1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "ci/ciSymbols.hpp" 29 #include "classfile/vmIntrinsics.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/accessDecorators.hpp" 36 #include "oops/klass.inline.hpp" 37 #include "oops/objArrayKlass.hpp" 38 #include "opto/addnode.hpp" 39 #include "opto/arraycopynode.hpp" 40 #include "opto/c2compiler.hpp" 41 #include "opto/castnode.hpp" 42 #include "opto/cfgnode.hpp" 43 #include "opto/convertnode.hpp" 44 #include "opto/countbitsnode.hpp" 45 #include "opto/idealKit.hpp" 46 #include "opto/library_call.hpp" 47 #include "opto/mathexactnode.hpp" 48 #include "opto/mulnode.hpp" 49 #include "opto/narrowptrnode.hpp" 50 #include "opto/opaquenode.hpp" 51 #include "opto/parse.hpp" 52 #include "opto/runtime.hpp" 53 #include "opto/rootnode.hpp" 54 #include "opto/subnode.hpp" 55 #include "opto/vectornode.hpp" 56 #include "prims/jvmtiExport.hpp" 57 #include "prims/jvmtiThreadState.hpp" 58 #include "prims/unsafe.hpp" 59 #include "runtime/jniHandles.inline.hpp" 60 #include "runtime/objectMonitor.hpp" 61 #include "runtime/sharedRuntime.hpp" 62 #include "runtime/stubRoutines.hpp" 63 #include "utilities/macros.hpp" 64 #include "utilities/powerOfTwo.hpp" 65 66 //---------------------------make_vm_intrinsic---------------------------- 67 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 68 vmIntrinsicID id = m->intrinsic_id(); 69 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 70 71 if (!m->is_loaded()) { 72 // Do not attempt to inline unloaded methods. 73 return nullptr; 74 } 75 76 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 77 bool is_available = false; 78 79 { 80 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 81 // the compiler must transition to '_thread_in_vm' state because both 82 // methods access VM-internal data. 83 VM_ENTRY_MARK; 84 methodHandle mh(THREAD, m->get_Method()); 85 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 86 if (is_available && is_virtual) { 87 is_available = vmIntrinsics::does_virtual_dispatch(id); 88 } 89 } 90 91 if (is_available) { 92 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 93 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 94 return new LibraryIntrinsic(m, is_virtual, 95 vmIntrinsics::predicates_needed(id), 96 vmIntrinsics::does_virtual_dispatch(id), 97 id); 98 } else { 99 return nullptr; 100 } 101 } 102 103 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 104 LibraryCallKit kit(jvms, this); 105 Compile* C = kit.C; 106 int nodes = C->unique(); 107 #ifndef PRODUCT 108 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 109 char buf[1000]; 110 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 111 tty->print_cr("Intrinsic %s", str); 112 } 113 #endif 114 ciMethod* callee = kit.callee(); 115 const int bci = kit.bci(); 116 #ifdef ASSERT 117 Node* ctrl = kit.control(); 118 #endif 119 // Try to inline the intrinsic. 120 if (callee->check_intrinsic_candidate() && 121 kit.try_to_inline(_last_predicate)) { 122 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 123 : "(intrinsic)"; 124 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 125 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 126 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 127 if (C->log()) { 128 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 129 vmIntrinsics::name_at(intrinsic_id()), 130 (is_virtual() ? " virtual='1'" : ""), 131 C->unique() - nodes); 132 } 133 // Push the result from the inlined method onto the stack. 134 kit.push_result(); 135 return kit.transfer_exceptions_into_jvms(); 136 } 137 138 // The intrinsic bailed out 139 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 140 if (jvms->has_method()) { 141 // Not a root compile. 142 const char* msg; 143 if (callee->intrinsic_candidate()) { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 145 } else { 146 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 147 : "failed to inline (intrinsic), method not annotated"; 148 } 149 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 150 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 151 } else { 152 // Root compile 153 ResourceMark rm; 154 stringStream msg_stream; 155 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 156 vmIntrinsics::name_at(intrinsic_id()), 157 is_virtual() ? " (virtual)" : "", bci); 158 const char *msg = msg_stream.freeze(); 159 log_debug(jit, inlining)("%s", msg); 160 if (C->print_intrinsics() || C->print_inlining()) { 161 tty->print("%s", msg); 162 } 163 } 164 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 165 166 return nullptr; 167 } 168 169 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 170 LibraryCallKit kit(jvms, this); 171 Compile* C = kit.C; 172 int nodes = C->unique(); 173 _last_predicate = predicate; 174 #ifndef PRODUCT 175 assert(is_predicated() && predicate < predicates_count(), "sanity"); 176 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 177 char buf[1000]; 178 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 179 tty->print_cr("Predicate for intrinsic %s", str); 180 } 181 #endif 182 ciMethod* callee = kit.callee(); 183 const int bci = kit.bci(); 184 185 Node* slow_ctl = kit.try_to_predicate(predicate); 186 if (!kit.failing()) { 187 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 188 : "(intrinsic, predicate)"; 189 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 190 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 191 192 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 193 if (C->log()) { 194 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 195 vmIntrinsics::name_at(intrinsic_id()), 196 (is_virtual() ? " virtual='1'" : ""), 197 C->unique() - nodes); 198 } 199 return slow_ctl; // Could be null if the check folds. 200 } 201 202 // The intrinsic bailed out 203 if (jvms->has_method()) { 204 // Not a root compile. 205 const char* msg = "failed to generate predicate for intrinsic"; 206 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 207 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 208 } else { 209 // Root compile 210 ResourceMark rm; 211 stringStream msg_stream; 212 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 213 vmIntrinsics::name_at(intrinsic_id()), 214 is_virtual() ? " (virtual)" : "", bci); 215 const char *msg = msg_stream.freeze(); 216 log_debug(jit, inlining)("%s", msg); 217 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 218 } 219 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 220 return nullptr; 221 } 222 223 bool LibraryCallKit::try_to_inline(int predicate) { 224 // Handle symbolic names for otherwise undistinguished boolean switches: 225 const bool is_store = true; 226 const bool is_compress = true; 227 const bool is_static = true; 228 const bool is_volatile = true; 229 230 if (!jvms()->has_method()) { 231 // Root JVMState has a null method. 232 assert(map()->memory()->Opcode() == Op_Parm, ""); 233 // Insert the memory aliasing node 234 set_all_memory(reset_memory()); 235 } 236 assert(merged_memory(), ""); 237 238 switch (intrinsic_id()) { 239 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 240 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 241 case vmIntrinsics::_getClass: return inline_native_getClass(); 242 243 case vmIntrinsics::_ceil: 244 case vmIntrinsics::_floor: 245 case vmIntrinsics::_rint: 246 case vmIntrinsics::_dsin: 247 case vmIntrinsics::_dcos: 248 case vmIntrinsics::_dtan: 249 case vmIntrinsics::_dtanh: 250 case vmIntrinsics::_dabs: 251 case vmIntrinsics::_fabs: 252 case vmIntrinsics::_iabs: 253 case vmIntrinsics::_labs: 254 case vmIntrinsics::_datan2: 255 case vmIntrinsics::_dsqrt: 256 case vmIntrinsics::_dsqrt_strict: 257 case vmIntrinsics::_dexp: 258 case vmIntrinsics::_dlog: 259 case vmIntrinsics::_dlog10: 260 case vmIntrinsics::_dpow: 261 case vmIntrinsics::_dcopySign: 262 case vmIntrinsics::_fcopySign: 263 case vmIntrinsics::_dsignum: 264 case vmIntrinsics::_roundF: 265 case vmIntrinsics::_roundD: 266 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 267 268 case vmIntrinsics::_notify: 269 case vmIntrinsics::_notifyAll: 270 return inline_notify(intrinsic_id()); 271 272 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 273 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 274 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 275 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 276 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 277 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 278 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 279 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 280 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 281 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 282 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 283 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 284 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 285 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 286 287 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 288 289 case vmIntrinsics::_arraySort: return inline_array_sort(); 290 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 291 292 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 293 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 294 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 295 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 296 297 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 298 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 299 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 300 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 301 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 302 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 303 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 304 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 305 306 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 307 308 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 309 310 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 311 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 312 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 313 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 314 315 case vmIntrinsics::_compressStringC: 316 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 317 case vmIntrinsics::_inflateStringC: 318 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 319 320 case vmIntrinsics::_makePrivateBuffer: return inline_unsafe_make_private_buffer(); 321 case vmIntrinsics::_finishPrivateBuffer: return inline_unsafe_finish_private_buffer(); 322 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 323 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 324 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 325 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 326 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 327 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 328 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 329 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 330 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 331 case vmIntrinsics::_getValue: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false, true); 332 333 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 334 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 335 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 336 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 337 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 338 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 339 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 340 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 341 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 342 case vmIntrinsics::_putValue: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false, true); 343 344 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 345 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 346 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 347 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 348 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 349 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 350 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 351 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 352 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 353 354 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 355 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 356 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 357 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 358 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 359 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 360 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 361 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 362 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 363 364 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 365 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 366 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 367 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 368 369 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 370 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 371 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 372 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 373 374 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 375 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 376 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 377 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 378 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 379 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 380 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 381 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 382 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 383 384 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 385 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 386 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 387 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 388 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 389 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 390 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 391 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 392 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 393 394 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 395 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 396 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 397 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 398 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 399 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 400 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 401 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 402 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 403 404 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 405 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 406 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 407 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 408 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 409 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 410 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 411 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 412 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 413 414 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 415 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 416 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 417 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 418 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 419 420 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 421 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 422 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 423 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 424 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 425 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 426 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 427 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 428 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 429 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 430 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 431 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 432 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 433 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 434 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 435 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 436 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 437 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 438 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 439 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 440 441 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 442 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 443 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 444 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 445 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 446 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 447 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 448 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 449 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 450 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 451 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 452 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 453 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 454 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 455 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 456 457 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 458 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 459 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 460 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 461 462 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 463 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 464 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 465 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 466 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 467 468 case vmIntrinsics::_loadFence: 469 case vmIntrinsics::_storeFence: 470 case vmIntrinsics::_storeStoreFence: 471 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 472 473 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 474 475 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 476 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 477 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 478 479 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 480 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 481 482 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 483 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 484 485 #if INCLUDE_JVMTI 486 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 487 "notifyJvmtiStart", true, false); 488 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 489 "notifyJvmtiEnd", false, true); 490 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 491 "notifyJvmtiMount", false, false); 492 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 493 "notifyJvmtiUnmount", false, false); 494 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 495 #endif 496 497 #ifdef JFR_HAVE_INTRINSICS 498 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 499 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 500 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 501 #endif 502 