1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciFlatArrayKlass.hpp" 28 #include "ci/ciUtilities.inline.hpp" 29 #include "classfile/vmIntrinsics.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/klass.inline.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/c2compiler.hpp" 40 #include "opto/castnode.hpp" 41 #include "opto/cfgnode.hpp" 42 #include "opto/convertnode.hpp" 43 #include "opto/countbitsnode.hpp" 44 #include "opto/idealKit.hpp" 45 #include "opto/library_call.hpp" 46 #include "opto/mathexactnode.hpp" 47 #include "opto/mulnode.hpp" 48 #include "opto/narrowptrnode.hpp" 49 #include "opto/opaquenode.hpp" 50 #include "opto/parse.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/rootnode.hpp" 53 #include "opto/subnode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 if (C->print_intrinsics() || C->print_inlining()) { 124 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 125 } 126 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 127 if (C->log()) { 128 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 129 vmIntrinsics::name_at(intrinsic_id()), 130 (is_virtual() ? " virtual='1'" : ""), 131 C->unique() - nodes); 132 } 133 // Push the result from the inlined method onto the stack. 134 kit.push_result(); 135 C->print_inlining_update(this); 136 return kit.transfer_exceptions_into_jvms(); 137 } 138 139 // The intrinsic bailed out 140 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 141 if (jvms->has_method()) { 142 // Not a root compile. 143 const char* msg; 144 if (callee->intrinsic_candidate()) { 145 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 146 } else { 147 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 148 : "failed to inline (intrinsic), method not annotated"; 149 } 150 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 151 if (C->print_intrinsics() || C->print_inlining()) { 152 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 153 } 154 } else { 155 // Root compile 156 ResourceMark rm; 157 stringStream msg_stream; 158 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 159 vmIntrinsics::name_at(intrinsic_id()), 160 is_virtual() ? " (virtual)" : "", bci); 161 const char *msg = msg_stream.freeze(); 162 log_debug(jit, inlining)("%s", msg); 163 if (C->print_intrinsics() || C->print_inlining()) { 164 tty->print("%s", msg); 165 } 166 } 167 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 168 C->print_inlining_update(this); 169 170 return nullptr; 171 } 172 173 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 174 LibraryCallKit kit(jvms, this); 175 Compile* C = kit.C; 176 int nodes = C->unique(); 177 _last_predicate = predicate; 178 #ifndef PRODUCT 179 assert(is_predicated() && predicate < predicates_count(), "sanity"); 180 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 181 char buf[1000]; 182 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 183 tty->print_cr("Predicate for intrinsic %s", str); 184 } 185 #endif 186 ciMethod* callee = kit.callee(); 187 const int bci = kit.bci(); 188 189 Node* slow_ctl = kit.try_to_predicate(predicate); 190 if (!kit.failing()) { 191 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 192 : "(intrinsic, predicate)"; 193 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 194 if (C->print_intrinsics() || C->print_inlining()) { 195 C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 196 } 197 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 198 if (C->log()) { 199 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 200 vmIntrinsics::name_at(intrinsic_id()), 201 (is_virtual() ? " virtual='1'" : ""), 202 C->unique() - nodes); 203 } 204 return slow_ctl; // Could be null if the check folds. 205 } 206 207 // The intrinsic bailed out 208 if (jvms->has_method()) { 209 // Not a root compile. 210 const char* msg = "failed to generate predicate for intrinsic"; 211 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 212 if (C->print_intrinsics() || C->print_inlining()) { 213 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 214 } 215 } else { 216 // Root compile 217 ResourceMark rm; 218 stringStream msg_stream; 219 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 220 vmIntrinsics::name_at(intrinsic_id()), 221 is_virtual() ? " (virtual)" : "", bci); 222 const char *msg = msg_stream.freeze(); 223 log_debug(jit, inlining)("%s", msg); 224 if (C->print_intrinsics() || C->print_inlining()) { 225 C->print_inlining_stream()->print("%s", msg); 226 } 227 } 228 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 229 return nullptr; 230 } 231 232 bool LibraryCallKit::try_to_inline(int predicate) { 233 // Handle symbolic names for otherwise undistinguished boolean switches: 234 const bool is_store = true; 235 const bool is_compress = true; 236 const bool is_static = true; 237 const bool is_volatile = true; 238 239 if (!jvms()->has_method()) { 240 // Root JVMState has a null method. 241 assert(map()->memory()->Opcode() == Op_Parm, ""); 242 // Insert the memory aliasing node 243 set_all_memory(reset_memory()); 244 } 245 assert(merged_memory(), ""); 246 247 switch (intrinsic_id()) { 248 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 249 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 250 case vmIntrinsics::_getClass: return inline_native_getClass(); 251 252 case vmIntrinsics::_ceil: 253 case vmIntrinsics::_floor: 254 case vmIntrinsics::_rint: 255 case vmIntrinsics::_dsin: 256 case vmIntrinsics::_dcos: 257 case vmIntrinsics::_dtan: 258 case vmIntrinsics::_dabs: 259 case vmIntrinsics::_fabs: 260 case vmIntrinsics::_iabs: 261 case vmIntrinsics::_labs: 262 case vmIntrinsics::_datan2: 263 case vmIntrinsics::_dsqrt: 264 case vmIntrinsics::_dsqrt_strict: 265 case vmIntrinsics::_dexp: 266 case vmIntrinsics::_dlog: 267 case vmIntrinsics::_dlog10: 268 case vmIntrinsics::_dpow: 269 case vmIntrinsics::_dcopySign: 270 case vmIntrinsics::_fcopySign: 271 case vmIntrinsics::_dsignum: 272 case vmIntrinsics::_roundF: 273 case vmIntrinsics::_roundD: 274 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 275 276 case vmIntrinsics::_notify: 277 case vmIntrinsics::_notifyAll: 278 return inline_notify(intrinsic_id()); 279 280 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 281 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 282 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 283 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 284 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 285 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 286 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 287 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 288 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 289 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 290 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 291 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 292 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 293 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 294 295 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 296 297 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 298 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 299 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 300 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 301 302 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 303 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 304 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 305 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 306 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 307 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 308 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 309 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 310 311 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 312 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 313 314 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 315 316 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 317 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 318 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 319 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 320 321 case vmIntrinsics::_compressStringC: 322 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 323 case vmIntrinsics::_inflateStringC: 324 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 325 326 case vmIntrinsics::_makePrivateBuffer: return inline_unsafe_make_private_buffer(); 327 case vmIntrinsics::_finishPrivateBuffer: return inline_unsafe_finish_private_buffer(); 328 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 329 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 330 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 331 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 332 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 333 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 334 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 335 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 336 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 337 case vmIntrinsics::_getValue: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false, true); 338 339 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 340 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 341 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 342 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 343 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 344 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 345 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 346 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 347 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 348 case vmIntrinsics::_putValue: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false, true); 349 350 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 351 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 352 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 353 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 354 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 355 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 356 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 357 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 358 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 359 360 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 361 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 362 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 363 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 364 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 365 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 366 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 367 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 368 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 369 370 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 371 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 372 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 373 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 374 375 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 376 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 377 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 378 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 379 380 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 381 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 382 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 383 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 384 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 385 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 386 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 387 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 388 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 389 390 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 391 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 392 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 393 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 394 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 395 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 396 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 397 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 398 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 399 400 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 401 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 402 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 403 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 404 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 405 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 406 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 407 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 408 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 409 410 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 411 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 412 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 413 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 414 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 415 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 416 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 417 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 418 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 419 420 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 421 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 422 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 423 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 424 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 425 426 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 427 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 428 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 429 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 430 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 431 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 432 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 433 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 434 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 435 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 436 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 437 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 438 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 439 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 440 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 441 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 442 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 443 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 444 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 445 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 446 447 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 448 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 449 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 450 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 451 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 452 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 453 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 454 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 455 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 456 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 457 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 458 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 459 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 460 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 461 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 462 463 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 464 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 465 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 466 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 467 468 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 469 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 470 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 471 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 472 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 473 474 case vmIntrinsics::_loadFence: 475 case vmIntrinsics::_storeFence: 476 case vmIntrinsics::_storeStoreFence: 477 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 478 479 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 480 481 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 482 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 483 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 484 485 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 486 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 487 488 #if INCLUDE_JVMTI 489 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 490 "notifyJvmtiStart", true, false); 491 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 492 "notifyJvmtiEnd", false, true); 493 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 494 "notifyJvmtiMount", false, false); 495 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 496 "notifyJvmtiUnmount", false, false); 497 case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide(); 498 #endif 499 500 #ifdef JFR_HAVE_INTRINSICS 501 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 502 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 503 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 504 #endif 505 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 506 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 507 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 508 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 509 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 510 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 511 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 512 case vmIntrinsics::_isFlattenedArray: return inline_unsafe_isFlattenedArray(); 513 case vmIntrinsics::_getLength: return inline_native_getLength(); 514 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 515 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 516 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 517 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 518 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 519 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 520 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 521 522 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 523 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 524 525 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 526 527 case vmIntrinsics::_isInstance: 528 case vmIntrinsics::_getModifiers: 529 case vmIntrinsics::_isInterface: 530 case vmIntrinsics::_isArray: 531 case vmIntrinsics::_isPrimitive: 532 case vmIntrinsics::_isHidden: 533 case vmIntrinsics::_getSuperclass: 534 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 535 536 case vmIntrinsics::_asPrimaryType: 537 case vmIntrinsics::_asPrimaryTypeArg: 538 case vmIntrinsics::_asValueType: 539 case vmIntrinsics::_asValueTypeArg: return inline_primitive_Class_conversion(intrinsic_id()); 540 541 case vmIntrinsics::_floatToRawIntBits: 542 case vmIntrinsics::_floatToIntBits: 543 case vmIntrinsics::_intBitsToFloat: 544 case vmIntrinsics::_doubleToRawLongBits: 545 case vmIntrinsics::_doubleToLongBits: 546 case vmIntrinsics::_longBitsToDouble: 547 case vmIntrinsics::_floatToFloat16: 548 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 549 550 case vmIntrinsics::_floatIsFinite: 551 case vmIntrinsics::_floatIsInfinite: 552 case vmIntrinsics::_doubleIsFinite: 553 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 554 555 case vmIntrinsics::_numberOfLeadingZeros_i: 556 case vmIntrinsics::_numberOfLeadingZeros_l: 557 case vmIntrinsics::_numberOfTrailingZeros_i: 558 case vmIntrinsics::_numberOfTrailingZeros_l: 559 case vmIntrinsics::_bitCount_i: 560 case vmIntrinsics::_bitCount_l: 561 case vmIntrinsics::_reverse_i: 562 case vmIntrinsics::_reverse_l: 563 case vmIntrinsics::_reverseBytes_i: 564 case vmIntrinsics::_reverseBytes_l: 565 case vmIntrinsics::_reverseBytes_s: 566 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 567 568 case vmIntrinsics::_compress_i: 569 case vmIntrinsics::_compress_l: 570 case vmIntrinsics::_expand_i: 571 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 572 573 case vmIntrinsics::_compareUnsigned_i: 574 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 575 576 case vmIntrinsics::_divideUnsigned_i: 577 case vmIntrinsics::_divideUnsigned_l: 578 case vmIntrinsics::_remainderUnsigned_i: 579 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 580 581 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 582 583 case vmIntrinsics::_Reference_get: return inline_reference_get(); 584 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 585 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 586 587 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 588 589 case vmIntrinsics::_aescrypt_encryptBlock: 590 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 591 592 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 593 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 594 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 595 596 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 597 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 598 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 599 600 case vmIntrinsics::_counterMode_AESCrypt: 601 return inline_counterMode_AESCrypt(intrinsic_id()); 602 603 case vmIntrinsics::_galoisCounterMode_AESCrypt: 604 return inline_galoisCounterMode_AESCrypt(); 605 606 case vmIntrinsics::_md5_implCompress: 607 case vmIntrinsics::_sha_implCompress: 608 case vmIntrinsics::_sha2_implCompress: 609 case vmIntrinsics::_sha5_implCompress: 610 case vmIntrinsics::_sha3_implCompress: 611 return inline_digestBase_implCompress(intrinsic_id()); 612 613 case vmIntrinsics::_digestBase_implCompressMB: 614 return inline_digestBase_implCompressMB(predicate); 615 616 case vmIntrinsics::_multiplyToLen: 617 return inline_multiplyToLen(); 618 619 case vmIntrinsics::_squareToLen: 620 return inline_squareToLen(); 621 622 case vmIntrinsics::_mulAdd: 623 return inline_mulAdd(); 624 625 case vmIntrinsics::_montgomeryMultiply: 626 return inline_montgomeryMultiply(); 627 case vmIntrinsics::_montgomerySquare: 628 return inline_montgomerySquare(); 629 630 case vmIntrinsics::_bigIntegerRightShiftWorker: 631 return inline_bigIntegerShift(true); 632 case vmIntrinsics::_bigIntegerLeftShiftWorker: 633 return inline_bigIntegerShift(false); 634 635 case vmIntrinsics::_vectorizedMismatch: 636 return inline_vectorizedMismatch(); 637 638 case vmIntrinsics::_ghash_processBlocks: 639 return inline_ghash_processBlocks(); 640 case vmIntrinsics::_chacha20Block: 641 return inline_chacha20Block(); 642 case vmIntrinsics::_base64_encodeBlock: 643 return inline_base64_encodeBlock(); 644 case vmIntrinsics::_base64_decodeBlock: 645 return inline_base64_decodeBlock(); 646 case vmIntrinsics::_poly1305_processBlocks: 647 return inline_poly1305_processBlocks(); 648 649 case vmIntrinsics::_encodeISOArray: 650 case vmIntrinsics::_encodeByteISOArray: 651 return inline_encodeISOArray(false); 652 case vmIntrinsics::_encodeAsciiArray: 653 return inline_encodeISOArray(true); 654 655 case vmIntrinsics::_updateCRC32: 656 return inline_updateCRC32(); 657 case vmIntrinsics::_updateBytesCRC32: 658 return inline_updateBytesCRC32(); 659 case vmIntrinsics::_updateByteBufferCRC32: 660 return inline_updateByteBufferCRC32(); 661 662 case vmIntrinsics::_updateBytesCRC32C: 663 return inline_updateBytesCRC32C(); 664 case vmIntrinsics::_updateDirectByteBufferCRC32C: 665 return inline_updateDirectByteBufferCRC32C(); 666 667 case vmIntrinsics::_updateBytesAdler32: 668 return inline_updateBytesAdler32(); 669 case vmIntrinsics::_updateByteBufferAdler32: 670 return inline_updateByteBufferAdler32(); 671 672 case vmIntrinsics::_profileBoolean: 673 return inline_profileBoolean(); 674 case vmIntrinsics::_isCompileConstant: 675 return inline_isCompileConstant(); 676 677 case vmIntrinsics::_countPositives: 678 return inline_countPositives(); 679 680 case vmIntrinsics::_fmaD: 681 case vmIntrinsics::_fmaF: 682 return inline_fma(intrinsic_id()); 683 684 case vmIntrinsics::_isDigit: 685 case vmIntrinsics::_isLowerCase: 686 case vmIntrinsics::_isUpperCase: 687 case vmIntrinsics::_isWhitespace: 688 return inline_character_compare(intrinsic_id()); 689 690 case vmIntrinsics::_min: 691 case vmIntrinsics::_max: 692 case vmIntrinsics::_min_strict: 693 case vmIntrinsics::_max_strict: 694 return inline_min_max(intrinsic_id()); 695 696 case vmIntrinsics::_maxF: 697 case vmIntrinsics::_minF: 698 case vmIntrinsics::_maxD: 699 case vmIntrinsics::_minD: 700 case vmIntrinsics::_maxF_strict: 701 case vmIntrinsics::_minF_strict: 702 case vmIntrinsics::_maxD_strict: 703 case vmIntrinsics::_minD_strict: 704 return inline_fp_min_max(intrinsic_id()); 705 706 case vmIntrinsics::_VectorUnaryOp: 707 return inline_vector_nary_operation(1); 708 case vmIntrinsics::_VectorBinaryOp: 709 return inline_vector_nary_operation(2); 710 case vmIntrinsics::_VectorTernaryOp: 711 return inline_vector_nary_operation(3); 712 case vmIntrinsics::_VectorFromBitsCoerced: 713 return inline_vector_frombits_coerced(); 714 case vmIntrinsics::_VectorShuffleIota: 715 return inline_vector_shuffle_iota(); 716 case vmIntrinsics::_VectorMaskOp: 717 return inline_vector_mask_operation(); 718 case vmIntrinsics::_VectorShuffleToVector: 719 return inline_vector_shuffle_to_vector(); 720 case vmIntrinsics::_VectorLoadOp: 721 return inline_vector_mem_operation(/*is_store=*/false); 722 case vmIntrinsics::_VectorLoadMaskedOp: 723 return inline_vector_mem_masked_operation(/*is_store*/false); 724 case vmIntrinsics::_VectorStoreOp: 725 return inline_vector_mem_operation(/*is_store=*/true); 726 case vmIntrinsics::_VectorStoreMaskedOp: 727 return inline_vector_mem_masked_operation(/*is_store=*/true); 728 case vmIntrinsics::_VectorGatherOp: 729 return inline_vector_gather_scatter(/*is_scatter*/ false); 730 case vmIntrinsics::_VectorScatterOp: 731 return inline_vector_gather_scatter(/*is_scatter*/ true); 732 case vmIntrinsics::_VectorReductionCoerced: 733 return inline_vector_reduction(); 734 case vmIntrinsics::_VectorTest: 735 return inline_vector_test(); 736 case vmIntrinsics::_VectorBlend: 737 return inline_vector_blend(); 738 case vmIntrinsics::_VectorRearrange: 739 return inline_vector_rearrange(); 740 case vmIntrinsics::_VectorCompare: 741 return inline_vector_compare(); 742 case vmIntrinsics::_VectorBroadcastInt: 743 return inline_vector_broadcast_int(); 744 case vmIntrinsics::_VectorConvert: 745 return inline_vector_convert(); 746 case vmIntrinsics::_VectorInsert: 747 return inline_vector_insert(); 748 case vmIntrinsics::_VectorExtract: 749 return inline_vector_extract(); 750 case vmIntrinsics::_VectorCompressExpand: 751 return inline_vector_compress_expand(); 752 case vmIntrinsics::_IndexVector: 753 return inline_index_vector(); 754 case vmIntrinsics::_IndexPartiallyInUpperRange: 755 return inline_index_partially_in_upper_range(); 756 757 case vmIntrinsics::_getObjectSize: 758 return inline_getObjectSize(); 759 760 case vmIntrinsics::_blackhole: 761 return inline_blackhole(); 762 763 default: 764 // If you get here, it may be that someone has added a new intrinsic 765 // to the list in vmIntrinsics.hpp without implementing it here. 766 #ifndef PRODUCT 767 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 768 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 769 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 770 } 771 #endif 772 return false; 773 } 774 } 775 776 Node* LibraryCallKit::try_to_predicate(int predicate) { 777 if (!jvms()->has_method()) { 778 // Root JVMState has a null method. 779 assert(map()->memory()->Opcode() == Op_Parm, ""); 780 // Insert the memory aliasing node 781 set_all_memory(reset_memory()); 782 } 783 assert(merged_memory(), ""); 784 785 switch (intrinsic_id()) { 786 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 787 return inline_cipherBlockChaining_AESCrypt_predicate(false); 788 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 789 return inline_cipherBlockChaining_AESCrypt_predicate(true); 790 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 791 return inline_electronicCodeBook_AESCrypt_predicate(false); 792 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 793 return inline_electronicCodeBook_AESCrypt_predicate(true); 794 case vmIntrinsics::_counterMode_AESCrypt: 795 return inline_counterMode_AESCrypt_predicate(); 796 case vmIntrinsics::_digestBase_implCompressMB: 797 return inline_digestBase_implCompressMB_predicate(predicate); 798 case vmIntrinsics::_galoisCounterMode_AESCrypt: 799 return inline_galoisCounterMode_AESCrypt_predicate(); 800 801 default: 802 // If you get here, it may be that someone has added a new intrinsic 803 // to the list in vmIntrinsics.hpp without implementing it here. 804 #ifndef PRODUCT 805 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 806 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 807 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 808 } 809 #endif 810 Node* slow_ctl = control(); 811 set_control(top()); // No fast path intrinsic 812 return slow_ctl; 813 } 814 } 815 816 //------------------------------set_result------------------------------- 817 // Helper function for finishing intrinsics. 818 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 819 record_for_igvn(region); 820 set_control(_gvn.transform(region)); 821 set_result( _gvn.transform(value)); 822 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 823 } 824 825 //------------------------------generate_guard--------------------------- 826 // Helper function for generating guarded fast-slow graph structures. 827 // The given 'test', if true, guards a slow path. If the test fails 828 // then a fast path can be taken. (We generally hope it fails.) 829 // In all cases, GraphKit::control() is updated to the fast path. 830 // The returned value represents the control for the slow path. 831 // The return value is never 'top'; it is either a valid control 832 // or null if it is obvious that the slow path can never be taken. 833 // Also, if region and the slow control are not null, the slow edge 834 // is appended to the region. 835 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 836 if (stopped()) { 837 // Already short circuited. 838 return nullptr; 839 } 840 841 // Build an if node and its projections. 842 // If test is true we take the slow path, which we assume is uncommon. 843 if (_gvn.type(test) == TypeInt::ZERO) { 844 // The slow branch is never taken. No need to build this guard. 845 return nullptr; 846 } 847 848 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 849 850 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 851 if (if_slow == top()) { 852 // The slow branch is never taken. No need to build this guard. 853 return nullptr; 854 } 855 856 if (region != nullptr) 857 region->add_req(if_slow); 858 859 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 860 set_control(if_fast); 861 862 return if_slow; 863 } 864 865 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 866 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 867 } 868 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 869 return generate_guard(test, region, PROB_FAIR); 870 } 871 872 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 873 Node* *pos_index) { 874 if (stopped()) 875 return nullptr; // already stopped 876 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 877 return nullptr; // index is already adequately typed 878 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 879 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 880 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 881 if (is_neg != nullptr && pos_index != nullptr) { 882 // Emulate effect of Parse::adjust_map_after_if. 883 Node* ccast = new CastIINode(index, TypeInt::POS); 884 ccast->set_req(0, control()); 885 (*pos_index) = _gvn.transform(ccast); 886 } 887 return is_neg; 888 } 889 890 // Make sure that 'position' is a valid limit index, in [0..length]. 891 // There are two equivalent plans for checking this: 892 // A. (offset + copyLength) unsigned<= arrayLength 893 // B. offset <= (arrayLength - copyLength) 894 // We require that all of the values above, except for the sum and 895 // difference, are already known to be non-negative. 896 // Plan A is robust in the face of overflow, if offset and copyLength 897 // are both hugely positive. 898 // 899 // Plan B is less direct and intuitive, but it does not overflow at 900 // all, since the difference of two non-negatives is always 901 // representable. Whenever Java methods must perform the equivalent 902 // check they generally use Plan B instead of Plan A. 903 // For the moment we use Plan A. 904 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 905 Node* subseq_length, 906 Node* array_length, 907 RegionNode* region) { 908 if (stopped()) 909 return nullptr; // already stopped 910 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 911 if (zero_offset && subseq_length->eqv_uncast(array_length)) 912 return nullptr; // common case of whole-array copy 913 Node* last = subseq_length; 914 if (!zero_offset) // last += offset 915 last = _gvn.transform(new AddINode(last, offset)); 916 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 917 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 918 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 919 return is_over; 920 } 921 922 // Emit range checks for the given String.value byte array 923 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 924 if (stopped()) { 925 return; // already stopped 926 } 927 RegionNode* bailout = new RegionNode(1); 928 record_for_igvn(bailout); 929 if (char_count) { 930 // Convert char count to byte count 931 count = _gvn.transform(new LShiftINode(count, intcon(1))); 932 } 933 934 // Offset and count must not be negative 935 generate_negative_guard(offset, bailout); 936 generate_negative_guard(count, bailout); 937 // Offset + count must not exceed length of array 938 generate_limit_guard(offset, count, load_array_length(array), bailout); 939 940 if (bailout->req() > 1) { 941 PreserveJVMState pjvms(this); 942 set_control(_gvn.transform(bailout)); 943 uncommon_trap(Deoptimization::Reason_intrinsic, 944 Deoptimization::Action_maybe_recompile); 945 } 946 } 947 948 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 949 bool is_immutable) { 950 ciKlass* thread_klass = env()->Thread_klass(); 951 const Type* thread_type 952 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 953 954 Node* thread = _gvn.transform(new ThreadLocalNode()); 955 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 956 tls_output = thread; 957 958 Node* thread_obj_handle 959 = (is_immutable 960 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 961 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 962 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 963 thread_obj_handle = _gvn.transform(thread_obj_handle); 964 965 DecoratorSet decorators = IN_NATIVE; 966 if (is_immutable) { 967 decorators |= C2_IMMUTABLE_MEMORY; 968 } 969 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 970 } 971 972 //--------------------------generate_current_thread-------------------- 973 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 974 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 975 /*is_immutable*/false); 976 } 977 978 //--------------------------generate_virtual_thread-------------------- 979 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 980 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 981 !C->method()->changes_current_thread()); 982 } 983 984 //------------------------------make_string_method_node------------------------ 985 // Helper method for String intrinsic functions. This version is called with 986 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 987 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 988 // containing the lengths of str1 and str2. 989 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 990 Node* result = nullptr; 991 switch (opcode) { 992 case Op_StrIndexOf: 993 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 994 str1_start, cnt1, str2_start, cnt2, ae); 995 break; 996 case Op_StrComp: 997 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 998 str1_start, cnt1, str2_start, cnt2, ae); 999 break; 1000 case Op_StrEquals: 1001 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1002 // Use the constant length if there is one because optimized match rule may exist. 1003 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1004 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1005 break; 1006 default: 1007 ShouldNotReachHere(); 1008 return nullptr; 1009 } 1010 1011 // All these intrinsics have checks. 1012 C->set_has_split_ifs(true); // Has chance for split-if optimization 1013 clear_upper_avx(); 1014 1015 return _gvn.transform(result); 1016 } 1017 1018 //------------------------------inline_string_compareTo------------------------ 1019 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1020 Node* arg1 = argument(0); 1021 Node* arg2 = argument(1); 1022 1023 arg1 = must_be_not_null(arg1, true); 1024 arg2 = must_be_not_null(arg2, true); 1025 1026 // Get start addr and length of first argument 1027 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1028 Node* arg1_cnt = load_array_length(arg1); 1029 1030 // Get start addr and length of second argument 1031 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1032 Node* arg2_cnt = load_array_length(arg2); 1033 1034 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1035 set_result(result); 1036 return true; 1037 } 1038 1039 //------------------------------inline_string_equals------------------------ 1040 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1041 Node* arg1 = argument(0); 1042 Node* arg2 = argument(1); 1043 1044 // paths (plus control) merge 1045 RegionNode* region = new RegionNode(3); 1046 Node* phi = new PhiNode(region, TypeInt::BOOL); 1047 1048 if (!stopped()) { 1049 1050 arg1 = must_be_not_null(arg1, true); 1051 arg2 = must_be_not_null(arg2, true); 1052 1053 // Get start addr and length of first argument 1054 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1055 Node* arg1_cnt = load_array_length(arg1); 1056 1057 // Get start addr and length of second argument 1058 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1059 Node* arg2_cnt = load_array_length(arg2); 1060 1061 // Check for arg1_cnt != arg2_cnt 1062 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1063 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1064 Node* if_ne = generate_slow_guard(bol, nullptr); 1065 if (if_ne != nullptr) { 1066 phi->init_req(2, intcon(0)); 1067 region->init_req(2, if_ne); 1068 } 1069 1070 // Check for count == 0 is done by assembler code for StrEquals. 