1 /* 2 * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciFlatArrayKlass.hpp" 28 #include "ci/ciUtilities.inline.hpp" 29 #include "classfile/vmIntrinsics.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/klass.inline.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/c2compiler.hpp" 40 #include "opto/castnode.hpp" 41 #include "opto/cfgnode.hpp" 42 #include "opto/convertnode.hpp" 43 #include "opto/countbitsnode.hpp" 44 #include "opto/idealKit.hpp" 45 #include "opto/library_call.hpp" 46 #include "opto/mathexactnode.hpp" 47 #include "opto/mulnode.hpp" 48 #include "opto/narrowptrnode.hpp" 49 #include "opto/opaquenode.hpp" 50 #include "opto/parse.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/rootnode.hpp" 53 #include "opto/subnode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 if (C->print_intrinsics() || C->print_inlining()) { 124 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 125 } 126 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 127 if (C->log()) { 128 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 129 vmIntrinsics::name_at(intrinsic_id()), 130 (is_virtual() ? " virtual='1'" : ""), 131 C->unique() - nodes); 132 } 133 // Push the result from the inlined method onto the stack. 134 kit.push_result(); 135 C->print_inlining_update(this); 136 return kit.transfer_exceptions_into_jvms(); 137 } 138 139 // The intrinsic bailed out 140 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 141 if (jvms->has_method()) { 142 // Not a root compile. 143 const char* msg; 144 if (callee->intrinsic_candidate()) { 145 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 146 } else { 147 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 148 : "failed to inline (intrinsic), method not annotated"; 149 } 150 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 151 if (C->print_intrinsics() || C->print_inlining()) { 152 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 153 } 154 } else { 155 // Root compile 156 ResourceMark rm; 157 stringStream msg_stream; 158 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 159 vmIntrinsics::name_at(intrinsic_id()), 160 is_virtual() ? " (virtual)" : "", bci); 161 const char *msg = msg_stream.freeze(); 162 log_debug(jit, inlining)("%s", msg); 163 if (C->print_intrinsics() || C->print_inlining()) { 164 tty->print("%s", msg); 165 } 166 } 167 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 168 C->print_inlining_update(this); 169 170 return nullptr; 171 } 172 173 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 174 LibraryCallKit kit(jvms, this); 175 Compile* C = kit.C; 176 int nodes = C->unique(); 177 _last_predicate = predicate; 178 #ifndef PRODUCT 179 assert(is_predicated() && predicate < predicates_count(), "sanity"); 180 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 181 char buf[1000]; 182 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 183 tty->print_cr("Predicate for intrinsic %s", str); 184 } 185 #endif 186 ciMethod* callee = kit.callee(); 187 const int bci = kit.bci(); 188 189 Node* slow_ctl = kit.try_to_predicate(predicate); 190 if (!kit.failing()) { 191 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 192 : "(intrinsic, predicate)"; 193 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 194 if (C->print_intrinsics() || C->print_inlining()) { 195 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 196 } 197 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 198 if (C->log()) { 199 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 200 vmIntrinsics::name_at(intrinsic_id()), 201 (is_virtual() ? " virtual='1'" : ""), 202 C->unique() - nodes); 203 } 204 return slow_ctl; // Could be null if the check folds. 205 } 206 207 // The intrinsic bailed out 208 if (jvms->has_method()) { 209 // Not a root compile. 210 const char* msg = "failed to generate predicate for intrinsic"; 211 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 212 if (C->print_intrinsics() || C->print_inlining()) { 213 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 214 } 215 } else { 216 // Root compile 217 ResourceMark rm; 218 stringStream msg_stream; 219 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 220 vmIntrinsics::name_at(intrinsic_id()), 221 is_virtual() ? " (virtual)" : "", bci); 222 const char *msg = msg_stream.freeze(); 223 log_debug(jit, inlining)("%s", msg); 224 if (C->print_intrinsics() || C->print_inlining()) { 225 C->print_inlining_stream()->print("%s", msg); 226 } 227 } 228 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 229 return nullptr; 230 } 231 232 bool LibraryCallKit::try_to_inline(int predicate) { 233 // Handle symbolic names for otherwise undistinguished boolean switches: 234 const bool is_store = true; 235 const bool is_compress = true; 236 const bool is_static = true; 237 const bool is_volatile = true; 238 239 if (!jvms()->has_method()) { 240 // Root JVMState has a null method. 241 assert(map()->memory()->Opcode() == Op_Parm, ""); 242 // Insert the memory aliasing node 243 set_all_memory(reset_memory()); 244 } 245 assert(merged_memory(), ""); 246 247 switch (intrinsic_id()) { 248 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 249 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 250 case vmIntrinsics::_getClass: return inline_native_getClass(); 251 252 case vmIntrinsics::_ceil: 253 case vmIntrinsics::_floor: 254 case vmIntrinsics::_rint: 255 case vmIntrinsics::_dsin: 256 case vmIntrinsics::_dcos: 257 case vmIntrinsics::_dtan: 258 case vmIntrinsics::_dtanh: 259 case vmIntrinsics::_dabs: 260 case vmIntrinsics::_fabs: 261 case vmIntrinsics::_iabs: 262 case vmIntrinsics::_labs: 263 case vmIntrinsics::_datan2: 264 case vmIntrinsics::_dsqrt: 265 case vmIntrinsics::_dsqrt_strict: 266 case vmIntrinsics::_dexp: 267 case vmIntrinsics::_dlog: 268 case vmIntrinsics::_dlog10: 269 case vmIntrinsics::_dpow: 270 case vmIntrinsics::_dcopySign: 271 case vmIntrinsics::_fcopySign: 272 case vmIntrinsics::_dsignum: 273 case vmIntrinsics::_roundF: 274 case vmIntrinsics::_roundD: 275 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 276 277 case vmIntrinsics::_notify: 278 case vmIntrinsics::_notifyAll: 279 return inline_notify(intrinsic_id()); 280 281 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 282 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 283 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 284 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 285 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 286 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 287 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 288 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 289 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 290 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 291 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 292 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 293 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 294 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 295 296 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 297 298 case vmIntrinsics::_arraySort: return inline_array_sort(); 299 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 300 301 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 302 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 303 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 304 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 305 306 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 307 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 308 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 309 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 310 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 311 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 312 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 313 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 314 315 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 316 317 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 318 319 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 320 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 321 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 322 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 323 324 case vmIntrinsics::_compressStringC: 325 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 326 case vmIntrinsics::_inflateStringC: 327 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 328 329 case vmIntrinsics::_makePrivateBuffer: return inline_unsafe_make_private_buffer(); 330 case vmIntrinsics::_finishPrivateBuffer: return inline_unsafe_finish_private_buffer(); 331 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 332 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 333 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 334 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 335 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 336 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 337 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 338 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 339 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 340 case vmIntrinsics::_getValue: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false, true); 341 342 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 343 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 344 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 345 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 346 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 347 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 348 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 349 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 350 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 351 case vmIntrinsics::_putValue: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false, true); 352 353 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 354 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 355 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 356 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 357 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 358 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 359 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 360 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 361 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 362 363 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 364 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 365 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 366 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 367 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 368 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 369 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 370 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 371 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 372 373 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 374 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 375 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 376 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 377 378 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 379 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 380 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 381 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 382 383 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 384 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 385 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 386 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 387 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 388 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 389 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 390 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 391 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 392 393 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 394 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 395 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 396 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 397 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 398 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 399 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 400 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 401 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 402 403 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 404 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 405 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 406 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 407 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 408 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 409 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 410 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 411 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 412 413 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 414 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 415 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 416 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 417 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 418 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 419 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 420 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 421 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 422 423 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 424 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 425 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 426 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 427 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 428 429 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 430 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 431 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 432 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 433 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 434 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 435 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 436 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 437 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 438 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 439 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 440 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 441 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 442 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 443 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 444 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 445 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 446 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 447 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 448 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 449 450 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 451 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 452 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 453 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 454 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 455 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 456 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 457 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 458 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 459 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 460 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 461 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 462 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 463 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 464 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 465 466 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 467 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 468 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 469 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 470 471 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 472 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 473 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 474 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 475 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 476 477 case vmIntrinsics::_loadFence: 478 case vmIntrinsics::_storeFence: 479 case vmIntrinsics::_storeStoreFence: 480 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 481 482 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 483 484 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 485 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 486 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 487 488 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 489 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 490 491 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 492 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 493 494 #if INCLUDE_JVMTI 495 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 496 "notifyJvmtiStart", true, false); 497 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 498 "notifyJvmtiEnd", false, true); 499 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 500 "notifyJvmtiMount", false, false); 501 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 502 "notifyJvmtiUnmount", false, false); 503 case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide(); 504 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 505 #endif 506 507 #ifdef JFR_HAVE_INTRINSICS 508 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 509 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 510 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 511 #endif 512 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 513 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 514 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 515 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 516 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 517 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 518 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 519 case vmIntrinsics::_isFlatArray: return inline_unsafe_isFlatArray(); 520 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 521 case vmIntrinsics::_getLength: return inline_native_getLength(); 522 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 523 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 524 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 525 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 526 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 527 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 528 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 529 530 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 531 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 532 case vmIntrinsics::_newNullRestrictedArray: return inline_newNullRestrictedArray(); 533 534 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 535 536 case vmIntrinsics::_isInstance: 537 case vmIntrinsics::_getModifiers: 538 case vmIntrinsics::_isInterface: 539 case vmIntrinsics::_isArray: 540 case vmIntrinsics::_isPrimitive: 541 case vmIntrinsics::_isHidden: 542 case vmIntrinsics::_getSuperclass: 543 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 544 545 case vmIntrinsics::_floatToRawIntBits: 546 case vmIntrinsics::_floatToIntBits: 547 case vmIntrinsics::_intBitsToFloat: 548 case vmIntrinsics::_doubleToRawLongBits: 549 case vmIntrinsics::_doubleToLongBits: 550 case vmIntrinsics::_longBitsToDouble: 551 case vmIntrinsics::_floatToFloat16: 552 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 553 554 case vmIntrinsics::_floatIsFinite: 555 case vmIntrinsics::_floatIsInfinite: 556 case vmIntrinsics::_doubleIsFinite: 557 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 558 559 case vmIntrinsics::_numberOfLeadingZeros_i: 560 case vmIntrinsics::_numberOfLeadingZeros_l: 561 case vmIntrinsics::_numberOfTrailingZeros_i: 562 case vmIntrinsics::_numberOfTrailingZeros_l: 563 case vmIntrinsics::_bitCount_i: 564 case vmIntrinsics::_bitCount_l: 565 case vmIntrinsics::_reverse_i: 566 case vmIntrinsics::_reverse_l: 567 case vmIntrinsics::_reverseBytes_i: 568 case vmIntrinsics::_reverseBytes_l: 569 case vmIntrinsics::_reverseBytes_s: 570 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 571 572 case vmIntrinsics::_compress_i: 573 case vmIntrinsics::_compress_l: 574 case vmIntrinsics::_expand_i: 575 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 576 577 case vmIntrinsics::_compareUnsigned_i: 578 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 579 580 case vmIntrinsics::_divideUnsigned_i: 581 case vmIntrinsics::_divideUnsigned_l: 582 case vmIntrinsics::_remainderUnsigned_i: 583 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 584 585 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 586 587 case vmIntrinsics::_Reference_get: return inline_reference_get(); 588 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 589 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 590 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 591 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 592 593 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 594 595 case vmIntrinsics::_aescrypt_encryptBlock: 596 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 597 598 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 599 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 600 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 601 602 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 603 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 604 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 605 606 case vmIntrinsics::_counterMode_AESCrypt: 607 return inline_counterMode_AESCrypt(intrinsic_id()); 608 609 case vmIntrinsics::_galoisCounterMode_AESCrypt: 610 return inline_galoisCounterMode_AESCrypt(); 611 612 case vmIntrinsics::_md5_implCompress: 613 case vmIntrinsics::_sha_implCompress: 614 case vmIntrinsics::_sha2_implCompress: 615 case vmIntrinsics::_sha5_implCompress: 616 case vmIntrinsics::_sha3_implCompress: 617 return inline_digestBase_implCompress(intrinsic_id()); 618 619 case vmIntrinsics::_digestBase_implCompressMB: 620 return inline_digestBase_implCompressMB(predicate); 621 622 case vmIntrinsics::_multiplyToLen: 623 return inline_multiplyToLen(); 624 625 case vmIntrinsics::_squareToLen: 626 return inline_squareToLen(); 627 628 case vmIntrinsics::_mulAdd: 629 return inline_mulAdd(); 630 631 case vmIntrinsics::_montgomeryMultiply: 632 return inline_montgomeryMultiply(); 633 case vmIntrinsics::_montgomerySquare: 634 return inline_montgomerySquare(); 635 636 case vmIntrinsics::_bigIntegerRightShiftWorker: 637 return inline_bigIntegerShift(true); 638 case vmIntrinsics::_bigIntegerLeftShiftWorker: 639 return inline_bigIntegerShift(false); 640 641 case vmIntrinsics::_vectorizedMismatch: 642 return inline_vectorizedMismatch(); 643 644 case vmIntrinsics::_ghash_processBlocks: 645 return inline_ghash_processBlocks(); 646 case vmIntrinsics::_chacha20Block: 647 return inline_chacha20Block(); 648 case vmIntrinsics::_base64_encodeBlock: 649 return inline_base64_encodeBlock(); 650 case vmIntrinsics::_base64_decodeBlock: 651 return inline_base64_decodeBlock(); 652 case vmIntrinsics::_poly1305_processBlocks: 653 return inline_poly1305_processBlocks(); 654 case vmIntrinsics::_intpoly_montgomeryMult_P256: 655 return inline_intpoly_montgomeryMult_P256(); 656 case vmIntrinsics::_intpoly_assign: 657 return inline_intpoly_assign(); 658 case vmIntrinsics::_encodeISOArray: 659 case vmIntrinsics::_encodeByteISOArray: 660 return inline_encodeISOArray(false); 661 case vmIntrinsics::_encodeAsciiArray: 662 return inline_encodeISOArray(true); 663 664 case vmIntrinsics::_updateCRC32: 665 return inline_updateCRC32(); 666 case vmIntrinsics::_updateBytesCRC32: 667 return inline_updateBytesCRC32(); 668 case vmIntrinsics::_updateByteBufferCRC32: 669 return inline_updateByteBufferCRC32(); 670 671 case vmIntrinsics::_updateBytesCRC32C: 672 return inline_updateBytesCRC32C(); 673 case vmIntrinsics::_updateDirectByteBufferCRC32C: 674 return inline_updateDirectByteBufferCRC32C(); 675 676 case vmIntrinsics::_updateBytesAdler32: 677 return inline_updateBytesAdler32(); 678 case vmIntrinsics::_updateByteBufferAdler32: 679 return inline_updateByteBufferAdler32(); 680 681 case vmIntrinsics::_profileBoolean: 682 return inline_profileBoolean(); 683 case vmIntrinsics::_isCompileConstant: 684 return inline_isCompileConstant(); 685 686 case vmIntrinsics::_countPositives: 687 return inline_countPositives(); 688 689 case vmIntrinsics::_fmaD: 690 case vmIntrinsics::_fmaF: 691 return inline_fma(intrinsic_id()); 692 693 case vmIntrinsics::_isDigit: 694 case vmIntrinsics::_isLowerCase: 695 case vmIntrinsics::_isUpperCase: 696 case vmIntrinsics::_isWhitespace: 697 return inline_character_compare(intrinsic_id()); 698 699 case vmIntrinsics::_min: 700 case vmIntrinsics::_max: 701 case vmIntrinsics::_min_strict: 702 case vmIntrinsics::_max_strict: 703 return inline_min_max(intrinsic_id()); 704 705 case vmIntrinsics::_maxF: 706 case vmIntrinsics::_minF: 707 case vmIntrinsics::_maxD: 708 case vmIntrinsics::_minD: 709 case vmIntrinsics::_maxF_strict: 710 case vmIntrinsics::_minF_strict: 711 case vmIntrinsics::_maxD_strict: 712 case vmIntrinsics::_minD_strict: 713 return inline_fp_min_max(intrinsic_id()); 714 715 case vmIntrinsics::_VectorUnaryOp: 716 return inline_vector_nary_operation(1); 717 case vmIntrinsics::_VectorBinaryOp: 718 return inline_vector_nary_operation(2); 719 case vmIntrinsics::_VectorTernaryOp: 720 return inline_vector_nary_operation(3); 721 case vmIntrinsics::_VectorFromBitsCoerced: 722 return inline_vector_frombits_coerced(); 723 case vmIntrinsics::_VectorShuffleIota: 724 return inline_vector_shuffle_iota(); 725 case vmIntrinsics::_VectorMaskOp: 726 return inline_vector_mask_operation(); 727 case vmIntrinsics::_VectorShuffleToVector: 728 return inline_vector_shuffle_to_vector(); 729 case vmIntrinsics::_VectorWrapShuffleIndexes: 730 return inline_vector_wrap_shuffle_indexes(); 731 case vmIntrinsics::_VectorLoadOp: 732 return inline_vector_mem_operation(/*is_store=*/false); 733 case vmIntrinsics::_VectorLoadMaskedOp: 734 return inline_vector_mem_masked_operation(/*is_store*/false); 735 case vmIntrinsics::_VectorStoreOp: 736 return inline_vector_mem_operation(/*is_store=*/true); 737 case vmIntrinsics::_VectorStoreMaskedOp: 738 return inline_vector_mem_masked_operation(/*is_store=*/true); 739 case vmIntrinsics::_VectorGatherOp: 740 return inline_vector_gather_scatter(/*is_scatter*/ false); 741 case vmIntrinsics::_VectorScatterOp: 742 return inline_vector_gather_scatter(/*is_scatter*/ true); 743 case vmIntrinsics::_VectorReductionCoerced: 744 return inline_vector_reduction(); 745 case vmIntrinsics::_VectorTest: 746 return inline_vector_test(); 747 case vmIntrinsics::_VectorBlend: 748 return inline_vector_blend(); 749 case vmIntrinsics::_VectorRearrange: 750 return inline_vector_rearrange(); 751 case vmIntrinsics::_VectorSelectFrom: 752 return inline_vector_select_from(); 753 case vmIntrinsics::_VectorCompare: 754 return inline_vector_compare(); 755 case vmIntrinsics::_VectorBroadcastInt: 756 return inline_vector_broadcast_int(); 757 case vmIntrinsics::_VectorConvert: 758 return inline_vector_convert(); 759 case vmIntrinsics::_VectorInsert: 760 return inline_vector_insert(); 761 case vmIntrinsics::_VectorExtract: 762 return inline_vector_extract(); 763 case vmIntrinsics::_VectorCompressExpand: 764 return inline_vector_compress_expand(); 765 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 766 return inline_vector_select_from_two_vectors(); 767 case vmIntrinsics::_IndexVector: 768 return inline_index_vector(); 769 case vmIntrinsics::_IndexPartiallyInUpperRange: 770 return inline_index_partially_in_upper_range(); 771 772 case vmIntrinsics::_getObjectSize: 773 return inline_getObjectSize(); 774 775 case vmIntrinsics::_blackhole: 776 return inline_blackhole(); 777 778 default: 779 // If you get here, it may be that someone has added a new intrinsic 780 // to the list in vmIntrinsics.hpp without implementing it here. 781 #ifndef PRODUCT 782 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 783 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 784 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 785 } 786 #endif 787 return false; 788 } 789 } 790 791 Node* LibraryCallKit::try_to_predicate(int predicate) { 792 if (!jvms()->has_method()) { 793 // Root JVMState has a null method. 794 assert(map()->memory()->Opcode() == Op_Parm, ""); 795 // Insert the memory aliasing node 796 set_all_memory(reset_memory()); 797 } 798 assert(merged_memory(), ""); 799 800 switch (intrinsic_id()) { 801 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 802 return inline_cipherBlockChaining_AESCrypt_predicate(false); 803 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 804 return inline_cipherBlockChaining_AESCrypt_predicate(true); 805 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 806 return inline_electronicCodeBook_AESCrypt_predicate(false); 807 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 808 return inline_electronicCodeBook_AESCrypt_predicate(true); 809 case vmIntrinsics::_counterMode_AESCrypt: 810 return inline_counterMode_AESCrypt_predicate(); 811 case vmIntrinsics::_digestBase_implCompressMB: 812 return inline_digestBase_implCompressMB_predicate(predicate); 813 case vmIntrinsics::_galoisCounterMode_AESCrypt: 814 return inline_galoisCounterMode_AESCrypt_predicate(); 815 816 default: 817 // If you get here, it may be that someone has added a new intrinsic 818 // to the list in vmIntrinsics.hpp without implementing it here. 819 #ifndef PRODUCT 820 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 821 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 822 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 823 } 824 #endif 825 Node* slow_ctl = control(); 826 set_control(top()); // No fast path intrinsic 827 return slow_ctl; 828 } 829 } 830 831 //------------------------------set_result------------------------------- 832 // Helper function for finishing intrinsics. 833 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 834 record_for_igvn(region); 835 set_control(_gvn.transform(region)); 836 set_result( _gvn.transform(value)); 837 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 838 } 839 840 //------------------------------generate_guard--------------------------- 841 // Helper function for generating guarded fast-slow graph structures. 842 // The given 'test', if true, guards a slow path. If the test fails 843 // then a fast path can be taken. (We generally hope it fails.) 844 // In all cases, GraphKit::control() is updated to the fast path. 845 // The returned value represents the control for the slow path. 846 // The return value is never 'top'; it is either a valid control 847 // or null if it is obvious that the slow path can never be taken. 848 // Also, if region and the slow control are not null, the slow edge 849 // is appended to the region. 850 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 851 if (stopped()) { 852 // Already short circuited. 853 return nullptr; 854 } 855 856 // Build an if node and its projections. 857 // If test is true we take the slow path, which we assume is uncommon. 858 if (_gvn.type(test) == TypeInt::ZERO) { 859 // The slow branch is never taken. No need to build this guard. 860 return nullptr; 861 } 862 863 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 864 865 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 866 if (if_slow == top()) { 867 // The slow branch is never taken. No need to build this guard. 868 return nullptr; 869 } 870 871 if (region != nullptr) 872 region->add_req(if_slow); 873 874 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 875 set_control(if_fast); 876 877 return if_slow; 878 } 879 880 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 881 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 882 } 883 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 884 return generate_guard(test, region, PROB_FAIR); 885 } 886 887 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 888 Node* *pos_index) { 889 if (stopped()) 890 return nullptr; // already stopped 891 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 892 return nullptr; // index is already adequately typed 893 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 894 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 895 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 896 if (is_neg != nullptr && pos_index != nullptr) { 897 // Emulate effect of Parse::adjust_map_after_if. 898 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 899 (*pos_index) = _gvn.transform(ccast); 900 } 901 return is_neg; 902 } 903 904 // Make sure that 'position' is a valid limit index, in [0..length]. 905 // There are two equivalent plans for checking this: 906 // A. (offset + copyLength) unsigned<= arrayLength 907 // B. offset <= (arrayLength - copyLength) 908 // We require that all of the values above, except for the sum and 909 // difference, are already known to be non-negative. 910 // Plan A is robust in the face of overflow, if offset and copyLength 911 // are both hugely positive. 912 // 913 // Plan B is less direct and intuitive, but it does not overflow at 914 // all, since the difference of two non-negatives is always 915 // representable. Whenever Java methods must perform the equivalent 916 // check they generally use Plan B instead of Plan A. 917 // For the moment we use Plan A. 918 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 919 Node* subseq_length, 920 Node* array_length, 921 RegionNode* region) { 922 if (stopped()) 923 return nullptr; // already stopped 924 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 925 if (zero_offset && subseq_length->eqv_uncast(array_length)) 926 return nullptr; // common case of whole-array copy 927 Node* last = subseq_length; 928 if (!zero_offset) // last += offset 929 last = _gvn.transform(new AddINode(last, offset)); 930 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 931 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 932 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 933 return is_over; 934 } 935 936 // Emit range checks for the given String.value byte array 937 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 938 if (stopped()) { 939 return; // already stopped 940 } 941 RegionNode* bailout = new RegionNode(1); 942 record_for_igvn(bailout); 943 if (char_count) { 944 // Convert char count to byte count 945 count = _gvn.transform(new LShiftINode(count, intcon(1))); 946 } 947 948 // Offset and count must not be negative 949 generate_negative_guard(offset, bailout); 950 generate_negative_guard(count, bailout); 951 // Offset + count must not exceed length of array 952 generate_limit_guard(offset, count, load_array_length(array), bailout); 953 954 if (bailout->req() > 1) { 955 PreserveJVMState pjvms(this); 956 set_control(_gvn.transform(bailout)); 957 uncommon_trap(Deoptimization::Reason_intrinsic, 958 Deoptimization::Action_maybe_recompile); 959 } 960 } 961 962 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 963 bool is_immutable) { 964 ciKlass* thread_klass = env()->Thread_klass(); 965 const Type* thread_type 966 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 967 968 Node* thread = _gvn.transform(new ThreadLocalNode()); 969 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 970 tls_output = thread; 971 972 Node* thread_obj_handle 973 = (is_immutable 974 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 975 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 976 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 977 thread_obj_handle = _gvn.transform(thread_obj_handle); 978 979 DecoratorSet decorators = IN_NATIVE; 980 if (is_immutable) { 981 decorators |= C2_IMMUTABLE_MEMORY; 982 } 983 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 984 } 985 986 //--------------------------generate_current_thread-------------------- 987 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 988 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 989 /*is_immutable*/false); 990 } 991 992 //--------------------------generate_virtual_thread-------------------- 993 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 994 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 995 !C->method()->changes_current_thread()); 996 } 997 998 //------------------------------make_string_method_node------------------------ 999 // Helper method for String intrinsic functions. This version is called with 1000 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1001 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1002 // containing the lengths of str1 and str2. 1003 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1004 Node* result = nullptr; 1005 switch (opcode) { 1006 case Op_StrIndexOf: 1007 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1008 str1_start, cnt1, str2_start, cnt2, ae); 1009 break; 1010 case Op_StrComp: 1011 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1012 str1_start, cnt1, str2_start, cnt2, ae); 1013 break; 1014 case Op_StrEquals: 1015 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1016 // Use the constant length if there is one because optimized match rule may exist. 1017 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1018 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1019 break; 1020 default: 1021 ShouldNotReachHere(); 1022 return nullptr; 1023 } 1024 1025 // All these intrinsics have checks. 1026 C->set_has_split_ifs(true); // Has chance for split-if optimization 1027 clear_upper_avx(); 1028 1029 return _gvn.transform(result); 1030 } 1031 1032 //------------------------------inline_string_compareTo------------------------ 1033 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1034 Node* arg1 = argument(0); 1035 Node* arg2 = argument(1); 1036 1037 arg1 = must_be_not_null(arg1, true); 1038 arg2 = must_be_not_null(arg2, true); 1039 1040 // Get start addr and length of first argument 1041 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1042 Node* arg1_cnt = load_array_length(arg1); 1043 1044 // Get start addr and length of second argument 1045 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1046 Node* arg2_cnt = load_array_length(arg2); 1047 1048 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1049 set_result(result); 1050 return true; 1051 } 1052 1053 //------------------------------inline_string_equals------------------------ 1054 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1055 Node* arg1 = argument(0); 1056 Node* arg2 = argument(1); 1057 1058 // paths (plus control) merge 1059 RegionNode* region = new RegionNode(3); 1060 Node* phi = new PhiNode(region, TypeInt::BOOL); 1061 1062 if (!stopped()) { 1063 1064 arg1 = must_be_not_null(arg1, true); 1065 arg2 = must_be_not_null(arg2, true); 1066 1067 // Get start addr and length of first argument 1068 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1069 Node* arg1_cnt = load_array_length(arg1); 1070 1071 // Get start addr and length of second argument 1072 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1073 Node* arg2_cnt = load_array_length(arg2); 1074 1075 // Check for arg1_cnt != arg2_cnt 1076 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1077 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1078 Node* if_ne = generate_slow_guard(bol, nullptr); 1079 if (if_ne != nullptr) { 1080 phi->init_req(2, intcon(0)); 1081 region->init_req(2, if_ne); 1082 } 1083 1084 // Check for count == 0 is done by assembler code for StrEquals. 