
2993     access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2994     ideal.sync_kit(this);
2995   }
2996   final_sync(ideal);
2997 
2998   return true;
2999 }
3000 
3001 // Always update the is_disable_suspend bit.
3002 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
3003   if (!DoJVMTIVirtualThreadTransitions) {
3004     return true;
3005   }
3006   IdealKit ideal(this);
3007 
3008   {
3009     // unconditionally update the is_disable_suspend bit in current JavaThread
3010     Node* thread = ideal.thread();
3011     Node* arg = _gvn.transform(argument(0)); // argument for notification
3012     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
3013     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3014 
3015     sync_kit(ideal);
3016     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3017     ideal.sync_kit(this);
3018   }
3019   final_sync(ideal);
3020 
3021   return true;
3022 }
3023 
3024 #endif // INCLUDE_JVMTI
3025 
3026 #ifdef JFR_HAVE_INTRINSICS
3027 
3028 /**
3029  * if oop->klass != null
3030  *   // normal class
3031  *   epoch = _epoch_state ? 2 : 1
3032  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3033  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3034  *   }
3035  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3036  * else
3037  *   // primitive class
3038  *   if oop->array_klass != null
3039  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3040  *   else
3041  *     id = LAST_TYPE_ID + 1 // void class path
3042  *   if (!signaled)
3043  *     signaled = true
3044  */
3045 bool LibraryCallKit::inline_native_classID() {
3046   Node* cls = argument(0);
3047 
3048   IdealKit ideal(this);
3049 #define __ ideal.
3050   IdealVariable result(ideal); __ declarations_done();
3051   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3052                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3053                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3054 
3055 
3056   __ if_then(kls, BoolTest::ne, null()); {
3057     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3058     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3059 
3060     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3061     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3062     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3063     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3064     mask = _gvn.transform(new OrLNode(mask, epoch));
3065     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3066 
3067     float unlikely  = PROB_UNLIKELY(0.999);
3068     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3069       sync_kit(ideal);
3070       make_runtime_call(RC_LEAF,
3071                         OptoRuntime::class_id_load_barrier_Type(),
3072                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3073                         "class id load barrier",
3074                         TypePtr::BOTTOM,
3075                         kls);
3076       ideal.sync_kit(this);
3077     } __ end_if();
3078 
3079     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3080   } __ else_(); {
3081     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3082                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3083                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3084     __ if_then(array_kls, BoolTest::ne, null()); {
3085       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3086       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3087       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3088       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3089     } __ else_(); {
3090       // void class case
3091       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3092     } __ end_if();
3093 
3094     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3095     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3096     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3097       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3098     } __ end_if();
3099   } __ end_if();
3100 
3101   final_sync(ideal);
3102   set_result(ideal.value(result));
3103 #undef __
3104   return true;
3105 }
3106 
3107 //------------------------inline_native_jvm_commit------------------
3108 bool LibraryCallKit::inline_native_jvm_commit() {
3109   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3110 
3111   // Save input memory and i_o state.
3112   Node* input_memory_state = reset_memory();
3113   set_all_memory(input_memory_state);
3114   Node* input_io_state = i_o();
3115 
3116   // TLS.
3117   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3118   // Jfr java buffer.
3119   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3120   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3121   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3122 
3123   // Load the current value of the notified field in the JfrThreadLocal.
3124   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3125   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3126 
3127   // Test for notification.
3128   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3129   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3130   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3131 
3132   // True branch, is notified.
3133   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3134   set_control(is_notified);
3135 
3136   // Reset notified state.
3137   Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered);
3138 
3139   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3140   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3141   // Convert the machine-word to a long.
3142   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3143 
3144   // False branch, not notified.
3145   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3146   set_control(not_notified);
3147   set_all_memory(input_memory_state);
3148 
3149   // Arg is the next position as a long.
3150   Node* arg = argument(0);
3151   // Convert long to machine-word.
3152   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3153 
3154   // Store the next_position to the underlying jfr java buffer.
3155   Node* commit_memory;
3156 #ifdef _LP64
3157   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release);
3158 #else
3159   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release);
3160 #endif
3161 
3162   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3163   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3164   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3165   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3166 
3167   // And flags with lease constant.
3168   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3169 
3170   // Branch on lease to conditionalize returning the leased java buffer.
3171   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3172   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3173   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3174 
3175   // False branch, not a lease.
3176   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3177 
3178   // True branch, is lease.
3179   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3180   set_control(is_lease);
3181 
3182   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3183   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3184                                               OptoRuntime::void_void_Type(),
3185                                               SharedRuntime::jfr_return_lease(),
3186                                               "return_lease", TypePtr::BOTTOM);
3187   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3188 
3189   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3190   record_for_igvn(lease_compare_rgn);
3191   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3192   record_for_igvn(lease_compare_mem);
3193   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3194   record_for_igvn(lease_compare_io);
3195   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3196   record_for_igvn(lease_result_value);
3197 
3198   // Update control and phi nodes.
3199   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3200   lease_compare_rgn->init_req(_false_path, not_lease);
3201 
3202   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3203   lease_compare_mem->init_req(_false_path, commit_memory);
3204 
3205   lease_compare_io->init_req(_true_path, i_o());
3206   lease_compare_io->init_req(_false_path, input_io_state);
3207 
3208   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3209   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3210 
3211   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3212   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3213   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3214   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3215 
3216   // Update control and phi nodes.
3217   result_rgn->init_req(_true_path, is_notified);
3218   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3219 
3220   result_mem->init_req(_true_path, notified_reset_memory);
3221   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3222 
3223   result_io->init_req(_true_path, input_io_state);
3224   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3225 
3226   result_value->init_req(_true_path, current_pos);
3227   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3228 
3229   // Set output state.
3230   set_control(_gvn.transform(result_rgn));
3231   set_all_memory(_gvn.transform(result_mem));
3232   set_i_o(_gvn.transform(result_io));
3233   set_result(result_rgn, result_value);
3234   return true;
3235 }
3236 
3237 /*
3238  * The intrinsic is a model of this pseudo-code:
3239  *
3240  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3241  * jobject h_event_writer = tl->java_event_writer();
3242  * if (h_event_writer == nullptr) {
3243  *   return nullptr;
3244  * }
3245  * oop threadObj = Thread::threadObj();
3246  * oop vthread = java_lang_Thread::vthread(threadObj);
3247  * traceid tid;
3248  * bool pinVirtualThread;
3249  * bool excluded;
3250  * if (vthread != threadObj) {  // i.e. current thread is virtual
3251  *   tid = java_lang_Thread::tid(vthread);
3252  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3253  *   pinVirtualThread = VMContinuations;
3254  *   excluded = vthread_epoch_raw & excluded_mask;
3255  *   if (!excluded) {
3256  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3257  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3258  *     if (vthread_epoch != current_epoch) {
3259  *       write_checkpoint();
3260  *     }
3261  *   }
3262  * } else {
3263  *   tid = java_lang_Thread::tid(threadObj);
3264  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3265  *   pinVirtualThread = false;
3266  *   excluded = thread_epoch_raw & excluded_mask;
3267  * }
3268  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3269  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3270  * if (tid_in_event_writer != tid) {
3271  *   setField(event_writer, "pinVirtualThread", pinVirtualThread);
3272  *   setField(event_writer, "excluded", excluded);
3273  *   setField(event_writer, "threadID", tid);
3274  * }
3275  * return event_writer
3276  */
3277 bool LibraryCallKit::inline_native_getEventWriter() {
3278   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3279 
3280   // Save input memory and i_o state.
3281   Node* input_memory_state = reset_memory();
3282   set_all_memory(input_memory_state);
3283   Node* input_io_state = i_o();
3284 
3285   Node* excluded_mask = _gvn.intcon(32768);
3286   Node* epoch_mask = _gvn.intcon(32767);
3287 
3288   // TLS
3289   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3290 
3291   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3292   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3293 
3294   // Load the eventwriter jobject handle.
3295   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3296 
3297   // Null check the jobject handle.
3298   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3299   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3300   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3301 
3302   // False path, jobj is null.
3303   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3304 
3305   // True path, jobj is not null.
3306   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3307 
3308   set_control(jobj_is_not_null);
3309 
3310   // Load the threadObj for the CarrierThread.
3311   Node* threadObj = generate_current_thread(tls_ptr);
3312 
3313   // Load the vthread.
3314   Node* vthread = generate_virtual_thread(tls_ptr);
3315 
3316   // If vthread != threadObj, this is a virtual thread.
3317   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3318   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3319   IfNode* iff_vthread_not_equal_threadObj =
3320     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3321 
3322   // False branch, fallback to threadObj.
3323   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3324   set_control(vthread_equal_threadObj);
3325 
3326   // Load the tid field from the vthread object.
3327   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3328 
3329   // Load the raw epoch value from the threadObj.
3330   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3331   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset,
3332                                              _gvn.type(threadObj_epoch_offset)->isa_ptr(),
3333                                              TypeInt::CHAR, T_CHAR,
3334                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3335 
3336   // Mask off the excluded information from the epoch.
3337   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3338 
3339   // True branch, this is a virtual thread.
3340   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3341   set_control(vthread_not_equal_threadObj);
3342 
3343   // Load the tid field from the vthread object.
3344   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3345 
3346   // Continuation support determines if a virtual thread should be pinned.
3347   Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations));
3348   Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3349 
3350   // Load the raw epoch value from the vthread.
3351   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3352   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(),
3353                                            TypeInt::CHAR, T_CHAR,
3354                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3355 
3356   // Mask off the excluded information from the epoch.
3357   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3358 
3359   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3360   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3361   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3362   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3363 
3364   // False branch, vthread is excluded, no need to write epoch info.
3365   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3366 
3367   // True branch, vthread is included, update epoch info.
3368   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3369   set_control(included);
3370 
3371   // Get epoch value.
3372   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3373 
3374   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3375   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3376   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3377 
3378   // Compare the epoch in the vthread to the current epoch generation.
3379   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3380   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3381   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3382 
3383   // False path, epoch is equal, checkpoint information is valid.
3384   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3385 
3386   // True path, epoch is not equal, write a checkpoint for the vthread.
3387   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3388 
3389   set_control(epoch_is_not_equal);
3390 
3391   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3392   // The call also updates the native thread local thread id and the vthread with the current epoch.
3393   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3394                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3395                                                   SharedRuntime::jfr_write_checkpoint(),
3396                                                   "write_checkpoint", TypePtr::BOTTOM);
3397   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3398 
3399   // vthread epoch != current epoch
3400   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3401   record_for_igvn(epoch_compare_rgn);
3402   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3403   record_for_igvn(epoch_compare_mem);
3404   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3405   record_for_igvn(epoch_compare_io);
3406 
3407   // Update control and phi nodes.
3408   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3409   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3410   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3411   epoch_compare_mem->init_req(_false_path, input_memory_state);
3412   epoch_compare_io->init_req(_true_path, i_o());
3413   epoch_compare_io->init_req(_false_path, input_io_state);
3414 
3415   // excluded != true
3416   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3417   record_for_igvn(exclude_compare_rgn);
3418   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3419   record_for_igvn(exclude_compare_mem);
3420   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3421   record_for_igvn(exclude_compare_io);
3422 
3423   // Update control and phi nodes.
3424   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3425   exclude_compare_rgn->init_req(_false_path, excluded);
3426   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3427   exclude_compare_mem->init_req(_false_path, input_memory_state);
3428   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3429   exclude_compare_io->init_req(_false_path, input_io_state);
3430 
3431   // vthread != threadObj
3432   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3433   record_for_igvn(vthread_compare_rgn);
3434   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3435   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3436   record_for_igvn(vthread_compare_io);
3437   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3438   record_for_igvn(tid);
3439   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3440   record_for_igvn(exclusion);
3441   PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3442   record_for_igvn(pinVirtualThread);
3443 
3444   // Update control and phi nodes.
3445   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3446   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3447   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3448   vthread_compare_mem->init_req(_false_path, input_memory_state);
3449   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3450   vthread_compare_io->init_req(_false_path, input_io_state);
3451   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3452   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3453   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3454   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3455   pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support));
3456   pinVirtualThread->init_req(_false_path, _gvn.intcon(0));
3457 
3458   // Update branch state.
3459   set_control(_gvn.transform(vthread_compare_rgn));
3460   set_all_memory(_gvn.transform(vthread_compare_mem));
3461   set_i_o(_gvn.transform(vthread_compare_io));
3462 
3463   // Load the event writer oop by dereferencing the jobject handle.
3464   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3465   assert(klass_EventWriter->is_loaded(), "invariant");
3466   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3467   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3468   const TypeOopPtr* const xtype = aklass->as_instance_type();
3469   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3470   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3471 
3472   // Load the current thread id from the event writer object.
3473   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3474   // Get the field offset to, conditionally, store an updated tid value later.
3475   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3476   const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr();
3477   // Get the field offset to, conditionally, store an updated exclusion value later.
3478   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3479   const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr();
3480   // Get the field offset to, conditionally, store an updated pinVirtualThread value later.
3481   Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false);
3482   const TypePtr* event_writer_pin_field_type = _gvn.type(event_writer_pin_field)->isa_ptr();
3483 
3484   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3485   record_for_igvn(event_writer_tid_compare_rgn);
3486   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3487   record_for_igvn(event_writer_tid_compare_mem);
3488   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3489   record_for_igvn(event_writer_tid_compare_io);
3490 
3491   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3492   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3493   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3494   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3495 
3496   // False path, tids are the same.
3497   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3498 
3499   // True path, tid is not equal, need to update the tid in the event writer.
3500   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3501   record_for_igvn(tid_is_not_equal);
3502 
3503   // Store the pin state to the event writer.
3504   store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, event_writer_pin_field_type, MemNode::unordered);
3505 
3506   // Store the exclusion state to the event writer.
3507   store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered);
3508 
3509   // Store the tid to the event writer.
3510   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered);
3511 
3512   // Update control and phi nodes.
3513   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3514   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3515   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3516   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3517   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3518   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3519 
3520   // Result of top level CFG, Memory, IO and Value.
3521   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3522   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3523   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3524   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3525 
3526   // Result control.
3527   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3528   result_rgn->init_req(_false_path, jobj_is_null);
3529 
3530   // Result memory.
3531   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3532   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3533 
3534   // Result IO.
3535   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3536   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3537 
3538   // Result value.
3539   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3540   result_value->init_req(_false_path, null()); // return null
3541 
3542   // Set output state.
3543   set_control(_gvn.transform(result_rgn));
3544   set_all_memory(_gvn.transform(result_mem));
3545   set_i_o(_gvn.transform(result_io));
3546   set_result(result_rgn, result_value);
3547   return true;
3548 }
3549 
3550 /*
3551  * The intrinsic is a model of this pseudo-code:
3552  *
3553  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3554  * if (carrierThread != thread) { // is virtual thread
3555  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3556  *   bool excluded = vthread_epoch_raw & excluded_mask;
3557  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3558  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3559  *   if (!excluded) {
3560  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3561  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3562  *   }
3563  *   Atomic::release_store(&tl->_vthread, true);
3564  *   return;
3565  * }
3566  * Atomic::release_store(&tl->_vthread, false);
3567  */
3568 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3569   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3570 
3571   Node* input_memory_state = reset_memory();
3572   set_all_memory(input_memory_state);
3573 
3574   Node* excluded_mask = _gvn.intcon(32768);
3575   Node* epoch_mask = _gvn.intcon(32767);
3576 
3577   Node* const carrierThread = generate_current_thread(jt);
3578   // If thread != carrierThread, this is a virtual thread.
3579   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3580   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3581   IfNode* iff_thread_not_equal_carrierThread =
3582     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3583 
3584   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3585 
3586   // False branch, is carrierThread.
3587   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3588   // Store release
3589   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3590 
3591   set_all_memory(input_memory_state);
3592 
3593   // True branch, is virtual thread.
3594   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3595   set_control(thread_not_equal_carrierThread);
3596 
3597   // Load the raw epoch value from the vthread.
3598   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3599   Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR,
3600                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3601 
3602   // Mask off the excluded information from the epoch.
3603   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3604 
3605   // Load the tid field from the thread.
3606   Node* tid = load_field_from_object(thread, "tid", "J");
3607 
3608   // Store the vthread tid to the jfr thread local.
3609   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3610   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true);
3611 
3612   // Branch is_excluded to conditionalize updating the epoch .
3613   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3614   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3615   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3616 
3617   // True branch, vthread is excluded, no need to write epoch info.
3618   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3619   set_control(excluded);
3620   Node* vthread_is_excluded = _gvn.intcon(1);
3621 
3622   // False branch, vthread is included, update epoch info.
3623   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3624   set_control(included);
3625   Node* vthread_is_included = _gvn.intcon(0);
3626 
3627   // Get epoch value.
3628   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3629 
3630   // Store the vthread epoch to the jfr thread local.
3631   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3632   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true);
3633 
3634   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3635   record_for_igvn(excluded_rgn);
3636   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3637   record_for_igvn(excluded_mem);
3638   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3639   record_for_igvn(exclusion);
3640 
3641   // Merge the excluded control and memory.
3642   excluded_rgn->init_req(_true_path, excluded);
3643   excluded_rgn->init_req(_false_path, included);
3644   excluded_mem->init_req(_true_path, tid_memory);
3645   excluded_mem->init_req(_false_path, included_memory);
3646   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3647   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3648 
3649   // Set intermediate state.
3650   set_control(_gvn.transform(excluded_rgn));
3651   set_all_memory(excluded_mem);
3652 
3653   // Store the vthread exclusion state to the jfr thread local.
3654   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3655   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true);
3656 
3657   // Store release
3658   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3659 
3660   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3661   record_for_igvn(thread_compare_rgn);
3662   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3663   record_for_igvn(thread_compare_mem);
3664   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3665   record_for_igvn(vthread);
3666 
3667   // Merge the thread_compare control and memory.
3668   thread_compare_rgn->init_req(_true_path, control());
3669   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3670   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3671   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3672 
3673   // Set output state.
3674   set_control(_gvn.transform(thread_compare_rgn));
3675   set_all_memory(_gvn.transform(thread_compare_mem));
3676 }
3677 
3678 #endif // JFR_HAVE_INTRINSICS
3679 
3680 //------------------------inline_native_currentCarrierThread------------------
3681 bool LibraryCallKit::inline_native_currentCarrierThread() {
3682   Node* junk = nullptr;
3683   set_result(generate_current_thread(junk));
3684   return true;
3685 }
3686 
3687 //------------------------inline_native_currentThread------------------
3688 bool LibraryCallKit::inline_native_currentThread() {
3689   Node* junk = nullptr;
3690   set_result(generate_virtual_thread(junk));
3691   return true;
3692 }
3693 
3694 //------------------------inline_native_setVthread------------------
3695 bool LibraryCallKit::inline_native_setCurrentThread() {
3696   assert(C->method()->changes_current_thread(),
3697          "method changes current Thread but is not annotated ChangesCurrentThread");
3698   Node* arr = argument(1);
3699   Node* thread = _gvn.transform(new ThreadLocalNode());
3700   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3701   Node* thread_obj_handle
3702     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3703   thread_obj_handle = _gvn.transform(thread_obj_handle);
3704   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3705   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3706   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3707   return true;
3708 }
3709 
3710 const Type* LibraryCallKit::scopedValueCache_type() {
3711   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3712   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3713   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3714 
3715   // Because we create the scopedValue cache lazily we have to make the
3716   // type of the result BotPTR.
3717   bool xk = etype->klass_is_exact();
3718   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3719   return objects_type;
3720 }
3721 
3722 Node* LibraryCallKit::scopedValueCache_helper() {
3723   Node* thread = _gvn.transform(new ThreadLocalNode());
3724   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3725   // We cannot use immutable_memory() because we might flip onto a
3726   // different carrier thread, at which point we'll need to use that
3727   // carrier thread's cache.
3728   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3729   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3730   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3731 }
3732 
3733 //------------------------inline_native_scopedValueCache------------------
3734 bool LibraryCallKit::inline_native_scopedValueCache() {
3735   Node* cache_obj_handle = scopedValueCache_helper();
3736   const Type* objects_type = scopedValueCache_type();
3737   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3738 
3739   return true;
3740 }
3741 
3742 //------------------------inline_native_setScopedValueCache------------------
3743 bool LibraryCallKit::inline_native_setScopedValueCache() {
3744   Node* arr = argument(0);
3745   Node* cache_obj_handle = scopedValueCache_helper();
3746   const Type* objects_type = scopedValueCache_type();
3747 
3748   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3749   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3750 
3751   return true;
3752 }
3753 
3754 //------------------------inline_native_Continuation_pin and unpin-----------
3755 
3756 // Shared implementation routine for both pin and unpin.
3757 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) {
3758   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3759 
3760   // Save input memory.
3761   Node* input_memory_state = reset_memory();
3762   set_all_memory(input_memory_state);
3763 
3764   // TLS
3765   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3766   Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset()));
3767   Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered);
3768 
3769   // Null check the last continuation object.
3770   Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null()));
3771   Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne));
3772   IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3773 
3774   // False path, last continuation is null.
3775   Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null));
3776 
3777   // True path, last continuation is not null.
3778   Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null));
3779 
3780   set_control(continuation_is_not_null);
3781 
3782   // Load the pin count from the last continuation.
3783   Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset()));
3784   Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered);
3785 
3786   // The loaded pin count is compared against a context specific rhs for over/underflow detection.
3787   Node* pin_count_rhs;
3788   if (unpin) {
3789     pin_count_rhs = _gvn.intcon(0);
3790   } else {
3791     pin_count_rhs = _gvn.intcon(UINT32_MAX);
3792   }
3793   Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs));
3794   Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq));
3795   IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN);
3796 
3797   // False branch, no pin count over/underflow. Increment or decrement pin count and store back.