1071 1072 if (!stopped()) { 1073 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1074 phi->init_req(1, equals); 1075 region->init_req(1, control()); 1076 } 1077 } 1078 1079 // post merge 1080 set_control(_gvn.transform(region)); 1081 record_for_igvn(region); 1082 1083 set_result(_gvn.transform(phi)); 1084 return true; 1085 } 1086 1087 //------------------------------inline_array_equals---------------------------- 1088 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1089 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1090 Node* arg1 = argument(0); 1091 Node* arg2 = argument(1); 1092 1093 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1094 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1095 clear_upper_avx(); 1096 1097 return true; 1098 } 1099 1100 1101 //------------------------------inline_countPositives------------------------------ 1102 bool LibraryCallKit::inline_countPositives() { 1103 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1104 return false; 1105 } 1106 1107 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1108 // no receiver since it is static method 1109 Node* ba = argument(0); 1110 Node* offset = argument(1); 1111 Node* len = argument(2); 1112 1113 ba = must_be_not_null(ba, true); 1114 1115 // Range checks 1116 generate_string_range_check(ba, offset, len, false); 1117 if (stopped()) { 1118 return true; 1119 } 1120 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1121 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1122 set_result(_gvn.transform(result)); 1123 return true; 1124 } 1125 1126 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1127 Node* index = argument(0); 1128 Node* length = bt == T_INT ? argument(1) : argument(2); 1129 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1130 return false; 1131 } 1132 1133 // check that length is positive 1134 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1135 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1136 1137 { 1138 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1139 uncommon_trap(Deoptimization::Reason_intrinsic, 1140 Deoptimization::Action_make_not_entrant); 1141 } 1142 1143 if (stopped()) { 1144 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1145 return true; 1146 } 1147 1148 // length is now known positive, add a cast node to make this explicit 1149 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1150 Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1151 casted_length = _gvn.transform(casted_length); 1152 replace_in_map(length, casted_length); 1153 length = casted_length; 1154 1155 // Use an unsigned comparison for the range check itself 1156 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1157 BoolTest::mask btest = BoolTest::lt; 1158 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1159 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1160 _gvn.set_type(rc, rc->Value(&_gvn)); 1161 if (!rc_bool->is_Con()) { 1162 record_for_igvn(rc); 1163 } 1164 set_control(_gvn.transform(new IfTrueNode(rc))); 1165 { 1166 PreserveJVMState pjvms(this); 1167 set_control(_gvn.transform(new IfFalseNode(rc))); 1168 uncommon_trap(Deoptimization::Reason_range_check, 1169 Deoptimization::Action_make_not_entrant); 1170 } 1171 1172 if (stopped()) { 1173 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1174 return true; 1175 } 1176 1177 // index is now known to be >= 0 and < length, cast it 1178 Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1179 result = _gvn.transform(result); 1180 set_result(result); 1181 replace_in_map(index, result); 1182 return true; 1183 } 1184 1185 //------------------------------inline_string_indexOf------------------------ 1186 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1187 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1188 return false; 1189 } 1190 Node* src = argument(0); 1191 Node* tgt = argument(1); 1192 1193 // Make the merge point 1194 RegionNode* result_rgn = new RegionNode(4); 1195 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1196 1197 src = must_be_not_null(src, true); 1198 tgt = must_be_not_null(tgt, true); 1199 1200 // Get start addr and length of source string 1201 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1202 Node* src_count = load_array_length(src); 1203 1204 // Get start addr and length of substring 1205 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1206 Node* tgt_count = load_array_length(tgt); 1207 1208 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1209 // Divide src size by 2 if String is UTF16 encoded 1210 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1211 } 1212 if (ae == StrIntrinsicNode::UU) { 1213 // Divide substring size by 2 if String is UTF16 encoded 1214 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1215 } 1216 1217 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1218 if (result != nullptr) { 1219 result_phi->init_req(3, result); 1220 result_rgn->init_req(3, control()); 1221 } 1222 set_control(_gvn.transform(result_rgn)); 1223 record_for_igvn(result_rgn); 1224 set_result(_gvn.transform(result_phi)); 1225 1226 return true; 1227 } 1228 1229 //-----------------------------inline_string_indexOf----------------------- 1230 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1231 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1232 return false; 1233 } 1234 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1235 return false; 1236 } 1237 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1238 Node* src = argument(0); // byte[] 1239 Node* src_count = argument(1); // char count 1240 Node* tgt = argument(2); // byte[] 1241 Node* tgt_count = argument(3); // char count 1242 Node* from_index = argument(4); // char index 1243 1244 src = must_be_not_null(src, true); 1245 tgt = must_be_not_null(tgt, true); 1246 1247 // Multiply byte array index by 2 if String is UTF16 encoded 1248 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1249 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1250 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1251 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1252 1253 // Range checks 1254 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1255 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1256 if (stopped()) { 1257 return true; 1258 } 1259 1260 RegionNode* region = new RegionNode(5); 1261 Node* phi = new PhiNode(region, TypeInt::INT); 1262 1263 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1264 if (result != nullptr) { 1265 // The result is index relative to from_index if substring was found, -1 otherwise. 1266 // Generate code which will fold into cmove. 1267 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1268 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1269 1270 Node* if_lt = generate_slow_guard(bol, nullptr); 1271 if (if_lt != nullptr) { 1272 // result == -1 1273 phi->init_req(3, result); 1274 region->init_req(3, if_lt); 1275 } 1276 if (!stopped()) { 1277 result = _gvn.transform(new AddINode(result, from_index)); 1278 phi->init_req(4, result); 1279 region->init_req(4, control()); 1280 } 1281 } 1282 1283 set_control(_gvn.transform(region)); 1284 record_for_igvn(region); 1285 set_result(_gvn.transform(phi)); 1286 clear_upper_avx(); 1287 1288 return true; 1289 } 1290 1291 // Create StrIndexOfNode with fast path checks 1292 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1293 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1294 // Check for substr count > string count 1295 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1296 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1297 Node* if_gt = generate_slow_guard(bol, nullptr); 1298 if (if_gt != nullptr) { 1299 phi->init_req(1, intcon(-1)); 1300 region->init_req(1, if_gt); 1301 } 1302 if (!stopped()) { 1303 // Check for substr count == 0 1304 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1305 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1306 Node* if_zero = generate_slow_guard(bol, nullptr); 1307 if (if_zero != nullptr) { 1308 phi->init_req(2, intcon(0)); 1309 region->init_req(2, if_zero); 1310 } 1311 } 1312 if (!stopped()) { 1313 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1314 } 1315 return nullptr; 1316 } 1317 1318 //-----------------------------inline_string_indexOfChar----------------------- 1319 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1320 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1321 return false; 1322 } 1323 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1324 return false; 1325 } 1326 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1327 Node* src = argument(0); // byte[] 1328 Node* int_ch = argument(1); 1329 Node* from_index = argument(2); 1330 Node* max = argument(3); 1331 1332 src = must_be_not_null(src, true); 1333 1334 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1335 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1336 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1337 1338 // Range checks 1339 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1340 1341 // Check for int_ch >= 0 1342 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1343 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1344 { 1345 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1346 uncommon_trap(Deoptimization::Reason_intrinsic, 1347 Deoptimization::Action_maybe_recompile); 1348 } 1349 if (stopped()) { 1350 return true; 1351 } 1352 1353 RegionNode* region = new RegionNode(3); 1354 Node* phi = new PhiNode(region, TypeInt::INT); 1355 1356 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1357 C->set_has_split_ifs(true); // Has chance for split-if optimization 1358 _gvn.transform(result); 1359 1360 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1361 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1362 1363 Node* if_lt = generate_slow_guard(bol, nullptr); 1364 if (if_lt != nullptr) { 1365 // result == -1 1366 phi->init_req(2, result); 1367 region->init_req(2, if_lt); 1368 } 1369 if (!stopped()) { 1370 result = _gvn.transform(new AddINode(result, from_index)); 1371 phi->init_req(1, result); 1372 region->init_req(1, control()); 1373 } 1374 set_control(_gvn.transform(region)); 1375 record_for_igvn(region); 1376 set_result(_gvn.transform(phi)); 1377 1378 return true; 1379 } 1380 //---------------------------inline_string_copy--------------------- 1381 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1382 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1383 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1384 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1385 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1386 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1387 bool LibraryCallKit::inline_string_copy(bool compress) { 1388 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1389 return false; 1390 } 1391 int nargs = 5; // 2 oops, 3 ints 1392 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1393 1394 Node* src = argument(0); 1395 Node* src_offset = argument(1); 1396 Node* dst = argument(2); 1397 Node* dst_offset = argument(3); 1398 Node* length = argument(4); 1399 1400 // Check for allocation before we add nodes that would confuse 1401 // tightly_coupled_allocation() 1402 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1403 1404 // Figure out the size and type of the elements we will be copying. 1405 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1406 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1407 if (src_type == nullptr || dst_type == nullptr) { 1408 return false; 1409 } 1410 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1411 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1412 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1413 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1414 "Unsupported array types for inline_string_copy"); 1415 1416 src = must_be_not_null(src, true); 1417 dst = must_be_not_null(dst, true); 1418 1419 // Convert char[] offsets to byte[] offsets 1420 bool convert_src = (compress && src_elem == T_BYTE); 1421 bool convert_dst = (!compress && dst_elem == T_BYTE); 1422 if (convert_src) { 1423 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1424 } else if (convert_dst) { 1425 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1426 } 1427 1428 // Range checks 1429 generate_string_range_check(src, src_offset, length, convert_src); 1430 generate_string_range_check(dst, dst_offset, length, convert_dst); 1431 if (stopped()) { 1432 return true; 1433 } 1434 1435 Node* src_start = array_element_address(src, src_offset, src_elem); 1436 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1437 // 'src_start' points to src array + scaled offset 1438 // 'dst_start' points to dst array + scaled offset 1439 Node* count = nullptr; 1440 if (compress) { 1441 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1442 } else { 1443 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1444 } 1445 1446 if (alloc != nullptr) { 1447 if (alloc->maybe_set_complete(&_gvn)) { 1448 // "You break it, you buy it." 1449 InitializeNode* init = alloc->initialization(); 1450 assert(init->is_complete(), "we just did this"); 1451 init->set_complete_with_arraycopy(); 1452 assert(dst->is_CheckCastPP(), "sanity"); 1453 assert(dst->in(0)->in(0) == init, "dest pinned"); 1454 } 1455 // Do not let stores that initialize this object be reordered with 1456 // a subsequent store that would make this object accessible by 1457 // other threads. 1458 // Record what AllocateNode this StoreStore protects so that 1459 // escape analysis can go from the MemBarStoreStoreNode to the 1460 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1461 // based on the escape status of the AllocateNode. 1462 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1463 } 1464 if (compress) { 1465 set_result(_gvn.transform(count)); 1466 } 1467 clear_upper_avx(); 1468 1469 return true; 1470 } 1471 1472 #ifdef _LP64 1473 #define XTOP ,top() /*additional argument*/ 1474 #else //_LP64 1475 #define XTOP /*no additional argument*/ 1476 #endif //_LP64 1477 1478 //------------------------inline_string_toBytesU-------------------------- 1479 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1480 bool LibraryCallKit::inline_string_toBytesU() { 1481 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1482 return false; 1483 } 1484 // Get the arguments. 1485 Node* value = argument(0); 1486 Node* offset = argument(1); 1487 Node* length = argument(2); 1488 1489 Node* newcopy = nullptr; 1490 1491 // Set the original stack and the reexecute bit for the interpreter to reexecute 1492 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1493 { PreserveReexecuteState preexecs(this); 1494 jvms()->set_should_reexecute(true); 1495 1496 // Check if a null path was taken unconditionally. 1497 value = null_check(value); 1498 1499 RegionNode* bailout = new RegionNode(1); 1500 record_for_igvn(bailout); 1501 1502 // Range checks 1503 generate_negative_guard(offset, bailout); 1504 generate_negative_guard(length, bailout); 1505 generate_limit_guard(offset, length, load_array_length(value), bailout); 1506 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1507 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1508 1509 if (bailout->req() > 1) { 1510 PreserveJVMState pjvms(this); 1511 set_control(_gvn.transform(bailout)); 1512 uncommon_trap(Deoptimization::Reason_intrinsic, 1513 Deoptimization::Action_maybe_recompile); 1514 } 1515 if (stopped()) { 1516 return true; 1517 } 1518 1519 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1520 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1521 newcopy = new_array(klass_node, size, 0); // no arguments to push 1522 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1523 guarantee(alloc != nullptr, "created above"); 1524 1525 // Calculate starting addresses. 1526 Node* src_start = array_element_address(value, offset, T_CHAR); 1527 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1528 1529 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1530 const TypeInt* toffset = gvn().type(offset)->is_int(); 1531 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1532 1533 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1534 const char* copyfunc_name = "arraycopy"; 1535 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1536 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1537 OptoRuntime::fast_arraycopy_Type(), 1538 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1539 src_start, dst_start, ConvI2X(length) XTOP); 1540 // Do not let reads from the cloned object float above the arraycopy. 1541 if (alloc->maybe_set_complete(&_gvn)) { 1542 // "You break it, you buy it." 1543 InitializeNode* init = alloc->initialization(); 1544 assert(init->is_complete(), "we just did this"); 1545 init->set_complete_with_arraycopy(); 1546 assert(newcopy->is_CheckCastPP(), "sanity"); 1547 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1548 } 1549 // Do not let stores that initialize this object be reordered with 1550 // a subsequent store that would make this object accessible by 1551 // other threads. 1552 // Record what AllocateNode this StoreStore protects so that 1553 // escape analysis can go from the MemBarStoreStoreNode to the 1554 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1555 // based on the escape status of the AllocateNode. 1556 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1557 } // original reexecute is set back here 1558 1559 C->set_has_split_ifs(true); // Has chance for split-if optimization 1560 if (!stopped()) { 1561 set_result(newcopy); 1562 } 1563 clear_upper_avx(); 1564 1565 return true; 1566 } 1567 1568 //------------------------inline_string_getCharsU-------------------------- 1569 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1570 bool LibraryCallKit::inline_string_getCharsU() { 1571 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1572 return false; 1573 } 1574 1575 // Get the arguments. 1576 Node* src = argument(0); 1577 Node* src_begin = argument(1); 1578 Node* src_end = argument(2); // exclusive offset (i < src_end) 1579 Node* dst = argument(3); 1580 Node* dst_begin = argument(4); 1581 1582 // Check for allocation before we add nodes that would confuse 1583 // tightly_coupled_allocation() 1584 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1585 1586 // Check if a null path was taken unconditionally. 1587 src = null_check(src); 1588 dst = null_check(dst); 1589 if (stopped()) { 1590 return true; 1591 } 1592 1593 // Get length and convert char[] offset to byte[] offset 1594 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1595 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1596 1597 // Range checks 1598 generate_string_range_check(src, src_begin, length, true); 1599 generate_string_range_check(dst, dst_begin, length, false); 1600 if (stopped()) { 1601 return true; 1602 } 1603 1604 if (!stopped()) { 1605 // Calculate starting addresses. 1606 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1607 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1608 1609 // Check if array addresses are aligned to HeapWordSize 1610 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1611 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1612 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1613 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1614 1615 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1616 const char* copyfunc_name = "arraycopy"; 1617 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1618 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1619 OptoRuntime::fast_arraycopy_Type(), 1620 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1621 src_start, dst_start, ConvI2X(length) XTOP); 1622 // Do not let reads from the cloned object float above the arraycopy. 1623 if (alloc != nullptr) { 1624 if (alloc->maybe_set_complete(&_gvn)) { 1625 // "You break it, you buy it." 1626 InitializeNode* init = alloc->initialization(); 1627 assert(init->is_complete(), "we just did this"); 1628 init->set_complete_with_arraycopy(); 1629 assert(dst->is_CheckCastPP(), "sanity"); 1630 assert(dst->in(0)->in(0) == init, "dest pinned"); 1631 } 1632 // Do not let stores that initialize this object be reordered with 1633 // a subsequent store that would make this object accessible by 1634 // other threads. 1635 // Record what AllocateNode this StoreStore protects so that 1636 // escape analysis can go from the MemBarStoreStoreNode to the 1637 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1638 // based on the escape status of the AllocateNode. 1639 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1640 } else { 1641 insert_mem_bar(Op_MemBarCPUOrder); 1642 } 1643 } 1644 1645 C->set_has_split_ifs(true); // Has chance for split-if optimization 1646 return true; 1647 } 1648 1649 //----------------------inline_string_char_access---------------------------- 1650 // Store/Load char to/from byte[] array. 1651 // static void StringUTF16.putChar(byte[] val, int index, int c) 1652 // static char StringUTF16.getChar(byte[] val, int index) 1653 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1654 Node* value = argument(0); 1655 Node* index = argument(1); 1656 Node* ch = is_store ? argument(2) : nullptr; 1657 1658 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1659 // correctly requires matched array shapes. 1660 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1661 "sanity: byte[] and char[] bases agree"); 1662 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1663 "sanity: byte[] and char[] scales agree"); 1664 1665 // Bail when getChar over constants is requested: constant folding would 1666 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1667 // Java method would constant fold nicely instead. 1668 if (!is_store && value->is_Con() && index->is_Con()) { 1669 return false; 1670 } 1671 1672 // Save state and restore on bailout 1673 uint old_sp = sp(); 1674 SafePointNode* old_map = clone_map(); 1675 1676 value = must_be_not_null(value, true); 1677 1678 Node* adr = array_element_address(value, index, T_CHAR); 1679 if (adr->is_top()) { 1680 set_map(old_map); 1681 set_sp(old_sp); 1682 return false; 1683 } 1684 destruct_map_clone(old_map); 1685 if (is_store) { 1686 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1687 } else { 1688 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1689 set_result(ch); 1690 } 1691 return true; 1692 } 1693 1694 //--------------------------round_double_node-------------------------------- 1695 // Round a double node if necessary. 1696 Node* LibraryCallKit::round_double_node(Node* n) { 1697 if (Matcher::strict_fp_requires_explicit_rounding) { 1698 #ifdef IA32 1699 if (UseSSE < 2) { 1700 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1701 } 1702 #else 1703 Unimplemented(); 1704 #endif // IA32 1705 } 1706 return n; 1707 } 1708 1709 //------------------------------inline_math----------------------------------- 1710 // public static double Math.abs(double) 1711 // public static double Math.sqrt(double) 1712 // public static double Math.log(double) 1713 // public static double Math.log10(double) 1714 // public static double Math.round(double) 1715 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1716 Node* arg = round_double_node(argument(0)); 1717 Node* n = nullptr; 1718 switch (id) { 1719 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1720 case vmIntrinsics::_dsqrt: 1721 case vmIntrinsics::_dsqrt_strict: 1722 n = new SqrtDNode(C, control(), arg); break; 1723 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1724 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1725 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1726 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1727 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1728 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1729 default: fatal_unexpected_iid(id); break; 1730 } 1731 set_result(_gvn.transform(n)); 1732 return true; 1733 } 1734 1735 //------------------------------inline_math----------------------------------- 1736 // public static float Math.abs(float) 1737 // public static int Math.abs(int) 1738 // public static long Math.abs(long) 1739 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1740 Node* arg = argument(0); 1741 Node* n = nullptr; 1742 switch (id) { 1743 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1744 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1745 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1746 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1747 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1748 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1749 default: fatal_unexpected_iid(id); break; 1750 } 1751 set_result(_gvn.transform(n)); 1752 return true; 1753 } 1754 1755 //------------------------------runtime_math----------------------------- 1756 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1757 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1758 "must be (DD)D or (D)D type"); 1759 1760 // Inputs 1761 Node* a = round_double_node(argument(0)); 1762 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1763 1764 const TypePtr* no_memory_effects = nullptr; 1765 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1766 no_memory_effects, 1767 a, top(), b, b ? top() : nullptr); 1768 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1769 #ifdef ASSERT 1770 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1771 assert(value_top == top(), "second value must be top"); 1772 #endif 1773 1774 set_result(value); 1775 return true; 1776 } 1777 1778 //------------------------------inline_math_pow----------------------------- 1779 bool LibraryCallKit::inline_math_pow() { 1780 Node* exp = round_double_node(argument(2)); 1781 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1782 if (d != nullptr) { 1783 if (d->getd() == 2.0) { 1784 // Special case: pow(x, 2.0) => x * x 1785 Node* base = round_double_node(argument(0)); 1786 set_result(_gvn.transform(new MulDNode(base, base))); 1787 return true; 1788 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1789 // Special case: pow(x, 0.5) => sqrt(x) 1790 Node* base = round_double_node(argument(0)); 1791 Node* zero = _gvn.zerocon(T_DOUBLE); 1792 1793 RegionNode* region = new RegionNode(3); 1794 Node* phi = new PhiNode(region, Type::DOUBLE); 1795 1796 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1797 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1798 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1799 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1800 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1801 1802 Node* if_pow = generate_slow_guard(test, nullptr); 1803 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1804 phi->init_req(1, value_sqrt); 1805 region->init_req(1, control()); 1806 1807 if (if_pow != nullptr) { 1808 set_control(if_pow); 1809 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1810 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1811 const TypePtr* no_memory_effects = nullptr; 1812 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1813 no_memory_effects, base, top(), exp, top()); 1814 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1815 #ifdef ASSERT 1816 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1817 assert(value_top == top(), "second value must be top"); 1818 #endif 1819 phi->init_req(2, value_pow); 1820 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1821 } 1822 1823 C->set_has_split_ifs(true); // Has chance for split-if optimization 1824 set_control(_gvn.transform(region)); 1825 record_for_igvn(region); 1826 set_result(_gvn.transform(phi)); 1827 1828 return true; 1829 } 1830 } 1831 1832 return StubRoutines::dpow() != nullptr ? 1833 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1834 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1835 } 1836 1837 //------------------------------inline_math_native----------------------------- 1838 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1839 switch (id) { 1840 case vmIntrinsics::_dsin: 1841 return StubRoutines::dsin() != nullptr ? 1842 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1843 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1844 case vmIntrinsics::_dcos: 1845 return StubRoutines::dcos() != nullptr ? 1846 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1847 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1848 case vmIntrinsics::_dtan: 1849 return StubRoutines::dtan() != nullptr ? 1850 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1851 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1852 case vmIntrinsics::_dexp: 1853 return StubRoutines::dexp() != nullptr ? 1854 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1855 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1856 case vmIntrinsics::_dlog: 1857 return StubRoutines::dlog() != nullptr ? 1858 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1859 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1860 case vmIntrinsics::_dlog10: 1861 return StubRoutines::dlog10() != nullptr ? 1862 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1863 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1864 1865 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1866 case vmIntrinsics::_ceil: 1867 case vmIntrinsics::_floor: 1868 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1869 1870 case vmIntrinsics::_dsqrt: 1871 case vmIntrinsics::_dsqrt_strict: 1872 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1873 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1874 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1875 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1876 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1877 1878 case vmIntrinsics::_dpow: return inline_math_pow(); 1879 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1880 case vmIntrinsics::_fcopySign: return inline_math(id); 1881 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1882 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1883 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1884 1885 // These intrinsics are not yet correctly implemented 1886 case vmIntrinsics::_datan2: 1887 return false; 1888 1889 default: 1890 fatal_unexpected_iid(id); 1891 return false; 1892 } 1893 } 1894 1895 //----------------------------inline_notify-----------------------------------* 1896 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1897 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1898 address func; 1899 if (id == vmIntrinsics::_notify) { 1900 func = OptoRuntime::monitor_notify_Java(); 1901 } else { 1902 func = OptoRuntime::monitor_notifyAll_Java(); 1903 } 1904 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1905 make_slow_call_ex(call, env()->Throwable_klass(), false); 1906 return true; 1907 } 1908 1909 1910 //----------------------------inline_min_max----------------------------------- 1911 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1912 set_result(generate_min_max(id, argument(0), argument(1))); 1913 return true; 1914 } 1915 1916 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1917 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1918 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1919 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1920 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1921 1922 { 1923 PreserveJVMState pjvms(this); 1924 PreserveReexecuteState preexecs(this); 1925 jvms()->set_should_reexecute(true); 1926 1927 set_control(slow_path); 1928 set_i_o(i_o()); 1929 1930 uncommon_trap(Deoptimization::Reason_intrinsic, 1931 Deoptimization::Action_none); 1932 } 1933 1934 set_control(fast_path); 1935 set_result(math); 1936 } 1937 1938 template <typename OverflowOp> 1939 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1940 typedef typename OverflowOp::MathOp MathOp; 1941 1942 MathOp* mathOp = new MathOp(arg1, arg2); 1943 Node* operation = _gvn.transform( mathOp ); 1944 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1945 inline_math_mathExact(operation, ofcheck); 1946 return true; 1947 } 1948 1949 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1950 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1951 } 1952 1953 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1954 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1955 } 1956 1957 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1958 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1959 } 1960 1961 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1962 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1963 } 1964 1965 bool LibraryCallKit::inline_math_negateExactI() { 1966 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1967 } 1968 1969 bool LibraryCallKit::inline_math_negateExactL() { 1970 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1971 } 1972 1973 bool LibraryCallKit::inline_math_multiplyExactI() { 1974 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1975 } 1976 1977 bool LibraryCallKit::inline_math_multiplyExactL() { 1978 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1979 } 1980 1981 bool LibraryCallKit::inline_math_multiplyHigh() { 1982 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1983 return true; 1984 } 1985 1986 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 1987 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 1988 return true; 1989 } 1990 1991 Node* 1992 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1993 Node* result_val = nullptr; 1994 switch (id) { 1995 case vmIntrinsics::_min: 1996 case vmIntrinsics::_min_strict: 1997 result_val = _gvn.transform(new MinINode(x0, y0)); 1998 break; 1999 case vmIntrinsics::_max: 2000 case vmIntrinsics::_max_strict: 2001 result_val = _gvn.transform(new MaxINode(x0, y0)); 2002 break; 2003 default: 2004 fatal_unexpected_iid(id); 2005 break; 2006 } 2007 return result_val; 2008 } 2009 2010 inline int 2011 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2012 const TypePtr* base_type = TypePtr::NULL_PTR; 2013 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2014 if (base_type == nullptr) { 2015 // Unknown type. 2016 return Type::AnyPtr; 2017 } else if (base_type == TypePtr::NULL_PTR) { 2018 // Since this is a null+long form, we have to switch to a rawptr. 2019 base = _gvn.transform(new CastX2PNode(offset)); 2020 offset = MakeConX(0); 2021 return Type::RawPtr; 2022 } else if (base_type->base() == Type::RawPtr) { 2023 return Type::RawPtr; 2024 } else if (base_type->isa_oopptr()) { 2025 // Base is never null => always a heap address. 2026 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2027 return Type::OopPtr; 2028 } 2029 // Offset is small => always a heap address. 2030 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2031 if (offset_type != nullptr && 2032 base_type->offset() == 0 && // (should always be?) 2033 offset_type->_lo >= 0 && 2034 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2035 return Type::OopPtr; 2036 } else if (type == T_OBJECT) { 2037 // off heap access to an oop doesn't make any sense. Has to be on 2038 // heap. 2039 return Type::OopPtr; 2040 } 2041 // Otherwise, it might either be oop+off or null+addr. 2042 return Type::AnyPtr; 2043 } else { 2044 // No information: 2045 return Type::AnyPtr; 2046 } 2047 } 2048 2049 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2050 Node* uncasted_base = base; 2051 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2052 if (kind == Type::RawPtr) { 2053 return basic_plus_adr(top(), uncasted_base, offset); 2054 } else if (kind == Type::AnyPtr) { 2055 assert(base == uncasted_base, "unexpected base change"); 2056 if (can_cast) { 2057 if (!_gvn.type(base)->speculative_maybe_null() && 2058 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2059 // According to profiling, this access is always on 2060 // heap. Casting the base to not null and thus avoiding membars 2061 // around the access should allow better optimizations 2062 Node* null_ctl = top(); 2063 base = null_check_oop(base, &null_ctl, true, true, true); 2064 assert(null_ctl->is_top(), "no null control here"); 2065 return basic_plus_adr(base, offset); 2066 } else if (_gvn.type(base)->speculative_always_null() && 2067 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2068 // According to profiling, this access is always off 2069 // heap. 2070 base = null_assert(base); 2071 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2072 offset = MakeConX(0); 2073 return basic_plus_adr(top(), raw_base, offset); 2074 } 2075 } 2076 // We don't know if it's an on heap or off heap access. Fall back 2077 // to raw memory access. 2078 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2079 return basic_plus_adr(top(), raw, offset); 2080 } else { 2081 assert(base == uncasted_base, "unexpected base change"); 2082 // We know it's an on heap access so base can't be null 2083 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2084 base = must_be_not_null(base, true); 2085 } 2086 return basic_plus_adr(base, offset); 2087 } 2088 } 2089 2090 //--------------------------inline_number_methods----------------------------- 2091 // inline int Integer.numberOfLeadingZeros(int) 2092 // inline int Long.numberOfLeadingZeros(long) 2093 // 2094 // inline int Integer.numberOfTrailingZeros(int) 2095 // inline int Long.numberOfTrailingZeros(long) 2096 // 2097 // inline int Integer.bitCount(int) 2098 // inline int Long.bitCount(long) 2099 // 2100 // inline char Character.reverseBytes(char) 2101 // inline short Short.reverseBytes(short) 2102 // inline int Integer.reverseBytes(int) 2103 // inline long Long.reverseBytes(long) 2104 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2105 Node* arg = argument(0); 2106 Node* n = nullptr; 2107 switch (id) { 2108 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2109 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2110 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2111 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2112 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2113 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2114 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2115 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2116 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2117 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2118 case vmIntrinsics::_reverse_i: n = new ReverseINode(0, arg); break; 2119 case vmIntrinsics::_reverse_l: n = new ReverseLNode(0, arg); break; 2120 default: fatal_unexpected_iid(id); break; 2121 } 2122 set_result(_gvn.transform(n)); 2123 return true; 2124 } 2125 2126 //--------------------------inline_bitshuffle_methods----------------------------- 2127 // inline int Integer.compress(int, int) 2128 // inline int Integer.expand(int, int) 2129 // inline long Long.compress(long, long) 2130 // inline long Long.expand(long, long) 2131 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2132 Node* n = nullptr; 2133 switch (id) { 2134 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2135 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2136 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2137 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2138 default: fatal_unexpected_iid(id); break; 2139 } 2140 set_result(_gvn.transform(n)); 2141 return true; 2142 } 2143 2144 //--------------------------inline_number_methods----------------------------- 2145 // inline int Integer.compareUnsigned(int, int) 2146 // inline int Long.compareUnsigned(long, long) 2147 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2148 Node* arg1 = argument(0); 2149 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2150 Node* n = nullptr; 2151 switch (id) { 2152 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2153 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2154 default: fatal_unexpected_iid(id); break; 2155 } 2156 set_result(_gvn.transform(n)); 2157 return true; 2158 } 2159 2160 //--------------------------inline_unsigned_divmod_methods----------------------------- 2161 // inline int Integer.divideUnsigned(int, int) 2162 // inline int Integer.remainderUnsigned(int, int) 2163 // inline long Long.divideUnsigned(long, long) 2164 // inline long Long.remainderUnsigned(long, long) 2165 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2166 Node* n = nullptr; 2167 switch (id) { 2168 case vmIntrinsics::_divideUnsigned_i: { 2169 zero_check_int(argument(1)); 2170 // Compile-time detect of null-exception 2171 if (stopped()) { 2172 return true; // keep the graph constructed so far 2173 } 2174 n = new UDivINode(control(), argument(0), argument(1)); 2175 break; 2176 } 2177 case vmIntrinsics::_divideUnsigned_l: { 2178 zero_check_long(argument(2)); 2179 // Compile-time detect of null-exception 2180 if (stopped()) { 2181 return true; // keep the graph constructed so far 2182 } 2183 n = new UDivLNode(control(), argument(0), argument(2)); 2184 break; 2185 } 2186 case vmIntrinsics::_remainderUnsigned_i: { 2187 zero_check_int(argument(1)); 2188 // Compile-time detect of null-exception 2189 if (stopped()) { 2190 return true; // keep the graph constructed so far 2191 } 2192 n = new UModINode(control(), argument(0), argument(1)); 2193 break; 2194 } 2195 case vmIntrinsics::_remainderUnsigned_l: { 2196 zero_check_long(argument(2)); 2197 // Compile-time detect of null-exception 2198 if (stopped()) { 2199 return true; // keep the graph constructed so far 2200 } 2201 n = new UModLNode(control(), argument(0), argument(2)); 2202 break; 2203 } 2204 default: fatal_unexpected_iid(id); break; 2205 } 2206 set_result(_gvn.transform(n)); 2207 return true; 2208 } 2209 2210 //----------------------------inline_unsafe_access---------------------------- 2211 2212 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2213 // Attempt to infer a sharper value type from the offset and base type. 2214 ciKlass* sharpened_klass = nullptr; 2215 bool null_free = false; 2216 2217 // See if it is an instance field, with an object type. 2218 if (alias_type->field() != nullptr) { 2219 if (alias_type->field()->type()->is_klass()) { 2220 sharpened_klass = alias_type->field()->type()->as_klass(); 2221 null_free = alias_type->field()->is_null_free(); 2222 } 2223 } 2224 2225 const TypeOopPtr* result = nullptr; 2226 // See if it is a narrow oop array. 