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 503 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 504 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 505 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 506 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 507 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 508 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 509 case vmIntrinsics::_isFlatArray: return inline_unsafe_isFlatArray(); 510 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 511 case vmIntrinsics::_getLength: return inline_native_getLength(); 512 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 513 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 514 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 515 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 516 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 517 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 518 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 519 520 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 521 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 522 case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false); 523 case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true); 524 case vmIntrinsics::_newNullableAtomicArray: return inline_newArray(/* null_free */ false, /* atomic */ true); 525 526 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 527 528 case vmIntrinsics::_isInstance: 529 case vmIntrinsics::_isHidden: 530 case vmIntrinsics::_getSuperclass: 531 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 532 533 case vmIntrinsics::_floatToRawIntBits: 534 case vmIntrinsics::_floatToIntBits: 535 case vmIntrinsics::_intBitsToFloat: 536 case vmIntrinsics::_doubleToRawLongBits: 537 case vmIntrinsics::_doubleToLongBits: 538 case vmIntrinsics::_longBitsToDouble: 539 case vmIntrinsics::_floatToFloat16: 540 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 541 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 542 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 543 case vmIntrinsics::_floatIsFinite: 544 case vmIntrinsics::_floatIsInfinite: 545 case vmIntrinsics::_doubleIsFinite: 546 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 547 548 case vmIntrinsics::_numberOfLeadingZeros_i: 549 case vmIntrinsics::_numberOfLeadingZeros_l: 550 case vmIntrinsics::_numberOfTrailingZeros_i: 551 case vmIntrinsics::_numberOfTrailingZeros_l: 552 case vmIntrinsics::_bitCount_i: 553 case vmIntrinsics::_bitCount_l: 554 case vmIntrinsics::_reverse_i: 555 case vmIntrinsics::_reverse_l: 556 case vmIntrinsics::_reverseBytes_i: 557 case vmIntrinsics::_reverseBytes_l: 558 case vmIntrinsics::_reverseBytes_s: 559 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 560 561 case vmIntrinsics::_compress_i: 562 case vmIntrinsics::_compress_l: 563 case vmIntrinsics::_expand_i: 564 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 565 566 case vmIntrinsics::_compareUnsigned_i: 567 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 568 569 case vmIntrinsics::_divideUnsigned_i: 570 case vmIntrinsics::_divideUnsigned_l: 571 case vmIntrinsics::_remainderUnsigned_i: 572 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 573 574 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 575 576 case vmIntrinsics::_Reference_get: return inline_reference_get(); 577 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 578 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 579 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 580 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 581 582 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 583 584 case vmIntrinsics::_aescrypt_encryptBlock: 585 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 586 587 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 588 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 589 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 590 591 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 592 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 593 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 594 595 case vmIntrinsics::_counterMode_AESCrypt: 596 return inline_counterMode_AESCrypt(intrinsic_id()); 597 598 case vmIntrinsics::_galoisCounterMode_AESCrypt: 599 return inline_galoisCounterMode_AESCrypt(); 600 601 case vmIntrinsics::_md5_implCompress: 602 case vmIntrinsics::_sha_implCompress: 603 case vmIntrinsics::_sha2_implCompress: 604 case vmIntrinsics::_sha5_implCompress: 605 case vmIntrinsics::_sha3_implCompress: 606 return inline_digestBase_implCompress(intrinsic_id()); 607 case vmIntrinsics::_double_keccak: 608 return inline_double_keccak(); 609 610 case vmIntrinsics::_digestBase_implCompressMB: 611 return inline_digestBase_implCompressMB(predicate); 612 613 case vmIntrinsics::_multiplyToLen: 614 return inline_multiplyToLen(); 615 616 case vmIntrinsics::_squareToLen: 617 return inline_squareToLen(); 618 619 case vmIntrinsics::_mulAdd: 620 return inline_mulAdd(); 621 622 case vmIntrinsics::_montgomeryMultiply: 623 return inline_montgomeryMultiply(); 624 case vmIntrinsics::_montgomerySquare: 625 return inline_montgomerySquare(); 626 627 case vmIntrinsics::_bigIntegerRightShiftWorker: 628 return inline_bigIntegerShift(true); 629 case vmIntrinsics::_bigIntegerLeftShiftWorker: 630 return inline_bigIntegerShift(false); 631 632 case vmIntrinsics::_vectorizedMismatch: 633 return inline_vectorizedMismatch(); 634 635 case vmIntrinsics::_ghash_processBlocks: 636 return inline_ghash_processBlocks(); 637 case vmIntrinsics::_chacha20Block: 638 return inline_chacha20Block(); 639 case vmIntrinsics::_kyberNtt: 640 return inline_kyberNtt(); 641 case vmIntrinsics::_kyberInverseNtt: 642 return inline_kyberInverseNtt(); 643 case vmIntrinsics::_kyberNttMult: 644 return inline_kyberNttMult(); 645 case vmIntrinsics::_kyberAddPoly_2: 646 return inline_kyberAddPoly_2(); 647 case vmIntrinsics::_kyberAddPoly_3: 648 return inline_kyberAddPoly_3(); 649 case vmIntrinsics::_kyber12To16: 650 return inline_kyber12To16(); 651 case vmIntrinsics::_kyberBarrettReduce: 652 return inline_kyberBarrettReduce(); 653 case vmIntrinsics::_dilithiumAlmostNtt: 654 return inline_dilithiumAlmostNtt(); 655 case vmIntrinsics::_dilithiumAlmostInverseNtt: 656 return inline_dilithiumAlmostInverseNtt(); 657 case vmIntrinsics::_dilithiumNttMult: 658 return inline_dilithiumNttMult(); 659 case vmIntrinsics::_dilithiumMontMulByConstant: 660 return inline_dilithiumMontMulByConstant(); 661 case vmIntrinsics::_dilithiumDecomposePoly: 662 return inline_dilithiumDecomposePoly(); 663 case vmIntrinsics::_base64_encodeBlock: 664 return inline_base64_encodeBlock(); 665 case vmIntrinsics::_base64_decodeBlock: 666 return inline_base64_decodeBlock(); 667 case vmIntrinsics::_poly1305_processBlocks: 668 return inline_poly1305_processBlocks(); 669 case vmIntrinsics::_intpoly_montgomeryMult_P256: 670 return inline_intpoly_montgomeryMult_P256(); 671 case vmIntrinsics::_intpoly_assign: 672 return inline_intpoly_assign(); 673 case vmIntrinsics::_encodeISOArray: 674 case vmIntrinsics::_encodeByteISOArray: 675 return inline_encodeISOArray(false); 676 case vmIntrinsics::_encodeAsciiArray: 677 return inline_encodeISOArray(true); 678 679 case vmIntrinsics::_updateCRC32: 680 return inline_updateCRC32(); 681 case vmIntrinsics::_updateBytesCRC32: 682 return inline_updateBytesCRC32(); 683 case vmIntrinsics::_updateByteBufferCRC32: 684 return inline_updateByteBufferCRC32(); 685 686 case vmIntrinsics::_updateBytesCRC32C: 687 return inline_updateBytesCRC32C(); 688 case vmIntrinsics::_updateDirectByteBufferCRC32C: 689 return inline_updateDirectByteBufferCRC32C(); 690 691 case vmIntrinsics::_updateBytesAdler32: 692 return inline_updateBytesAdler32(); 693 case vmIntrinsics::_updateByteBufferAdler32: 694 return inline_updateByteBufferAdler32(); 695 696 case vmIntrinsics::_profileBoolean: 697 return inline_profileBoolean(); 698 case vmIntrinsics::_isCompileConstant: 699 return inline_isCompileConstant(); 700 701 case vmIntrinsics::_countPositives: 702 return inline_countPositives(); 703 704 case vmIntrinsics::_fmaD: 705 case vmIntrinsics::_fmaF: 706 return inline_fma(intrinsic_id()); 707 708 case vmIntrinsics::_isDigit: 709 case vmIntrinsics::_isLowerCase: 710 case vmIntrinsics::_isUpperCase: 711 case vmIntrinsics::_isWhitespace: 712 return inline_character_compare(intrinsic_id()); 713 714 case vmIntrinsics::_min: 715 case vmIntrinsics::_max: 716 case vmIntrinsics::_min_strict: 717 case vmIntrinsics::_max_strict: 718 case vmIntrinsics::_minL: 719 case vmIntrinsics::_maxL: 720 case vmIntrinsics::_minF: 721 case vmIntrinsics::_maxF: 722 case vmIntrinsics::_minD: 723 case vmIntrinsics::_maxD: 724 case vmIntrinsics::_minF_strict: 725 case vmIntrinsics::_maxF_strict: 726 case vmIntrinsics::_minD_strict: 727 case vmIntrinsics::_maxD_strict: 728 return inline_min_max(intrinsic_id()); 729 730 case vmIntrinsics::_VectorUnaryOp: 731 return inline_vector_nary_operation(1); 732 case vmIntrinsics::_VectorBinaryOp: 733 return inline_vector_nary_operation(2); 734 case vmIntrinsics::_VectorTernaryOp: 735 return inline_vector_nary_operation(3); 736 case vmIntrinsics::_VectorFromBitsCoerced: 737 return inline_vector_frombits_coerced(); 738 case vmIntrinsics::_VectorMaskOp: 739 return inline_vector_mask_operation(); 740 case vmIntrinsics::_VectorLoadOp: 741 return inline_vector_mem_operation(/*is_store=*/false); 742 case vmIntrinsics::_VectorLoadMaskedOp: 743 return inline_vector_mem_masked_operation(/*is_store*/false); 744 case vmIntrinsics::_VectorStoreOp: 745 return inline_vector_mem_operation(/*is_store=*/true); 746 case vmIntrinsics::_VectorStoreMaskedOp: 747 return inline_vector_mem_masked_operation(/*is_store=*/true); 748 case vmIntrinsics::_VectorGatherOp: 749 return inline_vector_gather_scatter(/*is_scatter*/ false); 750 case vmIntrinsics::_VectorScatterOp: 751 return inline_vector_gather_scatter(/*is_scatter*/ true); 752 case vmIntrinsics::_VectorReductionCoerced: 753 return inline_vector_reduction(); 754 case vmIntrinsics::_VectorTest: 755 return inline_vector_test(); 756 case vmIntrinsics::_VectorBlend: 757 return inline_vector_blend(); 758 case vmIntrinsics::_VectorRearrange: 759 return inline_vector_rearrange(); 760 case vmIntrinsics::_VectorSelectFrom: 761 return inline_vector_select_from(); 762 case vmIntrinsics::_VectorCompare: 763 return inline_vector_compare(); 764 case vmIntrinsics::_VectorBroadcastInt: 765 return inline_vector_broadcast_int(); 766 case vmIntrinsics::_VectorConvert: 767 return inline_vector_convert(); 768 case vmIntrinsics::_VectorInsert: 769 return inline_vector_insert(); 770 case vmIntrinsics::_VectorExtract: 771 return inline_vector_extract(); 772 case vmIntrinsics::_VectorCompressExpand: 773 return inline_vector_compress_expand(); 774 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 775 return inline_vector_select_from_two_vectors(); 776 case vmIntrinsics::_IndexVector: 777 return inline_index_vector(); 778 case vmIntrinsics::_IndexPartiallyInUpperRange: 779 return inline_index_partially_in_upper_range(); 780 781 case vmIntrinsics::_getObjectSize: 782 return inline_getObjectSize(); 783 784 case vmIntrinsics::_blackhole: 785 return inline_blackhole(); 786 787 default: 788 // If you get here, it may be that someone has added a new intrinsic 789 // to the list in vmIntrinsics.hpp without implementing it here. 790 #ifndef PRODUCT 791 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 792 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 793 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 794 } 795 #endif 796 return false; 797 } 798 } 799 800 Node* LibraryCallKit::try_to_predicate(int predicate) { 801 if (!jvms()->has_method()) { 802 // Root JVMState has a null method. 803 assert(map()->memory()->Opcode() == Op_Parm, ""); 804 // Insert the memory aliasing node 805 set_all_memory(reset_memory()); 806 } 807 assert(merged_memory(), ""); 808 809 switch (intrinsic_id()) { 810 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 811 return inline_cipherBlockChaining_AESCrypt_predicate(false); 812 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 813 return inline_cipherBlockChaining_AESCrypt_predicate(true); 814 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 815 return inline_electronicCodeBook_AESCrypt_predicate(false); 816 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 817 return inline_electronicCodeBook_AESCrypt_predicate(true); 818 case vmIntrinsics::_counterMode_AESCrypt: 819 return inline_counterMode_AESCrypt_predicate(); 820 case vmIntrinsics::_digestBase_implCompressMB: 821 return inline_digestBase_implCompressMB_predicate(predicate); 822 case vmIntrinsics::_galoisCounterMode_AESCrypt: 823 return inline_galoisCounterMode_AESCrypt_predicate(); 824 825 default: 826 // If you get here, it may be that someone has added a new intrinsic 827 // to the list in vmIntrinsics.hpp without implementing it here. 828 #ifndef PRODUCT 829 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 830 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 831 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 832 } 833 #endif 834 Node* slow_ctl = control(); 835 set_control(top()); // No fast path intrinsic 836 return slow_ctl; 837 } 838 } 839 840 //------------------------------set_result------------------------------- 841 // Helper function for finishing intrinsics. 842 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 843 record_for_igvn(region); 844 set_control(_gvn.transform(region)); 845 set_result( _gvn.transform(value)); 846 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 847 } 848 849 //------------------------------generate_guard--------------------------- 850 // Helper function for generating guarded fast-slow graph structures. 851 // The given 'test', if true, guards a slow path. If the test fails 852 // then a fast path can be taken. (We generally hope it fails.) 853 // In all cases, GraphKit::control() is updated to the fast path. 854 // The returned value represents the control for the slow path. 855 // The return value is never 'top'; it is either a valid control 856 // or null if it is obvious that the slow path can never be taken. 857 // Also, if region and the slow control are not null, the slow edge 858 // is appended to the region. 859 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 860 if (stopped()) { 861 // Already short circuited. 862 return nullptr; 863 } 864 865 // Build an if node and its projections. 866 // If test is true we take the slow path, which we assume is uncommon. 867 if (_gvn.type(test) == TypeInt::ZERO) { 868 // The slow branch is never taken. No need to build this guard. 869 return nullptr; 870 } 871 872 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 873 874 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 875 if (if_slow == top()) { 876 // The slow branch is never taken. No need to build this guard. 877 return nullptr; 878 } 879 880 if (region != nullptr) 881 region->add_req(if_slow); 882 883 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 884 set_control(if_fast); 885 886 return if_slow; 887 } 888 889 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 890 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 891 } 892 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 893 return generate_guard(test, region, PROB_FAIR); 894 } 895 896 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 897 Node* *pos_index) { 898 if (stopped()) 899 return nullptr; // already stopped 900 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 901 return nullptr; // index is already adequately typed 902 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 903 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 904 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 905 if (is_neg != nullptr && pos_index != nullptr) { 906 // Emulate effect of Parse::adjust_map_after_if. 907 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 908 (*pos_index) = _gvn.transform(ccast); 909 } 910 return is_neg; 911 } 912 913 // Make sure that 'position' is a valid limit index, in [0..length]. 914 // There are two equivalent plans for checking this: 915 // A. (offset + copyLength) unsigned<= arrayLength 916 // B. offset <= (arrayLength - copyLength) 917 // We require that all of the values above, except for the sum and 918 // difference, are already known to be non-negative. 919 // Plan A is robust in the face of overflow, if offset and copyLength 920 // are both hugely positive. 921 // 922 // Plan B is less direct and intuitive, but it does not overflow at 923 // all, since the difference of two non-negatives is always 924 // representable. Whenever Java methods must perform the equivalent 925 // check they generally use Plan B instead of Plan A. 926 // For the moment we use Plan A. 927 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 928 Node* subseq_length, 929 Node* array_length, 930 RegionNode* region) { 931 if (stopped()) 932 return nullptr; // already stopped 933 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 934 if (zero_offset && subseq_length->eqv_uncast(array_length)) 935 return nullptr; // common case of whole-array copy 936 Node* last = subseq_length; 937 if (!zero_offset) // last += offset 938 last = _gvn.transform(new AddINode(last, offset)); 939 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 940 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 941 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 942 return is_over; 943 } 944 945 // Emit range checks for the given String.value byte array 946 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 947 if (stopped()) { 948 return; // already stopped 949 } 950 RegionNode* bailout = new RegionNode(1); 951 record_for_igvn(bailout); 952 if (char_count) { 953 // Convert char count to byte count 954 count = _gvn.transform(new LShiftINode(count, intcon(1))); 955 } 956 957 // Offset and count must not be negative 958 generate_negative_guard(offset, bailout); 959 generate_negative_guard(count, bailout); 960 // Offset + count must not exceed length of array 961 generate_limit_guard(offset, count, load_array_length(array), bailout); 962 963 if (bailout->req() > 1) { 964 PreserveJVMState pjvms(this); 965 set_control(_gvn.transform(bailout)); 966 uncommon_trap(Deoptimization::Reason_intrinsic, 967 Deoptimization::Action_maybe_recompile); 968 } 969 } 970 971 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 972 bool is_immutable) { 973 ciKlass* thread_klass = env()->Thread_klass(); 974 const Type* thread_type 975 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 976 977 Node* thread = _gvn.transform(new ThreadLocalNode()); 978 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 979 tls_output = thread; 980 981 Node* thread_obj_handle 982 = (is_immutable 983 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 984 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 985 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 986 thread_obj_handle = _gvn.transform(thread_obj_handle); 987 988 DecoratorSet decorators = IN_NATIVE; 989 if (is_immutable) { 990 decorators |= C2_IMMUTABLE_MEMORY; 991 } 992 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 993 } 994 995 //--------------------------generate_current_thread-------------------- 996 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 997 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 998 /*is_immutable*/false); 999 } 1000 1001 //--------------------------generate_virtual_thread-------------------- 1002 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 1003 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 1004 !C->method()->changes_current_thread()); 1005 } 1006 1007 //------------------------------make_string_method_node------------------------ 1008 // Helper method for String intrinsic functions. This version is called with 1009 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1010 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1011 // containing the lengths of str1 and str2. 