1085 1086 if (!stopped()) { 1087 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1088 phi->init_req(1, equals); 1089 region->init_req(1, control()); 1090 } 1091 } 1092 1093 // post merge 1094 set_control(_gvn.transform(region)); 1095 record_for_igvn(region); 1096 1097 set_result(_gvn.transform(phi)); 1098 return true; 1099 } 1100 1101 //------------------------------inline_array_equals---------------------------- 1102 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1103 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1104 Node* arg1 = argument(0); 1105 Node* arg2 = argument(1); 1106 1107 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1108 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1109 clear_upper_avx(); 1110 1111 return true; 1112 } 1113 1114 1115 //------------------------------inline_countPositives------------------------------ 1116 bool LibraryCallKit::inline_countPositives() { 1117 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1118 return false; 1119 } 1120 1121 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1122 // no receiver since it is static method 1123 Node* ba = argument(0); 1124 Node* offset = argument(1); 1125 Node* len = argument(2); 1126 1127 ba = must_be_not_null(ba, true); 1128 1129 // Range checks 1130 generate_string_range_check(ba, offset, len, false); 1131 if (stopped()) { 1132 return true; 1133 } 1134 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1135 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1136 set_result(_gvn.transform(result)); 1137 clear_upper_avx(); 1138 return true; 1139 } 1140 1141 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1142 Node* index = argument(0); 1143 Node* length = bt == T_INT ? argument(1) : argument(2); 1144 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1145 return false; 1146 } 1147 1148 // check that length is positive 1149 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1150 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1151 1152 { 1153 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1154 uncommon_trap(Deoptimization::Reason_intrinsic, 1155 Deoptimization::Action_make_not_entrant); 1156 } 1157 1158 if (stopped()) { 1159 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1160 return true; 1161 } 1162 1163 // length is now known positive, add a cast node to make this explicit 1164 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1165 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1166 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1167 ConstraintCastNode::RegularDependency, bt); 1168 casted_length = _gvn.transform(casted_length); 1169 replace_in_map(length, casted_length); 1170 length = casted_length; 1171 1172 // Use an unsigned comparison for the range check itself 1173 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1174 BoolTest::mask btest = BoolTest::lt; 1175 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1176 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1177 _gvn.set_type(rc, rc->Value(&_gvn)); 1178 if (!rc_bool->is_Con()) { 1179 record_for_igvn(rc); 1180 } 1181 set_control(_gvn.transform(new IfTrueNode(rc))); 1182 { 1183 PreserveJVMState pjvms(this); 1184 set_control(_gvn.transform(new IfFalseNode(rc))); 1185 uncommon_trap(Deoptimization::Reason_range_check, 1186 Deoptimization::Action_make_not_entrant); 1187 } 1188 1189 if (stopped()) { 1190 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1191 return true; 1192 } 1193 1194 // index is now known to be >= 0 and < length, cast it 1195 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1196 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1197 ConstraintCastNode::RegularDependency, bt); 1198 result = _gvn.transform(result); 1199 set_result(result); 1200 replace_in_map(index, result); 1201 return true; 1202 } 1203 1204 //------------------------------inline_string_indexOf------------------------ 1205 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1206 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1207 return false; 1208 } 1209 Node* src = argument(0); 1210 Node* tgt = argument(1); 1211 1212 // Make the merge point 1213 RegionNode* result_rgn = new RegionNode(4); 1214 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1215 1216 src = must_be_not_null(src, true); 1217 tgt = must_be_not_null(tgt, true); 1218 1219 // Get start addr and length of source string 1220 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1221 Node* src_count = load_array_length(src); 1222 1223 // Get start addr and length of substring 1224 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1225 Node* tgt_count = load_array_length(tgt); 1226 1227 Node* result = nullptr; 1228 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1229 1230 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1231 // Divide src size by 2 if String is UTF16 encoded 1232 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1233 } 1234 if (ae == StrIntrinsicNode::UU) { 1235 // Divide substring size by 2 if String is UTF16 encoded 1236 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1237 } 1238 1239 if (call_opt_stub) { 1240 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1241 StubRoutines::_string_indexof_array[ae], 1242 "stringIndexOf", TypePtr::BOTTOM, src_start, 1243 src_count, tgt_start, tgt_count); 1244 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1245 } else { 1246 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1247 result_rgn, result_phi, ae); 1248 } 1249 if (result != nullptr) { 1250 result_phi->init_req(3, result); 1251 result_rgn->init_req(3, control()); 1252 } 1253 set_control(_gvn.transform(result_rgn)); 1254 record_for_igvn(result_rgn); 1255 set_result(_gvn.transform(result_phi)); 1256 1257 return true; 1258 } 1259 1260 //-----------------------------inline_string_indexOfI----------------------- 1261 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1262 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1263 return false; 1264 } 1265 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1266 return false; 1267 } 1268 1269 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1270 Node* src = argument(0); // byte[] 1271 Node* src_count = argument(1); // char count 1272 Node* tgt = argument(2); // byte[] 1273 Node* tgt_count = argument(3); // char count 1274 Node* from_index = argument(4); // char index 1275 1276 src = must_be_not_null(src, true); 1277 tgt = must_be_not_null(tgt, true); 1278 1279 // Multiply byte array index by 2 if String is UTF16 encoded 1280 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1281 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1282 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1283 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1284 1285 // Range checks 1286 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1287 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1288 if (stopped()) { 1289 return true; 1290 } 1291 1292 RegionNode* region = new RegionNode(5); 1293 Node* phi = new PhiNode(region, TypeInt::INT); 1294 Node* result = nullptr; 1295 1296 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1297 1298 if (call_opt_stub) { 1299 assert(arrayOopDesc::base_offset_in_bytes(T_BYTE) >= 16, "Needed for indexOf"); 1300 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1301 StubRoutines::_string_indexof_array[ae], 1302 "stringIndexOf", TypePtr::BOTTOM, src_start, 1303 src_count, tgt_start, tgt_count); 1304 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1305 } else { 1306 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1307 region, phi, ae); 1308 } 1309 if (result != nullptr) { 1310 // The result is index relative to from_index if substring was found, -1 otherwise. 1311 // Generate code which will fold into cmove. 1312 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1313 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1314 1315 Node* if_lt = generate_slow_guard(bol, nullptr); 1316 if (if_lt != nullptr) { 1317 // result == -1 1318 phi->init_req(3, result); 1319 region->init_req(3, if_lt); 1320 } 1321 if (!stopped()) { 1322 result = _gvn.transform(new AddINode(result, from_index)); 1323 phi->init_req(4, result); 1324 region->init_req(4, control()); 1325 } 1326 } 1327 1328 set_control(_gvn.transform(region)); 1329 record_for_igvn(region); 1330 set_result(_gvn.transform(phi)); 1331 clear_upper_avx(); 1332 1333 return true; 1334 } 1335 1336 // Create StrIndexOfNode with fast path checks 1337 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1338 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1339 // Check for substr count > string count 1340 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1341 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1342 Node* if_gt = generate_slow_guard(bol, nullptr); 1343 if (if_gt != nullptr) { 1344 phi->init_req(1, intcon(-1)); 1345 region->init_req(1, if_gt); 1346 } 1347 if (!stopped()) { 1348 // Check for substr count == 0 1349 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1350 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1351 Node* if_zero = generate_slow_guard(bol, nullptr); 1352 if (if_zero != nullptr) { 1353 phi->init_req(2, intcon(0)); 1354 region->init_req(2, if_zero); 1355 } 1356 } 1357 if (!stopped()) { 1358 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1359 } 1360 return nullptr; 1361 } 1362 1363 //-----------------------------inline_string_indexOfChar----------------------- 1364 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1365 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1366 return false; 1367 } 1368 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1369 return false; 1370 } 1371 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1372 Node* src = argument(0); // byte[] 1373 Node* int_ch = argument(1); 1374 Node* from_index = argument(2); 1375 Node* max = argument(3); 1376 1377 src = must_be_not_null(src, true); 1378 1379 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1380 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1381 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1382 1383 // Range checks 1384 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1385 1386 // Check for int_ch >= 0 1387 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1388 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1389 { 1390 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1391 uncommon_trap(Deoptimization::Reason_intrinsic, 1392 Deoptimization::Action_maybe_recompile); 1393 } 1394 if (stopped()) { 1395 return true; 1396 } 1397 1398 RegionNode* region = new RegionNode(3); 1399 Node* phi = new PhiNode(region, TypeInt::INT); 1400 1401 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1402 C->set_has_split_ifs(true); // Has chance for split-if optimization 1403 _gvn.transform(result); 1404 1405 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1406 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1407 1408 Node* if_lt = generate_slow_guard(bol, nullptr); 1409 if (if_lt != nullptr) { 1410 // result == -1 1411 phi->init_req(2, result); 1412 region->init_req(2, if_lt); 1413 } 1414 if (!stopped()) { 1415 result = _gvn.transform(new AddINode(result, from_index)); 1416 phi->init_req(1, result); 1417 region->init_req(1, control()); 1418 } 1419 set_control(_gvn.transform(region)); 1420 record_for_igvn(region); 1421 set_result(_gvn.transform(phi)); 1422 clear_upper_avx(); 1423 1424 return true; 1425 } 1426 //---------------------------inline_string_copy--------------------- 1427 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1428 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1429 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1430 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1431 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1432 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1433 bool LibraryCallKit::inline_string_copy(bool compress) { 1434 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1435 return false; 1436 } 1437 int nargs = 5; // 2 oops, 3 ints 1438 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1439 1440 Node* src = argument(0); 1441 Node* src_offset = argument(1); 1442 Node* dst = argument(2); 1443 Node* dst_offset = argument(3); 1444 Node* length = argument(4); 1445 1446 // Check for allocation before we add nodes that would confuse 1447 // tightly_coupled_allocation() 1448 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1449 1450 // Figure out the size and type of the elements we will be copying. 1451 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1452 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1453 if (src_type == nullptr || dst_type == nullptr) { 1454 return false; 1455 } 1456 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1457 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1458 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1459 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1460 "Unsupported array types for inline_string_copy"); 1461 1462 src = must_be_not_null(src, true); 1463 dst = must_be_not_null(dst, true); 1464 1465 // Convert char[] offsets to byte[] offsets 1466 bool convert_src = (compress && src_elem == T_BYTE); 1467 bool convert_dst = (!compress && dst_elem == T_BYTE); 1468 if (convert_src) { 1469 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1470 } else if (convert_dst) { 1471 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1472 } 1473 1474 // Range checks 1475 generate_string_range_check(src, src_offset, length, convert_src); 1476 generate_string_range_check(dst, dst_offset, length, convert_dst); 1477 if (stopped()) { 1478 return true; 1479 } 1480 1481 Node* src_start = array_element_address(src, src_offset, src_elem); 1482 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1483 // 'src_start' points to src array + scaled offset 1484 // 'dst_start' points to dst array + scaled offset 1485 Node* count = nullptr; 1486 if (compress) { 1487 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1488 } else { 1489 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1490 } 1491 1492 if (alloc != nullptr) { 1493 if (alloc->maybe_set_complete(&_gvn)) { 1494 // "You break it, you buy it." 1495 InitializeNode* init = alloc->initialization(); 1496 assert(init->is_complete(), "we just did this"); 1497 init->set_complete_with_arraycopy(); 1498 assert(dst->is_CheckCastPP(), "sanity"); 1499 assert(dst->in(0)->in(0) == init, "dest pinned"); 1500 } 1501 // Do not let stores that initialize this object be reordered with 1502 // a subsequent store that would make this object accessible by 1503 // other threads. 1504 // Record what AllocateNode this StoreStore protects so that 1505 // escape analysis can go from the MemBarStoreStoreNode to the 1506 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1507 // based on the escape status of the AllocateNode. 1508 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1509 } 1510 if (compress) { 1511 set_result(_gvn.transform(count)); 1512 } 1513 clear_upper_avx(); 1514 1515 return true; 1516 } 1517 1518 #ifdef _LP64 1519 #define XTOP ,top() /*additional argument*/ 1520 #else //_LP64 1521 #define XTOP /*no additional argument*/ 1522 #endif //_LP64 1523 1524 //------------------------inline_string_toBytesU-------------------------- 1525 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1526 bool LibraryCallKit::inline_string_toBytesU() { 1527 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1528 return false; 1529 } 1530 // Get the arguments. 1531 Node* value = argument(0); 1532 Node* offset = argument(1); 1533 Node* length = argument(2); 1534 1535 Node* newcopy = nullptr; 1536 1537 // Set the original stack and the reexecute bit for the interpreter to reexecute 1538 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1539 { PreserveReexecuteState preexecs(this); 1540 jvms()->set_should_reexecute(true); 1541 1542 // Check if a null path was taken unconditionally. 1543 value = null_check(value); 1544 1545 RegionNode* bailout = new RegionNode(1); 1546 record_for_igvn(bailout); 1547 1548 // Range checks 1549 generate_negative_guard(offset, bailout); 1550 generate_negative_guard(length, bailout); 1551 generate_limit_guard(offset, length, load_array_length(value), bailout); 1552 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1553 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1554 1555 if (bailout->req() > 1) { 1556 PreserveJVMState pjvms(this); 1557 set_control(_gvn.transform(bailout)); 1558 uncommon_trap(Deoptimization::Reason_intrinsic, 1559 Deoptimization::Action_maybe_recompile); 1560 } 1561 if (stopped()) { 1562 return true; 1563 } 1564 1565 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1566 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1567 newcopy = new_array(klass_node, size, 0); // no arguments to push 1568 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1569 guarantee(alloc != nullptr, "created above"); 1570 1571 // Calculate starting addresses. 1572 Node* src_start = array_element_address(value, offset, T_CHAR); 1573 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1574 1575 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1576 const TypeInt* toffset = gvn().type(offset)->is_int(); 1577 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1578 1579 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1580 const char* copyfunc_name = "arraycopy"; 1581 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1582 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1583 OptoRuntime::fast_arraycopy_Type(), 1584 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1585 src_start, dst_start, ConvI2X(length) XTOP); 1586 // Do not let reads from the cloned object float above the arraycopy. 1587 if (alloc->maybe_set_complete(&_gvn)) { 1588 // "You break it, you buy it." 1589 InitializeNode* init = alloc->initialization(); 1590 assert(init->is_complete(), "we just did this"); 1591 init->set_complete_with_arraycopy(); 1592 assert(newcopy->is_CheckCastPP(), "sanity"); 1593 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1594 } 1595 // Do not let stores that initialize this object be reordered with 1596 // a subsequent store that would make this object accessible by 1597 // other threads. 1598 // Record what AllocateNode this StoreStore protects so that 1599 // escape analysis can go from the MemBarStoreStoreNode to the 1600 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1601 // based on the escape status of the AllocateNode. 1602 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1603 } // original reexecute is set back here 1604 1605 C->set_has_split_ifs(true); // Has chance for split-if optimization 1606 if (!stopped()) { 1607 set_result(newcopy); 1608 } 1609 clear_upper_avx(); 1610 1611 return true; 1612 } 1613 1614 //------------------------inline_string_getCharsU-------------------------- 1615 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1616 bool LibraryCallKit::inline_string_getCharsU() { 1617 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1618 return false; 1619 } 1620 1621 // Get the arguments. 1622 Node* src = argument(0); 1623 Node* src_begin = argument(1); 1624 Node* src_end = argument(2); // exclusive offset (i < src_end) 1625 Node* dst = argument(3); 1626 Node* dst_begin = argument(4); 1627 1628 // Check for allocation before we add nodes that would confuse 1629 // tightly_coupled_allocation() 1630 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1631 1632 // Check if a null path was taken unconditionally. 1633 src = null_check(src); 1634 dst = null_check(dst); 1635 if (stopped()) { 1636 return true; 1637 } 1638 1639 // Get length and convert char[] offset to byte[] offset 1640 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1641 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1642 1643 // Range checks 1644 generate_string_range_check(src, src_begin, length, true); 1645 generate_string_range_check(dst, dst_begin, length, false); 1646 if (stopped()) { 1647 return true; 1648 } 1649 1650 if (!stopped()) { 1651 // Calculate starting addresses. 1652 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1653 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1654 1655 // Check if array addresses are aligned to HeapWordSize 1656 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1657 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1658 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1659 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1660 1661 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1662 const char* copyfunc_name = "arraycopy"; 1663 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1664 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1665 OptoRuntime::fast_arraycopy_Type(), 1666 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1667 src_start, dst_start, ConvI2X(length) XTOP); 1668 // Do not let reads from the cloned object float above the arraycopy. 1669 if (alloc != nullptr) { 1670 if (alloc->maybe_set_complete(&_gvn)) { 1671 // "You break it, you buy it." 1672 InitializeNode* init = alloc->initialization(); 1673 assert(init->is_complete(), "we just did this"); 1674 init->set_complete_with_arraycopy(); 1675 assert(dst->is_CheckCastPP(), "sanity"); 1676 assert(dst->in(0)->in(0) == init, "dest pinned"); 1677 } 1678 // Do not let stores that initialize this object be reordered with 1679 // a subsequent store that would make this object accessible by 1680 // other threads. 1681 // Record what AllocateNode this StoreStore protects so that 1682 // escape analysis can go from the MemBarStoreStoreNode to the 1683 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1684 // based on the escape status of the AllocateNode. 1685 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1686 } else { 1687 insert_mem_bar(Op_MemBarCPUOrder); 1688 } 1689 } 1690 1691 C->set_has_split_ifs(true); // Has chance for split-if optimization 1692 return true; 1693 } 1694 1695 //----------------------inline_string_char_access---------------------------- 1696 // Store/Load char to/from byte[] array. 1697 // static void StringUTF16.putChar(byte[] val, int index, int c) 1698 // static char StringUTF16.getChar(byte[] val, int index) 1699 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1700 Node* value = argument(0); 1701 Node* index = argument(1); 1702 Node* ch = is_store ? argument(2) : nullptr; 1703 1704 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1705 // correctly requires matched array shapes. 1706 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1707 "sanity: byte[] and char[] bases agree"); 1708 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1709 "sanity: byte[] and char[] scales agree"); 1710 1711 // Bail when getChar over constants is requested: constant folding would 1712 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1713 // Java method would constant fold nicely instead. 1714 if (!is_store && value->is_Con() && index->is_Con()) { 1715 return false; 1716 } 1717 1718 // Save state and restore on bailout 1719 uint old_sp = sp(); 1720 SafePointNode* old_map = clone_map(); 1721 1722 value = must_be_not_null(value, true); 1723 1724 Node* adr = array_element_address(value, index, T_CHAR); 1725 if (adr->is_top()) { 1726 set_map(old_map); 1727 set_sp(old_sp); 1728 return false; 1729 } 1730 destruct_map_clone(old_map); 1731 if (is_store) { 1732 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1733 } else { 1734 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1735 set_result(ch); 1736 } 1737 return true; 1738 } 1739 1740 //--------------------------round_double_node-------------------------------- 1741 // Round a double node if necessary. 1742 Node* LibraryCallKit::round_double_node(Node* n) { 1743 if (Matcher::strict_fp_requires_explicit_rounding) { 1744 #ifdef IA32 1745 if (UseSSE < 2) { 1746 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1747 } 1748 #else 1749 Unimplemented(); 1750 #endif // IA32 1751 } 1752 return n; 1753 } 1754 1755 //------------------------------inline_math----------------------------------- 1756 // public static double Math.abs(double) 1757 // public static double Math.sqrt(double) 1758 // public static double Math.log(double) 1759 // public static double Math.log10(double) 1760 // public static double Math.round(double) 1761 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1762 Node* arg = round_double_node(argument(0)); 1763 Node* n = nullptr; 1764 switch (id) { 1765 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1766 case vmIntrinsics::_dsqrt: 1767 case vmIntrinsics::_dsqrt_strict: 1768 n = new SqrtDNode(C, control(), arg); break; 1769 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1770 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1771 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1772 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1773 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1774 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1775 default: fatal_unexpected_iid(id); break; 1776 } 1777 set_result(_gvn.transform(n)); 1778 return true; 1779 } 1780 1781 //------------------------------inline_math----------------------------------- 1782 // public static float Math.abs(float) 1783 // public static int Math.abs(int) 1784 // public static long Math.abs(long) 1785 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1786 Node* arg = argument(0); 1787 Node* n = nullptr; 1788 switch (id) { 1789 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1790 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1791 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1792 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1793 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1794 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1795 default: fatal_unexpected_iid(id); break; 1796 } 1797 set_result(_gvn.transform(n)); 1798 return true; 1799 } 1800 1801 //------------------------------runtime_math----------------------------- 1802 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1803 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1804 "must be (DD)D or (D)D type"); 1805 1806 // Inputs 1807 Node* a = round_double_node(argument(0)); 1808 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1809 1810 const TypePtr* no_memory_effects = nullptr; 1811 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1812 no_memory_effects, 1813 a, top(), b, b ? top() : nullptr); 1814 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1815 #ifdef ASSERT 1816 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1817 assert(value_top == top(), "second value must be top"); 1818 #endif 1819 1820 set_result(value); 1821 return true; 1822 } 1823 1824 //------------------------------inline_math_pow----------------------------- 1825 bool LibraryCallKit::inline_math_pow() { 1826 Node* exp = round_double_node(argument(2)); 1827 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1828 if (d != nullptr) { 1829 if (d->getd() == 2.0) { 1830 // Special case: pow(x, 2.0) => x * x 1831 Node* base = round_double_node(argument(0)); 1832 set_result(_gvn.transform(new MulDNode(base, base))); 1833 return true; 1834 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1835 // Special case: pow(x, 0.5) => sqrt(x) 1836 Node* base = round_double_node(argument(0)); 1837 Node* zero = _gvn.zerocon(T_DOUBLE); 1838 1839 RegionNode* region = new RegionNode(3); 1840 Node* phi = new PhiNode(region, Type::DOUBLE); 1841 1842 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1843 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1844 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1845 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1846 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1847 1848 Node* if_pow = generate_slow_guard(test, nullptr); 1849 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1850 phi->init_req(1, value_sqrt); 1851 region->init_req(1, control()); 1852 1853 if (if_pow != nullptr) { 1854 set_control(if_pow); 1855 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1856 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1857 const TypePtr* no_memory_effects = nullptr; 1858 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1859 no_memory_effects, base, top(), exp, top()); 1860 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1861 #ifdef ASSERT 1862 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1863 assert(value_top == top(), "second value must be top"); 1864 #endif 1865 phi->init_req(2, value_pow); 1866 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1867 } 1868 1869 C->set_has_split_ifs(true); // Has chance for split-if optimization 1870 set_control(_gvn.transform(region)); 1871 record_for_igvn(region); 1872 set_result(_gvn.transform(phi)); 1873 1874 return true; 1875 } 1876 } 1877 1878 return StubRoutines::dpow() != nullptr ? 1879 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1880 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1881 } 1882 1883 //------------------------------inline_math_native----------------------------- 1884 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1885 switch (id) { 1886 case vmIntrinsics::_dsin: 1887 return StubRoutines::dsin() != nullptr ? 1888 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1889 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1890 case vmIntrinsics::_dcos: 1891 return StubRoutines::dcos() != nullptr ? 1892 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1893 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1894 case vmIntrinsics::_dtan: 1895 return StubRoutines::dtan() != nullptr ? 1896 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1897 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1898 case vmIntrinsics::_dtanh: 1899 return StubRoutines::dtanh() != nullptr ? 1900 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1901 case vmIntrinsics::_dexp: 1902 return StubRoutines::dexp() != nullptr ? 1903 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1904 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1905 case vmIntrinsics::_dlog: 1906 return StubRoutines::dlog() != nullptr ? 1907 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1908 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1909 case vmIntrinsics::_dlog10: 1910 return StubRoutines::dlog10() != nullptr ? 1911 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1912 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1913 1914 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1915 case vmIntrinsics::_ceil: 1916 case vmIntrinsics::_floor: 1917 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1918 1919 case vmIntrinsics::_dsqrt: 1920 case vmIntrinsics::_dsqrt_strict: 1921 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1922 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1923 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1924 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1925 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1926 1927 case vmIntrinsics::_dpow: return inline_math_pow(); 1928 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1929 case vmIntrinsics::_fcopySign: return inline_math(id); 1930 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1931 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1932 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1933 1934 // These intrinsics are not yet correctly implemented 1935 case vmIntrinsics::_datan2: 1936 return false; 1937 1938 default: 1939 fatal_unexpected_iid(id); 1940 return false; 1941 } 1942 } 1943 1944 //----------------------------inline_notify-----------------------------------* 1945 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1946 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1947 address func; 1948 if (id == vmIntrinsics::_notify) { 1949 func = OptoRuntime::monitor_notify_Java(); 1950 } else { 1951 func = OptoRuntime::monitor_notifyAll_Java(); 1952 } 1953 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1954 make_slow_call_ex(call, env()->Throwable_klass(), false); 1955 return true; 1956 } 1957 1958 1959 //----------------------------inline_min_max----------------------------------- 1960 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1961 set_result(generate_min_max(id, argument(0), argument(1))); 1962 return true; 1963 } 1964 1965 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1966 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1967 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1968 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1969 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1970 1971 { 1972 PreserveJVMState pjvms(this); 1973 PreserveReexecuteState preexecs(this); 1974 jvms()->set_should_reexecute(true); 1975 1976 set_control(slow_path); 1977 set_i_o(i_o()); 1978 1979 uncommon_trap(Deoptimization::Reason_intrinsic, 1980 Deoptimization::Action_none); 1981 } 1982 1983 set_control(fast_path); 1984 set_result(math); 1985 } 1986 1987 template <typename OverflowOp> 1988 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1989 typedef typename OverflowOp::MathOp MathOp; 1990 1991 MathOp* mathOp = new MathOp(arg1, arg2); 1992 Node* operation = _gvn.transform( mathOp ); 1993 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1994 inline_math_mathExact(operation, ofcheck); 1995 return true; 1996 } 1997 1998 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1999 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2000 } 2001 2002 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2003 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2004 } 2005 2006 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2007 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2008 } 2009 2010 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2011 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2012 } 2013 2014 bool LibraryCallKit::inline_math_negateExactI() { 2015 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2016 } 2017 2018 bool LibraryCallKit::inline_math_negateExactL() { 2019 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2020 } 2021 2022 bool LibraryCallKit::inline_math_multiplyExactI() { 2023 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2024 } 2025 2026 bool LibraryCallKit::inline_math_multiplyExactL() { 2027 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2028 } 2029 2030 bool LibraryCallKit::inline_math_multiplyHigh() { 2031 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2032 return true; 2033 } 2034 2035 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2036 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2037 return true; 2038 } 2039 2040 Node* 2041 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 2042 Node* result_val = nullptr; 2043 switch (id) { 2044 case vmIntrinsics::_min: 2045 case vmIntrinsics::_min_strict: 2046 result_val = _gvn.transform(new MinINode(x0, y0)); 2047 break; 2048 case vmIntrinsics::_max: 2049 case vmIntrinsics::_max_strict: 2050 result_val = _gvn.transform(new MaxINode(x0, y0)); 2051 break; 2052 default: 2053 fatal_unexpected_iid(id); 2054 break; 2055 } 2056 return result_val; 2057 } 2058 2059 inline int 2060 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2061 const TypePtr* base_type = TypePtr::NULL_PTR; 2062 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2063 if (base_type == nullptr) { 2064 // Unknown type. 2065 return Type::AnyPtr; 2066 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2067 // Since this is a null+long form, we have to switch to a rawptr. 2068 base = _gvn.transform(new CastX2PNode(offset)); 2069 offset = MakeConX(0); 2070 return Type::RawPtr; 2071 } else if (base_type->base() == Type::RawPtr) { 2072 return Type::RawPtr; 2073 } else if (base_type->isa_oopptr()) { 2074 // Base is never null => always a heap address. 2075 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2076 return Type::OopPtr; 2077 } 2078 // Offset is small => always a heap address. 2079 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2080 if (offset_type != nullptr && 2081 base_type->offset() == 0 && // (should always be?) 2082 offset_type->_lo >= 0 && 2083 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2084 return Type::OopPtr; 2085 } else if (type == T_OBJECT) { 2086 // off heap access to an oop doesn't make any sense. Has to be on 2087 // heap. 2088 return Type::OopPtr; 2089 } 2090 // Otherwise, it might either be oop+off or null+addr. 2091 return Type::AnyPtr; 2092 } else { 2093 // No information: 2094 return Type::AnyPtr; 2095 } 2096 } 2097 2098 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2099 Node* uncasted_base = base; 2100 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2101 if (kind == Type::RawPtr) { 2102 return basic_plus_adr(top(), uncasted_base, offset); 2103 } else if (kind == Type::AnyPtr) { 2104 assert(base == uncasted_base, "unexpected base change"); 2105 if (can_cast) { 2106 if (!_gvn.type(base)->speculative_maybe_null() && 2107 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2108 // According to profiling, this access is always on 2109 // heap. Casting the base to not null and thus avoiding membars 2110 // around the access should allow better optimizations 2111 Node* null_ctl = top(); 2112 base = null_check_oop(base, &null_ctl, true, true, true); 2113 assert(null_ctl->is_top(), "no null control here"); 2114 return basic_plus_adr(base, offset); 2115 } else if (_gvn.type(base)->speculative_always_null() && 2116 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2117 // According to profiling, this access is always off 2118 // heap. 2119 base = null_assert(base); 2120 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2121 offset = MakeConX(0); 2122 return basic_plus_adr(top(), raw_base, offset); 2123 } 2124 } 2125 // We don't know if it's an on heap or off heap access. Fall back 2126 // to raw memory access. 2127 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2128 return basic_plus_adr(top(), raw, offset); 2129 } else { 2130 assert(base == uncasted_base, "unexpected base change"); 2131 // We know it's an on heap access so base can't be null 2132 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2133 base = must_be_not_null(base, true); 2134 } 2135 return basic_plus_adr(base, offset); 2136 } 2137 } 2138 2139 //--------------------------inline_number_methods----------------------------- 2140 // inline int Integer.numberOfLeadingZeros(int) 2141 // inline int Long.numberOfLeadingZeros(long) 2142 // 2143 // inline int Integer.numberOfTrailingZeros(int) 2144 // inline int Long.numberOfTrailingZeros(long) 2145 // 2146 // inline int Integer.bitCount(int) 2147 // inline int Long.bitCount(long) 2148 // 2149 // inline char Character.reverseBytes(char) 2150 // inline short Short.reverseBytes(short) 2151 // inline int Integer.reverseBytes(int) 2152 // inline long Long.reverseBytes(long) 2153 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2154 Node* arg = argument(0); 2155 Node* n = nullptr; 2156 switch (id) { 2157 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2158 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2159 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2160 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2161 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2162 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2163 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(nullptr, arg); break; 2164 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( nullptr, arg); break; 2165 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( nullptr, arg); break; 2166 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( nullptr, arg); break; 2167 case vmIntrinsics::_reverse_i: n = new ReverseINode(nullptr, arg); break; 2168 case vmIntrinsics::_reverse_l: n = new ReverseLNode(nullptr, arg); break; 2169 default: fatal_unexpected_iid(id); break; 2170 } 2171 set_result(_gvn.transform(n)); 2172 return true; 2173 } 2174 2175 //--------------------------inline_bitshuffle_methods----------------------------- 2176 // inline int Integer.compress(int, int) 2177 // inline int Integer.expand(int, int) 2178 // inline long Long.compress(long, long) 2179 // inline long Long.expand(long, long) 2180 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2181 Node* n = nullptr; 2182 switch (id) { 2183 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2184 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2185 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2186 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2187 default: fatal_unexpected_iid(id); break; 2188 } 2189 set_result(_gvn.transform(n)); 2190 return true; 2191 } 2192 2193 //--------------------------inline_number_methods----------------------------- 2194 // inline int Integer.compareUnsigned(int, int) 2195 // inline int Long.compareUnsigned(long, long) 2196 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2197 Node* arg1 = argument(0); 2198 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2199 Node* n = nullptr; 2200 switch (id) { 2201 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2202 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2203 default: fatal_unexpected_iid(id); break; 2204 } 2205 set_result(_gvn.transform(n)); 2206 return true; 2207 } 2208 2209 //--------------------------inline_unsigned_divmod_methods----------------------------- 2210 // inline int Integer.divideUnsigned(int, int) 2211 // inline int Integer.remainderUnsigned(int, int) 2212 // inline long Long.divideUnsigned(long, long) 2213 // inline long Long.remainderUnsigned(long, long) 2214 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2215 Node* n = nullptr; 2216 switch (id) { 2217 case vmIntrinsics::_divideUnsigned_i: { 2218 zero_check_int(argument(1)); 2219 // Compile-time detect of null-exception 2220 if (stopped()) { 2221 return true; // keep the graph constructed so far 2222 } 2223 n = new UDivINode(control(), argument(0), argument(1)); 2224 break; 2225 } 2226 case vmIntrinsics::_divideUnsigned_l: { 2227 zero_check_long(argument(2)); 2228 // Compile-time detect of null-exception 2229 if (stopped()) { 2230 return true; // keep the graph constructed so far 2231 } 2232 n = new UDivLNode(control(), argument(0), argument(2)); 2233 break; 2234 } 2235 case vmIntrinsics::_remainderUnsigned_i: { 2236 zero_check_int(argument(1)); 2237 // Compile-time detect of null-exception 2238 if (stopped()) { 2239 return true; // keep the graph constructed so far 2240 } 2241 n = new UModINode(control(), argument(0), argument(1)); 2242 break; 2243 } 2244 case vmIntrinsics::_remainderUnsigned_l: { 2245 zero_check_long(argument(2)); 2246 // Compile-time detect of null-exception 2247 if (stopped()) { 2248 return true; // keep the graph constructed so far 2249 } 2250 n = new UModLNode(control(), argument(0), argument(2)); 2251 break; 2252 } 2253 default: fatal_unexpected_iid(id); break; 2254 } 2255 set_result(_gvn.transform(n)); 2256 return true; 2257 } 2258 2259 //----------------------------inline_unsafe_access---------------------------- 2260 2261 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2262 // Attempt to infer a sharper value type from the offset and base type. 2263 ciKlass* sharpened_klass = nullptr; 2264 bool null_free = false; 2265 2266 // See if it is an instance field, with an object type. 2267 if (alias_type->field() != nullptr) { 2268 if (alias_type->field()->type()->is_klass()) { 2269 sharpened_klass = alias_type->field()->type()->as_klass(); 2270 null_free = alias_type->field()->is_null_free(); 2271 } 2272 } 2273 2274 const TypeOopPtr* result = nullptr; 2275 // See if it is a narrow oop array. 2276 if (adr_type->isa_aryptr()) { 2277 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2278 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2279 null_free = adr_type->is_aryptr()->is_null_free(); 2280 if (elem_type != nullptr && elem_type->is_loaded()) { 2281 // Sharpen the value type. 2282 result = elem_type; 2283 } 2284 } 2285 } 2286 2287 // The sharpened class might be unloaded if there is no class loader 2288 // contraint in place. 