3798   Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow));
3799   set_control(valid_pin_count);
3800 
3801   Node* next_pin_count;
3802   if (unpin) {
3803     next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1)));
3804   } else {
3805     next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1)));
3806   }
3807 
3808   Node* updated_pin_count_memory = store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
3809 
3810   // True branch, pin count over/underflow.
3811   Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow));
3812   {
3813     // Trap (but not deoptimize (Action_none)) and continue in the interpreter
3814     // which will throw IllegalStateException for pin count over/underflow.
3815     PreserveJVMState pjvms(this);
3816     set_control(pin_count_over_underflow);
3817     set_all_memory(input_memory_state);
3818     uncommon_trap_exact(Deoptimization::Reason_intrinsic,
3819                         Deoptimization::Action_none);
3820     assert(stopped(), "invariant");
3821   }
3822 
3823   // Result of top level CFG and Memory.
3824   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3825   record_for_igvn(result_rgn);
3826   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3827   record_for_igvn(result_mem);
3828 
3829   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3830   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3831   result_mem->init_req(_true_path, _gvn.transform(updated_pin_count_memory));
3832   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3833 
3834   // Set output state.
3835   set_control(_gvn.transform(result_rgn));
3836   set_all_memory(_gvn.transform(result_mem));
3837 
3838   return true;
3839 }
3840 
3841 //---------------------------load_mirror_from_klass----------------------------
3842 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3843 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3844   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3845   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3846   // mirror = ((OopHandle)mirror)->resolve();
3847   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3848 }
3849 
3850 //-----------------------load_klass_from_mirror_common-------------------------
3851 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3852 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3853 // and branch to the given path on the region.
3854 // If never_see_null, take an uncommon trap on null, so we can optimistically
3855 // compile for the non-null case.
3856 // If the region is null, force never_see_null = true.
3857 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3858                                                     bool never_see_null,
3859                                                     RegionNode* region,
3860                                                     int null_path,
3861                                                     int offset) {
3862   if (region == nullptr)  never_see_null = true;
3863   Node* p = basic_plus_adr(mirror, offset);
3864   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3865   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3866   Node* null_ctl = top();
3867   kls = null_check_oop(kls, &null_ctl, never_see_null);
3868   if (region != nullptr) {
3869     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3870     region->init_req(null_path, null_ctl);
3871   } else {
3872     assert(null_ctl == top(), "no loose ends");
3873   }
3874   return kls;
3875 }
3876 
3877 //--------------------(inline_native_Class_query helpers)---------------------
3878 // Use this for JVM_ACC_INTERFACE.
3879 // Fall through if (mods & mask) == bits, take the guard otherwise.
3880 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3881                                                  ByteSize offset, const Type* type, BasicType bt) {
3882   // Branch around if the given klass has the given modifier bit set.
3883   // Like generate_guard, adds a new path onto the region.
3884   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3885   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3886   Node* mask = intcon(modifier_mask);
3887   Node* bits = intcon(modifier_bits);
3888   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3889   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3890   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3891   return generate_fair_guard(bol, region);
3892 }
3893 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3894   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3895                                     Klass::access_flags_offset(), TypeInt::INT, T_INT);
3896 }
3897 
3898 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3899 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3900   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3901                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3902 }
3903 
3904 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3905   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3906 }
3907 
3908 //-------------------------inline_native_Class_query-------------------
3909 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3910   const Type* return_type = TypeInt::BOOL;
3911   Node* prim_return_value = top();  // what happens if it's a primitive class?
3912   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3913   bool expect_prim = false;     // most of these guys expect to work on refs
3914 
3915   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3916 
3917   Node* mirror = argument(0);
3918   Node* obj    = top();
3919 
3920   switch (id) {
3921   case vmIntrinsics::_isInstance:
3922     // nothing is an instance of a primitive type
3923     prim_return_value = intcon(0);
3924     obj = argument(1);
3925     break;
3926   case vmIntrinsics::_getModifiers:
3927     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3928     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3929     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3930     break;
3931   case vmIntrinsics::_isInterface:
3932     prim_return_value = intcon(0);
3933     break;
3934   case vmIntrinsics::_isArray:
3935     prim_return_value = intcon(0);
3936     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3937     break;
3938   case vmIntrinsics::_isPrimitive:
3939     prim_return_value = intcon(1);
3940     expect_prim = true;  // obviously
3941     break;
3942   case vmIntrinsics::_isHidden:
3943     prim_return_value = intcon(0);
3944     break;
3945   case vmIntrinsics::_getSuperclass:
3946     prim_return_value = null();
3947     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3948     break;
3949   case vmIntrinsics::_getClassAccessFlags:
3950     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3951     return_type = TypeInt::INT;  // not bool!  6297094
3952     break;
3953   default:
3954     fatal_unexpected_iid(id);
3955     break;
3956   }
3957 
3958   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3959   if (mirror_con == nullptr)  return false;  // cannot happen?
3960 
3961 #ifndef PRODUCT
3962   if (C->print_intrinsics() || C->print_inlining()) {
3963     ciType* k = mirror_con->java_mirror_type();
3964     if (k) {
3965       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3966       k->print_name();
3967       tty->cr();
3968     }
3969   }
3970 #endif
3971 
3972   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3973   RegionNode* region = new RegionNode(PATH_LIMIT);
3974   record_for_igvn(region);
3975   PhiNode* phi = new PhiNode(region, return_type);
3976 
3977   // The mirror will never be null of Reflection.getClassAccessFlags, however
3978   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3979   // if it is. See bug 4774291.
3980 
3981   // For Reflection.getClassAccessFlags(), the null check occurs in
3982   // the wrong place; see inline_unsafe_access(), above, for a similar
3983   // situation.
3984   mirror = null_check(mirror);
3985   // If mirror or obj is dead, only null-path is taken.
3986   if (stopped())  return true;
3987 
3988   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3989 
3990   // Now load the mirror's klass metaobject, and null-check it.
3991   // Side-effects region with the control path if the klass is null.
3992   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3993   // If kls is null, we have a primitive mirror.
3994   phi->init_req(_prim_path, prim_return_value);
3995   if (stopped()) { set_result(region, phi); return true; }
3996   bool safe_for_replace = (region->in(_prim_path) == top());
3997 
3998   Node* p;  // handy temp
3999   Node* null_ctl;
4000 
4001   // Now that we have the non-null klass, we can perform the real query.
4002   // For constant classes, the query will constant-fold in LoadNode::Value.
4003   Node* query_value = top();
4004   switch (id) {
4005   case vmIntrinsics::_isInstance:
4006     // nothing is an instance of a primitive type
4007     query_value = gen_instanceof(obj, kls, safe_for_replace);
4008     break;
4009 
4010   case vmIntrinsics::_getModifiers:
4011     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
4012     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4013     break;
4014 
4015   case vmIntrinsics::_isInterface:
4016     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4017     if (generate_interface_guard(kls, region) != nullptr)
4018       // A guard was added.  If the guard is taken, it was an interface.
4019       phi->add_req(intcon(1));
4020     // If we fall through, it's a plain class.
4021     query_value = intcon(0);
4022     break;
4023 
4024   case vmIntrinsics::_isArray:
4025     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
4026     if (generate_array_guard(kls, region) != nullptr)
4027       // A guard was added.  If the guard is taken, it was an array.
4028       phi->add_req(intcon(1));
4029     // If we fall through, it's a plain class.
4030     query_value = intcon(0);
4031     break;
4032 
4033   case vmIntrinsics::_isPrimitive:
4034     query_value = intcon(0); // "normal" path produces false
4035     break;
4036 
4037   case vmIntrinsics::_isHidden:
4038     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
4039     if (generate_hidden_class_guard(kls, region) != nullptr)
4040       // A guard was added.  If the guard is taken, it was an hidden class.
4041       phi->add_req(intcon(1));
4042     // If we fall through, it's a plain class.
4043     query_value = intcon(0);
4044     break;
4045 
4046 
4047   case vmIntrinsics::_getSuperclass:
4048     // The rules here are somewhat unfortunate, but we can still do better
4049     // with random logic than with a JNI call.
4050     // Interfaces store null or Object as _super, but must report null.
4051     // Arrays store an intermediate super as _super, but must report Object.
4052     // Other types can report the actual _super.
4053     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4054     if (generate_interface_guard(kls, region) != nullptr)
4055       // A guard was added.  If the guard is taken, it was an interface.
4056       phi->add_req(null());
4057     if (generate_array_guard(kls, region) != nullptr)
4058       // A guard was added.  If the guard is taken, it was an array.
4059       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4060     // If we fall through, it's a plain class.  Get its _super.
4061     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4062     kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4063     null_ctl = top();
4064     kls = null_check_oop(kls, &null_ctl);
4065     if (null_ctl != top()) {
4066       // If the guard is taken, Object.superClass is null (both klass and mirror).
4067       region->add_req(null_ctl);
4068       phi   ->add_req(null());
4069     }
4070     if (!stopped()) {
4071       query_value = load_mirror_from_klass(kls);
4072     }
4073     break;
4074 
4075   case vmIntrinsics::_getClassAccessFlags:
4076     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4077     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4078     break;
4079 
4080   default:
4081     fatal_unexpected_iid(id);
4082     break;
4083   }
4084 
4085   // Fall-through is the normal case of a query to a real class.
4086   phi->init_req(1, query_value);
4087   region->init_req(1, control());
4088 
4089   C->set_has_split_ifs(true); // Has chance for split-if optimization
4090   set_result(region, phi);
4091   return true;
4092 }
4093 
4094 //-------------------------inline_Class_cast-------------------
4095 bool LibraryCallKit::inline_Class_cast() {
4096   Node* mirror = argument(0); // Class
4097   Node* obj    = argument(1);
4098   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4099   if (mirror_con == nullptr) {
4100     return false;  // dead path (mirror->is_top()).
4101   }
4102   if (obj == nullptr || obj->is_top()) {
4103     return false;  // dead path
4104   }
4105   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4106 
4107   // First, see if Class.cast() can be folded statically.
4108   // java_mirror_type() returns non-null for compile-time Class constants.
4109   ciType* tm = mirror_con->java_mirror_type();
4110   if (tm != nullptr && tm->is_klass() &&
4111       tp != nullptr) {
4112     if (!tp->is_loaded()) {
4113       // Don't use intrinsic when class is not loaded.
4114       return false;
4115     } else {
4116       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());
4117       if (static_res == Compile::SSC_always_true) {
4118         // isInstance() is true - fold the code.
4119         set_result(obj);
4120         return true;
4121       } else if (static_res == Compile::SSC_always_false) {
4122         // Don't use intrinsic, have to throw ClassCastException.
4123         // If the reference is null, the non-intrinsic bytecode will
4124         // be optimized appropriately.
4125         return false;
4126       }
4127     }
4128   }
4129 
4130   // Bailout intrinsic and do normal inlining if exception path is frequent.
4131   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4132     return false;
4133   }
4134 
4135   // Generate dynamic checks.
4136   // Class.cast() is java implementation of _checkcast bytecode.
4137   // Do checkcast (Parse::do_checkcast()) optimizations here.
4138 
4139   mirror = null_check(mirror);
4140   // If mirror is dead, only null-path is taken.
4141   if (stopped()) {
4142     return true;
4143   }
4144 
4145   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4146   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4147   RegionNode* region = new RegionNode(PATH_LIMIT);
4148   record_for_igvn(region);
4149 
4150   // Now load the mirror's klass metaobject, and null-check it.
4151   // If kls is null, we have a primitive mirror and
4152   // nothing is an instance of a primitive type.
4153   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4154 
4155   Node* res = top();
4156   if (!stopped()) {
4157     Node* bad_type_ctrl = top();
4158     // Do checkcast optimizations.
4159     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4160     region->init_req(_bad_type_path, bad_type_ctrl);
4161   }
4162   if (region->in(_prim_path) != top() ||
4163       region->in(_bad_type_path) != top()) {
4164     // Let Interpreter throw ClassCastException.
4165     PreserveJVMState pjvms(this);
4166     set_control(_gvn.transform(region));
4167     uncommon_trap(Deoptimization::Reason_intrinsic,
4168                   Deoptimization::Action_maybe_recompile);
4169   }
4170   if (!stopped()) {
4171     set_result(res);
4172   }
4173   return true;
4174 }
4175 
4176 
4177 //--------------------------inline_native_subtype_check------------------------
4178 // This intrinsic takes the JNI calls out of the heart of
4179 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4180 bool LibraryCallKit::inline_native_subtype_check() {
4181   // Pull both arguments off the stack.
4182   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4183   args[0] = argument(0);
4184   args[1] = argument(1);
4185   Node* klasses[2];             // corresponding Klasses: superk, subk
4186   klasses[0] = klasses[1] = top();
4187 
4188   enum {
4189     // A full decision tree on {superc is prim, subc is prim}:
4190     _prim_0_path = 1,           // {P,N} => false
4191                                 // {P,P} & superc!=subc => false
4192     _prim_same_path,            // {P,P} & superc==subc => true
4193     _prim_1_path,               // {N,P} => false
4194     _ref_subtype_path,          // {N,N} & subtype check wins => true
4195     _both_ref_path,             // {N,N} & subtype check loses => false
4196     PATH_LIMIT
4197   };
4198 
4199   RegionNode* region = new RegionNode(PATH_LIMIT);
4200   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4201   record_for_igvn(region);
4202 
4203   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4204   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4205   int class_klass_offset = java_lang_Class::klass_offset();
4206 
4207   // First null-check both mirrors and load each mirror's klass metaobject.
4208   int which_arg;
4209   for (which_arg = 0; which_arg <= 1; which_arg++) {
4210     Node* arg = args[which_arg];
4211     arg = null_check(arg);
4212     if (stopped())  break;
4213     args[which_arg] = arg;
4214 
4215     Node* p = basic_plus_adr(arg, class_klass_offset);
4216     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4217     klasses[which_arg] = _gvn.transform(kls);
4218   }
4219 
4220   // Having loaded both klasses, test each for null.
4221   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4222   for (which_arg = 0; which_arg <= 1; which_arg++) {
4223     Node* kls = klasses[which_arg];
4224     Node* null_ctl = top();
4225     kls = null_check_oop(kls, &null_ctl, never_see_null);
4226     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4227     region->init_req(prim_path, null_ctl);
4228     if (stopped())  break;
4229     klasses[which_arg] = kls;
4230   }
4231 
4232   if (!stopped()) {
4233     // now we have two reference types, in klasses[0..1]
4234     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4235     Node* superk = klasses[0];  // the receiver
4236     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4237     // now we have a successful reference subtype check
4238     region->set_req(_ref_subtype_path, control());
4239   }
4240 
4241   // If both operands are primitive (both klasses null), then
4242   // we must return true when they are identical primitives.
4243   // It is convenient to test this after the first null klass check.
4244   set_control(region->in(_prim_0_path)); // go back to first null check
4245   if (!stopped()) {
4246     // Since superc is primitive, make a guard for the superc==subc case.
4247     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4248     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4249     generate_guard(bol_eq, region, PROB_FAIR);
4250     if (region->req() == PATH_LIMIT+1) {
4251       // A guard was added.  If the added guard is taken, superc==subc.
4252       region->swap_edges(PATH_LIMIT, _prim_same_path);
4253       region->del_req(PATH_LIMIT);
4254     }
4255     region->set_req(_prim_0_path, control()); // Not equal after all.
4256   }
4257 
4258   // these are the only paths that produce 'true':
4259   phi->set_req(_prim_same_path,   intcon(1));
4260   phi->set_req(_ref_subtype_path, intcon(1));
4261 
4262   // pull together the cases:
4263   assert(region->req() == PATH_LIMIT, "sane region");
4264   for (uint i = 1; i < region->req(); i++) {
4265     Node* ctl = region->in(i);
4266     if (ctl == nullptr || ctl == top()) {
4267       region->set_req(i, top());
4268       phi   ->set_req(i, top());
4269     } else if (phi->in(i) == nullptr) {
4270       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4271     }
4272   }
4273 
4274   set_control(_gvn.transform(region));
4275   set_result(_gvn.transform(phi));
4276   return true;
4277 }
4278 
4279 //---------------------generate_array_guard_common------------------------
4280 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4281                                                   bool obj_array, bool not_array) {
4282 
4283   if (stopped()) {
4284     return nullptr;
4285   }
4286 
4287   // If obj_array/non_array==false/false:
4288   // Branch around if the given klass is in fact an array (either obj or prim).
4289   // If obj_array/non_array==false/true:
4290   // Branch around if the given klass is not an array klass of any kind.
4291   // If obj_array/non_array==true/true:
4292   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4293   // If obj_array/non_array==true/false:
4294   // Branch around if the kls is an oop array (Object[] or subtype)
4295   //
4296   // Like generate_guard, adds a new path onto the region.
4297   jint  layout_con = 0;
4298   Node* layout_val = get_layout_helper(kls, layout_con);
4299   if (layout_val == nullptr) {
4300     bool query = (obj_array
4301                   ? Klass::layout_helper_is_objArray(layout_con)
4302                   : Klass::layout_helper_is_array(layout_con));
4303     if (query == not_array) {
4304       return nullptr;                       // never a branch
4305     } else {                             // always a branch
4306       Node* always_branch = control();
4307       if (region != nullptr)
4308         region->add_req(always_branch);
4309       set_control(top());
4310       return always_branch;
4311     }
4312   }
4313   // Now test the correct condition.
4314   jint  nval = (obj_array
4315                 ? (jint)(Klass::_lh_array_tag_type_value
4316                    <<    Klass::_lh_array_tag_shift)
4317                 : Klass::_lh_neutral_value);
4318   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4319   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4320   // invert the test if we are looking for a non-array
4321   if (not_array)  btest = BoolTest(btest).negate();
4322   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4323   return generate_fair_guard(bol, region);
4324 }
4325 
4326 
4327 //-----------------------inline_native_newArray--------------------------
4328 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4329 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4330 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4331   Node* mirror;
4332   Node* count_val;
4333   if (uninitialized) {
4334     null_check_receiver();
4335     mirror    = argument(1);
4336     count_val = argument(2);
4337   } else {
4338     mirror    = argument(0);
4339     count_val = argument(1);
4340   }
4341 
4342   mirror = null_check(mirror);
4343   // If mirror or obj is dead, only null-path is taken.
4344   if (stopped())  return true;
4345 
4346   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4347   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4348   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4349   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4350   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4351 
4352   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4353   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4354                                                   result_reg, _slow_path);
4355   Node* normal_ctl   = control();
4356   Node* no_array_ctl = result_reg->in(_slow_path);
4357 
4358   // Generate code for the slow case.  We make a call to newArray().
4359   set_control(no_array_ctl);
4360   if (!stopped()) {
4361     // Either the input type is void.class, or else the
4362     // array klass has not yet been cached.  Either the
4363     // ensuing call will throw an exception, or else it
4364     // will cache the array klass for next time.
4365     PreserveJVMState pjvms(this);
4366     CallJavaNode* slow_call = nullptr;
4367     if (uninitialized) {
4368       // Generate optimized virtual call (holder class 'Unsafe' is final)
4369       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4370     } else {
4371       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4372     }
4373     Node* slow_result = set_results_for_java_call(slow_call);
4374     // this->control() comes from set_results_for_java_call
4375     result_reg->set_req(_slow_path, control());
4376     result_val->set_req(_slow_path, slow_result);
4377     result_io ->set_req(_slow_path, i_o());
4378     result_mem->set_req(_slow_path, reset_memory());
4379   }
4380 
4381   set_control(normal_ctl);
4382   if (!stopped()) {
4383     // Normal case:  The array type has been cached in the java.lang.Class.
4384     // The following call works fine even if the array type is polymorphic.
4385     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4386     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4387     result_reg->init_req(_normal_path, control());
4388     result_val->init_req(_normal_path, obj);
4389     result_io ->init_req(_normal_path, i_o());
4390     result_mem->init_req(_normal_path, reset_memory());
4391 
4392     if (uninitialized) {
4393       // Mark the allocation so that zeroing is skipped
4394       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4395       alloc->maybe_set_complete(&_gvn);
4396     }
4397   }
4398 
4399   // Return the combined state.
4400   set_i_o(        _gvn.transform(result_io)  );
4401   set_all_memory( _gvn.transform(result_mem));
4402 
4403   C->set_has_split_ifs(true); // Has chance for split-if optimization
4404   set_result(result_reg, result_val);
4405   return true;
4406 }
4407 
4408 //----------------------inline_native_getLength--------------------------
4409 // public static native int java.lang.reflect.Array.getLength(Object array);
4410 bool LibraryCallKit::inline_native_getLength() {
4411   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4412 
4413   Node* array = null_check(argument(0));
4414   // If array is dead, only null-path is taken.
4415   if (stopped())  return true;
4416 
4417   // Deoptimize if it is a non-array.
4418   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr);
4419 
4420   if (non_array != nullptr) {
4421     PreserveJVMState pjvms(this);
4422     set_control(non_array);
4423     uncommon_trap(Deoptimization::Reason_intrinsic,
4424                   Deoptimization::Action_maybe_recompile);
4425   }
4426 
4427   // If control is dead, only non-array-path is taken.
4428   if (stopped())  return true;
4429 
4430   // The works fine even if the array type is polymorphic.
4431   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4432   Node* result = load_array_length(array);
4433 
4434   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4435   set_result(result);
4436   return true;
4437 }
4438 
4439 //------------------------inline_array_copyOf----------------------------
4440 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4441 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4442 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4443   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4444 
4445   // Get the arguments.
4446   Node* original          = argument(0);
4447   Node* start             = is_copyOfRange? argument(1): intcon(0);
4448   Node* end               = is_copyOfRange? argument(2): argument(1);
4449   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4450 
4451   Node* newcopy = nullptr;
4452 
4453   // Set the original stack and the reexecute bit for the interpreter to reexecute
4454   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4455   { PreserveReexecuteState preexecs(this);
4456     jvms()->set_should_reexecute(true);
4457 
4458     array_type_mirror = null_check(array_type_mirror);
4459     original          = null_check(original);
4460 
4461     // Check if a null path was taken unconditionally.