1012 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1013 Node* result = nullptr; 1014 switch (opcode) { 1015 case Op_StrIndexOf: 1016 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1017 str1_start, cnt1, str2_start, cnt2, ae); 1018 break; 1019 case Op_StrComp: 1020 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1021 str1_start, cnt1, str2_start, cnt2, ae); 1022 break; 1023 case Op_StrEquals: 1024 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1025 // Use the constant length if there is one because optimized match rule may exist. 1026 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1027 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1028 break; 1029 default: 1030 ShouldNotReachHere(); 1031 return nullptr; 1032 } 1033 1034 // All these intrinsics have checks. 1035 C->set_has_split_ifs(true); // Has chance for split-if optimization 1036 clear_upper_avx(); 1037 1038 return _gvn.transform(result); 1039 } 1040 1041 //------------------------------inline_string_compareTo------------------------ 1042 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1043 Node* arg1 = argument(0); 1044 Node* arg2 = argument(1); 1045 1046 arg1 = must_be_not_null(arg1, true); 1047 arg2 = must_be_not_null(arg2, true); 1048 1049 // Get start addr and length of first argument 1050 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1051 Node* arg1_cnt = load_array_length(arg1); 1052 1053 // Get start addr and length of second argument 1054 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1055 Node* arg2_cnt = load_array_length(arg2); 1056 1057 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1058 set_result(result); 1059 return true; 1060 } 1061 1062 //------------------------------inline_string_equals------------------------ 1063 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1064 Node* arg1 = argument(0); 1065 Node* arg2 = argument(1); 1066 1067 // paths (plus control) merge 1068 RegionNode* region = new RegionNode(3); 1069 Node* phi = new PhiNode(region, TypeInt::BOOL); 1070 1071 if (!stopped()) { 1072 1073 arg1 = must_be_not_null(arg1, true); 1074 arg2 = must_be_not_null(arg2, true); 1075 1076 // Get start addr and length of first argument 1077 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1078 Node* arg1_cnt = load_array_length(arg1); 1079 1080 // Get start addr and length of second argument 1081 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1082 Node* arg2_cnt = load_array_length(arg2); 1083 1084 // Check for arg1_cnt != arg2_cnt 1085 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1086 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1087 Node* if_ne = generate_slow_guard(bol, nullptr); 1088 if (if_ne != nullptr) { 1089 phi->init_req(2, intcon(0)); 1090 region->init_req(2, if_ne); 1091 } 1092 1093 // Check for count == 0 is done by assembler code for StrEquals. 1094 1095 if (!stopped()) { 1096 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1097 phi->init_req(1, equals); 1098 region->init_req(1, control()); 1099 } 1100 } 1101 1102 // post merge 1103 set_control(_gvn.transform(region)); 1104 record_for_igvn(region); 1105 1106 set_result(_gvn.transform(phi)); 1107 return true; 1108 } 1109 1110 //------------------------------inline_array_equals---------------------------- 1111 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1112 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1113 Node* arg1 = argument(0); 1114 Node* arg2 = argument(1); 1115 1116 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1117 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1118 clear_upper_avx(); 1119 1120 return true; 1121 } 1122 1123 1124 //------------------------------inline_countPositives------------------------------ 1125 bool LibraryCallKit::inline_countPositives() { 1126 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1127 return false; 1128 } 1129 1130 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1131 // no receiver since it is static method 1132 Node* ba = argument(0); 1133 Node* offset = argument(1); 1134 Node* len = argument(2); 1135 1136 ba = must_be_not_null(ba, true); 1137 1138 // Range checks 1139 generate_string_range_check(ba, offset, len, false); 1140 if (stopped()) { 1141 return true; 1142 } 1143 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1144 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1145 set_result(_gvn.transform(result)); 1146 clear_upper_avx(); 1147 return true; 1148 } 1149 1150 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1151 Node* index = argument(0); 1152 Node* length = bt == T_INT ? argument(1) : argument(2); 1153 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1154 return false; 1155 } 1156 1157 // check that length is positive 1158 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1159 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1160 1161 { 1162 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1163 uncommon_trap(Deoptimization::Reason_intrinsic, 1164 Deoptimization::Action_make_not_entrant); 1165 } 1166 1167 if (stopped()) { 1168 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1169 return true; 1170 } 1171 1172 // length is now known positive, add a cast node to make this explicit 1173 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1174 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1175 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1176 ConstraintCastNode::RegularDependency, bt); 1177 casted_length = _gvn.transform(casted_length); 1178 replace_in_map(length, casted_length); 1179 length = casted_length; 1180 1181 // Use an unsigned comparison for the range check itself 1182 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1183 BoolTest::mask btest = BoolTest::lt; 1184 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1185 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1186 _gvn.set_type(rc, rc->Value(&_gvn)); 1187 if (!rc_bool->is_Con()) { 1188 record_for_igvn(rc); 1189 } 1190 set_control(_gvn.transform(new IfTrueNode(rc))); 1191 { 1192 PreserveJVMState pjvms(this); 1193 set_control(_gvn.transform(new IfFalseNode(rc))); 1194 uncommon_trap(Deoptimization::Reason_range_check, 1195 Deoptimization::Action_make_not_entrant); 1196 } 1197 1198 if (stopped()) { 1199 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1200 return true; 1201 } 1202 1203 // index is now known to be >= 0 and < length, cast it 1204 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1205 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1206 ConstraintCastNode::RegularDependency, bt); 1207 result = _gvn.transform(result); 1208 set_result(result); 1209 replace_in_map(index, result); 1210 return true; 1211 } 1212 1213 //------------------------------inline_string_indexOf------------------------ 1214 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1215 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1216 return false; 1217 } 1218 Node* src = argument(0); 1219 Node* tgt = argument(1); 1220 1221 // Make the merge point 1222 RegionNode* result_rgn = new RegionNode(4); 1223 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1224 1225 src = must_be_not_null(src, true); 1226 tgt = must_be_not_null(tgt, true); 1227 1228 // Get start addr and length of source string 1229 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1230 Node* src_count = load_array_length(src); 1231 1232 // Get start addr and length of substring 1233 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1234 Node* tgt_count = load_array_length(tgt); 1235 1236 Node* result = nullptr; 1237 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1238 1239 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1240 // Divide src size by 2 if String is UTF16 encoded 1241 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1242 } 1243 if (ae == StrIntrinsicNode::UU) { 1244 // Divide substring size by 2 if String is UTF16 encoded 1245 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1246 } 1247 1248 if (call_opt_stub) { 1249 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1250 StubRoutines::_string_indexof_array[ae], 1251 "stringIndexOf", TypePtr::BOTTOM, src_start, 1252 src_count, tgt_start, tgt_count); 1253 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1254 } else { 1255 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1256 result_rgn, result_phi, ae); 1257 } 1258 if (result != nullptr) { 1259 result_phi->init_req(3, result); 1260 result_rgn->init_req(3, control()); 1261 } 1262 set_control(_gvn.transform(result_rgn)); 1263 record_for_igvn(result_rgn); 1264 set_result(_gvn.transform(result_phi)); 1265 1266 return true; 1267 } 1268 1269 //-----------------------------inline_string_indexOfI----------------------- 1270 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1271 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1272 return false; 1273 } 1274 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1275 return false; 1276 } 1277 1278 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1279 Node* src = argument(0); // byte[] 1280 Node* src_count = argument(1); // char count 1281 Node* tgt = argument(2); // byte[] 1282 Node* tgt_count = argument(3); // char count 1283 Node* from_index = argument(4); // char index 1284 1285 src = must_be_not_null(src, true); 1286 tgt = must_be_not_null(tgt, true); 1287 1288 // Multiply byte array index by 2 if String is UTF16 encoded 1289 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1290 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1291 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1292 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1293 1294 // Range checks 1295 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1296 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1297 if (stopped()) { 1298 return true; 1299 } 1300 1301 RegionNode* region = new RegionNode(5); 1302 Node* phi = new PhiNode(region, TypeInt::INT); 1303 Node* result = nullptr; 1304 1305 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1306 1307 if (call_opt_stub) { 1308 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1309 StubRoutines::_string_indexof_array[ae], 1310 "stringIndexOf", TypePtr::BOTTOM, src_start, 1311 src_count, tgt_start, tgt_count); 1312 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1313 } else { 1314 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1315 region, phi, ae); 1316 } 1317 if (result != nullptr) { 1318 // The result is index relative to from_index if substring was found, -1 otherwise. 1319 // Generate code which will fold into cmove. 1320 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1321 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1322 1323 Node* if_lt = generate_slow_guard(bol, nullptr); 1324 if (if_lt != nullptr) { 1325 // result == -1 1326 phi->init_req(3, result); 1327 region->init_req(3, if_lt); 1328 } 1329 if (!stopped()) { 1330 result = _gvn.transform(new AddINode(result, from_index)); 1331 phi->init_req(4, result); 1332 region->init_req(4, control()); 1333 } 1334 } 1335 1336 set_control(_gvn.transform(region)); 1337 record_for_igvn(region); 1338 set_result(_gvn.transform(phi)); 1339 clear_upper_avx(); 1340 1341 return true; 1342 } 1343 1344 // Create StrIndexOfNode with fast path checks 1345 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1346 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1347 // Check for substr count > string count 1348 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1349 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1350 Node* if_gt = generate_slow_guard(bol, nullptr); 1351 if (if_gt != nullptr) { 1352 phi->init_req(1, intcon(-1)); 1353 region->init_req(1, if_gt); 1354 } 1355 if (!stopped()) { 1356 // Check for substr count == 0 1357 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1358 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1359 Node* if_zero = generate_slow_guard(bol, nullptr); 1360 if (if_zero != nullptr) { 1361 phi->init_req(2, intcon(0)); 1362 region->init_req(2, if_zero); 1363 } 1364 } 1365 if (!stopped()) { 1366 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1367 } 1368 return nullptr; 1369 } 1370 1371 //-----------------------------inline_string_indexOfChar----------------------- 1372 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1373 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1374 return false; 1375 } 1376 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1377 return false; 1378 } 1379 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1380 Node* src = argument(0); // byte[] 1381 Node* int_ch = argument(1); 1382 Node* from_index = argument(2); 1383 Node* max = argument(3); 1384 1385 src = must_be_not_null(src, true); 1386 1387 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1388 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1389 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1390 1391 // Range checks 1392 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1393 1394 // Check for int_ch >= 0 1395 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1396 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1397 { 1398 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1399 uncommon_trap(Deoptimization::Reason_intrinsic, 1400 Deoptimization::Action_maybe_recompile); 1401 } 1402 if (stopped()) { 1403 return true; 1404 } 1405 1406 RegionNode* region = new RegionNode(3); 1407 Node* phi = new PhiNode(region, TypeInt::INT); 1408 1409 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1410 C->set_has_split_ifs(true); // Has chance for split-if optimization 1411 _gvn.transform(result); 1412 1413 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1414 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1415 1416 Node* if_lt = generate_slow_guard(bol, nullptr); 1417 if (if_lt != nullptr) { 1418 // result == -1 1419 phi->init_req(2, result); 1420 region->init_req(2, if_lt); 1421 } 1422 if (!stopped()) { 1423 result = _gvn.transform(new AddINode(result, from_index)); 1424 phi->init_req(1, result); 1425 region->init_req(1, control()); 1426 } 1427 set_control(_gvn.transform(region)); 1428 record_for_igvn(region); 1429 set_result(_gvn.transform(phi)); 1430 clear_upper_avx(); 1431 1432 return true; 1433 } 1434 //---------------------------inline_string_copy--------------------- 1435 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1436 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1437 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1438 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1439 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1440 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1441 bool LibraryCallKit::inline_string_copy(bool compress) { 1442 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1443 return false; 1444 } 1445 int nargs = 5; // 2 oops, 3 ints 1446 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1447 1448 Node* src = argument(0); 1449 Node* src_offset = argument(1); 1450 Node* dst = argument(2); 1451 Node* dst_offset = argument(3); 1452 Node* length = argument(4); 1453 1454 // Check for allocation before we add nodes that would confuse 1455 // tightly_coupled_allocation() 1456 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1457 1458 // Figure out the size and type of the elements we will be copying. 1459 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1460 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1461 if (src_type == nullptr || dst_type == nullptr) { 1462 return false; 1463 } 1464 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1465 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1466 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1467 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1468 "Unsupported array types for inline_string_copy"); 1469 1470 src = must_be_not_null(src, true); 1471 dst = must_be_not_null(dst, true); 1472 1473 // Convert char[] offsets to byte[] offsets 1474 bool convert_src = (compress && src_elem == T_BYTE); 1475 bool convert_dst = (!compress && dst_elem == T_BYTE); 1476 if (convert_src) { 1477 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1478 } else if (convert_dst) { 1479 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1480 } 1481 1482 // Range checks 1483 generate_string_range_check(src, src_offset, length, convert_src); 1484 generate_string_range_check(dst, dst_offset, length, convert_dst); 1485 if (stopped()) { 1486 return true; 1487 } 1488 1489 Node* src_start = array_element_address(src, src_offset, src_elem); 1490 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1491 // 'src_start' points to src array + scaled offset 1492 // 'dst_start' points to dst array + scaled offset 1493 Node* count = nullptr; 1494 if (compress) { 1495 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1496 } else { 1497 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1498 } 1499 1500 if (alloc != nullptr) { 1501 if (alloc->maybe_set_complete(&_gvn)) { 1502 // "You break it, you buy it." 1503 InitializeNode* init = alloc->initialization(); 1504 assert(init->is_complete(), "we just did this"); 1505 init->set_complete_with_arraycopy(); 1506 assert(dst->is_CheckCastPP(), "sanity"); 1507 assert(dst->in(0)->in(0) == init, "dest pinned"); 1508 } 1509 // Do not let stores that initialize this object be reordered with 1510 // a subsequent store that would make this object accessible by 1511 // other threads. 1512 // Record what AllocateNode this StoreStore protects so that 1513 // escape analysis can go from the MemBarStoreStoreNode to the 1514 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1515 // based on the escape status of the AllocateNode. 1516 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1517 } 1518 if (compress) { 1519 set_result(_gvn.transform(count)); 1520 } 1521 clear_upper_avx(); 1522 1523 return true; 1524 } 1525 1526 #ifdef _LP64 1527 #define XTOP ,top() /*additional argument*/ 1528 #else //_LP64 1529 #define XTOP /*no additional argument*/ 1530 #endif //_LP64 1531 1532 //------------------------inline_string_toBytesU-------------------------- 1533 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1534 bool LibraryCallKit::inline_string_toBytesU() { 1535 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1536 return false; 1537 } 1538 // Get the arguments. 1539 Node* value = argument(0); 1540 Node* offset = argument(1); 1541 Node* length = argument(2); 1542 1543 Node* newcopy = nullptr; 1544 1545 // Set the original stack and the reexecute bit for the interpreter to reexecute 1546 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1547 { PreserveReexecuteState preexecs(this); 1548 jvms()->set_should_reexecute(true); 1549 1550 // Check if a null path was taken unconditionally. 