2289 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2290 // Sharpen the value type. 2291 result = TypeOopPtr::make_from_klass(sharpened_klass); 2292 if (null_free) { 2293 result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 2294 } 2295 } 2296 if (result != nullptr) { 2297 #ifndef PRODUCT 2298 if (C->print_intrinsics() || C->print_inlining()) { 2299 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2300 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2301 } 2302 #endif 2303 } 2304 return result; 2305 } 2306 2307 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2308 switch (kind) { 2309 case Relaxed: 2310 return MO_UNORDERED; 2311 case Opaque: 2312 return MO_RELAXED; 2313 case Acquire: 2314 return MO_ACQUIRE; 2315 case Release: 2316 return MO_RELEASE; 2317 case Volatile: 2318 return MO_SEQ_CST; 2319 default: 2320 ShouldNotReachHere(); 2321 return 0; 2322 } 2323 } 2324 2325 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) { 2326 if (callee()->is_static()) return false; // caller must have the capability! 2327 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2328 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2329 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2330 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2331 2332 if (is_reference_type(type)) { 2333 decorators |= ON_UNKNOWN_OOP_REF; 2334 } 2335 2336 if (unaligned) { 2337 decorators |= C2_UNALIGNED; 2338 } 2339 2340 #ifndef PRODUCT 2341 { 2342 ResourceMark rm; 2343 // Check the signatures. 2344 ciSignature* sig = callee()->signature(); 2345 #ifdef ASSERT 2346 if (!is_store) { 2347 // Object getReference(Object base, int/long offset), etc. 2348 BasicType rtype = sig->return_type()->basic_type(); 2349 assert(rtype == type, "getter must return the expected value"); 2350 assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments"); 2351 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2352 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2353 } else { 2354 // void putReference(Object base, int/long offset, Object x), etc. 2355 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2356 assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments"); 2357 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2358 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2359 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2360 assert(vtype == type, "putter must accept the expected value"); 2361 } 2362 #endif // ASSERT 2363 } 2364 #endif //PRODUCT 2365 2366 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2367 2368 Node* receiver = argument(0); // type: oop 2369 2370 // Build address expression. 2371 Node* heap_base_oop = top(); 2372 2373 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2374 Node* base = argument(1); // type: oop 2375 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2376 Node* offset = argument(2); // type: long 2377 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2378 // to be plain byte offsets, which are also the same as those accepted 2379 // by oopDesc::field_addr. 2380 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2381 "fieldOffset must be byte-scaled"); 2382 2383 ciInlineKlass* inline_klass = nullptr; 2384 if (is_flat) { 2385 const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr(); 2386 if (cls == nullptr || cls->const_oop() == nullptr) { 2387 return false; 2388 } 2389 ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type(); 2390 if (!mirror_type->is_inlinetype()) { 2391 return false; 2392 } 2393 inline_klass = mirror_type->as_inline_klass(); 2394 } 2395 2396 if (base->is_InlineType()) { 2397 InlineTypeNode* vt = base->as_InlineType(); 2398 if (is_store) { 2399 if (!vt->is_allocated(&_gvn)) { 2400 return false; 2401 } 2402 base = vt->get_oop(); 2403 } else { 2404 if (offset->is_Con()) { 2405 long off = find_long_con(offset, 0); 2406 ciInlineKlass* vk = vt->type()->inline_klass(); 2407 if ((long)(int)off != off || !vk->contains_field_offset(off)) { 2408 return false; 2409 } 2410 2411 ciField* field = vk->get_non_flat_field_by_offset(off); 2412 if (field != nullptr) { 2413 BasicType bt = type2field[field->type()->basic_type()]; 2414 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2415 bt = T_OBJECT; 2416 } 2417 if (bt == type && (!field->is_flat() || field->type() == inline_klass)) { 2418 Node* value = vt->field_value_by_offset(off, false); 2419 if (value->is_InlineType()) { 2420 value = value->as_InlineType()->adjust_scalarization_depth(this); 2421 } 2422 set_result(value); 2423 return true; 2424 } 2425 } 2426 } 2427 { 2428 // Re-execute the unsafe access if allocation triggers deoptimization. 2429 PreserveReexecuteState preexecs(this); 2430 jvms()->set_should_reexecute(true); 2431 vt = vt->buffer(this); 2432 } 2433 base = vt->get_oop(); 2434 } 2435 } 2436 2437 // 32-bit machines ignore the high half! 2438 offset = ConvL2X(offset); 2439 2440 // Save state and restore on bailout 2441 uint old_sp = sp(); 2442 SafePointNode* old_map = clone_map(); 2443 2444 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2445 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2446 2447 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2448 if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) { 2449 decorators |= IN_NATIVE; // off-heap primitive access 2450 } else { 2451 set_map(old_map); 2452 set_sp(old_sp); 2453 return false; // off-heap oop accesses are not supported 2454 } 2455 } else { 2456 heap_base_oop = base; // on-heap or mixed access 2457 } 2458 2459 // Can base be null? Otherwise, always on-heap access. 2460 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2461 2462 if (!can_access_non_heap) { 2463 decorators |= IN_HEAP; 2464 } 2465 2466 Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr; 2467 2468 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2469 if (adr_type == TypePtr::NULL_PTR) { 2470 set_map(old_map); 2471 set_sp(old_sp); 2472 return false; // off-heap access with zero address 2473 } 2474 2475 // Try to categorize the address. 2476 Compile::AliasType* alias_type = C->alias_type(adr_type); 2477 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2478 2479 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2480 alias_type->adr_type() == TypeAryPtr::RANGE) { 2481 set_map(old_map); 2482 set_sp(old_sp); 2483 return false; // not supported 2484 } 2485 2486 bool mismatched = false; 2487 BasicType bt = T_ILLEGAL; 2488 ciField* field = nullptr; 2489 if (adr_type->isa_instptr()) { 2490 const TypeInstPtr* instptr = adr_type->is_instptr(); 2491 ciInstanceKlass* k = instptr->instance_klass(); 2492 int off = instptr->offset(); 2493 if (instptr->const_oop() != nullptr && 2494 k == ciEnv::current()->Class_klass() && 2495 instptr->offset() >= (k->size_helper() * wordSize)) { 2496 k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 2497 field = k->get_field_by_offset(off, true); 2498 } else { 2499 field = k->get_non_flat_field_by_offset(off); 2500 } 2501 if (field != nullptr) { 2502 bt = type2field[field->type()->basic_type()]; 2503 } 2504 assert(bt == alias_type->basic_type() || is_flat, "should match"); 2505 } else { 2506 bt = alias_type->basic_type(); 2507 } 2508 2509 if (bt != T_ILLEGAL) { 2510 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2511 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2512 // Alias type doesn't differentiate between byte[] and boolean[]). 2513 // Use address type to get the element type. 2514 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2515 } 2516 if (is_reference_type(bt, true)) { 2517 // accessing an array field with getReference is not a mismatch 2518 bt = T_OBJECT; 2519 } 2520 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2521 // Don't intrinsify mismatched object accesses 2522 set_map(old_map); 2523 set_sp(old_sp); 2524 return false; 2525 } 2526 mismatched = (bt != type); 2527 } else if (alias_type->adr_type()->isa_oopptr()) { 2528 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2529 } 2530 2531 if (is_flat) { 2532 if (adr_type->isa_instptr()) { 2533 if (field == nullptr || field->type() != inline_klass) { 2534 mismatched = true; 2535 } 2536 } else if (adr_type->isa_aryptr()) { 2537 const Type* elem = adr_type->is_aryptr()->elem(); 2538 if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) { 2539 mismatched = true; 2540 } 2541 } else { 2542 mismatched = true; 2543 } 2544 if (is_store) { 2545 const Type* val_t = _gvn.type(val); 2546 if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) { 2547 set_map(old_map); 2548 set_sp(old_sp); 2549 return false; 2550 } 2551 } 2552 } 2553 2554 destruct_map_clone(old_map); 2555 assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2556 2557 if (mismatched) { 2558 decorators |= C2_MISMATCHED; 2559 } 2560 2561 // First guess at the value type. 2562 const Type *value_type = Type::get_const_basic_type(type); 2563 2564 // Figure out the memory ordering. 2565 decorators |= mo_decorator_for_access_kind(kind); 2566 2567 if (!is_store) { 2568 if (type == T_OBJECT && !is_flat) { 2569 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2570 if (tjp != nullptr) { 2571 value_type = tjp; 2572 } 2573 } 2574 } 2575 2576 receiver = null_check(receiver); 2577 if (stopped()) { 2578 return true; 2579 } 2580 // Heap pointers get a null-check from the interpreter, 2581 // as a courtesy. However, this is not guaranteed by Unsafe, 2582 // and it is not possible to fully distinguish unintended nulls 2583 // from intended ones in this API. 2584 2585 if (!is_store) { 2586 Node* p = nullptr; 2587 // Try to constant fold a load from a constant field 2588 2589 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) { 2590 // final or stable field 2591 p = make_constant_from_field(field, heap_base_oop); 2592 } 2593 2594 if (p == nullptr) { // Could not constant fold the load 2595 if (is_flat) { 2596 if (adr_type->isa_instptr() && !mismatched) { 2597 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2598 int offset = adr_type->is_instptr()->offset(); 2599 p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, holder, offset, decorators); 2600 } else { 2601 p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, 0, decorators); 2602 } 2603 } else { 2604 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2605 const TypeOopPtr* ptr = value_type->make_oopptr(); 2606 if (ptr != nullptr && ptr->is_inlinetypeptr()) { 2607 // Load a non-flattened inline type from memory 2608 p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass(), !ptr->maybe_null()); 2609 } 2610 } 2611 // Normalize the value returned by getBoolean in the following cases 2612 if (type == T_BOOLEAN && 2613 (mismatched || 2614 heap_base_oop == top() || // - heap_base_oop is null or 2615 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2616 // and the unsafe access is made to large offset 2617 // (i.e., larger than the maximum offset necessary for any 2618 // field access) 2619 ) { 2620 IdealKit ideal = IdealKit(this); 2621 #define __ ideal. 2622 IdealVariable normalized_result(ideal); 2623 __ declarations_done(); 2624 __ set(normalized_result, p); 2625 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2626 __ set(normalized_result, ideal.ConI(1)); 2627 ideal.end_if(); 2628 final_sync(ideal); 2629 p = __ value(normalized_result); 2630 #undef __ 2631 } 2632 } 2633 if (type == T_ADDRESS) { 2634 p = gvn().transform(new CastP2XNode(nullptr, p)); 2635 p = ConvX2UL(p); 2636 } 2637 // The load node has the control of the preceding MemBarCPUOrder. All 2638 // following nodes will have the control of the MemBarCPUOrder inserted at 2639 // the end of this method. So, pushing the load onto the stack at a later 2640 // point is fine. 2641 set_result(p); 2642 } else { 2643 if (bt == T_ADDRESS) { 2644 // Repackage the long as a pointer. 2645 val = ConvL2X(val); 2646 val = gvn().transform(new CastX2PNode(val)); 2647 } 2648 if (is_flat) { 2649 if (adr_type->isa_instptr() && !mismatched) { 2650 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2651 int offset = adr_type->is_instptr()->offset(); 2652 val->as_InlineType()->store_flat(this, base, base, holder, offset, decorators); 2653 } else { 2654 val->as_InlineType()->store_flat(this, base, adr, nullptr, 0, decorators); 2655 } 2656 } else { 2657 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2658 } 2659 } 2660 2661 if (argument(1)->is_InlineType() && is_store) { 2662 InlineTypeNode* value = InlineTypeNode::make_from_oop(this, base, _gvn.type(argument(1))->inline_klass()); 2663 value = value->make_larval(this, false); 2664 replace_in_map(argument(1), value); 2665 } 2666 2667 return true; 2668 } 2669 2670 bool LibraryCallKit::inline_unsafe_make_private_buffer() { 2671 Node* receiver = argument(0); 2672 Node* value = argument(1); 2673 if (!value->is_InlineType()) { 2674 return false; 2675 } 2676 2677 receiver = null_check(receiver); 2678 if (stopped()) { 2679 return true; 2680 } 2681 2682 set_result(value->as_InlineType()->make_larval(this, true)); 2683 return true; 2684 } 2685 2686 bool LibraryCallKit::inline_unsafe_finish_private_buffer() { 2687 Node* receiver = argument(0); 2688 Node* buffer = argument(1); 2689 if (!buffer->is_InlineType()) { 2690 return false; 2691 } 2692 InlineTypeNode* vt = buffer->as_InlineType(); 2693 if (!vt->is_allocated(&_gvn)) { 2694 return false; 2695 } 2696 // TODO 8239003 Why is this needed? 2697 if (AllocateNode::Ideal_allocation(vt->get_oop()) == nullptr) { 2698 return false; 2699 } 2700 2701 receiver = null_check(receiver); 2702 if (stopped()) { 2703 return true; 2704 } 2705 2706 set_result(vt->finish_larval(this)); 2707 return true; 2708 } 2709 2710 //----------------------------inline_unsafe_load_store---------------------------- 2711 // This method serves a couple of different customers (depending on LoadStoreKind): 2712 // 2713 // LS_cmp_swap: 2714 // 2715 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2716 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2717 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2718 // 2719 // LS_cmp_swap_weak: 2720 // 2721 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2722 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2723 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2724 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2725 // 2726 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2727 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2728 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2729 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2730 // 2731 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2732 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2733 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2734 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2735 // 2736 // LS_cmp_exchange: 2737 // 2738 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2739 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2740 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2741 // 2742 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2743 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2744 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2745 // 2746 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2747 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2748 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2749 // 2750 // LS_get_add: 2751 // 2752 // int getAndAddInt( Object o, long offset, int delta) 2753 // long getAndAddLong(Object o, long offset, long delta) 2754 // 2755 // LS_get_set: 2756 // 2757 // int getAndSet(Object o, long offset, int newValue) 2758 // long getAndSet(Object o, long offset, long newValue) 2759 // Object getAndSet(Object o, long offset, Object newValue) 2760 // 2761 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2762 // This basic scheme here is the same as inline_unsafe_access, but 2763 // differs in enough details that combining them would make the code 2764 // overly confusing. (This is a true fact! I originally combined 2765 // them, but even I was confused by it!) As much code/comments as 2766 // possible are retained from inline_unsafe_access though to make 2767 // the correspondences clearer. - dl 2768 2769 if (callee()->is_static()) return false; // caller must have the capability! 2770 2771 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2772 decorators |= mo_decorator_for_access_kind(access_kind); 2773 2774 #ifndef PRODUCT 2775 BasicType rtype; 2776 { 2777 ResourceMark rm; 2778 // Check the signatures. 2779 ciSignature* sig = callee()->signature(); 2780 rtype = sig->return_type()->basic_type(); 2781 switch(kind) { 2782 case LS_get_add: 2783 case LS_get_set: { 2784 // Check the signatures. 2785 #ifdef ASSERT 2786 assert(rtype == type, "get and set must return the expected type"); 2787 assert(sig->count() == 3, "get and set has 3 arguments"); 2788 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2789 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2790 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2791 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2792 #endif // ASSERT 2793 break; 2794 } 2795 case LS_cmp_swap: 2796 case LS_cmp_swap_weak: { 2797 // Check the signatures. 2798 #ifdef ASSERT 2799 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2800 assert(sig->count() == 4, "CAS has 4 arguments"); 2801 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2802 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2803 #endif // ASSERT 2804 break; 2805 } 2806 case LS_cmp_exchange: { 2807 // Check the signatures. 2808 #ifdef ASSERT 2809 assert(rtype == type, "CAS must return the expected type"); 2810 assert(sig->count() == 4, "CAS has 4 arguments"); 2811 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2812 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2813 #endif // ASSERT 2814 break; 2815 } 2816 default: 2817 ShouldNotReachHere(); 2818 } 2819 } 2820 #endif //PRODUCT 2821 2822 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2823 2824 // Get arguments: 2825 Node* receiver = nullptr; 2826 Node* base = nullptr; 2827 Node* offset = nullptr; 2828 Node* oldval = nullptr; 2829 Node* newval = nullptr; 2830 switch(kind) { 2831 case LS_cmp_swap: 2832 case LS_cmp_swap_weak: 2833 case LS_cmp_exchange: { 2834 const bool two_slot_type = type2size[type] == 2; 2835 receiver = argument(0); // type: oop 2836 base = argument(1); // type: oop 2837 offset = argument(2); // type: long 2838 oldval = argument(4); // type: oop, int, or long 2839 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2840 break; 2841 } 2842 case LS_get_add: 2843 case LS_get_set: { 2844 receiver = argument(0); // type: oop 2845 base = argument(1); // type: oop 2846 offset = argument(2); // type: long 2847 oldval = nullptr; 2848 newval = argument(4); // type: oop, int, or long 2849 break; 2850 } 2851 default: 2852 ShouldNotReachHere(); 2853 } 2854 2855 // Build field offset expression. 2856 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2857 // to be plain byte offsets, which are also the same as those accepted 2858 // by oopDesc::field_addr. 2859 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2860 // 32-bit machines ignore the high half of long offsets 2861 offset = ConvL2X(offset); 2862 // Save state and restore on bailout 2863 uint old_sp = sp(); 2864 SafePointNode* old_map = clone_map(); 2865 Node* adr = make_unsafe_address(base, offset,type, false); 2866 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2867 2868 Compile::AliasType* alias_type = C->alias_type(adr_type); 2869 BasicType bt = alias_type->basic_type(); 2870 if (bt != T_ILLEGAL && 2871 (is_reference_type(bt) != (type == T_OBJECT))) { 2872 // Don't intrinsify mismatched object accesses. 2873 set_map(old_map); 2874 set_sp(old_sp); 2875 return false; 2876 } 2877 2878 destruct_map_clone(old_map); 2879 2880 // For CAS, unlike inline_unsafe_access, there seems no point in 2881 // trying to refine types. Just use the coarse types here. 2882 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2883 const Type *value_type = Type::get_const_basic_type(type); 2884 2885 switch (kind) { 2886 case LS_get_set: 2887 case LS_cmp_exchange: { 2888 if (type == T_OBJECT) { 2889 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2890 if (tjp != nullptr) { 2891 value_type = tjp; 2892 } 2893 } 2894 break; 2895 } 2896 case LS_cmp_swap: 2897 case LS_cmp_swap_weak: 2898 case LS_get_add: 2899 break; 2900 default: 2901 ShouldNotReachHere(); 2902 } 2903 2904 // Null check receiver. 2905 receiver = null_check(receiver); 2906 if (stopped()) { 2907 return true; 2908 } 2909 2910 int alias_idx = C->get_alias_index(adr_type); 2911 2912 if (is_reference_type(type)) { 2913 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2914 2915 if (oldval != nullptr && oldval->is_InlineType()) { 2916 // Re-execute the unsafe access if allocation triggers deoptimization. 2917 PreserveReexecuteState preexecs(this); 2918 jvms()->set_should_reexecute(true); 2919 oldval = oldval->as_InlineType()->buffer(this)->get_oop(); 2920 } 2921 if (newval != nullptr && newval->is_InlineType()) { 2922 // Re-execute the unsafe access if allocation triggers deoptimization. 2923 PreserveReexecuteState preexecs(this); 2924 jvms()->set_should_reexecute(true); 2925 newval = newval->as_InlineType()->buffer(this)->get_oop(); 2926 } 2927 2928 // Transformation of a value which could be null pointer (CastPP #null) 2929 // could be delayed during Parse (for example, in adjust_map_after_if()). 2930 // Execute transformation here to avoid barrier generation in such case. 2931 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2932 newval = _gvn.makecon(TypePtr::NULL_PTR); 2933 2934 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2935 // Refine the value to a null constant, when it is known to be null 2936 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2937 } 2938 } 2939 2940 Node* result = nullptr; 2941 switch (kind) { 2942 case LS_cmp_exchange: { 2943 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2944 oldval, newval, value_type, type, decorators); 2945 break; 2946 } 2947 case LS_cmp_swap_weak: 2948 decorators |= C2_WEAK_CMPXCHG; 2949 case LS_cmp_swap: { 2950 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2951 oldval, newval, value_type, type, decorators); 2952 break; 2953 } 2954 case LS_get_set: { 2955 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2956 newval, value_type, type, decorators); 2957 break; 2958 } 2959 case LS_get_add: { 2960 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2961 newval, value_type, type, decorators); 2962 break; 2963 } 2964 default: 2965 ShouldNotReachHere(); 2966 } 2967 2968 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2969 set_result(result); 2970 return true; 2971 } 2972 2973 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2974 // Regardless of form, don't allow previous ld/st to move down, 2975 // then issue acquire, release, or volatile mem_bar. 2976 insert_mem_bar(Op_MemBarCPUOrder); 2977 switch(id) { 2978 case vmIntrinsics::_loadFence: 2979 insert_mem_bar(Op_LoadFence); 2980 return true; 2981 case vmIntrinsics::_storeFence: 2982 insert_mem_bar(Op_StoreFence); 2983 return true; 2984 case vmIntrinsics::_storeStoreFence: 2985 insert_mem_bar(Op_StoreStoreFence); 2986 return true; 2987 case vmIntrinsics::_fullFence: 2988 insert_mem_bar(Op_MemBarVolatile); 2989 return true; 2990 default: 2991 fatal_unexpected_iid(id); 2992 return false; 2993 } 2994 } 2995 2996 bool LibraryCallKit::inline_onspinwait() { 2997 insert_mem_bar(Op_OnSpinWait); 2998 return true; 2999 } 3000 3001 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 3002 if (!kls->is_Con()) { 3003 return true; 3004 } 3005 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 3006 if (klsptr == nullptr) { 3007 return true; 3008 } 3009 ciInstanceKlass* ik = klsptr->instance_klass(); 3010 // don't need a guard for a klass that is already initialized 3011 return !ik->is_initialized(); 3012 } 3013 3014 //----------------------------inline_unsafe_writeback0------------------------- 3015 // public native void Unsafe.writeback0(long address) 3016 bool LibraryCallKit::inline_unsafe_writeback0() { 3017 if (!Matcher::has_match_rule(Op_CacheWB)) { 3018 return false; 3019 } 3020 #ifndef PRODUCT 3021 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 3022 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 3023 ciSignature* sig = callee()->signature(); 3024 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 3025 #endif 3026 null_check_receiver(); // null-check, then ignore 3027 Node *addr = argument(1); 3028 addr = new CastX2PNode(addr); 3029 addr = _gvn.transform(addr); 3030 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 3031 flush = _gvn.transform(flush); 3032 set_memory(flush, TypeRawPtr::BOTTOM); 3033 return true; 3034 } 3035 3036 //----------------------------inline_unsafe_writeback0------------------------- 3037 // public native void Unsafe.writeback0(long address) 3038 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 3039 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 3040 return false; 3041 } 3042 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 3043 return false; 3044 } 3045 #ifndef PRODUCT 3046 assert(Matcher::has_match_rule(Op_CacheWB), 3047 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 3048 : "found match rule for CacheWBPostSync but not CacheWB")); 3049 3050 #endif 3051 null_check_receiver(); // null-check, then ignore 3052 Node *sync; 3053 if (is_pre) { 3054 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3055 } else { 3056 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3057 } 3058 sync = _gvn.transform(sync); 3059 set_memory(sync, TypeRawPtr::BOTTOM); 3060 return true; 3061 } 3062 3063 //----------------------------inline_unsafe_allocate--------------------------- 3064 // public native Object Unsafe.allocateInstance(Class<?> cls); 3065 bool LibraryCallKit::inline_unsafe_allocate() { 3066 3067 #if INCLUDE_JVMTI 3068 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3069 return false; 3070 } 3071 #endif //INCLUDE_JVMTI 3072 3073 if (callee()->is_static()) return false; // caller must have the capability! 3074 3075 null_check_receiver(); // null-check, then ignore 3076 Node* cls = null_check(argument(1)); 3077 if (stopped()) return true; 3078 3079 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 3080 kls = null_check(kls); 3081 if (stopped()) return true; // argument was like int.class 3082 3083 #if INCLUDE_JVMTI 3084 // Don't try to access new allocated obj in the intrinsic. 3085 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 3086 // Deoptimize and allocate in interpreter instead. 3087 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 3088 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 3089 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 3090 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3091 { 3092 BuildCutout unless(this, tst, PROB_MAX); 3093 uncommon_trap(Deoptimization::Reason_intrinsic, 3094 Deoptimization::Action_make_not_entrant); 3095 } 3096 if (stopped()) { 3097 return true; 3098 } 3099 #endif //INCLUDE_JVMTI 3100 3101 Node* test = nullptr; 3102 if (LibraryCallKit::klass_needs_init_guard(kls)) { 3103 // Note: The argument might still be an illegal value like 3104 // Serializable.class or Object[].class. The runtime will handle it. 3105 // But we must make an explicit check for initialization. 3106 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 3107 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 3108 // can generate code to load it as unsigned byte. 3109 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 3110 Node* bits = intcon(InstanceKlass::fully_initialized); 3111 test = _gvn.transform(new SubINode(inst, bits)); 3112 // The 'test' is non-zero if we need to take a slow path. 3113 } 3114 Node* obj = nullptr; 3115 const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr(); 3116 if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) { 3117 obj = InlineTypeNode::make_default(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this); 3118 } else { 3119 obj = new_instance(kls, test); 3120 } 3121 set_result(obj); 3122 return true; 3123 } 3124 3125 //------------------------inline_native_time_funcs-------------- 3126 // inline code for System.currentTimeMillis() and System.nanoTime() 3127 // these have the same type and signature 3128 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 3129 const TypeFunc* tf = OptoRuntime::void_long_Type(); 3130 const TypePtr* no_memory_effects = nullptr; 3131 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 3132 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 3133 #ifdef ASSERT 3134 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 3135 assert(value_top == top(), "second value must be top"); 3136 #endif 3137 set_result(value); 3138 return true; 3139 } 3140 3141 3142 #if INCLUDE_JVMTI 3143 3144 // When notifications are disabled then just update the VTMS transition bit and return. 3145 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3146 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3147 if (!DoJVMTIVirtualThreadTransitions) { 3148 return true; 3149 } 3150 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3151 IdealKit ideal(this); 3152 3153 Node* ONE = ideal.ConI(1); 3154 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3155 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3156 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3157 3158 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3159 sync_kit(ideal); 3160 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3161 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3162 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3163 ideal.sync_kit(this); 3164 } ideal.else_(); { 3165 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3166 Node* thread = ideal.thread(); 3167 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3168 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3169 3170 sync_kit(ideal); 3171 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3172 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3173 3174 ideal.sync_kit(this); 3175 } ideal.end_if(); 3176 final_sync(ideal); 3177 3178 return true; 3179 } 3180 3181 // Always update the temporary VTMS transition bit. 3182 bool LibraryCallKit::inline_native_notify_jvmti_hide() { 3183 if (!DoJVMTIVirtualThreadTransitions) { 3184 return true; 3185 } 3186 IdealKit ideal(this); 3187 3188 { 3189 // unconditionally update the temporary VTMS transition bit in current JavaThread 3190 Node* thread = ideal.thread(); 3191 Node* hide = _gvn.transform(argument(0)); // hide argument for temporary VTMS transition notification 3192 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset())); 3193 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3194 3195 sync_kit(ideal); 3196 access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3197 ideal.sync_kit(this); 3198 } 3199 final_sync(ideal); 3200 3201 return true; 3202 } 3203 3204 // Always update the is_disable_suspend bit. 3205 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3206 if (!DoJVMTIVirtualThreadTransitions) { 3207 return true; 3208 } 3209 IdealKit ideal(this); 3210 3211 { 3212 // unconditionally update the is_disable_suspend bit in current JavaThread 3213 Node* thread = ideal.thread(); 3214 Node* arg = _gvn.transform(argument(0)); // argument for notification 3215 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3216 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3217 3218 sync_kit(ideal); 3219 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3220 ideal.sync_kit(this); 3221 } 3222 final_sync(ideal); 3223 3224 return true; 3225 } 3226 3227 #endif // INCLUDE_JVMTI 3228 3229 #ifdef JFR_HAVE_INTRINSICS 3230 3231 /** 3232 * if oop->klass != null 3233 * // normal class 3234 * epoch = _epoch_state ? 2 : 1 3235 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3236 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3237 * } 3238 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3239 * else 3240 * // primitive class 3241 * if oop->array_klass != null 3242 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3243 * else 3244 * id = LAST_TYPE_ID + 1 // void class path 3245 * if (!signaled) 3246 * signaled = true 3247 */ 3248 bool LibraryCallKit::inline_native_classID() { 3249 Node* cls = argument(0); 3250 3251 IdealKit ideal(this); 3252 #define __ ideal. 3253 IdealVariable result(ideal); __ declarations_done(); 3254 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3255 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3256 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3257 3258 3259 __ if_then(kls, BoolTest::ne, null()); { 3260 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3261 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3262 3263 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3264 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3265 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3266 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3267 mask = _gvn.transform(new OrLNode(mask, epoch)); 3268 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3269 3270 float unlikely = PROB_UNLIKELY(0.999); 3271 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3272 sync_kit(ideal); 3273 make_runtime_call(RC_LEAF, 3274 OptoRuntime::class_id_load_barrier_Type(), 3275 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3276 "class id load barrier", 3277 TypePtr::BOTTOM, 3278 kls); 3279 ideal.sync_kit(this); 3280 } __ end_if(); 3281 3282 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3283 } __ else_(); { 3284 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3285 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3286 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3287 __ if_then(array_kls, BoolTest::ne, null()); { 3288 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3289 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3290 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3291 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3292 } __ else_(); { 3293 // void class case 3294 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3295 } __ end_if(); 3296 3297 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3298 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3299 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3300 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3301 } __ end_if(); 3302 } __ end_if(); 3303 3304 final_sync(ideal); 3305 set_result(ideal.value(result)); 3306 #undef __ 3307 return true; 3308 } 3309 3310 //------------------------inline_native_jvm_commit------------------ 3311 bool LibraryCallKit::inline_native_jvm_commit() { 3312 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3313 3314 // Save input memory and i_o state. 3315 Node* input_memory_state = reset_memory(); 3316 set_all_memory(input_memory_state); 3317 Node* input_io_state = i_o(); 3318 3319 // TLS. 3320 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3321 // Jfr java buffer. 3322 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3323 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3324 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3325 3326 // Load the current value of the notified field in the JfrThreadLocal. 3327 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3328 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3329 3330 // Test for notification. 3331 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3332 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3333 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3334 3335 // True branch, is notified. 3336 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3337 set_control(is_notified); 3338 3339 // Reset notified state. 3340 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered); 3341 3342 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3343 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3344 // Convert the machine-word to a long. 3345 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3346 3347 // False branch, not notified. 3348 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3349 set_control(not_notified); 3350 set_all_memory(input_memory_state); 3351 3352 // Arg is the next position as a long. 3353 Node* arg = argument(0); 3354 // Convert long to machine-word. 3355 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3356 3357 // Store the next_position to the underlying jfr java buffer. 3358 Node* commit_memory; 3359 #ifdef _LP64 3360 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release); 3361 #else 3362 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release); 3363 #endif 3364 3365 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3366 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3367 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3368 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3369 3370 // And flags with lease constant. 3371 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3372 3373 // Branch on lease to conditionalize returning the leased java buffer. 3374 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3375 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3376 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3377 3378 // False branch, not a lease. 3379 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3380 3381 // True branch, is lease. 3382 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3383 set_control(is_lease); 3384 3385 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3386 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3387 OptoRuntime::void_void_Type(), 3388 SharedRuntime::jfr_return_lease(), 3389 "return_lease", TypePtr::BOTTOM); 3390 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3391 3392 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3393 record_for_igvn(lease_compare_rgn); 3394 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3395 record_for_igvn(lease_compare_mem); 3396 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3397 record_for_igvn(lease_compare_io); 3398 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3399 record_for_igvn(lease_result_value); 3400 3401 // Update control and phi nodes. 3402 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3403 lease_compare_rgn->init_req(_false_path, not_lease); 3404 3405 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3406 lease_compare_mem->init_req(_false_path, commit_memory); 3407 3408 lease_compare_io->init_req(_true_path, i_o()); 3409 lease_compare_io->init_req(_false_path, input_io_state); 3410 3411 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3412 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3413 3414 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3415 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3416 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3417 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3418 3419 // Update control and phi nodes. 3420 result_rgn->init_req(_true_path, is_notified); 3421 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3422 3423 result_mem->init_req(_true_path, notified_reset_memory); 3424 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3425 3426 result_io->init_req(_true_path, input_io_state); 3427 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3428 3429 result_value->init_req(_true_path, current_pos); 3430 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3431 3432 // Set output state. 3433 set_control(_gvn.transform(result_rgn)); 3434 set_all_memory(_gvn.transform(result_mem)); 3435 set_i_o(_gvn.transform(result_io)); 3436 set_result(result_rgn, result_value); 3437 return true; 3438 } 3439 3440 /* 3441 * The intrinsic is a model of this pseudo-code: 3442 * 3443 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3444 * jobject h_event_writer = tl->java_event_writer(); 3445 * if (h_event_writer == nullptr) { 3446 * return nullptr; 3447 * } 3448 * oop threadObj = Thread::threadObj(); 3449 * oop vthread = java_lang_Thread::vthread(threadObj); 3450 * traceid tid; 3451 * bool pinVirtualThread; 3452 * bool excluded; 3453 * if (vthread != threadObj) { // i.e. current thread is virtual 3454 * tid = java_lang_Thread::tid(vthread); 3455 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3456 * pinVirtualThread = VMContinuations; 3457 * excluded = vthread_epoch_raw & excluded_mask; 3458 * if (!excluded) { 3459 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3460 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3461 * if (vthread_epoch != current_epoch) { 3462 * write_checkpoint(); 3463 * } 3464 * } 3465 * } else { 3466 * tid = java_lang_Thread::tid(threadObj); 3467 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3468 * pinVirtualThread = false; 3469 * excluded = thread_epoch_raw & excluded_mask; 3470 * } 3471 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3472 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3473 * if (tid_in_event_writer != tid) { 3474 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3475 * setField(event_writer, "excluded", excluded); 3476 * setField(event_writer, "threadID", tid); 3477 * } 3478 * return event_writer 3479 */ 3480 bool LibraryCallKit::inline_native_getEventWriter() { 3481 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3482 3483 // Save input memory and i_o state. 3484 Node* input_memory_state = reset_memory(); 3485 set_all_memory(input_memory_state); 3486 Node* input_io_state = i_o(); 3487 3488 Node* excluded_mask = _gvn.intcon(32768); 3489 Node* epoch_mask = _gvn.intcon(32767); 3490 3491 // TLS 3492 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3493 3494 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3495 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3496 3497 // Load the eventwriter jobject handle. 3498 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3499 3500 // Null check the jobject handle. 