4462     if (stopped())  return true;
4463 
4464     Node* orig_length = load_array_length(original);
4465 
4466     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4467     klass_node = null_check(klass_node);
4468 
4469     RegionNode* bailout = new RegionNode(1);
4470     record_for_igvn(bailout);
4471 
4472     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4473     // Bail out if that is so.
4474     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4475     if (not_objArray != nullptr) {
4476       // Improve the klass node's type from the new optimistic assumption:
4477       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4478       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4479       Node* cast = new CastPPNode(control(), klass_node, akls);
4480       klass_node = _gvn.transform(cast);
4481     }
4482 
4483     // Bail out if either start or end is negative.
4484     generate_negative_guard(start, bailout, &start);
4485     generate_negative_guard(end,   bailout, &end);
4486 
4487     Node* length = end;
4488     if (_gvn.type(start) != TypeInt::ZERO) {
4489       length = _gvn.transform(new SubINode(end, start));
4490     }
4491 
4492     // Bail out if length is negative (i.e., if start > end).
4493     // Without this the new_array would throw
4494     // NegativeArraySizeException but IllegalArgumentException is what
4495     // should be thrown
4496     generate_negative_guard(length, bailout, &length);
4497 
4498     // Bail out if start is larger than the original length
4499     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4500     generate_negative_guard(orig_tail, bailout, &orig_tail);
4501 
4502     if (bailout->req() > 1) {
4503       PreserveJVMState pjvms(this);
4504       set_control(_gvn.transform(bailout));
4505       uncommon_trap(Deoptimization::Reason_intrinsic,
4506                     Deoptimization::Action_maybe_recompile);
4507     }
4508 
4509     if (!stopped()) {
4510       // How many elements will we copy from the original?
4511       // The answer is MinI(orig_tail, length).
4512       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4513 
4514       // Generate a direct call to the right arraycopy function(s).
4515       // We know the copy is disjoint but we might not know if the
4516       // oop stores need checking.
4517       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4518       // This will fail a store-check if x contains any non-nulls.
4519 
4520       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4521       // loads/stores but it is legal only if we're sure the
4522       // Arrays.copyOf would succeed. So we need all input arguments
4523       // to the copyOf to be validated, including that the copy to the
4524       // new array won't trigger an ArrayStoreException. That subtype
4525       // check can be optimized if we know something on the type of
4526       // the input array from type speculation.
4527       if (_gvn.type(klass_node)->singleton()) {
4528         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4529         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4530 
4531         int test = C->static_subtype_check(superk, subk);
4532         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4533           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4534           if (t_original->speculative_type() != nullptr) {
4535             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4536           }
4537         }
4538       }
4539 
4540       bool validated = false;
4541       // Reason_class_check rather than Reason_intrinsic because we
4542       // want to intrinsify even if this traps.
4543       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4544         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4545 
4546         if (not_subtype_ctrl != top()) {
4547           PreserveJVMState pjvms(this);
4548           set_control(not_subtype_ctrl);
4549           uncommon_trap(Deoptimization::Reason_class_check,
4550                         Deoptimization::Action_make_not_entrant);
4551           assert(stopped(), "Should be stopped");
4552         }
4553         validated = true;
4554       }
4555 
4556       if (!stopped()) {
4557         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4558 
4559         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4560                                                 load_object_klass(original), klass_node);
4561         if (!is_copyOfRange) {
4562           ac->set_copyof(validated);
4563         } else {
4564           ac->set_copyofrange(validated);
4565         }
4566         Node* n = _gvn.transform(ac);
4567         if (n == ac) {
4568           ac->connect_outputs(this);
4569         } else {
4570           assert(validated, "shouldn't transform if all arguments not validated");
4571           set_all_memory(n);
4572         }
4573       }
4574     }
4575   } // original reexecute is set back here
4576 
4577   C->set_has_split_ifs(true); // Has chance for split-if optimization
4578   if (!stopped()) {
4579     set_result(newcopy);
4580   }
4581   return true;
4582 }
4583 
4584 
4585 //----------------------generate_virtual_guard---------------------------
4586 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4587 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4588                                              RegionNode* slow_region) {
4589   ciMethod* method = callee();
4590   int vtable_index = method->vtable_index();
4591   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4592          "bad index %d", vtable_index);
4593   // Get the Method* out of the appropriate vtable entry.
4594   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4595                      vtable_index*vtableEntry::size_in_bytes() +
4596                      in_bytes(vtableEntry::method_offset());
4597   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4598   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4599 
4600   // Compare the target method with the expected method (e.g., Object.hashCode).
4601   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4602 
4603   Node* native_call = makecon(native_call_addr);
4604   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4605   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4606 
4607   return generate_slow_guard(test_native, slow_region);
4608 }
4609 
4610 //-----------------------generate_method_call----------------------------
4611 // Use generate_method_call to make a slow-call to the real
4612 // method if the fast path fails.  An alternative would be to
4613 // use a stub like OptoRuntime::slow_arraycopy_Java.
4614 // This only works for expanding the current library call,
4615 // not another intrinsic.  (E.g., don't use this for making an
4616 // arraycopy call inside of the copyOf intrinsic.)
4617 CallJavaNode*
4618 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4619   // When compiling the intrinsic method itself, do not use this technique.
4620   guarantee(callee() != C->method(), "cannot make slow-call to self");
4621 
4622   ciMethod* method = callee();
4623   // ensure the JVMS we have will be correct for this call
4624   guarantee(method_id == method->intrinsic_id(), "must match");
4625 
4626   const TypeFunc* tf = TypeFunc::make(method);
4627   if (res_not_null) {
4628     assert(tf->return_type() == T_OBJECT, "");
4629     const TypeTuple* range = tf->range();
4630     const Type** fields = TypeTuple::fields(range->cnt());
4631     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4632     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4633     tf = TypeFunc::make(tf->domain(), new_range);
4634   }
4635   CallJavaNode* slow_call;
4636   if (is_static) {
4637     assert(!is_virtual, "");
4638     slow_call = new CallStaticJavaNode(C, tf,
4639                            SharedRuntime::get_resolve_static_call_stub(), method);
4640   } else if (is_virtual) {
4641     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4642     int vtable_index = Method::invalid_vtable_index;
4643     if (UseInlineCaches) {
4644       // Suppress the vtable call
4645     } else {
4646       // hashCode and clone are not a miranda methods,
4647       // so the vtable index is fixed.
4648       // No need to use the linkResolver to get it.
4649        vtable_index = method->vtable_index();
4650        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4651               "bad index %d", vtable_index);
4652     }
4653     slow_call = new CallDynamicJavaNode(tf,
4654                           SharedRuntime::get_resolve_virtual_call_stub(),
4655                           method, vtable_index);
4656   } else {  // neither virtual nor static:  opt_virtual
4657     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4658     slow_call = new CallStaticJavaNode(C, tf,
4659                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4660     slow_call->set_optimized_virtual(true);
4661   }
4662   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4663     // To be able to issue a direct call (optimized virtual or virtual)
4664     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4665     // about the method being invoked should be attached to the call site to
4666     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4667     slow_call->set_override_symbolic_info(true);
4668   }
4669   set_arguments_for_java_call(slow_call);
4670   set_edges_for_java_call(slow_call);
4671   return slow_call;
4672 }
4673 
4674 
4675 /**
4676  * Build special case code for calls to hashCode on an object. This call may
4677  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4678  * slightly different code.
4679  */
4680 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4681   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4682   assert(!(is_virtual && is_static), "either virtual, special, or static");
4683 
4684   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4685 
4686   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4687   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4688   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4689   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4690   Node* obj = nullptr;
4691   if (!is_static) {
4692     // Check for hashing null object
4693     obj = null_check_receiver();
4694     if (stopped())  return true;        // unconditionally null
4695     result_reg->init_req(_null_path, top());
4696     result_val->init_req(_null_path, top());
4697   } else {
4698     // Do a null check, and return zero if null.
4699     // System.identityHashCode(null) == 0
4700     obj = argument(0);
4701     Node* null_ctl = top();
4702     obj = null_check_oop(obj, &null_ctl);
4703     result_reg->init_req(_null_path, null_ctl);
4704     result_val->init_req(_null_path, _gvn.intcon(0));
4705   }
4706 
4707   // Unconditionally null?  Then return right away.
4708   if (stopped()) {
4709     set_control( result_reg->in(_null_path));
4710     if (!stopped())
4711       set_result(result_val->in(_null_path));
4712     return true;
4713   }
4714 
4715   // We only go to the fast case code if we pass a number of guards.  The
4716   // paths which do not pass are accumulated in the slow_region.
4717   RegionNode* slow_region = new RegionNode(1);
4718   record_for_igvn(slow_region);
4719 
4720   // If this is a virtual call, we generate a funny guard.  We pull out
4721   // the vtable entry corresponding to hashCode() from the target object.
4722   // If the target method which we are calling happens to be the native
4723   // Object hashCode() method, we pass the guard.  We do not need this
4724   // guard for non-virtual calls -- the caller is known to be the native
4725   // Object hashCode().
4726   if (is_virtual) {
4727     // After null check, get the object's klass.
4728     Node* obj_klass = load_object_klass(obj);
4729     generate_virtual_guard(obj_klass, slow_region);
4730   }
4731 
4732   // Get the header out of the object, use LoadMarkNode when available
4733   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4734   // The control of the load must be null. Otherwise, the load can move before
4735   // the null check after castPP removal.
4736   Node* no_ctrl = nullptr;
4737   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4738 
4739   if (!UseObjectMonitorTable) {
4740     // Test the header to see if it is safe to read w.r.t. locking.
4741     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4742     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4743     if (LockingMode == LM_LIGHTWEIGHT) {
4744       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4745       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4746       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4747 
4748       generate_slow_guard(test_monitor, slow_region);
4749     } else {
4750       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4751       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4752       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4753 
4754       generate_slow_guard(test_not_unlocked, slow_region);
4755     }
4756   }
4757 
4758   // Get the hash value and check to see that it has been properly assigned.
4759   // We depend on hash_mask being at most 32 bits and avoid the use of
4760   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4761   // vm: see markWord.hpp.
4762   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4763   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4764   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4765   // This hack lets the hash bits live anywhere in the mark object now, as long
4766   // as the shift drops the relevant bits into the low 32 bits.  Note that
4767   // Java spec says that HashCode is an int so there's no point in capturing
4768   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4769   hshifted_header      = ConvX2I(hshifted_header);
4770   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4771 
4772   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4773   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4774   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4775 
4776   generate_slow_guard(test_assigned, slow_region);
4777 
4778   Node* init_mem = reset_memory();
4779   // fill in the rest of the null path:
4780   result_io ->init_req(_null_path, i_o());
4781   result_mem->init_req(_null_path, init_mem);
4782 
4783   result_val->init_req(_fast_path, hash_val);
4784   result_reg->init_req(_fast_path, control());
4785   result_io ->init_req(_fast_path, i_o());
4786   result_mem->init_req(_fast_path, init_mem);
4787 
4788   // Generate code for the slow case.  We make a call to hashCode().
4789   set_control(_gvn.transform(slow_region));
4790   if (!stopped()) {
4791     // No need for PreserveJVMState, because we're using up the present state.
4792     set_all_memory(init_mem);
4793     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4794     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
4795     Node* slow_result = set_results_for_java_call(slow_call);
4796     // this->control() comes from set_results_for_java_call
4797     result_reg->init_req(_slow_path, control());
4798     result_val->init_req(_slow_path, slow_result);
4799     result_io  ->set_req(_slow_path, i_o());
4800     result_mem ->set_req(_slow_path, reset_memory());
4801   }
4802 
4803   // Return the combined state.
4804   set_i_o(        _gvn.transform(result_io)  );
4805   set_all_memory( _gvn.transform(result_mem));
4806 
4807   set_result(result_reg, result_val);
4808   return true;
4809 }
4810 
4811 //---------------------------inline_native_getClass----------------------------
4812 // public final native Class<?> java.lang.Object.getClass();
4813 //
4814 // Build special case code for calls to getClass on an object.
4815 bool LibraryCallKit::inline_native_getClass() {
4816   Node* obj = null_check_receiver();
4817   if (stopped())  return true;
4818   set_result(load_mirror_from_klass(load_object_klass(obj)));
4819   return true;
4820 }
4821 
4822 //-----------------inline_native_Reflection_getCallerClass---------------------
4823 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4824 //
4825 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4826 //
4827 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4828 // in that it must skip particular security frames and checks for
4829 // caller sensitive methods.
4830 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4831 #ifndef PRODUCT
4832   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4833     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4834   }
4835 #endif
4836 
4837   if (!jvms()->has_method()) {
4838 #ifndef PRODUCT
4839     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4840       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4841     }
4842 #endif
4843     return false;
4844   }
4845 
4846   // Walk back up the JVM state to find the caller at the required
4847   // depth.
4848   JVMState* caller_jvms = jvms();
4849 
4850   // Cf. JVM_GetCallerClass
4851   // NOTE: Start the loop at depth 1 because the current JVM state does
4852   // not include the Reflection.getCallerClass() frame.
4853   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
4854     ciMethod* m = caller_jvms->method();
4855     switch (n) {
4856     case 0:
4857       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4858       break;
4859     case 1:
4860       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4861       if (!m->caller_sensitive()) {
4862 #ifndef PRODUCT
4863         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4864           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4865         }
4866 #endif
4867         return false;  // bail-out; let JVM_GetCallerClass do the work
4868       }
4869       break;
4870     default:
4871       if (!m->is_ignored_by_security_stack_walk()) {
4872         // We have reached the desired frame; return the holder class.
4873         // Acquire method holder as java.lang.Class and push as constant.
4874         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4875         ciInstance* caller_mirror = caller_klass->java_mirror();
4876         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4877 
4878 #ifndef PRODUCT
4879         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4880           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4881           tty->print_cr("  JVM state at this point:");
4882           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4883             ciMethod* m = jvms()->of_depth(i)->method();
4884             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4885           }
4886         }
4887 #endif
4888         return true;
4889       }
4890       break;
4891     }
4892   }
4893 
4894 #ifndef PRODUCT
4895   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4896     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4897     tty->print_cr("  JVM state at this point:");
4898     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4899       ciMethod* m = jvms()->of_depth(i)->method();
4900       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4901     }
4902   }
4903 #endif
4904 
4905   return false;  // bail-out; let JVM_GetCallerClass do the work
4906 }
4907 
4908 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4909   Node* arg = argument(0);
4910   Node* result = nullptr;
4911 
4912   switch (id) {
4913   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4914   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4915   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4916   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4917   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
4918   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
4919 
4920   case vmIntrinsics::_doubleToLongBits: {
4921     // two paths (plus control) merge in a wood
4922     RegionNode *r = new RegionNode(3);
4923     Node *phi = new PhiNode(r, TypeLong::LONG);
4924 
4925     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4926     // Build the boolean node
4927     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4928 
4929     // Branch either way.
4930     // NaN case is less traveled, which makes all the difference.
4931     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4932     Node *opt_isnan = _gvn.transform(ifisnan);
4933     assert( opt_isnan->is_If(), "Expect an IfNode");
4934     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4935     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4936 
4937     set_control(iftrue);
4938 
4939     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4940     Node *slow_result = longcon(nan_bits); // return NaN
4941     phi->init_req(1, _gvn.transform( slow_result ));
4942     r->init_req(1, iftrue);
4943 
4944     // Else fall through
4945     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4946     set_control(iffalse);
4947 
4948     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4949     r->init_req(2, iffalse);
4950 
4951     // Post merge
4952     set_control(_gvn.transform(r));
4953     record_for_igvn(r);
4954 
4955     C->set_has_split_ifs(true); // Has chance for split-if optimization
4956     result = phi;
4957     assert(result->bottom_type()->isa_long(), "must be");
4958     break;
4959   }
4960 
4961   case vmIntrinsics::_floatToIntBits: {
4962     // two paths (plus control) merge in a wood
4963     RegionNode *r = new RegionNode(3);
4964     Node *phi = new PhiNode(r, TypeInt::INT);
4965 
4966     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4967     // Build the boolean node
4968     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4969 
4970     // Branch either way.
4971     // NaN case is less traveled, which makes all the difference.
4972     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4973     Node *opt_isnan = _gvn.transform(ifisnan);
4974     assert( opt_isnan->is_If(), "Expect an IfNode");
4975     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4976     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4977 
4978     set_control(iftrue);
4979 
4980     static const jint nan_bits = 0x7fc00000;
4981     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4982     phi->init_req(1, _gvn.transform( slow_result ));
4983     r->init_req(1, iftrue);
4984 
4985     // Else fall through
4986     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4987     set_control(iffalse);
4988 
4989     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4990     r->init_req(2, iffalse);
4991 
4992     // Post merge
4993     set_control(_gvn.transform(r));
4994     record_for_igvn(r);
4995 
4996     C->set_has_split_ifs(true); // Has chance for split-if optimization
4997     result = phi;
4998     assert(result->bottom_type()->isa_int(), "must be");
4999     break;
5000   }
5001 
5002   default:
5003     fatal_unexpected_iid(id);
5004     break;
5005   }
5006   set_result(_gvn.transform(result));
5007   return true;
5008 }
5009 
5010 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
5011   Node* arg = argument(0);
5012   Node* result = nullptr;
5013 
5014   switch (id) {
5015   case vmIntrinsics::_floatIsInfinite:
5016     result = new IsInfiniteFNode(arg);
5017     break;
5018   case vmIntrinsics::_floatIsFinite:
5019     result = new IsFiniteFNode(arg);
5020     break;
5021   case vmIntrinsics::_doubleIsInfinite:
5022     result = new IsInfiniteDNode(arg);
5023     break;
5024   case vmIntrinsics::_doubleIsFinite:
5025     result = new IsFiniteDNode(arg);
5026     break;
5027   default:
5028     fatal_unexpected_iid(id);
5029     break;
5030   }
5031   set_result(_gvn.transform(result));
5032   return true;
5033 }
5034 
5035 //----------------------inline_unsafe_copyMemory-------------------------
5036 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
5037 
5038 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
5039   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
5040   const Type*       base_t = gvn.type(base);
5041 
5042   bool in_native = (base_t == TypePtr::NULL_PTR);
5043   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
5044   bool is_mixed  = !in_heap && !in_native;
5045 
5046   if (is_mixed) {
5047     return true; // mixed accesses can touch both on-heap and off-heap memory
5048   }
5049   if (in_heap) {
5050     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
5051     if (!is_prim_array) {
5052       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
5053       // there's not enough type information available to determine proper memory slice for it.
5054       return true;
5055     }
5056   }
5057   return false;
5058 }
5059 
5060 bool LibraryCallKit::inline_unsafe_copyMemory() {
5061   if (callee()->is_static())  return false;  // caller must have the capability!
5062   null_check_receiver();  // null-check receiver
5063   if (stopped())  return true;
5064 
5065   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5066 
5067   Node* src_base =         argument(1);  // type: oop
5068   Node* src_off  = ConvL2X(argument(2)); // type: long
5069   Node* dst_base =         argument(4);  // type: oop
5070   Node* dst_off  = ConvL2X(argument(5)); // type: long
5071   Node* size     = ConvL2X(argument(7)); // type: long
5072 
5073   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5074          "fieldOffset must be byte-scaled");
5075 
5076   Node* src_addr = make_unsafe_address(src_base, src_off);
5077   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5078 
5079   Node* thread = _gvn.transform(new ThreadLocalNode());
5080   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5081   BasicType doing_unsafe_access_bt = T_BYTE;
5082   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5083 
5084   // update volatile field
5085   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5086 
5087   int flags = RC_LEAF | RC_NO_FP;
5088 
5089   const TypePtr* dst_type = TypePtr::BOTTOM;
5090 
5091   // Adjust memory effects of the runtime call based on input values.
5092   if (!has_wide_mem(_gvn, src_addr, src_base) &&
5093       !has_wide_mem(_gvn, dst_addr, dst_base)) {
5094     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5095 
5096     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5097     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5098       flags |= RC_NARROW_MEM; // narrow in memory
5099     }
5100   }
5101 
5102   // Call it.  Note that the length argument is not scaled.
5103   make_runtime_call(flags,
5104                     OptoRuntime::fast_arraycopy_Type(),
5105                     StubRoutines::unsafe_arraycopy(),
5106                     "unsafe_arraycopy",
5107                     dst_type,
5108                     src_addr, dst_addr, size XTOP);
5109 
5110   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5111 
5112   return true;
5113 }
5114 
5115 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5116 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5117 bool LibraryCallKit::inline_unsafe_setMemory() {
5118   if (callee()->is_static())  return false;  // caller must have the capability!
5119   null_check_receiver();  // null-check receiver
5120   if (stopped())  return true;
5121 
5122   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5123 
5124   Node* dst_base =         argument(1);  // type: oop
5125   Node* dst_off  = ConvL2X(argument(2)); // type: long
5126   Node* size     = ConvL2X(argument(4)); // type: long
5127   Node* byte     =         argument(6);  // type: byte
5128 
5129   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5130          "fieldOffset must be byte-scaled");
5131 
5132   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5133 
5134   Node* thread = _gvn.transform(new ThreadLocalNode());
5135   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5136   BasicType doing_unsafe_access_bt = T_BYTE;
5137   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5138 
5139   // update volatile field
5140   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5141 
5142   int flags = RC_LEAF | RC_NO_FP;
5143 
5144   const TypePtr* dst_type = TypePtr::BOTTOM;
5145 
5146   // Adjust memory effects of the runtime call based on input values.