1551 value = null_check(value); 1552 1553 RegionNode* bailout = new RegionNode(1); 1554 record_for_igvn(bailout); 1555 1556 // Range checks 1557 generate_negative_guard(offset, bailout); 1558 generate_negative_guard(length, bailout); 1559 generate_limit_guard(offset, length, load_array_length(value), bailout); 1560 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1561 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1562 1563 if (bailout->req() > 1) { 1564 PreserveJVMState pjvms(this); 1565 set_control(_gvn.transform(bailout)); 1566 uncommon_trap(Deoptimization::Reason_intrinsic, 1567 Deoptimization::Action_maybe_recompile); 1568 } 1569 if (stopped()) { 1570 return true; 1571 } 1572 1573 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1574 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1575 newcopy = new_array(klass_node, size, 0); // no arguments to push 1576 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1577 guarantee(alloc != nullptr, "created above"); 1578 1579 // Calculate starting addresses. 1580 Node* src_start = array_element_address(value, offset, T_CHAR); 1581 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1582 1583 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1584 const TypeInt* toffset = gvn().type(offset)->is_int(); 1585 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1586 1587 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1588 const char* copyfunc_name = "arraycopy"; 1589 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1590 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1591 OptoRuntime::fast_arraycopy_Type(), 1592 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1593 src_start, dst_start, ConvI2X(length) XTOP); 1594 // Do not let reads from the cloned object float above the arraycopy. 1595 if (alloc->maybe_set_complete(&_gvn)) { 1596 // "You break it, you buy it." 1597 InitializeNode* init = alloc->initialization(); 1598 assert(init->is_complete(), "we just did this"); 1599 init->set_complete_with_arraycopy(); 1600 assert(newcopy->is_CheckCastPP(), "sanity"); 1601 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1602 } 1603 // Do not let stores that initialize this object be reordered with 1604 // a subsequent store that would make this object accessible by 1605 // other threads. 1606 // Record what AllocateNode this StoreStore protects so that 1607 // escape analysis can go from the MemBarStoreStoreNode to the 1608 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1609 // based on the escape status of the AllocateNode. 1610 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1611 } // original reexecute is set back here 1612 1613 C->set_has_split_ifs(true); // Has chance for split-if optimization 1614 if (!stopped()) { 1615 set_result(newcopy); 1616 } 1617 clear_upper_avx(); 1618 1619 return true; 1620 } 1621 1622 //------------------------inline_string_getCharsU-------------------------- 1623 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1624 bool LibraryCallKit::inline_string_getCharsU() { 1625 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1626 return false; 1627 } 1628 1629 // Get the arguments. 1630 Node* src = argument(0); 1631 Node* src_begin = argument(1); 1632 Node* src_end = argument(2); // exclusive offset (i < src_end) 1633 Node* dst = argument(3); 1634 Node* dst_begin = argument(4); 1635 1636 // Check for allocation before we add nodes that would confuse 1637 // tightly_coupled_allocation() 1638 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1639 1640 // Check if a null path was taken unconditionally. 1641 src = null_check(src); 1642 dst = null_check(dst); 1643 if (stopped()) { 1644 return true; 1645 } 1646 1647 // Get length and convert char[] offset to byte[] offset 1648 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1649 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1650 1651 // Range checks 1652 generate_string_range_check(src, src_begin, length, true); 1653 generate_string_range_check(dst, dst_begin, length, false); 1654 if (stopped()) { 1655 return true; 1656 } 1657 1658 if (!stopped()) { 1659 // Calculate starting addresses. 1660 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1661 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1662 1663 // Check if array addresses are aligned to HeapWordSize 1664 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1665 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1666 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1667 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1668 1669 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1670 const char* copyfunc_name = "arraycopy"; 1671 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1672 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1673 OptoRuntime::fast_arraycopy_Type(), 1674 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1675 src_start, dst_start, ConvI2X(length) XTOP); 1676 // Do not let reads from the cloned object float above the arraycopy. 1677 if (alloc != nullptr) { 1678 if (alloc->maybe_set_complete(&_gvn)) { 1679 // "You break it, you buy it." 1680 InitializeNode* init = alloc->initialization(); 1681 assert(init->is_complete(), "we just did this"); 1682 init->set_complete_with_arraycopy(); 1683 assert(dst->is_CheckCastPP(), "sanity"); 1684 assert(dst->in(0)->in(0) == init, "dest pinned"); 1685 } 1686 // Do not let stores that initialize this object be reordered with 1687 // a subsequent store that would make this object accessible by 1688 // other threads. 1689 // Record what AllocateNode this StoreStore protects so that 1690 // escape analysis can go from the MemBarStoreStoreNode to the 1691 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1692 // based on the escape status of the AllocateNode. 1693 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1694 } else { 1695 insert_mem_bar(Op_MemBarCPUOrder); 1696 } 1697 } 1698 1699 C->set_has_split_ifs(true); // Has chance for split-if optimization 1700 return true; 1701 } 1702 1703 //----------------------inline_string_char_access---------------------------- 1704 // Store/Load char to/from byte[] array. 1705 // static void StringUTF16.putChar(byte[] val, int index, int c) 1706 // static char StringUTF16.getChar(byte[] val, int index) 1707 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1708 Node* value = argument(0); 1709 Node* index = argument(1); 1710 Node* ch = is_store ? argument(2) : nullptr; 1711 1712 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1713 // correctly requires matched array shapes. 1714 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1715 "sanity: byte[] and char[] bases agree"); 1716 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1717 "sanity: byte[] and char[] scales agree"); 1718 1719 // Bail when getChar over constants is requested: constant folding would 1720 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1721 // Java method would constant fold nicely instead. 1722 if (!is_store && value->is_Con() && index->is_Con()) { 1723 return false; 1724 } 1725 1726 // Save state and restore on bailout 1727 uint old_sp = sp(); 1728 SafePointNode* old_map = clone_map(); 1729 1730 value = must_be_not_null(value, true); 1731 1732 Node* adr = array_element_address(value, index, T_CHAR); 1733 if (adr->is_top()) { 1734 set_map(old_map); 1735 set_sp(old_sp); 1736 return false; 1737 } 1738 destruct_map_clone(old_map); 1739 if (is_store) { 1740 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1741 } else { 1742 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1743 set_result(ch); 1744 } 1745 return true; 1746 } 1747 1748 1749 //------------------------------inline_math----------------------------------- 1750 // public static double Math.abs(double) 1751 // public static double Math.sqrt(double) 1752 // public static double Math.log(double) 1753 // public static double Math.log10(double) 1754 // public static double Math.round(double) 1755 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1756 Node* arg = argument(0); 1757 Node* n = nullptr; 1758 switch (id) { 1759 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1760 case vmIntrinsics::_dsqrt: 1761 case vmIntrinsics::_dsqrt_strict: 1762 n = new SqrtDNode(C, control(), arg); break; 1763 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1764 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1765 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1766 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1767 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1768 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1769 default: fatal_unexpected_iid(id); break; 1770 } 1771 set_result(_gvn.transform(n)); 1772 return true; 1773 } 1774 1775 //------------------------------inline_math----------------------------------- 1776 // public static float Math.abs(float) 1777 // public static int Math.abs(int) 1778 // public static long Math.abs(long) 1779 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1780 Node* arg = argument(0); 1781 Node* n = nullptr; 1782 switch (id) { 1783 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1784 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1785 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1786 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1787 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1788 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1789 default: fatal_unexpected_iid(id); break; 1790 } 1791 set_result(_gvn.transform(n)); 1792 return true; 1793 } 1794 1795 //------------------------------runtime_math----------------------------- 1796 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1797 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1798 "must be (DD)D or (D)D type"); 1799 1800 // Inputs 1801 Node* a = argument(0); 1802 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1803 1804 const TypePtr* no_memory_effects = nullptr; 1805 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1806 no_memory_effects, 1807 a, top(), b, b ? top() : nullptr); 1808 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1809 #ifdef ASSERT 1810 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1811 assert(value_top == top(), "second value must be top"); 1812 #endif 1813 1814 set_result(value); 1815 return true; 1816 } 1817 1818 //------------------------------inline_math_pow----------------------------- 1819 bool LibraryCallKit::inline_math_pow() { 1820 Node* exp = argument(2); 1821 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1822 if (d != nullptr) { 1823 if (d->getd() == 2.0) { 1824 // Special case: pow(x, 2.0) => x * x 1825 Node* base = argument(0); 1826 set_result(_gvn.transform(new MulDNode(base, base))); 1827 return true; 1828 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1829 // Special case: pow(x, 0.5) => sqrt(x) 1830 Node* base = argument(0); 1831 Node* zero = _gvn.zerocon(T_DOUBLE); 1832 1833 RegionNode* region = new RegionNode(3); 1834 Node* phi = new PhiNode(region, Type::DOUBLE); 1835 1836 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1837 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1838 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1839 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1840 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1841 1842 Node* if_pow = generate_slow_guard(test, nullptr); 1843 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1844 phi->init_req(1, value_sqrt); 1845 region->init_req(1, control()); 1846 1847 if (if_pow != nullptr) { 1848 set_control(if_pow); 1849 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1850 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1851 const TypePtr* no_memory_effects = nullptr; 1852 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1853 no_memory_effects, base, top(), exp, top()); 1854 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1855 #ifdef ASSERT 1856 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1857 assert(value_top == top(), "second value must be top"); 1858 #endif 1859 phi->init_req(2, value_pow); 1860 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1861 } 1862 1863 C->set_has_split_ifs(true); // Has chance for split-if optimization 1864 set_control(_gvn.transform(region)); 1865 record_for_igvn(region); 1866 set_result(_gvn.transform(phi)); 1867 1868 return true; 1869 } 1870 } 1871 1872 return StubRoutines::dpow() != nullptr ? 1873 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1874 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1875 } 1876 1877 //------------------------------inline_math_native----------------------------- 1878 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1879 switch (id) { 1880 case vmIntrinsics::_dsin: 1881 return StubRoutines::dsin() != nullptr ? 1882 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1883 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1884 case vmIntrinsics::_dcos: 1885 return StubRoutines::dcos() != nullptr ? 1886 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1887 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1888 case vmIntrinsics::_dtan: 1889 return StubRoutines::dtan() != nullptr ? 1890 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1891 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1892 case vmIntrinsics::_dtanh: 1893 return StubRoutines::dtanh() != nullptr ? 1894 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1895 case vmIntrinsics::_dexp: 1896 return StubRoutines::dexp() != nullptr ? 1897 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1898 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1899 case vmIntrinsics::_dlog: 1900 return StubRoutines::dlog() != nullptr ? 1901 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1902 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1903 case vmIntrinsics::_dlog10: 1904 return StubRoutines::dlog10() != nullptr ? 1905 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1906 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1907 1908 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1909 case vmIntrinsics::_ceil: 1910 case vmIntrinsics::_floor: 1911 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1912 1913 case vmIntrinsics::_dsqrt: 1914 case vmIntrinsics::_dsqrt_strict: 1915 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1916 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1917 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1918 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1919 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1920 1921 case vmIntrinsics::_dpow: return inline_math_pow(); 1922 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1923 case vmIntrinsics::_fcopySign: return inline_math(id); 1924 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1925 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1926 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1927 1928 // These intrinsics are not yet correctly implemented 1929 case vmIntrinsics::_datan2: 1930 return false; 1931 1932 default: 1933 fatal_unexpected_iid(id); 1934 return false; 1935 } 1936 } 1937 1938 //----------------------------inline_notify-----------------------------------* 1939 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1940 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1941 address func; 1942 if (id == vmIntrinsics::_notify) { 1943 func = OptoRuntime::monitor_notify_Java(); 1944 } else { 1945 func = OptoRuntime::monitor_notifyAll_Java(); 1946 } 1947 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1948 make_slow_call_ex(call, env()->Throwable_klass(), false); 1949 return true; 1950 } 1951 1952 1953 //----------------------------inline_min_max----------------------------------- 1954 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1955 Node* a = nullptr; 1956 Node* b = nullptr; 1957 Node* n = nullptr; 1958 switch (id) { 1959 case vmIntrinsics::_min: 1960 case vmIntrinsics::_max: 1961 case vmIntrinsics::_minF: 1962 case vmIntrinsics::_maxF: 1963 case vmIntrinsics::_minF_strict: 1964 case vmIntrinsics::_maxF_strict: 1965 case vmIntrinsics::_min_strict: 1966 case vmIntrinsics::_max_strict: 1967 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1968 a = argument(0); 1969 b = argument(1); 1970 break; 1971 case vmIntrinsics::_minD: 1972 case vmIntrinsics::_maxD: 1973 case vmIntrinsics::_minD_strict: 1974 case vmIntrinsics::_maxD_strict: 1975 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1976 a = argument(0); 1977 b = argument(2); 1978 break; 1979 case vmIntrinsics::_minL: 1980 case vmIntrinsics::_maxL: 1981 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1982 a = argument(0); 1983 b = argument(2); 1984 break; 1985 default: 1986 fatal_unexpected_iid(id); 1987 break; 1988 } 1989 1990 switch (id) { 1991 case vmIntrinsics::_min: 1992 case vmIntrinsics::_min_strict: 1993 n = new MinINode(a, b); 1994 break; 1995 case vmIntrinsics::_max: 1996 case vmIntrinsics::_max_strict: 1997 n = new MaxINode(a, b); 1998 break; 1999 case vmIntrinsics::_minF: 2000 case vmIntrinsics::_minF_strict: 2001 n = new MinFNode(a, b); 2002 break; 2003 case vmIntrinsics::_maxF: 2004 case vmIntrinsics::_maxF_strict: 2005 n = new MaxFNode(a, b); 2006 break; 2007 case vmIntrinsics::_minD: 2008 case vmIntrinsics::_minD_strict: 2009 n = new MinDNode(a, b); 2010 break; 2011 case vmIntrinsics::_maxD: 2012 case vmIntrinsics::_maxD_strict: 2013 n = new MaxDNode(a, b); 2014 break; 2015 case vmIntrinsics::_minL: 2016 n = new MinLNode(_gvn.C, a, b); 2017 break; 2018 case vmIntrinsics::_maxL: 2019 n = new MaxLNode(_gvn.C, a, b); 2020 break; 2021 default: 2022 fatal_unexpected_iid(id); 2023 break; 2024 } 2025 2026 set_result(_gvn.transform(n)); 2027 return true; 2028 } 2029 2030 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) { 2031 if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic, 2032 env()->ArithmeticException_instance())) { 2033 // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces), 2034 // so let's bail out intrinsic rather than risking deopting again. 2035 return false; 2036 } 2037 2038 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2039 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2040 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2041 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2042 2043 { 2044 PreserveJVMState pjvms(this); 2045 PreserveReexecuteState preexecs(this); 2046 jvms()->set_should_reexecute(true); 2047 2048 set_control(slow_path); 2049 set_i_o(i_o()); 2050 2051 builtin_throw(Deoptimization::Reason_intrinsic, 2052 env()->ArithmeticException_instance(), 2053 /*allow_too_many_traps*/ false); 2054 } 2055 2056 set_control(fast_path); 2057 set_result(math); 2058 return true; 2059 } 2060 2061 template <typename OverflowOp> 2062 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2063 typedef typename OverflowOp::MathOp MathOp; 2064 2065 MathOp* mathOp = new MathOp(arg1, arg2); 2066 Node* operation = _gvn.transform( mathOp ); 2067 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2068 return inline_math_mathExact(operation, ofcheck); 2069 } 2070 2071 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2072 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2073 } 2074 2075 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2076 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2077 } 2078 2079 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2080 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2081 } 2082 2083 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2084 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2085 } 2086 2087 bool LibraryCallKit::inline_math_negateExactI() { 2088 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2089 } 2090 2091 bool LibraryCallKit::inline_math_negateExactL() { 2092 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2093 } 2094 2095 bool LibraryCallKit::inline_math_multiplyExactI() { 2096 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2097 } 2098 2099 bool LibraryCallKit::inline_math_multiplyExactL() { 2100 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2101 } 2102 2103 bool LibraryCallKit::inline_math_multiplyHigh() { 2104 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2105 return true; 2106 } 2107 2108 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2109 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2110 return true; 2111 } 2112 2113 inline int 2114 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2115 const TypePtr* base_type = TypePtr::NULL_PTR; 2116 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2117 if (base_type == nullptr) { 2118 // Unknown type. 2119 return Type::AnyPtr; 2120 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2121 // Since this is a null+long form, we have to switch to a rawptr. 