2227 if (adr_type->isa_aryptr()) { 2228 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2229 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2230 null_free = adr_type->is_aryptr()->is_null_free(); 2231 if (elem_type != nullptr && elem_type->is_loaded()) { 2232 // Sharpen the value type. 2233 result = elem_type; 2234 } 2235 } 2236 } 2237 2238 // The sharpened class might be unloaded if there is no class loader 2239 // contraint in place. 2240 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2241 // Sharpen the value type. 2242 result = TypeOopPtr::make_from_klass(sharpened_klass); 2243 if (null_free) { 2244 result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 2245 } 2246 } 2247 if (result != nullptr) { 2248 #ifndef PRODUCT 2249 if (C->print_intrinsics() || C->print_inlining()) { 2250 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2251 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2252 } 2253 #endif 2254 } 2255 return result; 2256 } 2257 2258 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2259 switch (kind) { 2260 case Relaxed: 2261 return MO_UNORDERED; 2262 case Opaque: 2263 return MO_RELAXED; 2264 case Acquire: 2265 return MO_ACQUIRE; 2266 case Release: 2267 return MO_RELEASE; 2268 case Volatile: 2269 return MO_SEQ_CST; 2270 default: 2271 ShouldNotReachHere(); 2272 return 0; 2273 } 2274 } 2275 2276 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) { 2277 if (callee()->is_static()) return false; // caller must have the capability! 2278 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2279 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2280 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2281 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2282 2283 if (is_reference_type(type)) { 2284 decorators |= ON_UNKNOWN_OOP_REF; 2285 } 2286 2287 if (unaligned) { 2288 decorators |= C2_UNALIGNED; 2289 } 2290 2291 #ifndef PRODUCT 2292 { 2293 ResourceMark rm; 2294 // Check the signatures. 2295 ciSignature* sig = callee()->signature(); 2296 #ifdef ASSERT 2297 if (!is_store) { 2298 // Object getReference(Object base, int/long offset), etc. 2299 BasicType rtype = sig->return_type()->basic_type(); 2300 assert(rtype == type, "getter must return the expected value"); 2301 assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments"); 2302 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2303 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2304 } else { 2305 // void putReference(Object base, int/long offset, Object x), etc. 2306 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2307 assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments"); 2308 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2309 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2310 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2311 assert(vtype == type, "putter must accept the expected value"); 2312 } 2313 #endif // ASSERT 2314 } 2315 #endif //PRODUCT 2316 2317 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2318 2319 Node* receiver = argument(0); // type: oop 2320 2321 // Build address expression. 2322 Node* heap_base_oop = top(); 2323 2324 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2325 Node* base = argument(1); // type: oop 2326 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2327 Node* offset = argument(2); // type: long 2328 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2329 // to be plain byte offsets, which are also the same as those accepted 2330 // by oopDesc::field_addr. 2331 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2332 "fieldOffset must be byte-scaled"); 2333 2334 ciInlineKlass* inline_klass = nullptr; 2335 if (is_flat) { 2336 const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr(); 2337 if (cls == nullptr || cls->const_oop() == nullptr) { 2338 return false; 2339 } 2340 ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type(); 2341 if (!mirror_type->is_inlinetype()) { 2342 return false; 2343 } 2344 inline_klass = mirror_type->as_inline_klass(); 2345 } 2346 2347 if (base->is_InlineType()) { 2348 InlineTypeNode* vt = base->as_InlineType(); 2349 if (is_store) { 2350 if (!vt->is_allocated(&_gvn)) { 2351 return false; 2352 } 2353 base = vt->get_oop(); 2354 } else { 2355 if (offset->is_Con()) { 2356 long off = find_long_con(offset, 0); 2357 ciInlineKlass* vk = vt->type()->inline_klass(); 2358 if ((long)(int)off != off || !vk->contains_field_offset(off)) { 2359 return false; 2360 } 2361 2362 ciField* field = vk->get_non_flat_field_by_offset(off); 2363 if (field != nullptr) { 2364 BasicType bt = type2field[field->type()->basic_type()]; 2365 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2366 bt = T_OBJECT; 2367 } 2368 if (bt == type && (!field->is_flat() || field->type() == inline_klass)) { 2369 Node* value = vt->field_value_by_offset(off, false); 2370 if (value->is_InlineType()) { 2371 value = value->as_InlineType()->adjust_scalarization_depth(this); 2372 } 2373 set_result(value); 2374 return true; 2375 } 2376 } 2377 } 2378 { 2379 // Re-execute the unsafe access if allocation triggers deoptimization. 2380 PreserveReexecuteState preexecs(this); 2381 jvms()->set_should_reexecute(true); 2382 vt = vt->buffer(this); 2383 } 2384 base = vt->get_oop(); 2385 } 2386 } 2387 2388 // 32-bit machines ignore the high half! 2389 offset = ConvL2X(offset); 2390 2391 // Save state and restore on bailout 2392 uint old_sp = sp(); 2393 SafePointNode* old_map = clone_map(); 2394 2395 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2396 2397 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2398 if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) { 2399 decorators |= IN_NATIVE; // off-heap primitive access 2400 } else { 2401 set_map(old_map); 2402 set_sp(old_sp); 2403 return false; // off-heap oop accesses are not supported 2404 } 2405 } else { 2406 heap_base_oop = base; // on-heap or mixed access 2407 } 2408 2409 // Can base be null? Otherwise, always on-heap access. 2410 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2411 2412 if (!can_access_non_heap) { 2413 decorators |= IN_HEAP; 2414 } 2415 2416 Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr; 2417 2418 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2419 if (adr_type == TypePtr::NULL_PTR) { 2420 set_map(old_map); 2421 set_sp(old_sp); 2422 return false; // off-heap access with zero address 2423 } 2424 2425 // Try to categorize the address. 2426 Compile::AliasType* alias_type = C->alias_type(adr_type); 2427 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2428 2429 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2430 alias_type->adr_type() == TypeAryPtr::RANGE) { 2431 set_map(old_map); 2432 set_sp(old_sp); 2433 return false; // not supported 2434 } 2435 2436 bool mismatched = false; 2437 BasicType bt = T_ILLEGAL; 2438 ciField* field = nullptr; 2439 if (adr_type->isa_instptr()) { 2440 const TypeInstPtr* instptr = adr_type->is_instptr(); 2441 ciInstanceKlass* k = instptr->instance_klass(); 2442 int off = instptr->offset(); 2443 if (instptr->const_oop() != nullptr && 2444 k == ciEnv::current()->Class_klass() && 2445 instptr->offset() >= (k->size_helper() * wordSize)) { 2446 k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 2447 field = k->get_field_by_offset(off, true); 2448 } else { 2449 field = k->get_non_flat_field_by_offset(off); 2450 } 2451 if (field != nullptr) { 2452 bt = type2field[field->type()->basic_type()]; 2453 } 2454 assert(bt == alias_type->basic_type() || is_flat, "should match"); 2455 } else { 2456 bt = alias_type->basic_type(); 2457 } 2458 2459 if (bt != T_ILLEGAL) { 2460 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2461 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2462 // Alias type doesn't differentiate between byte[] and boolean[]). 2463 // Use address type to get the element type. 2464 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2465 } 2466 if (is_reference_type(bt, true)) { 2467 // accessing an array field with getReference is not a mismatch 2468 bt = T_OBJECT; 2469 } 2470 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2471 // Don't intrinsify mismatched object accesses 2472 set_map(old_map); 2473 set_sp(old_sp); 2474 return false; 2475 } 2476 mismatched = (bt != type); 2477 } else if (alias_type->adr_type()->isa_oopptr()) { 2478 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2479 } 2480 2481 if (is_flat) { 2482 if (adr_type->isa_instptr()) { 2483 if (field == nullptr || field->type() != inline_klass) { 2484 mismatched = true; 2485 } 2486 } else if (adr_type->isa_aryptr()) { 2487 const Type* elem = adr_type->is_aryptr()->elem(); 2488 if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) { 2489 mismatched = true; 2490 } 2491 } else { 2492 mismatched = true; 2493 } 2494 if (is_store) { 2495 const Type* val_t = _gvn.type(val); 2496 if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) { 2497 set_map(old_map); 2498 set_sp(old_sp); 2499 return false; 2500 } 2501 } 2502 } 2503 2504 destruct_map_clone(old_map); 2505 assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2506 2507 if (mismatched) { 2508 decorators |= C2_MISMATCHED; 2509 } 2510 2511 // First guess at the value type. 2512 const Type *value_type = Type::get_const_basic_type(type); 2513 2514 // Figure out the memory ordering. 2515 decorators |= mo_decorator_for_access_kind(kind); 2516 2517 if (!is_store) { 2518 if (type == T_OBJECT && !is_flat) { 2519 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2520 if (tjp != nullptr) { 2521 value_type = tjp; 2522 } 2523 } 2524 } 2525 2526 receiver = null_check(receiver); 2527 if (stopped()) { 2528 return true; 2529 } 2530 // Heap pointers get a null-check from the interpreter, 2531 // as a courtesy. However, this is not guaranteed by Unsafe, 2532 // and it is not possible to fully distinguish unintended nulls 2533 // from intended ones in this API. 2534 2535 if (!is_store) { 2536 Node* p = nullptr; 2537 // Try to constant fold a load from a constant field 2538 2539 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) { 2540 // final or stable field 2541 p = make_constant_from_field(field, heap_base_oop); 2542 } 2543 2544 if (p == nullptr) { // Could not constant fold the load 2545 if (is_flat) { 2546 if (adr_type->isa_instptr() && !mismatched) { 2547 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2548 int offset = adr_type->is_instptr()->offset(); 2549 p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, holder, offset, decorators); 2550 } else { 2551 p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, 0, decorators); 2552 } 2553 } else { 2554 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2555 const TypeOopPtr* ptr = value_type->make_oopptr(); 2556 if (ptr != nullptr && ptr->is_inlinetypeptr()) { 2557 // Load a non-flattened inline type from memory 2558 p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass(), !ptr->maybe_null()); 2559 } 2560 } 2561 // Normalize the value returned by getBoolean in the following cases 2562 if (type == T_BOOLEAN && 2563 (mismatched || 2564 heap_base_oop == top() || // - heap_base_oop is null or 2565 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2566 // and the unsafe access is made to large offset 2567 // (i.e., larger than the maximum offset necessary for any 2568 // field access) 2569 ) { 2570 IdealKit ideal = IdealKit(this); 2571 #define __ ideal. 2572 IdealVariable normalized_result(ideal); 2573 __ declarations_done(); 2574 __ set(normalized_result, p); 2575 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2576 __ set(normalized_result, ideal.ConI(1)); 2577 ideal.end_if(); 2578 final_sync(ideal); 2579 p = __ value(normalized_result); 2580 #undef __ 2581 } 2582 } 2583 if (type == T_ADDRESS) { 2584 p = gvn().transform(new CastP2XNode(nullptr, p)); 2585 p = ConvX2UL(p); 2586 } 2587 // The load node has the control of the preceding MemBarCPUOrder. All 2588 // following nodes will have the control of the MemBarCPUOrder inserted at 2589 // the end of this method. So, pushing the load onto the stack at a later 2590 // point is fine. 2591 set_result(p); 2592 } else { 2593 if (bt == T_ADDRESS) { 2594 // Repackage the long as a pointer. 2595 val = ConvL2X(val); 2596 val = gvn().transform(new CastX2PNode(val)); 2597 } 2598 if (is_flat) { 2599 if (adr_type->isa_instptr() && !mismatched) { 2600 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2601 int offset = adr_type->is_instptr()->offset(); 2602 val->as_InlineType()->store_flat(this, base, base, holder, offset, decorators); 2603 } else { 2604 val->as_InlineType()->store_flat(this, base, adr, nullptr, 0, decorators); 2605 } 2606 } else { 2607 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2608 } 2609 } 2610 2611 if (argument(1)->is_InlineType() && is_store) { 2612 InlineTypeNode* value = InlineTypeNode::make_from_oop(this, base, _gvn.type(argument(1))->inline_klass()); 2613 value = value->make_larval(this, false); 2614 replace_in_map(argument(1), value); 2615 } 2616 2617 return true; 2618 } 2619 2620 bool LibraryCallKit::inline_unsafe_make_private_buffer() { 2621 Node* receiver = argument(0); 2622 Node* value = argument(1); 2623 if (!value->is_InlineType()) { 2624 return false; 2625 } 2626 2627 receiver = null_check(receiver); 2628 if (stopped()) { 2629 return true; 2630 } 2631 2632 set_result(value->as_InlineType()->make_larval(this, true)); 2633 return true; 2634 } 2635 2636 bool LibraryCallKit::inline_unsafe_finish_private_buffer() { 2637 Node* receiver = argument(0); 2638 Node* buffer = argument(1); 2639 if (!buffer->is_InlineType()) { 2640 return false; 2641 } 2642 InlineTypeNode* vt = buffer->as_InlineType(); 2643 if (!vt->is_allocated(&_gvn)) { 2644 return false; 2645 } 2646 // TODO 8239003 Why is this needed? 2647 if (AllocateNode::Ideal_allocation(vt->get_oop()) == nullptr) { 2648 return false; 2649 } 2650 2651 receiver = null_check(receiver); 2652 if (stopped()) { 2653 return true; 2654 } 2655 2656 set_result(vt->finish_larval(this)); 2657 return true; 2658 } 2659 2660 //----------------------------inline_unsafe_load_store---------------------------- 2661 // This method serves a couple of different customers (depending on LoadStoreKind): 2662 // 2663 // LS_cmp_swap: 2664 // 2665 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2666 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2667 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2668 // 2669 // LS_cmp_swap_weak: 2670 // 2671 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2672 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2673 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2674 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2675 // 2676 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2677 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2678 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2679 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2680 // 2681 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2682 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2683 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2684 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2685 // 2686 // LS_cmp_exchange: 2687 // 2688 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2689 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2690 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2691 // 2692 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2693 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2694 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2695 // 2696 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2697 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2698 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2699 // 2700 // LS_get_add: 2701 // 2702 // int getAndAddInt( Object o, long offset, int delta) 2703 // long getAndAddLong(Object o, long offset, long delta) 2704 // 2705 // LS_get_set: 2706 // 2707 // int getAndSet(Object o, long offset, int newValue) 2708 // long getAndSet(Object o, long offset, long newValue) 2709 // Object getAndSet(Object o, long offset, Object newValue) 2710 // 2711 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2712 // This basic scheme here is the same as inline_unsafe_access, but 2713 // differs in enough details that combining them would make the code 2714 // overly confusing. (This is a true fact! I originally combined 2715 // them, but even I was confused by it!) As much code/comments as 2716 // possible are retained from inline_unsafe_access though to make 2717 // the correspondences clearer. - dl 2718 2719 if (callee()->is_static()) return false; // caller must have the capability! 2720 2721 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2722 decorators |= mo_decorator_for_access_kind(access_kind); 2723 2724 #ifndef PRODUCT 2725 BasicType rtype; 2726 { 2727 ResourceMark rm; 2728 // Check the signatures. 2729 ciSignature* sig = callee()->signature(); 2730 rtype = sig->return_type()->basic_type(); 2731 switch(kind) { 2732 case LS_get_add: 2733 case LS_get_set: { 2734 // Check the signatures. 2735 #ifdef ASSERT 2736 assert(rtype == type, "get and set must return the expected type"); 2737 assert(sig->count() == 3, "get and set has 3 arguments"); 2738 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2739 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2740 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2741 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2742 #endif // ASSERT 2743 break; 2744 } 2745 case LS_cmp_swap: 2746 case LS_cmp_swap_weak: { 2747 // Check the signatures. 2748 #ifdef ASSERT 2749 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2750 assert(sig->count() == 4, "CAS has 4 arguments"); 2751 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2752 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2753 #endif // ASSERT 2754 break; 2755 } 2756 case LS_cmp_exchange: { 2757 // Check the signatures. 2758 #ifdef ASSERT 2759 assert(rtype == type, "CAS must return the expected type"); 2760 assert(sig->count() == 4, "CAS has 4 arguments"); 2761 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2762 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2763 #endif // ASSERT 2764 break; 2765 } 2766 default: 2767 ShouldNotReachHere(); 2768 } 2769 } 2770 #endif //PRODUCT 2771 2772 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2773 2774 // Get arguments: 2775 Node* receiver = nullptr; 2776 Node* base = nullptr; 2777 Node* offset = nullptr; 2778 Node* oldval = nullptr; 2779 Node* newval = nullptr; 2780 switch(kind) { 2781 case LS_cmp_swap: 2782 case LS_cmp_swap_weak: 2783 case LS_cmp_exchange: { 2784 const bool two_slot_type = type2size[type] == 2; 2785 receiver = argument(0); // type: oop 2786 base = argument(1); // type: oop 2787 offset = argument(2); // type: long 2788 oldval = argument(4); // type: oop, int, or long 2789 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2790 break; 2791 } 2792 case LS_get_add: 2793 case LS_get_set: { 2794 receiver = argument(0); // type: oop 2795 base = argument(1); // type: oop 2796 offset = argument(2); // type: long 2797 oldval = nullptr; 2798 newval = argument(4); // type: oop, int, or long 2799 break; 2800 } 2801 default: 2802 ShouldNotReachHere(); 2803 } 2804 2805 // Build field offset expression. 2806 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2807 // to be plain byte offsets, which are also the same as those accepted 2808 // by oopDesc::field_addr. 2809 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2810 // 32-bit machines ignore the high half of long offsets 2811 offset = ConvL2X(offset); 2812 // Save state and restore on bailout 2813 uint old_sp = sp(); 2814 SafePointNode* old_map = clone_map(); 2815 Node* adr = make_unsafe_address(base, offset,type, false); 2816 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2817 2818 Compile::AliasType* alias_type = C->alias_type(adr_type); 2819 BasicType bt = alias_type->basic_type(); 2820 if (bt != T_ILLEGAL && 2821 (is_reference_type(bt) != (type == T_OBJECT))) { 2822 // Don't intrinsify mismatched object accesses. 2823 set_map(old_map); 2824 set_sp(old_sp); 2825 return false; 2826 } 2827 2828 destruct_map_clone(old_map); 2829 2830 // For CAS, unlike inline_unsafe_access, there seems no point in 2831 // trying to refine types. Just use the coarse types here. 2832 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2833 const Type *value_type = Type::get_const_basic_type(type); 2834 2835 switch (kind) { 2836 case LS_get_set: 2837 case LS_cmp_exchange: { 2838 if (type == T_OBJECT) { 2839 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2840 if (tjp != nullptr) { 2841 value_type = tjp; 2842 } 2843 } 2844 break; 2845 } 2846 case LS_cmp_swap: 2847 case LS_cmp_swap_weak: 2848 case LS_get_add: 2849 break; 2850 default: 2851 ShouldNotReachHere(); 2852 } 2853 2854 // Null check receiver. 2855 receiver = null_check(receiver); 2856 if (stopped()) { 2857 return true; 2858 } 2859 2860 int alias_idx = C->get_alias_index(adr_type); 2861 2862 if (is_reference_type(type)) { 2863 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2864 2865 if (oldval != nullptr && oldval->is_InlineType()) { 2866 // Re-execute the unsafe access if allocation triggers deoptimization. 2867 PreserveReexecuteState preexecs(this); 2868 jvms()->set_should_reexecute(true); 2869 oldval = oldval->as_InlineType()->buffer(this)->get_oop(); 2870 } 2871 if (newval != nullptr && newval->is_InlineType()) { 2872 // Re-execute the unsafe access if allocation triggers deoptimization. 2873 PreserveReexecuteState preexecs(this); 2874 jvms()->set_should_reexecute(true); 2875 newval = newval->as_InlineType()->buffer(this)->get_oop(); 2876 } 2877 2878 // Transformation of a value which could be null pointer (CastPP #null) 2879 // could be delayed during Parse (for example, in adjust_map_after_if()). 2880 // Execute transformation here to avoid barrier generation in such case. 2881 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2882 newval = _gvn.makecon(TypePtr::NULL_PTR); 2883 2884 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2885 // Refine the value to a null constant, when it is known to be null 2886 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2887 } 2888 } 2889 2890 Node* result = nullptr; 2891 switch (kind) { 2892 case LS_cmp_exchange: { 2893 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2894 oldval, newval, value_type, type, decorators); 2895 break; 2896 } 2897 case LS_cmp_swap_weak: 2898 decorators |= C2_WEAK_CMPXCHG; 2899 case LS_cmp_swap: { 2900 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2901 oldval, newval, value_type, type, decorators); 2902 break; 2903 } 2904 case LS_get_set: { 2905 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2906 newval, value_type, type, decorators); 2907 break; 2908 } 2909 case LS_get_add: { 2910 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2911 newval, value_type, type, decorators); 2912 break; 2913 } 2914 default: 2915 ShouldNotReachHere(); 2916 } 2917 2918 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2919 set_result(result); 2920 return true; 2921 } 2922 2923 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2924 // Regardless of form, don't allow previous ld/st to move down, 2925 // then issue acquire, release, or volatile mem_bar. 2926 insert_mem_bar(Op_MemBarCPUOrder); 2927 switch(id) { 2928 case vmIntrinsics::_loadFence: 2929 insert_mem_bar(Op_LoadFence); 2930 return true; 2931 case vmIntrinsics::_storeFence: 2932 insert_mem_bar(Op_StoreFence); 2933 return true; 2934 case vmIntrinsics::_storeStoreFence: 2935 insert_mem_bar(Op_StoreStoreFence); 2936 return true; 2937 case vmIntrinsics::_fullFence: 2938 insert_mem_bar(Op_MemBarVolatile); 2939 return true; 2940 default: 2941 fatal_unexpected_iid(id); 2942 return false; 2943 } 2944 } 2945 2946 bool LibraryCallKit::inline_onspinwait() { 2947 insert_mem_bar(Op_OnSpinWait); 2948 return true; 2949 } 2950 2951 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2952 if (!kls->is_Con()) { 2953 return true; 2954 } 2955 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2956 if (klsptr == nullptr) { 2957 return true; 2958 } 2959 ciInstanceKlass* ik = klsptr->instance_klass(); 2960 // don't need a guard for a klass that is already initialized 2961 return !ik->is_initialized(); 2962 } 2963 2964 //----------------------------inline_unsafe_writeback0------------------------- 2965 // public native void Unsafe.writeback0(long address) 2966 bool LibraryCallKit::inline_unsafe_writeback0() { 2967 if (!Matcher::has_match_rule(Op_CacheWB)) { 2968 return false; 2969 } 2970 #ifndef PRODUCT 2971 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2972 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2973 ciSignature* sig = callee()->signature(); 2974 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2975 #endif 2976 null_check_receiver(); // null-check, then ignore 2977 Node *addr = argument(1); 2978 addr = new CastX2PNode(addr); 2979 addr = _gvn.transform(addr); 2980 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2981 flush = _gvn.transform(flush); 2982 set_memory(flush, TypeRawPtr::BOTTOM); 2983 return true; 2984 } 2985 2986 //----------------------------inline_unsafe_writeback0------------------------- 2987 // public native void Unsafe.writeback0(long address) 2988 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2989 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2990 return false; 2991 } 2992 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2993 return false; 2994 } 2995 #ifndef PRODUCT 2996 assert(Matcher::has_match_rule(Op_CacheWB), 2997 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2998 : "found match rule for CacheWBPostSync but not CacheWB")); 2999 3000 #endif 3001 null_check_receiver(); // null-check, then ignore 3002 Node *sync; 3003 if (is_pre) { 3004 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3005 } else { 3006 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3007 } 3008 sync = _gvn.transform(sync); 3009 set_memory(sync, TypeRawPtr::BOTTOM); 3010 return true; 3011 } 3012 3013 //----------------------------inline_unsafe_allocate--------------------------- 3014 // public native Object Unsafe.allocateInstance(Class<?> cls); 3015 bool LibraryCallKit::inline_unsafe_allocate() { 3016 3017 #if INCLUDE_JVMTI 3018 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3019 return false; 3020 } 3021 #endif //INCLUDE_JVMTI 3022 3023 if (callee()->is_static()) return false; // caller must have the capability! 3024 3025 null_check_receiver(); // null-check, then ignore 3026 Node* cls = null_check(argument(1)); 3027 if (stopped()) return true; 3028 3029 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 3030 kls = null_check(kls); 3031 if (stopped()) return true; // argument was like int.class 3032 3033 #if INCLUDE_JVMTI 3034 // Don't try to access new allocated obj in the intrinsic. 3035 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 3036 // Deoptimize and allocate in interpreter instead. 3037 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 3038 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 3039 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 3040 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3041 { 3042 BuildCutout unless(this, tst, PROB_MAX); 3043 uncommon_trap(Deoptimization::Reason_intrinsic, 3044 Deoptimization::Action_make_not_entrant); 3045 } 3046 if (stopped()) { 3047 return true; 3048 } 3049 #endif //INCLUDE_JVMTI 3050 3051 Node* test = nullptr; 3052 if (LibraryCallKit::klass_needs_init_guard(kls)) { 3053 // Note: The argument might still be an illegal value like 3054 // Serializable.class or Object[].class. The runtime will handle it. 3055 // But we must make an explicit check for initialization. 3056 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 3057 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 3058 // can generate code to load it as unsigned byte. 3059 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 3060 Node* bits = intcon(InstanceKlass::fully_initialized); 3061 test = _gvn.transform(new SubINode(inst, bits)); 3062 // The 'test' is non-zero if we need to take a slow path. 3063 } 3064 Node* obj = nullptr; 3065 const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr(); 3066 if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) { 3067 obj = InlineTypeNode::make_default(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this); 3068 } else { 3069 obj = new_instance(kls, test); 3070 } 3071 set_result(obj); 3072 return true; 3073 } 3074 3075 //------------------------inline_native_time_funcs-------------- 3076 // inline code for System.currentTimeMillis() and System.nanoTime() 3077 // these have the same type and signature 3078 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 3079 const TypeFunc* tf = OptoRuntime::void_long_Type(); 3080 const TypePtr* no_memory_effects = nullptr; 3081 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 3082 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 3083 #ifdef ASSERT 3084 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 3085 assert(value_top == top(), "second value must be top"); 3086 #endif 3087 set_result(value); 3088 return true; 3089 } 3090 3091 3092 #if INCLUDE_JVMTI 3093 3094 // When notifications are disabled then just update the VTMS transition bit and return. 3095 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3096 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3097 if (!DoJVMTIVirtualThreadTransitions) { 3098 return true; 3099 } 3100 IdealKit ideal(this); 3101 3102 Node* ONE = ideal.ConI(1); 3103 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3104 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3105 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3106 3107 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3108 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3109 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3110 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3111 3112 sync_kit(ideal); 3113 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3114 ideal.sync_kit(this); 3115 } ideal.else_(); { 3116 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3117 Node* vt_oop = _gvn.transform(argument(0)); // this argument - VirtualThread oop 3118 Node* thread = ideal.thread(); 3119 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3120 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3121 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3122 3123 sync_kit(ideal); 3124 access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3125 access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3126 3127 ideal.sync_kit(this); 3128 } ideal.end_if(); 3129 final_sync(ideal); 3130 3131 return true; 3132 } 3133 3134 // Always update the temporary VTMS transition bit. 3135 bool LibraryCallKit::inline_native_notify_jvmti_hide() { 3136 if (!DoJVMTIVirtualThreadTransitions) { 3137 return true; 3138 } 3139 IdealKit ideal(this); 3140 3141 { 3142 // unconditionally update the temporary VTMS transition bit in current JavaThread 3143 Node* thread = ideal.thread(); 3144 Node* hide = _gvn.transform(argument(1)); // hide argument for temporary VTMS transition notification 3145 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset())); 3146 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3147 3148 sync_kit(ideal); 3149 access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3150 ideal.sync_kit(this); 3151 } 3152 final_sync(ideal); 3153 3154 return true; 3155 } 3156 3157 #endif // INCLUDE_JVMTI 3158 3159 #ifdef JFR_HAVE_INTRINSICS 3160 3161 /** 3162 * if oop->klass != null 3163 * // normal class 3164 * epoch = _epoch_state ? 2 : 1 3165 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3166 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3167 * } 3168 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3169 * else 3170 * // primitive class 3171 * if oop->array_klass != null 3172 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3173 * else 3174 * id = LAST_TYPE_ID + 1 // void class path 3175 * if (!signaled) 3176 * signaled = true 3177 */ 3178 bool LibraryCallKit::inline_native_classID() { 3179 Node* cls = argument(0); 3180 3181 IdealKit ideal(this); 3182 #define __ ideal. 3183 IdealVariable result(ideal); __ declarations_done(); 3184 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3185 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3186 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3187 3188 3189 __ if_then(kls, BoolTest::ne, null()); { 3190 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3191 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3192 3193 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3194 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3195 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3196 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3197 mask = _gvn.transform(new OrLNode(mask, epoch)); 3198 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3199 3200 float unlikely = PROB_UNLIKELY(0.999); 3201 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3202 sync_kit(ideal); 3203 make_runtime_call(RC_LEAF, 3204 OptoRuntime::class_id_load_barrier_Type(), 3205 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3206 "class id load barrier", 3207 TypePtr::BOTTOM, 3208 kls); 3209 ideal.sync_kit(this); 3210 } __ end_if(); 3211 3212 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3213 } __ else_(); { 3214 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3215 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3216 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3217 __ if_then(array_kls, BoolTest::ne, null()); { 3218 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3219 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3220 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3221 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3222 } __ else_(); { 3223 // void class case 3224 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3225 } __ end_if(); 3226 3227 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3228 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3229 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3230 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3231 } __ end_if(); 3232 } __ end_if(); 3233 3234 final_sync(ideal); 3235 set_result(ideal.value(result)); 3236 #undef __ 3237 return true; 3238 } 3239 3240 //------------------------inline_native_jvm_commit------------------ 3241 bool LibraryCallKit::inline_native_jvm_commit() { 3242 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3243 3244 // Save input memory and i_o state. 3245 Node* input_memory_state = reset_memory(); 3246 set_all_memory(input_memory_state); 3247 Node* input_io_state = i_o(); 3248 3249 // TLS. 3250 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3251 // Jfr java buffer. 3252 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3253 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3254 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3255 3256 // Load the current value of the notified field in the JfrThreadLocal. 3257 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3258 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3259 3260 // Test for notification. 3261 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3262 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3263 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3264 3265 // True branch, is notified. 3266 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3267 set_control(is_notified); 3268 3269 // Reset notified state. 3270 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered); 3271 3272 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3273 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3274 // Convert the machine-word to a long. 3275 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3276 3277 // False branch, not notified. 3278 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3279 set_control(not_notified); 3280 set_all_memory(input_memory_state); 3281 3282 // Arg is the next position as a long. 3283 Node* arg = argument(0); 3284 // Convert long to machine-word. 3285 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3286 3287 // Store the next_position to the underlying jfr java buffer. 3288 Node* commit_memory; 3289 #ifdef _LP64 3290 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release); 3291 #else 3292 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release); 3293 #endif 3294 3295 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3296 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3297 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3298 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3299 3300 // And flags with lease constant. 3301 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3302 3303 // Branch on lease to conditionalize returning the leased java buffer. 3304 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3305 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3306 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3307 3308 // False branch, not a lease. 3309 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3310 3311 // True branch, is lease. 3312 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3313 set_control(is_lease); 3314 3315 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3316 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3317 OptoRuntime::void_void_Type(), 3318 StubRoutines::jfr_return_lease(), 3319 "return_lease", TypePtr::BOTTOM); 3320 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3321 3322 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3323 record_for_igvn(lease_compare_rgn); 3324 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3325 record_for_igvn(lease_compare_mem); 3326 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3327 record_for_igvn(lease_compare_io); 3328 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3329 record_for_igvn(lease_result_value); 3330 3331 // Update control and phi nodes. 