3501 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3502 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3503 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3504 3505 // False path, jobj is null. 3506 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3507 3508 // True path, jobj is not null. 3509 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3510 3511 set_control(jobj_is_not_null); 3512 3513 // Load the threadObj for the CarrierThread. 3514 Node* threadObj = generate_current_thread(tls_ptr); 3515 3516 // Load the vthread. 3517 Node* vthread = generate_virtual_thread(tls_ptr); 3518 3519 // If vthread != threadObj, this is a virtual thread. 3520 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3521 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3522 IfNode* iff_vthread_not_equal_threadObj = 3523 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3524 3525 // False branch, fallback to threadObj. 3526 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3527 set_control(vthread_equal_threadObj); 3528 3529 // Load the tid field from the vthread object. 3530 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3531 3532 // Load the raw epoch value from the threadObj. 3533 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3534 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3535 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3536 TypeInt::CHAR, T_CHAR, 3537 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3538 3539 // Mask off the excluded information from the epoch. 3540 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3541 3542 // True branch, this is a virtual thread. 3543 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3544 set_control(vthread_not_equal_threadObj); 3545 3546 // Load the tid field from the vthread object. 3547 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3548 3549 // Continuation support determines if a virtual thread should be pinned. 3550 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3551 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3552 3553 // Load the raw epoch value from the vthread. 3554 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3555 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3556 TypeInt::CHAR, T_CHAR, 3557 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3558 3559 // Mask off the excluded information from the epoch. 3560 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3561 3562 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3563 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3564 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3565 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3566 3567 // False branch, vthread is excluded, no need to write epoch info. 3568 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3569 3570 // True branch, vthread is included, update epoch info. 3571 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3572 set_control(included); 3573 3574 // Get epoch value. 3575 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3576 3577 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3578 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3579 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3580 3581 // Compare the epoch in the vthread to the current epoch generation. 3582 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3583 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3584 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3585 3586 // False path, epoch is equal, checkpoint information is valid. 3587 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3588 3589 // True path, epoch is not equal, write a checkpoint for the vthread. 3590 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3591 3592 set_control(epoch_is_not_equal); 3593 3594 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3595 // The call also updates the native thread local thread id and the vthread with the current epoch. 3596 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3597 OptoRuntime::jfr_write_checkpoint_Type(), 3598 SharedRuntime::jfr_write_checkpoint(), 3599 "write_checkpoint", TypePtr::BOTTOM); 3600 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3601 3602 // vthread epoch != current epoch 3603 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3604 record_for_igvn(epoch_compare_rgn); 3605 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3606 record_for_igvn(epoch_compare_mem); 3607 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3608 record_for_igvn(epoch_compare_io); 3609 3610 // Update control and phi nodes. 3611 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3612 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3613 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3614 epoch_compare_mem->init_req(_false_path, input_memory_state); 3615 epoch_compare_io->init_req(_true_path, i_o()); 3616 epoch_compare_io->init_req(_false_path, input_io_state); 3617 3618 // excluded != true 3619 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3620 record_for_igvn(exclude_compare_rgn); 3621 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3622 record_for_igvn(exclude_compare_mem); 3623 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3624 record_for_igvn(exclude_compare_io); 3625 3626 // Update control and phi nodes. 3627 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3628 exclude_compare_rgn->init_req(_false_path, excluded); 3629 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3630 exclude_compare_mem->init_req(_false_path, input_memory_state); 3631 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3632 exclude_compare_io->init_req(_false_path, input_io_state); 3633 3634 // vthread != threadObj 3635 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3636 record_for_igvn(vthread_compare_rgn); 3637 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3638 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3639 record_for_igvn(vthread_compare_io); 3640 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3641 record_for_igvn(tid); 3642 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3643 record_for_igvn(exclusion); 3644 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3645 record_for_igvn(pinVirtualThread); 3646 3647 // Update control and phi nodes. 3648 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3649 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3650 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3651 vthread_compare_mem->init_req(_false_path, input_memory_state); 3652 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3653 vthread_compare_io->init_req(_false_path, input_io_state); 3654 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3655 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3656 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3657 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3658 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3659 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3660 3661 // Update branch state. 3662 set_control(_gvn.transform(vthread_compare_rgn)); 3663 set_all_memory(_gvn.transform(vthread_compare_mem)); 3664 set_i_o(_gvn.transform(vthread_compare_io)); 3665 3666 // Load the event writer oop by dereferencing the jobject handle. 3667 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3668 assert(klass_EventWriter->is_loaded(), "invariant"); 3669 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3670 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3671 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3672 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3673 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3674 3675 // Load the current thread id from the event writer object. 3676 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3677 // Get the field offset to, conditionally, store an updated tid value later. 3678 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3679 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3680 // Get the field offset to, conditionally, store an updated exclusion value later. 3681 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3682 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3683 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3684 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3685 const TypePtr* event_writer_pin_field_type = _gvn.type(event_writer_pin_field)->isa_ptr(); 3686 3687 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3688 record_for_igvn(event_writer_tid_compare_rgn); 3689 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3690 record_for_igvn(event_writer_tid_compare_mem); 3691 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3692 record_for_igvn(event_writer_tid_compare_io); 3693 3694 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3695 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3696 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3697 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3698 3699 // False path, tids are the same. 3700 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3701 3702 // True path, tid is not equal, need to update the tid in the event writer. 3703 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3704 record_for_igvn(tid_is_not_equal); 3705 3706 // Store the pin state to the event writer. 3707 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, event_writer_pin_field_type, MemNode::unordered); 3708 3709 // Store the exclusion state to the event writer. 3710 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3711 3712 // Store the tid to the event writer. 3713 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3714 3715 // Update control and phi nodes. 3716 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3717 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3718 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3719 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3720 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3721 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3722 3723 // Result of top level CFG, Memory, IO and Value. 3724 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3725 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3726 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3727 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3728 3729 // Result control. 3730 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3731 result_rgn->init_req(_false_path, jobj_is_null); 3732 3733 // Result memory. 3734 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3735 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3736 3737 // Result IO. 3738 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3739 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3740 3741 // Result value. 3742 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3743 result_value->init_req(_false_path, null()); // return null 3744 3745 // Set output state. 3746 set_control(_gvn.transform(result_rgn)); 3747 set_all_memory(_gvn.transform(result_mem)); 3748 set_i_o(_gvn.transform(result_io)); 3749 set_result(result_rgn, result_value); 3750 return true; 3751 } 3752 3753 /* 3754 * The intrinsic is a model of this pseudo-code: 3755 * 3756 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3757 * if (carrierThread != thread) { // is virtual thread 3758 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3759 * bool excluded = vthread_epoch_raw & excluded_mask; 3760 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3761 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3762 * if (!excluded) { 3763 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3764 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3765 * } 3766 * Atomic::release_store(&tl->_vthread, true); 3767 * return; 3768 * } 3769 * Atomic::release_store(&tl->_vthread, false); 3770 */ 3771 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3772 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3773 3774 Node* input_memory_state = reset_memory(); 3775 set_all_memory(input_memory_state); 3776 3777 Node* excluded_mask = _gvn.intcon(32768); 3778 Node* epoch_mask = _gvn.intcon(32767); 3779 3780 Node* const carrierThread = generate_current_thread(jt); 3781 // If thread != carrierThread, this is a virtual thread. 3782 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3783 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3784 IfNode* iff_thread_not_equal_carrierThread = 3785 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3786 3787 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3788 3789 // False branch, is carrierThread. 3790 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3791 // Store release 3792 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3793 3794 set_all_memory(input_memory_state); 3795 3796 // True branch, is virtual thread. 3797 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3798 set_control(thread_not_equal_carrierThread); 3799 3800 // Load the raw epoch value from the vthread. 3801 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3802 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3803 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3804 3805 // Mask off the excluded information from the epoch. 3806 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3807 3808 // Load the tid field from the thread. 3809 Node* tid = load_field_from_object(thread, "tid", "J"); 3810 3811 // Store the vthread tid to the jfr thread local. 3812 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3813 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3814 3815 // Branch is_excluded to conditionalize updating the epoch . 3816 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3817 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3818 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3819 3820 // True branch, vthread is excluded, no need to write epoch info. 3821 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3822 set_control(excluded); 3823 Node* vthread_is_excluded = _gvn.intcon(1); 3824 3825 // False branch, vthread is included, update epoch info. 3826 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3827 set_control(included); 3828 Node* vthread_is_included = _gvn.intcon(0); 3829 3830 // Get epoch value. 3831 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3832 3833 // Store the vthread epoch to the jfr thread local. 3834 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3835 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3836 3837 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3838 record_for_igvn(excluded_rgn); 3839 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3840 record_for_igvn(excluded_mem); 3841 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3842 record_for_igvn(exclusion); 3843 3844 // Merge the excluded control and memory. 3845 excluded_rgn->init_req(_true_path, excluded); 3846 excluded_rgn->init_req(_false_path, included); 3847 excluded_mem->init_req(_true_path, tid_memory); 3848 excluded_mem->init_req(_false_path, included_memory); 3849 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3850 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3851 3852 // Set intermediate state. 3853 set_control(_gvn.transform(excluded_rgn)); 3854 set_all_memory(excluded_mem); 3855 3856 // Store the vthread exclusion state to the jfr thread local. 3857 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3858 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3859 3860 // Store release 3861 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3862 3863 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3864 record_for_igvn(thread_compare_rgn); 3865 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3866 record_for_igvn(thread_compare_mem); 3867 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3868 record_for_igvn(vthread); 3869 3870 // Merge the thread_compare control and memory. 3871 thread_compare_rgn->init_req(_true_path, control()); 3872 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3873 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3874 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3875 3876 // Set output state. 3877 set_control(_gvn.transform(thread_compare_rgn)); 3878 set_all_memory(_gvn.transform(thread_compare_mem)); 3879 } 3880 3881 #endif // JFR_HAVE_INTRINSICS 3882 3883 //------------------------inline_native_currentCarrierThread------------------ 3884 bool LibraryCallKit::inline_native_currentCarrierThread() { 3885 Node* junk = nullptr; 3886 set_result(generate_current_thread(junk)); 3887 return true; 3888 } 3889 3890 //------------------------inline_native_currentThread------------------ 3891 bool LibraryCallKit::inline_native_currentThread() { 3892 Node* junk = nullptr; 3893 set_result(generate_virtual_thread(junk)); 3894 return true; 3895 } 3896 3897 //------------------------inline_native_setVthread------------------ 3898 bool LibraryCallKit::inline_native_setCurrentThread() { 3899 assert(C->method()->changes_current_thread(), 3900 "method changes current Thread but is not annotated ChangesCurrentThread"); 3901 Node* arr = argument(1); 3902 Node* thread = _gvn.transform(new ThreadLocalNode()); 3903 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3904 Node* thread_obj_handle 3905 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3906 thread_obj_handle = _gvn.transform(thread_obj_handle); 3907 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3908 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3909 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3910 return true; 3911 } 3912 3913 const Type* LibraryCallKit::scopedValueCache_type() { 3914 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3915 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3916 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true); 3917 3918 // Because we create the scopedValue cache lazily we have to make the 3919 // type of the result BotPTR. 3920 bool xk = etype->klass_is_exact(); 3921 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0)); 3922 return objects_type; 3923 } 3924 3925 Node* LibraryCallKit::scopedValueCache_helper() { 3926 Node* thread = _gvn.transform(new ThreadLocalNode()); 3927 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3928 // We cannot use immutable_memory() because we might flip onto a 3929 // different carrier thread, at which point we'll need to use that 3930 // carrier thread's cache. 3931 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3932 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3933 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3934 } 3935 3936 //------------------------inline_native_scopedValueCache------------------ 3937 bool LibraryCallKit::inline_native_scopedValueCache() { 3938 Node* cache_obj_handle = scopedValueCache_helper(); 3939 const Type* objects_type = scopedValueCache_type(); 3940 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3941 3942 return true; 3943 } 3944 3945 //------------------------inline_native_setScopedValueCache------------------ 3946 bool LibraryCallKit::inline_native_setScopedValueCache() { 3947 Node* arr = argument(0); 3948 Node* cache_obj_handle = scopedValueCache_helper(); 3949 const Type* objects_type = scopedValueCache_type(); 3950 3951 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3952 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3953 3954 return true; 3955 } 3956 3957 //------------------------inline_native_Continuation_pin and unpin----------- 3958 3959 // Shared implementation routine for both pin and unpin. 3960 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3961 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3962 3963 // Save input memory. 3964 Node* input_memory_state = reset_memory(); 3965 set_all_memory(input_memory_state); 3966 3967 // TLS 3968 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3969 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3970 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3971 3972 // Null check the last continuation object. 3973 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3974 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3975 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3976 3977 // False path, last continuation is null. 3978 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3979 3980 // True path, last continuation is not null. 3981 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3982 3983 set_control(continuation_is_not_null); 3984 3985 // Load the pin count from the last continuation. 3986 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3987 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3988 3989 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3990 Node* pin_count_rhs; 3991 if (unpin) { 3992 pin_count_rhs = _gvn.intcon(0); 3993 } else { 3994 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3995 } 3996 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3997 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3998 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3999 4000 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 4001 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 4002 set_control(valid_pin_count); 4003 4004 Node* next_pin_count; 4005 if (unpin) { 4006 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 4007 } else { 4008 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 4009 } 4010 4011 Node* updated_pin_count_memory = store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, Compile::AliasIdxRaw, MemNode::unordered); 4012 4013 // True branch, pin count over/underflow. 4014 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 4015 { 4016 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 4017 // which will throw IllegalStateException for pin count over/underflow. 4018 PreserveJVMState pjvms(this); 4019 set_control(pin_count_over_underflow); 4020 set_all_memory(input_memory_state); 4021 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 4022 Deoptimization::Action_none); 4023 assert(stopped(), "invariant"); 4024 } 4025 4026 // Result of top level CFG and Memory. 4027 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 4028 record_for_igvn(result_rgn); 4029 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 4030 record_for_igvn(result_mem); 4031 4032 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 4033 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 4034 result_mem->init_req(_true_path, _gvn.transform(updated_pin_count_memory)); 4035 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 4036 4037 // Set output state. 4038 set_control(_gvn.transform(result_rgn)); 4039 set_all_memory(_gvn.transform(result_mem)); 4040 4041 return true; 4042 } 4043 4044 //-----------------------load_klass_from_mirror_common------------------------- 4045 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 4046 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 4047 // and branch to the given path on the region. 4048 // If never_see_null, take an uncommon trap on null, so we can optimistically 4049 // compile for the non-null case. 4050 // If the region is null, force never_see_null = true. 4051 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 4052 bool never_see_null, 4053 RegionNode* region, 4054 int null_path, 4055 int offset) { 4056 if (region == nullptr) never_see_null = true; 4057 Node* p = basic_plus_adr(mirror, offset); 4058 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4059 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 4060 Node* null_ctl = top(); 4061 kls = null_check_oop(kls, &null_ctl, never_see_null); 4062 if (region != nullptr) { 4063 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 4064 region->init_req(null_path, null_ctl); 4065 } else { 4066 assert(null_ctl == top(), "no loose ends"); 4067 } 4068 return kls; 4069 } 4070 4071 //--------------------(inline_native_Class_query helpers)--------------------- 4072 // Use this for JVM_ACC_INTERFACE. 4073 // Fall through if (mods & mask) == bits, take the guard otherwise. 4074 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 4075 ByteSize offset, const Type* type, BasicType bt) { 4076 // Branch around if the given klass has the given modifier bit set. 4077 // Like generate_guard, adds a new path onto the region. 4078 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 4079 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 4080 Node* mask = intcon(modifier_mask); 4081 Node* bits = intcon(modifier_bits); 4082 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 4083 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 4084 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 4085 return generate_fair_guard(bol, region); 4086 } 4087 4088 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 4089 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 4090 Klass::access_flags_offset(), TypeInt::INT, T_INT); 4091 } 4092 4093 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 4094 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 4095 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 4096 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 4097 } 4098 4099 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 4100 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 4101 } 4102 4103 //-------------------------inline_native_Class_query------------------- 4104 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 4105 const Type* return_type = TypeInt::BOOL; 4106 Node* prim_return_value = top(); // what happens if it's a primitive class? 4107 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4108 bool expect_prim = false; // most of these guys expect to work on refs 4109 4110 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 4111 4112 Node* mirror = argument(0); 4113 Node* obj = top(); 4114 4115 switch (id) { 4116 case vmIntrinsics::_isInstance: 4117 // nothing is an instance of a primitive type 4118 prim_return_value = intcon(0); 4119 obj = argument(1); 4120 break; 4121 case vmIntrinsics::_getModifiers: 4122 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 4123 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 4124 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 4125 break; 4126 case vmIntrinsics::_isInterface: 4127 prim_return_value = intcon(0); 4128 break; 4129 case vmIntrinsics::_isArray: 4130 prim_return_value = intcon(0); 4131 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 4132 break; 4133 case vmIntrinsics::_isPrimitive: 4134 prim_return_value = intcon(1); 4135 expect_prim = true; // obviously 4136 break; 4137 case vmIntrinsics::_isHidden: 4138 prim_return_value = intcon(0); 4139 break; 4140 case vmIntrinsics::_getSuperclass: 4141 prim_return_value = null(); 4142 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 4143 break; 4144 case vmIntrinsics::_getClassAccessFlags: 4145 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 4146 return_type = TypeInt::INT; // not bool! 6297094 4147 break; 4148 default: 4149 fatal_unexpected_iid(id); 4150 break; 4151 } 4152 4153 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4154 if (mirror_con == nullptr) return false; // cannot happen? 4155 4156 #ifndef PRODUCT 4157 if (C->print_intrinsics() || C->print_inlining()) { 4158 ciType* k = mirror_con->java_mirror_type(); 4159 if (k) { 4160 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 4161 k->print_name(); 4162 tty->cr(); 4163 } 4164 } 4165 #endif 4166 4167 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 4168 RegionNode* region = new RegionNode(PATH_LIMIT); 4169 record_for_igvn(region); 4170 PhiNode* phi = new PhiNode(region, return_type); 4171 4172 // The mirror will never be null of Reflection.getClassAccessFlags, however 4173 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4174 // if it is. See bug 4774291. 4175 4176 // For Reflection.getClassAccessFlags(), the null check occurs in 4177 // the wrong place; see inline_unsafe_access(), above, for a similar 4178 // situation. 4179 mirror = null_check(mirror); 4180 // If mirror or obj is dead, only null-path is taken. 4181 if (stopped()) return true; 4182 4183 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4184 4185 // Now load the mirror's klass metaobject, and null-check it. 4186 // Side-effects region with the control path if the klass is null. 4187 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4188 // If kls is null, we have a primitive mirror. 4189 phi->init_req(_prim_path, prim_return_value); 4190 if (stopped()) { set_result(region, phi); return true; } 4191 bool safe_for_replace = (region->in(_prim_path) == top()); 4192 4193 Node* p; // handy temp 4194 Node* null_ctl; 4195 4196 // Now that we have the non-null klass, we can perform the real query. 4197 // For constant classes, the query will constant-fold in LoadNode::Value. 4198 Node* query_value = top(); 4199 switch (id) { 4200 case vmIntrinsics::_isInstance: 4201 // nothing is an instance of a primitive type 4202 query_value = gen_instanceof(obj, kls, safe_for_replace); 4203 break; 4204 4205 case vmIntrinsics::_getModifiers: 4206 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 4207 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 4208 break; 4209 4210 case vmIntrinsics::_isInterface: 4211 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4212 if (generate_interface_guard(kls, region) != nullptr) 4213 // A guard was added. If the guard is taken, it was an interface. 4214 phi->add_req(intcon(1)); 4215 // If we fall through, it's a plain class. 4216 query_value = intcon(0); 4217 break; 4218 4219 case vmIntrinsics::_isArray: 4220 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 4221 if (generate_array_guard(kls, region) != nullptr) 4222 // A guard was added. If the guard is taken, it was an array. 4223 phi->add_req(intcon(1)); 4224 // If we fall through, it's a plain class. 4225 query_value = intcon(0); 4226 break; 4227 4228 case vmIntrinsics::_isPrimitive: 4229 query_value = intcon(0); // "normal" path produces false 4230 break; 4231 4232 case vmIntrinsics::_isHidden: 4233 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4234 if (generate_hidden_class_guard(kls, region) != nullptr) 4235 // A guard was added. If the guard is taken, it was an hidden class. 4236 phi->add_req(intcon(1)); 4237 // If we fall through, it's a plain class. 4238 query_value = intcon(0); 4239 break; 4240 4241 4242 case vmIntrinsics::_getSuperclass: 4243 // The rules here are somewhat unfortunate, but we can still do better 4244 // with random logic than with a JNI call. 4245 // Interfaces store null or Object as _super, but must report null. 4246 // Arrays store an intermediate super as _super, but must report Object. 4247 // Other types can report the actual _super. 4248 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4249 if (generate_interface_guard(kls, region) != nullptr) 4250 // A guard was added. If the guard is taken, it was an interface. 4251 phi->add_req(null()); 4252 if (generate_array_guard(kls, region) != nullptr) 4253 // A guard was added. If the guard is taken, it was an array. 4254 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4255 // If we fall through, it's a plain class. Get its _super. 4256 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4257 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4258 null_ctl = top(); 4259 kls = null_check_oop(kls, &null_ctl); 4260 if (null_ctl != top()) { 4261 // If the guard is taken, Object.superClass is null (both klass and mirror). 4262 region->add_req(null_ctl); 4263 phi ->add_req(null()); 4264 } 4265 if (!stopped()) { 4266 query_value = load_mirror_from_klass(kls); 4267 } 4268 break; 4269 4270 case vmIntrinsics::_getClassAccessFlags: 4271 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4272 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 4273 break; 4274 4275 default: 4276 fatal_unexpected_iid(id); 4277 break; 4278 } 4279 4280 // Fall-through is the normal case of a query to a real class. 4281 phi->init_req(1, query_value); 4282 region->init_req(1, control()); 4283 4284 C->set_has_split_ifs(true); // Has chance for split-if optimization 4285 set_result(region, phi); 4286 return true; 4287 } 4288 4289 4290 //-------------------------inline_Class_cast------------------- 4291 bool LibraryCallKit::inline_Class_cast() { 4292 Node* mirror = argument(0); // Class 4293 Node* obj = argument(1); 4294 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4295 if (mirror_con == nullptr) { 4296 return false; // dead path (mirror->is_top()). 4297 } 4298 if (obj == nullptr || obj->is_top()) { 4299 return false; // dead path 4300 } 4301 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4302 4303 // First, see if Class.cast() can be folded statically. 4304 // java_mirror_type() returns non-null for compile-time Class constants. 4305 bool is_null_free_array = false; 4306 ciType* tm = mirror_con->java_mirror_type(&is_null_free_array); 4307 if (tm != nullptr && tm->is_klass() && 4308 tp != nullptr) { 4309 if (!tp->is_loaded()) { 4310 // Don't use intrinsic when class is not loaded. 4311 return false; 4312 } else { 4313 const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces); 4314 if (is_null_free_array) { 4315 tklass = tklass->is_aryklassptr()->cast_to_null_free(); 4316 } 4317 int static_res = C->static_subtype_check(tklass, tp->as_klass_type()); 4318 if (static_res == Compile::SSC_always_true) { 4319 // isInstance() is true - fold the code. 4320 set_result(obj); 4321 return true; 4322 } else if (static_res == Compile::SSC_always_false) { 4323 // Don't use intrinsic, have to throw ClassCastException. 4324 // If the reference is null, the non-intrinsic bytecode will 4325 // be optimized appropriately. 4326 return false; 4327 } 4328 } 4329 } 4330 4331 // Bailout intrinsic and do normal inlining if exception path is frequent. 4332 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4333 return false; 4334 } 4335 4336 // Generate dynamic checks. 4337 // Class.cast() is java implementation of _checkcast bytecode. 4338 // Do checkcast (Parse::do_checkcast()) optimizations here. 4339 4340 mirror = null_check(mirror); 4341 // If mirror is dead, only null-path is taken. 4342 if (stopped()) { 4343 return true; 4344 } 4345 4346 // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive). 4347 enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT }; 4348 RegionNode* region = new RegionNode(PATH_LIMIT); 4349 record_for_igvn(region); 4350 4351 // Now load the mirror's klass metaobject, and null-check it. 4352 // If kls is null, we have a primitive mirror and 4353 // nothing is an instance of a primitive type. 4354 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4355 4356 Node* res = top(); 4357 Node* io = i_o(); 4358 Node* mem = merged_memory(); 4359 if (!stopped()) { 4360 4361 Node* bad_type_ctrl = top(); 4362 // Do checkcast optimizations. 4363 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4364 region->init_req(_bad_type_path, bad_type_ctrl); 4365 } 4366 if (region->in(_prim_path) != top() || 4367 region->in(_bad_type_path) != top() || 4368 region->in(_npe_path) != top()) { 4369 // Let Interpreter throw ClassCastException. 4370 PreserveJVMState pjvms(this); 4371 set_control(_gvn.transform(region)); 4372 // Set IO and memory because gen_checkcast may override them when buffering inline types 4373 set_i_o(io); 4374 set_all_memory(mem); 4375 uncommon_trap(Deoptimization::Reason_intrinsic, 4376 Deoptimization::Action_maybe_recompile); 4377 } 4378 if (!stopped()) { 4379 set_result(res); 4380 } 4381 return true; 4382 } 4383 4384 4385 //--------------------------inline_native_subtype_check------------------------ 4386 // This intrinsic takes the JNI calls out of the heart of 4387 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4388 bool LibraryCallKit::inline_native_subtype_check() { 4389 // Pull both arguments off the stack. 4390 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4391 args[0] = argument(0); 4392 args[1] = argument(1); 4393 Node* klasses[2]; // corresponding Klasses: superk, subk 4394 klasses[0] = klasses[1] = top(); 4395 4396 enum { 4397 // A full decision tree on {superc is prim, subc is prim}: 4398 _prim_0_path = 1, // {P,N} => false 4399 // {P,P} & superc!=subc => false 4400 _prim_same_path, // {P,P} & superc==subc => true 4401 _prim_1_path, // {N,P} => false 4402 _ref_subtype_path, // {N,N} & subtype check wins => true 4403 _both_ref_path, // {N,N} & subtype check loses => false 4404 PATH_LIMIT 4405 }; 4406 4407 RegionNode* region = new RegionNode(PATH_LIMIT); 4408 RegionNode* prim_region = new RegionNode(2); 4409 Node* phi = new PhiNode(region, TypeInt::BOOL); 4410 record_for_igvn(region); 4411 record_for_igvn(prim_region); 4412 4413 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4414 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4415 int class_klass_offset = java_lang_Class::klass_offset(); 4416 4417 // First null-check both mirrors and load each mirror's klass metaobject. 4418 int which_arg; 4419 for (which_arg = 0; which_arg <= 1; which_arg++) { 4420 Node* arg = args[which_arg]; 4421 arg = null_check(arg); 4422 if (stopped()) break; 4423 args[which_arg] = arg; 4424 4425 Node* p = basic_plus_adr(arg, class_klass_offset); 4426 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4427 klasses[which_arg] = _gvn.transform(kls); 4428 } 4429 4430 // Having loaded both klasses, test each for null. 4431 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4432 for (which_arg = 0; which_arg <= 1; which_arg++) { 4433 Node* kls = klasses[which_arg]; 4434 Node* null_ctl = top(); 4435 kls = null_check_oop(kls, &null_ctl, never_see_null); 4436 if (which_arg == 0) { 4437 prim_region->init_req(1, null_ctl); 4438 } else { 4439 region->init_req(_prim_1_path, null_ctl); 4440 } 4441 if (stopped()) break; 4442 klasses[which_arg] = kls; 4443 } 4444 4445 if (!stopped()) { 4446 // now we have two reference types, in klasses[0..1] 4447 Node* subk = klasses[1]; // the argument to isAssignableFrom 4448 Node* superk = klasses[0]; // the receiver 4449 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4450 region->set_req(_ref_subtype_path, control()); 4451 } 4452 4453 // If both operands are primitive (both klasses null), then 4454 // we must return true when they are identical primitives. 4455 // It is convenient to test this after the first null klass check. 4456 // This path is also used if superc is a value mirror. 4457 set_control(_gvn.transform(prim_region)); 4458 if (!stopped()) { 4459 // Since superc is primitive, make a guard for the superc==subc case. 4460 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4461 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4462 generate_fair_guard(bol_eq, region); 4463 if (region->req() == PATH_LIMIT+1) { 4464 // A guard was added. If the added guard is taken, superc==subc. 4465 region->swap_edges(PATH_LIMIT, _prim_same_path); 4466 region->del_req(PATH_LIMIT); 4467 } 4468 region->set_req(_prim_0_path, control()); // Not equal after all. 4469 } 4470 4471 // these are the only paths that produce 'true': 4472 phi->set_req(_prim_same_path, intcon(1)); 4473 phi->set_req(_ref_subtype_path, intcon(1)); 4474 4475 // pull together the cases: 4476 assert(region->req() == PATH_LIMIT, "sane region"); 4477 for (uint i = 1; i < region->req(); i++) { 4478 Node* ctl = region->in(i); 4479 if (ctl == nullptr || ctl == top()) { 4480 region->set_req(i, top()); 4481 phi ->set_req(i, top()); 4482 } else if (phi->in(i) == nullptr) { 4483 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4484 } 4485 } 4486 4487 set_control(_gvn.transform(region)); 4488 set_result(_gvn.transform(phi)); 4489 return true; 4490 } 4491 4492 //---------------------generate_array_guard_common------------------------ 4493 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind) { 4494 4495 if (stopped()) { 4496 return nullptr; 4497 } 4498 4499 // Like generate_guard, adds a new path onto the region. 4500 jint layout_con = 0; 4501 Node* layout_val = get_layout_helper(kls, layout_con); 4502 if (layout_val == nullptr) { 4503 bool query = 0; 4504 switch(kind) { 4505 case ObjectArray: query = Klass::layout_helper_is_objArray(layout_con); break; 4506 case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break; 4507 case TypeArray: query = Klass::layout_helper_is_typeArray(layout_con); break; 4508 case AnyArray: query = Klass::layout_helper_is_array(layout_con); break; 4509 case NonArray: query = !Klass::layout_helper_is_array(layout_con); break; 4510 default: 4511 ShouldNotReachHere(); 4512 } 4513 if (!query) { 4514 return nullptr; // never a branch 4515 } else { // always a branch 4516 Node* always_branch = control(); 4517 if (region != nullptr) 4518 region->add_req(always_branch); 4519 set_control(top()); 4520 return always_branch; 4521 } 4522 } 4523 unsigned int value = 0; 4524 BoolTest::mask btest = BoolTest::illegal; 4525 switch(kind) { 4526 case ObjectArray: 4527 case NonObjectArray: { 4528 value = Klass::_lh_array_tag_obj_value; 4529 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4530 btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne; 4531 break; 4532 } 4533 case TypeArray: { 4534 value = Klass::_lh_array_tag_type_value; 4535 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4536 btest = BoolTest::eq; 4537 break; 4538 } 4539 case AnyArray: value = Klass::_lh_neutral_value; btest = BoolTest::lt; break; 4540 case NonArray: value = Klass::_lh_neutral_value; btest = BoolTest::gt; break; 4541 default: 4542 ShouldNotReachHere(); 4543 } 4544 // Now test the correct condition. 4545 jint nval = (jint)value; 4546 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4547 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4548 return generate_fair_guard(bol, region); 4549 } 4550 4551 //-----------------------inline_newNullRestrictedArray-------------------------- 4552 // public static native Object[] newNullRestrictedArray(Class<?