2122 base = _gvn.transform(new CastX2PNode(offset)); 2123 offset = MakeConX(0); 2124 return Type::RawPtr; 2125 } else if (base_type->base() == Type::RawPtr) { 2126 return Type::RawPtr; 2127 } else if (base_type->isa_oopptr()) { 2128 // Base is never null => always a heap address. 2129 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2130 return Type::OopPtr; 2131 } 2132 // Offset is small => always a heap address. 2133 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2134 if (offset_type != nullptr && 2135 base_type->offset() == 0 && // (should always be?) 2136 offset_type->_lo >= 0 && 2137 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2138 return Type::OopPtr; 2139 } else if (type == T_OBJECT) { 2140 // off heap access to an oop doesn't make any sense. Has to be on 2141 // heap. 2142 return Type::OopPtr; 2143 } 2144 // Otherwise, it might either be oop+off or null+addr. 2145 return Type::AnyPtr; 2146 } else { 2147 // No information: 2148 return Type::AnyPtr; 2149 } 2150 } 2151 2152 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2153 Node* uncasted_base = base; 2154 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2155 if (kind == Type::RawPtr) { 2156 return basic_plus_adr(top(), uncasted_base, offset); 2157 } else if (kind == Type::AnyPtr) { 2158 assert(base == uncasted_base, "unexpected base change"); 2159 if (can_cast) { 2160 if (!_gvn.type(base)->speculative_maybe_null() && 2161 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2162 // According to profiling, this access is always on 2163 // heap. Casting the base to not null and thus avoiding membars 2164 // around the access should allow better optimizations 2165 Node* null_ctl = top(); 2166 base = null_check_oop(base, &null_ctl, true, true, true); 2167 assert(null_ctl->is_top(), "no null control here"); 2168 return basic_plus_adr(base, offset); 2169 } else if (_gvn.type(base)->speculative_always_null() && 2170 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2171 // According to profiling, this access is always off 2172 // heap. 2173 base = null_assert(base); 2174 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2175 offset = MakeConX(0); 2176 return basic_plus_adr(top(), raw_base, offset); 2177 } 2178 } 2179 // We don't know if it's an on heap or off heap access. Fall back 2180 // to raw memory access. 2181 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2182 return basic_plus_adr(top(), raw, offset); 2183 } else { 2184 assert(base == uncasted_base, "unexpected base change"); 2185 // We know it's an on heap access so base can't be null 2186 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2187 base = must_be_not_null(base, true); 2188 } 2189 return basic_plus_adr(base, offset); 2190 } 2191 } 2192 2193 //--------------------------inline_number_methods----------------------------- 2194 // inline int Integer.numberOfLeadingZeros(int) 2195 // inline int Long.numberOfLeadingZeros(long) 2196 // 2197 // inline int Integer.numberOfTrailingZeros(int) 2198 // inline int Long.numberOfTrailingZeros(long) 2199 // 2200 // inline int Integer.bitCount(int) 2201 // inline int Long.bitCount(long) 2202 // 2203 // inline char Character.reverseBytes(char) 2204 // inline short Short.reverseBytes(short) 2205 // inline int Integer.reverseBytes(int) 2206 // inline long Long.reverseBytes(long) 2207 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2208 Node* arg = argument(0); 2209 Node* n = nullptr; 2210 switch (id) { 2211 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2212 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2213 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2214 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2215 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2216 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2217 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2218 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2219 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2220 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2221 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2222 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2223 default: fatal_unexpected_iid(id); break; 2224 } 2225 set_result(_gvn.transform(n)); 2226 return true; 2227 } 2228 2229 //--------------------------inline_bitshuffle_methods----------------------------- 2230 // inline int Integer.compress(int, int) 2231 // inline int Integer.expand(int, int) 2232 // inline long Long.compress(long, long) 2233 // inline long Long.expand(long, long) 2234 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2235 Node* n = nullptr; 2236 switch (id) { 2237 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2238 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2239 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2240 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2241 default: fatal_unexpected_iid(id); break; 2242 } 2243 set_result(_gvn.transform(n)); 2244 return true; 2245 } 2246 2247 //--------------------------inline_number_methods----------------------------- 2248 // inline int Integer.compareUnsigned(int, int) 2249 // inline int Long.compareUnsigned(long, long) 2250 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2251 Node* arg1 = argument(0); 2252 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2253 Node* n = nullptr; 2254 switch (id) { 2255 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2256 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2257 default: fatal_unexpected_iid(id); break; 2258 } 2259 set_result(_gvn.transform(n)); 2260 return true; 2261 } 2262 2263 //--------------------------inline_unsigned_divmod_methods----------------------------- 2264 // inline int Integer.divideUnsigned(int, int) 2265 // inline int Integer.remainderUnsigned(int, int) 2266 // inline long Long.divideUnsigned(long, long) 2267 // inline long Long.remainderUnsigned(long, long) 2268 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2269 Node* n = nullptr; 2270 switch (id) { 2271 case vmIntrinsics::_divideUnsigned_i: { 2272 zero_check_int(argument(1)); 2273 // Compile-time detect of null-exception 2274 if (stopped()) { 2275 return true; // keep the graph constructed so far 2276 } 2277 n = new UDivINode(control(), argument(0), argument(1)); 2278 break; 2279 } 2280 case vmIntrinsics::_divideUnsigned_l: { 2281 zero_check_long(argument(2)); 2282 // Compile-time detect of null-exception 2283 if (stopped()) { 2284 return true; // keep the graph constructed so far 2285 } 2286 n = new UDivLNode(control(), argument(0), argument(2)); 2287 break; 2288 } 2289 case vmIntrinsics::_remainderUnsigned_i: { 2290 zero_check_int(argument(1)); 2291 // Compile-time detect of null-exception 2292 if (stopped()) { 2293 return true; // keep the graph constructed so far 2294 } 2295 n = new UModINode(control(), argument(0), argument(1)); 2296 break; 2297 } 2298 case vmIntrinsics::_remainderUnsigned_l: { 2299 zero_check_long(argument(2)); 2300 // Compile-time detect of null-exception 2301 if (stopped()) { 2302 return true; // keep the graph constructed so far 2303 } 2304 n = new UModLNode(control(), argument(0), argument(2)); 2305 break; 2306 } 2307 default: fatal_unexpected_iid(id); break; 2308 } 2309 set_result(_gvn.transform(n)); 2310 return true; 2311 } 2312 2313 //----------------------------inline_unsafe_access---------------------------- 2314 2315 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2316 // Attempt to infer a sharper value type from the offset and base type. 2317 ciKlass* sharpened_klass = nullptr; 2318 bool null_free = false; 2319 2320 // See if it is an instance field, with an object type. 2321 if (alias_type->field() != nullptr) { 2322 if (alias_type->field()->type()->is_klass()) { 2323 sharpened_klass = alias_type->field()->type()->as_klass(); 2324 null_free = alias_type->field()->is_null_free(); 2325 } 2326 } 2327 2328 const TypeOopPtr* result = nullptr; 2329 // See if it is a narrow oop array. 2330 if (adr_type->isa_aryptr()) { 2331 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2332 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2333 null_free = adr_type->is_aryptr()->is_null_free(); 2334 if (elem_type != nullptr && elem_type->is_loaded()) { 2335 // Sharpen the value type. 2336 result = elem_type; 2337 } 2338 } 2339 } 2340 2341 // The sharpened class might be unloaded if there is no class loader 2342 // contraint in place. 2343 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2344 // Sharpen the value type. 2345 result = TypeOopPtr::make_from_klass(sharpened_klass); 2346 if (null_free) { 2347 result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 2348 } 2349 } 2350 if (result != nullptr) { 2351 #ifndef PRODUCT 2352 if (C->print_intrinsics() || C->print_inlining()) { 2353 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2354 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2355 } 2356 #endif 2357 } 2358 return result; 2359 } 2360 2361 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2362 switch (kind) { 2363 case Relaxed: 2364 return MO_UNORDERED; 2365 case Opaque: 2366 return MO_RELAXED; 2367 case Acquire: 2368 return MO_ACQUIRE; 2369 case Release: 2370 return MO_RELEASE; 2371 case Volatile: 2372 return MO_SEQ_CST; 2373 default: 2374 ShouldNotReachHere(); 2375 return 0; 2376 } 2377 } 2378 2379 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) { 2380 if (callee()->is_static()) return false; // caller must have the capability! 2381 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2382 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2383 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2384 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2385 2386 if (is_reference_type(type)) { 2387 decorators |= ON_UNKNOWN_OOP_REF; 2388 } 2389 2390 if (unaligned) { 2391 decorators |= C2_UNALIGNED; 2392 } 2393 2394 #ifndef PRODUCT 2395 { 2396 ResourceMark rm; 2397 // Check the signatures. 2398 ciSignature* sig = callee()->signature(); 2399 #ifdef ASSERT 2400 if (!is_store) { 2401 // Object getReference(Object base, int/long offset), etc. 2402 BasicType rtype = sig->return_type()->basic_type(); 2403 assert(rtype == type, "getter must return the expected value"); 2404 assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments"); 2405 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2406 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2407 } else { 2408 // void putReference(Object base, int/long offset, Object x), etc. 2409 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2410 assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments"); 2411 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2412 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2413 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2414 assert(vtype == type, "putter must accept the expected value"); 2415 } 2416 #endif // ASSERT 2417 } 2418 #endif //PRODUCT 2419 2420 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2421 2422 Node* receiver = argument(0); // type: oop 2423 2424 // Build address expression. 2425 Node* heap_base_oop = top(); 2426 2427 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2428 Node* base = argument(1); // type: oop 2429 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2430 Node* offset = argument(2); // type: long 2431 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2432 // to be plain byte offsets, which are also the same as those accepted 2433 // by oopDesc::field_addr. 2434 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2435 "fieldOffset must be byte-scaled"); 2436 2437 ciInlineKlass* inline_klass = nullptr; 2438 if (is_flat) { 2439 const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr(); 2440 if (cls == nullptr || cls->const_oop() == nullptr) { 2441 return false; 2442 } 2443 ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type(); 2444 if (!mirror_type->is_inlinetype()) { 2445 return false; 2446 } 2447 inline_klass = mirror_type->as_inline_klass(); 2448 } 2449 2450 if (base->is_InlineType()) { 2451 assert(!is_store, "InlineTypeNodes are non-larval value objects"); 2452 InlineTypeNode* vt = base->as_InlineType(); 2453 if (offset->is_Con()) { 2454 long off = find_long_con(offset, 0); 2455 ciInlineKlass* vk = vt->type()->inline_klass(); 2456 if ((long)(int)off != off || !vk->contains_field_offset(off)) { 2457 return false; 2458 } 2459 2460 ciField* field = vk->get_non_flat_field_by_offset(off); 2461 if (field != nullptr) { 2462 BasicType bt = type2field[field->type()->basic_type()]; 2463 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2464 bt = T_OBJECT; 2465 } 2466 if (bt == type && (!field->is_flat() || field->type() == inline_klass)) { 2467 Node* value = vt->field_value_by_offset(off, false); 2468 if (value->is_InlineType()) { 2469 value = value->as_InlineType()->adjust_scalarization_depth(this); 2470 } 2471 set_result(value); 2472 return true; 2473 } 2474 } 2475 } 2476 { 2477 // Re-execute the unsafe access if allocation triggers deoptimization. 2478 PreserveReexecuteState preexecs(this); 2479 jvms()->set_should_reexecute(true); 2480 vt = vt->buffer(this); 2481 } 2482 base = vt->get_oop(); 2483 } 2484 2485 // 32-bit machines ignore the high half! 2486 offset = ConvL2X(offset); 2487 2488 // Save state and restore on bailout 2489 uint old_sp = sp(); 2490 SafePointNode* old_map = clone_map(); 2491 2492 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2493 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2494 2495 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2496 if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) { 2497 decorators |= IN_NATIVE; // off-heap primitive access 2498 } else { 2499 set_map(old_map); 2500 set_sp(old_sp); 2501 return false; // off-heap oop accesses are not supported 2502 } 2503 } else { 2504 heap_base_oop = base; // on-heap or mixed access 2505 } 2506 2507 // Can base be null? Otherwise, always on-heap access. 2508 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2509 2510 if (!can_access_non_heap) { 2511 decorators |= IN_HEAP; 2512 } 2513 2514 Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr; 2515 2516 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2517 if (adr_type == TypePtr::NULL_PTR) { 2518 set_map(old_map); 2519 set_sp(old_sp); 2520 return false; // off-heap access with zero address 2521 } 2522 2523 // Try to categorize the address. 2524 Compile::AliasType* alias_type = C->alias_type(adr_type); 2525 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2526 2527 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2528 alias_type->adr_type() == TypeAryPtr::RANGE) { 2529 set_map(old_map); 2530 set_sp(old_sp); 2531 return false; // not supported 2532 } 2533 2534 bool mismatched = false; 2535 BasicType bt = T_ILLEGAL; 2536 ciField* field = nullptr; 2537 if (adr_type->isa_instptr()) { 2538 const TypeInstPtr* instptr = adr_type->is_instptr(); 2539 ciInstanceKlass* k = instptr->instance_klass(); 2540 int off = instptr->offset(); 2541 if (instptr->const_oop() != nullptr && 2542 k == ciEnv::current()->Class_klass() && 2543 instptr->offset() >= (k->size_helper() * wordSize)) { 2544 k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 2545 field = k->get_field_by_offset(off, true); 2546 } else { 2547 field = k->get_non_flat_field_by_offset(off); 2548 } 2549 if (field != nullptr) { 2550 bt = type2field[field->type()->basic_type()]; 2551 } 2552 if (bt != alias_type->basic_type()) { 2553 // Type mismatch. Is it an access to a nested flat field? 2554 field = k->get_field_by_offset(off, false); 2555 if (field != nullptr) { 2556 bt = type2field[field->type()->basic_type()]; 2557 } 2558 } 2559 assert(bt == alias_type->basic_type() || is_flat, "should match"); 2560 } else { 2561 bt = alias_type->basic_type(); 2562 } 2563 2564 if (bt != T_ILLEGAL) { 2565 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2566 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2567 // Alias type doesn't differentiate between byte[] and boolean[]). 2568 // Use address type to get the element type. 2569 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2570 } 2571 if (is_reference_type(bt, true)) { 2572 // accessing an array field with getReference is not a mismatch 2573 bt = T_OBJECT; 2574 } 2575 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2576 // Don't intrinsify mismatched object accesses 2577 set_map(old_map); 2578 set_sp(old_sp); 2579 return false; 2580 } 2581 mismatched = (bt != type); 2582 } else if (alias_type->adr_type()->isa_oopptr()) { 2583 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2584 } 2585 2586 if (is_flat) { 2587 if (adr_type->isa_instptr()) { 2588 if (field == nullptr || field->type() != inline_klass) { 2589 mismatched = true; 2590 } 2591 } else if (adr_type->isa_aryptr()) { 2592 const Type* elem = adr_type->is_aryptr()->elem(); 2593 if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) { 2594 mismatched = true; 2595 } 2596 } else { 2597 mismatched = true; 2598 } 2599 if (is_store) { 2600 const Type* val_t = _gvn.type(val); 2601 if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) { 2602 set_map(old_map); 2603 set_sp(old_sp); 2604 return false; 2605 } 2606 } 2607 } 2608 2609 destruct_map_clone(old_map); 2610 assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2611 2612 if (mismatched) { 2613 decorators |= C2_MISMATCHED; 2614 } 2615 2616 // First guess at the value type. 2617 const Type *value_type = Type::get_const_basic_type(type); 2618 2619 // Figure out the memory ordering. 2620 decorators |= mo_decorator_for_access_kind(kind); 2621 2622 if (!is_store) { 2623 if (type == T_OBJECT && !is_flat) { 2624 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2625 if (tjp != nullptr) { 2626 value_type = tjp; 2627 } 2628 } 2629 } 2630 2631 receiver = null_check(receiver); 2632 if (stopped()) { 2633 return true; 2634 } 2635 // Heap pointers get a null-check from the interpreter, 2636 // as a courtesy. However, this is not guaranteed by Unsafe, 2637 // and it is not possible to fully distinguish unintended nulls 2638 // from intended ones in this API. 2639 2640 if (!is_store) { 2641 Node* p = nullptr; 2642 // Try to constant fold a load from a constant field 2643 2644 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) { 2645 // final or stable field 2646 p = make_constant_from_field(field, heap_base_oop); 2647 } 2648 2649 if (p == nullptr) { // Could not constant fold the load 2650 if (is_flat) { 2651 p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, adr_type, false, false, true); 2652 } else { 2653 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2654 const TypeOopPtr* ptr = value_type->make_oopptr(); 2655 if (ptr != nullptr && ptr->is_inlinetypeptr()) { 2656 // Load a non-flattened inline type from memory 2657 p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass()); 2658 } 2659 } 2660 // Normalize the value returned by getBoolean in the following cases 2661 if (type == T_BOOLEAN && 2662 (mismatched || 2663 heap_base_oop == top() || // - heap_base_oop is null or 2664 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2665 // and the unsafe access is made to large offset 2666 // (i.e., larger than the maximum offset necessary for any 2667 // field access) 2668 ) { 2669 IdealKit ideal = IdealKit(this); 2670 #define __ ideal. 