3332 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3333 lease_compare_rgn->init_req(_false_path, not_lease); 3334 3335 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3336 lease_compare_mem->init_req(_false_path, commit_memory); 3337 3338 lease_compare_io->init_req(_true_path, i_o()); 3339 lease_compare_io->init_req(_false_path, input_io_state); 3340 3341 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3342 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3343 3344 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3345 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3346 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3347 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3348 3349 // Update control and phi nodes. 3350 result_rgn->init_req(_true_path, is_notified); 3351 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3352 3353 result_mem->init_req(_true_path, notified_reset_memory); 3354 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3355 3356 result_io->init_req(_true_path, input_io_state); 3357 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3358 3359 result_value->init_req(_true_path, current_pos); 3360 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3361 3362 // Set output state. 3363 set_control(_gvn.transform(result_rgn)); 3364 set_all_memory(_gvn.transform(result_mem)); 3365 set_i_o(_gvn.transform(result_io)); 3366 set_result(result_rgn, result_value); 3367 return true; 3368 } 3369 3370 /* 3371 * The intrinsic is a model of this pseudo-code: 3372 * 3373 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3374 * jobject h_event_writer = tl->java_event_writer(); 3375 * if (h_event_writer == nullptr) { 3376 * return nullptr; 3377 * } 3378 * oop threadObj = Thread::threadObj(); 3379 * oop vthread = java_lang_Thread::vthread(threadObj); 3380 * traceid tid; 3381 * bool excluded; 3382 * if (vthread != threadObj) { // i.e. current thread is virtual 3383 * tid = java_lang_Thread::tid(vthread); 3384 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3385 * excluded = vthread_epoch_raw & excluded_mask; 3386 * if (!excluded) { 3387 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3388 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3389 * if (vthread_epoch != current_epoch) { 3390 * write_checkpoint(); 3391 * } 3392 * } 3393 * } else { 3394 * tid = java_lang_Thread::tid(threadObj); 3395 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3396 * excluded = thread_epoch_raw & excluded_mask; 3397 * } 3398 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3399 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3400 * if (tid_in_event_writer != tid) { 3401 * setField(event_writer, "threadID", tid); 3402 * setField(event_writer, "excluded", excluded); 3403 * } 3404 * return event_writer 3405 */ 3406 bool LibraryCallKit::inline_native_getEventWriter() { 3407 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3408 3409 // Save input memory and i_o state. 3410 Node* input_memory_state = reset_memory(); 3411 set_all_memory(input_memory_state); 3412 Node* input_io_state = i_o(); 3413 3414 Node* excluded_mask = _gvn.intcon(32768); 3415 Node* epoch_mask = _gvn.intcon(32767); 3416 3417 // TLS 3418 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3419 3420 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3421 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3422 3423 // Load the eventwriter jobject handle. 3424 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3425 3426 // Null check the jobject handle. 3427 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3428 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3429 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3430 3431 // False path, jobj is null. 3432 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3433 3434 // True path, jobj is not null. 3435 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3436 3437 set_control(jobj_is_not_null); 3438 3439 // Load the threadObj for the CarrierThread. 3440 Node* threadObj = generate_current_thread(tls_ptr); 3441 3442 // Load the vthread. 3443 Node* vthread = generate_virtual_thread(tls_ptr); 3444 3445 // If vthread != threadObj, this is a virtual thread. 3446 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3447 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3448 IfNode* iff_vthread_not_equal_threadObj = 3449 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3450 3451 // False branch, fallback to threadObj. 3452 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3453 set_control(vthread_equal_threadObj); 3454 3455 // Load the tid field from the vthread object. 3456 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3457 3458 // Load the raw epoch value from the threadObj. 3459 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3460 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3461 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3462 3463 // Mask off the excluded information from the epoch. 3464 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3465 3466 // True branch, this is a virtual thread. 3467 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3468 set_control(vthread_not_equal_threadObj); 3469 3470 // Load the tid field from the vthread object. 3471 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3472 3473 // Load the raw epoch value from the vthread. 3474 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3475 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3476 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3477 3478 // Mask off the excluded information from the epoch. 3479 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3480 3481 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3482 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3483 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3484 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3485 3486 // False branch, vthread is excluded, no need to write epoch info. 3487 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3488 3489 // True branch, vthread is included, update epoch info. 3490 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3491 set_control(included); 3492 3493 // Get epoch value. 3494 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3495 3496 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3497 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3498 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3499 3500 // Compare the epoch in the vthread to the current epoch generation. 3501 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3502 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3503 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3504 3505 // False path, epoch is equal, checkpoint information is valid. 3506 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3507 3508 // True path, epoch is not equal, write a checkpoint for the vthread. 3509 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3510 3511 set_control(epoch_is_not_equal); 3512 3513 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3514 // The call also updates the native thread local thread id and the vthread with the current epoch. 3515 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3516 OptoRuntime::jfr_write_checkpoint_Type(), 3517 StubRoutines::jfr_write_checkpoint(), 3518 "write_checkpoint", TypePtr::BOTTOM); 3519 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3520 3521 // vthread epoch != current epoch 3522 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3523 record_for_igvn(epoch_compare_rgn); 3524 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3525 record_for_igvn(epoch_compare_mem); 3526 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3527 record_for_igvn(epoch_compare_io); 3528 3529 // Update control and phi nodes. 3530 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3531 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3532 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3533 epoch_compare_mem->init_req(_false_path, input_memory_state); 3534 epoch_compare_io->init_req(_true_path, i_o()); 3535 epoch_compare_io->init_req(_false_path, input_io_state); 3536 3537 // excluded != true 3538 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3539 record_for_igvn(exclude_compare_rgn); 3540 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3541 record_for_igvn(exclude_compare_mem); 3542 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3543 record_for_igvn(exclude_compare_io); 3544 3545 // Update control and phi nodes. 3546 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3547 exclude_compare_rgn->init_req(_false_path, excluded); 3548 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3549 exclude_compare_mem->init_req(_false_path, input_memory_state); 3550 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3551 exclude_compare_io->init_req(_false_path, input_io_state); 3552 3553 // vthread != threadObj 3554 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3555 record_for_igvn(vthread_compare_rgn); 3556 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3557 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3558 record_for_igvn(vthread_compare_io); 3559 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3560 record_for_igvn(tid); 3561 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3562 record_for_igvn(exclusion); 3563 3564 // Update control and phi nodes. 3565 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3566 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3567 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3568 vthread_compare_mem->init_req(_false_path, input_memory_state); 3569 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3570 vthread_compare_io->init_req(_false_path, input_io_state); 3571 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3572 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3573 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3574 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3575 3576 // Update branch state. 3577 set_control(_gvn.transform(vthread_compare_rgn)); 3578 set_all_memory(_gvn.transform(vthread_compare_mem)); 3579 set_i_o(_gvn.transform(vthread_compare_io)); 3580 3581 // Load the event writer oop by dereferencing the jobject handle. 3582 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3583 assert(klass_EventWriter->is_loaded(), "invariant"); 3584 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3585 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3586 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3587 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3588 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3589 3590 // Load the current thread id from the event writer object. 3591 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3592 // Get the field offset to, conditionally, store an updated tid value later. 3593 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3594 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3595 // Get the field offset to, conditionally, store an updated exclusion value later. 3596 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3597 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3598 3599 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3600 record_for_igvn(event_writer_tid_compare_rgn); 3601 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3602 record_for_igvn(event_writer_tid_compare_mem); 3603 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3604 record_for_igvn(event_writer_tid_compare_io); 3605 3606 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3607 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3608 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3609 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3610 3611 // False path, tids are the same. 3612 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3613 3614 // True path, tid is not equal, need to update the tid in the event writer. 3615 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3616 record_for_igvn(tid_is_not_equal); 3617 3618 // Store the exclusion state to the event writer. 3619 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3620 3621 // Store the tid to the event writer. 3622 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3623 3624 // Update control and phi nodes. 3625 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3626 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3627 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3628 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3629 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3630 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3631 3632 // Result of top level CFG, Memory, IO and Value. 3633 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3634 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3635 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3636 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3637 3638 // Result control. 3639 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3640 result_rgn->init_req(_false_path, jobj_is_null); 3641 3642 // Result memory. 3643 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3644 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3645 3646 // Result IO. 3647 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3648 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3649 3650 // Result value. 3651 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3652 result_value->init_req(_false_path, null()); // return null 3653 3654 // Set output state. 3655 set_control(_gvn.transform(result_rgn)); 3656 set_all_memory(_gvn.transform(result_mem)); 3657 set_i_o(_gvn.transform(result_io)); 3658 set_result(result_rgn, result_value); 3659 return true; 3660 } 3661 3662 /* 3663 * The intrinsic is a model of this pseudo-code: 3664 * 3665 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3666 * if (carrierThread != thread) { // is virtual thread 3667 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3668 * bool excluded = vthread_epoch_raw & excluded_mask; 3669 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3670 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3671 * if (!excluded) { 3672 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3673 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3674 * } 3675 * Atomic::release_store(&tl->_vthread, true); 3676 * return; 3677 * } 3678 * Atomic::release_store(&tl->_vthread, false); 3679 */ 3680 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3681 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3682 3683 Node* input_memory_state = reset_memory(); 3684 set_all_memory(input_memory_state); 3685 3686 Node* excluded_mask = _gvn.intcon(32768); 3687 Node* epoch_mask = _gvn.intcon(32767); 3688 3689 Node* const carrierThread = generate_current_thread(jt); 3690 // If thread != carrierThread, this is a virtual thread. 3691 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3692 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3693 IfNode* iff_thread_not_equal_carrierThread = 3694 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3695 3696 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3697 3698 // False branch, is carrierThread. 3699 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3700 // Store release 3701 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3702 3703 set_all_memory(input_memory_state); 3704 3705 // True branch, is virtual thread. 3706 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3707 set_control(thread_not_equal_carrierThread); 3708 3709 // Load the raw epoch value from the vthread. 3710 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3711 Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3712 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3713 3714 // Mask off the excluded information from the epoch. 3715 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3716 3717 // Load the tid field from the thread. 3718 Node* tid = load_field_from_object(thread, "tid", "J"); 3719 3720 // Store the vthread tid to the jfr thread local. 3721 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3722 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3723 3724 // Branch is_excluded to conditionalize updating the epoch . 3725 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3726 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3727 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3728 3729 // True branch, vthread is excluded, no need to write epoch info. 3730 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3731 set_control(excluded); 3732 Node* vthread_is_excluded = _gvn.intcon(1); 3733 3734 // False branch, vthread is included, update epoch info. 3735 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3736 set_control(included); 3737 Node* vthread_is_included = _gvn.intcon(0); 3738 3739 // Get epoch value. 3740 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3741 3742 // Store the vthread epoch to the jfr thread local. 3743 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3744 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3745 3746 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3747 record_for_igvn(excluded_rgn); 3748 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3749 record_for_igvn(excluded_mem); 3750 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3751 record_for_igvn(exclusion); 3752 3753 // Merge the excluded control and memory. 3754 excluded_rgn->init_req(_true_path, excluded); 3755 excluded_rgn->init_req(_false_path, included); 3756 excluded_mem->init_req(_true_path, tid_memory); 3757 excluded_mem->init_req(_false_path, included_memory); 3758 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3759 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3760 3761 // Set intermediate state. 3762 set_control(_gvn.transform(excluded_rgn)); 3763 set_all_memory(excluded_mem); 3764 3765 // Store the vthread exclusion state to the jfr thread local. 3766 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3767 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3768 3769 // Store release 3770 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3771 3772 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3773 record_for_igvn(thread_compare_rgn); 3774 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3775 record_for_igvn(thread_compare_mem); 3776 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3777 record_for_igvn(vthread); 3778 3779 // Merge the thread_compare control and memory. 3780 thread_compare_rgn->init_req(_true_path, control()); 3781 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3782 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3783 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3784 3785 // Set output state. 3786 set_control(_gvn.transform(thread_compare_rgn)); 3787 set_all_memory(_gvn.transform(thread_compare_mem)); 3788 } 3789 3790 #endif // JFR_HAVE_INTRINSICS 3791 3792 //------------------------inline_native_currentCarrierThread------------------ 3793 bool LibraryCallKit::inline_native_currentCarrierThread() { 3794 Node* junk = nullptr; 3795 set_result(generate_current_thread(junk)); 3796 return true; 3797 } 3798 3799 //------------------------inline_native_currentThread------------------ 3800 bool LibraryCallKit::inline_native_currentThread() { 3801 Node* junk = nullptr; 3802 set_result(generate_virtual_thread(junk)); 3803 return true; 3804 } 3805 3806 //------------------------inline_native_setVthread------------------ 3807 bool LibraryCallKit::inline_native_setCurrentThread() { 3808 assert(C->method()->changes_current_thread(), 3809 "method changes current Thread but is not annotated ChangesCurrentThread"); 3810 Node* arr = argument(1); 3811 Node* thread = _gvn.transform(new ThreadLocalNode()); 3812 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3813 Node* thread_obj_handle 3814 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3815 thread_obj_handle = _gvn.transform(thread_obj_handle); 3816 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3817 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3818 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3819 return true; 3820 } 3821 3822 const Type* LibraryCallKit::scopedValueCache_type() { 3823 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3824 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3825 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true); 3826 3827 // Because we create the scopedValue cache lazily we have to make the 3828 // type of the result BotPTR. 3829 bool xk = etype->klass_is_exact(); 3830 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0)); 3831 return objects_type; 3832 } 3833 3834 Node* LibraryCallKit::scopedValueCache_helper() { 3835 Node* thread = _gvn.transform(new ThreadLocalNode()); 3836 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3837 // We cannot use immutable_memory() because we might flip onto a 3838 // different carrier thread, at which point we'll need to use that 3839 // carrier thread's cache. 3840 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3841 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3842 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3843 } 3844 3845 //------------------------inline_native_scopedValueCache------------------ 3846 bool LibraryCallKit::inline_native_scopedValueCache() { 3847 Node* cache_obj_handle = scopedValueCache_helper(); 3848 const Type* objects_type = scopedValueCache_type(); 3849 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3850 3851 return true; 3852 } 3853 3854 //------------------------inline_native_setScopedValueCache------------------ 3855 bool LibraryCallKit::inline_native_setScopedValueCache() { 3856 Node* arr = argument(0); 3857 Node* cache_obj_handle = scopedValueCache_helper(); 3858 const Type* objects_type = scopedValueCache_type(); 3859 3860 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3861 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3862 3863 return true; 3864 } 3865 3866 //-----------------------load_klass_from_mirror_common------------------------- 3867 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3868 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3869 // and branch to the given path on the region. 3870 // If never_see_null, take an uncommon trap on null, so we can optimistically 3871 // compile for the non-null case. 3872 // If the region is null, force never_see_null = true. 3873 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3874 bool never_see_null, 3875 RegionNode* region, 3876 int null_path, 3877 int offset) { 3878 if (region == nullptr) never_see_null = true; 3879 Node* p = basic_plus_adr(mirror, offset); 3880 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3881 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3882 Node* null_ctl = top(); 3883 kls = null_check_oop(kls, &null_ctl, never_see_null); 3884 if (region != nullptr) { 3885 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3886 region->init_req(null_path, null_ctl); 3887 } else { 3888 assert(null_ctl == top(), "no loose ends"); 3889 } 3890 return kls; 3891 } 3892 3893 //--------------------(inline_native_Class_query helpers)--------------------- 3894 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3895 // Fall through if (mods & mask) == bits, take the guard otherwise. 3896 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3897 // Branch around if the given klass has the given modifier bit set. 3898 // Like generate_guard, adds a new path onto the region. 3899 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3900 Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered); 3901 Node* mask = intcon(modifier_mask); 3902 Node* bits = intcon(modifier_bits); 3903 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3904 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3905 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3906 return generate_fair_guard(bol, region); 3907 } 3908 3909 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3910 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3911 } 3912 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3913 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3914 } 3915 3916 //-------------------------inline_native_Class_query------------------- 3917 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3918 const Type* return_type = TypeInt::BOOL; 3919 Node* prim_return_value = top(); // what happens if it's a primitive class? 3920 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3921 bool expect_prim = false; // most of these guys expect to work on refs 3922 3923 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3924 3925 Node* mirror = argument(0); 3926 Node* obj = top(); 3927 3928 switch (id) { 3929 case vmIntrinsics::_isInstance: 3930 // nothing is an instance of a primitive type 3931 prim_return_value = intcon(0); 3932 obj = argument(1); 3933 break; 3934 case vmIntrinsics::_getModifiers: 3935 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3936 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3937 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3938 break; 3939 case vmIntrinsics::_isInterface: 3940 prim_return_value = intcon(0); 3941 break; 3942 case vmIntrinsics::_isArray: 3943 prim_return_value = intcon(0); 3944 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3945 break; 3946 case vmIntrinsics::_isPrimitive: 3947 prim_return_value = intcon(1); 3948 expect_prim = true; // obviously 3949 break; 3950 case vmIntrinsics::_isHidden: 3951 prim_return_value = intcon(0); 3952 break; 3953 case vmIntrinsics::_getSuperclass: 3954 prim_return_value = null(); 3955 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3956 break; 3957 case vmIntrinsics::_getClassAccessFlags: 3958 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3959 return_type = TypeInt::INT; // not bool! 6297094 3960 break; 3961 default: 3962 fatal_unexpected_iid(id); 3963 break; 3964 } 3965 3966 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3967 if (mirror_con == nullptr) return false; // cannot happen? 3968 3969 #ifndef PRODUCT 3970 if (C->print_intrinsics() || C->print_inlining()) { 3971 ciType* k = mirror_con->java_mirror_type(); 3972 if (k) { 3973 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3974 k->print_name(); 3975 tty->cr(); 3976 } 3977 } 3978 #endif 3979 3980 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3981 RegionNode* region = new RegionNode(PATH_LIMIT); 3982 record_for_igvn(region); 3983 PhiNode* phi = new PhiNode(region, return_type); 3984 3985 // The mirror will never be null of Reflection.getClassAccessFlags, however 3986 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3987 // if it is. See bug 4774291. 3988 3989 // For Reflection.getClassAccessFlags(), the null check occurs in 3990 // the wrong place; see inline_unsafe_access(), above, for a similar 3991 // situation. 3992 mirror = null_check(mirror); 3993 // If mirror or obj is dead, only null-path is taken. 3994 if (stopped()) return true; 3995 3996 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3997 3998 // Now load the mirror's klass metaobject, and null-check it. 3999 // Side-effects region with the control path if the klass is null. 4000 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4001 // If kls is null, we have a primitive mirror. 4002 phi->init_req(_prim_path, prim_return_value); 4003 if (stopped()) { set_result(region, phi); return true; } 4004 bool safe_for_replace = (region->in(_prim_path) == top()); 4005 4006 Node* p; // handy temp 4007 Node* null_ctl; 4008 4009 // Now that we have the non-null klass, we can perform the real query. 4010 // For constant classes, the query will constant-fold in LoadNode::Value. 4011 Node* query_value = top(); 4012 switch (id) { 4013 case vmIntrinsics::_isInstance: 4014 // nothing is an instance of a primitive type 4015 query_value = gen_instanceof(obj, kls, safe_for_replace); 4016 break; 4017 4018 case vmIntrinsics::_getModifiers: 4019 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 4020 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 4021 break; 4022 4023 case vmIntrinsics::_isInterface: 4024 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4025 if (generate_interface_guard(kls, region) != nullptr) 4026 // A guard was added. If the guard is taken, it was an interface. 4027 phi->add_req(intcon(1)); 4028 // If we fall through, it's a plain class. 4029 query_value = intcon(0); 4030 break; 4031 4032 case vmIntrinsics::_isArray: 4033 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 4034 if (generate_array_guard(kls, region) != nullptr) 4035 // A guard was added. If the guard is taken, it was an array. 4036 phi->add_req(intcon(1)); 4037 // If we fall through, it's a plain class. 4038 query_value = intcon(0); 4039 break; 4040 4041 case vmIntrinsics::_isPrimitive: 4042 query_value = intcon(0); // "normal" path produces false 4043 break; 4044 4045 case vmIntrinsics::_isHidden: 4046 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4047 if (generate_hidden_class_guard(kls, region) != nullptr) 4048 // A guard was added. If the guard is taken, it was an hidden class. 4049 phi->add_req(intcon(1)); 4050 // If we fall through, it's a plain class. 4051 query_value = intcon(0); 4052 break; 4053 4054 4055 case vmIntrinsics::_getSuperclass: 4056 // The rules here are somewhat unfortunate, but we can still do better 4057 // with random logic than with a JNI call. 4058 // Interfaces store null or Object as _super, but must report null. 4059 // Arrays store an intermediate super as _super, but must report Object. 4060 // Other types can report the actual _super. 4061 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4062 if (generate_interface_guard(kls, region) != nullptr) 4063 // A guard was added. If the guard is taken, it was an interface. 4064 phi->add_req(null()); 4065 if (generate_array_guard(kls, region) != nullptr) 4066 // A guard was added. If the guard is taken, it was an array. 4067 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4068 // If we fall through, it's a plain class. Get its _super. 4069 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4070 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4071 null_ctl = top(); 4072 kls = null_check_oop(kls, &null_ctl); 4073 if (null_ctl != top()) { 4074 // If the guard is taken, Object.superClass is null (both klass and mirror). 4075 region->add_req(null_ctl); 4076 phi ->add_req(null()); 4077 } 4078 if (!stopped()) { 4079 query_value = load_mirror_from_klass(kls); 4080 } 4081 break; 4082 4083 case vmIntrinsics::_getClassAccessFlags: 4084 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4085 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 4086 break; 4087 4088 default: 4089 fatal_unexpected_iid(id); 4090 break; 4091 } 4092 4093 // Fall-through is the normal case of a query to a real class. 4094 phi->init_req(1, query_value); 4095 region->init_req(1, control()); 4096 4097 C->set_has_split_ifs(true); // Has chance for split-if optimization 4098 set_result(region, phi); 4099 return true; 4100 } 4101 4102 //-------------------------inline_primitive_Class_conversion------------------- 4103 // Class<T> java.lang.Class .asPrimaryType() 4104 // public static Class<T> jdk.internal.value.PrimitiveClass.asPrimaryType(Class<T>) 4105 // Class<T> java.lang.Class .asValueType() 4106 // public static Class<T> jdk.internal.value.PrimitiveClass.asValueType(Class<T>) 4107 bool LibraryCallKit::inline_primitive_Class_conversion(vmIntrinsics::ID id) { 4108 Node* mirror = argument(0); // Receiver/argument Class 4109 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4110 if (mirror_con == nullptr) { 4111 return false; 4112 } 4113 4114 bool is_val_mirror = true; 4115 ciType* tm = mirror_con->java_mirror_type(&is_val_mirror); 4116 if (tm != nullptr) { 4117 Node* result = mirror; 4118 if ((id == vmIntrinsics::_asPrimaryType || id == vmIntrinsics::_asPrimaryTypeArg) && is_val_mirror) { 4119 result = _gvn.makecon(TypeInstPtr::make(tm->as_inline_klass()->ref_mirror())); 4120 } else if (id == vmIntrinsics::_asValueType || id == vmIntrinsics::_asValueTypeArg) { 4121 if (!tm->is_inlinetype()) { 4122 return false; // Throw UnsupportedOperationException 4123 } else if (!is_val_mirror) { 4124 result = _gvn.makecon(TypeInstPtr::make(tm->as_inline_klass()->val_mirror())); 4125 } 4126 } 4127 set_result(result); 4128 return true; 4129 } 4130 return false; 4131 } 4132 4133 //-------------------------inline_Class_cast------------------- 4134 bool LibraryCallKit::inline_Class_cast() { 4135 Node* mirror = argument(0); // Class 4136 Node* obj = argument(1); 4137 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4138 if (mirror_con == nullptr) { 4139 return false; // dead path (mirror->is_top()). 4140 } 4141 if (obj == nullptr || obj->is_top()) { 4142 return false; // dead path 4143 } 4144 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4145 4146 // First, see if Class.cast() can be folded statically. 4147 // java_mirror_type() returns non-null for compile-time Class constants. 4148 bool requires_null_check = false; 4149 ciType* tm = mirror_con->java_mirror_type(&requires_null_check); 4150 if (tm != nullptr && tm->is_klass() && 4151 tp != nullptr) { 4152 if (!tp->is_loaded()) { 4153 // Don't use intrinsic when class is not loaded. 4154 return false; 4155 } else { 4156 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4157 if (static_res == Compile::SSC_always_true) { 4158 // isInstance() is true - fold the code. 4159 if (requires_null_check) { 4160 obj = null_check(obj); 4161 } 4162 set_result(obj); 4163 return true; 4164 } else if (static_res == Compile::SSC_always_false) { 4165 // Don't use intrinsic, have to throw ClassCastException. 4166 // If the reference is null, the non-intrinsic bytecode will 4167 // be optimized appropriately. 4168 return false; 4169 } 4170 } 4171 } 4172 4173 // Bailout intrinsic and do normal inlining if exception path is frequent. 4174 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4175 return false; 4176 } 4177 4178 // Generate dynamic checks. 4179 // Class.cast() is java implementation of _checkcast bytecode. 4180 // Do checkcast (Parse::do_checkcast()) optimizations here. 4181 4182 if (requires_null_check) { 4183 obj = null_check(obj); 4184 } 4185 mirror = null_check(mirror); 4186 // If mirror is dead, only null-path is taken. 4187 if (stopped()) { 4188 return true; 4189 } 4190 4191 // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive). 4192 enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT }; 4193 RegionNode* region = new RegionNode(PATH_LIMIT); 4194 record_for_igvn(region); 4195 4196 // Now load the mirror's klass metaobject, and null-check it. 4197 // If kls is null, we have a primitive mirror and 4198 // nothing is an instance of a primitive type. 4199 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4200 4201 Node* res = top(); 4202 Node* io = i_o(); 4203 Node* mem = merged_memory(); 4204 if (!stopped()) { 4205 if (EnableValhalla && !requires_null_check) { 4206 // Check if we are casting to QMyValue 4207 Node* ctrl_val_mirror = generate_fair_guard(is_val_mirror(mirror), nullptr); 4208 if (ctrl_val_mirror != nullptr) { 4209 RegionNode* r = new RegionNode(3); 4210 record_for_igvn(r); 4211 r->init_req(1, control()); 4212 4213 // Casting to QMyValue, check for null 4214 set_control(ctrl_val_mirror); 4215 { // PreserveJVMState because null check replaces obj in map 4216 PreserveJVMState pjvms(this); 4217 Node* null_ctr = top(); 4218 null_check_oop(obj, &null_ctr); 4219 region->init_req(_npe_path, null_ctr); 4220 r->init_req(2, control()); 4221 } 4222 set_control(_gvn.transform(r)); 4223 } 4224 } 4225 4226 Node* bad_type_ctrl = top(); 4227 // Do checkcast optimizations. 4228 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4229 region->init_req(_bad_type_path, bad_type_ctrl); 4230 } 4231 if (region->in(_prim_path) != top() || 4232 region->in(_bad_type_path) != top() || 4233 region->in(_npe_path) != top()) { 4234 // Let Interpreter throw ClassCastException. 4235 PreserveJVMState pjvms(this); 4236 set_control(_gvn.transform(region)); 4237 // Set IO and memory because gen_checkcast may override them when buffering inline types 4238 set_i_o(io); 4239 set_all_memory(mem); 4240 uncommon_trap(Deoptimization::Reason_intrinsic, 4241 Deoptimization::Action_maybe_recompile); 4242 } 4243 if (!stopped()) { 4244 set_result(res); 4245 } 4246 return true; 4247 } 4248 4249 4250 //--------------------------inline_native_subtype_check------------------------ 4251 // This intrinsic takes the JNI calls out of the heart of 4252 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4253 bool LibraryCallKit::inline_native_subtype_check() { 4254 // Pull both arguments off the stack. 4255 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4256 args[0] = argument(0); 4257 args[1] = argument(1); 4258 Node* klasses[2]; // corresponding Klasses: superk, subk 4259 klasses[0] = klasses[1] = top(); 4260 4261 enum { 4262 // A full decision tree on {superc is prim, subc is prim}: 4263 _prim_0_path = 1, // {P,N} => false 4264 // {P,P} & superc!=subc => false 4265 _prim_same_path, // {P,P} & superc==subc => true 4266 _prim_1_path, // {N,P} => false 4267 _ref_subtype_path, // {N,N} & subtype check wins => true 4268 _both_ref_path, // {N,N} & subtype check loses => false 4269 PATH_LIMIT 4270 }; 4271 4272 RegionNode* region = new RegionNode(PATH_LIMIT); 4273 RegionNode* prim_region = new RegionNode(2); 4274 Node* phi = new PhiNode(region, TypeInt::BOOL); 4275 record_for_igvn(region); 4276 record_for_igvn(prim_region); 4277 4278 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4279 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4280 int class_klass_offset = java_lang_Class::klass_offset(); 4281 4282 // First null-check both mirrors and load each mirror's klass metaobject. 4283 int which_arg; 4284 for (which_arg = 0; which_arg <= 1; which_arg++) { 4285 Node* arg = args[which_arg]; 4286 arg = null_check(arg); 4287 if (stopped()) break; 4288 args[which_arg] = arg; 4289 4290 Node* p = basic_plus_adr(arg, class_klass_offset); 4291 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4292 klasses[which_arg] = _gvn.transform(kls); 4293 } 4294 4295 // Having loaded both klasses, test each for null. 4296 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4297 for (which_arg = 0; which_arg <= 1; which_arg++) { 4298 Node* kls = klasses[which_arg]; 4299 Node* null_ctl = top(); 4300 kls = null_check_oop(kls, &null_ctl, never_see_null); 4301 if (which_arg == 0) { 4302 prim_region->init_req(1, null_ctl); 4303 } else { 4304 region->init_req(_prim_1_path, null_ctl); 4305 } 4306 if (stopped()) break; 4307 klasses[which_arg] = kls; 4308 } 4309 4310 if (!stopped()) { 4311 // now we have two reference types, in klasses[0..1] 4312 Node* subk = klasses[1]; // the argument to isAssignableFrom 4313 Node* superk = klasses[0]; // the receiver 4314 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4315 // If superc is an inline mirror, we also need to check if superc == subc because LMyValue 4316 // is not a subtype of QMyValue but due to subk == superk the subtype check will pass. 4317 generate_fair_guard(is_val_mirror(args[0]), prim_region); 4318 // now we have a successful reference subtype check 4319 region->set_req(_ref_subtype_path, control()); 4320 } 4321 4322 // If both operands are primitive (both klasses null), then 4323 // we must return true when they are identical primitives. 4324 // It is convenient to test this after the first null klass check. 4325 // This path is also used if superc is a value mirror. 