5147   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5148     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5149 
5150     flags |= RC_NARROW_MEM; // narrow in memory
5151   }
5152 
5153   // Call it.  Note that the length argument is not scaled.
5154   make_runtime_call(flags,
5155                     OptoRuntime::make_setmemory_Type(),
5156                     StubRoutines::unsafe_setmemory(),
5157                     "unsafe_setmemory",
5158                     dst_type,
5159                     dst_addr, size XTOP, byte);
5160 
5161   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5162 
5163   return true;
5164 }
5165 
5166 #undef XTOP
5167 
5168 //------------------------clone_coping-----------------------------------
5169 // Helper function for inline_native_clone.
5170 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5171   assert(obj_size != nullptr, "");
5172   Node* raw_obj = alloc_obj->in(1);
5173   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5174 
5175   AllocateNode* alloc = nullptr;
5176   if (ReduceBulkZeroing &&
5177       // If we are implementing an array clone without knowing its source type
5178       // (can happen when compiling the array-guarded branch of a reflective
5179       // Object.clone() invocation), initialize the array within the allocation.
5180       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5181       // to a runtime clone call that assumes fully initialized source arrays.
5182       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5183     // We will be completely responsible for initializing this object -
5184     // mark Initialize node as complete.
5185     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5186     // The object was just allocated - there should be no any stores!
5187     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5188     // Mark as complete_with_arraycopy so that on AllocateNode
5189     // expansion, we know this AllocateNode is initialized by an array
5190     // copy and a StoreStore barrier exists after the array copy.
5191     alloc->initialization()->set_complete_with_arraycopy();
5192   }
5193 
5194   Node* size = _gvn.transform(obj_size);
5195   access_clone(obj, alloc_obj, size, is_array);
5196 
5197   // Do not let reads from the cloned object float above the arraycopy.
5198   if (alloc != nullptr) {
5199     // Do not let stores that initialize this object be reordered with
5200     // a subsequent store that would make this object accessible by
5201     // other threads.
5202     // Record what AllocateNode this StoreStore protects so that
5203     // escape analysis can go from the MemBarStoreStoreNode to the
5204     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5205     // based on the escape status of the AllocateNode.
5206     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5207   } else {
5208     insert_mem_bar(Op_MemBarCPUOrder);
5209   }
5210 }
5211 
5212 //------------------------inline_native_clone----------------------------
5213 // protected native Object java.lang.Object.clone();
5214 //
5215 // Here are the simple edge cases:
5216 //  null receiver => normal trap
5217 //  virtual and clone was overridden => slow path to out-of-line clone
5218 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5219 //
5220 // The general case has two steps, allocation and copying.
5221 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5222 //
5223 // Copying also has two cases, oop arrays and everything else.
5224 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5225 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5226 //
5227 // These steps fold up nicely if and when the cloned object's klass
5228 // can be sharply typed as an object array, a type array, or an instance.
5229 //
5230 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5231   PhiNode* result_val;
5232 
5233   // Set the reexecute bit for the interpreter to reexecute
5234   // the bytecode that invokes Object.clone if deoptimization happens.
5235   { PreserveReexecuteState preexecs(this);
5236     jvms()->set_should_reexecute(true);
5237 
5238     Node* obj = null_check_receiver();
5239     if (stopped())  return true;
5240 
5241     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5242 
5243     // If we are going to clone an instance, we need its exact type to
5244     // know the number and types of fields to convert the clone to
5245     // loads/stores. Maybe a speculative type can help us.
5246     if (!obj_type->klass_is_exact() &&
5247         obj_type->speculative_type() != nullptr &&
5248         obj_type->speculative_type()->is_instance_klass()) {
5249       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5250       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5251           !spec_ik->has_injected_fields()) {
5252         if (!obj_type->isa_instptr() ||
5253             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5254           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5255         }
5256       }
5257     }
5258 
5259     // Conservatively insert a memory barrier on all memory slices.
5260     // Do not let writes into the original float below the clone.
5261     insert_mem_bar(Op_MemBarCPUOrder);
5262 
5263     // paths into result_reg:
5264     enum {
5265       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5266       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5267       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5268       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5269       PATH_LIMIT
5270     };
5271     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5272     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5273     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5274     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5275     record_for_igvn(result_reg);
5276 
5277     Node* obj_klass = load_object_klass(obj);
5278     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5279     if (array_ctl != nullptr) {
5280       // It's an array.
5281       PreserveJVMState pjvms(this);
5282       set_control(array_ctl);
5283       Node* obj_length = load_array_length(obj);
5284       Node* array_size = nullptr; // Size of the array without object alignment padding.
5285       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5286 
5287       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5288       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5289         // If it is an oop array, it requires very special treatment,
5290         // because gc barriers are required when accessing the array.
5291         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5292         if (is_obja != nullptr) {
5293           PreserveJVMState pjvms2(this);
5294           set_control(is_obja);
5295           // Generate a direct call to the right arraycopy function(s).
5296           // Clones are always tightly coupled.
5297           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5298           ac->set_clone_oop_array();
5299           Node* n = _gvn.transform(ac);
5300           assert(n == ac, "cannot disappear");
5301           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5302 
5303           result_reg->init_req(_objArray_path, control());
5304           result_val->init_req(_objArray_path, alloc_obj);
5305           result_i_o ->set_req(_objArray_path, i_o());
5306           result_mem ->set_req(_objArray_path, reset_memory());
5307         }
5308       }
5309       // Otherwise, there are no barriers to worry about.
5310       // (We can dispense with card marks if we know the allocation
5311       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5312       //  causes the non-eden paths to take compensating steps to
5313       //  simulate a fresh allocation, so that no further
5314       //  card marks are required in compiled code to initialize
5315       //  the object.)
5316 
5317       if (!stopped()) {
5318         copy_to_clone(obj, alloc_obj, array_size, true);
5319 
5320         // Present the results of the copy.
5321         result_reg->init_req(_array_path, control());
5322         result_val->init_req(_array_path, alloc_obj);
5323         result_i_o ->set_req(_array_path, i_o());
5324         result_mem ->set_req(_array_path, reset_memory());
5325       }
5326     }
5327 
5328     // We only go to the instance fast case code if we pass a number of guards.
5329     // The paths which do not pass are accumulated in the slow_region.
5330     RegionNode* slow_region = new RegionNode(1);
5331     record_for_igvn(slow_region);
5332     if (!stopped()) {
5333       // It's an instance (we did array above).  Make the slow-path tests.
5334       // If this is a virtual call, we generate a funny guard.  We grab
5335       // the vtable entry corresponding to clone() from the target object.
5336       // If the target method which we are calling happens to be the
5337       // Object clone() method, we pass the guard.  We do not need this
5338       // guard for non-virtual calls; the caller is known to be the native
5339       // Object clone().
5340       if (is_virtual) {
5341         generate_virtual_guard(obj_klass, slow_region);
5342       }
5343 
5344       // The object must be easily cloneable and must not have a finalizer.
5345       // Both of these conditions may be checked in a single test.
5346       // We could optimize the test further, but we don't care.
5347       generate_misc_flags_guard(obj_klass,
5348                                 // Test both conditions:
5349                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5350                                 // Must be cloneable but not finalizer:
5351                                 KlassFlags::_misc_is_cloneable_fast,
5352                                 slow_region);
5353     }
5354 
5355     if (!stopped()) {
5356       // It's an instance, and it passed the slow-path tests.
5357       PreserveJVMState pjvms(this);
5358       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5359       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5360       // is reexecuted if deoptimization occurs and there could be problems when merging
5361       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5362       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5363 
5364       copy_to_clone(obj, alloc_obj, obj_size, false);
5365 
5366       // Present the results of the slow call.
5367       result_reg->init_req(_instance_path, control());
5368       result_val->init_req(_instance_path, alloc_obj);
5369       result_i_o ->set_req(_instance_path, i_o());
5370       result_mem ->set_req(_instance_path, reset_memory());
5371     }
5372 
5373     // Generate code for the slow case.  We make a call to clone().
5374     set_control(_gvn.transform(slow_region));
5375     if (!stopped()) {
5376       PreserveJVMState pjvms(this);
5377       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5378       // We need to deoptimize on exception (see comment above)
5379       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5380       // this->control() comes from set_results_for_java_call
5381       result_reg->init_req(_slow_path, control());
5382       result_val->init_req(_slow_path, slow_result);
5383       result_i_o ->set_req(_slow_path, i_o());
5384       result_mem ->set_req(_slow_path, reset_memory());
5385     }
5386 
5387     // Return the combined state.
5388     set_control(    _gvn.transform(result_reg));
5389     set_i_o(        _gvn.transform(result_i_o));
5390     set_all_memory( _gvn.transform(result_mem));
5391   } // original reexecute is set back here
5392 
5393   set_result(_gvn.transform(result_val));
5394   return true;
5395 }
5396 
5397 // If we have a tightly coupled allocation, the arraycopy may take care
5398 // of the array initialization. If one of the guards we insert between
5399 // the allocation and the arraycopy causes a deoptimization, an
5400 // uninitialized array will escape the compiled method. To prevent that
5401 // we set the JVM state for uncommon traps between the allocation and
5402 // the arraycopy to the state before the allocation so, in case of
5403 // deoptimization, we'll reexecute the allocation and the
5404 // initialization.
5405 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5406   if (alloc != nullptr) {
5407     ciMethod* trap_method = alloc->jvms()->method();
5408     int trap_bci = alloc->jvms()->bci();
5409 
5410     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5411         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5412       // Make sure there's no store between the allocation and the
5413       // arraycopy otherwise visible side effects could be rexecuted
5414       // in case of deoptimization and cause incorrect execution.
5415       bool no_interfering_store = true;
5416       Node* mem = alloc->in(TypeFunc::Memory);
5417       if (mem->is_MergeMem()) {
5418         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5419           Node* n = mms.memory();
5420           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5421             assert(n->is_Store(), "what else?");
5422             no_interfering_store = false;
5423             break;
5424           }
5425         }
5426       } else {
5427         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5428           Node* n = mms.memory();
5429           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5430             assert(n->is_Store(), "what else?");
5431             no_interfering_store = false;
5432             break;
5433           }
5434         }
5435       }
5436 
5437       if (no_interfering_store) {
5438         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5439 
5440         JVMState* saved_jvms = jvms();
5441         saved_reexecute_sp = _reexecute_sp;
5442 
5443         set_jvms(sfpt->jvms());
5444         _reexecute_sp = jvms()->sp();
5445 
5446         return saved_jvms;
5447       }
5448     }
5449   }
5450   return nullptr;
5451 }
5452 
5453 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5454 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5455 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5456   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5457   uint size = alloc->req();
5458   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5459   old_jvms->set_map(sfpt);
5460   for (uint i = 0; i < size; i++) {
5461     sfpt->init_req(i, alloc->in(i));
5462   }
5463   // re-push array length for deoptimization
5464   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5465   old_jvms->set_sp(old_jvms->sp()+1);
5466   old_jvms->set_monoff(old_jvms->monoff()+1);
5467   old_jvms->set_scloff(old_jvms->scloff()+1);
5468   old_jvms->set_endoff(old_jvms->endoff()+1);
5469   old_jvms->set_should_reexecute(true);
5470 
5471   sfpt->set_i_o(map()->i_o());
5472   sfpt->set_memory(map()->memory());
5473   sfpt->set_control(map()->control());
5474   return sfpt;
5475 }
5476 
5477 // In case of a deoptimization, we restart execution at the
5478 // allocation, allocating a new array. We would leave an uninitialized
5479 // array in the heap that GCs wouldn't expect. Move the allocation
5480 // after the traps so we don't allocate the array if we
5481 // deoptimize. This is possible because tightly_coupled_allocation()
5482 // guarantees there's no observer of the allocated array at this point
5483 // and the control flow is simple enough.
5484 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5485                                                     int saved_reexecute_sp, uint new_idx) {
5486   if (saved_jvms_before_guards != nullptr && !stopped()) {
5487     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5488 
5489     assert(alloc != nullptr, "only with a tightly coupled allocation");
5490     // restore JVM state to the state at the arraycopy
5491     saved_jvms_before_guards->map()->set_control(map()->control());
5492     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5493     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5494     // If we've improved the types of some nodes (null check) while
5495     // emitting the guards, propagate them to the current state
5496     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5497     set_jvms(saved_jvms_before_guards);
5498     _reexecute_sp = saved_reexecute_sp;
5499 
5500     // Remove the allocation from above the guards
5501     CallProjections callprojs;
5502     alloc->extract_projections(&callprojs, true);
5503     InitializeNode* init = alloc->initialization();
5504     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5505     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5506     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5507 
5508     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5509     // the allocation (i.e. is only valid if the allocation succeeds):
5510     // 1) replace CastIINode with AllocateArrayNode's length here
5511     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5512     //
5513     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5514     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5515     Node* init_control = init->proj_out(TypeFunc::Control);
5516     Node* alloc_length = alloc->Ideal_length();
5517 #ifdef ASSERT
5518     Node* prev_cast = nullptr;
5519 #endif
5520     for (uint i = 0; i < init_control->outcnt(); i++) {
5521       Node* init_out = init_control->raw_out(i);
5522       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5523 #ifdef ASSERT
5524         if (prev_cast == nullptr) {
5525           prev_cast = init_out;
5526         } else {
5527           if (prev_cast->cmp(*init_out) == false) {
5528             prev_cast->dump();
5529             init_out->dump();
5530             assert(false, "not equal CastIINode");
5531           }
5532         }
5533 #endif
5534         C->gvn_replace_by(init_out, alloc_length);
5535       }
5536     }
5537     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5538 
5539     // move the allocation here (after the guards)
5540     _gvn.hash_delete(alloc);
5541     alloc->set_req(TypeFunc::Control, control());
5542     alloc->set_req(TypeFunc::I_O, i_o());
5543     Node *mem = reset_memory();
5544     set_all_memory(mem);
5545     alloc->set_req(TypeFunc::Memory, mem);
5546     set_control(init->proj_out_or_null(TypeFunc::Control));
5547     set_i_o(callprojs.fallthrough_ioproj);
5548 
5549     // Update memory as done in GraphKit::set_output_for_allocation()
5550     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5551     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5552     if (ary_type->isa_aryptr() && length_type != nullptr) {
5553       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5554     }
5555     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5556     int            elemidx  = C->get_alias_index(telemref);
5557     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5558     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5559 
5560     Node* allocx = _gvn.transform(alloc);
5561     assert(allocx == alloc, "where has the allocation gone?");
5562     assert(dest->is_CheckCastPP(), "not an allocation result?");
5563 
5564     _gvn.hash_delete(dest);
5565     dest->set_req(0, control());
5566     Node* destx = _gvn.transform(dest);
5567     assert(destx == dest, "where has the allocation result gone?");
5568 
5569     array_ideal_length(alloc, ary_type, true);
5570   }
5571 }
5572 
5573 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5574 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5575 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5576 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5577 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5578 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5579 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5580                                                                        JVMState* saved_jvms_before_guards) {
5581   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5582     // There is at least one unrelated uncommon trap which needs to be replaced.
5583     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5584 
5585     JVMState* saved_jvms = jvms();
5586     const int saved_reexecute_sp = _reexecute_sp;
5587     set_jvms(sfpt->jvms());
5588     _reexecute_sp = jvms()->sp();
5589 
5590     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5591 
5592     // Restore state
5593     set_jvms(saved_jvms);
5594     _reexecute_sp = saved_reexecute_sp;
5595   }
5596 }
5597 
5598 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5599 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5600 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5601   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5602   while (if_proj->is_IfProj()) {
5603     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5604     if (uncommon_trap != nullptr) {
5605       create_new_uncommon_trap(uncommon_trap);
5606     }
5607     assert(if_proj->in(0)->is_If(), "must be If");
5608     if_proj = if_proj->in(0)->in(0);
5609   }
5610   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5611          "must have reached control projection of init node");
5612 }
5613 
5614 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5615   const int trap_request = uncommon_trap_call->uncommon_trap_request();
5616   assert(trap_request != 0, "no valid UCT trap request");
5617   PreserveJVMState pjvms(this);
5618   set_control(uncommon_trap_call->in(0));
5619   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5620                 Deoptimization::trap_request_action(trap_request));
5621   assert(stopped(), "Should be stopped");
5622   _gvn.hash_delete(uncommon_trap_call);
5623   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5624 }
5625 
5626 // Common checks for array sorting intrinsics arguments.
5627 // Returns `true` if checks passed.
5628 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
5629   // check address of the class
5630   if (elementType == nullptr || elementType->is_top()) {
5631     return false;  // dead path
5632   }
5633   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5634   if (elem_klass == nullptr) {
5635     return false;  // dead path
5636   }
5637   // java_mirror_type() returns non-null for compile-time Class constants only
5638   ciType* elem_type = elem_klass->java_mirror_type();
5639   if (elem_type == nullptr) {
5640     return false;
5641   }
5642   bt = elem_type->basic_type();
5643   // Disable the intrinsic if the CPU does not support SIMD sort
5644   if (!Matcher::supports_simd_sort(bt)) {
5645     return false;
5646   }
5647   // check address of the array
5648   if (obj == nullptr || obj->is_top()) {
5649     return false;  // dead path
5650   }
5651   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5652   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
5653     return false; // failed input validation
5654   }
5655   return true;
5656 }
5657 
5658 //------------------------------inline_array_partition-----------------------
5659 bool LibraryCallKit::inline_array_partition() {
5660   address stubAddr = StubRoutines::select_array_partition_function();
5661   if (stubAddr == nullptr) {
5662     return false; // Intrinsic's stub is not implemented on this platform
5663   }
5664   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
5665 
5666   // no receiver because it is a static method
5667   Node* elementType     = argument(0);
5668   Node* obj             = argument(1);
5669   Node* offset          = argument(2); // long
5670   Node* fromIndex       = argument(4);
5671   Node* toIndex         = argument(5);
5672   Node* indexPivot1     = argument(6);
5673   Node* indexPivot2     = argument(7);
5674   // PartitionOperation:  argument(8) is ignored
5675 
5676   Node* pivotIndices = nullptr;
5677   BasicType bt = T_ILLEGAL;
5678 
5679   if (!check_array_sort_arguments(elementType, obj, bt)) {
5680     return false;
5681   }
5682   null_check(obj);
5683   // If obj is dead, only null-path is taken.
5684   if (stopped()) {
5685     return true;
5686   }
5687   // Set the original stack and the reexecute bit for the interpreter to reexecute
5688   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
5689   { PreserveReexecuteState preexecs(this);
5690     jvms()->set_should_reexecute(true);
5691 
5692     Node* obj_adr = make_unsafe_address(obj, offset);
5693 
5694     // create the pivotIndices array of type int and size = 2
5695     Node* size = intcon(2);
5696     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
5697     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
5698     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
5699     guarantee(alloc != nullptr, "created above");
5700     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
5701 
5702     // pass the basic type enum to the stub
5703     Node* elemType = intcon(bt);
5704 
5705     // Call the stub
5706     const char *stubName = "array_partition_stub";
5707     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
5708                       stubAddr, stubName, TypePtr::BOTTOM,
5709                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
5710                       indexPivot1, indexPivot2);
5711 
5712   } // original reexecute is set back here
5713 
5714   if (!stopped()) {
5715     set_result(pivotIndices);
5716   }
5717 
5718   return true;
5719 }
5720 
5721 
5722 //------------------------------inline_array_sort-----------------------
5723 bool LibraryCallKit::inline_array_sort() {
5724   address stubAddr = StubRoutines::select_arraysort_function();
5725   if (stubAddr == nullptr) {
5726     return false; // Intrinsic's stub is not implemented on this platform
5727   }
5728   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
5729 
5730   // no receiver because it is a static method
5731   Node* elementType     = argument(0);
5732   Node* obj             = argument(1);
5733   Node* offset          = argument(2); // long
5734   Node* fromIndex       = argument(4);
5735   Node* toIndex         = argument(5);
5736   // SortOperation:       argument(6) is ignored
5737 
5738   BasicType bt = T_ILLEGAL;
5739 
5740   if (!check_array_sort_arguments(elementType, obj, bt)) {
5741     return false;
5742   }
5743   null_check(obj);
5744   // If obj is dead, only null-path is taken.
5745   if (stopped()) {
5746     return true;
5747   }
5748   Node* obj_adr = make_unsafe_address(obj, offset);
5749 
5750   // pass the basic type enum to the stub
5751   Node* elemType = intcon(bt);
5752 
5753   // Call the stub.
5754   const char *stubName = "arraysort_stub";
5755   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
5756                     stubAddr, stubName, TypePtr::BOTTOM,
5757                     obj_adr, elemType, fromIndex, toIndex);
5758 
5759   return true;
5760 }
5761 
5762 
5763 //------------------------------inline_arraycopy-----------------------
5764 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5765 //                                                      Object dest, int destPos,
5766 //                                                      int length);
5767 bool LibraryCallKit::inline_arraycopy() {
5768   // Get the arguments.
5769   Node* src         = argument(0);  // type: oop
5770   Node* src_offset  = argument(1);  // type: int
5771   Node* dest        = argument(2);  // type: oop
5772   Node* dest_offset = argument(3);  // type: int
5773   Node* length      = argument(4);  // type: int
5774 
5775   uint new_idx = C->unique();
5776 
5777   // Check for allocation before we add nodes that would confuse
5778   // tightly_coupled_allocation()
5779   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
5780 
5781   int saved_reexecute_sp = -1;
5782   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5783   // See arraycopy_restore_alloc_state() comment
5784   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5785   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
5786   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
5787   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
5788 
5789   // The following tests must be performed
5790   // (1) src and dest are arrays.
5791   // (2) src and dest arrays must have elements of the same BasicType
5792   // (3) src and dest must not be null.
5793   // (4) src_offset must not be negative.