2671 IdealVariable normalized_result(ideal); 2672 __ declarations_done(); 2673 __ set(normalized_result, p); 2674 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2675 __ set(normalized_result, ideal.ConI(1)); 2676 ideal.end_if(); 2677 final_sync(ideal); 2678 p = __ value(normalized_result); 2679 #undef __ 2680 } 2681 } 2682 if (type == T_ADDRESS) { 2683 p = gvn().transform(new CastP2XNode(nullptr, p)); 2684 p = ConvX2UL(p); 2685 } 2686 // The load node has the control of the preceding MemBarCPUOrder. All 2687 // following nodes will have the control of the MemBarCPUOrder inserted at 2688 // the end of this method. So, pushing the load onto the stack at a later 2689 // point is fine. 2690 set_result(p); 2691 } else { 2692 if (bt == T_ADDRESS) { 2693 // Repackage the long as a pointer. 2694 val = ConvL2X(val); 2695 val = gvn().transform(new CastX2PNode(val)); 2696 } 2697 if (is_flat) { 2698 val->as_InlineType()->store_flat(this, base, adr, false, false, true, decorators); 2699 } else { 2700 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2701 } 2702 } 2703 2704 return true; 2705 } 2706 2707 bool LibraryCallKit::inline_unsafe_make_private_buffer() { 2708 Node* receiver = argument(0); 2709 Node* value = argument(1); 2710 2711 const Type* type = gvn().type(value); 2712 if (!type->is_inlinetypeptr()) { 2713 C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type"); 2714 return false; 2715 } 2716 2717 null_check(receiver); 2718 if (stopped()) { 2719 return true; 2720 } 2721 2722 value = null_check(value); 2723 if (stopped()) { 2724 return true; 2725 } 2726 2727 ciInlineKlass* vk = type->inline_klass(); 2728 Node* klass = makecon(TypeKlassPtr::make(vk)); 2729 Node* obj = new_instance(klass); 2730 AllocateNode::Ideal_allocation(obj)->_larval = true; 2731 2732 assert(value->is_InlineType(), "must be an InlineTypeNode"); 2733 Node* payload_ptr = basic_plus_adr(obj, vk->payload_offset()); 2734 value->as_InlineType()->store_flat(this, obj, payload_ptr, false, true, true, IN_HEAP | MO_UNORDERED); 2735 2736 set_result(obj); 2737 return true; 2738 } 2739 2740 bool LibraryCallKit::inline_unsafe_finish_private_buffer() { 2741 Node* receiver = argument(0); 2742 Node* buffer = argument(1); 2743 2744 const Type* type = gvn().type(buffer); 2745 if (!type->is_inlinetypeptr()) { 2746 C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type"); 2747 return false; 2748 } 2749 2750 AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer); 2751 if (alloc == nullptr) { 2752 C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer"); 2753 return false; 2754 } 2755 2756 null_check(receiver); 2757 if (stopped()) { 2758 return true; 2759 } 2760 2761 // Unset the larval bit in the object header 2762 Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned); 2763 Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place))); 2764 access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP); 2765 2766 // We must ensure that the buffer is properly published 2767 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress)); 2768 assert(!type->maybe_null(), "result of an allocation should not be null"); 2769 set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass())); 2770 return true; 2771 } 2772 2773 //----------------------------inline_unsafe_load_store---------------------------- 2774 // This method serves a couple of different customers (depending on LoadStoreKind): 2775 // 2776 // LS_cmp_swap: 2777 // 2778 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2779 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2780 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2781 // 2782 // LS_cmp_swap_weak: 2783 // 2784 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2785 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2786 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2787 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2788 // 2789 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2790 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2791 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2792 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2793 // 2794 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2795 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2796 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2797 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2798 // 2799 // LS_cmp_exchange: 2800 // 2801 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2802 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2803 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2804 // 2805 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2806 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2807 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2808 // 2809 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2810 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2811 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2812 // 2813 // LS_get_add: 2814 // 2815 // int getAndAddInt( Object o, long offset, int delta) 2816 // long getAndAddLong(Object o, long offset, long delta) 2817 // 2818 // LS_get_set: 2819 // 2820 // int getAndSet(Object o, long offset, int newValue) 2821 // long getAndSet(Object o, long offset, long newValue) 2822 // Object getAndSet(Object o, long offset, Object newValue) 2823 // 2824 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2825 // This basic scheme here is the same as inline_unsafe_access, but 2826 // differs in enough details that combining them would make the code 2827 // overly confusing. (This is a true fact! I originally combined 2828 // them, but even I was confused by it!) As much code/comments as 2829 // possible are retained from inline_unsafe_access though to make 2830 // the correspondences clearer. - dl 2831 2832 if (callee()->is_static()) return false; // caller must have the capability! 2833 2834 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2835 decorators |= mo_decorator_for_access_kind(access_kind); 2836 2837 #ifndef PRODUCT 2838 BasicType rtype; 2839 { 2840 ResourceMark rm; 2841 // Check the signatures. 2842 ciSignature* sig = callee()->signature(); 2843 rtype = sig->return_type()->basic_type(); 2844 switch(kind) { 2845 case LS_get_add: 2846 case LS_get_set: { 2847 // Check the signatures. 2848 #ifdef ASSERT 2849 assert(rtype == type, "get and set must return the expected type"); 2850 assert(sig->count() == 3, "get and set has 3 arguments"); 2851 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2852 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2853 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2854 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2855 #endif // ASSERT 2856 break; 2857 } 2858 case LS_cmp_swap: 2859 case LS_cmp_swap_weak: { 2860 // Check the signatures. 2861 #ifdef ASSERT 2862 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2863 assert(sig->count() == 4, "CAS has 4 arguments"); 2864 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2865 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2866 #endif // ASSERT 2867 break; 2868 } 2869 case LS_cmp_exchange: { 2870 // Check the signatures. 2871 #ifdef ASSERT 2872 assert(rtype == type, "CAS must return the expected type"); 2873 assert(sig->count() == 4, "CAS has 4 arguments"); 2874 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2875 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2876 #endif // ASSERT 2877 break; 2878 } 2879 default: 2880 ShouldNotReachHere(); 2881 } 2882 } 2883 #endif //PRODUCT 2884 2885 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2886 2887 // Get arguments: 2888 Node* receiver = nullptr; 2889 Node* base = nullptr; 2890 Node* offset = nullptr; 2891 Node* oldval = nullptr; 2892 Node* newval = nullptr; 2893 switch(kind) { 2894 case LS_cmp_swap: 2895 case LS_cmp_swap_weak: 2896 case LS_cmp_exchange: { 2897 const bool two_slot_type = type2size[type] == 2; 2898 receiver = argument(0); // type: oop 2899 base = argument(1); // type: oop 2900 offset = argument(2); // type: long 2901 oldval = argument(4); // type: oop, int, or long 2902 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2903 break; 2904 } 2905 case LS_get_add: 2906 case LS_get_set: { 2907 receiver = argument(0); // type: oop 2908 base = argument(1); // type: oop 2909 offset = argument(2); // type: long 2910 oldval = nullptr; 2911 newval = argument(4); // type: oop, int, or long 2912 break; 2913 } 2914 default: 2915 ShouldNotReachHere(); 2916 } 2917 2918 // Build field offset expression. 2919 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2920 // to be plain byte offsets, which are also the same as those accepted 2921 // by oopDesc::field_addr. 2922 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2923 // 32-bit machines ignore the high half of long offsets 2924 offset = ConvL2X(offset); 2925 // Save state and restore on bailout 2926 uint old_sp = sp(); 2927 SafePointNode* old_map = clone_map(); 2928 Node* adr = make_unsafe_address(base, offset,type, false); 2929 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2930 2931 Compile::AliasType* alias_type = C->alias_type(adr_type); 2932 BasicType bt = alias_type->basic_type(); 2933 if (bt != T_ILLEGAL && 2934 (is_reference_type(bt) != (type == T_OBJECT))) { 2935 // Don't intrinsify mismatched object accesses. 2936 set_map(old_map); 2937 set_sp(old_sp); 2938 return false; 2939 } 2940 2941 destruct_map_clone(old_map); 2942 2943 // For CAS, unlike inline_unsafe_access, there seems no point in 2944 // trying to refine types. Just use the coarse types here. 2945 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2946 const Type *value_type = Type::get_const_basic_type(type); 2947 2948 switch (kind) { 2949 case LS_get_set: 2950 case LS_cmp_exchange: { 2951 if (type == T_OBJECT) { 2952 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2953 if (tjp != nullptr) { 2954 value_type = tjp; 2955 } 2956 } 2957 break; 2958 } 2959 case LS_cmp_swap: 2960 case LS_cmp_swap_weak: 2961 case LS_get_add: 2962 break; 2963 default: 2964 ShouldNotReachHere(); 2965 } 2966 2967 // Null check receiver. 2968 receiver = null_check(receiver); 2969 if (stopped()) { 2970 return true; 2971 } 2972 2973 int alias_idx = C->get_alias_index(adr_type); 2974 2975 if (is_reference_type(type)) { 2976 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2977 2978 if (oldval != nullptr && oldval->is_InlineType()) { 2979 // Re-execute the unsafe access if allocation triggers deoptimization. 2980 PreserveReexecuteState preexecs(this); 2981 jvms()->set_should_reexecute(true); 2982 oldval = oldval->as_InlineType()->buffer(this)->get_oop(); 2983 } 2984 if (newval != nullptr && newval->is_InlineType()) { 2985 // Re-execute the unsafe access if allocation triggers deoptimization. 2986 PreserveReexecuteState preexecs(this); 2987 jvms()->set_should_reexecute(true); 2988 newval = newval->as_InlineType()->buffer(this)->get_oop(); 2989 } 2990 2991 // Transformation of a value which could be null pointer (CastPP #null) 2992 // could be delayed during Parse (for example, in adjust_map_after_if()). 2993 // Execute transformation here to avoid barrier generation in such case. 2994 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2995 newval = _gvn.makecon(TypePtr::NULL_PTR); 2996 2997 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2998 // Refine the value to a null constant, when it is known to be null 2999 oldval = _gvn.makecon(TypePtr::NULL_PTR); 3000 } 3001 } 3002 3003 Node* result = nullptr; 3004 switch (kind) { 3005 case LS_cmp_exchange: { 3006 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 3007 oldval, newval, value_type, type, decorators); 3008 break; 3009 } 3010 case LS_cmp_swap_weak: 3011 decorators |= C2_WEAK_CMPXCHG; 3012 case LS_cmp_swap: { 3013 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 3014 oldval, newval, value_type, type, decorators); 3015 break; 3016 } 3017 case LS_get_set: { 3018 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 3019 newval, value_type, type, decorators); 3020 break; 3021 } 3022 case LS_get_add: { 3023 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 3024 newval, value_type, type, decorators); 3025 break; 3026 } 3027 default: 3028 ShouldNotReachHere(); 3029 } 3030 3031 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 3032 set_result(result); 3033 return true; 3034 } 3035 3036 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 3037 // Regardless of form, don't allow previous ld/st to move down, 3038 // then issue acquire, release, or volatile mem_bar. 3039 insert_mem_bar(Op_MemBarCPUOrder); 3040 switch(id) { 3041 case vmIntrinsics::_loadFence: 3042 insert_mem_bar(Op_LoadFence); 3043 return true; 3044 case vmIntrinsics::_storeFence: 3045 insert_mem_bar(Op_StoreFence); 3046 return true; 3047 case vmIntrinsics::_storeStoreFence: 3048 insert_mem_bar(Op_StoreStoreFence); 3049 return true; 3050 case vmIntrinsics::_fullFence: 3051 insert_mem_bar(Op_MemBarVolatile); 3052 return true; 3053 default: 3054 fatal_unexpected_iid(id); 3055 return false; 3056 } 3057 } 3058 3059 bool LibraryCallKit::inline_onspinwait() { 3060 insert_mem_bar(Op_OnSpinWait); 3061 return true; 3062 } 3063 3064 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 3065 if (!kls->is_Con()) { 3066 return true; 3067 } 3068 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 3069 if (klsptr == nullptr) { 3070 return true; 3071 } 3072 ciInstanceKlass* ik = klsptr->instance_klass(); 3073 // don't need a guard for a klass that is already initialized 3074 return !ik->is_initialized(); 3075 } 3076 3077 //----------------------------inline_unsafe_writeback0------------------------- 3078 // public native void Unsafe.writeback0(long address) 3079 bool LibraryCallKit::inline_unsafe_writeback0() { 3080 if (!Matcher::has_match_rule(Op_CacheWB)) { 3081 return false; 3082 } 3083 #ifndef PRODUCT 3084 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 3085 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 3086 ciSignature* sig = callee()->signature(); 3087 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 3088 #endif 3089 null_check_receiver(); // null-check, then ignore 3090 Node *addr = argument(1); 3091 addr = new CastX2PNode(addr); 3092 addr = _gvn.transform(addr); 3093 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 3094 flush = _gvn.transform(flush); 3095 set_memory(flush, TypeRawPtr::BOTTOM); 3096 return true; 3097 } 3098 3099 //----------------------------inline_unsafe_writeback0------------------------- 3100 // public native void Unsafe.writeback0(long address) 3101 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 3102 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 3103 return false; 3104 } 3105 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 3106 return false; 3107 } 3108 #ifndef PRODUCT 3109 assert(Matcher::has_match_rule(Op_CacheWB), 3110 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 3111 : "found match rule for CacheWBPostSync but not CacheWB")); 3112 3113 #endif 3114 null_check_receiver(); // null-check, then ignore 3115 Node *sync; 3116 if (is_pre) { 3117 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3118 } else { 3119 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3120 } 3121 sync = _gvn.transform(sync); 3122 set_memory(sync, TypeRawPtr::BOTTOM); 3123 return true; 3124 } 3125 3126 //----------------------------inline_unsafe_allocate--------------------------- 3127 // public native Object Unsafe.allocateInstance(Class<?> cls); 3128 bool LibraryCallKit::inline_unsafe_allocate() { 3129 3130 #if INCLUDE_JVMTI 3131 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3132 return false; 3133 } 3134 #endif //INCLUDE_JVMTI 3135 3136 if (callee()->is_static()) return false; // caller must have the capability! 3137 3138 null_check_receiver(); // null-check, then ignore 3139 Node* cls = null_check(argument(1)); 3140 if (stopped()) return true; 3141 3142 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 3143 kls = null_check(kls); 3144 if (stopped()) return true; // argument was like int.class 3145 3146 #if INCLUDE_JVMTI 3147 // Don't try to access new allocated obj in the intrinsic. 3148 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 3149 // Deoptimize and allocate in interpreter instead. 3150 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 3151 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 3152 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 3153 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3154 { 3155 BuildCutout unless(this, tst, PROB_MAX); 3156 uncommon_trap(Deoptimization::Reason_intrinsic, 3157 Deoptimization::Action_make_not_entrant); 3158 } 3159 if (stopped()) { 3160 return true; 3161 } 3162 #endif //INCLUDE_JVMTI 3163 3164 Node* test = nullptr; 3165 if (LibraryCallKit::klass_needs_init_guard(kls)) { 3166 // Note: The argument might still be an illegal value like 3167 // Serializable.class or Object[].class. The runtime will handle it. 3168 // But we must make an explicit check for initialization. 3169 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 3170 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 3171 // can generate code to load it as unsigned byte. 3172 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 3173 Node* bits = intcon(InstanceKlass::fully_initialized); 3174 test = _gvn.transform(new SubINode(inst, bits)); 3175 // The 'test' is non-zero if we need to take a slow path. 3176 } 3177 Node* obj = nullptr; 3178 const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr(); 3179 if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) { 3180 obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this); 3181 } else { 3182 obj = new_instance(kls, test); 3183 } 3184 set_result(obj); 3185 return true; 3186 } 3187 3188 //------------------------inline_native_time_funcs-------------- 3189 // inline code for System.currentTimeMillis() and System.nanoTime() 3190 // these have the same type and signature 3191 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 3192 const TypeFunc* tf = OptoRuntime::void_long_Type(); 3193 const TypePtr* no_memory_effects = nullptr; 3194 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 3195 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 3196 #ifdef ASSERT 3197 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 3198 assert(value_top == top(), "second value must be top"); 3199 #endif 3200 set_result(value); 3201 return true; 3202 } 3203 3204 3205 #if INCLUDE_JVMTI 3206 3207 // When notifications are disabled then just update the VTMS transition bit and return. 