4326 set_control(_gvn.transform(prim_region)); 4327 if (!stopped()) { 4328 // Since superc is primitive, make a guard for the superc==subc case. 4329 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4330 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4331 generate_fair_guard(bol_eq, region); 4332 if (region->req() == PATH_LIMIT+1) { 4333 // A guard was added. If the added guard is taken, superc==subc. 4334 region->swap_edges(PATH_LIMIT, _prim_same_path); 4335 region->del_req(PATH_LIMIT); 4336 } 4337 region->set_req(_prim_0_path, control()); // Not equal after all. 4338 } 4339 4340 // these are the only paths that produce 'true': 4341 phi->set_req(_prim_same_path, intcon(1)); 4342 phi->set_req(_ref_subtype_path, intcon(1)); 4343 4344 // pull together the cases: 4345 assert(region->req() == PATH_LIMIT, "sane region"); 4346 for (uint i = 1; i < region->req(); i++) { 4347 Node* ctl = region->in(i); 4348 if (ctl == nullptr || ctl == top()) { 4349 region->set_req(i, top()); 4350 phi ->set_req(i, top()); 4351 } else if (phi->in(i) == nullptr) { 4352 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4353 } 4354 } 4355 4356 set_control(_gvn.transform(region)); 4357 set_result(_gvn.transform(phi)); 4358 return true; 4359 } 4360 4361 //---------------------generate_array_guard_common------------------------ 4362 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind) { 4363 4364 if (stopped()) { 4365 return nullptr; 4366 } 4367 4368 // Like generate_guard, adds a new path onto the region. 4369 jint layout_con = 0; 4370 Node* layout_val = get_layout_helper(kls, layout_con); 4371 if (layout_val == nullptr) { 4372 bool query = 0; 4373 switch(kind) { 4374 case ObjectArray: query = Klass::layout_helper_is_objArray(layout_con); break; 4375 case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break; 4376 case TypeArray: query = Klass::layout_helper_is_typeArray(layout_con); break; 4377 case AnyArray: query = Klass::layout_helper_is_array(layout_con); break; 4378 case NonArray: query = !Klass::layout_helper_is_array(layout_con); break; 4379 default: 4380 ShouldNotReachHere(); 4381 } 4382 if (!query) { 4383 return nullptr; // never a branch 4384 } else { // always a branch 4385 Node* always_branch = control(); 4386 if (region != nullptr) 4387 region->add_req(always_branch); 4388 set_control(top()); 4389 return always_branch; 4390 } 4391 } 4392 unsigned int value = 0; 4393 BoolTest::mask btest = BoolTest::illegal; 4394 switch(kind) { 4395 case ObjectArray: 4396 case NonObjectArray: { 4397 value = Klass::_lh_array_tag_obj_value; 4398 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4399 btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne; 4400 break; 4401 } 4402 case TypeArray: { 4403 value = Klass::_lh_array_tag_type_value; 4404 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4405 btest = BoolTest::eq; 4406 break; 4407 } 4408 case AnyArray: value = Klass::_lh_neutral_value; btest = BoolTest::lt; break; 4409 case NonArray: value = Klass::_lh_neutral_value; btest = BoolTest::gt; break; 4410 default: 4411 ShouldNotReachHere(); 4412 } 4413 // Now test the correct condition. 4414 jint nval = (jint)value; 4415 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4416 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4417 return generate_fair_guard(bol, region); 4418 } 4419 4420 4421 //-----------------------inline_native_newArray-------------------------- 4422 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length); 4423 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4424 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4425 Node* mirror; 4426 Node* count_val; 4427 if (uninitialized) { 4428 null_check_receiver(); 4429 mirror = argument(1); 4430 count_val = argument(2); 4431 } else { 4432 mirror = argument(0); 4433 count_val = argument(1); 4434 } 4435 4436 mirror = null_check(mirror); 4437 // If mirror or obj is dead, only null-path is taken. 4438 if (stopped()) return true; 4439 4440 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4441 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4442 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4443 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4444 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4445 4446 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4447 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4448 result_reg, _slow_path); 4449 Node* normal_ctl = control(); 4450 Node* no_array_ctl = result_reg->in(_slow_path); 4451 4452 // Generate code for the slow case. We make a call to newArray(). 4453 set_control(no_array_ctl); 4454 if (!stopped()) { 4455 // Either the input type is void.class, or else the 4456 // array klass has not yet been cached. Either the 4457 // ensuing call will throw an exception, or else it 4458 // will cache the array klass for next time. 4459 PreserveJVMState pjvms(this); 4460 CallJavaNode* slow_call = nullptr; 4461 if (uninitialized) { 4462 // Generate optimized virtual call (holder class 'Unsafe' is final) 4463 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4464 } else { 4465 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4466 } 4467 Node* slow_result = set_results_for_java_call(slow_call); 4468 // this->control() comes from set_results_for_java_call 4469 result_reg->set_req(_slow_path, control()); 4470 result_val->set_req(_slow_path, slow_result); 4471 result_io ->set_req(_slow_path, i_o()); 4472 result_mem->set_req(_slow_path, reset_memory()); 4473 } 4474 4475 set_control(normal_ctl); 4476 if (!stopped()) { 4477 // Normal case: The array type has been cached in the java.lang.Class. 4478 // The following call works fine even if the array type is polymorphic. 4479 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4480 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4481 result_reg->init_req(_normal_path, control()); 4482 result_val->init_req(_normal_path, obj); 4483 result_io ->init_req(_normal_path, i_o()); 4484 result_mem->init_req(_normal_path, reset_memory()); 4485 4486 if (uninitialized) { 4487 // Mark the allocation so that zeroing is skipped 4488 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4489 alloc->maybe_set_complete(&_gvn); 4490 } 4491 } 4492 4493 // Return the combined state. 4494 set_i_o( _gvn.transform(result_io) ); 4495 set_all_memory( _gvn.transform(result_mem)); 4496 4497 C->set_has_split_ifs(true); // Has chance for split-if optimization 4498 set_result(result_reg, result_val); 4499 return true; 4500 } 4501 4502 //----------------------inline_native_getLength-------------------------- 4503 // public static native int java.lang.reflect.Array.getLength(Object array); 4504 bool LibraryCallKit::inline_native_getLength() { 4505 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4506 4507 Node* array = null_check(argument(0)); 4508 // If array is dead, only null-path is taken. 4509 if (stopped()) return true; 4510 4511 // Deoptimize if it is a non-array. 4512 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 4513 4514 if (non_array != nullptr) { 4515 PreserveJVMState pjvms(this); 4516 set_control(non_array); 4517 uncommon_trap(Deoptimization::Reason_intrinsic, 4518 Deoptimization::Action_maybe_recompile); 4519 } 4520 4521 // If control is dead, only non-array-path is taken. 4522 if (stopped()) return true; 4523 4524 // The works fine even if the array type is polymorphic. 4525 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4526 Node* result = load_array_length(array); 4527 4528 C->set_has_split_ifs(true); // Has chance for split-if optimization 4529 set_result(result); 4530 return true; 4531 } 4532 4533 //------------------------inline_array_copyOf---------------------------- 4534 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4535 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4536 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4537 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4538 4539 // Get the arguments. 4540 Node* original = argument(0); 4541 Node* start = is_copyOfRange? argument(1): intcon(0); 4542 Node* end = is_copyOfRange? argument(2): argument(1); 4543 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4544 4545 Node* newcopy = nullptr; 4546 4547 // Set the original stack and the reexecute bit for the interpreter to reexecute 4548 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4549 { PreserveReexecuteState preexecs(this); 4550 jvms()->set_should_reexecute(true); 4551 4552 array_type_mirror = null_check(array_type_mirror); 4553 original = null_check(original); 4554 4555 // Check if a null path was taken unconditionally. 4556 if (stopped()) return true; 4557 4558 Node* orig_length = load_array_length(original); 4559 4560 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4561 klass_node = null_check(klass_node); 4562 4563 RegionNode* bailout = new RegionNode(1); 4564 record_for_igvn(bailout); 4565 4566 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4567 // Bail out if that is so. 4568 // Inline type array may have object field that would require a 4569 // write barrier. Conservatively, go to slow path. 4570 // TODO 8251971: Optimize for the case when flat src/dst are later found 4571 // to not contain oops (i.e., move this check to the macro expansion phase). 4572 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4573 const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr(); 4574 const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr(); 4575 bool exclude_flat = UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) && 4576 // Can src array be flat and contain oops? 4577 (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) && 4578 // Can dest array be flat and contain oops? 4579 tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops()); 4580 Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout); 4581 if (not_objArray != nullptr) { 4582 // Improve the klass node's type from the new optimistic assumption: 4583 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4584 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0)); 4585 Node* cast = new CastPPNode(klass_node, akls); 4586 cast->init_req(0, control()); 4587 klass_node = _gvn.transform(cast); 4588 } 4589 4590 // Bail out if either start or end is negative. 4591 generate_negative_guard(start, bailout, &start); 4592 generate_negative_guard(end, bailout, &end); 4593 4594 Node* length = end; 4595 if (_gvn.type(start) != TypeInt::ZERO) { 4596 length = _gvn.transform(new SubINode(end, start)); 4597 } 4598 4599 // Bail out if length is negative. 4600 // Without this the new_array would throw 4601 // NegativeArraySizeException but IllegalArgumentException is what 4602 // should be thrown 4603 generate_negative_guard(length, bailout, &length); 4604 4605 // Handle inline type arrays 4606 bool can_validate = !too_many_traps(Deoptimization::Reason_class_check); 4607 if (!stopped()) { 4608 orig_t = _gvn.type(original)->isa_aryptr(); 4609 if (orig_t != nullptr && orig_t->is_flat()) { 4610 // Src is flat, check that dest is flat as well 4611 if (exclude_flat) { 4612 // Dest can't be flat, bail out 4613 bailout->add_req(control()); 4614 set_control(top()); 4615 } else { 4616 generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout); 4617 } 4618 } else if (UseFlatArray && (orig_t == nullptr || !orig_t->is_not_flat()) && 4619 // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated). 4620 ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) { 4621 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 4622 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 4623 generate_fair_guard(flat_array_test(load_object_klass(original)), bailout); 4624 if (orig_t != nullptr) { 4625 orig_t = orig_t->cast_to_not_flat(); 4626 original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t)); 4627 } 4628 } 4629 if (!can_validate) { 4630 // No validation. The subtype check emitted at macro expansion time will not go to the slow 4631 // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays. 4632 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free. 4633 generate_fair_guard(null_free_array_test(klass_node), bailout); 4634 } 4635 } 4636 4637 if (bailout->req() > 1) { 4638 PreserveJVMState pjvms(this); 4639 set_control(_gvn.transform(bailout)); 4640 uncommon_trap(Deoptimization::Reason_intrinsic, 4641 Deoptimization::Action_maybe_recompile); 4642 } 4643 4644 if (!stopped()) { 4645 // How many elements will we copy from the original? 4646 // The answer is MinI(orig_length - start, length). 4647 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4648 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4649 4650 // Generate a direct call to the right arraycopy function(s). 4651 // We know the copy is disjoint but we might not know if the 4652 // oop stores need checking. 4653 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4654 // This will fail a store-check if x contains any non-nulls. 4655 4656 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4657 // loads/stores but it is legal only if we're sure the 4658 // Arrays.copyOf would succeed. So we need all input arguments 4659 // to the copyOf to be validated, including that the copy to the 4660 // new array won't trigger an ArrayStoreException. That subtype 4661 // check can be optimized if we know something on the type of 4662 // the input array from type speculation. 4663 if (_gvn.type(klass_node)->singleton()) { 4664 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4665 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4666 4667 int test = C->static_subtype_check(superk, subk); 4668 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4669 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4670 if (t_original->speculative_type() != nullptr) { 4671 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4672 } 4673 } 4674 } 4675 4676 bool validated = false; 4677 // Reason_class_check rather than Reason_intrinsic because we 4678 // want to intrinsify even if this traps. 4679 if (can_validate) { 4680 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4681 4682 if (not_subtype_ctrl != top()) { 4683 PreserveJVMState pjvms(this); 4684 set_control(not_subtype_ctrl); 4685 uncommon_trap(Deoptimization::Reason_class_check, 4686 Deoptimization::Action_make_not_entrant); 4687 assert(stopped(), "Should be stopped"); 4688 } 4689 validated = true; 4690 } 4691 4692 if (!stopped()) { 4693 newcopy = new_array(klass_node, length, 0); // no arguments to push 4694 4695 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 4696 load_object_klass(original), klass_node); 4697 if (!is_copyOfRange) { 4698 ac->set_copyof(validated); 4699 } else { 4700 ac->set_copyofrange(validated); 4701 } 4702 Node* n = _gvn.transform(ac); 4703 if (n == ac) { 4704 ac->connect_outputs(this); 4705 } else { 4706 assert(validated, "shouldn't transform if all arguments not validated"); 4707 set_all_memory(n); 4708 } 4709 } 4710 } 4711 } // original reexecute is set back here 4712 4713 C->set_has_split_ifs(true); // Has chance for split-if optimization 4714 if (!stopped()) { 4715 set_result(newcopy); 4716 } 4717 return true; 4718 } 4719 4720 4721 //----------------------generate_virtual_guard--------------------------- 4722 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4723 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4724 RegionNode* slow_region) { 4725 ciMethod* method = callee(); 4726 int vtable_index = method->vtable_index(); 4727 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4728 "bad index %d", vtable_index); 4729 // Get the Method* out of the appropriate vtable entry. 4730 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4731 vtable_index*vtableEntry::size_in_bytes() + 4732 in_bytes(vtableEntry::method_offset()); 4733 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4734 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4735 4736 // Compare the target method with the expected method (e.g., Object.hashCode). 4737 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4738 4739 Node* native_call = makecon(native_call_addr); 4740 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4741 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4742 4743 return generate_slow_guard(test_native, slow_region); 4744 } 4745 4746 //-----------------------generate_method_call---------------------------- 4747 // Use generate_method_call to make a slow-call to the real 4748 // method if the fast path fails. An alternative would be to 4749 // use a stub like OptoRuntime::slow_arraycopy_Java. 4750 // This only works for expanding the current library call, 4751 // not another intrinsic. (E.g., don't use this for making an 4752 // arraycopy call inside of the copyOf intrinsic.) 4753 CallJavaNode* 4754 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4755 // When compiling the intrinsic method itself, do not use this technique. 4756 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4757 4758 ciMethod* method = callee(); 4759 // ensure the JVMS we have will be correct for this call 4760 guarantee(method_id == method->intrinsic_id(), "must match"); 4761 4762 const TypeFunc* tf = TypeFunc::make(method); 4763 if (res_not_null) { 4764 assert(tf->return_type() == T_OBJECT, ""); 4765 const TypeTuple* range = tf->range_cc(); 4766 const Type** fields = TypeTuple::fields(range->cnt()); 4767 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4768 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4769 tf = TypeFunc::make(tf->domain_cc(), new_range); 4770 } 4771 CallJavaNode* slow_call; 4772 if (is_static) { 4773 assert(!is_virtual, ""); 4774 slow_call = new CallStaticJavaNode(C, tf, 4775 SharedRuntime::get_resolve_static_call_stub(), method); 4776 } else if (is_virtual) { 4777 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4778 int vtable_index = Method::invalid_vtable_index; 4779 if (UseInlineCaches) { 4780 // Suppress the vtable call 4781 } else { 4782 // hashCode and clone are not a miranda methods, 4783 // so the vtable index is fixed. 4784 // No need to use the linkResolver to get it. 4785 vtable_index = method->vtable_index(); 4786 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4787 "bad index %d", vtable_index); 4788 } 4789 slow_call = new CallDynamicJavaNode(tf, 4790 SharedRuntime::get_resolve_virtual_call_stub(), 4791 method, vtable_index); 4792 } else { // neither virtual nor static: opt_virtual 4793 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4794 slow_call = new CallStaticJavaNode(C, tf, 4795 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4796 slow_call->set_optimized_virtual(true); 4797 } 4798 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4799 // To be able to issue a direct call (optimized virtual or virtual) 4800 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4801 // about the method being invoked should be attached to the call site to 4802 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4803 slow_call->set_override_symbolic_info(true); 4804 } 4805 set_arguments_for_java_call(slow_call); 4806 set_edges_for_java_call(slow_call); 4807 return slow_call; 4808 } 4809 4810 4811 /** 4812 * Build special case code for calls to hashCode on an object. This call may 4813 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4814 * slightly different code. 4815 */ 4816 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4817 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4818 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4819 4820 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4821 4822 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4823 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4824 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4825 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4826 Node* obj = argument(0); 4827 4828 if (gvn().type(obj)->is_inlinetypeptr()) { 4829 return false; 4830 } 4831 4832 if (!is_static) { 4833 // Check for hashing null object 4834 obj = null_check_receiver(); 4835 if (stopped()) return true; // unconditionally null 4836 result_reg->init_req(_null_path, top()); 4837 result_val->init_req(_null_path, top()); 4838 } else { 4839 // Do a null check, and return zero if null. 4840 // System.identityHashCode(null) == 0 4841 Node* null_ctl = top(); 4842 obj = null_check_oop(obj, &null_ctl); 4843 result_reg->init_req(_null_path, null_ctl); 4844 result_val->init_req(_null_path, _gvn.intcon(0)); 4845 } 4846 4847 // Unconditionally null? Then return right away. 4848 if (stopped()) { 4849 set_control( result_reg->in(_null_path)); 4850 if (!stopped()) 4851 set_result(result_val->in(_null_path)); 4852 return true; 4853 } 4854 4855 // We only go to the fast case code if we pass a number of guards. The 4856 // paths which do not pass are accumulated in the slow_region. 4857 RegionNode* slow_region = new RegionNode(1); 4858 record_for_igvn(slow_region); 4859 4860 // If this is a virtual call, we generate a funny guard. We pull out 4861 // the vtable entry corresponding to hashCode() from the target object. 4862 // If the target method which we are calling happens to be the native 4863 // Object hashCode() method, we pass the guard. We do not need this 4864 // guard for non-virtual calls -- the caller is known to be the native 4865 // Object hashCode(). 4866 if (is_virtual) { 4867 // After null check, get the object's klass. 4868 Node* obj_klass = load_object_klass(obj); 4869 generate_virtual_guard(obj_klass, slow_region); 4870 } 4871 4872 // Get the header out of the object, use LoadMarkNode when available 4873 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4874 // The control of the load must be null. Otherwise, the load can move before 4875 // the null check after castPP removal. 4876 Node* no_ctrl = nullptr; 4877 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4878 4879 // Test the header to see if it is unlocked. 4880 // This also serves as guard against inline types 4881 Node *lock_mask = _gvn.MakeConX(markWord::inline_type_mask_in_place); 4882 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4883 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4884 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 4885 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 4886 4887 generate_slow_guard(test_unlocked, slow_region); 4888 4889 // Get the hash value and check to see that it has been properly assigned. 4890 // We depend on hash_mask being at most 32 bits and avoid the use of 4891 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4892 // vm: see markWord.hpp. 4893 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4894 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4895 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4896 // This hack lets the hash bits live anywhere in the mark object now, as long 4897 // as the shift drops the relevant bits into the low 32 bits. Note that 4898 // Java spec says that HashCode is an int so there's no point in capturing 4899 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4900 hshifted_header = ConvX2I(hshifted_header); 4901 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4902 4903 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4904 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4905 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4906 4907 generate_slow_guard(test_assigned, slow_region); 4908 4909 Node* init_mem = reset_memory(); 4910 // fill in the rest of the null path: 4911 result_io ->init_req(_null_path, i_o()); 4912 result_mem->init_req(_null_path, init_mem); 4913 4914 result_val->init_req(_fast_path, hash_val); 4915 result_reg->init_req(_fast_path, control()); 4916 result_io ->init_req(_fast_path, i_o()); 4917 result_mem->init_req(_fast_path, init_mem); 4918 4919 // Generate code for the slow case. We make a call to hashCode(). 4920 set_control(_gvn.transform(slow_region)); 4921 if (!stopped()) { 4922 // No need for PreserveJVMState, because we're using up the present state. 4923 set_all_memory(init_mem); 4924 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4925 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4926 Node* slow_result = set_results_for_java_call(slow_call); 4927 // this->control() comes from set_results_for_java_call 4928 result_reg->init_req(_slow_path, control()); 4929 result_val->init_req(_slow_path, slow_result); 4930 result_io ->set_req(_slow_path, i_o()); 4931 result_mem ->set_req(_slow_path, reset_memory()); 4932 } 4933 4934 // Return the combined state. 4935 set_i_o( _gvn.transform(result_io) ); 4936 set_all_memory( _gvn.transform(result_mem)); 4937 4938 set_result(result_reg, result_val); 4939 return true; 4940 } 4941 4942 //---------------------------inline_native_getClass---------------------------- 4943 // public final native Class<?> java.lang.Object.getClass(); 4944 // 4945 // Build special case code for calls to getClass on an object. 4946 bool LibraryCallKit::inline_native_getClass() { 4947 Node* obj = argument(0); 4948 if (obj->is_InlineType()) { 4949 const Type* t = _gvn.type(obj); 4950 if (t->maybe_null()) { 4951 null_check(obj); 4952 } 4953 set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror()))); 4954 return true; 4955 } 4956 obj = null_check_receiver(); 4957 if (stopped()) return true; 4958 set_result(load_mirror_from_klass(load_object_klass(obj))); 4959 return true; 4960 } 4961 4962 //-----------------inline_native_Reflection_getCallerClass--------------------- 4963 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4964 // 4965 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4966 // 4967 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4968 // in that it must skip particular security frames and checks for 4969 // caller sensitive methods. 4970 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4971 #ifndef PRODUCT 4972 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4973 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4974 } 4975 #endif 4976 4977 if (!jvms()->has_method()) { 4978 #ifndef PRODUCT 4979 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4980 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4981 } 4982 #endif 4983 return false; 4984 } 4985 4986 // Walk back up the JVM state to find the caller at the required 4987 // depth. 4988 JVMState* caller_jvms = jvms(); 4989 4990 // Cf. JVM_GetCallerClass 4991 // NOTE: Start the loop at depth 1 because the current JVM state does 4992 // not include the Reflection.getCallerClass() frame. 4993 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4994 ciMethod* m = caller_jvms->method(); 4995 switch (n) { 4996 case 0: 4997 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4998 break; 4999 case 1: 5000 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 5001 if (!m->caller_sensitive()) { 5002 #ifndef PRODUCT 5003 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5004 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 5005 } 5006 #endif 5007 return false; // bail-out; let JVM_GetCallerClass do the work 5008 } 5009 break; 5010 default: 5011 if (!m->is_ignored_by_security_stack_walk()) { 5012 // We have reached the desired frame; return the holder class. 5013 // Acquire method holder as java.lang.Class and push as constant. 5014 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 5015 ciInstance* caller_mirror = caller_klass->java_mirror(); 5016 set_result(makecon(TypeInstPtr::make(caller_mirror))); 5017 5018 #ifndef PRODUCT 5019 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5020 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 5021 tty->print_cr(" JVM state at this point:"); 5022 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5023 ciMethod* m = jvms()->of_depth(i)->method(); 5024 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5025 } 5026 } 5027 #endif 5028 return true; 5029 } 5030 break; 5031 } 5032 } 5033 5034 #ifndef PRODUCT 5035 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5036 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 5037 tty->print_cr(" JVM state at this point:"); 5038 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5039 ciMethod* m = jvms()->of_depth(i)->method(); 5040 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5041 } 5042 } 5043 #endif 5044 5045 return false; // bail-out; let JVM_GetCallerClass do the work 5046 } 5047 5048 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 5049 Node* arg = argument(0); 5050 Node* result = nullptr; 5051 5052 switch (id) { 5053 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 5054 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 5055 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 5056 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 5057 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 5058 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 5059 5060 case vmIntrinsics::_doubleToLongBits: { 5061 // two paths (plus control) merge in a wood 5062 RegionNode *r = new RegionNode(3); 5063 Node *phi = new PhiNode(r, TypeLong::LONG); 5064 5065 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 5066 // Build the boolean node 5067 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5068 5069 // Branch either way. 5070 // NaN case is less traveled, which makes all the difference. 5071 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5072 Node *opt_isnan = _gvn.transform(ifisnan); 5073 assert( opt_isnan->is_If(), "Expect an IfNode"); 5074 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5075 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5076 5077 set_control(iftrue); 5078 5079 static const jlong nan_bits = CONST64(0x7ff8000000000000); 5080 Node *slow_result = longcon(nan_bits); // return NaN 5081 phi->init_req(1, _gvn.transform( slow_result )); 5082 r->init_req(1, iftrue); 5083 5084 // Else fall through 5085 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5086 set_control(iffalse); 5087 5088 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 5089 r->init_req(2, iffalse); 5090 5091 // Post merge 5092 set_control(_gvn.transform(r)); 5093 record_for_igvn(r); 5094 5095 C->set_has_split_ifs(true); // Has chance for split-if optimization 5096 result = phi; 5097 assert(result->bottom_type()->isa_long(), "must be"); 5098 break; 5099 } 5100 5101 case vmIntrinsics::_floatToIntBits: { 5102 // two paths (plus control) merge in a wood 5103 RegionNode *r = new RegionNode(3); 5104 Node *phi = new PhiNode(r, TypeInt::INT); 5105 5106 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 5107 // Build the boolean node 5108 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5109 5110 // Branch either way. 5111 // NaN case is less traveled, which makes all the difference. 5112 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5113 Node *opt_isnan = _gvn.transform(ifisnan); 5114 assert( opt_isnan->is_If(), "Expect an IfNode"); 5115 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5116 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5117 5118 set_control(iftrue); 5119 5120 static const jint nan_bits = 0x7fc00000; 5121 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 5122 phi->init_req(1, _gvn.transform( slow_result )); 5123 r->init_req(1, iftrue); 5124 5125 // Else fall through 5126 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5127 set_control(iffalse); 5128 5129 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 5130 r->init_req(2, iffalse); 5131 5132 // Post merge 5133 set_control(_gvn.transform(r)); 5134 record_for_igvn(r); 5135 5136 C->set_has_split_ifs(true); // Has chance for split-if optimization 5137 result = phi; 5138 assert(result->bottom_type()->isa_int(), "must be"); 5139 break; 5140 } 5141 5142 default: 5143 fatal_unexpected_iid(id); 5144 break; 5145 } 5146 set_result(_gvn.transform(result)); 5147 return true; 5148 } 5149 5150 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5151 Node* arg = argument(0); 5152 Node* result = nullptr; 5153 5154 switch (id) { 5155 case vmIntrinsics::_floatIsInfinite: 5156 result = new IsInfiniteFNode(arg); 5157 break; 5158 case vmIntrinsics::_floatIsFinite: 5159 result = new IsFiniteFNode(arg); 5160 break; 5161 case vmIntrinsics::_doubleIsInfinite: 5162 result = new IsInfiniteDNode(arg); 5163 break; 5164 case vmIntrinsics::_doubleIsFinite: 5165 result = new IsFiniteDNode(arg); 5166 break; 5167 default: 5168 fatal_unexpected_iid(id); 5169 break; 5170 } 5171 set_result(_gvn.transform(result)); 5172 return true; 5173 } 5174 5175 //----------------------inline_unsafe_copyMemory------------------------- 5176 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5177 5178 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5179 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5180 const Type* base_t = gvn.type(base); 5181 5182 bool in_native = (base_t == TypePtr::NULL_PTR); 5183 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5184 bool is_mixed = !in_heap && !in_native; 5185 5186 if (is_mixed) { 5187 return true; // mixed accesses can touch both on-heap and off-heap memory 5188 } 5189 if (in_heap) { 5190 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5191 if (!is_prim_array) { 5192 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5193 // there's not enough type information available to determine proper memory slice for it. 5194 return true; 5195 } 5196 } 5197 return false; 5198 } 5199 5200 bool LibraryCallKit::inline_unsafe_copyMemory() { 5201 if (callee()->is_static()) return false; // caller must have the capability! 5202 null_check_receiver(); // null-check receiver 5203 if (stopped()) return true; 5204 5205 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5206 5207 Node* src_base = argument(1); // type: oop 5208 Node* src_off = ConvL2X(argument(2)); // type: long 5209 Node* dst_base = argument(4); // type: oop 5210 Node* dst_off = ConvL2X(argument(5)); // type: long 5211 Node* size = ConvL2X(argument(7)); // type: long 5212 5213 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5214 "fieldOffset must be byte-scaled"); 5215 5216 Node* src_addr = make_unsafe_address(src_base, src_off); 5217 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5218 5219 Node* thread = _gvn.transform(new ThreadLocalNode()); 5220 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5221 BasicType doing_unsafe_access_bt = T_BYTE; 5222 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5223 5224 // update volatile field 5225 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5226 5227 int flags = RC_LEAF | RC_NO_FP; 5228 5229 const TypePtr* dst_type = TypePtr::BOTTOM; 5230 5231 // Adjust memory effects of the runtime call based on input values. 5232 if (!has_wide_mem(_gvn, src_addr, src_base) && 5233 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5234 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5235 5236 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5237 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5238 flags |= RC_NARROW_MEM; // narrow in memory 5239 } 5240 } 5241 5242 // Call it. Note that the length argument is not scaled. 5243 make_runtime_call(flags, 5244 OptoRuntime::fast_arraycopy_Type(), 5245 StubRoutines::unsafe_arraycopy(), 5246 "unsafe_arraycopy", 5247 dst_type, 5248 src_addr, dst_addr, size XTOP); 5249 5250 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5251 5252 return true; 5253 } 5254 5255 #undef XTOP 5256 5257 //----------------------inline_unsafe_isFlattenedArray------------------- 5258 // public native boolean Unsafe.isFlattenedArray(Class<?> arrayClass); 5259 // This intrinsic exploits assumptions made by the native implementation 5260 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks. 5261 bool LibraryCallKit::inline_unsafe_isFlattenedArray() { 5262 Node* cls = argument(1); 5263 Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset()); 5264 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, 5265 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT)); 5266 Node* result = flat_array_test(kls); 5267 set_result(result); 5268 return true; 5269 } 5270 5271 //------------------------clone_coping----------------------------------- 5272 // Helper function for inline_native_clone. 5273 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5274 assert(obj_size != nullptr, ""); 5275 Node* raw_obj = alloc_obj->in(1); 5276 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5277 5278 AllocateNode* alloc = nullptr; 5279 if (ReduceBulkZeroing) { 5280 // We will be completely responsible for initializing this object - 5281 // mark Initialize node as complete. 5282 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5283 // The object was just allocated - there should be no any stores! 5284 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5285 // Mark as complete_with_arraycopy so that on AllocateNode 5286 // expansion, we know this AllocateNode is initialized by an array 5287 // copy and a StoreStore barrier exists after the array copy. 5288 alloc->initialization()->set_complete_with_arraycopy(); 5289 } 5290 5291 Node* size = _gvn.transform(obj_size); 5292 access_clone(obj, alloc_obj, size, is_array); 5293 5294 // Do not let reads from the cloned object float above the arraycopy. 5295 if (alloc != nullptr) { 5296 // Do not let stores that initialize this object be reordered with 5297 // a subsequent store that would make this object accessible by 5298 // other threads. 5299 // Record what AllocateNode this StoreStore protects so that 5300 // escape analysis can go from the MemBarStoreStoreNode to the 5301 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5302 // based on the escape status of the AllocateNode. 5303 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5304 } else { 5305 insert_mem_bar(Op_MemBarCPUOrder); 5306 } 5307 } 5308 5309 //------------------------inline_native_clone---------------------------- 5310 // protected native Object java.lang.Object.clone(); 5311 // 5312 // Here are the simple edge cases: 5313 // null receiver => normal trap 5314 // virtual and clone was overridden => slow path to out-of-line clone 5315 // not cloneable or finalizer => slow path to out-of-line Object.clone 5316 // 5317 // The general case has two steps, allocation and copying. 5318 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5319 // 5320 // Copying also has two cases, oop arrays and everything else. 5321 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5322 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5323 // 5324 // These steps fold up nicely if and when the cloned object's klass 5325 // can be sharply typed as an object array, a type array, or an instance. 5326 // 5327 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5328 PhiNode* result_val; 5329 5330 // Set the reexecute bit for the interpreter to reexecute 5331 // the bytecode that invokes Object.clone if deoptimization happens. 5332 { PreserveReexecuteState preexecs(this); 5333 jvms()->set_should_reexecute(true); 5334 5335 Node* obj = argument(0); 5336 obj = null_check_receiver(); 5337 if (stopped()) return true; 5338 5339 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5340 5341 // If we are going to clone an instance, we need its exact type to 5342 // know the number and types of fields to convert the clone to 5343 // loads/stores. Maybe a speculative type can help us. 5344 if (!obj_type->klass_is_exact() && 5345 obj_type->speculative_type() != nullptr && 5346 obj_type->speculative_type()->is_instance_klass() && 5347 !obj_type->speculative_type()->is_inlinetype()) { 5348 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5349 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5350 !spec_ik->has_injected_fields()) { 5351 if (!obj_type->isa_instptr() || 5352 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5353 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5354 } 5355 } 5356 } 5357 5358 // Conservatively insert a memory barrier on all memory slices. 5359 // Do not let writes into the original float below the clone. 5360 insert_mem_bar(Op_MemBarCPUOrder); 5361 5362 // paths into result_reg: 5363 enum { 5364 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5365 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5366 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5367 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5368 PATH_LIMIT 5369 }; 5370 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5371 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5372 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5373 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5374 record_for_igvn(result_reg); 5375 5376 Node* obj_klass = load_object_klass(obj); 5377 // We only go to the fast case code if we pass a number of guards. 