> componentType, int length); 4553 bool LibraryCallKit::inline_newNullRestrictedArray() { 4554 Node* componentType = argument(0); 4555 Node* length = argument(1); 4556 4557 const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr(); 4558 if (tp != nullptr) { 4559 ciInstanceKlass* ik = tp->instance_klass(); 4560 if (ik == C->env()->Class_klass()) { 4561 ciType* t = tp->java_mirror_type(); 4562 if (t != nullptr && t->is_inlinetype()) { 4563 ciArrayKlass* array_klass = ciArrayKlass::make(t, true); 4564 if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) { 4565 const TypeAryKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces)->is_aryklassptr(); 4566 array_klass_type = array_klass_type->cast_to_null_free(); 4567 Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false); // no arguments to push 4568 set_result(obj); 4569 assert(gvn().type(obj)->is_aryptr()->is_null_free(), "must be null-free"); 4570 return true; 4571 } 4572 } 4573 } 4574 } 4575 return false; 4576 } 4577 4578 //-----------------------inline_native_newArray-------------------------- 4579 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length); 4580 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4581 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4582 Node* mirror; 4583 Node* count_val; 4584 if (uninitialized) { 4585 null_check_receiver(); 4586 mirror = argument(1); 4587 count_val = argument(2); 4588 } else { 4589 mirror = argument(0); 4590 count_val = argument(1); 4591 } 4592 4593 mirror = null_check(mirror); 4594 // If mirror or obj is dead, only null-path is taken. 4595 if (stopped()) return true; 4596 4597 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4598 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4599 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4600 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4601 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4602 4603 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4604 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4605 result_reg, _slow_path); 4606 Node* normal_ctl = control(); 4607 Node* no_array_ctl = result_reg->in(_slow_path); 4608 4609 // Generate code for the slow case. We make a call to newArray(). 4610 set_control(no_array_ctl); 4611 if (!stopped()) { 4612 // Either the input type is void.class, or else the 4613 // array klass has not yet been cached. Either the 4614 // ensuing call will throw an exception, or else it 4615 // will cache the array klass for next time. 4616 PreserveJVMState pjvms(this); 4617 CallJavaNode* slow_call = nullptr; 4618 if (uninitialized) { 4619 // Generate optimized virtual call (holder class 'Unsafe' is final) 4620 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4621 } else { 4622 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4623 } 4624 Node* slow_result = set_results_for_java_call(slow_call); 4625 // this->control() comes from set_results_for_java_call 4626 result_reg->set_req(_slow_path, control()); 4627 result_val->set_req(_slow_path, slow_result); 4628 result_io ->set_req(_slow_path, i_o()); 4629 result_mem->set_req(_slow_path, reset_memory()); 4630 } 4631 4632 set_control(normal_ctl); 4633 if (!stopped()) { 4634 // Normal case: The array type has been cached in the java.lang.Class. 4635 // The following call works fine even if the array type is polymorphic. 4636 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4637 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4638 result_reg->init_req(_normal_path, control()); 4639 result_val->init_req(_normal_path, obj); 4640 result_io ->init_req(_normal_path, i_o()); 4641 result_mem->init_req(_normal_path, reset_memory()); 4642 4643 if (uninitialized) { 4644 // Mark the allocation so that zeroing is skipped 4645 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4646 alloc->maybe_set_complete(&_gvn); 4647 } 4648 } 4649 4650 // Return the combined state. 4651 set_i_o( _gvn.transform(result_io) ); 4652 set_all_memory( _gvn.transform(result_mem)); 4653 4654 C->set_has_split_ifs(true); // Has chance for split-if optimization 4655 set_result(result_reg, result_val); 4656 return true; 4657 } 4658 4659 //----------------------inline_native_getLength-------------------------- 4660 // public static native int java.lang.reflect.Array.getLength(Object array); 4661 bool LibraryCallKit::inline_native_getLength() { 4662 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4663 4664 Node* array = null_check(argument(0)); 4665 // If array is dead, only null-path is taken. 4666 if (stopped()) return true; 4667 4668 // Deoptimize if it is a non-array. 4669 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 4670 4671 if (non_array != nullptr) { 4672 PreserveJVMState pjvms(this); 4673 set_control(non_array); 4674 uncommon_trap(Deoptimization::Reason_intrinsic, 4675 Deoptimization::Action_maybe_recompile); 4676 } 4677 4678 // If control is dead, only non-array-path is taken. 4679 if (stopped()) return true; 4680 4681 // The works fine even if the array type is polymorphic. 4682 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4683 Node* result = load_array_length(array); 4684 4685 C->set_has_split_ifs(true); // Has chance for split-if optimization 4686 set_result(result); 4687 return true; 4688 } 4689 4690 //------------------------inline_array_copyOf---------------------------- 4691 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4692 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4693 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4694 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4695 4696 // Get the arguments. 4697 Node* original = argument(0); 4698 Node* start = is_copyOfRange? argument(1): intcon(0); 4699 Node* end = is_copyOfRange? argument(2): argument(1); 4700 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4701 4702 Node* newcopy = nullptr; 4703 4704 // Set the original stack and the reexecute bit for the interpreter to reexecute 4705 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4706 { PreserveReexecuteState preexecs(this); 4707 jvms()->set_should_reexecute(true); 4708 4709 array_type_mirror = null_check(array_type_mirror); 4710 original = null_check(original); 4711 4712 // Check if a null path was taken unconditionally. 4713 if (stopped()) return true; 4714 4715 Node* orig_length = load_array_length(original); 4716 4717 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4718 klass_node = null_check(klass_node); 4719 4720 RegionNode* bailout = new RegionNode(1); 4721 record_for_igvn(bailout); 4722 4723 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4724 // Bail out if that is so. 4725 // Inline type array may have object field that would require a 4726 // write barrier. Conservatively, go to slow path. 4727 // TODO 8251971: Optimize for the case when flat src/dst are later found 4728 // to not contain oops (i.e., move this check to the macro expansion phase). 4729 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4730 const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr(); 4731 const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr(); 4732 bool exclude_flat = UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) && 4733 // Can src array be flat and contain oops? 4734 (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) && 4735 // Can dest array be flat and contain oops? 4736 tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops()); 4737 Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout); 4738 if (not_objArray != nullptr) { 4739 // Improve the klass node's type from the new optimistic assumption: 4740 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4741 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0)); 4742 Node* cast = new CastPPNode(control(), klass_node, akls); 4743 klass_node = _gvn.transform(cast); 4744 } 4745 4746 // Bail out if either start or end is negative. 4747 generate_negative_guard(start, bailout, &start); 4748 generate_negative_guard(end, bailout, &end); 4749 4750 Node* length = end; 4751 if (_gvn.type(start) != TypeInt::ZERO) { 4752 length = _gvn.transform(new SubINode(end, start)); 4753 } 4754 4755 // Bail out if length is negative (i.e., if start > end). 4756 // Without this the new_array would throw 4757 // NegativeArraySizeException but IllegalArgumentException is what 4758 // should be thrown 4759 generate_negative_guard(length, bailout, &length); 4760 4761 // Handle inline type arrays 4762 bool can_validate = !too_many_traps(Deoptimization::Reason_class_check); 4763 if (!stopped()) { 4764 // TODO JDK-8329224 4765 if (!orig_t->is_null_free()) { 4766 // Not statically known to be null free, add a check 4767 generate_fair_guard(null_free_array_test(original), bailout); 4768 } 4769 orig_t = _gvn.type(original)->isa_aryptr(); 4770 if (orig_t != nullptr && orig_t->is_flat()) { 4771 // Src is flat, check that dest is flat as well 4772 if (exclude_flat) { 4773 // Dest can't be flat, bail out 4774 bailout->add_req(control()); 4775 set_control(top()); 4776 } else { 4777 generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout); 4778 } 4779 } else if (UseFlatArray && (orig_t == nullptr || !orig_t->is_not_flat()) && 4780 // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated). 4781 ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) { 4782 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 4783 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 4784 generate_fair_guard(flat_array_test(load_object_klass(original)), bailout); 4785 if (orig_t != nullptr) { 4786 orig_t = orig_t->cast_to_not_flat(); 4787 original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t)); 4788 } 4789 } 4790 if (!can_validate) { 4791 // No validation. The subtype check emitted at macro expansion time will not go to the slow 4792 // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays. 4793 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free. 4794 generate_fair_guard(flat_array_test(klass_node), bailout); 4795 generate_fair_guard(null_free_array_test(original), bailout); 4796 } 4797 } 4798 4799 // Bail out if start is larger than the original length 4800 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4801 generate_negative_guard(orig_tail, bailout, &orig_tail); 4802 4803 if (bailout->req() > 1) { 4804 PreserveJVMState pjvms(this); 4805 set_control(_gvn.transform(bailout)); 4806 uncommon_trap(Deoptimization::Reason_intrinsic, 4807 Deoptimization::Action_maybe_recompile); 4808 } 4809 4810 if (!stopped()) { 4811 // How many elements will we copy from the original? 4812 // The answer is MinI(orig_tail, length). 4813 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4814 4815 // Generate a direct call to the right arraycopy function(s). 4816 // We know the copy is disjoint but we might not know if the 4817 // oop stores need checking. 4818 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4819 // This will fail a store-check if x contains any non-nulls. 4820 4821 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4822 // loads/stores but it is legal only if we're sure the 4823 // Arrays.copyOf would succeed. So we need all input arguments 4824 // to the copyOf to be validated, including that the copy to the 4825 // new array won't trigger an ArrayStoreException. That subtype 4826 // check can be optimized if we know something on the type of 4827 // the input array from type speculation. 4828 if (_gvn.type(klass_node)->singleton()) { 4829 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4830 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4831 4832 int test = C->static_subtype_check(superk, subk); 4833 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4834 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4835 if (t_original->speculative_type() != nullptr) { 4836 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4837 } 4838 } 4839 } 4840 4841 bool validated = false; 4842 // Reason_class_check rather than Reason_intrinsic because we 4843 // want to intrinsify even if this traps. 4844 if (can_validate) { 4845 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4846 4847 if (not_subtype_ctrl != top()) { 4848 PreserveJVMState pjvms(this); 4849 set_control(not_subtype_ctrl); 4850 uncommon_trap(Deoptimization::Reason_class_check, 4851 Deoptimization::Action_make_not_entrant); 4852 assert(stopped(), "Should be stopped"); 4853 } 4854 validated = true; 4855 } 4856 4857 if (!stopped()) { 4858 newcopy = new_array(klass_node, length, 0); // no arguments to push 4859 4860 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4861 load_object_klass(original), klass_node); 4862 if (!is_copyOfRange) { 4863 ac->set_copyof(validated); 4864 } else { 4865 ac->set_copyofrange(validated); 4866 } 4867 Node* n = _gvn.transform(ac); 4868 if (n == ac) { 4869 ac->connect_outputs(this); 4870 } else { 4871 assert(validated, "shouldn't transform if all arguments not validated"); 4872 set_all_memory(n); 4873 } 4874 } 4875 } 4876 } // original reexecute is set back here 4877 4878 C->set_has_split_ifs(true); // Has chance for split-if optimization 4879 if (!stopped()) { 4880 set_result(newcopy); 4881 } 4882 return true; 4883 } 4884 4885 4886 //----------------------generate_virtual_guard--------------------------- 4887 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4888 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4889 RegionNode* slow_region) { 4890 ciMethod* method = callee(); 4891 int vtable_index = method->vtable_index(); 4892 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4893 "bad index %d", vtable_index); 4894 // Get the Method* out of the appropriate vtable entry. 4895 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4896 vtable_index*vtableEntry::size_in_bytes() + 4897 in_bytes(vtableEntry::method_offset()); 4898 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4899 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4900 4901 // Compare the target method with the expected method (e.g., Object.hashCode). 4902 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4903 4904 Node* native_call = makecon(native_call_addr); 4905 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4906 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4907 4908 return generate_slow_guard(test_native, slow_region); 4909 } 4910 4911 //-----------------------generate_method_call---------------------------- 4912 // Use generate_method_call to make a slow-call to the real 4913 // method if the fast path fails. An alternative would be to 4914 // use a stub like OptoRuntime::slow_arraycopy_Java. 4915 // This only works for expanding the current library call, 4916 // not another intrinsic. (E.g., don't use this for making an 4917 // arraycopy call inside of the copyOf intrinsic.) 4918 CallJavaNode* 4919 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4920 // When compiling the intrinsic method itself, do not use this technique. 4921 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4922 4923 ciMethod* method = callee(); 4924 // ensure the JVMS we have will be correct for this call 4925 guarantee(method_id == method->intrinsic_id(), "must match"); 4926 4927 const TypeFunc* tf = TypeFunc::make(method); 4928 if (res_not_null) { 4929 assert(tf->return_type() == T_OBJECT, ""); 4930 const TypeTuple* range = tf->range_cc(); 4931 const Type** fields = TypeTuple::fields(range->cnt()); 4932 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4933 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4934 tf = TypeFunc::make(tf->domain_cc(), new_range); 4935 } 4936 CallJavaNode* slow_call; 4937 if (is_static) { 4938 assert(!is_virtual, ""); 4939 slow_call = new CallStaticJavaNode(C, tf, 4940 SharedRuntime::get_resolve_static_call_stub(), method); 4941 } else if (is_virtual) { 4942 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4943 int vtable_index = Method::invalid_vtable_index; 4944 if (UseInlineCaches) { 4945 // Suppress the vtable call 4946 } else { 4947 // hashCode and clone are not a miranda methods, 4948 // so the vtable index is fixed. 4949 // No need to use the linkResolver to get it. 4950 vtable_index = method->vtable_index(); 4951 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4952 "bad index %d", vtable_index); 4953 } 4954 slow_call = new CallDynamicJavaNode(tf, 4955 SharedRuntime::get_resolve_virtual_call_stub(), 4956 method, vtable_index); 4957 } else { // neither virtual nor static: opt_virtual 4958 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4959 slow_call = new CallStaticJavaNode(C, tf, 4960 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4961 slow_call->set_optimized_virtual(true); 4962 } 4963 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4964 // To be able to issue a direct call (optimized virtual or virtual) 4965 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4966 // about the method being invoked should be attached to the call site to 4967 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4968 slow_call->set_override_symbolic_info(true); 4969 } 4970 set_arguments_for_java_call(slow_call); 4971 set_edges_for_java_call(slow_call); 4972 return slow_call; 4973 } 4974 4975 4976 /** 4977 * Build special case code for calls to hashCode on an object. This call may 4978 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4979 * slightly different code. 4980 */ 4981 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4982 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4983 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4984 4985 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4986 4987 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4988 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4989 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4990 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4991 Node* obj = argument(0); 4992 4993 // Don't intrinsify hashcode on inline types for now. 4994 // The "is locked" runtime check below also serves as inline type check and goes to the slow path. 4995 if (gvn().type(obj)->is_inlinetypeptr()) { 4996 return false; 4997 } 4998 4999 if (!is_static) { 5000 // Check for hashing null object 5001 obj = null_check_receiver(); 5002 if (stopped()) return true; // unconditionally null 5003 result_reg->init_req(_null_path, top()); 5004 result_val->init_req(_null_path, top()); 5005 } else { 5006 // Do a null check, and return zero if null. 5007 // System.identityHashCode(null) == 0 5008 Node* null_ctl = top(); 5009 obj = null_check_oop(obj, &null_ctl); 5010 result_reg->init_req(_null_path, null_ctl); 5011 result_val->init_req(_null_path, _gvn.intcon(0)); 5012 } 5013 5014 // Unconditionally null? Then return right away. 5015 if (stopped()) { 5016 set_control( result_reg->in(_null_path)); 5017 if (!stopped()) 5018 set_result(result_val->in(_null_path)); 5019 return true; 5020 } 5021 5022 // We only go to the fast case code if we pass a number of guards. The 5023 // paths which do not pass are accumulated in the slow_region. 5024 RegionNode* slow_region = new RegionNode(1); 5025 record_for_igvn(slow_region); 5026 5027 // If this is a virtual call, we generate a funny guard. We pull out 5028 // the vtable entry corresponding to hashCode() from the target object. 5029 // If the target method which we are calling happens to be the native 5030 // Object hashCode() method, we pass the guard. We do not need this 5031 // guard for non-virtual calls -- the caller is known to be the native 5032 // Object hashCode(). 5033 if (is_virtual) { 5034 // After null check, get the object's klass. 5035 Node* obj_klass = load_object_klass(obj); 5036 generate_virtual_guard(obj_klass, slow_region); 5037 } 5038 5039 // Get the header out of the object, use LoadMarkNode when available 5040 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 5041 // The control of the load must be null. Otherwise, the load can move before 5042 // the null check after castPP removal. 5043 Node* no_ctrl = nullptr; 5044 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 5045 5046 if (!UseObjectMonitorTable) { 5047 // Test the header to see if it is safe to read w.r.t. locking. 5048 // This also serves as guard against inline types 5049 Node *lock_mask = _gvn.MakeConX(markWord::inline_type_mask_in_place); 5050 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 5051 if (LockingMode == LM_LIGHTWEIGHT) { 5052 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 5053 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 5054 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 5055 5056 generate_slow_guard(test_monitor, slow_region); 5057 } else { 5058 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 5059 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 5060 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 5061 5062 generate_slow_guard(test_not_unlocked, slow_region); 5063 } 5064 } 5065 5066 // Get the hash value and check to see that it has been properly assigned. 5067 // We depend on hash_mask being at most 32 bits and avoid the use of 5068 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 5069 // vm: see markWord.hpp. 5070 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 5071 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 5072 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 5073 // This hack lets the hash bits live anywhere in the mark object now, as long 5074 // as the shift drops the relevant bits into the low 32 bits. Note that 5075 // Java spec says that HashCode is an int so there's no point in capturing 5076 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 5077 hshifted_header = ConvX2I(hshifted_header); 5078 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 5079 5080 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 5081 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 5082 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 5083 5084 generate_slow_guard(test_assigned, slow_region); 5085 5086 Node* init_mem = reset_memory(); 5087 // fill in the rest of the null path: 5088 result_io ->init_req(_null_path, i_o()); 5089 result_mem->init_req(_null_path, init_mem); 5090 5091 result_val->init_req(_fast_path, hash_val); 5092 result_reg->init_req(_fast_path, control()); 5093 result_io ->init_req(_fast_path, i_o()); 5094 result_mem->init_req(_fast_path, init_mem); 5095 5096 // Generate code for the slow case. We make a call to hashCode(). 5097 set_control(_gvn.transform(slow_region)); 5098 if (!stopped()) { 5099 // No need for PreserveJVMState, because we're using up the present state. 5100 set_all_memory(init_mem); 5101 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 5102 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 5103 Node* slow_result = set_results_for_java_call(slow_call); 5104 // this->control() comes from set_results_for_java_call 5105 result_reg->init_req(_slow_path, control()); 5106 result_val->init_req(_slow_path, slow_result); 5107 result_io ->set_req(_slow_path, i_o()); 5108 result_mem ->set_req(_slow_path, reset_memory()); 5109 } 5110 5111 // Return the combined state. 5112 set_i_o( _gvn.transform(result_io) ); 5113 set_all_memory( _gvn.transform(result_mem)); 5114 5115 set_result(result_reg, result_val); 5116 return true; 5117 } 5118 5119 //---------------------------inline_native_getClass---------------------------- 5120 // public final native Class<?> java.lang.Object.getClass(); 5121 // 5122 // Build special case code for calls to getClass on an object. 5123 bool LibraryCallKit::inline_native_getClass() { 5124 Node* obj = argument(0); 5125 if (obj->is_InlineType()) { 5126 const Type* t = _gvn.type(obj); 5127 if (t->maybe_null()) { 5128 null_check(obj); 5129 } 5130 set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror()))); 5131 return true; 5132 } 5133 obj = null_check_receiver(); 5134 if (stopped()) return true; 5135 set_result(load_mirror_from_klass(load_object_klass(obj))); 5136 return true; 5137 } 5138 5139 //-----------------inline_native_Reflection_getCallerClass--------------------- 5140 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 5141 // 5142 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 5143 // 5144 // NOTE: This code must perform the same logic as JVM_GetCallerClass 5145 // in that it must skip particular security frames and checks for 5146 // caller sensitive methods. 5147 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 5148 #ifndef PRODUCT 5149 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5150 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 5151 } 5152 #endif 5153 5154 if (!jvms()->has_method()) { 5155 #ifndef PRODUCT 5156 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5157 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 5158 } 5159 #endif 5160 return false; 5161 } 5162 5163 // Walk back up the JVM state to find the caller at the required 5164 // depth. 5165 JVMState* caller_jvms = jvms(); 5166 5167 // Cf. JVM_GetCallerClass 5168 // NOTE: Start the loop at depth 1 because the current JVM state does 5169 // not include the Reflection.getCallerClass() frame. 5170 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 5171 ciMethod* m = caller_jvms->method(); 5172 switch (n) { 5173 case 0: 5174 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 5175 break; 5176 case 1: 5177 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 5178 if (!m->caller_sensitive()) { 5179 #ifndef PRODUCT 5180 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5181 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 5182 } 5183 #endif 5184 return false; // bail-out; let JVM_GetCallerClass do the work 5185 } 5186 break; 5187 default: 5188 if (!m->is_ignored_by_security_stack_walk()) { 5189 // We have reached the desired frame; return the holder class. 5190 // Acquire method holder as java.lang.Class and push as constant. 5191 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 5192 ciInstance* caller_mirror = caller_klass->java_mirror(); 5193 set_result(makecon(TypeInstPtr::make(caller_mirror))); 5194 5195 #ifndef PRODUCT 5196 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5197 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 5198 tty->print_cr(" JVM state at this point:"); 5199 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5200 ciMethod* m = jvms()->of_depth(i)->method(); 5201 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5202 } 5203 } 5204 #endif 5205 return true; 5206 } 5207 break; 5208 } 5209 } 5210 5211 #ifndef PRODUCT 5212 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5213 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 5214 tty->print_cr(" JVM state at this point:"); 5215 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5216 ciMethod* m = jvms()->of_depth(i)->method(); 5217 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5218 } 5219 } 5220 #endif 5221 5222 return false; // bail-out; let JVM_GetCallerClass do the work 5223 } 5224 5225 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 5226 Node* arg = argument(0); 5227 Node* result = nullptr; 5228 5229 switch (id) { 5230 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 5231 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 5232 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 5233 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 5234 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 5235 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 5236 5237 case vmIntrinsics::_doubleToLongBits: { 5238 // two paths (plus control) merge in a wood 5239 RegionNode *r = new RegionNode(3); 5240 Node *phi = new PhiNode(r, TypeLong::LONG); 5241 5242 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 5243 // Build the boolean node 5244 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5245 5246 // Branch either way. 5247 // NaN case is less traveled, which makes all the difference. 5248 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5249 Node *opt_isnan = _gvn.transform(ifisnan); 5250 assert( opt_isnan->is_If(), "Expect an IfNode"); 5251 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5252 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5253 5254 set_control(iftrue); 5255 5256 static const jlong nan_bits = CONST64(0x7ff8000000000000); 5257 Node *slow_result = longcon(nan_bits); // return NaN 5258 phi->init_req(1, _gvn.transform( slow_result )); 5259 r->init_req(1, iftrue); 5260 5261 // Else fall through 5262 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5263 set_control(iffalse); 5264 5265 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 5266 r->init_req(2, iffalse); 5267 5268 // Post merge 5269 set_control(_gvn.transform(r)); 5270 record_for_igvn(r); 5271 5272 C->set_has_split_ifs(true); // Has chance for split-if optimization 5273 result = phi; 5274 assert(result->bottom_type()->isa_long(), "must be"); 5275 break; 5276 } 5277 5278 case vmIntrinsics::_floatToIntBits: { 5279 // two paths (plus control) merge in a wood 5280 RegionNode *r = new RegionNode(3); 5281 Node *phi = new PhiNode(r, TypeInt::INT); 5282 5283 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 5284 // Build the boolean node 5285 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5286 5287 // Branch either way. 5288 // NaN case is less traveled, which makes all the difference. 5289 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5290 Node *opt_isnan = _gvn.transform(ifisnan); 5291 assert( opt_isnan->is_If(), "Expect an IfNode"); 5292 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5293 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5294 5295 set_control(iftrue); 5296 5297 static const jint nan_bits = 0x7fc00000; 5298 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 5299 phi->init_req(1, _gvn.transform( slow_result )); 5300 r->init_req(1, iftrue); 5301 5302 // Else fall through 5303 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5304 set_control(iffalse); 5305 5306 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 5307 r->init_req(2, iffalse); 5308 5309 // Post merge 5310 set_control(_gvn.transform(r)); 5311 record_for_igvn(r); 5312 5313 C->set_has_split_ifs(true); // Has chance for split-if optimization 5314 result = phi; 5315 assert(result->bottom_type()->isa_int(), "must be"); 5316 break; 5317 } 5318 5319 default: 5320 fatal_unexpected_iid(id); 5321 break; 5322 } 5323 set_result(_gvn.transform(result)); 5324 return true; 5325 } 5326 5327 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5328 Node* arg = argument(0); 5329 Node* result = nullptr; 5330 5331 switch (id) { 5332 case vmIntrinsics::_floatIsInfinite: 5333 result = new IsInfiniteFNode(arg); 5334 break; 5335 case vmIntrinsics::_floatIsFinite: 5336 result = new IsFiniteFNode(arg); 5337 break; 5338 case vmIntrinsics::_doubleIsInfinite: 5339 result = new IsInfiniteDNode(arg); 5340 break; 5341 case vmIntrinsics::_doubleIsFinite: 5342 result = new IsFiniteDNode(arg); 5343 break; 5344 default: 5345 fatal_unexpected_iid(id); 5346 break; 5347 } 5348 set_result(_gvn.transform(result)); 5349 return true; 5350 } 5351 5352 //----------------------inline_unsafe_copyMemory------------------------- 5353 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5354 5355 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5356 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5357 const Type* base_t = gvn.type(base); 5358 5359 bool in_native = (base_t == TypePtr::NULL_PTR); 5360 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5361 bool is_mixed = !in_heap && !in_native; 5362 5363 if (is_mixed) { 5364 return true; // mixed accesses can touch both on-heap and off-heap memory 5365 } 5366 if (in_heap) { 5367 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5368 if (!is_prim_array) { 5369 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5370 // there's not enough type information available to determine proper memory slice for it. 5371 return true; 5372 } 5373 } 5374 return false; 5375 } 5376 5377 bool LibraryCallKit::inline_unsafe_copyMemory() { 5378 if (callee()->is_static()) return false; // caller must have the capability! 5379 null_check_receiver(); // null-check receiver 5380 if (stopped()) return true; 5381 5382 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5383 5384 Node* src_base = argument(1); // type: oop 5385 Node* src_off = ConvL2X(argument(2)); // type: long 5386 Node* dst_base = argument(4); // type: oop 5387 Node* dst_off = ConvL2X(argument(5)); // type: long 5388 Node* size = ConvL2X(argument(7)); // type: long 5389 5390 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5391 "fieldOffset must be byte-scaled"); 5392 5393 Node* src_addr = make_unsafe_address(src_base, src_off); 5394 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5395 5396 Node* thread = _gvn.transform(new ThreadLocalNode()); 5397 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5398 BasicType doing_unsafe_access_bt = T_BYTE; 5399 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5400 5401 // update volatile field 5402 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5403 5404 int flags = RC_LEAF | RC_NO_FP; 5405 5406 const TypePtr* dst_type = TypePtr::BOTTOM; 5407 5408 // Adjust memory effects of the runtime call based on input values. 5409 if (!has_wide_mem(_gvn, src_addr, src_base) && 5410 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5411 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5412 5413 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5414 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5415 flags |= RC_NARROW_MEM; // narrow in memory 5416 } 5417 } 5418 5419 // Call it. Note that the length argument is not scaled. 5420 make_runtime_call(flags, 5421 OptoRuntime::fast_arraycopy_Type(), 5422 StubRoutines::unsafe_arraycopy(), 5423 "unsafe_arraycopy", 5424 dst_type, 5425 src_addr, dst_addr, size XTOP); 5426 5427 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5428 5429 return true; 5430 } 5431 5432 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5433 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5434 bool LibraryCallKit::inline_unsafe_setMemory() { 5435 if (callee()->is_static()) return false; // caller must have the capability! 5436 null_check_receiver(); // null-check receiver 5437 if (stopped()) return true; 5438 5439 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5440 5441 Node* dst_base = argument(1); // type: oop 5442 Node* dst_off = ConvL2X(argument(2)); // type: long 5443 Node* size = ConvL2X(argument(4)); // type: long 5444 Node* byte = argument(6); // type: byte 5445 5446 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5447 "fieldOffset must be byte-scaled"); 5448 5449 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5450 5451 Node* thread = _gvn.transform(new ThreadLocalNode()); 5452 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5453 BasicType doing_unsafe_access_bt = T_BYTE; 5454 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5455 5456 // update volatile field 5457 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5458 5459 int flags = RC_LEAF | RC_NO_FP; 5460 5461 const TypePtr* dst_type = TypePtr::BOTTOM; 5462 5463 // Adjust memory effects of the runtime call based on input values. 5464 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5465 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5466 5467 flags |= RC_NARROW_MEM; // narrow in memory 5468 } 5469 5470 // Call it. Note that the length argument is not scaled. 5471 make_runtime_call(flags, 5472 OptoRuntime::make_setmemory_Type(), 5473 StubRoutines::unsafe_setmemory(), 5474 "unsafe_setmemory", 5475 dst_type, 5476 dst_addr, size XTOP, byte); 5477 5478 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5479 5480 return true; 5481 } 5482 5483 #undef XTOP 5484 5485 //----------------------inline_unsafe_isFlatArray------------------------ 5486 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass); 5487 // This intrinsic exploits assumptions made by the native implementation 5488 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks. 5489 bool LibraryCallKit::inline_unsafe_isFlatArray() { 5490 Node* cls = argument(1); 5491 Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset()); 5492 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, 5493 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT)); 5494 Node* result = flat_array_test(kls); 5495 set_result(result); 5496 return true; 5497 } 5498 5499 //------------------------clone_coping----------------------------------- 5500 // Helper function for inline_native_clone. 5501 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5502 assert(obj_size != nullptr, ""); 5503 Node* raw_obj = alloc_obj->in(1); 5504 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5505 5506 AllocateNode* alloc = nullptr; 5507 if (ReduceBulkZeroing && 5508 // If we are implementing an array clone without knowing its source type 5509 // (can happen when compiling the array-guarded branch of a reflective 5510 // Object.clone() invocation), initialize the array within the allocation. 5511 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5512 // to a runtime clone call that assumes fully initialized source arrays. 5513 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5514 // We will be completely responsible for initializing this object - 5515 // mark Initialize node as complete. 5516 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5517 // The object was just allocated - there should be no any stores! 5518 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5519 // Mark as complete_with_arraycopy so that on AllocateNode 5520 // expansion, we know this AllocateNode is initialized by an array 5521 // copy and a StoreStore barrier exists after the array copy. 5522 alloc->initialization()->set_complete_with_arraycopy(); 5523 } 5524 5525 Node* size = _gvn.transform(obj_size); 5526 access_clone(obj, alloc_obj, size, is_array); 5527 5528 // Do not let reads from the cloned object float above the arraycopy. 5529 if (alloc != nullptr) { 5530 // Do not let stores that initialize this object be reordered with 5531 // a subsequent store that would make this object accessible by 5532 // other threads. 5533 // Record what AllocateNode this StoreStore protects so that 5534 // escape analysis can go from the MemBarStoreStoreNode to the 5535 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5536 // based on the escape status of the AllocateNode. 5537 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5538 } else { 5539 insert_mem_bar(Op_MemBarCPUOrder); 5540 } 5541 } 5542 5543 //------------------------inline_native_clone---------------------------- 5544 // protected native Object java.lang.Object.clone(); 5545 // 5546 // Here are the simple edge cases: 5547 // null receiver => normal trap 5548 // virtual and clone was overridden => slow path to out-of-line clone 5549 // not cloneable or finalizer => slow path to out-of-line Object.clone 5550 // 5551 // The general case has two steps, allocation and copying. 5552 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5553 // 5554 // Copying also has two cases, oop arrays and everything else. 5555 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5556 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5557 // 5558 // These steps fold up nicely if and when the cloned object's klass 5559 // can be sharply typed as an object array, a type array, or an instance. 5560 // 5561 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5562 PhiNode* result_val; 5563 5564 // Set the reexecute bit for the interpreter to reexecute 5565 // the bytecode that invokes Object.clone if deoptimization happens. 5566 { PreserveReexecuteState preexecs(this); 5567 jvms()->set_should_reexecute(true); 5568 5569 Node* obj = argument(0); 5570 obj = null_check_receiver(); 5571 if (stopped()) return true; 5572 5573 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5574 if (obj_type->is_inlinetypeptr()) { 5575 // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have 5576 // no identity. 5577 set_result(obj); 5578 return true; 5579 } 5580 5581 // If we are going to clone an instance, we need its exact type to 5582 // know the number and types of fields to convert the clone to 5583 // loads/stores. Maybe a speculative type can help us. 5584 if (!obj_type->klass_is_exact() && 5585 obj_type->speculative_type() != nullptr && 5586 obj_type->speculative_type()->is_instance_klass() && 5587 !obj_type->speculative_type()->is_inlinetype()) { 5588 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5589 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5590 !spec_ik->has_injected_fields()) { 5591 if (!obj_type->isa_instptr() || 5592 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5593 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5594 } 5595 } 5596 } 5597 5598 // Conservatively insert a memory barrier on all memory slices. 5599 // Do not let writes into the original float below the clone. 5600 insert_mem_bar(Op_MemBarCPUOrder); 5601 5602 // paths into result_reg: 5603 enum { 5604 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5605 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5606 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5607 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5608 PATH_LIMIT 5609 }; 5610 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5611 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5612 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5613 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5614 record_for_igvn(result_reg); 5615 5616 Node* obj_klass = load_object_klass(obj); 5617 // We only go to the fast case code if we pass a number of guards. 5618 // The paths which do not pass are accumulated in the slow_region. 5619 RegionNode* slow_region = new RegionNode(1); 5620 record_for_igvn(slow_region); 5621 5622 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 5623 if (array_ctl != nullptr) { 5624 // It's an array. 