3208 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3209 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3210 if (!DoJVMTIVirtualThreadTransitions) { 3211 return true; 3212 } 3213 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3214 IdealKit ideal(this); 3215 3216 Node* ONE = ideal.ConI(1); 3217 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3218 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3219 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3220 3221 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3222 sync_kit(ideal); 3223 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3224 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3225 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3226 ideal.sync_kit(this); 3227 } ideal.else_(); { 3228 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3229 Node* thread = ideal.thread(); 3230 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3231 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3232 3233 sync_kit(ideal); 3234 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3235 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3236 3237 ideal.sync_kit(this); 3238 } ideal.end_if(); 3239 final_sync(ideal); 3240 3241 return true; 3242 } 3243 3244 // Always update the is_disable_suspend bit. 3245 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3246 if (!DoJVMTIVirtualThreadTransitions) { 3247 return true; 3248 } 3249 IdealKit ideal(this); 3250 3251 { 3252 // unconditionally update the is_disable_suspend bit in current JavaThread 3253 Node* thread = ideal.thread(); 3254 Node* arg = _gvn.transform(argument(0)); // argument for notification 3255 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3256 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3257 3258 sync_kit(ideal); 3259 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3260 ideal.sync_kit(this); 3261 } 3262 final_sync(ideal); 3263 3264 return true; 3265 } 3266 3267 #endif // INCLUDE_JVMTI 3268 3269 #ifdef JFR_HAVE_INTRINSICS 3270 3271 /** 3272 * if oop->klass != null 3273 * // normal class 3274 * epoch = _epoch_state ? 2 : 1 3275 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3276 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3277 * } 3278 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3279 * else 3280 * // primitive class 3281 * if oop->array_klass != null 3282 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3283 * else 3284 * id = LAST_TYPE_ID + 1 // void class path 3285 * if (!signaled) 3286 * signaled = true 3287 */ 3288 bool LibraryCallKit::inline_native_classID() { 3289 Node* cls = argument(0); 3290 3291 IdealKit ideal(this); 3292 #define __ ideal. 3293 IdealVariable result(ideal); __ declarations_done(); 3294 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3295 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3296 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3297 3298 3299 __ if_then(kls, BoolTest::ne, null()); { 3300 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3301 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3302 3303 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3304 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3305 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3306 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3307 mask = _gvn.transform(new OrLNode(mask, epoch)); 3308 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3309 3310 float unlikely = PROB_UNLIKELY(0.999); 3311 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3312 sync_kit(ideal); 3313 make_runtime_call(RC_LEAF, 3314 OptoRuntime::class_id_load_barrier_Type(), 3315 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3316 "class id load barrier", 3317 TypePtr::BOTTOM, 3318 kls); 3319 ideal.sync_kit(this); 3320 } __ end_if(); 3321 3322 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3323 } __ else_(); { 3324 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3325 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3326 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3327 __ if_then(array_kls, BoolTest::ne, null()); { 3328 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3329 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3330 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3331 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3332 } __ else_(); { 3333 // void class case 3334 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3335 } __ end_if(); 3336 3337 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3338 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3339 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3340 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3341 } __ end_if(); 3342 } __ end_if(); 3343 3344 final_sync(ideal); 3345 set_result(ideal.value(result)); 3346 #undef __ 3347 return true; 3348 } 3349 3350 //------------------------inline_native_jvm_commit------------------ 3351 bool LibraryCallKit::inline_native_jvm_commit() { 3352 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3353 3354 // Save input memory and i_o state. 3355 Node* input_memory_state = reset_memory(); 3356 set_all_memory(input_memory_state); 3357 Node* input_io_state = i_o(); 3358 3359 // TLS. 3360 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3361 // Jfr java buffer. 3362 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3363 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3364 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3365 3366 // Load the current value of the notified field in the JfrThreadLocal. 3367 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3368 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3369 3370 // Test for notification. 3371 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3372 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3373 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3374 3375 // True branch, is notified. 3376 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3377 set_control(is_notified); 3378 3379 // Reset notified state. 3380 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3381 Node* notified_reset_memory = reset_memory(); 3382 3383 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3384 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3385 // Convert the machine-word to a long. 3386 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3387 3388 // False branch, not notified. 3389 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3390 set_control(not_notified); 3391 set_all_memory(input_memory_state); 3392 3393 // Arg is the next position as a long. 3394 Node* arg = argument(0); 3395 // Convert long to machine-word. 3396 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3397 3398 // Store the next_position to the underlying jfr java buffer. 3399 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3400 3401 Node* commit_memory = reset_memory(); 3402 set_all_memory(commit_memory); 3403 3404 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3405 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3406 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3407 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3408 3409 // And flags with lease constant. 3410 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3411 3412 // Branch on lease to conditionalize returning the leased java buffer. 3413 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3414 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3415 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3416 3417 // False branch, not a lease. 3418 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3419 3420 // True branch, is lease. 3421 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3422 set_control(is_lease); 3423 3424 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3425 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3426 OptoRuntime::void_void_Type(), 3427 SharedRuntime::jfr_return_lease(), 3428 "return_lease", TypePtr::BOTTOM); 3429 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3430 3431 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3432 record_for_igvn(lease_compare_rgn); 3433 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3434 record_for_igvn(lease_compare_mem); 3435 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3436 record_for_igvn(lease_compare_io); 3437 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3438 record_for_igvn(lease_result_value); 3439 3440 // Update control and phi nodes. 3441 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3442 lease_compare_rgn->init_req(_false_path, not_lease); 3443 3444 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3445 lease_compare_mem->init_req(_false_path, commit_memory); 3446 3447 lease_compare_io->init_req(_true_path, i_o()); 3448 lease_compare_io->init_req(_false_path, input_io_state); 3449 3450 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3451 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3452 3453 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3454 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3455 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3456 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3457 3458 // Update control and phi nodes. 3459 result_rgn->init_req(_true_path, is_notified); 3460 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3461 3462 result_mem->init_req(_true_path, notified_reset_memory); 3463 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3464 3465 result_io->init_req(_true_path, input_io_state); 3466 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3467 3468 result_value->init_req(_true_path, current_pos); 3469 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3470 3471 // Set output state. 3472 set_control(_gvn.transform(result_rgn)); 3473 set_all_memory(_gvn.transform(result_mem)); 3474 set_i_o(_gvn.transform(result_io)); 3475 set_result(result_rgn, result_value); 3476 return true; 3477 } 3478 3479 /* 3480 * The intrinsic is a model of this pseudo-code: 3481 * 3482 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3483 * jobject h_event_writer = tl->java_event_writer(); 3484 * if (h_event_writer == nullptr) { 3485 * return nullptr; 3486 * } 3487 * oop threadObj = Thread::threadObj(); 3488 * oop vthread = java_lang_Thread::vthread(threadObj); 3489 * traceid tid; 3490 * bool pinVirtualThread; 3491 * bool excluded; 3492 * if (vthread != threadObj) { // i.e. current thread is virtual 3493 * tid = java_lang_Thread::tid(vthread); 3494 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3495 * pinVirtualThread = VMContinuations; 3496 * excluded = vthread_epoch_raw & excluded_mask; 3497 * if (!excluded) { 3498 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3499 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3500 * if (vthread_epoch != current_epoch) { 3501 * write_checkpoint(); 3502 * } 3503 * } 3504 * } else { 3505 * tid = java_lang_Thread::tid(threadObj); 3506 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3507 * pinVirtualThread = false; 3508 * excluded = thread_epoch_raw & excluded_mask; 3509 * } 3510 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3511 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3512 * if (tid_in_event_writer != tid) { 3513 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3514 * setField(event_writer, "excluded", excluded); 3515 * setField(event_writer, "threadID", tid); 3516 * } 3517 * return event_writer 3518 */ 3519 bool LibraryCallKit::inline_native_getEventWriter() { 3520 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3521 3522 // Save input memory and i_o state. 3523 Node* input_memory_state = reset_memory(); 3524 set_all_memory(input_memory_state); 3525 Node* input_io_state = i_o(); 3526 3527 // The most significant bit of the u2 is used to denote thread exclusion 3528 Node* excluded_shift = _gvn.intcon(15); 3529 Node* excluded_mask = _gvn.intcon(1 << 15); 3530 // The epoch generation is the range [1-32767] 3531 Node* epoch_mask = _gvn.intcon(32767); 3532 3533 // TLS 3534 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3535 3536 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3537 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3538 3539 // Load the eventwriter jobject handle. 3540 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3541 3542 // Null check the jobject handle. 3543 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3544 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3545 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3546 3547 // False path, jobj is null. 3548 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3549 3550 // True path, jobj is not null. 3551 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3552 3553 set_control(jobj_is_not_null); 3554 3555 // Load the threadObj for the CarrierThread. 3556 Node* threadObj = generate_current_thread(tls_ptr); 3557 3558 // Load the vthread. 3559 Node* vthread = generate_virtual_thread(tls_ptr); 3560 3561 // If vthread != threadObj, this is a virtual thread. 3562 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3563 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3564 IfNode* iff_vthread_not_equal_threadObj = 3565 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3566 3567 // False branch, fallback to threadObj. 3568 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3569 set_control(vthread_equal_threadObj); 3570 3571 // Load the tid field from the vthread object. 3572 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3573 3574 // Load the raw epoch value from the threadObj. 3575 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3576 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3577 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3578 TypeInt::CHAR, T_CHAR, 3579 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3580 3581 // Mask off the excluded information from the epoch. 3582 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3583 3584 // True branch, this is a virtual thread. 3585 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3586 set_control(vthread_not_equal_threadObj); 3587 3588 // Load the tid field from the vthread object. 3589 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3590 3591 // Continuation support determines if a virtual thread should be pinned. 3592 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3593 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3594 3595 // Load the raw epoch value from the vthread. 3596 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3597 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3598 TypeInt::CHAR, T_CHAR, 3599 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3600 3601 // Mask off the excluded information from the epoch. 3602 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3603 3604 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3605 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3606 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3607 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3608 3609 // False branch, vthread is excluded, no need to write epoch info. 3610 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3611 3612 // True branch, vthread is included, update epoch info. 3613 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3614 set_control(included); 3615 3616 // Get epoch value. 3617 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3618 3619 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3620 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3621 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3622 3623 // Compare the epoch in the vthread to the current epoch generation. 3624 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3625 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3626 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3627 3628 // False path, epoch is equal, checkpoint information is valid. 3629 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3630 3631 // True path, epoch is not equal, write a checkpoint for the vthread. 3632 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3633 3634 set_control(epoch_is_not_equal); 3635 3636 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3637 // The call also updates the native thread local thread id and the vthread with the current epoch. 3638 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3639 OptoRuntime::jfr_write_checkpoint_Type(), 3640 SharedRuntime::jfr_write_checkpoint(), 3641 "write_checkpoint", TypePtr::BOTTOM); 3642 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3643 3644 // vthread epoch != current epoch 3645 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3646 record_for_igvn(epoch_compare_rgn); 3647 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3648 record_for_igvn(epoch_compare_mem); 3649 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3650 record_for_igvn(epoch_compare_io); 3651 3652 // Update control and phi nodes. 3653 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3654 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3655 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3656 epoch_compare_mem->init_req(_false_path, input_memory_state); 3657 epoch_compare_io->init_req(_true_path, i_o()); 3658 epoch_compare_io->init_req(_false_path, input_io_state); 3659 3660 // excluded != true 3661 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3662 record_for_igvn(exclude_compare_rgn); 3663 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3664 record_for_igvn(exclude_compare_mem); 3665 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3666 record_for_igvn(exclude_compare_io); 3667 3668 // Update control and phi nodes. 3669 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3670 exclude_compare_rgn->init_req(_false_path, excluded); 3671 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3672 exclude_compare_mem->init_req(_false_path, input_memory_state); 3673 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3674 exclude_compare_io->init_req(_false_path, input_io_state); 3675 3676 // vthread != threadObj 3677 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3678 record_for_igvn(vthread_compare_rgn); 3679 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3680 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3681 record_for_igvn(vthread_compare_io); 3682 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3683 record_for_igvn(tid); 3684 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3685 record_for_igvn(exclusion); 3686 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3687 record_for_igvn(pinVirtualThread); 3688 3689 // Update control and phi nodes. 3690 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3691 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3692 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3693 vthread_compare_mem->init_req(_false_path, input_memory_state); 3694 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3695 vthread_compare_io->init_req(_false_path, input_io_state); 3696 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3697 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3698 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3699 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3700 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3701 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3702 3703 // Update branch state. 3704 set_control(_gvn.transform(vthread_compare_rgn)); 3705 set_all_memory(_gvn.transform(vthread_compare_mem)); 3706 set_i_o(_gvn.transform(vthread_compare_io)); 3707 3708 // Load the event writer oop by dereferencing the jobject handle. 3709 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3710 assert(klass_EventWriter->is_loaded(), "invariant"); 3711 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3712 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3713 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3714 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3715 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3716 3717 // Load the current thread id from the event writer object. 3718 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3719 // Get the field offset to, conditionally, store an updated tid value later. 