5794   // (5) dest_offset must not be negative.
5795   // (6) length must not be negative.
5796   // (7) src_offset + length must not exceed length of src.
5797   // (8) dest_offset + length must not exceed length of dest.
5798   // (9) each element of an oop array must be assignable
5799 
5800   // (3) src and dest must not be null.
5801   // always do this here because we need the JVM state for uncommon traps
5802   Node* null_ctl = top();
5803   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
5804   assert(null_ctl->is_top(), "no null control here");
5805   dest = null_check(dest, T_ARRAY);
5806 
5807   if (!can_emit_guards) {
5808     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
5809     // guards but the arraycopy node could still take advantage of a
5810     // tightly allocated allocation. tightly_coupled_allocation() is
5811     // called again to make sure it takes the null check above into
5812     // account: the null check is mandatory and if it caused an
5813     // uncommon trap to be emitted then the allocation can't be
5814     // considered tightly coupled in this context.
5815     alloc = tightly_coupled_allocation(dest);
5816   }
5817 
5818   bool validated = false;
5819 
5820   const Type* src_type  = _gvn.type(src);
5821   const Type* dest_type = _gvn.type(dest);
5822   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5823   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5824 
5825   // Do we have the type of src?
5826   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5827   // Do we have the type of dest?
5828   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5829   // Is the type for src from speculation?
5830   bool src_spec = false;
5831   // Is the type for dest from speculation?
5832   bool dest_spec = false;
5833 
5834   if ((!has_src || !has_dest) && can_emit_guards) {
5835     // We don't have sufficient type information, let's see if
5836     // speculative types can help. We need to have types for both src
5837     // and dest so that it pays off.
5838 
5839     // Do we already have or could we have type information for src
5840     bool could_have_src = has_src;
5841     // Do we already have or could we have type information for dest
5842     bool could_have_dest = has_dest;
5843 
5844     ciKlass* src_k = nullptr;
5845     if (!has_src) {
5846       src_k = src_type->speculative_type_not_null();
5847       if (src_k != nullptr && src_k->is_array_klass()) {
5848         could_have_src = true;
5849       }
5850     }
5851 
5852     ciKlass* dest_k = nullptr;
5853     if (!has_dest) {
5854       dest_k = dest_type->speculative_type_not_null();
5855       if (dest_k != nullptr && dest_k->is_array_klass()) {
5856         could_have_dest = true;
5857       }
5858     }
5859 
5860     if (could_have_src && could_have_dest) {
5861       // This is going to pay off so emit the required guards
5862       if (!has_src) {
5863         src = maybe_cast_profiled_obj(src, src_k, true);
5864         src_type  = _gvn.type(src);
5865         top_src  = src_type->isa_aryptr();
5866         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5867         src_spec = true;
5868       }
5869       if (!has_dest) {
5870         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5871         dest_type  = _gvn.type(dest);
5872         top_dest  = dest_type->isa_aryptr();
5873         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5874         dest_spec = true;
5875       }
5876     }
5877   }
5878 
5879   if (has_src && has_dest && can_emit_guards) {
5880     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5881     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5882     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5883     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5884 
5885     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5886       // If both arrays are object arrays then having the exact types
5887       // for both will remove the need for a subtype check at runtime
5888       // before the call and may make it possible to pick a faster copy
5889       // routine (without a subtype check on every element)
5890       // Do we have the exact type of src?
5891       bool could_have_src = src_spec;
5892       // Do we have the exact type of dest?
5893       bool could_have_dest = dest_spec;
5894       ciKlass* src_k = nullptr;
5895       ciKlass* dest_k = nullptr;
5896       if (!src_spec) {
5897         src_k = src_type->speculative_type_not_null();
5898         if (src_k != nullptr && src_k->is_array_klass()) {
5899           could_have_src = true;
5900         }
5901       }
5902       if (!dest_spec) {
5903         dest_k = dest_type->speculative_type_not_null();
5904         if (dest_k != nullptr && dest_k->is_array_klass()) {
5905           could_have_dest = true;
5906         }
5907       }
5908       if (could_have_src && could_have_dest) {
5909         // If we can have both exact types, emit the missing guards
5910         if (could_have_src && !src_spec) {
5911           src = maybe_cast_profiled_obj(src, src_k, true);
5912         }
5913         if (could_have_dest && !dest_spec) {
5914           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5915         }
5916       }
5917     }
5918   }
5919 
5920   ciMethod* trap_method = method();
5921   int trap_bci = bci();
5922   if (saved_jvms_before_guards != nullptr) {
5923     trap_method = alloc->jvms()->method();
5924     trap_bci = alloc->jvms()->bci();
5925   }
5926 
5927   bool negative_length_guard_generated = false;
5928 
5929   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5930       can_emit_guards &&
5931       !src->is_top() && !dest->is_top()) {
5932     // validate arguments: enables transformation the ArrayCopyNode
5933     validated = true;
5934 
5935     RegionNode* slow_region = new RegionNode(1);
5936     record_for_igvn(slow_region);
5937 
5938     // (1) src and dest are arrays.
5939     generate_non_array_guard(load_object_klass(src), slow_region);
5940     generate_non_array_guard(load_object_klass(dest), slow_region);
5941 
5942     // (2) src and dest arrays must have elements of the same BasicType
5943     // done at macro expansion or at Ideal transformation time
5944 
5945     // (4) src_offset must not be negative.
5946     generate_negative_guard(src_offset, slow_region);
5947 
5948     // (5) dest_offset must not be negative.
5949     generate_negative_guard(dest_offset, slow_region);
5950 
5951     // (7) src_offset + length must not exceed length of src.
5952     generate_limit_guard(src_offset, length,
5953                          load_array_length(src),
5954                          slow_region);
5955 
5956     // (8) dest_offset + length must not exceed length of dest.
5957     generate_limit_guard(dest_offset, length,
5958                          load_array_length(dest),
5959                          slow_region);
5960 
5961     // (6) length must not be negative.
5962     // This is also checked in generate_arraycopy() during macro expansion, but
5963     // we also have to check it here for the case where the ArrayCopyNode will
5964     // be eliminated by Escape Analysis.
5965     if (EliminateAllocations) {
5966       generate_negative_guard(length, slow_region);
5967       negative_length_guard_generated = true;
5968     }
5969 
5970     // (9) each element of an oop array must be assignable
5971     Node* dest_klass = load_object_klass(dest);
5972     if (src != dest) {
5973       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
5974 
5975       if (not_subtype_ctrl != top()) {
5976         PreserveJVMState pjvms(this);
5977         set_control(not_subtype_ctrl);
5978         uncommon_trap(Deoptimization::Reason_intrinsic,
5979                       Deoptimization::Action_make_not_entrant);
5980         assert(stopped(), "Should be stopped");
5981       }
5982     }
5983     {
5984       PreserveJVMState pjvms(this);
5985       set_control(_gvn.transform(slow_region));
5986       uncommon_trap(Deoptimization::Reason_intrinsic,
5987                     Deoptimization::Action_make_not_entrant);
5988       assert(stopped(), "Should be stopped");
5989     }
5990 
5991     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5992     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5993     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5994     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5995   }
5996 
5997   if (stopped()) {
5998     return true;
5999   }
6000 
6001   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6002                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6003                                           // so the compiler has a chance to eliminate them: during macro expansion,
6004                                           // we have to set their control (CastPP nodes are eliminated).
6005                                           load_object_klass(src), load_object_klass(dest),
6006                                           load_array_length(src), load_array_length(dest));
6007 
6008   ac->set_arraycopy(validated);
6009 
6010   Node* n = _gvn.transform(ac);
6011   if (n == ac) {
6012     ac->connect_outputs(this);
6013   } else {
6014     assert(validated, "shouldn't transform if all arguments not validated");
6015     set_all_memory(n);
6016   }
6017   clear_upper_avx();
6018 
6019 
6020   return true;
6021 }
6022 
6023 
6024 // Helper function which determines if an arraycopy immediately follows
6025 // an allocation, with no intervening tests or other escapes for the object.
6026 AllocateArrayNode*
6027 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
6028   if (stopped())             return nullptr;  // no fast path
6029   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
6030 
6031   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
6032   if (alloc == nullptr)  return nullptr;
6033 
6034   Node* rawmem = memory(Compile::AliasIdxRaw);
6035   // Is the allocation's memory state untouched?
6036   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
6037     // Bail out if there have been raw-memory effects since the allocation.
6038     // (Example:  There might have been a call or safepoint.)
6039     return nullptr;
6040   }
6041   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
6042   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
6043     return nullptr;
6044   }
6045 
6046   // There must be no unexpected observers of this allocation.
6047   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
6048     Node* obs = ptr->fast_out(i);
6049     if (obs != this->map()) {
6050       return nullptr;
6051     }
6052   }
6053 
6054   // This arraycopy must unconditionally follow the allocation of the ptr.
6055   Node* alloc_ctl = ptr->in(0);
6056   Node* ctl = control();
6057   while (ctl != alloc_ctl) {
6058     // There may be guards which feed into the slow_region.
6059     // Any other control flow means that we might not get a chance
6060     // to finish initializing the allocated object.
6061     // Various low-level checks bottom out in uncommon traps. These
6062     // are considered safe since we've already checked above that
6063     // there is no unexpected observer of this allocation.
6064     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6065       assert(ctl->in(0)->is_If(), "must be If");
6066       ctl = ctl->in(0)->in(0);
6067     } else {
6068       return nullptr;
6069     }
6070   }
6071 
6072   // If we get this far, we have an allocation which immediately
6073   // precedes the arraycopy, and we can take over zeroing the new object.
6074   // The arraycopy will finish the initialization, and provide
6075   // a new control state to which we will anchor the destination pointer.
6076 
6077   return alloc;
6078 }
6079 
6080 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6081   if (node->is_IfProj()) {
6082     Node* other_proj = node->as_IfProj()->other_if_proj();
6083     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6084       Node* obs = other_proj->fast_out(j);
6085       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6086           (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) {
6087         return obs->as_CallStaticJava();
6088       }
6089     }
6090   }
6091   return nullptr;
6092 }
6093 
6094 //-------------inline_encodeISOArray-----------------------------------
6095 // encode char[] to byte[] in ISO_8859_1 or ASCII
6096 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6097   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6098   // no receiver since it is static method
6099   Node *src         = argument(0);
6100   Node *src_offset  = argument(1);
6101   Node *dst         = argument(2);
6102   Node *dst_offset  = argument(3);
6103   Node *length      = argument(4);
6104 
6105   src = must_be_not_null(src, true);
6106   dst = must_be_not_null(dst, true);
6107 
6108   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6109   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6110   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6111       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6112     // failed array check
6113     return false;
6114   }
6115 
6116   // Figure out the size and type of the elements we will be copying.
6117   BasicType src_elem = src_type->elem()->array_element_basic_type();
6118   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6119   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6120     return false;
6121   }
6122 
6123   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6124   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6125   // 'src_start' points to src array + scaled offset
6126   // 'dst_start' points to dst array + scaled offset
6127 
6128   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6129   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6130   enc = _gvn.transform(enc);
6131   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6132   set_memory(res_mem, mtype);
6133   set_result(enc);
6134   clear_upper_avx();
6135 
6136   return true;
6137 }
6138 
6139 //-------------inline_multiplyToLen-----------------------------------
6140 bool LibraryCallKit::inline_multiplyToLen() {
6141   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6142 
6143   address stubAddr = StubRoutines::multiplyToLen();
6144   if (stubAddr == nullptr) {
6145     return false; // Intrinsic's stub is not implemented on this platform
6146   }
6147   const char* stubName = "multiplyToLen";
6148 
6149   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6150 
6151   // no receiver because it is a static method
6152   Node* x    = argument(0);
6153   Node* xlen = argument(1);
6154   Node* y    = argument(2);
6155   Node* ylen = argument(3);
6156   Node* z    = argument(4);
6157 
6158   x = must_be_not_null(x, true);
6159   y = must_be_not_null(y, true);
6160 
6161   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6162   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6163   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6164       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6165     // failed array check
6166     return false;
6167   }
6168 
6169   BasicType x_elem = x_type->elem()->array_element_basic_type();
6170   BasicType y_elem = y_type->elem()->array_element_basic_type();
6171   if (x_elem != T_INT || y_elem != T_INT) {
6172     return false;
6173   }
6174 
6175   Node* x_start = array_element_address(x, intcon(0), x_elem);
6176   Node* y_start = array_element_address(y, intcon(0), y_elem);
6177   // 'x_start' points to x array + scaled xlen
6178   // 'y_start' points to y array + scaled ylen
6179 
6180   Node* z_start = array_element_address(z, intcon(0), T_INT);
6181 
6182   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6183                                  OptoRuntime::multiplyToLen_Type(),
6184                                  stubAddr, stubName, TypePtr::BOTTOM,
6185                                  x_start, xlen, y_start, ylen, z_start);
6186 
6187   C->set_has_split_ifs(true); // Has chance for split-if optimization
6188   set_result(z);
6189   return true;
6190 }
6191 
6192 //-------------inline_squareToLen------------------------------------
6193 bool LibraryCallKit::inline_squareToLen() {
6194   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6195 
6196   address stubAddr = StubRoutines::squareToLen();
6197   if (stubAddr == nullptr) {
6198     return false; // Intrinsic's stub is not implemented on this platform
6199   }
6200   const char* stubName = "squareToLen";
6201 
6202   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6203 
6204   Node* x    = argument(0);
6205   Node* len  = argument(1);
6206   Node* z    = argument(2);
6207   Node* zlen = argument(3);
6208 
6209   x = must_be_not_null(x, true);
6210   z = must_be_not_null(z, true);
6211 
6212   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6213   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6214   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6215       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6216     // failed array check
6217     return false;
6218   }
6219 
6220   BasicType x_elem = x_type->elem()->array_element_basic_type();
6221   BasicType z_elem = z_type->elem()->array_element_basic_type();
6222   if (x_elem != T_INT || z_elem != T_INT) {
6223     return false;
6224   }
6225 
6226 
6227   Node* x_start = array_element_address(x, intcon(0), x_elem);
6228   Node* z_start = array_element_address(z, intcon(0), z_elem);
6229 
6230   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6231                                   OptoRuntime::squareToLen_Type(),
6232                                   stubAddr, stubName, TypePtr::BOTTOM,
6233                                   x_start, len, z_start, zlen);
6234 
6235   set_result(z);
6236   return true;
6237 }
6238 
6239 //-------------inline_mulAdd------------------------------------------
6240 bool LibraryCallKit::inline_mulAdd() {
6241   assert(UseMulAddIntrinsic, "not implemented on this platform");
6242 
6243   address stubAddr = StubRoutines::mulAdd();
6244   if (stubAddr == nullptr) {
6245     return false; // Intrinsic's stub is not implemented on this platform
6246   }
6247   const char* stubName = "mulAdd";
6248 
6249   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6250 
6251   Node* out      = argument(0);
6252   Node* in       = argument(1);
6253   Node* offset   = argument(2);
6254   Node* len      = argument(3);
6255   Node* k        = argument(4);
6256 
6257   in = must_be_not_null(in, true);
6258   out = must_be_not_null(out, true);
6259 
6260   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6261   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6262   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6263        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6264     // failed array check
6265     return false;
6266   }
6267 
6268   BasicType out_elem = out_type->elem()->array_element_basic_type();
6269   BasicType in_elem = in_type->elem()->array_element_basic_type();
6270   if (out_elem != T_INT || in_elem != T_INT) {
6271     return false;
6272   }
6273 
6274   Node* outlen = load_array_length(out);
6275   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6276   Node* out_start = array_element_address(out, intcon(0), out_elem);
6277   Node* in_start = array_element_address(in, intcon(0), in_elem);
6278 
6279   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6280                                   OptoRuntime::mulAdd_Type(),
6281                                   stubAddr, stubName, TypePtr::BOTTOM,
6282                                   out_start,in_start, new_offset, len, k);
6283   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6284   set_result(result);
6285   return true;
6286 }
6287 
6288 //-------------inline_montgomeryMultiply-----------------------------------
6289 bool LibraryCallKit::inline_montgomeryMultiply() {
6290   address stubAddr = StubRoutines::montgomeryMultiply();
6291   if (stubAddr == nullptr) {
6292     return false; // Intrinsic's stub is not implemented on this platform
6293   }
6294 
6295   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6296   const char* stubName = "montgomery_multiply";
6297 
6298   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6299 
6300   Node* a    = argument(0);
6301   Node* b    = argument(1);
6302   Node* n    = argument(2);
6303   Node* len  = argument(3);
6304   Node* inv  = argument(4);
6305   Node* m    = argument(6);
6306 
6307   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6308   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6309   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6310   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6311   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6312       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6313       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6314       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6315     // failed array check
6316     return false;
6317   }
6318 
6319   BasicType a_elem = a_type->elem()->array_element_basic_type();
6320   BasicType b_elem = b_type->elem()->array_element_basic_type();
6321   BasicType n_elem = n_type->elem()->array_element_basic_type();
6322   BasicType m_elem = m_type->elem()->array_element_basic_type();
6323   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6324     return false;
6325   }
6326 
6327   // Make the call
6328   {
6329     Node* a_start = array_element_address(a, intcon(0), a_elem);
6330     Node* b_start = array_element_address(b, intcon(0), b_elem);
6331     Node* n_start = array_element_address(n, intcon(0), n_elem);
6332     Node* m_start = array_element_address(m, intcon(0), m_elem);
6333 
6334     Node* call = make_runtime_call(RC_LEAF,
6335                                    OptoRuntime::montgomeryMultiply_Type(),
6336                                    stubAddr, stubName, TypePtr::BOTTOM,
6337                                    a_start, b_start, n_start, len, inv, top(),
6338                                    m_start);
6339     set_result(m);
6340   }
6341 
6342   return true;
6343 }
6344 
6345 bool LibraryCallKit::inline_montgomerySquare() {
6346   address stubAddr = StubRoutines::montgomerySquare();
6347   if (stubAddr == nullptr) {
6348     return false; // Intrinsic's stub is not implemented on this platform
6349   }
6350 
6351   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6352   const char* stubName = "montgomery_square";
6353 
6354   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6355 
6356   Node* a    = argument(0);
6357   Node* n    = argument(1);
6358   Node* len  = argument(2);
6359   Node* inv  = argument(3);
6360   Node* m    = argument(5);
6361 
6362   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6363   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6364   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6365   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6366       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6367       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6368     // failed array check
6369     return false;
6370   }
6371 
6372   BasicType a_elem = a_type->elem()->array_element_basic_type();
6373   BasicType n_elem = n_type->elem()->array_element_basic_type();
6374   BasicType m_elem = m_type->elem()->array_element_basic_type();
6375   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6376     return false;
6377   }
6378 
6379   // Make the call
6380   {
6381     Node* a_start = array_element_address(a, intcon(0), a_elem);
6382     Node* n_start = array_element_address(n, intcon(0), n_elem);
6383     Node* m_start = array_element_address(m, intcon(0), m_elem);
6384 
6385     Node* call = make_runtime_call(RC_LEAF,
6386                                    OptoRuntime::montgomerySquare_Type(),
6387                                    stubAddr, stubName, TypePtr::BOTTOM,
6388                                    a_start, n_start, len, inv, top(),
6389                                    m_start);
6390     set_result(m);
6391   }
6392 
6393   return true;
6394 }
6395 
6396 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6397   address stubAddr = nullptr;
6398   const char* stubName = nullptr;
6399 
6400   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6401   if (stubAddr == nullptr) {
6402     return false; // Intrinsic's stub is not implemented on this platform
6403   }
6404 
6405   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6406 
6407   assert(callee()->signature()->size() == 5, "expected 5 arguments");
6408 
6409   Node* newArr = argument(0);
6410   Node* oldArr = argument(1);
6411   Node* newIdx = argument(2);
6412   Node* shiftCount = argument(3);
6413   Node* numIter = argument(4);
6414 
6415   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6416   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6417   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6418       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6419     return false;
6420   }
6421 
6422   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6423   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6424   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6425     return false;
6426   }
6427 
6428   // Make the call
6429   {
6430     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6431     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6432 
6433     Node* call = make_runtime_call(RC_LEAF,
6434                                    OptoRuntime::bigIntegerShift_Type(),
6435                                    stubAddr,
6436                                    stubName,
6437                                    TypePtr::BOTTOM,
6438                                    newArr_start,
6439                                    oldArr_start,
6440                                    newIdx,
6441                                    shiftCount,
6442                                    numIter);
6443   }
6444 
6445   return true;
6446 }
6447 
6448 //-------------inline_vectorizedMismatch------------------------------
6449 bool LibraryCallKit::inline_vectorizedMismatch() {
6450   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6451 
6452   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6453   Node* obja    = argument(0); // Object
6454   Node* aoffset = argument(1); // long
6455   Node* objb    = argument(3); // Object
6456   Node* boffset = argument(4); // long
6457   Node* length  = argument(6); // int
6458   Node* scale   = argument(7); // int
6459 
6460   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6461   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6462   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6463       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6464       scale == top()) {
6465     return false; // failed input validation
6466   }
6467 
6468   Node* obja_adr = make_unsafe_address(obja, aoffset);
6469   Node* objb_adr = make_unsafe_address(objb, boffset);
6470 
6471   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6472   //
6473   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
6474   //    if (length <= inline_limit) {
6475   //      inline_path:
6476   //        vmask   = VectorMaskGen length
6477   //        vload1  = LoadVectorMasked obja, vmask
6478   //        vload2  = LoadVectorMasked objb, vmask
6479   //        result1 = VectorCmpMasked vload1, vload2, vmask
6480   //    } else {
6481   //      call_stub_path:
6482   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6483   //    }
6484   //    exit_block:
6485   //      return Phi(result1, result2);
6486   //
6487   enum { inline_path = 1,  // input is small enough to process it all at once
6488          stub_path   = 2,  // input is too large; call into the VM
6489          PATH_LIMIT  = 3
6490   };
6491 
6492   Node* exit_block = new RegionNode(PATH_LIMIT);
6493   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6494   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6495 
6496   Node* call_stub_path = control();
6497 
6498   BasicType elem_bt = T_ILLEGAL;
6499 
6500   const TypeInt* scale_t = _gvn.type(scale)->is_int();
6501   if (scale_t->is_con()) {
6502     switch (scale_t->get_con()) {
6503       case 0: elem_bt = T_BYTE;  break;
6504       case 1: elem_bt = T_SHORT; break;
6505       case 2: elem_bt = T_INT;   break;
6506       case 3: elem_bt = T_LONG;  break;
6507 
6508       default: elem_bt = T_ILLEGAL; break; // not supported
6509     }
6510   }
6511 
6512   int inline_limit = 0;
6513   bool do_partial_inline = false;
6514 
6515   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6516     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6517     do_partial_inline = inline_limit >= 16;
6518   }
6519 
6520   if (do_partial_inline) {
6521     assert(elem_bt != T_ILLEGAL, "sanity");
6522 
6523     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
6524         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6525         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
6526 
6527       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6528       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6529       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6530 
6531       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6532 
6533       if (!stopped()) {
6534         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6535 
6536         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6537         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6538         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6539         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6540 
6541         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6542         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6543         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6544         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6545 
6546         exit_block->init_req(inline_path, control());
6547         memory_phi->init_req(inline_path, map()->memory());
6548         result_phi->init_req(inline_path, result);
6549 
6550         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6551         clear_upper_avx();
6552       }
6553     }
6554   }
6555 
6556   if (call_stub_path != nullptr) {
6557     set_control(call_stub_path);
6558 
6559     Node* call = make_runtime_call(RC_LEAF,
6560                                    OptoRuntime::vectorizedMismatch_Type(),
6561                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6562                                    obja_adr, objb_adr, length, scale);
6563 
6564     exit_block->init_req(stub_path, control());
6565     memory_phi->init_req(stub_path, map()->memory());
6566     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6567   }
6568 
6569   exit_block = _gvn.transform(exit_block);
6570   memory_phi = _gvn.transform(memory_phi);
6571   result_phi = _gvn.transform(result_phi);
6572 
6573   set_control(exit_block);
6574   set_all_memory(memory_phi);
6575   set_result(result_phi);
6576 
6577   return true;
6578 }
6579 
6580 //------------------------------inline_vectorizedHashcode----------------------------
6581 bool LibraryCallKit::inline_vectorizedHashCode() {
6582   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6583 
6584   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6585   Node* array          = argument(0);
6586   Node* offset         = argument(1);
6587   Node* length         = argument(2);
6588   Node* initialValue   = argument(3);
6589   Node* basic_type     = argument(4);
6590 
6591   if (basic_type == top()) {
6592     return false; // failed input validation
6593   }
6594 
6595   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6596   if (!basic_type_t->is_con()) {
6597     return false; // Only intrinsify if mode argument is constant
6598   }
6599 
6600   array = must_be_not_null(array, true);
6601 
6602   BasicType bt = (BasicType)basic_type_t->get_con();
6603 
6604   // Resolve address of first element
6605   Node* array_start = array_element_address(array, offset, bt);
6606 
6607   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6608     array_start, length, initialValue, basic_type)));
6609   clear_upper_avx();
6610 
6611   return true;
6612 }
6613 
6614 /**
6615  * Calculate CRC32 for byte.