5625 PreserveJVMState pjvms(this); 5626 set_control(array_ctl); 5627 5628 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5629 const TypeAryPtr* ary_ptr = obj_type->isa_aryptr(); 5630 if (UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) && 5631 obj_type->can_be_inline_array() && 5632 (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) { 5633 // Flat inline type array may have object field that would require a 5634 // write barrier. Conservatively, go to slow path. 5635 generate_fair_guard(flat_array_test(obj_klass), slow_region); 5636 } 5637 5638 if (!stopped()) { 5639 Node* obj_length = load_array_length(obj); 5640 Node* array_size = nullptr; // Size of the array without object alignment padding. 5641 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5642 5643 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5644 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5645 // If it is an oop array, it requires very special treatment, 5646 // because gc barriers are required when accessing the array. 5647 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5648 if (is_obja != nullptr) { 5649 PreserveJVMState pjvms2(this); 5650 set_control(is_obja); 5651 // Generate a direct call to the right arraycopy function(s). 5652 // Clones are always tightly coupled. 5653 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5654 ac->set_clone_oop_array(); 5655 Node* n = _gvn.transform(ac); 5656 assert(n == ac, "cannot disappear"); 5657 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5658 5659 result_reg->init_req(_objArray_path, control()); 5660 result_val->init_req(_objArray_path, alloc_obj); 5661 result_i_o ->set_req(_objArray_path, i_o()); 5662 result_mem ->set_req(_objArray_path, reset_memory()); 5663 } 5664 } 5665 // Otherwise, there are no barriers to worry about. 5666 // (We can dispense with card marks if we know the allocation 5667 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5668 // causes the non-eden paths to take compensating steps to 5669 // simulate a fresh allocation, so that no further 5670 // card marks are required in compiled code to initialize 5671 // the object.) 5672 5673 if (!stopped()) { 5674 copy_to_clone(obj, alloc_obj, array_size, true); 5675 5676 // Present the results of the copy. 5677 result_reg->init_req(_array_path, control()); 5678 result_val->init_req(_array_path, alloc_obj); 5679 result_i_o ->set_req(_array_path, i_o()); 5680 result_mem ->set_req(_array_path, reset_memory()); 5681 } 5682 } 5683 } 5684 5685 if (!stopped()) { 5686 // It's an instance (we did array above). Make the slow-path tests. 5687 // If this is a virtual call, we generate a funny guard. We grab 5688 // the vtable entry corresponding to clone() from the target object. 5689 // If the target method which we are calling happens to be the 5690 // Object clone() method, we pass the guard. We do not need this 5691 // guard for non-virtual calls; the caller is known to be the native 5692 // Object clone(). 5693 if (is_virtual) { 5694 generate_virtual_guard(obj_klass, slow_region); 5695 } 5696 5697 // The object must be easily cloneable and must not have a finalizer. 5698 // Both of these conditions may be checked in a single test. 5699 // We could optimize the test further, but we don't care. 5700 generate_misc_flags_guard(obj_klass, 5701 // Test both conditions: 5702 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5703 // Must be cloneable but not finalizer: 5704 KlassFlags::_misc_is_cloneable_fast, 5705 slow_region); 5706 } 5707 5708 if (!stopped()) { 5709 // It's an instance, and it passed the slow-path tests. 5710 PreserveJVMState pjvms(this); 5711 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5712 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5713 // is reexecuted if deoptimization occurs and there could be problems when merging 5714 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5715 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5716 5717 copy_to_clone(obj, alloc_obj, obj_size, false); 5718 5719 // Present the results of the slow call. 5720 result_reg->init_req(_instance_path, control()); 5721 result_val->init_req(_instance_path, alloc_obj); 5722 result_i_o ->set_req(_instance_path, i_o()); 5723 result_mem ->set_req(_instance_path, reset_memory()); 5724 } 5725 5726 // Generate code for the slow case. We make a call to clone(). 5727 set_control(_gvn.transform(slow_region)); 5728 if (!stopped()) { 5729 PreserveJVMState pjvms(this); 5730 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5731 // We need to deoptimize on exception (see comment above) 5732 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5733 // this->control() comes from set_results_for_java_call 5734 result_reg->init_req(_slow_path, control()); 5735 result_val->init_req(_slow_path, slow_result); 5736 result_i_o ->set_req(_slow_path, i_o()); 5737 result_mem ->set_req(_slow_path, reset_memory()); 5738 } 5739 5740 // Return the combined state. 5741 set_control( _gvn.transform(result_reg)); 5742 set_i_o( _gvn.transform(result_i_o)); 5743 set_all_memory( _gvn.transform(result_mem)); 5744 } // original reexecute is set back here 5745 5746 set_result(_gvn.transform(result_val)); 5747 return true; 5748 } 5749 5750 // If we have a tightly coupled allocation, the arraycopy may take care 5751 // of the array initialization. If one of the guards we insert between 5752 // the allocation and the arraycopy causes a deoptimization, an 5753 // uninitialized array will escape the compiled method. To prevent that 5754 // we set the JVM state for uncommon traps between the allocation and 5755 // the arraycopy to the state before the allocation so, in case of 5756 // deoptimization, we'll reexecute the allocation and the 5757 // initialization. 5758 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5759 if (alloc != nullptr) { 5760 ciMethod* trap_method = alloc->jvms()->method(); 5761 int trap_bci = alloc->jvms()->bci(); 5762 5763 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5764 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5765 // Make sure there's no store between the allocation and the 5766 // arraycopy otherwise visible side effects could be rexecuted 5767 // in case of deoptimization and cause incorrect execution. 5768 bool no_interfering_store = true; 5769 Node* mem = alloc->in(TypeFunc::Memory); 5770 if (mem->is_MergeMem()) { 5771 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5772 Node* n = mms.memory(); 5773 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5774 assert(n->is_Store(), "what else?"); 5775 no_interfering_store = false; 5776 break; 5777 } 5778 } 5779 } else { 5780 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5781 Node* n = mms.memory(); 5782 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5783 assert(n->is_Store(), "what else?"); 5784 no_interfering_store = false; 5785 break; 5786 } 5787 } 5788 } 5789 5790 if (no_interfering_store) { 5791 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5792 5793 JVMState* saved_jvms = jvms(); 5794 saved_reexecute_sp = _reexecute_sp; 5795 5796 set_jvms(sfpt->jvms()); 5797 _reexecute_sp = jvms()->sp(); 5798 5799 return saved_jvms; 5800 } 5801 } 5802 } 5803 return nullptr; 5804 } 5805 5806 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5807 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5808 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5809 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5810 uint size = alloc->req(); 5811 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5812 old_jvms->set_map(sfpt); 5813 for (uint i = 0; i < size; i++) { 5814 sfpt->init_req(i, alloc->in(i)); 5815 } 5816 int adjustment = 1; 5817 const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr(); 5818 if (ary_klass_ptr->is_null_free()) { 5819 // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newNullRestrictedArray 5820 // which requires both the component type and the array length on stack for re-execution. Re-create and push 5821 // the component type. 5822 ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass(); 5823 ciInstance* instance = klass->component_mirror_instance(); 5824 const TypeInstPtr* t_instance = TypeInstPtr::make(instance); 5825 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance)); 5826 adjustment++; 5827 } 5828 // re-push array length for deoptimization 5829 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength)); 5830 old_jvms->set_sp(old_jvms->sp() + adjustment); 5831 old_jvms->set_monoff(old_jvms->monoff() + adjustment); 5832 old_jvms->set_scloff(old_jvms->scloff() + adjustment); 5833 old_jvms->set_endoff(old_jvms->endoff() + adjustment); 5834 old_jvms->set_should_reexecute(true); 5835 5836 sfpt->set_i_o(map()->i_o()); 5837 sfpt->set_memory(map()->memory()); 5838 sfpt->set_control(map()->control()); 5839 return sfpt; 5840 } 5841 5842 // In case of a deoptimization, we restart execution at the 5843 // allocation, allocating a new array. We would leave an uninitialized 5844 // array in the heap that GCs wouldn't expect. Move the allocation 5845 // after the traps so we don't allocate the array if we 5846 // deoptimize. This is possible because tightly_coupled_allocation() 5847 // guarantees there's no observer of the allocated array at this point 5848 // and the control flow is simple enough. 5849 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5850 int saved_reexecute_sp, uint new_idx) { 5851 if (saved_jvms_before_guards != nullptr && !stopped()) { 5852 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5853 5854 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5855 // restore JVM state to the state at the arraycopy 5856 saved_jvms_before_guards->map()->set_control(map()->control()); 5857 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5858 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5859 // If we've improved the types of some nodes (null check) while 5860 // emitting the guards, propagate them to the current state 5861 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5862 set_jvms(saved_jvms_before_guards); 5863 _reexecute_sp = saved_reexecute_sp; 5864 5865 // Remove the allocation from above the guards 5866 CallProjections* callprojs = alloc->extract_projections(true); 5867 InitializeNode* init = alloc->initialization(); 5868 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5869 C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5870 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5871 5872 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5873 // the allocation (i.e. is only valid if the allocation succeeds): 5874 // 1) replace CastIINode with AllocateArrayNode's length here 5875 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5876 // 5877 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5878 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5879 Node* init_control = init->proj_out(TypeFunc::Control); 5880 Node* alloc_length = alloc->Ideal_length(); 5881 #ifdef ASSERT 5882 Node* prev_cast = nullptr; 5883 #endif 5884 for (uint i = 0; i < init_control->outcnt(); i++) { 5885 Node* init_out = init_control->raw_out(i); 5886 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5887 #ifdef ASSERT 5888 if (prev_cast == nullptr) { 5889 prev_cast = init_out; 5890 } else { 5891 if (prev_cast->cmp(*init_out) == false) { 5892 prev_cast->dump(); 5893 init_out->dump(); 5894 assert(false, "not equal CastIINode"); 5895 } 5896 } 5897 #endif 5898 C->gvn_replace_by(init_out, alloc_length); 5899 } 5900 } 5901 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5902 5903 // move the allocation here (after the guards) 5904 _gvn.hash_delete(alloc); 5905 alloc->set_req(TypeFunc::Control, control()); 5906 alloc->set_req(TypeFunc::I_O, i_o()); 5907 Node *mem = reset_memory(); 5908 set_all_memory(mem); 5909 alloc->set_req(TypeFunc::Memory, mem); 5910 set_control(init->proj_out_or_null(TypeFunc::Control)); 5911 set_i_o(callprojs->fallthrough_ioproj); 5912 5913 // Update memory as done in GraphKit::set_output_for_allocation() 5914 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5915 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5916 if (ary_type->isa_aryptr() && length_type != nullptr) { 5917 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5918 } 5919 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5920 int elemidx = C->get_alias_index(telemref); 5921 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5922 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5923 5924 Node* allocx = _gvn.transform(alloc); 5925 assert(allocx == alloc, "where has the allocation gone?"); 5926 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5927 5928 _gvn.hash_delete(dest); 5929 dest->set_req(0, control()); 5930 Node* destx = _gvn.transform(dest); 5931 assert(destx == dest, "where has the allocation result gone?"); 5932 5933 array_ideal_length(alloc, ary_type, true); 5934 } 5935 } 5936 5937 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5938 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5939 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5940 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5941 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5942 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5943 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5944 JVMState* saved_jvms_before_guards) { 5945 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5946 // There is at least one unrelated uncommon trap which needs to be replaced. 5947 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5948 5949 JVMState* saved_jvms = jvms(); 5950 const int saved_reexecute_sp = _reexecute_sp; 5951 set_jvms(sfpt->jvms()); 5952 _reexecute_sp = jvms()->sp(); 5953 5954 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5955 5956 // Restore state 5957 set_jvms(saved_jvms); 5958 _reexecute_sp = saved_reexecute_sp; 5959 } 5960 } 5961 5962 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5963 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5964 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5965 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5966 while (if_proj->is_IfProj()) { 5967 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5968 if (uncommon_trap != nullptr) { 5969 create_new_uncommon_trap(uncommon_trap); 5970 } 5971 assert(if_proj->in(0)->is_If(), "must be If"); 5972 if_proj = if_proj->in(0)->in(0); 5973 } 5974 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5975 "must have reached control projection of init node"); 5976 } 5977 5978 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5979 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5980 assert(trap_request != 0, "no valid UCT trap request"); 5981 PreserveJVMState pjvms(this); 5982 set_control(uncommon_trap_call->in(0)); 5983 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5984 Deoptimization::trap_request_action(trap_request)); 5985 assert(stopped(), "Should be stopped"); 5986 _gvn.hash_delete(uncommon_trap_call); 5987 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5988 } 5989 5990 // Common checks for array sorting intrinsics arguments. 5991 // Returns `true` if checks passed. 5992 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5993 // check address of the class 5994 if (elementType == nullptr || elementType->is_top()) { 5995 return false; // dead path 5996 } 5997 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5998 if (elem_klass == nullptr) { 5999 return false; // dead path 6000 } 6001 // java_mirror_type() returns non-null for compile-time Class constants only 6002 ciType* elem_type = elem_klass->java_mirror_type(); 6003 if (elem_type == nullptr) { 6004 return false; 6005 } 6006 bt = elem_type->basic_type(); 6007 // Disable the intrinsic if the CPU does not support SIMD sort 6008 if (!Matcher::supports_simd_sort(bt)) { 6009 return false; 6010 } 6011 // check address of the array 6012 if (obj == nullptr || obj->is_top()) { 6013 return false; // dead path 6014 } 6015 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 6016 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 6017 return false; // failed input validation 6018 } 6019 return true; 6020 } 6021 6022 //------------------------------inline_array_partition----------------------- 6023 bool LibraryCallKit::inline_array_partition() { 6024 address stubAddr = StubRoutines::select_array_partition_function(); 6025 if (stubAddr == nullptr) { 6026 return false; // Intrinsic's stub is not implemented on this platform 6027 } 6028 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 6029 6030 // no receiver because it is a static method 6031 Node* elementType = argument(0); 6032 Node* obj = argument(1); 6033 Node* offset = argument(2); // long 6034 Node* fromIndex = argument(4); 6035 Node* toIndex = argument(5); 6036 Node* indexPivot1 = argument(6); 6037 Node* indexPivot2 = argument(7); 6038 // PartitionOperation: argument(8) is ignored 6039 6040 Node* pivotIndices = nullptr; 6041 BasicType bt = T_ILLEGAL; 6042 6043 if (!check_array_sort_arguments(elementType, obj, bt)) { 6044 return false; 6045 } 6046 null_check(obj); 6047 // If obj is dead, only null-path is taken. 6048 if (stopped()) { 6049 return true; 6050 } 6051 // Set the original stack and the reexecute bit for the interpreter to reexecute 6052 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 6053 { PreserveReexecuteState preexecs(this); 6054 jvms()->set_should_reexecute(true); 6055 6056 Node* obj_adr = make_unsafe_address(obj, offset); 6057 6058 // create the pivotIndices array of type int and size = 2 6059 Node* size = intcon(2); 6060 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 6061 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 6062 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 6063 guarantee(alloc != nullptr, "created above"); 6064 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 6065 6066 // pass the basic type enum to the stub 6067 Node* elemType = intcon(bt); 6068 6069 // Call the stub 6070 const char *stubName = "array_partition_stub"; 6071 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 6072 stubAddr, stubName, TypePtr::BOTTOM, 6073 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 6074 indexPivot1, indexPivot2); 6075 6076 } // original reexecute is set back here 6077 6078 if (!stopped()) { 6079 set_result(pivotIndices); 6080 } 6081 6082 return true; 6083 } 6084 6085 6086 //------------------------------inline_array_sort----------------------- 6087 bool LibraryCallKit::inline_array_sort() { 6088 address stubAddr = StubRoutines::select_arraysort_function(); 6089 if (stubAddr == nullptr) { 6090 return false; // Intrinsic's stub is not implemented on this platform 6091 } 6092 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 6093 6094 // no receiver because it is a static method 6095 Node* elementType = argument(0); 6096 Node* obj = argument(1); 6097 Node* offset = argument(2); // long 6098 Node* fromIndex = argument(4); 6099 Node* toIndex = argument(5); 6100 // SortOperation: argument(6) is ignored 6101 6102 BasicType bt = T_ILLEGAL; 6103 6104 if (!check_array_sort_arguments(elementType, obj, bt)) { 6105 return false; 6106 } 6107 null_check(obj); 6108 // If obj is dead, only null-path is taken. 6109 if (stopped()) { 6110 return true; 6111 } 6112 Node* obj_adr = make_unsafe_address(obj, offset); 6113 6114 // pass the basic type enum to the stub 6115 Node* elemType = intcon(bt); 6116 6117 // Call the stub. 6118 const char *stubName = "arraysort_stub"; 6119 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 6120 stubAddr, stubName, TypePtr::BOTTOM, 6121 obj_adr, elemType, fromIndex, toIndex); 6122 6123 return true; 6124 } 6125 6126 6127 //------------------------------inline_arraycopy----------------------- 6128 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 6129 // Object dest, int destPos, 6130 // int length); 6131 bool LibraryCallKit::inline_arraycopy() { 6132 // Get the arguments. 6133 Node* src = argument(0); // type: oop 6134 Node* src_offset = argument(1); // type: int 6135 Node* dest = argument(2); // type: oop 6136 Node* dest_offset = argument(3); // type: int 6137 Node* length = argument(4); // type: int 6138 6139 uint new_idx = C->unique(); 6140 6141 // Check for allocation before we add nodes that would confuse 6142 // tightly_coupled_allocation() 6143 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 6144 6145 int saved_reexecute_sp = -1; 6146 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 6147 // See arraycopy_restore_alloc_state() comment 6148 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 6149 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 6150 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 6151 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 6152 6153 // The following tests must be performed 6154 // (1) src and dest are arrays. 6155 // (2) src and dest arrays must have elements of the same BasicType 6156 // (3) src and dest must not be null. 6157 // (4) src_offset must not be negative. 6158 // (5) dest_offset must not be negative. 6159 // (6) length must not be negative. 6160 // (7) src_offset + length must not exceed length of src. 6161 // (8) dest_offset + length must not exceed length of dest. 6162 // (9) each element of an oop array must be assignable 6163 6164 // (3) src and dest must not be null. 6165 // always do this here because we need the JVM state for uncommon traps 6166 Node* null_ctl = top(); 6167 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 6168 assert(null_ctl->is_top(), "no null control here"); 6169 dest = null_check(dest, T_ARRAY); 6170 6171 if (!can_emit_guards) { 6172 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 6173 // guards but the arraycopy node could still take advantage of a 6174 // tightly allocated allocation. tightly_coupled_allocation() is 6175 // called again to make sure it takes the null check above into 6176 // account: the null check is mandatory and if it caused an 6177 // uncommon trap to be emitted then the allocation can't be 6178 // considered tightly coupled in this context. 6179 alloc = tightly_coupled_allocation(dest); 6180 } 6181 6182 bool validated = false; 6183 6184 const Type* src_type = _gvn.type(src); 6185 const Type* dest_type = _gvn.type(dest); 6186 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6187 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6188 6189 // Do we have the type of src? 6190 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6191 // Do we have the type of dest? 6192 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6193 // Is the type for src from speculation? 6194 bool src_spec = false; 6195 // Is the type for dest from speculation? 6196 bool dest_spec = false; 6197 6198 if ((!has_src || !has_dest) && can_emit_guards) { 6199 // We don't have sufficient type information, let's see if 6200 // speculative types can help. We need to have types for both src 6201 // and dest so that it pays off. 6202 6203 // Do we already have or could we have type information for src 6204 bool could_have_src = has_src; 6205 // Do we already have or could we have type information for dest 6206 bool could_have_dest = has_dest; 6207 6208 ciKlass* src_k = nullptr; 6209 if (!has_src) { 6210 src_k = src_type->speculative_type_not_null(); 6211 if (src_k != nullptr && src_k->is_array_klass()) { 6212 could_have_src = true; 6213 } 6214 } 6215 6216 ciKlass* dest_k = nullptr; 6217 if (!has_dest) { 6218 dest_k = dest_type->speculative_type_not_null(); 6219 if (dest_k != nullptr && dest_k->is_array_klass()) { 6220 could_have_dest = true; 6221 } 6222 } 6223 6224 if (could_have_src && could_have_dest) { 6225 // This is going to pay off so emit the required guards 6226 if (!has_src) { 6227 src = maybe_cast_profiled_obj(src, src_k, true); 6228 src_type = _gvn.type(src); 6229 top_src = src_type->isa_aryptr(); 6230 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6231 src_spec = true; 6232 } 6233 if (!has_dest) { 6234 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6235 dest_type = _gvn.type(dest); 6236 top_dest = dest_type->isa_aryptr(); 6237 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6238 dest_spec = true; 6239 } 6240 } 6241 } 6242 6243 if (has_src && has_dest && can_emit_guards) { 6244 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 6245 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 6246 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 6247 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 6248 6249 if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) { 6250 // If both arrays are object arrays then having the exact types 6251 // for both will remove the need for a subtype check at runtime 6252 // before the call and may make it possible to pick a faster copy 6253 // routine (without a subtype check on every element) 6254 // Do we have the exact type of src? 6255 bool could_have_src = src_spec; 6256 // Do we have the exact type of dest? 6257 bool could_have_dest = dest_spec; 6258 ciKlass* src_k = nullptr; 6259 ciKlass* dest_k = nullptr; 6260 if (!src_spec) { 6261 src_k = src_type->speculative_type_not_null(); 6262 if (src_k != nullptr && src_k->is_array_klass()) { 6263 could_have_src = true; 6264 } 6265 } 6266 if (!dest_spec) { 6267 dest_k = dest_type->speculative_type_not_null(); 6268 if (dest_k != nullptr && dest_k->is_array_klass()) { 6269 could_have_dest = true; 6270 } 6271 } 6272 if (could_have_src && could_have_dest) { 6273 // If we can have both exact types, emit the missing guards 6274 if (could_have_src && !src_spec) { 6275 src = maybe_cast_profiled_obj(src, src_k, true); 6276 src_type = _gvn.type(src); 6277 top_src = src_type->isa_aryptr(); 6278 } 6279 if (could_have_dest && !dest_spec) { 6280 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6281 dest_type = _gvn.type(dest); 6282 top_dest = dest_type->isa_aryptr(); 6283 } 6284 } 6285 } 6286 } 6287 6288 ciMethod* trap_method = method(); 6289 int trap_bci = bci(); 6290 if (saved_jvms_before_guards != nullptr) { 6291 trap_method = alloc->jvms()->method(); 6292 trap_bci = alloc->jvms()->bci(); 6293 } 6294 6295 bool negative_length_guard_generated = false; 6296 6297 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 6298 can_emit_guards && !src->is_top() && !dest->is_top()) { 6299 // validate arguments: enables transformation the ArrayCopyNode 6300 validated = true; 6301 6302 RegionNode* slow_region = new RegionNode(1); 6303 record_for_igvn(slow_region); 6304 6305 // (1) src and dest are arrays. 6306 generate_non_array_guard(load_object_klass(src), slow_region); 6307 generate_non_array_guard(load_object_klass(dest), slow_region); 6308 6309 // (2) src and dest arrays must have elements of the same BasicType 6310 // done at macro expansion or at Ideal transformation time 6311 6312 // (4) src_offset must not be negative. 6313 generate_negative_guard(src_offset, slow_region); 6314 6315 // (5) dest_offset must not be negative. 6316 generate_negative_guard(dest_offset, slow_region); 6317 6318 // (7) src_offset + length must not exceed length of src. 6319 generate_limit_guard(src_offset, length, 6320 load_array_length(src), 6321 slow_region); 6322 6323 // (8) dest_offset + length must not exceed length of dest. 6324 generate_limit_guard(dest_offset, length, 6325 load_array_length(dest), 6326 slow_region); 6327 6328 // (6) length must not be negative. 6329 // This is also checked in generate_arraycopy() during macro expansion, but 6330 // we also have to check it here for the case where the ArrayCopyNode will 6331 // be eliminated by Escape Analysis. 6332 if (EliminateAllocations) { 6333 generate_negative_guard(length, slow_region); 6334 negative_length_guard_generated = true; 6335 } 6336 6337 // (9) each element of an oop array must be assignable 6338 Node* dest_klass = load_object_klass(dest); 6339 if (src != dest) { 6340 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 6341 slow_region->add_req(not_subtype_ctrl); 6342 } 6343 6344 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 6345 const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 6346 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6347 src_type = _gvn.type(src); 6348 top_src = src_type->isa_aryptr(); 6349 6350 // Handle flat inline type arrays (null-free arrays are handled by the subtype check above) 6351 if (!stopped() && UseFlatArray) { 6352 // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here. 6353 assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat"); 6354 if (top_src != nullptr && top_src->is_flat()) { 6355 // Src is flat, check that dest is flat as well 6356 if (top_dest != nullptr && !top_dest->is_flat()) { 6357 generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region); 6358 // Since dest is flat and src <: dest, dest must have the same type as src. 6359 top_dest = top_src->cast_to_exactness(false); 6360 assert(top_dest->is_flat(), "dest must be flat"); 6361 dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest)); 6362 } 6363 } else if (top_src == nullptr || !top_src->is_not_flat()) { 6364 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 6365 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 6366 assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat"); 6367 generate_fair_guard(flat_array_test(src), slow_region); 6368 if (top_src != nullptr) { 6369 top_src = top_src->cast_to_not_flat(); 6370 src = _gvn.transform(new CheckCastPPNode(control(), src, top_src)); 6371 } 6372 } 6373 } 6374 6375 { 6376 PreserveJVMState pjvms(this); 6377 set_control(_gvn.transform(slow_region)); 6378 uncommon_trap(Deoptimization::Reason_intrinsic, 6379 Deoptimization::Action_make_not_entrant); 6380 assert(stopped(), "Should be stopped"); 6381 } 6382 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6383 } 6384 6385 if (stopped()) { 6386 return true; 6387 } 6388 6389 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6390 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6391 // so the compiler has a chance to eliminate them: during macro expansion, 6392 // we have to set their control (CastPP nodes are eliminated). 6393 load_object_klass(src), load_object_klass(dest), 6394 load_array_length(src), load_array_length(dest)); 6395 6396 ac->set_arraycopy(validated); 6397 6398 Node* n = _gvn.transform(ac); 6399 if (n == ac) { 6400 ac->connect_outputs(this); 6401 } else { 6402 assert(validated, "shouldn't transform if all arguments not validated"); 6403 set_all_memory(n); 6404 } 6405 clear_upper_avx(); 6406 6407 6408 return true; 6409 } 6410 6411 6412 // Helper function which determines if an arraycopy immediately follows 6413 // an allocation, with no intervening tests or other escapes for the object. 6414 AllocateArrayNode* 6415 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6416 if (stopped()) return nullptr; // no fast path 6417 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6418 6419 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6420 if (alloc == nullptr) return nullptr; 6421 6422 Node* rawmem = memory(Compile::AliasIdxRaw); 6423 // Is the allocation's memory state untouched? 6424 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6425 // Bail out if there have been raw-memory effects since the allocation. 6426 // (Example: There might have been a call or safepoint.) 6427 return nullptr; 6428 } 6429 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6430 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6431 return nullptr; 6432 } 6433 6434 // There must be no unexpected observers of this allocation. 6435 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6436 Node* obs = ptr->fast_out(i); 6437 if (obs != this->map()) { 6438 return nullptr; 6439 } 6440 } 6441 6442 // This arraycopy must unconditionally follow the allocation of the ptr. 6443 Node* alloc_ctl = ptr->in(0); 6444 Node* ctl = control(); 6445 while (ctl != alloc_ctl) { 6446 // There may be guards which feed into the slow_region. 6447 // Any other control flow means that we might not get a chance 6448 // to finish initializing the allocated object. 6449 // Various low-level checks bottom out in uncommon traps. These 6450 // are considered safe since we've already checked above that 6451 // there is no unexpected observer of this allocation. 6452 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6453 assert(ctl->in(0)->is_If(), "must be If"); 6454 ctl = ctl->in(0)->in(0); 6455 } else { 6456 return nullptr; 6457 } 6458 } 6459 6460 // If we get this far, we have an allocation which immediately 6461 // precedes the arraycopy, and we can take over zeroing the new object. 6462 // The arraycopy will finish the initialization, and provide 6463 // a new control state to which we will anchor the destination pointer. 6464 6465 return alloc; 6466 } 6467 6468 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6469 if (node->is_IfProj()) { 6470 Node* other_proj = node->as_IfProj()->other_if_proj(); 6471 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6472 Node* obs = other_proj->fast_out(j); 6473 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6474 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6475 return obs->as_CallStaticJava(); 6476 } 6477 } 6478 } 6479 return nullptr; 6480 } 6481 6482 //-------------inline_encodeISOArray----------------------------------- 6483 // encode char[] to byte[] in ISO_8859_1 or ASCII 6484 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6485 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6486 // no receiver since it is static method 6487 Node *src = argument(0); 6488 Node *src_offset = argument(1); 6489 Node *dst = argument(2); 6490 Node *dst_offset = argument(3); 6491 Node *length = argument(4); 6492 6493 src = must_be_not_null(src, true); 6494 dst = must_be_not_null(dst, true); 6495 6496 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6497 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6498 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6499 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6500 // failed array check 6501 return false; 6502 } 6503 6504 // Figure out the size and type of the elements we will be copying. 6505 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6506 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6507 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6508 return false; 6509 } 6510 6511 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6512 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6513 // 'src_start' points to src array + scaled offset 6514 // 'dst_start' points to dst array + scaled offset 6515 6516 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6517 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6518 enc = _gvn.transform(enc); 6519 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6520 set_memory(res_mem, mtype); 6521 set_result(enc); 6522 clear_upper_avx(); 6523 6524 return true; 6525 } 6526 6527 //-------------inline_multiplyToLen----------------------------------- 6528 bool LibraryCallKit::inline_multiplyToLen() { 6529 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6530 6531 address stubAddr = StubRoutines::multiplyToLen(); 6532 if (stubAddr == nullptr) { 6533 return false; // Intrinsic's stub is not implemented on this platform 6534 } 6535 const char* stubName = "multiplyToLen"; 6536 6537 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6538 6539 // no receiver because it is a static method 6540 Node* x = argument(0); 6541 Node* xlen = argument(1); 6542 Node* y = argument(2); 6543 Node* ylen = argument(3); 6544 Node* z = argument(4); 6545 6546 x = must_be_not_null(x, true); 6547 y = must_be_not_null(y, true); 6548 6549 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6550 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6551 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6552 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6553 // failed array check 6554 return false; 6555 } 6556 6557 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6558 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6559 if (x_elem != T_INT || y_elem != T_INT) { 6560 return false; 6561 } 6562 6563 Node* x_start = array_element_address(x, intcon(0), x_elem); 6564 Node* y_start = array_element_address(y, intcon(0), y_elem); 6565 // 'x_start' points to x array + scaled xlen 6566 // 'y_start' points to y array + scaled ylen 6567 6568 Node* z_start = array_element_address(z, intcon(0), T_INT); 6569 6570 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6571 OptoRuntime::multiplyToLen_Type(), 6572 stubAddr, stubName, TypePtr::BOTTOM, 6573 x_start, xlen, y_start, ylen, z_start); 6574 6575 C->set_has_split_ifs(true); // Has chance for split-if optimization 6576 set_result(z); 6577 return true; 6578 } 6579 6580 //-------------inline_squareToLen------------------------------------ 6581 bool LibraryCallKit::inline_squareToLen() { 6582 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6583 6584 address stubAddr = StubRoutines::squareToLen(); 6585 if (stubAddr == nullptr) { 6586 return false; // Intrinsic's stub is not implemented on this platform 6587 } 6588 const char* stubName = "squareToLen"; 6589 6590 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6591 6592 Node* x = argument(0); 6593 Node* len = argument(1); 6594 Node* z = argument(2); 6595 Node* zlen = argument(3); 6596 6597 x = must_be_not_null(x, true); 6598 z = must_be_not_null(z, true); 6599 6600 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6601 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6602 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6603 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6604 // failed array check 6605 return false; 6606 } 6607 6608 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6609 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6610 if (x_elem != T_INT || z_elem != T_INT) { 6611 return false; 6612 } 6613 6614 6615 Node* x_start = array_element_address(x, intcon(0), x_elem); 6616 Node* z_start = array_element_address(z, intcon(0), z_elem); 6617 6618 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6619 OptoRuntime::squareToLen_Type(), 6620 stubAddr, stubName, TypePtr::BOTTOM, 6621 x_start, len, z_start, zlen); 6622 6623 set_result(z); 6624 return true; 6625 } 6626 6627 //-------------inline_mulAdd------------------------------------------ 6628 bool LibraryCallKit::inline_mulAdd() { 6629 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6630 6631 address stubAddr = StubRoutines::mulAdd(); 6632 if (stubAddr == nullptr) { 6633 return false; // Intrinsic's stub is not implemented on this platform 6634 } 6635 const char* stubName = "mulAdd"; 6636 6637 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6638 6639 Node* out = argument(0); 6640 Node* in = argument(1); 6641 Node* offset = argument(2); 6642 Node* len = argument(3); 6643 Node* k = argument(4); 6644 6645 in = must_be_not_null(in, true); 6646 out = must_be_not_null(out, true); 6647 6648 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6649 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6650 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6651 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6652 // failed array check 6653 return false; 6654 } 6655 6656 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6657 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6658 if (out_elem != T_INT || in_elem != T_INT) { 6659 return false; 6660 } 6661 6662 Node* outlen = load_array_length(out); 6663 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6664 Node* out_start = array_element_address(out, intcon(0), out_elem); 6665 Node* in_start = array_element_address(in, intcon(0), in_elem); 6666 6667 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6668 OptoRuntime::mulAdd_Type(), 6669 stubAddr, stubName, TypePtr::BOTTOM, 6670 out_start,in_start, new_offset, len, k); 6671 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6672 set_result(result); 6673 return true; 6674 } 6675 6676 //-------------inline_montgomeryMultiply----------------------------------- 6677 bool LibraryCallKit::inline_montgomeryMultiply() { 6678 address stubAddr = StubRoutines::montgomeryMultiply(); 6679 if (stubAddr == nullptr) { 6680 return false; // Intrinsic's stub is not implemented on this platform 6681 } 6682 6683 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6684 const char* stubName = "montgomery_multiply"; 6685 6686 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6687 6688 Node* a = argument(0); 6689 Node* b = argument(1); 6690 Node* n = argument(2); 6691 Node* len = argument(3); 6692 Node* inv = argument(4); 6693 Node* m = argument(6); 6694 6695 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6696 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6697 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6698 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6699 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6700 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6701 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6702 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6703 // failed array check 6704 return false; 6705 } 6706 6707 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6708 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6709 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6710 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6711 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6712 return false; 6713 } 6714 6715 // Make the call 6716 { 6717 Node* a_start = array_element_address(a, intcon(0), a_elem); 6718 Node* b_start = array_element_address(b, intcon(0), b_elem); 6719 Node* n_start = array_element_address(n, intcon(0), n_elem); 6720 Node* m_start = array_element_address(m, intcon(0), m_elem); 6721 6722 Node* call = make_runtime_call(RC_LEAF, 6723 OptoRuntime::montgomeryMultiply_Type(), 6724 stubAddr, stubName, TypePtr::BOTTOM, 6725 a_start, b_start, n_start, len, inv, top(), 6726 m_start); 6727 set_result(m); 6728 } 6729 6730 return true; 6731 } 6732 6733 bool LibraryCallKit::inline_montgomerySquare() { 6734 address stubAddr = StubRoutines::montgomerySquare(); 6735 if (stubAddr == nullptr) { 6736 return