5378 // The paths which do not pass are accumulated in the slow_region. 5379 RegionNode* slow_region = new RegionNode(1); 5380 record_for_igvn(slow_region); 5381 5382 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 5383 if (array_ctl != nullptr) { 5384 // It's an array. 5385 PreserveJVMState pjvms(this); 5386 set_control(array_ctl); 5387 5388 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5389 const TypeAryPtr* ary_ptr = obj_type->isa_aryptr(); 5390 if (UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) && 5391 obj_type->can_be_inline_array() && 5392 (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) { 5393 // Flat inline type array may have object field that would require a 5394 // write barrier. Conservatively, go to slow path. 5395 generate_fair_guard(flat_array_test(obj_klass), slow_region); 5396 } 5397 5398 if (!stopped()) { 5399 Node* obj_length = load_array_length(obj); 5400 Node* obj_size = nullptr; 5401 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true); 5402 5403 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5404 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5405 // If it is an oop array, it requires very special treatment, 5406 // because gc barriers are required when accessing the array. 5407 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5408 if (is_obja != nullptr) { 5409 PreserveJVMState pjvms2(this); 5410 set_control(is_obja); 5411 // Generate a direct call to the right arraycopy function(s). 5412 // Clones are always tightly coupled. 5413 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5414 ac->set_clone_oop_array(); 5415 Node* n = _gvn.transform(ac); 5416 assert(n == ac, "cannot disappear"); 5417 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5418 5419 result_reg->init_req(_objArray_path, control()); 5420 result_val->init_req(_objArray_path, alloc_obj); 5421 result_i_o ->set_req(_objArray_path, i_o()); 5422 result_mem ->set_req(_objArray_path, reset_memory()); 5423 } 5424 } 5425 // Otherwise, there are no barriers to worry about. 5426 // (We can dispense with card marks if we know the allocation 5427 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5428 // causes the non-eden paths to take compensating steps to 5429 // simulate a fresh allocation, so that no further 5430 // card marks are required in compiled code to initialize 5431 // the object.) 5432 5433 if (!stopped()) { 5434 copy_to_clone(obj, alloc_obj, obj_size, true); 5435 5436 // Present the results of the copy. 5437 result_reg->init_req(_array_path, control()); 5438 result_val->init_req(_array_path, alloc_obj); 5439 result_i_o ->set_req(_array_path, i_o()); 5440 result_mem ->set_req(_array_path, reset_memory()); 5441 } 5442 } 5443 } 5444 5445 if (!stopped()) { 5446 // It's an instance (we did array above). Make the slow-path tests. 5447 // If this is a virtual call, we generate a funny guard. We grab 5448 // the vtable entry corresponding to clone() from the target object. 5449 // If the target method which we are calling happens to be the 5450 // Object clone() method, we pass the guard. We do not need this 5451 // guard for non-virtual calls; the caller is known to be the native 5452 // Object clone(). 5453 if (is_virtual) { 5454 generate_virtual_guard(obj_klass, slow_region); 5455 } 5456 5457 // The object must be easily cloneable and must not have a finalizer. 5458 // Both of these conditions may be checked in a single test. 5459 // We could optimize the test further, but we don't care. 5460 generate_access_flags_guard(obj_klass, 5461 // Test both conditions: 5462 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 5463 // Must be cloneable but not finalizer: 5464 JVM_ACC_IS_CLONEABLE_FAST, 5465 slow_region); 5466 } 5467 5468 if (!stopped()) { 5469 // It's an instance, and it passed the slow-path tests. 5470 PreserveJVMState pjvms(this); 5471 Node* obj_size = nullptr; 5472 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5473 // is reexecuted if deoptimization occurs and there could be problems when merging 5474 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5475 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5476 5477 copy_to_clone(obj, alloc_obj, obj_size, false); 5478 5479 // Present the results of the slow call. 5480 result_reg->init_req(_instance_path, control()); 5481 result_val->init_req(_instance_path, alloc_obj); 5482 result_i_o ->set_req(_instance_path, i_o()); 5483 result_mem ->set_req(_instance_path, reset_memory()); 5484 } 5485 5486 // Generate code for the slow case. We make a call to clone(). 5487 set_control(_gvn.transform(slow_region)); 5488 if (!stopped()) { 5489 PreserveJVMState pjvms(this); 5490 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5491 // We need to deoptimize on exception (see comment above) 5492 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5493 // this->control() comes from set_results_for_java_call 5494 result_reg->init_req(_slow_path, control()); 5495 result_val->init_req(_slow_path, slow_result); 5496 result_i_o ->set_req(_slow_path, i_o()); 5497 result_mem ->set_req(_slow_path, reset_memory()); 5498 } 5499 5500 // Return the combined state. 5501 set_control( _gvn.transform(result_reg)); 5502 set_i_o( _gvn.transform(result_i_o)); 5503 set_all_memory( _gvn.transform(result_mem)); 5504 } // original reexecute is set back here 5505 5506 set_result(_gvn.transform(result_val)); 5507 return true; 5508 } 5509 5510 // If we have a tightly coupled allocation, the arraycopy may take care 5511 // of the array initialization. If one of the guards we insert between 5512 // the allocation and the arraycopy causes a deoptimization, an 5513 // uninitialized array will escape the compiled method. To prevent that 5514 // we set the JVM state for uncommon traps between the allocation and 5515 // the arraycopy to the state before the allocation so, in case of 5516 // deoptimization, we'll reexecute the allocation and the 5517 // initialization. 5518 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5519 if (alloc != nullptr) { 5520 ciMethod* trap_method = alloc->jvms()->method(); 5521 int trap_bci = alloc->jvms()->bci(); 5522 5523 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5524 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5525 // Make sure there's no store between the allocation and the 5526 // arraycopy otherwise visible side effects could be rexecuted 5527 // in case of deoptimization and cause incorrect execution. 5528 bool no_interfering_store = true; 5529 Node* mem = alloc->in(TypeFunc::Memory); 5530 if (mem->is_MergeMem()) { 5531 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5532 Node* n = mms.memory(); 5533 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5534 assert(n->is_Store(), "what else?"); 5535 no_interfering_store = false; 5536 break; 5537 } 5538 } 5539 } else { 5540 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5541 Node* n = mms.memory(); 5542 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5543 assert(n->is_Store(), "what else?"); 5544 no_interfering_store = false; 5545 break; 5546 } 5547 } 5548 } 5549 5550 if (no_interfering_store) { 5551 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5552 5553 JVMState* saved_jvms = jvms(); 5554 saved_reexecute_sp = _reexecute_sp; 5555 5556 set_jvms(sfpt->jvms()); 5557 _reexecute_sp = jvms()->sp(); 5558 5559 return saved_jvms; 5560 } 5561 } 5562 } 5563 return nullptr; 5564 } 5565 5566 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5567 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5568 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5569 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5570 uint size = alloc->req(); 5571 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5572 old_jvms->set_map(sfpt); 5573 for (uint i = 0; i < size; i++) { 5574 sfpt->init_req(i, alloc->in(i)); 5575 } 5576 // re-push array length for deoptimization 5577 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5578 old_jvms->set_sp(old_jvms->sp()+1); 5579 old_jvms->set_monoff(old_jvms->monoff()+1); 5580 old_jvms->set_scloff(old_jvms->scloff()+1); 5581 old_jvms->set_endoff(old_jvms->endoff()+1); 5582 old_jvms->set_should_reexecute(true); 5583 5584 sfpt->set_i_o(map()->i_o()); 5585 sfpt->set_memory(map()->memory()); 5586 sfpt->set_control(map()->control()); 5587 return sfpt; 5588 } 5589 5590 // In case of a deoptimization, we restart execution at the 5591 // allocation, allocating a new array. We would leave an uninitialized 5592 // array in the heap that GCs wouldn't expect. Move the allocation 5593 // after the traps so we don't allocate the array if we 5594 // deoptimize. This is possible because tightly_coupled_allocation() 5595 // guarantees there's no observer of the allocated array at this point 5596 // and the control flow is simple enough. 5597 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5598 int saved_reexecute_sp, uint new_idx) { 5599 if (saved_jvms_before_guards != nullptr && !stopped()) { 5600 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5601 5602 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5603 // restore JVM state to the state at the arraycopy 5604 saved_jvms_before_guards->map()->set_control(map()->control()); 5605 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5606 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5607 // If we've improved the types of some nodes (null check) while 5608 // emitting the guards, propagate them to the current state 5609 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5610 set_jvms(saved_jvms_before_guards); 5611 _reexecute_sp = saved_reexecute_sp; 5612 5613 // Remove the allocation from above the guards 5614 CallProjections* callprojs = alloc->extract_projections(true); 5615 InitializeNode* init = alloc->initialization(); 5616 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5617 C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5618 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5619 5620 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5621 // the allocation (i.e. is only valid if the allocation succeeds): 5622 // 1) replace CastIINode with AllocateArrayNode's length here 5623 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5624 // 5625 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5626 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5627 Node* init_control = init->proj_out(TypeFunc::Control); 5628 Node* alloc_length = alloc->Ideal_length(); 5629 #ifdef ASSERT 5630 Node* prev_cast = nullptr; 5631 #endif 5632 for (uint i = 0; i < init_control->outcnt(); i++) { 5633 Node* init_out = init_control->raw_out(i); 5634 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5635 #ifdef ASSERT 5636 if (prev_cast == nullptr) { 5637 prev_cast = init_out; 5638 } else { 5639 if (prev_cast->cmp(*init_out) == false) { 5640 prev_cast->dump(); 5641 init_out->dump(); 5642 assert(false, "not equal CastIINode"); 5643 } 5644 } 5645 #endif 5646 C->gvn_replace_by(init_out, alloc_length); 5647 } 5648 } 5649 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5650 5651 // move the allocation here (after the guards) 5652 _gvn.hash_delete(alloc); 5653 alloc->set_req(TypeFunc::Control, control()); 5654 alloc->set_req(TypeFunc::I_O, i_o()); 5655 Node *mem = reset_memory(); 5656 set_all_memory(mem); 5657 alloc->set_req(TypeFunc::Memory, mem); 5658 set_control(init->proj_out_or_null(TypeFunc::Control)); 5659 set_i_o(callprojs->fallthrough_ioproj); 5660 5661 // Update memory as done in GraphKit::set_output_for_allocation() 5662 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5663 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5664 if (ary_type->isa_aryptr() && length_type != nullptr) { 5665 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5666 } 5667 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5668 int elemidx = C->get_alias_index(telemref); 5669 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5670 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5671 5672 Node* allocx = _gvn.transform(alloc); 5673 assert(allocx == alloc, "where has the allocation gone?"); 5674 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5675 5676 _gvn.hash_delete(dest); 5677 dest->set_req(0, control()); 5678 Node* destx = _gvn.transform(dest); 5679 assert(destx == dest, "where has the allocation result gone?"); 5680 5681 array_ideal_length(alloc, ary_type, true); 5682 } 5683 } 5684 5685 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5686 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5687 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5688 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5689 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5690 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5691 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5692 JVMState* saved_jvms_before_guards) { 5693 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5694 // There is at least one unrelated uncommon trap which needs to be replaced. 5695 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5696 5697 JVMState* saved_jvms = jvms(); 5698 const int saved_reexecute_sp = _reexecute_sp; 5699 set_jvms(sfpt->jvms()); 5700 _reexecute_sp = jvms()->sp(); 5701 5702 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5703 5704 // Restore state 5705 set_jvms(saved_jvms); 5706 _reexecute_sp = saved_reexecute_sp; 5707 } 5708 } 5709 5710 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5711 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5712 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5713 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5714 while (if_proj->is_IfProj()) { 5715 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5716 if (uncommon_trap != nullptr) { 5717 create_new_uncommon_trap(uncommon_trap); 5718 } 5719 assert(if_proj->in(0)->is_If(), "must be If"); 5720 if_proj = if_proj->in(0)->in(0); 5721 } 5722 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5723 "must have reached control projection of init node"); 5724 } 5725 5726 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5727 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5728 assert(trap_request != 0, "no valid UCT trap request"); 5729 PreserveJVMState pjvms(this); 5730 set_control(uncommon_trap_call->in(0)); 5731 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5732 Deoptimization::trap_request_action(trap_request)); 5733 assert(stopped(), "Should be stopped"); 5734 _gvn.hash_delete(uncommon_trap_call); 5735 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5736 } 5737 5738 //------------------------------inline_arraycopy----------------------- 5739 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5740 // Object dest, int destPos, 5741 // int length); 5742 bool LibraryCallKit::inline_arraycopy() { 5743 // Get the arguments. 5744 Node* src = argument(0); // type: oop 5745 Node* src_offset = argument(1); // type: int 5746 Node* dest = argument(2); // type: oop 5747 Node* dest_offset = argument(3); // type: int 5748 Node* length = argument(4); // type: int 5749 5750 uint new_idx = C->unique(); 5751 5752 // Check for allocation before we add nodes that would confuse 5753 // tightly_coupled_allocation() 5754 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5755 5756 int saved_reexecute_sp = -1; 5757 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5758 // See arraycopy_restore_alloc_state() comment 5759 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5760 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5761 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5762 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5763 5764 // The following tests must be performed 5765 // (1) src and dest are arrays. 5766 // (2) src and dest arrays must have elements of the same BasicType 5767 // (3) src and dest must not be null. 5768 // (4) src_offset must not be negative. 5769 // (5) dest_offset must not be negative. 5770 // (6) length must not be negative. 5771 // (7) src_offset + length must not exceed length of src. 5772 // (8) dest_offset + length must not exceed length of dest. 5773 // (9) each element of an oop array must be assignable 5774 5775 // (3) src and dest must not be null. 5776 // always do this here because we need the JVM state for uncommon traps 5777 Node* null_ctl = top(); 5778 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5779 assert(null_ctl->is_top(), "no null control here"); 5780 dest = null_check(dest, T_ARRAY); 5781 5782 if (!can_emit_guards) { 5783 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5784 // guards but the arraycopy node could still take advantage of a 5785 // tightly allocated allocation. tightly_coupled_allocation() is 5786 // called again to make sure it takes the null check above into 5787 // account: the null check is mandatory and if it caused an 5788 // uncommon trap to be emitted then the allocation can't be 5789 // considered tightly coupled in this context. 5790 alloc = tightly_coupled_allocation(dest); 5791 } 5792 5793 bool validated = false; 5794 5795 const Type* src_type = _gvn.type(src); 5796 const Type* dest_type = _gvn.type(dest); 5797 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5798 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5799 5800 // Do we have the type of src? 5801 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5802 // Do we have the type of dest? 5803 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5804 // Is the type for src from speculation? 5805 bool src_spec = false; 5806 // Is the type for dest from speculation? 5807 bool dest_spec = false; 5808 5809 if ((!has_src || !has_dest) && can_emit_guards) { 5810 // We don't have sufficient type information, let's see if 5811 // speculative types can help. We need to have types for both src 5812 // and dest so that it pays off. 5813 5814 // Do we already have or could we have type information for src 5815 bool could_have_src = has_src; 5816 // Do we already have or could we have type information for dest 5817 bool could_have_dest = has_dest; 5818 5819 ciKlass* src_k = nullptr; 5820 if (!has_src) { 5821 src_k = src_type->speculative_type_not_null(); 5822 if (src_k != nullptr && src_k->is_array_klass()) { 5823 could_have_src = true; 5824 } 5825 } 5826 5827 ciKlass* dest_k = nullptr; 5828 if (!has_dest) { 5829 dest_k = dest_type->speculative_type_not_null(); 5830 if (dest_k != nullptr && dest_k->is_array_klass()) { 5831 could_have_dest = true; 5832 } 5833 } 5834 5835 if (could_have_src && could_have_dest) { 5836 // This is going to pay off so emit the required guards 5837 if (!has_src) { 5838 src = maybe_cast_profiled_obj(src, src_k, true); 5839 src_type = _gvn.type(src); 5840 top_src = src_type->isa_aryptr(); 5841 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5842 src_spec = true; 5843 } 5844 if (!has_dest) { 5845 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5846 dest_type = _gvn.type(dest); 5847 top_dest = dest_type->isa_aryptr(); 5848 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5849 dest_spec = true; 5850 } 5851 } 5852 } 5853 5854 if (has_src && has_dest && can_emit_guards) { 5855 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5856 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5857 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5858 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5859 5860 if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) { 5861 // If both arrays are object arrays then having the exact types 5862 // for both will remove the need for a subtype check at runtime 5863 // before the call and may make it possible to pick a faster copy 5864 // routine (without a subtype check on every element) 5865 // Do we have the exact type of src? 5866 bool could_have_src = src_spec; 5867 // Do we have the exact type of dest? 5868 bool could_have_dest = dest_spec; 5869 ciKlass* src_k = nullptr; 5870 ciKlass* dest_k = nullptr; 5871 if (!src_spec) { 5872 src_k = src_type->speculative_type_not_null(); 5873 if (src_k != nullptr && src_k->is_array_klass()) { 5874 could_have_src = true; 5875 } 5876 } 5877 if (!dest_spec) { 5878 dest_k = dest_type->speculative_type_not_null(); 5879 if (dest_k != nullptr && dest_k->is_array_klass()) { 5880 could_have_dest = true; 5881 } 5882 } 5883 if (could_have_src && could_have_dest) { 5884 // If we can have both exact types, emit the missing guards 5885 if (could_have_src && !src_spec) { 5886 src = maybe_cast_profiled_obj(src, src_k, true); 5887 src_type = _gvn.type(src); 5888 top_src = src_type->isa_aryptr(); 5889 } 5890 if (could_have_dest && !dest_spec) { 5891 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5892 dest_type = _gvn.type(dest); 5893 top_dest = dest_type->isa_aryptr(); 5894 } 5895 } 5896 } 5897 } 5898 5899 ciMethod* trap_method = method(); 5900 int trap_bci = bci(); 5901 if (saved_jvms_before_guards != nullptr) { 5902 trap_method = alloc->jvms()->method(); 5903 trap_bci = alloc->jvms()->bci(); 5904 } 5905 5906 bool negative_length_guard_generated = false; 5907 5908 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5909 can_emit_guards && !src->is_top() && !dest->is_top()) { 5910 // validate arguments: enables transformation the ArrayCopyNode 5911 validated = true; 5912 5913 RegionNode* slow_region = new RegionNode(1); 5914 record_for_igvn(slow_region); 5915 5916 // (1) src and dest are arrays. 5917 generate_non_array_guard(load_object_klass(src), slow_region); 5918 generate_non_array_guard(load_object_klass(dest), slow_region); 5919 5920 // (2) src and dest arrays must have elements of the same BasicType 5921 // done at macro expansion or at Ideal transformation time 5922 5923 // (4) src_offset must not be negative. 5924 generate_negative_guard(src_offset, slow_region); 5925 5926 // (5) dest_offset must not be negative. 5927 generate_negative_guard(dest_offset, slow_region); 5928 5929 // (7) src_offset + length must not exceed length of src. 5930 generate_limit_guard(src_offset, length, 5931 load_array_length(src), 5932 slow_region); 5933 5934 // (8) dest_offset + length must not exceed length of dest. 5935 generate_limit_guard(dest_offset, length, 5936 load_array_length(dest), 5937 slow_region); 5938 5939 // (6) length must not be negative. 5940 // This is also checked in generate_arraycopy() during macro expansion, but 5941 // we also have to check it here for the case where the ArrayCopyNode will 5942 // be eliminated by Escape Analysis. 5943 if (EliminateAllocations) { 5944 generate_negative_guard(length, slow_region); 5945 negative_length_guard_generated = true; 5946 } 5947 5948 // (9) each element of an oop array must be assignable 5949 Node* dest_klass = load_object_klass(dest); 5950 if (src != dest) { 5951 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5952 slow_region->add_req(not_subtype_ctrl); 5953 } 5954 5955 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5956 const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5957 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5958 src_type = _gvn.type(src); 5959 top_src = src_type->isa_aryptr(); 5960 5961 // Handle flat inline type arrays (null-free arrays are handled by the subtype check above) 5962 if (!stopped() && UseFlatArray) { 5963 // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here. 5964 assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat"); 5965 if (top_src != nullptr && top_src->is_flat()) { 5966 // Src is flat, check that dest is flat as well 5967 if (top_dest != nullptr && !top_dest->is_flat()) { 5968 generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region); 5969 // Since dest is flat and src <: dest, dest must have the same type as src. 5970 top_dest = top_src->cast_to_exactness(false); 5971 assert(top_dest->is_flat(), "dest must be flat"); 5972 dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest)); 5973 } 5974 } else if (top_src == nullptr || !top_src->is_not_flat()) { 5975 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 5976 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 5977 assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat"); 5978 generate_fair_guard(flat_array_test(src), slow_region); 5979 if (top_src != nullptr) { 5980 top_src = top_src->cast_to_not_flat(); 5981 src = _gvn.transform(new CheckCastPPNode(control(), src, top_src)); 5982 } 5983 } 5984 } 5985 5986 { 5987 PreserveJVMState pjvms(this); 5988 set_control(_gvn.transform(slow_region)); 5989 uncommon_trap(Deoptimization::Reason_intrinsic, 5990 Deoptimization::Action_make_not_entrant); 5991 assert(stopped(), "Should be stopped"); 5992 } 5993 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5994 } 5995 5996 if (stopped()) { 5997 return true; 5998 } 5999 6000 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6001 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6002 // so the compiler has a chance to eliminate them: during macro expansion, 6003 // we have to set their control (CastPP nodes are eliminated). 6004 load_object_klass(src), load_object_klass(dest), 6005 load_array_length(src), load_array_length(dest)); 6006 6007 ac->set_arraycopy(validated); 6008 6009 Node* n = _gvn.transform(ac); 6010 if (n == ac) { 6011 ac->connect_outputs(this); 6012 } else { 6013 assert(validated, "shouldn't transform if all arguments not validated"); 6014 set_all_memory(n); 6015 } 6016 clear_upper_avx(); 6017 6018 6019 return true; 6020 } 6021 6022 6023 // Helper function which determines if an arraycopy immediately follows 6024 // an allocation, with no intervening tests or other escapes for the object. 6025 AllocateArrayNode* 6026 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6027 if (stopped()) return nullptr; // no fast path 6028 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6029 6030 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6031 if (alloc == nullptr) return nullptr; 6032 6033 Node* rawmem = memory(Compile::AliasIdxRaw); 6034 // Is the allocation's memory state untouched? 6035 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6036 // Bail out if there have been raw-memory effects since the allocation. 6037 // (Example: There might have been a call or safepoint.) 6038 return nullptr; 6039 } 6040 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6041 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6042 return nullptr; 6043 } 6044 6045 // There must be no unexpected observers of this allocation. 6046 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6047 Node* obs = ptr->fast_out(i); 6048 if (obs != this->map()) { 6049 return nullptr; 6050 } 6051 } 6052 6053 // This arraycopy must unconditionally follow the allocation of the ptr. 6054 Node* alloc_ctl = ptr->in(0); 6055 Node* ctl = control(); 6056 while (ctl != alloc_ctl) { 6057 // There may be guards which feed into the slow_region. 6058 // Any other control flow means that we might not get a chance 6059 // to finish initializing the allocated object. 6060 // Various low-level checks bottom out in uncommon traps. These 6061 // are considered safe since we've already checked above that 6062 // there is no unexpected observer of this allocation. 6063 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6064 assert(ctl->in(0)->is_If(), "must be If"); 6065 ctl = ctl->in(0)->in(0); 6066 } else { 6067 return nullptr; 6068 } 6069 } 6070 6071 // If we get this far, we have an allocation which immediately 6072 // precedes the arraycopy, and we can take over zeroing the new object. 6073 // The arraycopy will finish the initialization, and provide 6074 // a new control state to which we will anchor the destination pointer. 6075 6076 return alloc; 6077 } 6078 6079 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6080 if (node->is_IfProj()) { 6081 Node* other_proj = node->as_IfProj()->other_if_proj(); 6082 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6083 Node* obs = other_proj->fast_out(j); 6084 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6085 (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 6086 return obs->as_CallStaticJava(); 6087 } 6088 } 6089 } 6090 return nullptr; 6091 } 6092 6093 //-------------inline_encodeISOArray----------------------------------- 6094 // encode char[] to byte[] in ISO_8859_1 or ASCII 6095 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6096 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6097 // no receiver since it is static method 6098 Node *src = argument(0); 6099 Node *src_offset = argument(1); 6100 Node *dst = argument(2); 6101 Node *dst_offset = argument(3); 6102 Node *length = argument(4); 6103 6104 src = must_be_not_null(src, true); 6105 dst = must_be_not_null(dst, true); 6106 6107 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6108 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6109 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6110 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6111 // failed array check 6112 return false; 6113 } 6114 6115 // Figure out the size and type of the elements we will be copying. 6116 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6117 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6118 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6119 return false; 6120 } 6121 6122 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6123 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6124 // 'src_start' points to src array + scaled offset 6125 // 'dst_start' points to dst array + scaled offset 6126 6127 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6128 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6129 enc = _gvn.transform(enc); 6130 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6131 set_memory(res_mem, mtype); 6132 set_result(enc); 6133 clear_upper_avx(); 6134 6135 return true; 6136 } 6137 6138 //-------------inline_multiplyToLen----------------------------------- 6139 bool LibraryCallKit::inline_multiplyToLen() { 6140 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6141 6142 address stubAddr = StubRoutines::multiplyToLen(); 6143 if (stubAddr == nullptr) { 6144 return false; // Intrinsic's stub is not implemented on this platform 6145 } 6146 const char* stubName = "multiplyToLen"; 6147 6148 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6149 6150 // no receiver because it is a static method 6151 Node* x = argument(0); 6152 Node* xlen = argument(1); 6153 Node* y = argument(2); 6154 Node* ylen = argument(3); 6155 Node* z = argument(4); 6156 6157 x = must_be_not_null(x, true); 6158 y = must_be_not_null(y, true); 6159 6160 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6161 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6162 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6163 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6164 // failed array check 6165 return false; 6166 } 6167 6168 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6169 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6170 if (x_elem != T_INT || y_elem != T_INT) { 6171 return false; 6172 } 6173 6174 // Set the original stack and the reexecute bit for the interpreter to reexecute 6175 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 6176 // on the return from z array allocation in runtime. 6177 { PreserveReexecuteState preexecs(this); 6178 jvms()->set_should_reexecute(true); 6179 6180 Node* x_start = array_element_address(x, intcon(0), x_elem); 6181 Node* y_start = array_element_address(y, intcon(0), y_elem); 6182 // 'x_start' points to x array + scaled xlen 6183 // 'y_start' points to y array + scaled ylen 6184 6185 // Allocate the result array 6186 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 6187 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 6188 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 6189 6190 IdealKit ideal(this); 6191 6192 #define __ ideal. 6193 Node* one = __ ConI(1); 6194 Node* zero = __ ConI(0); 6195 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 6196 __ set(need_alloc, zero); 6197 __ set(z_alloc, z); 6198 __ if_then(z, BoolTest::eq, null()); { 6199 __ increment (need_alloc, one); 6200 } __ else_(); { 6201 // Update graphKit memory and control from IdealKit. 6202 sync_kit(ideal); 6203 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 6204 cast->init_req(0, control()); 6205 _gvn.set_type(cast, cast->bottom_type()); 6206 C->record_for_igvn(cast); 6207 6208 Node* zlen_arg = load_array_length(cast); 6209 // Update IdealKit memory and control from graphKit. 6210 __ sync_kit(this); 6211 __ if_then(zlen_arg, BoolTest::lt, zlen); { 6212 __ increment (need_alloc, one); 6213 } __ end_if(); 6214 } __ end_if(); 6215 6216 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 6217 // Update graphKit memory and control from IdealKit. 6218 sync_kit(ideal); 6219 Node * narr = new_array(klass_node, zlen, 1); 6220 // Update IdealKit memory and control from graphKit. 6221 __ sync_kit(this); 6222 __ set(z_alloc, narr); 6223 } __ end_if(); 6224 6225 sync_kit(ideal); 6226 z = __ value(z_alloc); 6227 // Can't use TypeAryPtr::INTS which uses Bottom offset. 6228 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 6229 // Final sync IdealKit and GraphKit. 6230 final_sync(ideal); 6231 #undef __ 6232 6233 Node* z_start = array_element_address(z, intcon(0), T_INT); 6234 6235 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6236 OptoRuntime::multiplyToLen_Type(), 6237 stubAddr, stubName, TypePtr::BOTTOM, 6238 x_start, xlen, y_start, ylen, z_start, zlen); 6239 } // original reexecute is set back here 6240 6241 C->set_has_split_ifs(true); // Has chance for split-if optimization 6242 set_result(z); 6243 return true; 6244 } 6245 6246 //-------------inline_squareToLen------------------------------------ 6247 bool LibraryCallKit::inline_squareToLen() { 6248 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6249 6250 address stubAddr = StubRoutines::squareToLen(); 6251 if (stubAddr == nullptr) { 6252 return false; // Intrinsic's stub is not implemented on this platform 6253 } 6254 const char* stubName = "squareToLen"; 6255 6256 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6257 6258 Node* x = argument(0); 6259 Node* len = argument(1); 6260 Node* z = argument(2); 6261 Node* zlen = argument(3); 6262 6263 x = must_be_not_null(x, true); 6264 z = must_be_not_null(z, true); 6265 6266 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6267 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6268 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6269 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6270 // failed array check 6271 return false; 6272 } 6273 6274 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6275 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6276 if (x_elem != T_INT || z_elem != T_INT) { 6277 return false; 6278 } 6279 6280 6281 Node* x_start = array_element_address(x, intcon(0), x_elem); 6282 Node* z_start = array_element_address(z, intcon(0), z_elem); 6283 6284 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6285 OptoRuntime::squareToLen_Type(), 6286 stubAddr, stubName, TypePtr::BOTTOM, 6287 x_start, len, z_start, zlen); 6288 6289 set_result(z); 6290 return true; 6291 } 6292 6293 //-------------inline_mulAdd------------------------------------------ 6294 bool LibraryCallKit::inline_mulAdd() { 6295 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6296 6297 address stubAddr = StubRoutines::mulAdd(); 6298 if (stubAddr == nullptr) { 6299 return false; // Intrinsic's stub is not implemented on this platform 6300 } 6301 const char* stubName = "mulAdd"; 6302 6303 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6304 6305 Node* out = argument(0); 6306 Node* in = argument(1); 6307 Node* offset = argument(2); 6308 Node* len = argument(3); 6309 Node* k = argument(4); 6310 6311 in = must_be_not_null(in, true); 6312 out = must_be_not_null(out, true); 6313 6314 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6315 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6316 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6317 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6318 // failed array check 6319 return false; 6320 } 6321 6322 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6323 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6324 if (out_elem != T_INT || in_elem != T_INT) { 6325 return false; 6326 } 6327 6328 Node* outlen = load_array_length(out); 6329 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6330 Node* out_start = array_element_address(out, intcon(0), out_elem); 6331 Node* in_start = array_element_address(in, intcon(0), in_elem); 6332 6333 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6334 OptoRuntime::mulAdd_Type(), 6335 stubAddr, stubName, TypePtr::BOTTOM, 6336 out_start,in_start, new_offset, len, k); 6337 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6338 set_result(result); 6339 return true; 6340 } 6341 6342 //-------------inline_montgomeryMultiply----------------------------------- 6343 bool LibraryCallKit::inline_montgomeryMultiply() { 6344 address stubAddr = StubRoutines::montgomeryMultiply(); 6345 if (stubAddr == nullptr) { 6346 return false; // Intrinsic's stub is not implemented on this platform 6347 } 6348 6349 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6350 const char* stubName = "montgomery_multiply"; 6351 6352 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6353 6354 Node* a = argument(0); 6355 Node* b = argument(1); 6356 Node* n = argument(2); 6357 Node* len = argument(3); 6358 Node* inv = argument(4); 6359 Node* m = argument(6); 6360 6361 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6362 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6363 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6364 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6365 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6366 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6367 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6368 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6369 // failed array check 6370 return false; 6371 } 6372 6373 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6374 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6375 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6376 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6377 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6378 return false; 6379 } 6380 6381 // Make the call 6382 { 6383 Node* a_start = array_element_address(a, intcon(0), a_elem); 6384 Node* b_start = array_element_address(b, intcon(0), b_elem); 6385 Node* n_start = array_element_address(n, intcon(0), n_elem); 6386 Node* m_start = array_element_address(m, intcon(0), m_elem); 6387 6388 Node* call = make_runtime_call(RC_LEAF, 6389 OptoRuntime::montgomeryMultiply_Type(), 6390 stubAddr, stubName, TypePtr::BOTTOM, 6391 a_start, b_start, n_start, len, inv, top(), 6392 m_start); 6393 set_result(m); 6394 } 6395 6396 return true; 6397 } 6398 6399 bool LibraryCallKit::inline_montgomerySquare() { 6400 address stubAddr = StubRoutines::montgomerySquare(); 6401 if (stubAddr == nullptr) { 6402 return false; // Intrinsic's stub is not implemented on this platform 6403 } 6404 6405 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6406 const char* stubName = "montgomery_square"; 6407 6408 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6409 6410 Node* a = argument(0); 6411 Node* n = argument(1); 6412 Node* len = argument(2); 6413 Node* inv = argument(3); 6414 Node* m = argument(5); 6415 6416 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6417 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6418 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6419 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6420 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6421 