6616  * int java.util.zip.CRC32.update(int crc, int b)
6617  */
6618 bool LibraryCallKit::inline_updateCRC32() {
6619   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6620   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6621   // no receiver since it is static method
6622   Node* crc  = argument(0); // type: int
6623   Node* b    = argument(1); // type: int
6624 
6625   /*
6626    *    int c = ~ crc;
6627    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6628    *    b = b ^ (c >>> 8);
6629    *    crc = ~b;
6630    */
6631 
6632   Node* M1 = intcon(-1);
6633   crc = _gvn.transform(new XorINode(crc, M1));
6634   Node* result = _gvn.transform(new XorINode(crc, b));
6635   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
6636 
6637   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6638   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
6639   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6640   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6641 
6642   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
6643   result = _gvn.transform(new XorINode(crc, result));
6644   result = _gvn.transform(new XorINode(result, M1));
6645   set_result(result);
6646   return true;
6647 }
6648 
6649 /**
6650  * Calculate CRC32 for byte[] array.
6651  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6652  */
6653 bool LibraryCallKit::inline_updateBytesCRC32() {
6654   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6655   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6656   // no receiver since it is static method
6657   Node* crc     = argument(0); // type: int
6658   Node* src     = argument(1); // type: oop
6659   Node* offset  = argument(2); // type: int
6660   Node* length  = argument(3); // type: int
6661 
6662   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6663   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6664     // failed array check
6665     return false;
6666   }
6667 
6668   // Figure out the size and type of the elements we will be copying.
6669   BasicType src_elem = src_type->elem()->array_element_basic_type();
6670   if (src_elem != T_BYTE) {
6671     return false;
6672   }
6673 
6674   // 'src_start' points to src array + scaled offset
6675   src = must_be_not_null(src, true);
6676   Node* src_start = array_element_address(src, offset, src_elem);
6677 
6678   // We assume that range check is done by caller.
6679   // TODO: generate range check (offset+length < src.length) in debug VM.
6680 
6681   // Call the stub.
6682   address stubAddr = StubRoutines::updateBytesCRC32();
6683   const char *stubName = "updateBytesCRC32";
6684 
6685   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6686                                  stubAddr, stubName, TypePtr::BOTTOM,
6687                                  crc, src_start, length);
6688   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6689   set_result(result);
6690   return true;
6691 }
6692 
6693 /**
6694  * Calculate CRC32 for ByteBuffer.
6695  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6696  */
6697 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6698   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6699   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6700   // no receiver since it is static method
6701   Node* crc     = argument(0); // type: int
6702   Node* src     = argument(1); // type: long
6703   Node* offset  = argument(3); // type: int
6704   Node* length  = argument(4); // type: int
6705 
6706   src = ConvL2X(src);  // adjust Java long to machine word
6707   Node* base = _gvn.transform(new CastX2PNode(src));
6708   offset = ConvI2X(offset);
6709 
6710   // 'src_start' points to src array + scaled offset
6711   Node* src_start = basic_plus_adr(top(), base, offset);
6712 
6713   // Call the stub.
6714   address stubAddr = StubRoutines::updateBytesCRC32();
6715   const char *stubName = "updateBytesCRC32";
6716 
6717   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6718                                  stubAddr, stubName, TypePtr::BOTTOM,
6719                                  crc, src_start, length);
6720   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6721   set_result(result);
6722   return true;
6723 }
6724 
6725 //------------------------------get_table_from_crc32c_class-----------------------
6726 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6727   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6728   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
6729 
6730   return table;
6731 }
6732 
6733 //------------------------------inline_updateBytesCRC32C-----------------------
6734 //
6735 // Calculate CRC32C for byte[] array.
6736 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6737 //
6738 bool LibraryCallKit::inline_updateBytesCRC32C() {
6739   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6740   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6741   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6742   // no receiver since it is a static method
6743   Node* crc     = argument(0); // type: int
6744   Node* src     = argument(1); // type: oop
6745   Node* offset  = argument(2); // type: int
6746   Node* end     = argument(3); // type: int
6747 
6748   Node* length = _gvn.transform(new SubINode(end, offset));
6749 
6750   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6751   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6752     // failed array check
6753     return false;
6754   }
6755 
6756   // Figure out the size and type of the elements we will be copying.
6757   BasicType src_elem = src_type->elem()->array_element_basic_type();
6758   if (src_elem != T_BYTE) {
6759     return false;
6760   }
6761 
6762   // 'src_start' points to src array + scaled offset
6763   src = must_be_not_null(src, true);
6764   Node* src_start = array_element_address(src, offset, src_elem);
6765 
6766   // static final int[] byteTable in class CRC32C
6767   Node* table = get_table_from_crc32c_class(callee()->holder());
6768   table = must_be_not_null(table, true);
6769   Node* table_start = array_element_address(table, intcon(0), T_INT);
6770 
6771   // We assume that range check is done by caller.
6772   // TODO: generate range check (offset+length < src.length) in debug VM.
6773 
6774   // Call the stub.
6775   address stubAddr = StubRoutines::updateBytesCRC32C();
6776   const char *stubName = "updateBytesCRC32C";
6777 
6778   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6779                                  stubAddr, stubName, TypePtr::BOTTOM,
6780                                  crc, src_start, length, table_start);
6781   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6782   set_result(result);
6783   return true;
6784 }
6785 
6786 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
6787 //
6788 // Calculate CRC32C for DirectByteBuffer.
6789 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
6790 //
6791 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
6792   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6793   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
6794   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6795   // no receiver since it is a static method
6796   Node* crc     = argument(0); // type: int
6797   Node* src     = argument(1); // type: long
6798   Node* offset  = argument(3); // type: int
6799   Node* end     = argument(4); // type: int
6800 
6801   Node* length = _gvn.transform(new SubINode(end, offset));
6802 
6803   src = ConvL2X(src);  // adjust Java long to machine word
6804   Node* base = _gvn.transform(new CastX2PNode(src));
6805   offset = ConvI2X(offset);
6806 
6807   // 'src_start' points to src array + scaled offset
6808   Node* src_start = basic_plus_adr(top(), base, offset);
6809 
6810   // static final int[] byteTable in class CRC32C
6811   Node* table = get_table_from_crc32c_class(callee()->holder());
6812   table = must_be_not_null(table, true);
6813   Node* table_start = array_element_address(table, intcon(0), T_INT);
6814 
6815   // Call the stub.
6816   address stubAddr = StubRoutines::updateBytesCRC32C();
6817   const char *stubName = "updateBytesCRC32C";
6818 
6819   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6820                                  stubAddr, stubName, TypePtr::BOTTOM,
6821                                  crc, src_start, length, table_start);
6822   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6823   set_result(result);
6824   return true;
6825 }
6826 
6827 //------------------------------inline_updateBytesAdler32----------------------
6828 //
6829 // Calculate Adler32 checksum for byte[] array.
6830 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6831 //
6832 bool LibraryCallKit::inline_updateBytesAdler32() {
6833   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6834   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6835   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6836   // no receiver since it is static method
6837   Node* crc     = argument(0); // type: int
6838   Node* src     = argument(1); // type: oop
6839   Node* offset  = argument(2); // type: int
6840   Node* length  = argument(3); // type: int
6841 
6842   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6843   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6844     // failed array check
6845     return false;
6846   }
6847 
6848   // Figure out the size and type of the elements we will be copying.
6849   BasicType src_elem = src_type->elem()->array_element_basic_type();
6850   if (src_elem != T_BYTE) {
6851     return false;
6852   }
6853 
6854   // 'src_start' points to src array + scaled offset
6855   Node* src_start = array_element_address(src, offset, src_elem);
6856 
6857   // We assume that range check is done by caller.
6858   // TODO: generate range check (offset+length < src.length) in debug VM.
6859 
6860   // Call the stub.
6861   address stubAddr = StubRoutines::updateBytesAdler32();
6862   const char *stubName = "updateBytesAdler32";
6863 
6864   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6865                                  stubAddr, stubName, TypePtr::BOTTOM,
6866                                  crc, src_start, length);
6867   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6868   set_result(result);
6869   return true;
6870 }
6871 
6872 //------------------------------inline_updateByteBufferAdler32---------------
6873 //
6874 // Calculate Adler32 checksum for DirectByteBuffer.
6875 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6876 //
6877 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6878   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6879   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6880   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6881   // no receiver since it is static method
6882   Node* crc     = argument(0); // type: int
6883   Node* src     = argument(1); // type: long
6884   Node* offset  = argument(3); // type: int
6885   Node* length  = argument(4); // type: int
6886 
6887   src = ConvL2X(src);  // adjust Java long to machine word
6888   Node* base = _gvn.transform(new CastX2PNode(src));
6889   offset = ConvI2X(offset);
6890 
6891   // 'src_start' points to src array + scaled offset
6892   Node* src_start = basic_plus_adr(top(), base, offset);
6893 
6894   // Call the stub.
6895   address stubAddr = StubRoutines::updateBytesAdler32();
6896   const char *stubName = "updateBytesAdler32";
6897 
6898   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6899                                  stubAddr, stubName, TypePtr::BOTTOM,
6900                                  crc, src_start, length);
6901 
6902   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6903   set_result(result);
6904   return true;
6905 }
6906 
6907 //----------------------------inline_reference_get----------------------------
6908 // public T java.lang.ref.Reference.get();
6909 bool LibraryCallKit::inline_reference_get() {
6910   const int referent_offset = java_lang_ref_Reference::referent_offset();
6911 
6912   // Get the argument:
6913   Node* reference_obj = null_check_receiver();
6914   if (stopped()) return true;
6915 
6916   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
6917   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6918                                         decorators, /*is_static*/ false, nullptr);
6919   if (result == nullptr) return false;
6920 
6921   // Add memory barrier to prevent commoning reads from this field
6922   // across safepoint since GC can change its value.
6923   insert_mem_bar(Op_MemBarCPUOrder);
6924 
6925   set_result(result);
6926   return true;
6927 }
6928 
6929 //----------------------------inline_reference_refersTo0----------------------------
6930 // bool java.lang.ref.Reference.refersTo0();
6931 // bool java.lang.ref.PhantomReference.refersTo0();
6932 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
6933   // Get arguments:
6934   Node* reference_obj = null_check_receiver();
6935   Node* other_obj = argument(1);
6936   if (stopped()) return true;
6937 
6938   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6939   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6940   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6941                                           decorators, /*is_static*/ false, nullptr);
6942   if (referent == nullptr) return false;
6943 
6944   // Add memory barrier to prevent commoning reads from this field
6945   // across safepoint since GC can change its value.
6946   insert_mem_bar(Op_MemBarCPUOrder);
6947 
6948   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
6949   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6950   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
6951 
6952   RegionNode* region = new RegionNode(3);
6953   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
6954 
6955   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
6956   region->init_req(1, if_true);
6957   phi->init_req(1, intcon(1));
6958 
6959   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
6960   region->init_req(2, if_false);
6961   phi->init_req(2, intcon(0));
6962 
6963   set_control(_gvn.transform(region));
6964   record_for_igvn(region);
6965   set_result(_gvn.transform(phi));
6966   return true;
6967 }
6968 
6969 //----------------------------inline_reference_clear0----------------------------
6970 // void java.lang.ref.Reference.clear0();
6971 // void java.lang.ref.PhantomReference.clear0();
6972 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) {
6973   // This matches the implementation in JVM_ReferenceClear, see the comments there.
6974 
6975   // Get arguments
6976   Node* reference_obj = null_check_receiver();
6977   if (stopped()) return true;
6978 
6979   // Common access parameters
6980   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6981   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6982   Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset());
6983   const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr();
6984   const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass());
6985 
6986   Node* referent = access_load_at(reference_obj,
6987                                   referent_field_addr,
6988                                   referent_field_addr_type,
6989                                   val_type,
6990                                   T_OBJECT,
6991                                   decorators);
6992 
6993   IdealKit ideal(this);
6994 #define __ ideal.
6995   __ if_then(referent, BoolTest::ne, null());
6996     sync_kit(ideal);
6997     access_store_at(reference_obj,
6998                     referent_field_addr,
6999                     referent_field_addr_type,
7000                     null(),
7001                     val_type,
7002                     T_OBJECT,
7003                     decorators);
7004     __ sync_kit(this);
7005   __ end_if();
7006   final_sync(ideal);
7007 #undef __
7008 
7009   return true;
7010 }
7011 
7012 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
7013                                              DecoratorSet decorators, bool is_static,
7014                                              ciInstanceKlass* fromKls) {
7015   if (fromKls == nullptr) {
7016     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7017     assert(tinst != nullptr, "obj is null");
7018     assert(tinst->is_loaded(), "obj is not loaded");
7019     fromKls = tinst->instance_klass();
7020   } else {
7021     assert(is_static, "only for static field access");
7022   }
7023   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7024                                               ciSymbol::make(fieldTypeString),
7025                                               is_static);
7026 
7027   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
7028   if (field == nullptr) return (Node *) nullptr;
7029 
7030   if (is_static) {
7031     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7032     fromObj = makecon(tip);
7033   }
7034 
7035   // Next code  copied from Parse::do_get_xxx():
7036 
7037   // Compute address and memory type.
7038   int offset  = field->offset_in_bytes();
7039   bool is_vol = field->is_volatile();
7040   ciType* field_klass = field->type();
7041   assert(field_klass->is_loaded(), "should be loaded");
7042   const TypePtr* adr_type = C->alias_type(field)->adr_type();
7043   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7044   BasicType bt = field->layout_type();
7045 
7046   // Build the resultant type of the load
7047   const Type *type;
7048   if (bt == T_OBJECT) {
7049     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
7050   } else {
7051     type = Type::get_const_basic_type(bt);
7052   }
7053 
7054   if (is_vol) {
7055     decorators |= MO_SEQ_CST;
7056   }
7057 
7058   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
7059 }
7060 
7061 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7062                                                  bool is_exact /* true */, bool is_static /* false */,
7063                                                  ciInstanceKlass * fromKls /* nullptr */) {
7064   if (fromKls == nullptr) {
7065     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7066     assert(tinst != nullptr, "obj is null");
7067     assert(tinst->is_loaded(), "obj is not loaded");
7068     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7069     fromKls = tinst->instance_klass();
7070   }
7071   else {
7072     assert(is_static, "only for static field access");
7073   }
7074   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7075     ciSymbol::make(fieldTypeString),
7076     is_static);
7077 
7078   assert(field != nullptr, "undefined field");
7079   assert(!field->is_volatile(), "not defined for volatile fields");
7080 
7081   if (is_static) {
7082     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7083     fromObj = makecon(tip);
7084   }
7085 
7086   // Next code  copied from Parse::do_get_xxx():
7087 
7088   // Compute address and memory type.
7089   int offset = field->offset_in_bytes();
7090   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7091 
7092   return adr;
7093 }
7094 
7095 //------------------------------inline_aescrypt_Block-----------------------
7096 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7097   address stubAddr = nullptr;
7098   const char *stubName;
7099   assert(UseAES, "need AES instruction support");
7100 
7101   switch(id) {
7102   case vmIntrinsics::_aescrypt_encryptBlock:
7103     stubAddr = StubRoutines::aescrypt_encryptBlock();
7104     stubName = "aescrypt_encryptBlock";
7105     break;
7106   case vmIntrinsics::_aescrypt_decryptBlock:
7107     stubAddr = StubRoutines::aescrypt_decryptBlock();
7108     stubName = "aescrypt_decryptBlock";
7109     break;
7110   default:
7111     break;
7112   }
7113   if (stubAddr == nullptr) return false;
7114 
7115   Node* aescrypt_object = argument(0);
7116   Node* src             = argument(1);
7117   Node* src_offset      = argument(2);
7118   Node* dest            = argument(3);
7119   Node* dest_offset     = argument(4);
7120 
7121   src = must_be_not_null(src, true);
7122   dest = must_be_not_null(dest, true);
7123 
7124   // (1) src and dest are arrays.
7125   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7126   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7127   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7128          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7129 
7130   // for the quick and dirty code we will skip all the checks.
7131   // we are just trying to get the call to be generated.
7132   Node* src_start  = src;
7133   Node* dest_start = dest;
7134   if (src_offset != nullptr || dest_offset != nullptr) {
7135     assert(src_offset != nullptr && dest_offset != nullptr, "");
7136     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7137     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7138   }
7139 
7140   // now need to get the start of its expanded key array
7141   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7142   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7143   if (k_start == nullptr) return false;
7144 
7145   // Call the stub.
7146   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7147                     stubAddr, stubName, TypePtr::BOTTOM,
7148                     src_start, dest_start, k_start);
7149 
7150   return true;
7151 }
7152 
7153 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7154 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7155   address stubAddr = nullptr;
7156   const char *stubName = nullptr;
7157 
7158   assert(UseAES, "need AES instruction support");
7159 
7160   switch(id) {
7161   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7162     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7163     stubName = "cipherBlockChaining_encryptAESCrypt";
7164     break;
7165   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7166     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7167     stubName = "cipherBlockChaining_decryptAESCrypt";
7168     break;
7169   default:
7170     break;
7171   }
7172   if (stubAddr == nullptr) return false;
7173 
7174   Node* cipherBlockChaining_object = argument(0);
7175   Node* src                        = argument(1);
7176   Node* src_offset                 = argument(2);
7177   Node* len                        = argument(3);
7178   Node* dest                       = argument(4);
7179   Node* dest_offset                = argument(5);
7180 
7181   src = must_be_not_null(src, false);
7182   dest = must_be_not_null(dest, false);
7183 
7184   // (1) src and dest are arrays.
7185   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7186   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7187   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7188          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7189 
7190   // checks are the responsibility of the caller
7191   Node* src_start  = src;
7192   Node* dest_start = dest;
7193   if (src_offset != nullptr || dest_offset != nullptr) {
7194     assert(src_offset != nullptr && dest_offset != nullptr, "");
7195     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7196     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7197   }
7198 
7199   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7200   // (because of the predicated logic executed earlier).
7201   // so we cast it here safely.