false; // Intrinsic's stub is not implemented on this platform 6737 } 6738 6739 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6740 const char* stubName = "montgomery_square"; 6741 6742 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6743 6744 Node* a = argument(0); 6745 Node* n = argument(1); 6746 Node* len = argument(2); 6747 Node* inv = argument(3); 6748 Node* m = argument(5); 6749 6750 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6751 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6752 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6753 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6754 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6755 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6756 // failed array check 6757 return false; 6758 } 6759 6760 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6761 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6762 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6763 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6764 return false; 6765 } 6766 6767 // Make the call 6768 { 6769 Node* a_start = array_element_address(a, intcon(0), a_elem); 6770 Node* n_start = array_element_address(n, intcon(0), n_elem); 6771 Node* m_start = array_element_address(m, intcon(0), m_elem); 6772 6773 Node* call = make_runtime_call(RC_LEAF, 6774 OptoRuntime::montgomerySquare_Type(), 6775 stubAddr, stubName, TypePtr::BOTTOM, 6776 a_start, n_start, len, inv, top(), 6777 m_start); 6778 set_result(m); 6779 } 6780 6781 return true; 6782 } 6783 6784 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6785 address stubAddr = nullptr; 6786 const char* stubName = nullptr; 6787 6788 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6789 if (stubAddr == nullptr) { 6790 return false; // Intrinsic's stub is not implemented on this platform 6791 } 6792 6793 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6794 6795 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6796 6797 Node* newArr = argument(0); 6798 Node* oldArr = argument(1); 6799 Node* newIdx = argument(2); 6800 Node* shiftCount = argument(3); 6801 Node* numIter = argument(4); 6802 6803 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6804 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6805 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6806 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6807 return false; 6808 } 6809 6810 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6811 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6812 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6813 return false; 6814 } 6815 6816 // Make the call 6817 { 6818 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6819 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6820 6821 Node* call = make_runtime_call(RC_LEAF, 6822 OptoRuntime::bigIntegerShift_Type(), 6823 stubAddr, 6824 stubName, 6825 TypePtr::BOTTOM, 6826 newArr_start, 6827 oldArr_start, 6828 newIdx, 6829 shiftCount, 6830 numIter); 6831 } 6832 6833 return true; 6834 } 6835 6836 //-------------inline_vectorizedMismatch------------------------------ 6837 bool LibraryCallKit::inline_vectorizedMismatch() { 6838 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6839 6840 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6841 Node* obja = argument(0); // Object 6842 Node* aoffset = argument(1); // long 6843 Node* objb = argument(3); // Object 6844 Node* boffset = argument(4); // long 6845 Node* length = argument(6); // int 6846 Node* scale = argument(7); // int 6847 6848 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6849 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6850 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6851 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6852 scale == top()) { 6853 return false; // failed input validation 6854 } 6855 6856 Node* obja_adr = make_unsafe_address(obja, aoffset); 6857 Node* objb_adr = make_unsafe_address(objb, boffset); 6858 6859 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6860 // 6861 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6862 // if (length <= inline_limit) { 6863 // inline_path: 6864 // vmask = VectorMaskGen length 6865 // vload1 = LoadVectorMasked obja, vmask 6866 // vload2 = LoadVectorMasked objb, vmask 6867 // result1 = VectorCmpMasked vload1, vload2, vmask 6868 // } else { 6869 // call_stub_path: 6870 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6871 // } 6872 // exit_block: 6873 // return Phi(result1, result2); 6874 // 6875 enum { inline_path = 1, // input is small enough to process it all at once 6876 stub_path = 2, // input is too large; call into the VM 6877 PATH_LIMIT = 3 6878 }; 6879 6880 Node* exit_block = new RegionNode(PATH_LIMIT); 6881 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6882 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6883 6884 Node* call_stub_path = control(); 6885 6886 BasicType elem_bt = T_ILLEGAL; 6887 6888 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6889 if (scale_t->is_con()) { 6890 switch (scale_t->get_con()) { 6891 case 0: elem_bt = T_BYTE; break; 6892 case 1: elem_bt = T_SHORT; break; 6893 case 2: elem_bt = T_INT; break; 6894 case 3: elem_bt = T_LONG; break; 6895 6896 default: elem_bt = T_ILLEGAL; break; // not supported 6897 } 6898 } 6899 6900 int inline_limit = 0; 6901 bool do_partial_inline = false; 6902 6903 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6904 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6905 do_partial_inline = inline_limit >= 16; 6906 } 6907 6908 if (do_partial_inline) { 6909 assert(elem_bt != T_ILLEGAL, "sanity"); 6910 6911 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6912 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6913 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6914 6915 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6916 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6917 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6918 6919 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6920 6921 if (!stopped()) { 6922 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6923 6924 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6925 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6926 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6927 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6928 6929 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6930 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6931 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6932 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6933 6934 exit_block->init_req(inline_path, control()); 6935 memory_phi->init_req(inline_path, map()->memory()); 6936 result_phi->init_req(inline_path, result); 6937 6938 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6939 clear_upper_avx(); 6940 } 6941 } 6942 } 6943 6944 if (call_stub_path != nullptr) { 6945 set_control(call_stub_path); 6946 6947 Node* call = make_runtime_call(RC_LEAF, 6948 OptoRuntime::vectorizedMismatch_Type(), 6949 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6950 obja_adr, objb_adr, length, scale); 6951 6952 exit_block->init_req(stub_path, control()); 6953 memory_phi->init_req(stub_path, map()->memory()); 6954 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6955 } 6956 6957 exit_block = _gvn.transform(exit_block); 6958 memory_phi = _gvn.transform(memory_phi); 6959 result_phi = _gvn.transform(result_phi); 6960 6961 set_control(exit_block); 6962 set_all_memory(memory_phi); 6963 set_result(result_phi); 6964 6965 return true; 6966 } 6967 6968 //------------------------------inline_vectorizedHashcode---------------------------- 6969 bool LibraryCallKit::inline_vectorizedHashCode() { 6970 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6971 6972 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6973 Node* array = argument(0); 6974 Node* offset = argument(1); 6975 Node* length = argument(2); 6976 Node* initialValue = argument(3); 6977 Node* basic_type = argument(4); 6978 6979 if (basic_type == top()) { 6980 return false; // failed input validation 6981 } 6982 6983 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6984 if (!basic_type_t->is_con()) { 6985 return false; // Only intrinsify if mode argument is constant 6986 } 6987 6988 array = must_be_not_null(array, true); 6989 6990 BasicType bt = (BasicType)basic_type_t->get_con(); 6991 6992 // Resolve address of first element 6993 Node* array_start = array_element_address(array, offset, bt); 6994 6995 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6996 array_start, length, initialValue, basic_type))); 6997 clear_upper_avx(); 6998 6999 return true; 7000 } 7001 7002 /** 7003 * Calculate CRC32 for byte. 7004 * int java.util.zip.CRC32.update(int crc, int b) 7005 */ 7006 bool LibraryCallKit::inline_updateCRC32() { 7007 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 7008 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 7009 // no receiver since it is static method 7010 Node* crc = argument(0); // type: int 7011 Node* b = argument(1); // type: int 7012 7013 /* 7014 * int c = ~ crc; 7015 * b = timesXtoThe32[(b ^ c) & 0xFF]; 7016 * b = b ^ (c >>> 8); 7017 * crc = ~b; 7018 */ 7019 7020 Node* M1 = intcon(-1); 7021 crc = _gvn.transform(new XorINode(crc, M1)); 7022 Node* result = _gvn.transform(new XorINode(crc, b)); 7023 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 7024 7025 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 7026 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 7027 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 7028 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 7029 7030 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 7031 result = _gvn.transform(new XorINode(crc, result)); 7032 result = _gvn.transform(new XorINode(result, M1)); 7033 set_result(result); 7034 return true; 7035 } 7036 7037 /** 7038 * Calculate CRC32 for byte[] array. 7039 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 7040 */ 7041 bool LibraryCallKit::inline_updateBytesCRC32() { 7042 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 7043 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7044 // no receiver since it is static method 7045 Node* crc = argument(0); // type: int 7046 Node* src = argument(1); // type: oop 7047 Node* offset = argument(2); // type: int 7048 Node* length = argument(3); // type: int 7049 7050 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7051 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7052 // failed array check 7053 return false; 7054 } 7055 7056 // Figure out the size and type of the elements we will be copying. 7057 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7058 if (src_elem != T_BYTE) { 7059 return false; 7060 } 7061 7062 // 'src_start' points to src array + scaled offset 7063 src = must_be_not_null(src, true); 7064 Node* src_start = array_element_address(src, offset, src_elem); 7065 7066 // We assume that range check is done by caller. 7067 // TODO: generate range check (offset+length < src.length) in debug VM. 7068 7069 // Call the stub. 7070 address stubAddr = StubRoutines::updateBytesCRC32(); 7071 const char *stubName = "updateBytesCRC32"; 7072 7073 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7074 stubAddr, stubName, TypePtr::BOTTOM, 7075 crc, src_start, length); 7076 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7077 set_result(result); 7078 return true; 7079 } 7080 7081 /** 7082 * Calculate CRC32 for ByteBuffer. 7083 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 7084 */ 7085 bool LibraryCallKit::inline_updateByteBufferCRC32() { 7086 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 7087 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7088 // no receiver since it is static method 7089 Node* crc = argument(0); // type: int 7090 Node* src = argument(1); // type: long 7091 Node* offset = argument(3); // type: int 7092 Node* length = argument(4); // type: int 7093 7094 src = ConvL2X(src); // adjust Java long to machine word 7095 Node* base = _gvn.transform(new CastX2PNode(src)); 7096 offset = ConvI2X(offset); 7097 7098 // 'src_start' points to src array + scaled offset 7099 Node* src_start = basic_plus_adr(top(), base, offset); 7100 7101 // Call the stub. 7102 address stubAddr = StubRoutines::updateBytesCRC32(); 7103 const char *stubName = "updateBytesCRC32"; 7104 7105 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7106 stubAddr, stubName, TypePtr::BOTTOM, 7107 crc, src_start, length); 7108 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7109 set_result(result); 7110 return true; 7111 } 7112 7113 //------------------------------get_table_from_crc32c_class----------------------- 7114 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 7115 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 7116 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 7117 7118 return table; 7119 } 7120 7121 //------------------------------inline_updateBytesCRC32C----------------------- 7122 // 7123 // Calculate CRC32C for byte[] array. 7124 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 7125 // 7126 bool LibraryCallKit::inline_updateBytesCRC32C() { 7127 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7128 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7129 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7130 // no receiver since it is a static method 7131 Node* crc = argument(0); // type: int 7132 Node* src = argument(1); // type: oop 7133 Node* offset = argument(2); // type: int 7134 Node* end = argument(3); // type: int 7135 7136 Node* length = _gvn.transform(new SubINode(end, offset)); 7137 7138 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7139 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7140 // failed array check 7141 return false; 7142 } 7143 7144 // Figure out the size and type of the elements we will be copying. 7145 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7146 if (src_elem != T_BYTE) { 7147 return false; 7148 } 7149 7150 // 'src_start' points to src array + scaled offset 7151 src = must_be_not_null(src, true); 7152 Node* src_start = array_element_address(src, offset, src_elem); 7153 7154 // static final int[] byteTable in class CRC32C 7155 Node* table = get_table_from_crc32c_class(callee()->holder()); 7156 table = must_be_not_null(table, true); 7157 Node* table_start = array_element_address(table, intcon(0), T_INT); 7158 7159 // We assume that range check is done by caller. 7160 // TODO: generate range check (offset+length < src.length) in debug VM. 7161 7162 // Call the stub. 7163 address stubAddr = StubRoutines::updateBytesCRC32C(); 7164 const char *stubName = "updateBytesCRC32C"; 7165 7166 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7167 stubAddr, stubName, TypePtr::BOTTOM, 7168 crc, src_start, length, table_start); 7169 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7170 set_result(result); 7171 return true; 7172 } 7173 7174 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 7175 // 7176 // Calculate CRC32C for DirectByteBuffer. 7177 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 7178 // 7179 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 7180 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7181 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 7182 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7183 // no receiver since it is a static method 7184 Node* crc = argument(0); // type: int 7185 Node* src = argument(1); // type: long 7186 Node* offset = argument(3); // type: int 7187 Node* end = argument(4); // type: int 7188 7189 Node* length = _gvn.transform(new SubINode(end, offset)); 7190 7191 src = ConvL2X(src); // adjust Java long to machine word 7192 Node* base = _gvn.transform(new CastX2PNode(src)); 7193 offset = ConvI2X(offset); 7194 7195 // 'src_start' points to src array + scaled offset 7196 Node* src_start = basic_plus_adr(top(), base, offset); 7197 7198 // static final int[] byteTable in class CRC32C 7199 Node* table = get_table_from_crc32c_class(callee()->holder()); 7200 table = must_be_not_null(table, true); 7201 Node* table_start = array_element_address(table, intcon(0), T_INT); 7202 7203 // Call the stub. 7204 address stubAddr = StubRoutines::updateBytesCRC32C(); 7205 const char *stubName = "updateBytesCRC32C"; 7206 7207 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7208 stubAddr, stubName, TypePtr::BOTTOM, 7209 crc, src_start, length, table_start); 7210 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7211 set_result(result); 7212 return true; 7213 } 7214 7215 //------------------------------inline_updateBytesAdler32---------------------- 7216 // 7217 // Calculate Adler32 checksum for byte[] array. 7218 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 7219 // 7220 bool LibraryCallKit::inline_updateBytesAdler32() { 7221 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7222 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7223 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7224 // no receiver since it is static method 7225 Node* crc = argument(0); // type: int 7226 Node* src = argument(1); // type: oop 7227 Node* offset = argument(2); // type: int 7228 Node* length = argument(3); // type: int 7229 7230 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7231 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7232 // failed array check 7233 return false; 7234 } 7235 7236 // Figure out the size and type of the elements we will be copying. 7237 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7238 if (src_elem != T_BYTE) { 7239 return false; 7240 } 7241 7242 // 'src_start' points to src array + scaled offset 7243 Node* src_start = array_element_address(src, offset, src_elem); 7244 7245 // We assume that range check is done by caller. 7246 // TODO: generate range check (offset+length < src.length) in debug VM. 7247 7248 // Call the stub. 7249 address stubAddr = StubRoutines::updateBytesAdler32(); 7250 const char *stubName = "updateBytesAdler32"; 7251 7252 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7253 stubAddr, stubName, TypePtr::BOTTOM, 7254 crc, src_start, length); 7255 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7256 set_result(result); 7257 return true; 7258 } 7259 7260 //------------------------------inline_updateByteBufferAdler32--------------- 7261 // 7262 // Calculate Adler32 checksum for DirectByteBuffer. 7263 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 7264 // 7265 bool LibraryCallKit::inline_updateByteBufferAdler32() { 7266 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7267 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7268 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7269 // no receiver since it is static method 7270 Node* crc = argument(0); // type: int 7271 Node* src = argument(1); // type: long 7272 Node* offset = argument(3); // type: int 7273 Node* length = argument(4); // type: int 7274 7275 src = ConvL2X(src); // adjust Java long to machine word 7276 Node* base = _gvn.transform(new CastX2PNode(src)); 7277 offset = ConvI2X(offset); 7278 7279 // 'src_start' points to src array + scaled offset 7280 Node* src_start = basic_plus_adr(top(), base, offset); 7281 7282 // Call the stub. 7283 address stubAddr = StubRoutines::updateBytesAdler32(); 7284 const char *stubName = "updateBytesAdler32"; 7285 7286 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7287 stubAddr, stubName, TypePtr::BOTTOM, 7288 crc, src_start, length); 7289 7290 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7291 set_result(result); 7292 return true; 7293 } 7294 7295 //----------------------------inline_reference_get---------------------------- 7296 // public T java.lang.ref.Reference.get(); 7297 bool LibraryCallKit::inline_reference_get() { 7298 const int referent_offset = java_lang_ref_Reference::referent_offset(); 7299 7300 // Get the argument: 7301 Node* reference_obj = null_check_receiver(); 7302 if (stopped()) return true; 7303 7304 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 7305 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7306 decorators, /*is_static*/ false, nullptr); 7307 if (result == nullptr) return false; 7308 7309 // Add memory barrier to prevent commoning reads from this field 7310 // across safepoint since GC can change its value. 7311 insert_mem_bar(Op_MemBarCPUOrder); 7312 7313 set_result(result); 7314 return true; 7315 } 7316 7317 //----------------------------inline_reference_refersTo0---------------------------- 7318 // bool java.lang.ref.Reference.refersTo0(); 7319 // bool java.lang.ref.PhantomReference.refersTo0(); 7320 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 7321 // Get arguments: 7322 Node* reference_obj = null_check_receiver(); 7323 Node* other_obj = argument(1); 7324 if (stopped()) return true; 7325 7326 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7327 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7328 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7329 decorators, /*is_static*/ false, nullptr); 7330 if (referent == nullptr) return false; 7331 7332 // Add memory barrier to prevent commoning reads from this field 7333 // across safepoint since GC can change its value. 7334 insert_mem_bar(Op_MemBarCPUOrder); 7335 7336 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 7337 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7338 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 7339 7340 RegionNode* region = new RegionNode(3); 7341 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 7342 7343 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 7344 region->init_req(1, if_true); 7345 phi->init_req(1, intcon(1)); 7346 7347 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 7348 region->init_req(2, if_false); 7349 phi->init_req(2, intcon(0)); 7350 7351 set_control(_gvn.transform(region)); 7352 record_for_igvn(region); 7353 set_result(_gvn.transform(phi)); 7354 return true; 7355 } 7356 7357 //----------------------------inline_reference_clear0---------------------------- 7358 // void java.lang.ref.Reference.clear0(); 7359 // void java.lang.ref.PhantomReference.clear0(); 7360 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 7361 // This matches the implementation in JVM_ReferenceClear, see the comments there. 7362 7363 // Get arguments 7364 Node* reference_obj = null_check_receiver(); 7365 if (stopped()) return true; 7366 7367 // Common access parameters 7368 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7369 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7370 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 7371 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 7372 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 7373 7374 Node* referent = access_load_at(reference_obj, 7375 referent_field_addr, 7376 referent_field_addr_type, 7377 val_type, 7378 T_OBJECT, 7379 decorators); 7380 7381 IdealKit ideal(this); 7382 #define __ ideal. 7383 __ if_then(referent, BoolTest::ne, null()); 7384 sync_kit(ideal); 7385 access_store_at(reference_obj, 7386 referent_field_addr, 7387 referent_field_addr_type, 7388 null(), 7389 val_type, 7390 T_OBJECT, 7391 decorators); 7392 __ sync_kit(this); 7393 __ end_if(); 7394 final_sync(ideal); 7395 #undef __ 7396 7397 return true; 7398 } 7399 7400 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7401 DecoratorSet decorators, bool is_static, 7402 ciInstanceKlass* fromKls) { 7403 if (fromKls == nullptr) { 7404 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7405 assert(tinst != nullptr, "obj is null"); 7406 assert(tinst->is_loaded(), "obj is not loaded"); 7407 fromKls = tinst->instance_klass(); 7408 } else { 7409 assert(is_static, "only for static field access"); 7410 } 7411 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7412 ciSymbol::make(fieldTypeString), 7413 is_static); 7414 7415 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7416 if (field == nullptr) return (Node *) nullptr; 7417 7418 if (is_static) { 7419 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7420 fromObj = makecon(tip); 7421 } 7422 7423 // Next code copied from Parse::do_get_xxx(): 7424 7425 // Compute address and memory type. 7426 int offset = field->offset_in_bytes(); 7427 bool is_vol = field->is_volatile(); 7428 ciType* field_klass = field->type(); 7429 assert(field_klass->is_loaded(), "should be loaded"); 7430 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7431 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7432 BasicType bt = field->layout_type(); 7433 7434 // Build the resultant type of the load 7435 const Type *type; 7436 if (bt == T_OBJECT) { 7437 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7438 } else { 7439 type = Type::get_const_basic_type(bt); 7440 } 7441 7442 if (is_vol) { 7443 decorators |= MO_SEQ_CST; 7444 } 7445 7446 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7447 } 7448 7449 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7450 bool is_exact /* true */, bool is_static /* false */, 7451 ciInstanceKlass * fromKls /* nullptr */) { 7452 if (fromKls == nullptr) { 7453 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7454 assert(tinst != nullptr, "obj is null"); 7455 assert(tinst->is_loaded(), "obj is not loaded"); 7456 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7457 fromKls = tinst->instance_klass(); 7458 } 7459 else { 7460 assert(is_static, "only for static field access"); 7461 } 7462 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7463 ciSymbol::make(fieldTypeString), 7464 is_static); 7465 7466 assert(field != nullptr, "undefined field"); 7467 assert(!field->is_volatile(), "not defined for volatile fields"); 7468 7469 if (is_static) { 7470 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7471 fromObj = makecon(tip); 7472 } 7473 7474 // Next code copied from Parse::do_get_xxx(): 7475 7476 // Compute address and memory type. 7477 int offset = field->offset_in_bytes(); 7478 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7479 7480 return adr; 7481 } 7482 7483 //------------------------------inline_aescrypt_Block----------------------- 7484 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7485 address stubAddr = nullptr; 7486 const char *stubName; 7487 assert(UseAES, "need AES instruction support"); 7488 7489 switch(id) { 7490 case vmIntrinsics::_aescrypt_encryptBlock: 7491 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7492 stubName = "aescrypt_encryptBlock"; 7493 break; 7494 case vmIntrinsics::_aescrypt_decryptBlock: 7495 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7496 stubName = "aescrypt_decryptBlock"; 7497 break; 7498 default: 7499 break; 7500 } 7501 if (stubAddr == nullptr) return false; 7502 7503 Node* aescrypt_object = argument(0); 7504 Node* src = argument(1); 7505 Node* src_offset = argument(2); 7506 Node* dest = argument(3); 7507 Node* dest_offset = argument(4); 7508 7509 src = must_be_not_null(src, true); 7510 dest = must_be_not_null(dest, true); 7511 7512 // (1) src and dest are arrays. 7513 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7514 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7515 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7516 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7517 7518 // for the quick and dirty code we will skip all the checks. 7519 // we are just trying to get the call to be generated. 7520 Node* src_start = src; 7521 Node* dest_start = dest; 7522 if (src_offset != nullptr || dest_offset != nullptr) { 7523 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7524 src_start = array_element_address(src, src_offset, T_BYTE); 7525 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7526 } 7527 7528 // now need to get the start of its expanded key array 7529 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7530 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7531 if (k_start == nullptr) return false; 7532 7533 // Call the stub. 7534 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7535 stubAddr, stubName, TypePtr::BOTTOM, 7536 src_start, dest_start, k_start); 7537 7538 return true; 7539 } 7540 7541 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7542 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7543 address stubAddr = nullptr; 7544 const char *stubName = nullptr; 7545 7546 assert(UseAES, "need AES instruction support"); 7547 7548 switch(id) { 7549 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7550 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7551 stubName = "cipherBlockChaining_encryptAESCrypt"; 7552 break; 7553 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7554 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7555 stubName = "cipherBlockChaining_decryptAESCrypt"; 7556 break; 7557 default: 7558 break; 7559 } 7560 if (stubAddr == nullptr) return false; 7561 7562 Node* cipherBlockChaining_object = argument(0); 7563 Node* src = argument(1); 7564 Node* src_offset = argument(2); 7565 Node* len = argument(3); 7566 Node* dest = argument(4); 7567 Node* dest_offset = argument(5); 7568 7569 src = must_be_not_null(src, false); 7570 dest = must_be_not_null(dest, false); 7571 7572 // (1) src and dest are arrays. 7573 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7574 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7575 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7576 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7577 7578 // checks are the responsibility of the caller 7579 Node* src_start = src; 7580 Node* dest_start = dest; 7581 if (src_offset != nullptr || dest_offset != nullptr) { 7582 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7583 src_start = array_element_address(src, src_offset, T_BYTE); 7584 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7585 } 7586 7587 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7588 // (because of the predicated logic executed earlier). 7589 // so we cast it here safely. 7590 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7591 7592 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7593 if (embeddedCipherObj == nullptr) return false; 7594 7595 // cast it to what we know it will be at runtime 7596 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7597 assert(tinst != nullptr, "CBC obj is null"); 7598 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7599 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7600 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7601 7602 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7603 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7604 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7605 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7606 aescrypt_object = _gvn.transform(aescrypt_object); 7607 7608 // we need to get the start of the aescrypt_object's expanded key array 7609 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7610 if (k_start == nullptr) return false; 7611 7612 // similarly, get the start address of the r vector 7613 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7614 if (objRvec == nullptr) return false; 7615 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7616 7617 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7618 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7619 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7620 stubAddr, stubName, TypePtr::BOTTOM, 7621 src_start, dest_start, k_start, r_start, len); 7622 7623 // return cipher length (int) 7624 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7625 set_result(retvalue); 7626 return true; 7627 } 7628 7629 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7630 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7631 address stubAddr = nullptr; 7632 const char *stubName = nullptr; 7633 7634 assert(UseAES, "need AES instruction support"); 7635 7636 switch (id) { 7637 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7638 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7639 stubName = "electronicCodeBook_encryptAESCrypt"; 7640 break; 7641 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7642 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7643 stubName = "electronicCodeBook_decryptAESCrypt"; 7644 break; 7645 default: 7646 break; 7647 } 7648 7649 if (stubAddr == nullptr) return false; 7650 7651 Node* electronicCodeBook_object = argument(0); 7652 Node* src = argument(1); 7653 Node* src_offset = argument(2); 7654 Node* len = argument(3); 7655 Node* dest = argument(4); 7656 Node* dest_offset = argument(5); 7657 7658 // (1) src and dest are arrays. 7659 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7660 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7661 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7662 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7663 7664 // checks are the responsibility of the caller 7665 Node* src_start = src; 7666 Node* dest_start = dest; 7667 if (src_offset != nullptr || dest_offset != nullptr) { 7668 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7669 src_start = array_element_address(src, src_offset, T_BYTE); 7670 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7671 } 7672 7673 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7674 // (because of the predicated logic executed earlier). 7675 // so we cast it here safely. 7676 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7677 7678 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7679 if (embeddedCipherObj == nullptr) return false; 7680 7681 // cast it to what we know it will be at runtime 7682 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7683 assert(tinst != nullptr, "ECB obj is null"); 7684 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7685 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7686 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7687 7688 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7689 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7690 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7691 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7692 aescrypt_object = _gvn.transform(aescrypt_object); 7693 7694 // we need to get the start of the aescrypt_object's expanded key array 7695 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7696 if (k_start == nullptr) return false; 7697 7698 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7699 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7700 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7701 stubAddr, stubName, TypePtr::BOTTOM, 7702 src_start, dest_start, k_start, len); 7703 7704 // return cipher length (int) 7705 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7706 set_result(retvalue); 7707 return true; 7708 } 7709 7710 //------------------------------inline_counterMode_AESCrypt----------------------- 7711 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7712 assert(UseAES, "need AES instruction support"); 7713 if (!UseAESCTRIntrinsics) return false; 7714 7715 address stubAddr = nullptr; 7716 const char *stubName = nullptr; 7717 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7718 stubAddr = StubRoutines::counterMode_AESCrypt(); 7719 stubName = "counterMode_AESCrypt"; 7720 } 7721 if (stubAddr == nullptr) return false; 7722 7723 Node* counterMode_object = argument(0); 7724 Node* src = argument(1); 7725 Node* src_offset = argument(2); 7726 Node* len = argument(3); 7727 Node* dest = argument(4); 7728 Node* dest_offset = argument(5); 7729 7730 // (1) src and dest are arrays. 7731 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7732 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7733 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7734 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7735 7736 // checks are the responsibility of the caller 7737 Node* src_start = src; 7738 Node* dest_start = dest; 7739 if (src_offset != nullptr || dest_offset != nullptr) { 7740 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7741 src_start = array_element_address(src, src_offset, T_BYTE); 7742 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7743 } 7744 7745 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7746 // (because of the predicated logic executed earlier). 7747 // so we cast it here safely. 7748 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7749 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7750 if (embeddedCipherObj == nullptr) return false; 7751 // cast it to what we know it will be at runtime 7752 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7753 assert(tinst != nullptr, "CTR obj is null"); 7754 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7755 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7756 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7757 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7758 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7759 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7760 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7761 aescrypt_object = _gvn.transform(aescrypt_object); 7762 // we need to get the start of the aescrypt_object's expanded key array 7763 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7764 if (k_start == nullptr) return false; 7765 // similarly, get the start address of the r vector 7766 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7767 if (obj_counter == nullptr) return false; 7768 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7769 7770 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7771 if (saved_encCounter == nullptr) return false; 7772 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7773 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7774 7775 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7776 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7777 OptoRuntime::counterMode_aescrypt_Type(), 7778 stubAddr, stubName, TypePtr::BOTTOM, 7779 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7780 7781 // return cipher length (int) 7782 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7783 set_result(retvalue); 7784 return true; 7785 } 7786 7787 //------------------------------get_key_start_from_aescrypt_object----------------------- 7788 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7789 #if defined(PPC64) || defined(S390) 7790 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7791 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7792 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7793 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7794 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7795 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7796 if (objSessionK == nullptr) { 7797 return (Node *) nullptr; 7798 } 7799 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7800 #else 7801 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7802 #endif // PPC64 7803 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7804 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7805 7806 // now have the array, need to get the start address of the K array 7807 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7808 return k_start; 7809 } 7810 7811 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7812 // Return node representing slow path of predicate check. 7813 // the pseudo code we want to emulate with this predicate is: 7814 // for encryption: 7815 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7816 // for decryption: 7817 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7818 // note cipher==plain is more conservative than the original java code but that's OK 7819 // 7820 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7821 // The receiver was checked for null already. 7822 Node* objCBC = argument(0); 7823 7824 Node* src = argument(1); 7825 Node* dest = argument(4); 7826 7827 // Load embeddedCipher field of CipherBlockChaining object. 7828 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7829 7830 // get AESCrypt klass for instanceOf check 7831 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7832 // will have same classloader as CipherBlockChaining object 7833 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7834 assert(tinst != nullptr, "CBCobj is null"); 7835 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7836 7837 // we want to do an instanceof comparison against the AESCrypt class 7838 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7839 if (!klass_AESCrypt->is_loaded()) { 7840 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7841 Node* ctrl = control(); 7842 set_control(top()); // no regular fast path 7843 return ctrl; 7844 } 7845 7846 src = must_be_not_null(src, true); 7847 dest = must_be_not_null(dest, true); 7848 7849 // Resolve oops to stable for CmpP below. 7850 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7851 7852 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7853 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7854 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7855 7856 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7857 7858 // for encryption, we are done 7859 if (!decrypting) 7860 return instof_false; // even if it is null 7861 7862 // for decryption, we need to add a further check to avoid 7863 // taking the intrinsic path when cipher and plain are the same 7864 // see the original java code for why. 7865 RegionNode* region = new RegionNode(3); 7866 region->init_req(1, instof_false); 7867 7868 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7869 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7870 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7871 region->init_req(2, src_dest_conjoint); 7872 7873 record_for_igvn(region); 7874 return _gvn.transform(region); 7875 } 7876 7877 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7878 // Return node representing slow path of predicate check. 