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6422 // failed array check 6423 return false; 6424 } 6425 6426 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6427 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6428 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6429 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6430 return false; 6431 } 6432 6433 // Make the call 6434 { 6435 Node* a_start = array_element_address(a, intcon(0), a_elem); 6436 Node* n_start = array_element_address(n, intcon(0), n_elem); 6437 Node* m_start = array_element_address(m, intcon(0), m_elem); 6438 6439 Node* call = make_runtime_call(RC_LEAF, 6440 OptoRuntime::montgomerySquare_Type(), 6441 stubAddr, stubName, TypePtr::BOTTOM, 6442 a_start, n_start, len, inv, top(), 6443 m_start); 6444 set_result(m); 6445 } 6446 6447 return true; 6448 } 6449 6450 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6451 address stubAddr = nullptr; 6452 const char* stubName = nullptr; 6453 6454 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6455 if (stubAddr == nullptr) { 6456 return false; // Intrinsic's stub is not implemented on this platform 6457 } 6458 6459 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6460 6461 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6462 6463 Node* newArr = argument(0); 6464 Node* oldArr = argument(1); 6465 Node* newIdx = argument(2); 6466 Node* shiftCount = argument(3); 6467 Node* numIter = argument(4); 6468 6469 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6470 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6471 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6472 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6473 return false; 6474 } 6475 6476 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6477 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6478 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6479 return false; 6480 } 6481 6482 // Make the call 6483 { 6484 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6485 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6486 6487 Node* call = make_runtime_call(RC_LEAF, 6488 OptoRuntime::bigIntegerShift_Type(), 6489 stubAddr, 6490 stubName, 6491 TypePtr::BOTTOM, 6492 newArr_start, 6493 oldArr_start, 6494 newIdx, 6495 shiftCount, 6496 numIter); 6497 } 6498 6499 return true; 6500 } 6501 6502 //-------------inline_vectorizedMismatch------------------------------ 6503 bool LibraryCallKit::inline_vectorizedMismatch() { 6504 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6505 6506 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6507 Node* obja = argument(0); // Object 6508 Node* aoffset = argument(1); // long 6509 Node* objb = argument(3); // Object 6510 Node* boffset = argument(4); // long 6511 Node* length = argument(6); // int 6512 Node* scale = argument(7); // int 6513 6514 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6515 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6516 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6517 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6518 scale == top()) { 6519 return false; // failed input validation 6520 } 6521 6522 Node* obja_adr = make_unsafe_address(obja, aoffset); 6523 Node* objb_adr = make_unsafe_address(objb, boffset); 6524 6525 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6526 // 6527 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6528 // if (length <= inline_limit) { 6529 // inline_path: 6530 // vmask = VectorMaskGen length 6531 // vload1 = LoadVectorMasked obja, vmask 6532 // vload2 = LoadVectorMasked objb, vmask 6533 // result1 = VectorCmpMasked vload1, vload2, vmask 6534 // } else { 6535 // call_stub_path: 6536 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6537 // } 6538 // exit_block: 6539 // return Phi(result1, result2); 6540 // 6541 enum { inline_path = 1, // input is small enough to process it all at once 6542 stub_path = 2, // input is too large; call into the VM 6543 PATH_LIMIT = 3 6544 }; 6545 6546 Node* exit_block = new RegionNode(PATH_LIMIT); 6547 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6548 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6549 6550 Node* call_stub_path = control(); 6551 6552 BasicType elem_bt = T_ILLEGAL; 6553 6554 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6555 if (scale_t->is_con()) { 6556 switch (scale_t->get_con()) { 6557 case 0: elem_bt = T_BYTE; break; 6558 case 1: elem_bt = T_SHORT; break; 6559 case 2: elem_bt = T_INT; break; 6560 case 3: elem_bt = T_LONG; break; 6561 6562 default: elem_bt = T_ILLEGAL; break; // not supported 6563 } 6564 } 6565 6566 int inline_limit = 0; 6567 bool do_partial_inline = false; 6568 6569 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6570 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6571 do_partial_inline = inline_limit >= 16; 6572 } 6573 6574 if (do_partial_inline) { 6575 assert(elem_bt != T_ILLEGAL, "sanity"); 6576 6577 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6578 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6579 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6580 6581 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6582 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6583 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6584 6585 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6586 6587 if (!stopped()) { 6588 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6589 6590 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6591 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6592 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6593 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6594 6595 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6596 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6597 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6598 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6599 6600 exit_block->init_req(inline_path, control()); 6601 memory_phi->init_req(inline_path, map()->memory()); 6602 result_phi->init_req(inline_path, result); 6603 6604 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6605 clear_upper_avx(); 6606 } 6607 } 6608 } 6609 6610 if (call_stub_path != nullptr) { 6611 set_control(call_stub_path); 6612 6613 Node* call = make_runtime_call(RC_LEAF, 6614 OptoRuntime::vectorizedMismatch_Type(), 6615 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6616 obja_adr, objb_adr, length, scale); 6617 6618 exit_block->init_req(stub_path, control()); 6619 memory_phi->init_req(stub_path, map()->memory()); 6620 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6621 } 6622 6623 exit_block = _gvn.transform(exit_block); 6624 memory_phi = _gvn.transform(memory_phi); 6625 result_phi = _gvn.transform(result_phi); 6626 6627 set_control(exit_block); 6628 set_all_memory(memory_phi); 6629 set_result(result_phi); 6630 6631 return true; 6632 } 6633 6634 //------------------------------inline_vectorizedHashcode---------------------------- 6635 bool LibraryCallKit::inline_vectorizedHashCode() { 6636 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6637 6638 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6639 Node* array = argument(0); 6640 Node* offset = argument(1); 6641 Node* length = argument(2); 6642 Node* initialValue = argument(3); 6643 Node* basic_type = argument(4); 6644 6645 if (basic_type == top()) { 6646 return false; // failed input validation 6647 } 6648 6649 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6650 if (!basic_type_t->is_con()) { 6651 return false; // Only intrinsify if mode argument is constant 6652 } 6653 6654 array = must_be_not_null(array, true); 6655 6656 BasicType bt = (BasicType)basic_type_t->get_con(); 6657 6658 // Resolve address of first element 6659 Node* array_start = array_element_address(array, offset, bt); 6660 6661 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6662 array_start, length, initialValue, basic_type))); 6663 clear_upper_avx(); 6664 6665 return true; 6666 } 6667 6668 /** 6669 * Calculate CRC32 for byte. 6670 * int java.util.zip.CRC32.update(int crc, int b) 6671 */ 6672 bool LibraryCallKit::inline_updateCRC32() { 6673 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6674 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6675 // no receiver since it is static method 6676 Node* crc = argument(0); // type: int 6677 Node* b = argument(1); // type: int 6678 6679 /* 6680 * int c = ~ crc; 6681 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6682 * b = b ^ (c >>> 8); 6683 * crc = ~b; 6684 */ 6685 6686 Node* M1 = intcon(-1); 6687 crc = _gvn.transform(new XorINode(crc, M1)); 6688 Node* result = _gvn.transform(new XorINode(crc, b)); 6689 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6690 6691 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6692 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6693 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6694 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6695 6696 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6697 result = _gvn.transform(new XorINode(crc, result)); 6698 result = _gvn.transform(new XorINode(result, M1)); 6699 set_result(result); 6700 return true; 6701 } 6702 6703 /** 6704 * Calculate CRC32 for byte[] array. 6705 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6706 */ 6707 bool LibraryCallKit::inline_updateBytesCRC32() { 6708 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6709 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6710 // no receiver since it is static method 6711 Node* crc = argument(0); // type: int 6712 Node* src = argument(1); // type: oop 6713 Node* offset = argument(2); // type: int 6714 Node* length = argument(3); // type: int 6715 6716 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6717 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6718 // failed array check 6719 return false; 6720 } 6721 6722 // Figure out the size and type of the elements we will be copying. 6723 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6724 if (src_elem != T_BYTE) { 6725 return false; 6726 } 6727 6728 // 'src_start' points to src array + scaled offset 6729 src = must_be_not_null(src, true); 6730 Node* src_start = array_element_address(src, offset, src_elem); 6731 6732 // We assume that range check is done by caller. 6733 // TODO: generate range check (offset+length < src.length) in debug VM. 6734 6735 // Call the stub. 6736 address stubAddr = StubRoutines::updateBytesCRC32(); 6737 const char *stubName = "updateBytesCRC32"; 6738 6739 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6740 stubAddr, stubName, TypePtr::BOTTOM, 6741 crc, src_start, length); 6742 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6743 set_result(result); 6744 return true; 6745 } 6746 6747 /** 6748 * Calculate CRC32 for ByteBuffer. 6749 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6750 */ 6751 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6752 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6753 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6754 // no receiver since it is static method 6755 Node* crc = argument(0); // type: int 6756 Node* src = argument(1); // type: long 6757 Node* offset = argument(3); // type: int 6758 Node* length = argument(4); // type: int 6759 6760 src = ConvL2X(src); // adjust Java long to machine word 6761 Node* base = _gvn.transform(new CastX2PNode(src)); 6762 offset = ConvI2X(offset); 6763 6764 // 'src_start' points to src array + scaled offset 6765 Node* src_start = basic_plus_adr(top(), base, offset); 6766 6767 // Call the stub. 6768 address stubAddr = StubRoutines::updateBytesCRC32(); 6769 const char *stubName = "updateBytesCRC32"; 6770 6771 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6772 stubAddr, stubName, TypePtr::BOTTOM, 6773 crc, src_start, length); 6774 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6775 set_result(result); 6776 return true; 6777 } 6778 6779 //------------------------------get_table_from_crc32c_class----------------------- 6780 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6781 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6782 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6783 6784 return table; 6785 } 6786 6787 //------------------------------inline_updateBytesCRC32C----------------------- 6788 // 6789 // Calculate CRC32C for byte[] array. 6790 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6791 // 6792 bool LibraryCallKit::inline_updateBytesCRC32C() { 6793 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6794 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6795 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6796 // no receiver since it is a static method 6797 Node* crc = argument(0); // type: int 6798 Node* src = argument(1); // type: oop 6799 Node* offset = argument(2); // type: int 6800 Node* end = argument(3); // type: int 6801 6802 Node* length = _gvn.transform(new SubINode(end, offset)); 6803 6804 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6805 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6806 // failed array check 6807 return false; 6808 } 6809 6810 // Figure out the size and type of the elements we will be copying. 6811 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6812 if (src_elem != T_BYTE) { 6813 return false; 6814 } 6815 6816 // 'src_start' points to src array + scaled offset 6817 src = must_be_not_null(src, true); 6818 Node* src_start = array_element_address(src, offset, src_elem); 6819 6820 // static final int[] byteTable in class CRC32C 6821 Node* table = get_table_from_crc32c_class(callee()->holder()); 6822 table = must_be_not_null(table, true); 6823 Node* table_start = array_element_address(table, intcon(0), T_INT); 6824 6825 // We assume that range check is done by caller. 6826 // TODO: generate range check (offset+length < src.length) in debug VM. 6827 6828 // Call the stub. 6829 address stubAddr = StubRoutines::updateBytesCRC32C(); 6830 const char *stubName = "updateBytesCRC32C"; 6831 6832 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6833 stubAddr, stubName, TypePtr::BOTTOM, 6834 crc, src_start, length, table_start); 6835 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6836 set_result(result); 6837 return true; 6838 } 6839 6840 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6841 // 6842 // Calculate CRC32C for DirectByteBuffer. 6843 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6844 // 6845 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6846 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6847 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6848 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6849 // no receiver since it is a static method 6850 Node* crc = argument(0); // type: int 6851 Node* src = argument(1); // type: long 6852 Node* offset = argument(3); // type: int 6853 Node* end = argument(4); // type: int 6854 6855 Node* length = _gvn.transform(new SubINode(end, offset)); 6856 6857 src = ConvL2X(src); // adjust Java long to machine word 6858 Node* base = _gvn.transform(new CastX2PNode(src)); 6859 offset = ConvI2X(offset); 6860 6861 // 'src_start' points to src array + scaled offset 6862 Node* src_start = basic_plus_adr(top(), base, offset); 6863 6864 // static final int[] byteTable in class CRC32C 6865 Node* table = get_table_from_crc32c_class(callee()->holder()); 6866 table = must_be_not_null(table, true); 6867 Node* table_start = array_element_address(table, intcon(0), T_INT); 6868 6869 // Call the stub. 6870 address stubAddr = StubRoutines::updateBytesCRC32C(); 6871 const char *stubName = "updateBytesCRC32C"; 6872 6873 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6874 stubAddr, stubName, TypePtr::BOTTOM, 6875 crc, src_start, length, table_start); 6876 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6877 set_result(result); 6878 return true; 6879 } 6880 6881 //------------------------------inline_updateBytesAdler32---------------------- 6882 // 6883 // Calculate Adler32 checksum for byte[] array. 6884 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6885 // 6886 bool LibraryCallKit::inline_updateBytesAdler32() { 6887 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6888 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6889 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6890 // no receiver since it is static method 6891 Node* crc = argument(0); // type: int 6892 Node* src = argument(1); // type: oop 6893 Node* offset = argument(2); // type: int 6894 Node* length = argument(3); // type: int 6895 6896 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6897 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6898 // failed array check 6899 return false; 6900 } 6901 6902 // Figure out the size and type of the elements we will be copying. 6903 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6904 if (src_elem != T_BYTE) { 6905 return false; 6906 } 6907 6908 // 'src_start' points to src array + scaled offset 6909 Node* src_start = array_element_address(src, offset, src_elem); 6910 6911 // We assume that range check is done by caller. 6912 // TODO: generate range check (offset+length < src.length) in debug VM. 6913 6914 // Call the stub. 6915 address stubAddr = StubRoutines::updateBytesAdler32(); 6916 const char *stubName = "updateBytesAdler32"; 6917 6918 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6919 stubAddr, stubName, TypePtr::BOTTOM, 6920 crc, src_start, length); 6921 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6922 set_result(result); 6923 return true; 6924 } 6925 6926 //------------------------------inline_updateByteBufferAdler32--------------- 6927 // 6928 // Calculate Adler32 checksum for DirectByteBuffer. 6929 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6930 // 6931 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6932 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6933 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6934 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6935 // no receiver since it is static method 6936 Node* crc = argument(0); // type: int 6937 Node* src = argument(1); // type: long 6938 Node* offset = argument(3); // type: int 6939 Node* length = argument(4); // type: int 6940 6941 src = ConvL2X(src); // adjust Java long to machine word 6942 Node* base = _gvn.transform(new CastX2PNode(src)); 6943 offset = ConvI2X(offset); 6944 6945 // 'src_start' points to src array + scaled offset 6946 Node* src_start = basic_plus_adr(top(), base, offset); 6947 6948 // Call the stub. 6949 address stubAddr = StubRoutines::updateBytesAdler32(); 6950 const char *stubName = "updateBytesAdler32"; 6951 6952 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6953 stubAddr, stubName, TypePtr::BOTTOM, 6954 crc, src_start, length); 6955 6956 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6957 set_result(result); 6958 return true; 6959 } 6960 6961 //----------------------------inline_reference_get---------------------------- 6962 // public T java.lang.ref.Reference.get(); 6963 bool LibraryCallKit::inline_reference_get() { 6964 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6965 6966 // Get the argument: 6967 Node* reference_obj = null_check_receiver(); 6968 if (stopped()) return true; 6969 6970 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6971 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6972 decorators, /*is_static*/ false, nullptr); 6973 if (result == nullptr) return false; 6974 6975 // Add memory barrier to prevent commoning reads from this field 6976 // across safepoint since GC can change its value. 6977 insert_mem_bar(Op_MemBarCPUOrder); 6978 6979 set_result(result); 6980 return true; 6981 } 6982 6983 //----------------------------inline_reference_refersTo0---------------------------- 6984 // bool java.lang.ref.Reference.refersTo0(); 6985 // bool java.lang.ref.PhantomReference.refersTo0(); 6986 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6987 // Get arguments: 6988 Node* reference_obj = null_check_receiver(); 6989 Node* other_obj = argument(1); 6990 if (stopped()) return true; 6991 6992 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6993 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6994 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6995 decorators, /*is_static*/ false, nullptr); 6996 if (referent == nullptr) return false; 6997 6998 // Add memory barrier to prevent commoning reads from this field 6999 // across safepoint since GC can change its value. 7000 insert_mem_bar(Op_MemBarCPUOrder); 7001 7002 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 7003 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7004 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 7005 7006 RegionNode* region = new RegionNode(3); 7007 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 7008 7009 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 7010 region->init_req(1, if_true); 7011 phi->init_req(1, intcon(1)); 7012 7013 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 7014 region->init_req(2, if_false); 7015 phi->init_req(2, intcon(0)); 7016 7017 set_control(_gvn.transform(region)); 7018 record_for_igvn(region); 7019 set_result(_gvn.transform(phi)); 7020 return true; 7021 } 7022 7023 7024 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7025 DecoratorSet decorators, bool is_static, 7026 ciInstanceKlass* fromKls) { 7027 if (fromKls == nullptr) { 7028 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7029 assert(tinst != nullptr, "obj is null"); 7030 assert(tinst->is_loaded(), "obj is not loaded"); 7031 fromKls = tinst->instance_klass(); 7032 } else { 7033 assert(is_static, "only for static field access"); 7034 } 7035 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7036 ciSymbol::make(fieldTypeString), 7037 is_static); 7038 7039 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7040 if (field == nullptr) return (Node *) nullptr; 7041 7042 if (is_static) { 7043 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7044 fromObj = makecon(tip); 7045 } 7046 7047 // Next code copied from Parse::do_get_xxx(): 7048 7049 // Compute address and memory type. 7050 int offset = field->offset_in_bytes(); 7051 bool is_vol = field->is_volatile(); 7052 ciType* field_klass = field->type(); 7053 assert(field_klass->is_loaded(), "should be loaded"); 7054 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7055 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7056 BasicType bt = field->layout_type(); 7057 7058 // Build the resultant type of the load 7059 const Type *type; 7060 if (bt == T_OBJECT) { 7061 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7062 } else { 7063 type = Type::get_const_basic_type(bt); 7064 } 7065 7066 if (is_vol) { 7067 decorators |= MO_SEQ_CST; 7068 } 7069 7070 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7071 } 7072 7073 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7074 bool is_exact /* true */, bool is_static /* false */, 7075 ciInstanceKlass * fromKls /* nullptr */) { 7076 if (fromKls == nullptr) { 7077 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7078 assert(tinst != nullptr, "obj is null"); 7079 assert(tinst->is_loaded(), "obj is not loaded"); 7080 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7081 fromKls = tinst->instance_klass(); 7082 } 7083 else { 7084 assert(is_static, "only for static field access"); 7085 } 7086 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7087 ciSymbol::make(fieldTypeString), 7088 is_static); 7089 7090 assert(field != nullptr, "undefined field"); 7091 assert(!field->is_volatile(), "not defined for volatile fields"); 7092 7093 if (is_static) { 7094 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7095 fromObj = makecon(tip); 7096 } 7097 7098 // Next code copied from Parse::do_get_xxx(): 7099 7100 // Compute address and memory type. 7101 int offset = field->offset_in_bytes(); 7102 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7103 7104 return adr; 7105 } 7106 7107 //------------------------------inline_aescrypt_Block----------------------- 7108 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7109 address stubAddr = nullptr; 7110 const char *stubName; 7111 assert(UseAES, "need AES instruction support"); 7112 7113 switch(id) { 7114 case vmIntrinsics::_aescrypt_encryptBlock: 7115 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7116 stubName = "aescrypt_encryptBlock"; 7117 break; 7118 case vmIntrinsics::_aescrypt_decryptBlock: 7119 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7120 stubName = "aescrypt_decryptBlock"; 7121 break; 7122 default: 7123 break; 7124 } 7125 if (stubAddr == nullptr) return false; 7126 7127 Node* aescrypt_object = argument(0); 7128 Node* src = argument(1); 7129 Node* src_offset = argument(2); 7130 Node* dest = argument(3); 7131 Node* dest_offset = argument(4); 7132 7133 src = must_be_not_null(src, true); 7134 dest = must_be_not_null(dest, true); 7135 7136 // (1) src and dest are arrays. 7137 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7138 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7139 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7140 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7141 7142 // for the quick and dirty code we will skip all the checks. 7143 // we are just trying to get the call to be generated. 7144 Node* src_start = src; 7145 Node* dest_start = dest; 7146 if (src_offset != nullptr || dest_offset != nullptr) { 7147 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7148 src_start = array_element_address(src, src_offset, T_BYTE); 7149 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7150 } 7151 7152 // now need to get the start of its expanded key array 7153 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7154 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7155 if (k_start == nullptr) return false; 7156 7157 // Call the stub. 7158 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7159 stubAddr, stubName, TypePtr::BOTTOM, 7160 src_start, dest_start, k_start); 7161 7162 return true; 7163 } 7164 7165 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7166 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7167 address stubAddr = nullptr; 7168 const char *stubName = nullptr; 7169 7170 assert(UseAES, "need AES instruction support"); 7171 7172 switch(id) { 7173 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7174 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7175 stubName = "cipherBlockChaining_encryptAESCrypt"; 7176 break; 7177 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7178 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7179 stubName = "cipherBlockChaining_decryptAESCrypt"; 7180 break; 7181 default: 7182 break; 7183 } 7184 if (stubAddr == nullptr) return false; 7185 7186 Node* cipherBlockChaining_object = argument(0); 7187 Node* src = argument(1); 7188 Node* src_offset = argument(2); 7189 Node* len = argument(3); 7190 Node* dest = argument(4); 7191 Node* dest_offset = argument(5); 7192 7193 src = must_be_not_null(src, false); 7194 dest = must_be_not_null(dest, false); 7195 7196 // (1) src and dest are arrays. 7197 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7198 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7199 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7200 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7201 7202 // checks are the responsibility of the caller 7203 Node* src_start = src; 7204 Node* dest_start = dest; 7205 if (src_offset != nullptr || dest_offset != nullptr) { 7206 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7207 src_start = array_element_address(src, src_offset, T_BYTE); 7208 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7209 } 7210 7211 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7212 // (because of the predicated logic executed earlier). 7213 // so we cast it here safely. 7214 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7215 7216 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7217 if (embeddedCipherObj == nullptr) return false; 7218 7219 // cast it to what we know it will be at runtime 7220 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7221 assert(tinst != nullptr, "CBC obj is null"); 7222 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7223 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7224 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7225 7226 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7227 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7228 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7229 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7230 aescrypt_object = _gvn.transform(aescrypt_object); 7231 7232 // we need to get the start of the aescrypt_object's expanded key array 7233 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7234 if (k_start == nullptr) return false; 7235 7236 // similarly, get the start address of the r vector 7237 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7238 if (objRvec == nullptr) return false; 7239 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7240 7241 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7242 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7243 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7244 stubAddr, stubName, TypePtr::BOTTOM, 7245 src_start, dest_start, k_start, r_start, len); 7246 7247 // return cipher length (int) 7248 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7249 set_result(retvalue); 7250 return true; 7251 } 7252 7253 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7254 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7255 address stubAddr = nullptr; 7256 const char *stubName = nullptr; 7257 7258 assert(UseAES, "need AES instruction support"); 7259 7260 switch (id) { 7261 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7262 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7263 stubName = "electronicCodeBook_encryptAESCrypt"; 7264 break; 7265 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7266 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7267 stubName = "electronicCodeBook_decryptAESCrypt"; 7268 break; 7269 default: 7270 break; 7271 } 7272 7273 if (stubAddr == nullptr) return false; 7274 7275 Node* electronicCodeBook_object = argument(0); 7276 Node* src = argument(1); 7277 Node* src_offset = argument(2); 7278 Node* len = argument(3); 7279 Node* dest = argument(4); 7280 Node* dest_offset = argument(5); 7281 7282 // (1) src and dest are arrays. 7283 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7284 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7285 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7286 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7287 7288 // checks are the responsibility of the caller 7289 Node* src_start = src; 7290 Node* dest_start = dest; 7291 if (src_offset != nullptr || dest_offset != nullptr) { 7292 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7293 src_start = array_element_address(src, src_offset, T_BYTE); 7294 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7295 } 7296 7297 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7298 // (because of the predicated logic executed earlier). 7299 // so we cast it here safely. 7300 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7301 7302 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7303 if (embeddedCipherObj == nullptr) return false; 7304 7305 // cast it to what we know it will be at runtime 7306 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7307 assert(tinst != nullptr, "ECB obj is null"); 7308 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7309 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7310 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7311 7312 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7313 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7314 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7315 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7316 aescrypt_object = _gvn.transform(aescrypt_object); 7317 7318 // we need to get the start of the aescrypt_object's expanded key array 7319 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7320 if (k_start == nullptr) return false; 7321 7322 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7323 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7324 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7325 stubAddr, stubName, TypePtr::BOTTOM, 7326 src_start, dest_start, k_start, len); 7327 7328 // return cipher length (int) 7329 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7330 set_result(retvalue); 7331 return true; 7332 } 7333 7334 //------------------------------inline_counterMode_AESCrypt----------------------- 7335 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7336 assert(UseAES, "need AES instruction support"); 7337 if (!UseAESCTRIntrinsics) return false; 7338 7339 address stubAddr = nullptr; 7340 const char *stubName = nullptr; 7341 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7342 stubAddr = StubRoutines::counterMode_AESCrypt(); 7343 stubName = "counterMode_AESCrypt"; 7344 } 7345 if (stubAddr == nullptr) return false; 7346 7347 Node* counterMode_object = argument(0); 7348 Node* src = argument(1); 7349 Node* src_offset = argument(2); 7350 Node* len = argument(3); 7351 Node* dest = argument(4); 7352 Node* dest_offset = argument(5); 7353 7354 // (1) src and dest are arrays. 7355 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7356 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7357 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7358 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7359 7360 // checks are the responsibility of the caller 7361 Node* src_start = src; 7362 Node* dest_start = dest; 7363 if (src_offset != nullptr || dest_offset != nullptr) { 7364 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7365 src_start = array_element_address(src, src_offset, T_BYTE); 7366 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7367 } 7368 7369 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7370 // (because of the predicated logic executed earlier). 7371 // so we cast it here safely. 7372 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7373 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7374 if (embeddedCipherObj == nullptr) return false; 7375 // cast it to what we know it will be at runtime 7376 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7377 assert(tinst != nullptr, "CTR obj is null"); 7378 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7379 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7380 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7381 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7382 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7383 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7384 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7385 aescrypt_object = _gvn.transform(aescrypt_object); 7386 // we need to get the start of the aescrypt_object's expanded key array 7387 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7388 if (k_start == nullptr) return false; 7389 // similarly, get the start address of the r vector 7390 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7391 if (obj_counter == nullptr) return false; 7392 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7393 7394 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7395 if (saved_encCounter == nullptr) return false; 7396 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7397 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7398 7399 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7400 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7401 OptoRuntime::counterMode_aescrypt_Type(), 7402 stubAddr, stubName, TypePtr::BOTTOM, 7403 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7404 7405 // return cipher length (int) 7406 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7407 set_result(retvalue); 7408 return true; 7409 } 7410 7411 //------------------------------get_key_start_from_aescrypt_object----------------------- 7412 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7413 #if defined(PPC64) || defined(S390) 7414 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7415 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7416 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7417 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7418 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7419 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7420 if (objSessionK == nullptr) { 7421 return (Node *) nullptr; 7422 } 7423 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7424 #else 7425 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7426 #endif // PPC64 7427 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7428 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7429 7430 // now have the array, need to get the start address of the K array 7431 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7432 return k_start; 7433 } 7434 7435 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7436 // Return node representing slow path of predicate check. 7437 // the pseudo code we want to emulate with this predicate is: 7438 // for encryption: 7439 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7440 // for decryption: 7441 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7442 // note cipher==plain is more conservative than the original java code but that's OK 7443 // 7444 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7445 // The receiver was checked for null already. 7446 Node* objCBC = argument(0); 7447 7448 Node* src = argument(1); 7449 Node* dest = argument(4); 7450 7451 // Load embeddedCipher field of CipherBlockChaining object. 7452 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7453 7454 // get AESCrypt klass for instanceOf check 7455 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7456 // will have same classloader as CipherBlockChaining object 7457 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7458 assert(tinst != nullptr, "CBCobj is null"); 7459 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7460 7461 // we want to do an instanceof comparison against the AESCrypt class 7462 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7463 if (!klass_AESCrypt->is_loaded()) { 7464 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7465 Node* ctrl = control(); 7466 set_control(top()); // no regular fast path 7467 return ctrl; 7468 } 7469 7470 src = must_be_not_null(src, true); 7471 dest = must_be_not_null(dest, true); 7472 7473 // Resolve oops to stable for CmpP below. 7474 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7475 7476 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7477 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7478 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7479 7480 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7481 7482 // for encryption, we are done 7483 if (!decrypting) 7484 return instof_false; // even if it is null 7485 7486 // for decryption, we need to add a further check to avoid 7487 // taking the intrinsic path when cipher and plain are the same 7488 // see the original java code for why. 7489 RegionNode* region = new RegionNode(3); 7490 region->init_req(1, instof_false); 7491 7492 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7493 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7494 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7495 region->init_req(2, src_dest_conjoint); 7496 7497 record_for_igvn(region); 7498 return _gvn.transform(region); 7499 } 7500 7501 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7502 // Return node representing slow path of predicate check. 