7202   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7203 
7204   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7205   if (embeddedCipherObj == nullptr) return false;
7206 
7207   // cast it to what we know it will be at runtime
7208   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7209   assert(tinst != nullptr, "CBC obj is null");
7210   assert(tinst->is_loaded(), "CBC obj is not loaded");
7211   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7212   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7213 
7214   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7215   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7216   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7217   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7218   aescrypt_object = _gvn.transform(aescrypt_object);
7219 
7220   // we need to get the start of the aescrypt_object's expanded key array
7221   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7222   if (k_start == nullptr) return false;
7223 
7224   // similarly, get the start address of the r vector
7225   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7226   if (objRvec == nullptr) return false;
7227   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7228 
7229   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7230   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7231                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7232                                      stubAddr, stubName, TypePtr::BOTTOM,
7233                                      src_start, dest_start, k_start, r_start, len);
7234 
7235   // return cipher length (int)
7236   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7237   set_result(retvalue);
7238   return true;
7239 }
7240 
7241 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7242 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7243   address stubAddr = nullptr;
7244   const char *stubName = nullptr;
7245 
7246   assert(UseAES, "need AES instruction support");
7247 
7248   switch (id) {
7249   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7250     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7251     stubName = "electronicCodeBook_encryptAESCrypt";
7252     break;
7253   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7254     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7255     stubName = "electronicCodeBook_decryptAESCrypt";
7256     break;
7257   default:
7258     break;
7259   }
7260 
7261   if (stubAddr == nullptr) return false;
7262 
7263   Node* electronicCodeBook_object = argument(0);
7264   Node* src                       = argument(1);
7265   Node* src_offset                = argument(2);
7266   Node* len                       = argument(3);
7267   Node* dest                      = argument(4);
7268   Node* dest_offset               = argument(5);
7269 
7270   // (1) src and dest are arrays.
7271   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7272   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7273   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7274          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7275 
7276   // checks are the responsibility of the caller
7277   Node* src_start = src;
7278   Node* dest_start = dest;
7279   if (src_offset != nullptr || dest_offset != nullptr) {
7280     assert(src_offset != nullptr && dest_offset != nullptr, "");
7281     src_start = array_element_address(src, src_offset, T_BYTE);
7282     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7283   }
7284 
7285   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7286   // (because of the predicated logic executed earlier).
7287   // so we cast it here safely.
7288   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7289 
7290   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7291   if (embeddedCipherObj == nullptr) return false;
7292 
7293   // cast it to what we know it will be at runtime
7294   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7295   assert(tinst != nullptr, "ECB obj is null");
7296   assert(tinst->is_loaded(), "ECB obj is not loaded");
7297   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7298   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7299 
7300   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7301   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7302   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7303   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7304   aescrypt_object = _gvn.transform(aescrypt_object);
7305 
7306   // we need to get the start of the aescrypt_object's expanded key array
7307   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7308   if (k_start == nullptr) return false;
7309 
7310   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7311   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7312                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7313                                      stubAddr, stubName, TypePtr::BOTTOM,
7314                                      src_start, dest_start, k_start, len);
7315 
7316   // return cipher length (int)
7317   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7318   set_result(retvalue);
7319   return true;
7320 }
7321 
7322 //------------------------------inline_counterMode_AESCrypt-----------------------
7323 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7324   assert(UseAES, "need AES instruction support");
7325   if (!UseAESCTRIntrinsics) return false;
7326 
7327   address stubAddr = nullptr;
7328   const char *stubName = nullptr;
7329   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7330     stubAddr = StubRoutines::counterMode_AESCrypt();
7331     stubName = "counterMode_AESCrypt";
7332   }
7333   if (stubAddr == nullptr) return false;
7334 
7335   Node* counterMode_object = argument(0);
7336   Node* src = argument(1);
7337   Node* src_offset = argument(2);
7338   Node* len = argument(3);
7339   Node* dest = argument(4);
7340   Node* dest_offset = argument(5);
7341 
7342   // (1) src and dest are arrays.
7343   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7344   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7345   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7346          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7347 
7348   // checks are the responsibility of the caller
7349   Node* src_start = src;
7350   Node* dest_start = dest;
7351   if (src_offset != nullptr || dest_offset != nullptr) {
7352     assert(src_offset != nullptr && dest_offset != nullptr, "");
7353     src_start = array_element_address(src, src_offset, T_BYTE);
7354     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7355   }
7356 
7357   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7358   // (because of the predicated logic executed earlier).
7359   // so we cast it here safely.
7360   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7361   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7362   if (embeddedCipherObj == nullptr) return false;
7363   // cast it to what we know it will be at runtime
7364   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7365   assert(tinst != nullptr, "CTR obj is null");
7366   assert(tinst->is_loaded(), "CTR obj is not loaded");
7367   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7368   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7369   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7370   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7371   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7372   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7373   aescrypt_object = _gvn.transform(aescrypt_object);
7374   // we need to get the start of the aescrypt_object's expanded key array
7375   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7376   if (k_start == nullptr) return false;
7377   // similarly, get the start address of the r vector
7378   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7379   if (obj_counter == nullptr) return false;
7380   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7381 
7382   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7383   if (saved_encCounter == nullptr) return false;
7384   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7385   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7386 
7387   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7388   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7389                                      OptoRuntime::counterMode_aescrypt_Type(),
7390                                      stubAddr, stubName, TypePtr::BOTTOM,
7391                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7392 
7393   // return cipher length (int)
7394   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7395   set_result(retvalue);
7396   return true;
7397 }
7398 
7399 //------------------------------get_key_start_from_aescrypt_object-----------------------
7400 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7401 #if defined(PPC64) || defined(S390)
7402   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7403   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7404   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7405   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7406   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7407   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7408   if (objSessionK == nullptr) {
7409     return (Node *) nullptr;
7410   }
7411   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7412 #else
7413   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7414 #endif // PPC64
7415   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7416   if (objAESCryptKey == nullptr) return (Node *) nullptr;
7417 
7418   // now have the array, need to get the start address of the K array
7419   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7420   return k_start;
7421 }
7422 
7423 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7424 // Return node representing slow path of predicate check.
7425 // the pseudo code we want to emulate with this predicate is:
7426 // for encryption:
7427 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7428 // for decryption:
7429 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7430 //    note cipher==plain is more conservative than the original java code but that's OK
7431 //
7432 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7433   // The receiver was checked for null already.
7434   Node* objCBC = argument(0);
7435 
7436   Node* src = argument(1);
7437   Node* dest = argument(4);
7438 
7439   // Load embeddedCipher field of CipherBlockChaining object.
7440   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7441 
7442   // get AESCrypt klass for instanceOf check
7443   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7444   // will have same classloader as CipherBlockChaining object
7445   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7446   assert(tinst != nullptr, "CBCobj is null");
7447   assert(tinst->is_loaded(), "CBCobj is not loaded");
7448 
7449   // we want to do an instanceof comparison against the AESCrypt class
7450   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7451   if (!klass_AESCrypt->is_loaded()) {
7452     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7453     Node* ctrl = control();
7454     set_control(top()); // no regular fast path
7455     return ctrl;
7456   }
7457 
7458   src = must_be_not_null(src, true);
7459   dest = must_be_not_null(dest, true);
7460 
7461   // Resolve oops to stable for CmpP below.
7462   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7463 
7464   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7465   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
7466   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7467 
7468   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7469 
7470   // for encryption, we are done
7471   if (!decrypting)
7472     return instof_false;  // even if it is null
7473 
7474   // for decryption, we need to add a further check to avoid
7475   // taking the intrinsic path when cipher and plain are the same
7476   // see the original java code for why.
7477   RegionNode* region = new RegionNode(3);
7478   region->init_req(1, instof_false);
7479 
7480   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7481   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7482   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7483   region->init_req(2, src_dest_conjoint);
7484 
7485   record_for_igvn(region);
7486   return _gvn.transform(region);
7487 }
7488 
7489 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7490 // Return node representing slow path of predicate check.
7491 // the pseudo code we want to emulate with this predicate is:
7492 // for encryption:
7493 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7494 // for decryption:
7495 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7496 //    note cipher==plain is more conservative than the original java code but that's OK
7497 //
7498 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7499   // The receiver was checked for null already.
7500   Node* objECB = argument(0);
7501 
7502   // Load embeddedCipher field of ElectronicCodeBook object.
7503   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7504 
7505   // get AESCrypt klass for instanceOf check
7506   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7507   // will have same classloader as ElectronicCodeBook object
7508   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7509   assert(tinst != nullptr, "ECBobj is null");
7510   assert(tinst->is_loaded(), "ECBobj is not loaded");
7511 
7512   // we want to do an instanceof comparison against the AESCrypt class
7513   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7514   if (!klass_AESCrypt->is_loaded()) {
7515     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7516     Node* ctrl = control();
7517     set_control(top()); // no regular fast path
7518     return ctrl;
7519   }
7520   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7521 
7522   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7523   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7524   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7525 
7526   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7527 
7528   // for encryption, we are done
7529   if (!decrypting)
7530     return instof_false;  // even if it is null
7531 
7532   // for decryption, we need to add a further check to avoid
7533   // taking the intrinsic path when cipher and plain are the same
7534   // see the original java code for why.
7535   RegionNode* region = new RegionNode(3);
7536   region->init_req(1, instof_false);
7537   Node* src = argument(1);
7538   Node* dest = argument(4);
7539   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7540   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7541   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7542   region->init_req(2, src_dest_conjoint);
7543 
7544   record_for_igvn(region);
7545   return _gvn.transform(region);
7546 }
7547 
7548 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7549 // Return node representing slow path of predicate check.
7550 // the pseudo code we want to emulate with this predicate is:
7551 // for encryption:
7552 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7553 // for decryption:
7554 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7555 //    note cipher==plain is more conservative than the original java code but that's OK
7556 //
7557 
7558 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7559   // The receiver was checked for null already.
7560   Node* objCTR = argument(0);
7561 
7562   // Load embeddedCipher field of CipherBlockChaining object.
7563   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7564 
7565   // get AESCrypt klass for instanceOf check
7566   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7567   // will have same classloader as CipherBlockChaining object
7568   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7569   assert(tinst != nullptr, "CTRobj is null");
7570   assert(tinst->is_loaded(), "CTRobj is not loaded");
7571 
7572   // we want to do an instanceof comparison against the AESCrypt class
7573   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7574   if (!klass_AESCrypt->is_loaded()) {
7575     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7576     Node* ctrl = control();
7577     set_control(top()); // no regular fast path
7578     return ctrl;
7579   }
7580 
7581   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7582   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7583   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7584   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7585   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7586 
7587   return instof_false; // even if it is null
7588 }
7589 
7590 //------------------------------inline_ghash_processBlocks
7591 bool LibraryCallKit::inline_ghash_processBlocks() {
7592   address stubAddr;
7593   const char *stubName;
7594   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7595 
7596   stubAddr = StubRoutines::ghash_processBlocks();
7597   stubName = "ghash_processBlocks";
7598 
7599   Node* data           = argument(0);
7600   Node* offset         = argument(1);
7601   Node* len            = argument(2);
7602   Node* state          = argument(3);
7603   Node* subkeyH        = argument(4);
7604 
7605   state = must_be_not_null(state, true);
7606   subkeyH = must_be_not_null(subkeyH, true);
7607   data = must_be_not_null(data, true);
7608 
7609   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
7610   assert(state_start, "state is null");
7611   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
7612   assert(subkeyH_start, "subkeyH is null");
7613   Node* data_start  = array_element_address(data, offset, T_BYTE);
7614   assert(data_start, "data is null");
7615 
7616   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7617                                   OptoRuntime::ghash_processBlocks_Type(),
7618                                   stubAddr, stubName, TypePtr::BOTTOM,
7619                                   state_start, subkeyH_start, data_start, len);
7620   return true;
7621 }
7622 
7623 //------------------------------inline_chacha20Block
7624 bool LibraryCallKit::inline_chacha20Block() {
7625   address stubAddr;
7626   const char *stubName;
7627   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7628 
7629   stubAddr = StubRoutines::chacha20Block();
7630   stubName = "chacha20Block";
7631 
7632   Node* state          = argument(0);
7633   Node* result         = argument(1);
7634 
7635   state = must_be_not_null(state, true);
7636   result = must_be_not_null(result, true);
7637 
7638   Node* state_start  = array_element_address(state, intcon(0), T_INT);
7639   assert(state_start, "state is null");
7640   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
7641   assert(result_start, "result is null");
7642 
7643   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7644                                   OptoRuntime::chacha20Block_Type(),
7645                                   stubAddr, stubName, TypePtr::BOTTOM,
7646                                   state_start, result_start);
7647   // return key stream length (int)
7648   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7649   set_result(retvalue);
7650   return true;
7651 }
7652 
7653 bool LibraryCallKit::inline_base64_encodeBlock() {
7654   address stubAddr;
7655   const char *stubName;
7656   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7657   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
7658   stubAddr = StubRoutines::base64_encodeBlock();
7659   stubName = "encodeBlock";
7660 
7661   if (!stubAddr) return false;
7662   Node* base64obj = argument(0);
7663   Node* src = argument(1);
7664   Node* offset = argument(2);
7665   Node* len = argument(3);
7666   Node* dest = argument(4);
7667   Node* dp = argument(5);
7668   Node* isURL = argument(6);
7669 
7670   src = must_be_not_null(src, true);
7671   dest = must_be_not_null(dest, true);
7672 
7673   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7674   assert(src_start, "source array is null");
7675   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7676   assert(dest_start, "destination array is null");
7677 
7678   Node* base64 = make_runtime_call(RC_LEAF,
7679                                    OptoRuntime::base64_encodeBlock_Type(),
7680                                    stubAddr, stubName, TypePtr::BOTTOM,
7681                                    src_start, offset, len, dest_start, dp, isURL);
7682   return true;
7683 }
7684 
7685 bool LibraryCallKit::inline_base64_decodeBlock() {
7686   address stubAddr;
7687   const char *stubName;
7688   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7689   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
7690   stubAddr = StubRoutines::base64_decodeBlock();
7691   stubName = "decodeBlock";
7692 
7693   if (!stubAddr) return false;
7694   Node* base64obj = argument(0);
7695   Node* src = argument(1);
7696   Node* src_offset = argument(2);
7697   Node* len = argument(3);
7698   Node* dest = argument(4);
7699   Node* dest_offset = argument(5);
7700   Node* isURL = argument(6);
7701   Node* isMIME = argument(7);
7702 
7703   src = must_be_not_null(src, true);
7704   dest = must_be_not_null(dest, true);
7705 
7706   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7707   assert(src_start, "source array is null");
7708   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7709   assert(dest_start, "destination array is null");
7710 
7711   Node* call = make_runtime_call(RC_LEAF,
7712                                  OptoRuntime::base64_decodeBlock_Type(),
7713                                  stubAddr, stubName, TypePtr::BOTTOM,
7714                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
7715   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7716   set_result(result);
7717   return true;
7718 }
7719 
7720 bool LibraryCallKit::inline_poly1305_processBlocks() {
7721   address stubAddr;
7722   const char *stubName;
7723   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
7724   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
7725   stubAddr = StubRoutines::poly1305_processBlocks();
7726   stubName = "poly1305_processBlocks";
7727 
7728   if (!stubAddr) return false;
7729   null_check_receiver();  // null-check receiver
7730   if (stopped())  return true;
7731 
7732   Node* input = argument(1);
7733   Node* input_offset = argument(2);
7734   Node* len = argument(3);
7735   Node* alimbs = argument(4);
7736   Node* rlimbs = argument(5);
7737 
7738   input = must_be_not_null(input, true);
7739   alimbs = must_be_not_null(alimbs, true);
7740   rlimbs = must_be_not_null(rlimbs, true);
7741 
7742   Node* input_start = array_element_address(input, input_offset, T_BYTE);
7743   assert(input_start, "input array is null");
7744   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
7745   assert(acc_start, "acc array is null");
7746   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
7747   assert(r_start, "r array is null");
7748 
7749   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7750                                  OptoRuntime::poly1305_processBlocks_Type(),
7751                                  stubAddr, stubName, TypePtr::BOTTOM,
7752                                  input_start, len, acc_start, r_start);
7753   return true;
7754 }
7755 
7756 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
7757   address stubAddr;
7758   const char *stubName;
7759   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7760   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
7761   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
7762   stubName = "intpoly_montgomeryMult_P256";
7763 
7764   if (!stubAddr) return false;
7765   null_check_receiver();  // null-check receiver
7766   if (stopped())  return true;
7767 
7768   Node* a = argument(1);
7769   Node* b = argument(2);
7770   Node* r = argument(3);
7771 
7772   a = must_be_not_null(a, true);
7773   b = must_be_not_null(b, true);
7774   r = must_be_not_null(r, true);
7775 
7776   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7777   assert(a_start, "a array is NULL");
7778   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7779   assert(b_start, "b array is NULL");
7780   Node* r_start = array_element_address(r, intcon(0), T_LONG);
7781   assert(r_start, "r array is NULL");
7782 
7783   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7784                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
7785                                  stubAddr, stubName, TypePtr::BOTTOM,
7786                                  a_start, b_start, r_start);
7787   return true;
7788 }
7789 
7790 bool LibraryCallKit::inline_intpoly_assign() {
7791   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7792   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
7793   const char *stubName = "intpoly_assign";
7794   address stubAddr = StubRoutines::intpoly_assign();
7795   if (!stubAddr) return false;
7796 
7797   Node* set = argument(0);
7798   Node* a = argument(1);
7799   Node* b = argument(2);
7800   Node* arr_length = load_array_length(a);
7801 
7802   a = must_be_not_null(a, true);
7803   b = must_be_not_null(b, true);
7804 
7805   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7806   assert(a_start, "a array is NULL");
7807   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7808   assert(b_start, "b array is NULL");
7809 
7810   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7811                                  OptoRuntime::intpoly_assign_Type(),
7812                                  stubAddr, stubName, TypePtr::BOTTOM,
7813                                  set, a_start, b_start, arr_length);
7814   return true;
7815 }
7816 
7817 //------------------------------inline_digestBase_implCompress-----------------------
7818 //
7819 // Calculate MD5 for single-block byte[] array.
7820 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
7821 //
7822 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
7823 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
7824 //
7825 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
7826 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
7827 //
7828 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
7829 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
7830 //
7831 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
7832 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
7833 //
7834 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
7835   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
7836 
7837   Node* digestBase_obj = argument(0);
7838   Node* src            = argument(1); // type oop
7839   Node* ofs            = argument(2); // type int
7840 
7841   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7842   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7843     // failed array check
7844     return false;
7845   }
7846   // Figure out the size and type of the elements we will be copying.
7847   BasicType src_elem = src_type->elem()->array_element_basic_type();
7848   if (src_elem != T_BYTE) {
7849     return false;
7850   }
7851   // 'src_start' points to src array + offset
7852   src = must_be_not_null(src, true);
7853   Node* src_start = array_element_address(src, ofs, src_elem);
7854   Node* state = nullptr;
7855   Node* block_size = nullptr;
7856   address stubAddr;
7857   const char *stubName;
7858 
7859   switch(id) {
7860   case vmIntrinsics::_md5_implCompress:
7861     assert(UseMD5Intrinsics, "need MD5 instruction support");
7862     state = get_state_from_digest_object(digestBase_obj, T_INT);
7863     stubAddr = StubRoutines::md5_implCompress();
7864     stubName = "md5_implCompress";
7865     break;
7866   case vmIntrinsics::_sha_implCompress:
7867     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
7868     state = get_state_from_digest_object(digestBase_obj, T_INT);
7869     stubAddr = StubRoutines::sha1_implCompress();
7870     stubName = "sha1_implCompress";
7871     break;
7872   case vmIntrinsics::_sha2_implCompress:
7873     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
7874     state = get_state_from_digest_object(digestBase_obj, T_INT);
7875     stubAddr = StubRoutines::sha256_implCompress();
7876     stubName = "sha256_implCompress";
7877     break;
7878   case vmIntrinsics::_sha5_implCompress:
7879     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
7880     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7881     stubAddr = StubRoutines::sha512_implCompress();
7882     stubName = "sha512_implCompress";
7883     break;
7884   case vmIntrinsics::_sha3_implCompress:
7885     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
7886     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7887     stubAddr = StubRoutines::sha3_implCompress();
7888     stubName = "sha3_implCompress";
7889     block_size = get_block_size_from_digest_object(digestBase_obj);
7890     if (block_size == nullptr) return false;
7891     break;
7892   default:
7893     fatal_unexpected_iid(id);
7894     return false;
7895   }
7896   if (state == nullptr) return false;
7897 
7898   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
7899   if (stubAddr == nullptr) return false;
7900 
7901   // Call the stub.
7902   Node* call;
7903   if (block_size == nullptr) {
7904     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
7905                              stubAddr, stubName, TypePtr::BOTTOM,
7906                              src_start, state);
7907   } else {
7908     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
7909                              stubAddr, stubName, TypePtr::BOTTOM,
7910                              src_start, state, block_size);
7911   }
7912 
7913   return true;
7914 }
7915 
7916 //------------------------------inline_digestBase_implCompressMB-----------------------
7917 //
7918 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
7919 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
7920 //
7921 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
7922   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
7923          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
7924   assert((uint)predicate < 5, "sanity");
7925   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
7926 
7927   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
7928   Node* src            = argument(1); // byte[] array
7929   Node* ofs            = argument(2); // type int
7930   Node* limit          = argument(3); // type int
7931 
7932   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7933   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7934     // failed array check
7935     return false;
7936   }
7937   // Figure out the size and type of the elements we will be copying.