7879 // the pseudo code we want to emulate with this predicate is: 7880 // for encryption: 7881 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7882 // for decryption: 7883 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7884 // note cipher==plain is more conservative than the original java code but that's OK 7885 // 7886 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7887 // The receiver was checked for null already. 7888 Node* objECB = argument(0); 7889 7890 // Load embeddedCipher field of ElectronicCodeBook object. 7891 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7892 7893 // get AESCrypt klass for instanceOf check 7894 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7895 // will have same classloader as ElectronicCodeBook object 7896 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7897 assert(tinst != nullptr, "ECBobj is null"); 7898 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7899 7900 // we want to do an instanceof comparison against the AESCrypt class 7901 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7902 if (!klass_AESCrypt->is_loaded()) { 7903 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7904 Node* ctrl = control(); 7905 set_control(top()); // no regular fast path 7906 return ctrl; 7907 } 7908 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7909 7910 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7911 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7912 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7913 7914 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7915 7916 // for encryption, we are done 7917 if (!decrypting) 7918 return instof_false; // even if it is null 7919 7920 // for decryption, we need to add a further check to avoid 7921 // taking the intrinsic path when cipher and plain are the same 7922 // see the original java code for why. 7923 RegionNode* region = new RegionNode(3); 7924 region->init_req(1, instof_false); 7925 Node* src = argument(1); 7926 Node* dest = argument(4); 7927 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7928 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7929 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7930 region->init_req(2, src_dest_conjoint); 7931 7932 record_for_igvn(region); 7933 return _gvn.transform(region); 7934 } 7935 7936 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7937 // Return node representing slow path of predicate check. 7938 // the pseudo code we want to emulate with this predicate is: 7939 // for encryption: 7940 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7941 // for decryption: 7942 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7943 // note cipher==plain is more conservative than the original java code but that's OK 7944 // 7945 7946 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7947 // The receiver was checked for null already. 7948 Node* objCTR = argument(0); 7949 7950 // Load embeddedCipher field of CipherBlockChaining object. 7951 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7952 7953 // get AESCrypt klass for instanceOf check 7954 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7955 // will have same classloader as CipherBlockChaining object 7956 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7957 assert(tinst != nullptr, "CTRobj is null"); 7958 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7959 7960 // we want to do an instanceof comparison against the AESCrypt class 7961 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7962 if (!klass_AESCrypt->is_loaded()) { 7963 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7964 Node* ctrl = control(); 7965 set_control(top()); // no regular fast path 7966 return ctrl; 7967 } 7968 7969 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7970 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7971 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7972 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7973 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7974 7975 return instof_false; // even if it is null 7976 } 7977 7978 //------------------------------inline_ghash_processBlocks 7979 bool LibraryCallKit::inline_ghash_processBlocks() { 7980 address stubAddr; 7981 const char *stubName; 7982 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7983 7984 stubAddr = StubRoutines::ghash_processBlocks(); 7985 stubName = "ghash_processBlocks"; 7986 7987 Node* data = argument(0); 7988 Node* offset = argument(1); 7989 Node* len = argument(2); 7990 Node* state = argument(3); 7991 Node* subkeyH = argument(4); 7992 7993 state = must_be_not_null(state, true); 7994 subkeyH = must_be_not_null(subkeyH, true); 7995 data = must_be_not_null(data, true); 7996 7997 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7998 assert(state_start, "state is null"); 7999 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 8000 assert(subkeyH_start, "subkeyH is null"); 8001 Node* data_start = array_element_address(data, offset, T_BYTE); 8002 assert(data_start, "data is null"); 8003 8004 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 8005 OptoRuntime::ghash_processBlocks_Type(), 8006 stubAddr, stubName, TypePtr::BOTTOM, 8007 state_start, subkeyH_start, data_start, len); 8008 return true; 8009 } 8010 8011 //------------------------------inline_chacha20Block 8012 bool LibraryCallKit::inline_chacha20Block() { 8013 address stubAddr; 8014 const char *stubName; 8015 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 8016 8017 stubAddr = StubRoutines::chacha20Block(); 8018 stubName = "chacha20Block"; 8019 8020 Node* state = argument(0); 8021 Node* result = argument(1); 8022 8023 state = must_be_not_null(state, true); 8024 result = must_be_not_null(result, true); 8025 8026 Node* state_start = array_element_address(state, intcon(0), T_INT); 8027 assert(state_start, "state is null"); 8028 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 8029 assert(result_start, "result is null"); 8030 8031 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 8032 OptoRuntime::chacha20Block_Type(), 8033 stubAddr, stubName, TypePtr::BOTTOM, 8034 state_start, result_start); 8035 // return key stream length (int) 8036 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 8037 set_result(retvalue); 8038 return true; 8039 } 8040 8041 bool LibraryCallKit::inline_base64_encodeBlock() { 8042 address stubAddr; 8043 const char *stubName; 8044 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8045 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8046 stubAddr = StubRoutines::base64_encodeBlock(); 8047 stubName = "encodeBlock"; 8048 8049 if (!stubAddr) return false; 8050 Node* base64obj = argument(0); 8051 Node* src = argument(1); 8052 Node* offset = argument(2); 8053 Node* len = argument(3); 8054 Node* dest = argument(4); 8055 Node* dp = argument(5); 8056 Node* isURL = argument(6); 8057 8058 src = must_be_not_null(src, true); 8059 dest = must_be_not_null(dest, true); 8060 8061 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8062 assert(src_start, "source array is null"); 8063 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8064 assert(dest_start, "destination array is null"); 8065 8066 Node* base64 = make_runtime_call(RC_LEAF, 8067 OptoRuntime::base64_encodeBlock_Type(), 8068 stubAddr, stubName, TypePtr::BOTTOM, 8069 src_start, offset, len, dest_start, dp, isURL); 8070 return true; 8071 } 8072 8073 bool LibraryCallKit::inline_base64_decodeBlock() { 8074 address stubAddr; 8075 const char *stubName; 8076 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8077 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8078 stubAddr = StubRoutines::base64_decodeBlock(); 8079 stubName = "decodeBlock"; 8080 8081 if (!stubAddr) return false; 8082 Node* base64obj = argument(0); 8083 Node* src = argument(1); 8084 Node* src_offset = argument(2); 8085 Node* len = argument(3); 8086 Node* dest = argument(4); 8087 Node* dest_offset = argument(5); 8088 Node* isURL = argument(6); 8089 Node* isMIME = argument(7); 8090 8091 src = must_be_not_null(src, true); 8092 dest = must_be_not_null(dest, true); 8093 8094 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8095 assert(src_start, "source array is null"); 8096 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8097 assert(dest_start, "destination array is null"); 8098 8099 Node* call = make_runtime_call(RC_LEAF, 8100 OptoRuntime::base64_decodeBlock_Type(), 8101 stubAddr, stubName, TypePtr::BOTTOM, 8102 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8103 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8104 set_result(result); 8105 return true; 8106 } 8107 8108 bool LibraryCallKit::inline_poly1305_processBlocks() { 8109 address stubAddr; 8110 const char *stubName; 8111 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8112 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8113 stubAddr = StubRoutines::poly1305_processBlocks(); 8114 stubName = "poly1305_processBlocks"; 8115 8116 if (!stubAddr) return false; 8117 null_check_receiver(); // null-check receiver 8118 if (stopped()) return true; 8119 8120 Node* input = argument(1); 8121 Node* input_offset = argument(2); 8122 Node* len = argument(3); 8123 Node* alimbs = argument(4); 8124 Node* rlimbs = argument(5); 8125 8126 input = must_be_not_null(input, true); 8127 alimbs = must_be_not_null(alimbs, true); 8128 rlimbs = must_be_not_null(rlimbs, true); 8129 8130 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8131 assert(input_start, "input array is null"); 8132 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8133 assert(acc_start, "acc array is null"); 8134 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8135 assert(r_start, "r array is null"); 8136 8137 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8138 OptoRuntime::poly1305_processBlocks_Type(), 8139 stubAddr, stubName, TypePtr::BOTTOM, 8140 input_start, len, acc_start, r_start); 8141 return true; 8142 } 8143 8144 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8145 address stubAddr; 8146 const char *stubName; 8147 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8148 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8149 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8150 stubName = "intpoly_montgomeryMult_P256"; 8151 8152 if (!stubAddr) return false; 8153 null_check_receiver(); // null-check receiver 8154 if (stopped()) return true; 8155 8156 Node* a = argument(1); 8157 Node* b = argument(2); 8158 Node* r = argument(3); 8159 8160 a = must_be_not_null(a, true); 8161 b = must_be_not_null(b, true); 8162 r = must_be_not_null(r, true); 8163 8164 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8165 assert(a_start, "a array is NULL"); 8166 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8167 assert(b_start, "b array is NULL"); 8168 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8169 assert(r_start, "r array is NULL"); 8170 8171 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8172 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8173 stubAddr, stubName, TypePtr::BOTTOM, 8174 a_start, b_start, r_start); 8175 return true; 8176 } 8177 8178 bool LibraryCallKit::inline_intpoly_assign() { 8179 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8180 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8181 const char *stubName = "intpoly_assign"; 8182 address stubAddr = StubRoutines::intpoly_assign(); 8183 if (!stubAddr) return false; 8184 8185 Node* set = argument(0); 8186 Node* a = argument(1); 8187 Node* b = argument(2); 8188 Node* arr_length = load_array_length(a); 8189 8190 a = must_be_not_null(a, true); 8191 b = must_be_not_null(b, true); 8192 8193 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8194 assert(a_start, "a array is NULL"); 8195 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8196 assert(b_start, "b array is NULL"); 8197 8198 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8199 OptoRuntime::intpoly_assign_Type(), 8200 stubAddr, stubName, TypePtr::BOTTOM, 8201 set, a_start, b_start, arr_length); 8202 return true; 8203 } 8204 8205 //------------------------------inline_digestBase_implCompress----------------------- 8206 // 8207 // Calculate MD5 for single-block byte[] array. 8208 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8209 // 8210 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8211 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8212 // 8213 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8214 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8215 // 8216 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8217 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8218 // 8219 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8220 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8221 // 8222 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8223 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8224 8225 Node* digestBase_obj = argument(0); 8226 Node* src = argument(1); // type oop 8227 Node* ofs = argument(2); // type int 8228 8229 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8230 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8231 // failed array check 8232 return false; 8233 } 8234 // Figure out the size and type of the elements we will be copying. 8235 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8236 if (src_elem != T_BYTE) { 8237 return false; 8238 } 8239 // 'src_start' points to src array + offset 8240 src = must_be_not_null(src, true); 8241 Node* src_start = array_element_address(src, ofs, src_elem); 8242 Node* state = nullptr; 8243 Node* block_size = nullptr; 8244 address stubAddr; 8245 const char *stubName; 8246 8247 switch(id) { 8248 case vmIntrinsics::_md5_implCompress: 8249 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8250 state = get_state_from_digest_object(digestBase_obj, T_INT); 8251 stubAddr = StubRoutines::md5_implCompress(); 8252 stubName = "md5_implCompress"; 8253 break; 8254 case vmIntrinsics::_sha_implCompress: 8255 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8256 state = get_state_from_digest_object(digestBase_obj, T_INT); 8257 stubAddr = StubRoutines::sha1_implCompress(); 8258 stubName = "sha1_implCompress"; 8259 break; 8260 case vmIntrinsics::_sha2_implCompress: 8261 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8262 state = get_state_from_digest_object(digestBase_obj, T_INT); 8263 stubAddr = StubRoutines::sha256_implCompress(); 8264 stubName = "sha256_implCompress"; 8265 break; 8266 case vmIntrinsics::_sha5_implCompress: 8267 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8268 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8269 stubAddr = StubRoutines::sha512_implCompress(); 8270 stubName = "sha512_implCompress"; 8271 break; 8272 case vmIntrinsics::_sha3_implCompress: 8273 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8274 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8275 stubAddr = StubRoutines::sha3_implCompress(); 8276 stubName = "sha3_implCompress"; 8277 block_size = get_block_size_from_digest_object(digestBase_obj); 8278 if (block_size == nullptr) return false; 8279 break; 8280 default: 8281 fatal_unexpected_iid(id); 8282 return false; 8283 } 8284 if (state == nullptr) return false; 8285 8286 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8287 if (stubAddr == nullptr) return false; 8288 8289 // Call the stub. 8290 Node* call; 8291 if (block_size == nullptr) { 8292 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8293 stubAddr, stubName, TypePtr::BOTTOM, 8294 src_start, state); 8295 } else { 8296 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8297 stubAddr, stubName, TypePtr::BOTTOM, 8298 src_start, state, block_size); 8299 } 8300 8301 return true; 8302 } 8303 8304 //------------------------------inline_digestBase_implCompressMB----------------------- 8305 // 8306 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8307 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8308 // 8309 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8310 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8311 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8312 assert((uint)predicate < 5, "sanity"); 8313 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8314 8315 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8316 Node* src = argument(1); // byte[] array 8317 Node* ofs = argument(2); // type int 8318 Node* limit = argument(3); // type int 8319 8320 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8321 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8322 // failed array check 8323 return false; 8324 } 8325 // Figure out the size and type of the elements we will be copying. 8326 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8327 if (src_elem != T_BYTE) { 8328 return false; 8329 } 8330 // 'src_start' points to src array + offset 8331 src = must_be_not_null(src, false); 8332 Node* src_start = array_element_address(src, ofs, src_elem); 8333 8334 const char* klass_digestBase_name = nullptr; 8335 const char* stub_name = nullptr; 8336 address stub_addr = nullptr; 8337 BasicType elem_type = T_INT; 8338 8339 switch (predicate) { 8340 case 0: 8341 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8342 klass_digestBase_name = "sun/security/provider/MD5"; 8343 stub_name = "md5_implCompressMB"; 8344 stub_addr = StubRoutines::md5_implCompressMB(); 8345 } 8346 break; 8347 case 1: 8348 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8349 klass_digestBase_name = "sun/security/provider/SHA"; 8350 stub_name = "sha1_implCompressMB"; 8351 stub_addr = StubRoutines::sha1_implCompressMB(); 8352 } 8353 break; 8354 case 2: 8355 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8356 klass_digestBase_name = "sun/security/provider/SHA2"; 8357 stub_name = "sha256_implCompressMB"; 8358 stub_addr = StubRoutines::sha256_implCompressMB(); 8359 } 8360 break; 8361 case 3: 8362 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8363 klass_digestBase_name = "sun/security/provider/SHA5"; 8364 stub_name = "sha512_implCompressMB"; 8365 stub_addr = StubRoutines::sha512_implCompressMB(); 8366 elem_type = T_LONG; 8367 } 8368 break; 8369 case 4: 8370 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8371 klass_digestBase_name = "sun/security/provider/SHA3"; 8372 stub_name = "sha3_implCompressMB"; 8373 stub_addr = StubRoutines::sha3_implCompressMB(); 8374 elem_type = T_LONG; 8375 } 8376 break; 8377 default: 8378 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8379 } 8380 if (klass_digestBase_name != nullptr) { 8381 assert(stub_addr != nullptr, "Stub is generated"); 8382 if (stub_addr == nullptr) return false; 8383 8384 // get DigestBase klass to lookup for SHA klass 8385 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8386 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8387 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8388 8389 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8390 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8391 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8392 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8393 } 8394 return false; 8395 } 8396 8397 //------------------------------inline_digestBase_implCompressMB----------------------- 8398 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8399 BasicType elem_type, address stubAddr, const char *stubName, 8400 Node* src_start, Node* ofs, Node* limit) { 8401 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8402 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8403 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8404 digest_obj = _gvn.transform(digest_obj); 8405 8406 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8407 if (state == nullptr) return false; 8408 8409 Node* block_size = nullptr; 8410 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8411 block_size = get_block_size_from_digest_object(digest_obj); 8412 if (block_size == nullptr) return false; 8413 } 8414 8415 // Call the stub. 8416 Node* call; 8417 if (block_size == nullptr) { 8418 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8419 OptoRuntime::digestBase_implCompressMB_Type(false), 8420 stubAddr, stubName, TypePtr::BOTTOM, 8421 src_start, state, ofs, limit); 8422 } else { 8423 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8424 OptoRuntime::digestBase_implCompressMB_Type(true), 8425 stubAddr, stubName, TypePtr::BOTTOM, 8426 src_start, state, block_size, ofs, limit); 8427 } 8428 8429 // return ofs (int) 8430 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8431 set_result(result); 8432 8433 return true; 8434 } 8435 8436 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8437 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8438 assert(UseAES, "need AES instruction support"); 8439 address stubAddr = nullptr; 8440 const char *stubName = nullptr; 8441 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8442 stubName = "galoisCounterMode_AESCrypt"; 8443 8444 if (stubAddr == nullptr) return false; 8445 8446 Node* in = argument(0); 8447 Node* inOfs = argument(1); 8448 Node* len = argument(2); 8449 Node* ct = argument(3); 8450 Node* ctOfs = argument(4); 8451 Node* out = argument(5); 8452 Node* outOfs = argument(6); 8453 Node* gctr_object = argument(7); 8454 Node* ghash_object = argument(8); 8455 8456 // (1) in, ct and out are arrays. 8457 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8458 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8459 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8460 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8461 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8462 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8463 8464 // checks are the responsibility of the caller 8465 Node* in_start = in; 8466 Node* ct_start = ct; 8467 Node* out_start = out; 8468 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8469 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8470 in_start = array_element_address(in, inOfs, T_BYTE); 8471 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8472 out_start = array_element_address(out, outOfs, T_BYTE); 8473 } 8474 8475 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8476 // (because of the predicated logic executed earlier). 8477 // so we cast it here safely. 8478 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8479 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8480 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8481 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8482 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8483 8484 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8485 return false; 8486 } 8487 // cast it to what we know it will be at runtime 8488 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8489 assert(tinst != nullptr, "GCTR obj is null"); 8490 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8491 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8492 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8493 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8494 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8495 const TypeOopPtr* xtype = aklass->as_instance_type(); 8496 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8497 aescrypt_object = _gvn.transform(aescrypt_object); 8498 // we need to get the start of the aescrypt_object's expanded key array 8499 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8500 if (k_start == nullptr) return false; 8501 // similarly, get the start address of the r vector 8502 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8503 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8504 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8505 8506 8507 // Call the stub, passing params 8508 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8509 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8510 stubAddr, stubName, TypePtr::BOTTOM, 8511 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8512 8513 // return cipher length (int) 8514 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8515 set_result(retvalue); 8516 8517 return true; 8518 } 8519 8520 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8521 // Return node representing slow path of predicate check. 8522 // the pseudo code we want to emulate with this predicate is: 8523 // for encryption: 8524 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8525 // for decryption: 8526 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8527 // note cipher==plain is more conservative than the original java code but that's OK 8528 // 8529 8530 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8531 // The receiver was checked for null already. 8532 Node* objGCTR = argument(7); 8533 // Load embeddedCipher field of GCTR object. 8534 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8535 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8536 8537 // get AESCrypt klass for instanceOf check 8538 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8539 // will have same classloader as CipherBlockChaining object 8540 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8541 assert(tinst != nullptr, "GCTR obj is null"); 8542 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8543 8544 // we want to do an instanceof comparison against the AESCrypt class 8545 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8546 if (!klass_AESCrypt->is_loaded()) { 8547 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8548 Node* ctrl = control(); 8549 set_control(top()); // no regular fast path 8550 return ctrl; 8551 } 8552 8553 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8554 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8555 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8556 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8557 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8558 8559 return instof_false; // even if it is null 8560 } 8561 8562 //------------------------------get_state_from_digest_object----------------------- 8563 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8564 const char* state_type; 8565 switch (elem_type) { 8566 case T_BYTE: state_type = "[B"; break; 8567 case T_INT: state_type = "[I"; break; 8568 case T_LONG: state_type = "[J"; break; 8569 default: ShouldNotReachHere(); 8570 } 8571 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8572 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8573 if (digest_state == nullptr) return (Node *) nullptr; 8574 8575 // now have the array, need to get the start address of the state array 8576 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8577 return state; 8578 } 8579 8580 //------------------------------get_block_size_from_sha3_object---------------------------------- 8581 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8582 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8583 assert (block_size != nullptr, "sanity"); 8584 return block_size; 8585 } 8586 8587 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8588 // Return node representing slow path of predicate check. 8589 // the pseudo code we want to emulate with this predicate is: 8590 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8591 // 8592 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8593 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8594 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8595 assert((uint)predicate < 5, "sanity"); 8596 8597 // The receiver was checked for null already. 8598 Node* digestBaseObj = argument(0); 8599 8600 // get DigestBase klass for instanceOf check 8601 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8602 assert(tinst != nullptr, "digestBaseObj is null"); 8603 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8604 8605 const char* klass_name = nullptr; 8606 switch (predicate) { 8607 case 0: 8608 if (UseMD5Intrinsics) { 8609 // we want to do an instanceof comparison against the MD5 class 8610 klass_name = "sun/security/provider/MD5"; 8611 } 8612 break; 8613 case 1: 8614 if (UseSHA1Intrinsics) { 8615 // we want to do an instanceof comparison against the SHA class 8616 klass_name = "sun/security/provider/SHA"; 8617 } 8618 break; 8619 case 2: 8620 if (UseSHA256Intrinsics) { 8621 // we want to do an instanceof comparison against the SHA2 class 8622 klass_name = "sun/security/provider/SHA2"; 8623 } 8624 break; 8625 case 3: 8626 if (UseSHA512Intrinsics) { 8627 // we want to do an instanceof comparison against the SHA5 class 8628 klass_name = "sun/security/provider/SHA5"; 8629 } 8630 break; 8631 case 4: 8632 if (UseSHA3Intrinsics) { 8633 // we want to do an instanceof comparison against the SHA3 class 8634 klass_name = "sun/security/provider/SHA3"; 8635 } 8636 break; 8637 default: 8638 fatal("unknown SHA intrinsic predicate: %d", predicate); 8639 } 8640 8641 ciKlass* klass = nullptr; 8642 if (klass_name != nullptr) { 8643 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8644 } 8645 if ((klass == nullptr) || !klass->is_loaded()) { 8646 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8647 Node* ctrl = control(); 8648 set_control(top()); // no intrinsic path 8649 return ctrl; 8650 } 8651 ciInstanceKlass* instklass = klass->as_instance_klass(); 8652 8653 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8654 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8655 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8656 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8657 8658 return instof_false; // even if it is null 8659 } 8660 8661 //-------------inline_fma----------------------------------- 8662 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8663 Node *a = nullptr; 8664 Node *b = nullptr; 8665 Node *c = nullptr; 8666 Node* result = nullptr; 8667 switch (id) { 8668 case vmIntrinsics::_fmaD: 8669 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8670 // no receiver since it is static method 8671 a = round_double_node(argument(0)); 8672 b = round_double_node(argument(2)); 8673 c = round_double_node(argument(4)); 8674 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 8675 break; 8676 case vmIntrinsics::_fmaF: 8677 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8678 a = argument(0); 8679 b = argument(1); 8680 c = argument(2); 8681 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 8682 break; 8683 default: 8684 fatal_unexpected_iid(id); break; 8685 } 8686 set_result(result); 8687 return true; 8688 } 8689 8690 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8691 // argument(0) is receiver 8692 Node* codePoint = argument(1); 8693 Node* n = nullptr; 8694 8695 switch (id) { 8696 case vmIntrinsics::_isDigit : 8697 n = new DigitNode(control(), codePoint); 8698 break; 8699 case vmIntrinsics::_isLowerCase : 8700 n = new LowerCaseNode(control(), codePoint); 8701 break; 8702 case vmIntrinsics::_isUpperCase : 8703 n = new UpperCaseNode(control(), codePoint); 8704 break; 8705 case vmIntrinsics::_isWhitespace : 8706 n = new WhitespaceNode(control(), codePoint); 8707 break; 8708 default: 8709 fatal_unexpected_iid(id); 8710 } 8711 8712 set_result(_gvn.transform(n)); 8713 return true; 8714 } 8715 8716 //------------------------------inline_fp_min_max------------------------------ 8717 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 8718 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 8719 8720 // The intrinsic should be used only when the API branches aren't predictable, 8721 // the last one performing the most important comparison. The following heuristic 8722 // uses the branch statistics to eventually bail out if necessary. 8723 8724 ciMethodData *md = callee()->method_data(); 8725 8726 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 8727 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 8728 8729 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 8730 // Bail out if the call-site didn't contribute enough to the statistics. 8731 return false; 8732 } 8733 8734 uint taken = 0, not_taken = 0; 8735 8736 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 8737 if (p->is_BranchData()) { 8738 taken = ((ciBranchData*)p)->taken(); 8739 not_taken = ((ciBranchData*)p)->not_taken(); 8740 } 8741 } 8742 8743 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 8744 balance = balance < 0 ? -balance : balance; 8745 if ( balance > 0.2 ) { 8746 // Bail out if the most important branch is predictable enough. 8747 return false; 8748 } 8749 } 8750 */ 8751 8752 Node *a = nullptr; 8753 Node *b = nullptr; 8754 Node *n = nullptr; 8755 switch (id) { 8756 case vmIntrinsics::_maxF: 8757 case vmIntrinsics::_minF: 8758 case vmIntrinsics::_maxF_strict: 8759 case vmIntrinsics::_minF_strict: 8760 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 8761 a = argument(0); 8762 b = argument(1); 8763 break; 8764 case vmIntrinsics::_maxD: 8765 case vmIntrinsics::_minD: 8766 case vmIntrinsics::_maxD_strict: 8767 case vmIntrinsics::_minD_strict: 8768 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 8769 a = round_double_node(argument(0)); 8770 b = round_double_node(argument(2)); 8771 break; 8772 default: 8773 fatal_unexpected_iid(id); 8774 break; 8775 } 8776 switch (id) { 8777 case vmIntrinsics::_maxF: 8778 case vmIntrinsics::_maxF_strict: 8779 n = new MaxFNode(a, b); 8780 break; 8781 case vmIntrinsics::_minF: 8782 case vmIntrinsics::_minF_strict: 8783 n = new MinFNode(a, b); 8784 break; 8785 case vmIntrinsics::_maxD: 8786 case vmIntrinsics::_maxD_strict: 8787 n = new MaxDNode(a, b); 8788 break; 8789 case vmIntrinsics::_minD: 8790 case vmIntrinsics::_minD_strict: 8791 n = new MinDNode(a, b); 8792 break; 8793 default: 8794 fatal_unexpected_iid(id); 8795 break; 8796 } 8797 set_result(_gvn.transform(n)); 8798 return true; 8799 } 8800 8801 bool LibraryCallKit::inline_profileBoolean() { 8802 Node* counts = argument(1); 8803 const TypeAryPtr* ary = nullptr; 8804 ciArray* aobj = nullptr; 8805 if (counts->is_Con() 8806 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8807 && (aobj = ary->const_oop()->as_array()) != nullptr 8808 && (aobj->length() == 2)) { 8809 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8810 jint false_cnt = aobj->element_value(0).as_int(); 8811 jint true_cnt = aobj->element_value(1).as_int(); 8812 8813 if (C->log() != nullptr) { 8814 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8815 false_cnt, true_cnt); 8816 } 8817 8818 if (false_cnt + true_cnt == 0) { 8819 // According to profile, never executed. 8820 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8821 Deoptimization::Action_reinterpret); 8822 return true; 8823 } 8824 8825 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8826 // is a number of each value occurrences. 8827 Node* result = argument(0); 8828 if (false_cnt == 0 || true_cnt == 0) { 8829 // According to profile, one value has been never seen. 8830 int expected_val = (false_cnt == 0) ? 1 : 0; 8831 8832 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8833 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8834 8835 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8836 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8837 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8838 8839 { // Slow path: uncommon trap for never seen value and then reexecute 8840 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8841 // the value has been seen at least once. 8842 PreserveJVMState pjvms(this); 8843 PreserveReexecuteState preexecs(this); 8844 jvms()->set_should_reexecute(true); 8845 8846 set_control(slow_path); 8847 set_i_o(i_o()); 8848 8849 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8850 Deoptimization::Action_reinterpret); 8851 } 8852 // The guard for never seen value enables sharpening of the result and 8853 // returning a constant. It allows to eliminate branches on the same value 8854 // later on. 8855 set_control(fast_path); 8856 result = intcon(expected_val); 8857 } 8858 // Stop profiling. 8859 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8860 // By replacing method body with profile data (represented as ProfileBooleanNode 8861 // on IR level) we effectively disable profiling. 8862 // It enables full speed execution once optimized code is generated. 8863 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8864 C->record_for_igvn(profile); 8865 set_result(profile); 8866 return true; 8867 } else { 8868 // Continue profiling. 8869 // Profile data isn't available at the moment. So, execute method's bytecode version. 8870 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8871 // is compiled and counters aren't available since corresponding MethodHandle 8872 // isn't a compile-time constant. 8873 return false; 8874 } 8875 } 8876 8877 bool LibraryCallKit::inline_isCompileConstant() { 8878 Node* n = argument(0); 8879 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8880 return true; 8881 } 8882 8883 //------------------------------- inline_getObjectSize -------------------------------------- 8884 // 8885 // Calculate the runtime size of the object/array. 8886 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8887 // 8888 bool LibraryCallKit::inline_getObjectSize() { 8889 Node* obj = argument(3); 8890 Node* klass_node = load_object_klass(obj); 8891 8892 jint layout_con = Klass::_lh_neutral_value; 8893 Node* layout_val = get_layout_helper(klass_node, layout_con); 8894 int layout_is_con = (layout_val == nullptr); 8895 8896 if (layout_is_con) { 8897 // Layout helper is constant, can figure out things at compile time. 8898 8899 if (Klass::layout_helper_is_instance(layout_con)) { 8900 // Instance case: layout_con contains the size itself. 8901 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8902 set_result(size); 8903 } else { 8904 // Array case: size is round(header + element_size*arraylength). 8905 // Since arraylength is different for every array instance, we have to 8906 // compute the whole thing at runtime. 8907 8908 Node* arr_length = load_array_length(obj); 8909 8910 int round_mask = MinObjAlignmentInBytes - 1; 8911 int hsize = Klass::layout_helper_header_size(layout_con); 8912 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8913 8914 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8915 round_mask = 0; // strength-reduce it if it goes away completely 8916 } 8917 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8918 Node* header_size = intcon(hsize + round_mask); 8919 8920 Node* lengthx = ConvI2X(arr_length); 8921 Node* headerx = ConvI2X(header_size); 8922 8923 Node* abody = lengthx; 8924 if (eshift != 0) { 8925 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8926 } 8927 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8928 if (round_mask != 0) { 8929 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8930 } 8931 size = ConvX2L(size); 8932 set_result(size); 8933 } 8934 } else { 8935 // Layout helper is not constant, need to test for array-ness at runtime. 8936 8937 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8938 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8939 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8940 record_for_igvn(result_reg); 8941 8942 Node* array_ctl = generate_array_guard(klass_node, nullptr); 8943 if (array_ctl != nullptr) { 8944 // Array case: size is round(header + element_size*arraylength). 8945 // Since arraylength is different for every array instance, we have to 8946 // compute the whole thing at runtime. 8947 8948 PreserveJVMState pjvms(this); 8949 set_control(array_ctl); 8950 Node* arr_length = load_array_length(obj); 8951 8952 int round_mask = MinObjAlignmentInBytes - 1; 8953 Node* mask = intcon(round_mask); 8954 8955 Node* hss = intcon(Klass::_lh_header_size_shift); 8956 Node* hsm = intcon(Klass::_lh_header_size_mask); 8957 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8958 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8959 header_size = _gvn.transform(new AddINode(header_size, mask)); 8960 8961 // There is no need to mask or shift this value. 8962 // The semantics of LShiftINode include an implicit mask to 0x1F. 8963 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8964 Node* elem_shift = layout_val; 8965 8966 Node* lengthx = ConvI2X(arr_length); 8967 Node* headerx = ConvI2X(header_size); 8968 8969 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8970 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8971 if (round_mask != 0) { 8972 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8973 } 8974 size = ConvX2L(size); 8975 8976 result_reg->init_req(_array_path, control()); 8977 result_val->init_req(_array_path, size); 8978 } 8979 8980 if (!stopped()) { 8981 // Instance case: the layout helper gives us instance size almost directly, 8982 // but we need to mask out the _lh_instance_slow_path_bit. 8983 Node* size = ConvI2X(layout_val); 8984 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8985 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8986 size = _gvn.transform(new AndXNode(size, mask)); 8987 size = ConvX2L(size); 8988 8989 result_reg->init_req(_instance_path, control()); 8990 result_val->init_req(_instance_path, size); 8991 } 8992 8993 set_result(result_reg, result_val); 8994 } 8995 8996 return true; 8997 } 8998 8999 //------------------------------- inline_blackhole -------------------------------------- 9000 // 9001 // Make sure all arguments to this node are alive. 9002 // This matches methods that were requested to be blackholed through compile commands. 9003 // 9004 bool LibraryCallKit::inline_blackhole() { 9005 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 9006 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 9007 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 9008 9009 // Blackhole node pinches only the control, not memory. This allows 9010 // the blackhole to be pinned in the loop that computes blackholed 9011 // values, but have no other side effects, like breaking the optimizations 9012 // across the blackhole. 9013 9014 Node* bh = _gvn.transform(new BlackholeNode(control())); 9015 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 9016 9017 // Bind call arguments as blackhole arguments to keep them alive 9018 uint nargs = callee()->arg_size(); 9019 for (uint i = 0; i < nargs; i++) { 9020 bh->add_req(argument(i)); 9021 } 9022 9023 return true; 9024 }