7503 // the pseudo code we want to emulate with this predicate is: 7504 // for encryption: 7505 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7506 // for decryption: 7507 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7508 // note cipher==plain is more conservative than the original java code but that's OK 7509 // 7510 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7511 // The receiver was checked for null already. 7512 Node* objECB = argument(0); 7513 7514 // Load embeddedCipher field of ElectronicCodeBook object. 7515 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7516 7517 // get AESCrypt klass for instanceOf check 7518 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7519 // will have same classloader as ElectronicCodeBook object 7520 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7521 assert(tinst != nullptr, "ECBobj is null"); 7522 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7523 7524 // we want to do an instanceof comparison against the AESCrypt class 7525 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7526 if (!klass_AESCrypt->is_loaded()) { 7527 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7528 Node* ctrl = control(); 7529 set_control(top()); // no regular fast path 7530 return ctrl; 7531 } 7532 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7533 7534 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7535 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7536 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7537 7538 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7539 7540 // for encryption, we are done 7541 if (!decrypting) 7542 return instof_false; // even if it is null 7543 7544 // for decryption, we need to add a further check to avoid 7545 // taking the intrinsic path when cipher and plain are the same 7546 // see the original java code for why. 7547 RegionNode* region = new RegionNode(3); 7548 region->init_req(1, instof_false); 7549 Node* src = argument(1); 7550 Node* dest = argument(4); 7551 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7552 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7553 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7554 region->init_req(2, src_dest_conjoint); 7555 7556 record_for_igvn(region); 7557 return _gvn.transform(region); 7558 } 7559 7560 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7561 // Return node representing slow path of predicate check. 7562 // the pseudo code we want to emulate with this predicate is: 7563 // for encryption: 7564 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7565 // for decryption: 7566 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7567 // note cipher==plain is more conservative than the original java code but that's OK 7568 // 7569 7570 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7571 // The receiver was checked for null already. 7572 Node* objCTR = argument(0); 7573 7574 // Load embeddedCipher field of CipherBlockChaining object. 7575 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7576 7577 // get AESCrypt klass for instanceOf check 7578 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7579 // will have same classloader as CipherBlockChaining object 7580 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7581 assert(tinst != nullptr, "CTRobj is null"); 7582 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7583 7584 // we want to do an instanceof comparison against the AESCrypt class 7585 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7586 if (!klass_AESCrypt->is_loaded()) { 7587 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7588 Node* ctrl = control(); 7589 set_control(top()); // no regular fast path 7590 return ctrl; 7591 } 7592 7593 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7594 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7595 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7596 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7597 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7598 7599 return instof_false; // even if it is null 7600 } 7601 7602 //------------------------------inline_ghash_processBlocks 7603 bool LibraryCallKit::inline_ghash_processBlocks() { 7604 address stubAddr; 7605 const char *stubName; 7606 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7607 7608 stubAddr = StubRoutines::ghash_processBlocks(); 7609 stubName = "ghash_processBlocks"; 7610 7611 Node* data = argument(0); 7612 Node* offset = argument(1); 7613 Node* len = argument(2); 7614 Node* state = argument(3); 7615 Node* subkeyH = argument(4); 7616 7617 state = must_be_not_null(state, true); 7618 subkeyH = must_be_not_null(subkeyH, true); 7619 data = must_be_not_null(data, true); 7620 7621 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7622 assert(state_start, "state is null"); 7623 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7624 assert(subkeyH_start, "subkeyH is null"); 7625 Node* data_start = array_element_address(data, offset, T_BYTE); 7626 assert(data_start, "data is null"); 7627 7628 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7629 OptoRuntime::ghash_processBlocks_Type(), 7630 stubAddr, stubName, TypePtr::BOTTOM, 7631 state_start, subkeyH_start, data_start, len); 7632 return true; 7633 } 7634 7635 //------------------------------inline_chacha20Block 7636 bool LibraryCallKit::inline_chacha20Block() { 7637 address stubAddr; 7638 const char *stubName; 7639 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7640 7641 stubAddr = StubRoutines::chacha20Block(); 7642 stubName = "chacha20Block"; 7643 7644 Node* state = argument(0); 7645 Node* result = argument(1); 7646 7647 state = must_be_not_null(state, true); 7648 result = must_be_not_null(result, true); 7649 7650 Node* state_start = array_element_address(state, intcon(0), T_INT); 7651 assert(state_start, "state is null"); 7652 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7653 assert(result_start, "result is null"); 7654 7655 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7656 OptoRuntime::chacha20Block_Type(), 7657 stubAddr, stubName, TypePtr::BOTTOM, 7658 state_start, result_start); 7659 // return key stream length (int) 7660 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7661 set_result(retvalue); 7662 return true; 7663 } 7664 7665 bool LibraryCallKit::inline_base64_encodeBlock() { 7666 address stubAddr; 7667 const char *stubName; 7668 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7669 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7670 stubAddr = StubRoutines::base64_encodeBlock(); 7671 stubName = "encodeBlock"; 7672 7673 if (!stubAddr) return false; 7674 Node* base64obj = argument(0); 7675 Node* src = argument(1); 7676 Node* offset = argument(2); 7677 Node* len = argument(3); 7678 Node* dest = argument(4); 7679 Node* dp = argument(5); 7680 Node* isURL = argument(6); 7681 7682 src = must_be_not_null(src, true); 7683 dest = must_be_not_null(dest, true); 7684 7685 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7686 assert(src_start, "source array is null"); 7687 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7688 assert(dest_start, "destination array is null"); 7689 7690 Node* base64 = make_runtime_call(RC_LEAF, 7691 OptoRuntime::base64_encodeBlock_Type(), 7692 stubAddr, stubName, TypePtr::BOTTOM, 7693 src_start, offset, len, dest_start, dp, isURL); 7694 return true; 7695 } 7696 7697 bool LibraryCallKit::inline_base64_decodeBlock() { 7698 address stubAddr; 7699 const char *stubName; 7700 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7701 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7702 stubAddr = StubRoutines::base64_decodeBlock(); 7703 stubName = "decodeBlock"; 7704 7705 if (!stubAddr) return false; 7706 Node* base64obj = argument(0); 7707 Node* src = argument(1); 7708 Node* src_offset = argument(2); 7709 Node* len = argument(3); 7710 Node* dest = argument(4); 7711 Node* dest_offset = argument(5); 7712 Node* isURL = argument(6); 7713 Node* isMIME = argument(7); 7714 7715 src = must_be_not_null(src, true); 7716 dest = must_be_not_null(dest, true); 7717 7718 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7719 assert(src_start, "source array is null"); 7720 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7721 assert(dest_start, "destination array is null"); 7722 7723 Node* call = make_runtime_call(RC_LEAF, 7724 OptoRuntime::base64_decodeBlock_Type(), 7725 stubAddr, stubName, TypePtr::BOTTOM, 7726 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7727 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7728 set_result(result); 7729 return true; 7730 } 7731 7732 bool LibraryCallKit::inline_poly1305_processBlocks() { 7733 address stubAddr; 7734 const char *stubName; 7735 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7736 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7737 stubAddr = StubRoutines::poly1305_processBlocks(); 7738 stubName = "poly1305_processBlocks"; 7739 7740 if (!stubAddr) return false; 7741 null_check_receiver(); // null-check receiver 7742 if (stopped()) return true; 7743 7744 Node* input = argument(1); 7745 Node* input_offset = argument(2); 7746 Node* len = argument(3); 7747 Node* alimbs = argument(4); 7748 Node* rlimbs = argument(5); 7749 7750 input = must_be_not_null(input, true); 7751 alimbs = must_be_not_null(alimbs, true); 7752 rlimbs = must_be_not_null(rlimbs, true); 7753 7754 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7755 assert(input_start, "input array is null"); 7756 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7757 assert(acc_start, "acc array is null"); 7758 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7759 assert(r_start, "r array is null"); 7760 7761 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7762 OptoRuntime::poly1305_processBlocks_Type(), 7763 stubAddr, stubName, TypePtr::BOTTOM, 7764 input_start, len, acc_start, r_start); 7765 return true; 7766 } 7767 7768 //------------------------------inline_digestBase_implCompress----------------------- 7769 // 7770 // Calculate MD5 for single-block byte[] array. 7771 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7772 // 7773 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7774 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7775 // 7776 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7777 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7778 // 7779 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7780 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7781 // 7782 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7783 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7784 // 7785 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7786 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7787 7788 Node* digestBase_obj = argument(0); 7789 Node* src = argument(1); // type oop 7790 Node* ofs = argument(2); // type int 7791 7792 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7793 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7794 // failed array check 7795 return false; 7796 } 7797 // Figure out the size and type of the elements we will be copying. 7798 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7799 if (src_elem != T_BYTE) { 7800 return false; 7801 } 7802 // 'src_start' points to src array + offset 7803 src = must_be_not_null(src, true); 7804 Node* src_start = array_element_address(src, ofs, src_elem); 7805 Node* state = nullptr; 7806 Node* block_size = nullptr; 7807 address stubAddr; 7808 const char *stubName; 7809 7810 switch(id) { 7811 case vmIntrinsics::_md5_implCompress: 7812 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7813 state = get_state_from_digest_object(digestBase_obj, T_INT); 7814 stubAddr = StubRoutines::md5_implCompress(); 7815 stubName = "md5_implCompress"; 7816 break; 7817 case vmIntrinsics::_sha_implCompress: 7818 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7819 state = get_state_from_digest_object(digestBase_obj, T_INT); 7820 stubAddr = StubRoutines::sha1_implCompress(); 7821 stubName = "sha1_implCompress"; 7822 break; 7823 case vmIntrinsics::_sha2_implCompress: 7824 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7825 state = get_state_from_digest_object(digestBase_obj, T_INT); 7826 stubAddr = StubRoutines::sha256_implCompress(); 7827 stubName = "sha256_implCompress"; 7828 break; 7829 case vmIntrinsics::_sha5_implCompress: 7830 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7831 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7832 stubAddr = StubRoutines::sha512_implCompress(); 7833 stubName = "sha512_implCompress"; 7834 break; 7835 case vmIntrinsics::_sha3_implCompress: 7836 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7837 state = get_state_from_digest_object(digestBase_obj, T_BYTE); 7838 stubAddr = StubRoutines::sha3_implCompress(); 7839 stubName = "sha3_implCompress"; 7840 block_size = get_block_size_from_digest_object(digestBase_obj); 7841 if (block_size == nullptr) return false; 7842 break; 7843 default: 7844 fatal_unexpected_iid(id); 7845 return false; 7846 } 7847 if (state == nullptr) return false; 7848 7849 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 7850 if (stubAddr == nullptr) return false; 7851 7852 // Call the stub. 7853 Node* call; 7854 if (block_size == nullptr) { 7855 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7856 stubAddr, stubName, TypePtr::BOTTOM, 7857 src_start, state); 7858 } else { 7859 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7860 stubAddr, stubName, TypePtr::BOTTOM, 7861 src_start, state, block_size); 7862 } 7863 7864 return true; 7865 } 7866 7867 //------------------------------inline_digestBase_implCompressMB----------------------- 7868 // 7869 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7870 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7871 // 7872 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7873 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7874 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7875 assert((uint)predicate < 5, "sanity"); 7876 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7877 7878 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 7879 Node* src = argument(1); // byte[] array 7880 Node* ofs = argument(2); // type int 7881 Node* limit = argument(3); // type int 7882 7883 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7884 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7885 // failed array check 7886 return false; 7887 } 7888 // Figure out the size and type of the elements we will be copying. 7889 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7890 if (src_elem != T_BYTE) { 7891 return false; 7892 } 7893 // 'src_start' points to src array + offset 7894 src = must_be_not_null(src, false); 7895 Node* src_start = array_element_address(src, ofs, src_elem); 7896 7897 const char* klass_digestBase_name = nullptr; 7898 const char* stub_name = nullptr; 7899 address stub_addr = nullptr; 7900 BasicType elem_type = T_INT; 7901 7902 switch (predicate) { 7903 case 0: 7904 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7905 klass_digestBase_name = "sun/security/provider/MD5"; 7906 stub_name = "md5_implCompressMB"; 7907 stub_addr = StubRoutines::md5_implCompressMB(); 7908 } 7909 break; 7910 case 1: 7911 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7912 klass_digestBase_name = "sun/security/provider/SHA"; 7913 stub_name = "sha1_implCompressMB"; 7914 stub_addr = StubRoutines::sha1_implCompressMB(); 7915 } 7916 break; 7917 case 2: 7918 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7919 klass_digestBase_name = "sun/security/provider/SHA2"; 7920 stub_name = "sha256_implCompressMB"; 7921 stub_addr = StubRoutines::sha256_implCompressMB(); 7922 } 7923 break; 7924 case 3: 7925 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7926 klass_digestBase_name = "sun/security/provider/SHA5"; 7927 stub_name = "sha512_implCompressMB"; 7928 stub_addr = StubRoutines::sha512_implCompressMB(); 7929 elem_type = T_LONG; 7930 } 7931 break; 7932 case 4: 7933 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7934 klass_digestBase_name = "sun/security/provider/SHA3"; 7935 stub_name = "sha3_implCompressMB"; 7936 stub_addr = StubRoutines::sha3_implCompressMB(); 7937 elem_type = T_BYTE; 7938 } 7939 break; 7940 default: 7941 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7942 } 7943 if (klass_digestBase_name != nullptr) { 7944 assert(stub_addr != nullptr, "Stub is generated"); 7945 if (stub_addr == nullptr) return false; 7946 7947 // get DigestBase klass to lookup for SHA klass 7948 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7949 assert(tinst != nullptr, "digestBase_obj is not instance???"); 7950 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7951 7952 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7953 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7954 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7955 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7956 } 7957 return false; 7958 } 7959 7960 //------------------------------inline_digestBase_implCompressMB----------------------- 7961 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7962 BasicType elem_type, address stubAddr, const char *stubName, 7963 Node* src_start, Node* ofs, Node* limit) { 7964 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7965 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7966 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7967 digest_obj = _gvn.transform(digest_obj); 7968 7969 Node* state = get_state_from_digest_object(digest_obj, elem_type); 7970 if (state == nullptr) return false; 7971 7972 Node* block_size = nullptr; 7973 if (strcmp("sha3_implCompressMB", stubName) == 0) { 7974 block_size = get_block_size_from_digest_object(digest_obj); 7975 if (block_size == nullptr) return false; 7976 } 7977 7978 // Call the stub. 7979 Node* call; 7980 if (block_size == nullptr) { 7981 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7982 OptoRuntime::digestBase_implCompressMB_Type(false), 7983 stubAddr, stubName, TypePtr::BOTTOM, 7984 src_start, state, ofs, limit); 7985 } else { 7986 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7987 OptoRuntime::digestBase_implCompressMB_Type(true), 7988 stubAddr, stubName, TypePtr::BOTTOM, 7989 src_start, state, block_size, ofs, limit); 7990 } 7991 7992 // return ofs (int) 7993 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7994 set_result(result); 7995 7996 return true; 7997 } 7998 7999 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8000 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8001 assert(UseAES, "need AES instruction support"); 8002 address stubAddr = nullptr; 8003 const char *stubName = nullptr; 8004 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8005 stubName = "galoisCounterMode_AESCrypt"; 8006 8007 if (stubAddr == nullptr) return false; 8008 8009 Node* in = argument(0); 8010 Node* inOfs = argument(1); 8011 Node* len = argument(2); 8012 Node* ct = argument(3); 8013 Node* ctOfs = argument(4); 8014 Node* out = argument(5); 8015 Node* outOfs = argument(6); 8016 Node* gctr_object = argument(7); 8017 Node* ghash_object = argument(8); 8018 8019 // (1) in, ct and out are arrays. 8020 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8021 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8022 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8023 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8024 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8025 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8026 8027 // checks are the responsibility of the caller 8028 Node* in_start = in; 8029 Node* ct_start = ct; 8030 Node* out_start = out; 8031 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8032 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8033 in_start = array_element_address(in, inOfs, T_BYTE); 8034 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8035 out_start = array_element_address(out, outOfs, T_BYTE); 8036 } 8037 8038 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8039 // (because of the predicated logic executed earlier). 8040 // so we cast it here safely. 8041 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8042 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8043 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8044 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8045 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8046 8047 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8048 return false; 8049 } 8050 // cast it to what we know it will be at runtime 8051 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8052 assert(tinst != nullptr, "GCTR obj is null"); 8053 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8054 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8055 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8056 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8057 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8058 const TypeOopPtr* xtype = aklass->as_instance_type(); 8059 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8060 aescrypt_object = _gvn.transform(aescrypt_object); 8061 // we need to get the start of the aescrypt_object's expanded key array 8062 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8063 if (k_start == nullptr) return false; 8064 // similarly, get the start address of the r vector 8065 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8066 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8067 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8068 8069 8070 // Call the stub, passing params 8071 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8072 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8073 stubAddr, stubName, TypePtr::BOTTOM, 8074 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8075 8076 // return cipher length (int) 8077 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8078 set_result(retvalue); 8079 8080 return true; 8081 } 8082 8083 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8084 // Return node representing slow path of predicate check. 8085 // the pseudo code we want to emulate with this predicate is: 8086 // for encryption: 8087 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8088 // for decryption: 8089 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8090 // note cipher==plain is more conservative than the original java code but that's OK 8091 // 8092 8093 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8094 // The receiver was checked for null already. 8095 Node* objGCTR = argument(7); 8096 // Load embeddedCipher field of GCTR object. 8097 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8098 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8099 8100 // get AESCrypt klass for instanceOf check 8101 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8102 // will have same classloader as CipherBlockChaining object 8103 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8104 assert(tinst != nullptr, "GCTR obj is null"); 8105 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8106 8107 // we want to do an instanceof comparison against the AESCrypt class 8108 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8109 if (!klass_AESCrypt->is_loaded()) { 8110 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8111 Node* ctrl = control(); 8112 set_control(top()); // no regular fast path 8113 return ctrl; 8114 } 8115 8116 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8117 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8118 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8119 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8120 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8121 8122 return instof_false; // even if it is null 8123 } 8124 8125 //------------------------------get_state_from_digest_object----------------------- 8126 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8127 const char* state_type; 8128 switch (elem_type) { 8129 case T_BYTE: state_type = "[B"; break; 8130 case T_INT: state_type = "[I"; break; 8131 case T_LONG: state_type = "[J"; break; 8132 default: ShouldNotReachHere(); 8133 } 8134 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8135 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8136 if (digest_state == nullptr) return (Node *) nullptr; 8137 8138 // now have the array, need to get the start address of the state array 8139 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8140 return state; 8141 } 8142 8143 //------------------------------get_block_size_from_sha3_object---------------------------------- 8144 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8145 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8146 assert (block_size != nullptr, "sanity"); 8147 return block_size; 8148 } 8149 8150 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8151 // Return node representing slow path of predicate check. 8152 // the pseudo code we want to emulate with this predicate is: 8153 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8154 // 8155 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8156 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8157 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8158 assert((uint)predicate < 5, "sanity"); 8159 8160 // The receiver was checked for null already. 8161 Node* digestBaseObj = argument(0); 8162 8163 // get DigestBase klass for instanceOf check 8164 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8165 assert(tinst != nullptr, "digestBaseObj is null"); 8166 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8167 8168 const char* klass_name = nullptr; 8169 switch (predicate) { 8170 case 0: 8171 if (UseMD5Intrinsics) { 8172 // we want to do an instanceof comparison against the MD5 class 8173 klass_name = "sun/security/provider/MD5"; 8174 } 8175 break; 8176 case 1: 8177 if (UseSHA1Intrinsics) { 8178 // we want to do an instanceof comparison against the SHA class 8179 klass_name = "sun/security/provider/SHA"; 8180 } 8181 break; 8182 case 2: 8183 if (UseSHA256Intrinsics) { 8184 // we want to do an instanceof comparison against the SHA2 class 8185 klass_name = "sun/security/provider/SHA2"; 8186 } 8187 break; 8188 case 3: 8189 if (UseSHA512Intrinsics) { 8190 // we want to do an instanceof comparison against the SHA5 class 8191 klass_name = "sun/security/provider/SHA5"; 8192 } 8193 break; 8194 case 4: 8195 if (UseSHA3Intrinsics) { 8196 // we want to do an instanceof comparison against the SHA3 class 8197 klass_name = "sun/security/provider/SHA3"; 8198 } 8199 break; 8200 default: 8201 fatal("unknown SHA intrinsic predicate: %d", predicate); 8202 } 8203 8204 ciKlass* klass = nullptr; 8205 if (klass_name != nullptr) { 8206 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8207 } 8208 if ((klass == nullptr) || !klass->is_loaded()) { 8209 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8210 Node* ctrl = control(); 8211 set_control(top()); // no intrinsic path 8212 return ctrl; 8213 } 8214 ciInstanceKlass* instklass = klass->as_instance_klass(); 8215 8216 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8217 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8218 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8219 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8220 8221 return instof_false; // even if it is null 8222 } 8223 8224 //-------------inline_fma----------------------------------- 8225 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8226 Node *a = nullptr; 8227 Node *b = nullptr; 8228 Node *c = nullptr; 8229 Node* result = nullptr; 8230 switch (id) { 8231 case vmIntrinsics::_fmaD: 8232 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8233 // no receiver since it is static method 8234 a = round_double_node(argument(0)); 8235 b = round_double_node(argument(2)); 8236 c = round_double_node(argument(4)); 8237 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 8238 break; 8239 case vmIntrinsics::_fmaF: 8240 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8241 a = argument(0); 8242 b = argument(1); 8243 c = argument(2); 8244 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 8245 break; 8246 default: 8247 fatal_unexpected_iid(id); break; 8248 } 8249 set_result(result); 8250 return true; 8251 } 8252 8253 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8254 // argument(0) is receiver 8255 Node* codePoint = argument(1); 8256 Node* n = nullptr; 8257 8258 switch (id) { 8259 case vmIntrinsics::_isDigit : 8260 n = new DigitNode(control(), codePoint); 8261 break; 8262 case vmIntrinsics::_isLowerCase : 8263 n = new LowerCaseNode(control(), codePoint); 8264 break; 8265 case vmIntrinsics::_isUpperCase : 8266 n = new UpperCaseNode(control(), codePoint); 8267 break; 8268 case vmIntrinsics::_isWhitespace : 8269 n = new WhitespaceNode(control(), codePoint); 8270 break; 8271 default: 8272 fatal_unexpected_iid(id); 8273 } 8274 8275 set_result(_gvn.transform(n)); 8276 return true; 8277 } 8278 8279 //------------------------------inline_fp_min_max------------------------------ 8280 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 8281 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 8282 8283 // The intrinsic should be used only when the API branches aren't predictable, 8284 // the last one performing the most important comparison. The following heuristic 8285 // uses the branch statistics to eventually bail out if necessary. 8286 8287 ciMethodData *md = callee()->method_data(); 8288 8289 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 8290 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 8291 8292 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 8293 // Bail out if the call-site didn't contribute enough to the statistics. 8294 return false; 8295 } 8296 8297 uint taken = 0, not_taken = 0; 8298 8299 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 8300 if (p->is_BranchData()) { 8301 taken = ((ciBranchData*)p)->taken(); 8302 not_taken = ((ciBranchData*)p)->not_taken(); 8303 } 8304 } 8305 8306 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 8307 balance = balance < 0 ? -balance : balance; 8308 if ( balance > 0.2 ) { 8309 // Bail out if the most important branch is predictable enough. 8310 return false; 8311 } 8312 } 8313 */ 8314 8315 Node *a = nullptr; 8316 Node *b = nullptr; 8317 Node *n = nullptr; 8318 switch (id) { 8319 case vmIntrinsics::_maxF: 8320 case vmIntrinsics::_minF: 8321 case vmIntrinsics::_maxF_strict: 8322 case vmIntrinsics::_minF_strict: 8323 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 8324 a = argument(0); 8325 b = argument(1); 8326 break; 8327 case vmIntrinsics::_maxD: 8328 case vmIntrinsics::_minD: 8329 case vmIntrinsics::_maxD_strict: 8330 case vmIntrinsics::_minD_strict: 8331 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 8332 a = round_double_node(argument(0)); 8333 b = round_double_node(argument(2)); 8334 break; 8335 default: 8336 fatal_unexpected_iid(id); 8337 break; 8338 } 8339 switch (id) { 8340 case vmIntrinsics::_maxF: 8341 case vmIntrinsics::_maxF_strict: 8342 n = new MaxFNode(a, b); 8343 break; 8344 case vmIntrinsics::_minF: 8345 case vmIntrinsics::_minF_strict: 8346 n = new MinFNode(a, b); 8347 break; 8348 case vmIntrinsics::_maxD: 8349 case vmIntrinsics::_maxD_strict: 8350 n = new MaxDNode(a, b); 8351 break; 8352 case vmIntrinsics::_minD: 8353 case vmIntrinsics::_minD_strict: 8354 n = new MinDNode(a, b); 8355 break; 8356 default: 8357 fatal_unexpected_iid(id); 8358 break; 8359 } 8360 set_result(_gvn.transform(n)); 8361 return true; 8362 } 8363 8364 bool LibraryCallKit::inline_profileBoolean() { 8365 Node* counts = argument(1); 8366 const TypeAryPtr* ary = nullptr; 8367 ciArray* aobj = nullptr; 8368 if (counts->is_Con() 8369 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8370 && (aobj = ary->const_oop()->as_array()) != nullptr 8371 && (aobj->length() == 2)) { 8372 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8373 jint false_cnt = aobj->element_value(0).as_int(); 8374 jint true_cnt = aobj->element_value(1).as_int(); 8375 8376 if (C->log() != nullptr) { 8377 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8378 false_cnt, true_cnt); 8379 } 8380 8381 if (false_cnt + true_cnt == 0) { 8382 // According to profile, never executed. 8383 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8384 Deoptimization::Action_reinterpret); 8385 return true; 8386 } 8387 8388 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8389 // is a number of each value occurrences. 8390 Node* result = argument(0); 8391 if (false_cnt == 0 || true_cnt == 0) { 8392 // According to profile, one value has been never seen. 8393 int expected_val = (false_cnt == 0) ? 1 : 0; 8394 8395 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8396 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8397 8398 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8399 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8400 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8401 8402 { // Slow path: uncommon trap for never seen value and then reexecute 8403 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8404 // the value has been seen at least once. 8405 PreserveJVMState pjvms(this); 8406 PreserveReexecuteState preexecs(this); 8407 jvms()->set_should_reexecute(true); 8408 8409 set_control(slow_path); 8410 set_i_o(i_o()); 8411 8412 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8413 Deoptimization::Action_reinterpret); 8414 } 8415 // The guard for never seen value enables sharpening of the result and 8416 // returning a constant. It allows to eliminate branches on the same value 8417 // later on. 8418 set_control(fast_path); 8419 result = intcon(expected_val); 8420 } 8421 // Stop profiling. 8422 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8423 // By replacing method body with profile data (represented as ProfileBooleanNode 8424 // on IR level) we effectively disable profiling. 8425 // It enables full speed execution once optimized code is generated. 8426 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8427 C->record_for_igvn(profile); 8428 set_result(profile); 8429 return true; 8430 } else { 8431 // Continue profiling. 8432 // Profile data isn't available at the moment. So, execute method's bytecode version. 8433 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8434 // is compiled and counters aren't available since corresponding MethodHandle 8435 // isn't a compile-time constant. 8436 return false; 8437 } 8438 } 8439 8440 bool LibraryCallKit::inline_isCompileConstant() { 8441 Node* n = argument(0); 8442 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8443 return true; 8444 } 8445 8446 //------------------------------- inline_getObjectSize -------------------------------------- 8447 // 8448 // Calculate the runtime size of the object/array. 8449 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8450 // 8451 bool LibraryCallKit::inline_getObjectSize() { 8452 Node* obj = argument(3); 8453 Node* klass_node = load_object_klass(obj); 8454 8455 jint layout_con = Klass::_lh_neutral_value; 8456 Node* layout_val = get_layout_helper(klass_node, layout_con); 8457 int layout_is_con = (layout_val == nullptr); 8458 8459 if (layout_is_con) { 8460 // Layout helper is constant, can figure out things at compile time. 8461 8462 if (Klass::layout_helper_is_instance(layout_con)) { 8463 // Instance case: layout_con contains the size itself. 8464 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8465 set_result(size); 8466 } else { 8467 // Array case: size is round(header + element_size*arraylength). 8468 // Since arraylength is different for every array instance, we have to 8469 // compute the whole thing at runtime. 8470 8471 Node* arr_length = load_array_length(obj); 8472 8473 int round_mask = MinObjAlignmentInBytes - 1; 8474 int hsize = Klass::layout_helper_header_size(layout_con); 8475 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8476 8477 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8478 round_mask = 0; // strength-reduce it if it goes away completely 8479 } 8480 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8481 Node* header_size = intcon(hsize + round_mask); 8482 8483 Node* lengthx = ConvI2X(arr_length); 8484 Node* headerx = ConvI2X(header_size); 8485 8486 Node* abody = lengthx; 8487 if (eshift != 0) { 8488 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8489 } 8490 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8491 if (round_mask != 0) { 8492 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8493 } 8494 size = ConvX2L(size); 8495 set_result(size); 8496 } 8497 } else { 8498 // Layout helper is not constant, need to test for array-ness at runtime. 8499 8500 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8501 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8502 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8503 record_for_igvn(result_reg); 8504 8505 Node* array_ctl = generate_array_guard(klass_node, nullptr); 8506 if (array_ctl != nullptr) { 8507 // Array case: size is round(header + element_size*arraylength). 8508 // Since arraylength is different for every array instance, we have to 8509 // compute the whole thing at runtime. 8510 8511 PreserveJVMState pjvms(this); 8512 set_control(array_ctl); 8513 Node* arr_length = load_array_length(obj); 8514 8515 int round_mask = MinObjAlignmentInBytes - 1; 8516 Node* mask = intcon(round_mask); 8517 8518 Node* hss = intcon(Klass::_lh_header_size_shift); 8519 Node* hsm = intcon(Klass::_lh_header_size_mask); 8520 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8521 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8522 header_size = _gvn.transform(new AddINode(header_size, mask)); 8523 8524 // There is no need to mask or shift this value. 8525 // The semantics of LShiftINode include an implicit mask to 0x1F. 8526 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8527 Node* elem_shift = layout_val; 8528 8529 Node* lengthx = ConvI2X(arr_length); 8530 Node* headerx = ConvI2X(header_size); 8531 8532 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8533 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8534 if (round_mask != 0) { 8535 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8536 } 8537 size = ConvX2L(size); 8538 8539 result_reg->init_req(_array_path, control()); 8540 result_val->init_req(_array_path, size); 8541 } 8542 8543 if (!stopped()) { 8544 // Instance case: the layout helper gives us instance size almost directly, 8545 // but we need to mask out the _lh_instance_slow_path_bit. 8546 Node* size = ConvI2X(layout_val); 8547 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8548 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8549 size = _gvn.transform(new AndXNode(size, mask)); 8550 size = ConvX2L(size); 8551 8552 result_reg->init_req(_instance_path, control()); 8553 result_val->init_req(_instance_path, size); 8554 } 8555 8556 set_result(result_reg, result_val); 8557 } 8558 8559 return true; 8560 } 8561 8562 //------------------------------- inline_blackhole -------------------------------------- 8563 // 8564 // Make sure all arguments to this node are alive. 8565 // This matches methods that were requested to be blackholed through compile commands. 8566 // 8567 bool LibraryCallKit::inline_blackhole() { 8568 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8569 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8570 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8571 8572 // Blackhole node pinches only the control, not memory. This allows 8573 // the blackhole to be pinned in the loop that computes blackholed 8574 // values, but have no other side effects, like breaking the optimizations 8575 // across the blackhole. 8576 8577 Node* bh = _gvn.transform(new BlackholeNode(control())); 8578 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8579 8580 // Bind call arguments as blackhole arguments to keep them alive 8581 uint nargs = callee()->arg_size(); 8582 for (uint i = 0; i < nargs; i++) { 8583 bh->add_req(argument(i)); 8584 } 8585 8586 return true; 8587 }