7938   BasicType src_elem = src_type->elem()->array_element_basic_type();
7939   if (src_elem != T_BYTE) {
7940     return false;
7941   }
7942   // 'src_start' points to src array + offset
7943   src = must_be_not_null(src, false);
7944   Node* src_start = array_element_address(src, ofs, src_elem);
7945 
7946   const char* klass_digestBase_name = nullptr;
7947   const char* stub_name = nullptr;
7948   address     stub_addr = nullptr;
7949   BasicType elem_type = T_INT;
7950 
7951   switch (predicate) {
7952   case 0:
7953     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
7954       klass_digestBase_name = "sun/security/provider/MD5";
7955       stub_name = "md5_implCompressMB";
7956       stub_addr = StubRoutines::md5_implCompressMB();
7957     }
7958     break;
7959   case 1:
7960     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
7961       klass_digestBase_name = "sun/security/provider/SHA";
7962       stub_name = "sha1_implCompressMB";
7963       stub_addr = StubRoutines::sha1_implCompressMB();
7964     }
7965     break;
7966   case 2:
7967     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
7968       klass_digestBase_name = "sun/security/provider/SHA2";
7969       stub_name = "sha256_implCompressMB";
7970       stub_addr = StubRoutines::sha256_implCompressMB();
7971     }
7972     break;
7973   case 3:
7974     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
7975       klass_digestBase_name = "sun/security/provider/SHA5";
7976       stub_name = "sha512_implCompressMB";
7977       stub_addr = StubRoutines::sha512_implCompressMB();
7978       elem_type = T_LONG;
7979     }
7980     break;
7981   case 4:
7982     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
7983       klass_digestBase_name = "sun/security/provider/SHA3";
7984       stub_name = "sha3_implCompressMB";
7985       stub_addr = StubRoutines::sha3_implCompressMB();
7986       elem_type = T_LONG;
7987     }
7988     break;
7989   default:
7990     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
7991   }
7992   if (klass_digestBase_name != nullptr) {
7993     assert(stub_addr != nullptr, "Stub is generated");
7994     if (stub_addr == nullptr) return false;
7995 
7996     // get DigestBase klass to lookup for SHA klass
7997     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
7998     assert(tinst != nullptr, "digestBase_obj is not instance???");
7999     assert(tinst->is_loaded(), "DigestBase is not loaded");
8000 
8001     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
8002     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
8003     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
8004     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
8005   }
8006   return false;
8007 }
8008 
8009 //------------------------------inline_digestBase_implCompressMB-----------------------
8010 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
8011                                                       BasicType elem_type, address stubAddr, const char *stubName,
8012                                                       Node* src_start, Node* ofs, Node* limit) {
8013   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
8014   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
8015   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
8016   digest_obj = _gvn.transform(digest_obj);
8017 
8018   Node* state = get_state_from_digest_object(digest_obj, elem_type);
8019   if (state == nullptr) return false;
8020 
8021   Node* block_size = nullptr;
8022   if (strcmp("sha3_implCompressMB", stubName) == 0) {
8023     block_size = get_block_size_from_digest_object(digest_obj);
8024     if (block_size == nullptr) return false;
8025   }
8026 
8027   // Call the stub.
8028   Node* call;
8029   if (block_size == nullptr) {
8030     call = make_runtime_call(RC_LEAF|RC_NO_FP,
8031                              OptoRuntime::digestBase_implCompressMB_Type(false),
8032                              stubAddr, stubName, TypePtr::BOTTOM,
8033                              src_start, state, ofs, limit);
8034   } else {
8035      call = make_runtime_call(RC_LEAF|RC_NO_FP,
8036                              OptoRuntime::digestBase_implCompressMB_Type(true),
8037                              stubAddr, stubName, TypePtr::BOTTOM,
8038                              src_start, state, block_size, ofs, limit);
8039   }
8040 
8041   // return ofs (int)
8042   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8043   set_result(result);
8044 
8045   return true;
8046 }
8047 
8048 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
8049 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
8050   assert(UseAES, "need AES instruction support");
8051   address stubAddr = nullptr;
8052   const char *stubName = nullptr;
8053   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
8054   stubName = "galoisCounterMode_AESCrypt";
8055 
8056   if (stubAddr == nullptr) return false;
8057 
8058   Node* in      = argument(0);
8059   Node* inOfs   = argument(1);
8060   Node* len     = argument(2);
8061   Node* ct      = argument(3);
8062   Node* ctOfs   = argument(4);
8063   Node* out     = argument(5);
8064   Node* outOfs  = argument(6);
8065   Node* gctr_object = argument(7);
8066   Node* ghash_object = argument(8);
8067 
8068   // (1) in, ct and out are arrays.
8069   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
8070   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
8071   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
8072   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
8073           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
8074          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
8075 
8076   // checks are the responsibility of the caller
8077   Node* in_start = in;
8078   Node* ct_start = ct;
8079   Node* out_start = out;
8080   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
8081     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
8082     in_start = array_element_address(in, inOfs, T_BYTE);
8083     ct_start = array_element_address(ct, ctOfs, T_BYTE);
8084     out_start = array_element_address(out, outOfs, T_BYTE);
8085   }
8086 
8087   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8088   // (because of the predicated logic executed earlier).
8089   // so we cast it here safely.
8090   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8091   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8092   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
8093   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
8094   Node* state = load_field_from_object(ghash_object, "state", "[J");
8095 
8096   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
8097     return false;
8098   }
8099   // cast it to what we know it will be at runtime
8100   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
8101   assert(tinst != nullptr, "GCTR obj is null");
8102   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8103   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8104   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8105   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8106   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8107   const TypeOopPtr* xtype = aklass->as_instance_type();
8108   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8109   aescrypt_object = _gvn.transform(aescrypt_object);
8110   // we need to get the start of the aescrypt_object's expanded key array
8111   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8112   if (k_start == nullptr) return false;
8113   // similarly, get the start address of the r vector
8114   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
8115   Node* state_start = array_element_address(state, intcon(0), T_LONG);
8116   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
8117 
8118 
8119   // Call the stub, passing params
8120   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8121                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
8122                                stubAddr, stubName, TypePtr::BOTTOM,
8123                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
8124 
8125   // return cipher length (int)
8126   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
8127   set_result(retvalue);
8128 
8129   return true;
8130 }
8131 
8132 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
8133 // Return node representing slow path of predicate check.
8134 // the pseudo code we want to emulate with this predicate is:
8135 // for encryption:
8136 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8137 // for decryption:
8138 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8139 //    note cipher==plain is more conservative than the original java code but that's OK
8140 //
8141 
8142 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
8143   // The receiver was checked for null already.
8144   Node* objGCTR = argument(7);
8145   // Load embeddedCipher field of GCTR object.
8146   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8147   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
8148 
8149   // get AESCrypt klass for instanceOf check
8150   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8151   // will have same classloader as CipherBlockChaining object
8152   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
8153   assert(tinst != nullptr, "GCTR obj is null");
8154   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8155 
8156   // we want to do an instanceof comparison against the AESCrypt class
8157   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8158   if (!klass_AESCrypt->is_loaded()) {
8159     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8160     Node* ctrl = control();
8161     set_control(top()); // no regular fast path
8162     return ctrl;
8163   }
8164 
8165   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8166   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8167   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8168   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8169   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8170 
8171   return instof_false; // even if it is null
8172 }
8173 
8174 //------------------------------get_state_from_digest_object-----------------------
8175 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
8176   const char* state_type;
8177   switch (elem_type) {
8178     case T_BYTE: state_type = "[B"; break;
8179     case T_INT:  state_type = "[I"; break;
8180     case T_LONG: state_type = "[J"; break;
8181     default: ShouldNotReachHere();
8182   }
8183   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
8184   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
8185   if (digest_state == nullptr) return (Node *) nullptr;
8186 
8187   // now have the array, need to get the start address of the state array
8188   Node* state = array_element_address(digest_state, intcon(0), elem_type);
8189   return state;
8190 }
8191 
8192 //------------------------------get_block_size_from_sha3_object----------------------------------
8193 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
8194   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
8195   assert (block_size != nullptr, "sanity");
8196   return block_size;
8197 }
8198 
8199 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8200 // Return node representing slow path of predicate check.
8201 // the pseudo code we want to emulate with this predicate is:
8202 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
8203 //
8204 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8205   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8206          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8207   assert((uint)predicate < 5, "sanity");
8208 
8209   // The receiver was checked for null already.
8210   Node* digestBaseObj = argument(0);
8211 
8212   // get DigestBase klass for instanceOf check
8213   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8214   assert(tinst != nullptr, "digestBaseObj is null");
8215   assert(tinst->is_loaded(), "DigestBase is not loaded");
8216 
8217   const char* klass_name = nullptr;
8218   switch (predicate) {
8219   case 0:
8220     if (UseMD5Intrinsics) {
8221       // we want to do an instanceof comparison against the MD5 class
8222       klass_name = "sun/security/provider/MD5";
8223     }
8224     break;
8225   case 1:
8226     if (UseSHA1Intrinsics) {
8227       // we want to do an instanceof comparison against the SHA class
8228       klass_name = "sun/security/provider/SHA";
8229     }
8230     break;
8231   case 2:
8232     if (UseSHA256Intrinsics) {
8233       // we want to do an instanceof comparison against the SHA2 class
8234       klass_name = "sun/security/provider/SHA2";
8235     }
8236     break;
8237   case 3:
8238     if (UseSHA512Intrinsics) {
8239       // we want to do an instanceof comparison against the SHA5 class
8240       klass_name = "sun/security/provider/SHA5";
8241     }
8242     break;
8243   case 4:
8244     if (UseSHA3Intrinsics) {
8245       // we want to do an instanceof comparison against the SHA3 class
8246       klass_name = "sun/security/provider/SHA3";
8247     }
8248     break;
8249   default:
8250     fatal("unknown SHA intrinsic predicate: %d", predicate);
8251   }
8252 
8253   ciKlass* klass = nullptr;
8254   if (klass_name != nullptr) {
8255     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
8256   }
8257   if ((klass == nullptr) || !klass->is_loaded()) {
8258     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8259     Node* ctrl = control();
8260     set_control(top()); // no intrinsic path
8261     return ctrl;
8262   }
8263   ciInstanceKlass* instklass = klass->as_instance_klass();
8264 
8265   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
8266   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8267   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8268   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8269 
8270   return instof_false;  // even if it is null
8271 }
8272 
8273 //-------------inline_fma-----------------------------------
8274 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8275   Node *a = nullptr;
8276   Node *b = nullptr;
8277   Node *c = nullptr;
8278   Node* result = nullptr;
8279   switch (id) {
8280   case vmIntrinsics::_fmaD:
8281     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8282     // no receiver since it is static method
8283     a = round_double_node(argument(0));
8284     b = round_double_node(argument(2));
8285     c = round_double_node(argument(4));
8286     result = _gvn.transform(new FmaDNode(control(), a, b, c));
8287     break;
8288   case vmIntrinsics::_fmaF:
8289     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8290     a = argument(0);
8291     b = argument(1);
8292     c = argument(2);
8293     result = _gvn.transform(new FmaFNode(control(), a, b, c));
8294     break;
8295   default:
8296     fatal_unexpected_iid(id);  break;
8297   }
8298   set_result(result);
8299   return true;
8300 }
8301 
8302 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8303   // argument(0) is receiver
8304   Node* codePoint = argument(1);
8305   Node* n = nullptr;
8306 
8307   switch (id) {
8308     case vmIntrinsics::_isDigit :
8309       n = new DigitNode(control(), codePoint);
8310       break;
8311     case vmIntrinsics::_isLowerCase :
8312       n = new LowerCaseNode(control(), codePoint);
8313       break;
8314     case vmIntrinsics::_isUpperCase :
8315       n = new UpperCaseNode(control(), codePoint);
8316       break;
8317     case vmIntrinsics::_isWhitespace :
8318       n = new WhitespaceNode(control(), codePoint);
8319       break;
8320     default:
8321       fatal_unexpected_iid(id);
8322   }
8323 
8324   set_result(_gvn.transform(n));
8325   return true;
8326 }
8327 
8328 //------------------------------inline_fp_min_max------------------------------
8329 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
8330 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
8331 
8332   // The intrinsic should be used only when the API branches aren't predictable,
8333   // the last one performing the most important comparison. The following heuristic
8334   // uses the branch statistics to eventually bail out if necessary.
8335 
8336   ciMethodData *md = callee()->method_data();
8337 
8338   if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) {
8339     ciCallProfile cp = caller()->call_profile_at_bci(bci());
8340 
8341     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
8342       // Bail out if the call-site didn't contribute enough to the statistics.
8343       return false;
8344     }
8345 
8346     uint taken = 0, not_taken = 0;
8347 
8348     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
8349       if (p->is_BranchData()) {
8350         taken = ((ciBranchData*)p)->taken();
8351         not_taken = ((ciBranchData*)p)->not_taken();
8352       }
8353     }
8354 
8355     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
8356     balance = balance < 0 ? -balance : balance;
8357     if ( balance > 0.2 ) {
8358       // Bail out if the most important branch is predictable enough.
8359       return false;
8360     }
8361   }
8362 */
8363 
8364   Node *a = nullptr;
8365   Node *b = nullptr;
8366   Node *n = nullptr;
8367   switch (id) {
8368   case vmIntrinsics::_maxF:
8369   case vmIntrinsics::_minF:
8370   case vmIntrinsics::_maxF_strict:
8371   case vmIntrinsics::_minF_strict:
8372     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
8373     a = argument(0);
8374     b = argument(1);
8375     break;
8376   case vmIntrinsics::_maxD:
8377   case vmIntrinsics::_minD:
8378   case vmIntrinsics::_maxD_strict:
8379   case vmIntrinsics::_minD_strict:
8380     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
8381     a = round_double_node(argument(0));
8382     b = round_double_node(argument(2));
8383     break;
8384   default:
8385     fatal_unexpected_iid(id);
8386     break;
8387   }
8388   switch (id) {
8389   case vmIntrinsics::_maxF:
8390   case vmIntrinsics::_maxF_strict:
8391     n = new MaxFNode(a, b);
8392     break;
8393   case vmIntrinsics::_minF:
8394   case vmIntrinsics::_minF_strict:
8395     n = new MinFNode(a, b);
8396     break;
8397   case vmIntrinsics::_maxD:
8398   case vmIntrinsics::_maxD_strict:
8399     n = new MaxDNode(a, b);
8400     break;
8401   case vmIntrinsics::_minD:
8402   case vmIntrinsics::_minD_strict:
8403     n = new MinDNode(a, b);
8404     break;
8405   default:
8406     fatal_unexpected_iid(id);
8407     break;
8408   }
8409   set_result(_gvn.transform(n));
8410   return true;
8411 }
8412 
8413 bool LibraryCallKit::inline_profileBoolean() {
8414   Node* counts = argument(1);
8415   const TypeAryPtr* ary = nullptr;
8416   ciArray* aobj = nullptr;
8417   if (counts->is_Con()
8418       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8419       && (aobj = ary->const_oop()->as_array()) != nullptr
8420       && (aobj->length() == 2)) {
8421     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8422     jint false_cnt = aobj->element_value(0).as_int();
8423     jint  true_cnt = aobj->element_value(1).as_int();
8424 
8425     if (C->log() != nullptr) {
8426       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8427                      false_cnt, true_cnt);
8428     }
8429 
8430     if (false_cnt + true_cnt == 0) {
8431       // According to profile, never executed.
8432       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8433                           Deoptimization::Action_reinterpret);
8434       return true;
8435     }
8436 
8437     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8438     // is a number of each value occurrences.
8439     Node* result = argument(0);
8440     if (false_cnt == 0 || true_cnt == 0) {
8441       // According to profile, one value has been never seen.
8442       int expected_val = (false_cnt == 0) ? 1 : 0;
8443 
8444       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8445       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8446 
8447       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8448       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8449       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8450 
8451       { // Slow path: uncommon trap for never seen value and then reexecute
8452         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8453         // the value has been seen at least once.
8454         PreserveJVMState pjvms(this);
8455         PreserveReexecuteState preexecs(this);
8456         jvms()->set_should_reexecute(true);
8457 
8458         set_control(slow_path);
8459         set_i_o(i_o());
8460 
8461         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8462                             Deoptimization::Action_reinterpret);
8463       }
8464       // The guard for never seen value enables sharpening of the result and
8465       // returning a constant. It allows to eliminate branches on the same value
8466       // later on.
8467       set_control(fast_path);
8468       result = intcon(expected_val);
8469     }
8470     // Stop profiling.
8471     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8472     // By replacing method body with profile data (represented as ProfileBooleanNode
8473     // on IR level) we effectively disable profiling.
8474     // It enables full speed execution once optimized code is generated.
8475     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8476     C->record_for_igvn(profile);
8477     set_result(profile);
8478     return true;
8479   } else {
8480     // Continue profiling.
8481     // Profile data isn't available at the moment. So, execute method's bytecode version.
8482     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8483     // is compiled and counters aren't available since corresponding MethodHandle
8484     // isn't a compile-time constant.
8485     return false;
8486   }
8487 }
8488 
8489 bool LibraryCallKit::inline_isCompileConstant() {
8490   Node* n = argument(0);
8491   set_result(n->is_Con() ? intcon(1) : intcon(0));
8492   return true;
8493 }
8494 
8495 //------------------------------- inline_getObjectSize --------------------------------------
8496 //
8497 // Calculate the runtime size of the object/array.
8498 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8499 //
8500 bool LibraryCallKit::inline_getObjectSize() {
8501   Node* obj = argument(3);
8502   Node* klass_node = load_object_klass(obj);
8503 
8504   jint  layout_con = Klass::_lh_neutral_value;
8505   Node* layout_val = get_layout_helper(klass_node, layout_con);
8506   int   layout_is_con = (layout_val == nullptr);
8507 
8508   if (layout_is_con) {
8509     // Layout helper is constant, can figure out things at compile time.
8510 
8511     if (Klass::layout_helper_is_instance(layout_con)) {
8512       // Instance case:  layout_con contains the size itself.
8513       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8514       set_result(size);
8515     } else {
8516       // Array case: size is round(header + element_size*arraylength).
8517       // Since arraylength is different for every array instance, we have to
8518       // compute the whole thing at runtime.
8519 
8520       Node* arr_length = load_array_length(obj);
8521 
8522       int round_mask = MinObjAlignmentInBytes - 1;
8523       int hsize  = Klass::layout_helper_header_size(layout_con);
8524       int eshift = Klass::layout_helper_log2_element_size(layout_con);
8525 
8526       if ((round_mask & ~right_n_bits(eshift)) == 0) {
8527         round_mask = 0;  // strength-reduce it if it goes away completely
8528       }
8529       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8530       Node* header_size = intcon(hsize + round_mask);
8531 
8532       Node* lengthx = ConvI2X(arr_length);
8533       Node* headerx = ConvI2X(header_size);
8534 
8535       Node* abody = lengthx;
8536       if (eshift != 0) {
8537         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8538       }
8539       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8540       if (round_mask != 0) {
8541         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8542       }
8543       size = ConvX2L(size);
8544       set_result(size);
8545     }
8546   } else {
8547     // Layout helper is not constant, need to test for array-ness at runtime.
8548 
8549     enum { _instance_path = 1, _array_path, PATH_LIMIT };
8550     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8551     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8552     record_for_igvn(result_reg);
8553 
8554     Node* array_ctl = generate_array_guard(klass_node, nullptr);
8555     if (array_ctl != nullptr) {
8556       // Array case: size is round(header + element_size*arraylength).
8557       // Since arraylength is different for every array instance, we have to
8558       // compute the whole thing at runtime.
8559 
8560       PreserveJVMState pjvms(this);
8561       set_control(array_ctl);
8562       Node* arr_length = load_array_length(obj);
8563 
8564       int round_mask = MinObjAlignmentInBytes - 1;
8565       Node* mask = intcon(round_mask);
8566 
8567       Node* hss = intcon(Klass::_lh_header_size_shift);
8568       Node* hsm = intcon(Klass::_lh_header_size_mask);
8569       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
8570       header_size = _gvn.transform(new AndINode(header_size, hsm));
8571       header_size = _gvn.transform(new AddINode(header_size, mask));
8572 
8573       // There is no need to mask or shift this value.
8574       // The semantics of LShiftINode include an implicit mask to 0x1F.
8575       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
8576       Node* elem_shift = layout_val;
8577 
8578       Node* lengthx = ConvI2X(arr_length);
8579       Node* headerx = ConvI2X(header_size);
8580 
8581       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
8582       Node* size = _gvn.transform(new AddXNode(headerx, abody));
8583       if (round_mask != 0) {
8584         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
8585       }
8586       size = ConvX2L(size);
8587 
8588       result_reg->init_req(_array_path, control());
8589       result_val->init_req(_array_path, size);
8590     }
8591 
8592     if (!stopped()) {
8593       // Instance case: the layout helper gives us instance size almost directly,
8594       // but we need to mask out the _lh_instance_slow_path_bit.
8595       Node* size = ConvI2X(layout_val);
8596       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
8597       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
8598       size = _gvn.transform(new AndXNode(size, mask));
8599       size = ConvX2L(size);
8600 
8601       result_reg->init_req(_instance_path, control());
8602       result_val->init_req(_instance_path, size);
8603     }
8604 
8605     set_result(result_reg, result_val);
8606   }
8607 
8608   return true;
8609 }
8610 
8611 //------------------------------- inline_blackhole --------------------------------------
8612 //
8613 // Make sure all arguments to this node are alive.
8614 // This matches methods that were requested to be blackholed through compile commands.
8615 //
8616 bool LibraryCallKit::inline_blackhole() {
8617   assert(callee()->is_static(), "Should have been checked before: only static methods here");
8618   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
8619   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
8620 
8621   // Blackhole node pinches only the control, not memory. This allows
8622   // the blackhole to be pinned in the loop that computes blackholed
8623   // values, but have no other side effects, like breaking the optimizations
8624   // across the blackhole.
8625 
8626   Node* bh = _gvn.transform(new BlackholeNode(control()));
8627   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
8628 
8629   // Bind call arguments as blackhole arguments to keep them alive
8630   uint nargs = callee()->arg_size();
8631   for (uint i = 0; i < nargs; i++) {
8632     bh->add_req(argument(i));
8633   }
8634 
8635   return true;
8636 }