3720 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3721 // Get the field offset to, conditionally, store an updated exclusion value later. 3722 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3723 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3724 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3725 3726 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3727 record_for_igvn(event_writer_tid_compare_rgn); 3728 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3729 record_for_igvn(event_writer_tid_compare_mem); 3730 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3731 record_for_igvn(event_writer_tid_compare_io); 3732 3733 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3734 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3735 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3736 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3737 3738 // False path, tids are the same. 3739 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3740 3741 // True path, tid is not equal, need to update the tid in the event writer. 3742 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3743 record_for_igvn(tid_is_not_equal); 3744 3745 // Store the pin state to the event writer. 3746 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3747 3748 // Store the exclusion state to the event writer. 3749 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3750 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3751 3752 // Store the tid to the event writer. 3753 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3754 3755 // Update control and phi nodes. 3756 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3757 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3758 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3759 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3760 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3761 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3762 3763 // Result of top level CFG, Memory, IO and Value. 3764 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3765 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3766 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3767 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3768 3769 // Result control. 3770 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3771 result_rgn->init_req(_false_path, jobj_is_null); 3772 3773 // Result memory. 3774 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3775 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3776 3777 // Result IO. 3778 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3779 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3780 3781 // Result value. 3782 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3783 result_value->init_req(_false_path, null()); // return null 3784 3785 // Set output state. 3786 set_control(_gvn.transform(result_rgn)); 3787 set_all_memory(_gvn.transform(result_mem)); 3788 set_i_o(_gvn.transform(result_io)); 3789 set_result(result_rgn, result_value); 3790 return true; 3791 } 3792 3793 /* 3794 * The intrinsic is a model of this pseudo-code: 3795 * 3796 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3797 * if (carrierThread != thread) { // is virtual thread 3798 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3799 * bool excluded = vthread_epoch_raw & excluded_mask; 3800 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3801 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3802 * if (!excluded) { 3803 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3804 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3805 * } 3806 * Atomic::release_store(&tl->_vthread, true); 3807 * return; 3808 * } 3809 * Atomic::release_store(&tl->_vthread, false); 3810 */ 3811 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3812 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3813 3814 Node* input_memory_state = reset_memory(); 3815 set_all_memory(input_memory_state); 3816 3817 // The most significant bit of the u2 is used to denote thread exclusion 3818 Node* excluded_mask = _gvn.intcon(1 << 15); 3819 // The epoch generation is the range [1-32767] 3820 Node* epoch_mask = _gvn.intcon(32767); 3821 3822 Node* const carrierThread = generate_current_thread(jt); 3823 // If thread != carrierThread, this is a virtual thread. 3824 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3825 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3826 IfNode* iff_thread_not_equal_carrierThread = 3827 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3828 3829 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3830 3831 // False branch, is carrierThread. 3832 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3833 // Store release 3834 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3835 3836 set_all_memory(input_memory_state); 3837 3838 // True branch, is virtual thread. 3839 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3840 set_control(thread_not_equal_carrierThread); 3841 3842 // Load the raw epoch value from the vthread. 3843 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3844 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3845 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3846 3847 // Mask off the excluded information from the epoch. 3848 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3849 3850 // Load the tid field from the thread. 3851 Node* tid = load_field_from_object(thread, "tid", "J"); 3852 3853 // Store the vthread tid to the jfr thread local. 3854 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3855 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3856 3857 // Branch is_excluded to conditionalize updating the epoch . 3858 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3859 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3860 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3861 3862 // True branch, vthread is excluded, no need to write epoch info. 3863 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3864 set_control(excluded); 3865 Node* vthread_is_excluded = _gvn.intcon(1); 3866 3867 // False branch, vthread is included, update epoch info. 3868 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3869 set_control(included); 3870 Node* vthread_is_included = _gvn.intcon(0); 3871 3872 // Get epoch value. 3873 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3874 3875 // Store the vthread epoch to the jfr thread local. 3876 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3877 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3878 3879 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3880 record_for_igvn(excluded_rgn); 3881 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3882 record_for_igvn(excluded_mem); 3883 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3884 record_for_igvn(exclusion); 3885 3886 // Merge the excluded control and memory. 3887 excluded_rgn->init_req(_true_path, excluded); 3888 excluded_rgn->init_req(_false_path, included); 3889 excluded_mem->init_req(_true_path, tid_memory); 3890 excluded_mem->init_req(_false_path, included_memory); 3891 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3892 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3893 3894 // Set intermediate state. 3895 set_control(_gvn.transform(excluded_rgn)); 3896 set_all_memory(excluded_mem); 3897 3898 // Store the vthread exclusion state to the jfr thread local. 3899 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3900 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3901 3902 // Store release 3903 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3904 3905 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3906 record_for_igvn(thread_compare_rgn); 3907 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3908 record_for_igvn(thread_compare_mem); 3909 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3910 record_for_igvn(vthread); 3911 3912 // Merge the thread_compare control and memory. 3913 thread_compare_rgn->init_req(_true_path, control()); 3914 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3915 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3916 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3917 3918 // Set output state. 3919 set_control(_gvn.transform(thread_compare_rgn)); 3920 set_all_memory(_gvn.transform(thread_compare_mem)); 3921 } 3922 3923 #endif // JFR_HAVE_INTRINSICS 3924 3925 //------------------------inline_native_currentCarrierThread------------------ 3926 bool LibraryCallKit::inline_native_currentCarrierThread() { 3927 Node* junk = nullptr; 3928 set_result(generate_current_thread(junk)); 3929 return true; 3930 } 3931 3932 //------------------------inline_native_currentThread------------------ 3933 bool LibraryCallKit::inline_native_currentThread() { 3934 Node* junk = nullptr; 3935 set_result(generate_virtual_thread(junk)); 3936 return true; 3937 } 3938 3939 //------------------------inline_native_setVthread------------------ 3940 bool LibraryCallKit::inline_native_setCurrentThread() { 3941 assert(C->method()->changes_current_thread(), 3942 "method changes current Thread but is not annotated ChangesCurrentThread"); 3943 Node* arr = argument(1); 3944 Node* thread = _gvn.transform(new ThreadLocalNode()); 3945 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3946 Node* thread_obj_handle 3947 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3948 thread_obj_handle = _gvn.transform(thread_obj_handle); 3949 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3950 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3951 3952 // Change the _monitor_owner_id of the JavaThread 3953 Node* tid = load_field_from_object(arr, "tid", "J"); 3954 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3955 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3956 3957 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3958 return true; 3959 } 3960 3961 const Type* LibraryCallKit::scopedValueCache_type() { 3962 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3963 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3964 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true); 3965 3966 // Because we create the scopedValue cache lazily we have to make the 3967 // type of the result BotPTR. 3968 bool xk = etype->klass_is_exact(); 3969 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0)); 3970 return objects_type; 3971 } 3972 3973 Node* LibraryCallKit::scopedValueCache_helper() { 3974 Node* thread = _gvn.transform(new ThreadLocalNode()); 3975 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3976 // We cannot use immutable_memory() because we might flip onto a 3977 // different carrier thread, at which point we'll need to use that 3978 // carrier thread's cache. 3979 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3980 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3981 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3982 } 3983 3984 //------------------------inline_native_scopedValueCache------------------ 3985 bool LibraryCallKit::inline_native_scopedValueCache() { 3986 Node* cache_obj_handle = scopedValueCache_helper(); 3987 const Type* objects_type = scopedValueCache_type(); 3988 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3989 3990 return true; 3991 } 3992 3993 //------------------------inline_native_setScopedValueCache------------------ 3994 bool LibraryCallKit::inline_native_setScopedValueCache() { 3995 Node* arr = argument(0); 3996 Node* cache_obj_handle = scopedValueCache_helper(); 3997 const Type* objects_type = scopedValueCache_type(); 3998 3999 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 4000 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 4001 4002 return true; 4003 } 4004 4005 //------------------------inline_native_Continuation_pin and unpin----------- 4006 4007 // Shared implementation routine for both pin and unpin. 4008 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 4009 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 4010 4011 // Save input memory. 4012 Node* input_memory_state = reset_memory(); 4013 set_all_memory(input_memory_state); 4014 4015 // TLS 4016 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 4017 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 4018 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 4019 4020 // Null check the last continuation object. 4021 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 4022 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 4023 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 4024 4025 // False path, last continuation is null. 4026 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 4027 4028 // True path, last continuation is not null. 4029 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 4030 4031 set_control(continuation_is_not_null); 4032 4033 // Load the pin count from the last continuation. 4034 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 4035 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 4036 4037 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 4038 Node* pin_count_rhs; 4039 if (unpin) { 4040 pin_count_rhs = _gvn.intcon(0); 4041 } else { 4042 pin_count_rhs = _gvn.intcon(UINT32_MAX); 4043 } 4044 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 4045 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 4046 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 4047 4048 // True branch, pin count over/underflow. 4049 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 4050 { 4051 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 4052 // which will throw IllegalStateException for pin count over/underflow. 4053 // No memory changed so far - we can use memory create by reset_memory() 4054 // at the beginning of this intrinsic. No need to call reset_memory() again. 4055 PreserveJVMState pjvms(this); 4056 set_control(pin_count_over_underflow); 4057 uncommon_trap(Deoptimization::Reason_intrinsic, 4058 Deoptimization::Action_none); 4059 assert(stopped(), "invariant"); 4060 } 4061 4062 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 4063 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 4064 set_control(valid_pin_count); 4065 4066 Node* next_pin_count; 4067 if (unpin) { 4068 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 4069 } else { 4070 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 4071 } 4072 4073 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 4074 4075 // Result of top level CFG and Memory. 4076 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 4077 record_for_igvn(result_rgn); 4078 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 4079 record_for_igvn(result_mem); 4080 4081 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 4082 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 4083 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 4084 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 4085 4086 // Set output state. 4087 set_control(_gvn.transform(result_rgn)); 4088 set_all_memory(_gvn.transform(result_mem)); 4089 4090 return true; 4091 } 4092 4093 //-----------------------load_klass_from_mirror_common------------------------- 4094 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 4095 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 4096 // and branch to the given path on the region. 4097 // If never_see_null, take an uncommon trap on null, so we can optimistically 4098 // compile for the non-null case. 4099 // If the region is null, force never_see_null = true. 4100 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 4101 bool never_see_null, 4102 RegionNode* region, 4103 int null_path, 4104 int offset) { 4105 if (region == nullptr) never_see_null = true; 4106 Node* p = basic_plus_adr(mirror, offset); 4107 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4108 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 4109 Node* null_ctl = top(); 4110 kls = null_check_oop(kls, &null_ctl, never_see_null); 4111 if (region != nullptr) { 4112 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 4113 region->init_req(null_path, null_ctl); 4114 } else { 4115 assert(null_ctl == top(), "no loose ends"); 4116 } 4117 return kls; 4118 } 4119 4120 //--------------------(inline_native_Class_query helpers)--------------------- 4121 // Use this for JVM_ACC_INTERFACE. 4122 // Fall through if (mods & mask) == bits, take the guard otherwise. 4123 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 4124 ByteSize offset, const Type* type, BasicType bt) { 4125 // Branch around if the given klass has the given modifier bit set. 4126 // Like generate_guard, adds a new path onto the region. 4127 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 4128 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 4129 Node* mask = intcon(modifier_mask); 4130 Node* bits = intcon(modifier_bits); 4131 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 4132 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 4133 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 4134 return generate_fair_guard(bol, region); 4135 } 4136 4137 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 4138 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 4139 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 4140 } 4141 4142 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 4143 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 4144 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 4145 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 4146 } 4147 4148 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 4149 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 4150 } 4151 4152 //-------------------------inline_native_Class_query------------------- 4153 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 4154 const Type* return_type = TypeInt::BOOL; 4155 Node* prim_return_value = top(); // what happens if it's a primitive class? 4156 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4157 bool expect_prim = false; // most of these guys expect to work on refs 4158 4159 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 4160 4161 Node* mirror = argument(0); 4162 Node* obj = top(); 4163 4164 switch (id) { 4165 case vmIntrinsics::_isInstance: 4166 // nothing is an instance of a primitive type 4167 prim_return_value = intcon(0); 4168 obj = argument(1); 4169 break; 4170 case vmIntrinsics::_isHidden: 4171 prim_return_value = intcon(0); 4172 break; 4173 case vmIntrinsics::_getSuperclass: 4174 prim_return_value = null(); 4175 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 4176 break; 4177 case vmIntrinsics::_getClassAccessFlags: 4178 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 4179 return_type = TypeInt::CHAR; 4180 break; 4181 default: 4182 fatal_unexpected_iid(id); 4183 break; 4184 } 4185 4186 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4187 if (mirror_con == nullptr) return false; // cannot happen? 4188 4189 #ifndef PRODUCT 4190 if (C->print_intrinsics() || C->print_inlining()) { 4191 ciType* k = mirror_con->java_mirror_type(); 4192 if (k) { 4193 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 4194 k->print_name(); 4195 tty->cr(); 4196 } 4197 } 4198 #endif 4199 4200 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 4201 RegionNode* region = new RegionNode(PATH_LIMIT); 4202 record_for_igvn(region); 4203 PhiNode* phi = new PhiNode(region, return_type); 4204 4205 // The mirror will never be null of Reflection.getClassAccessFlags, however 4206 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4207 // if it is. See bug 4774291. 4208 4209 // For Reflection.getClassAccessFlags(), the null check occurs in 4210 // the wrong place; see inline_unsafe_access(), above, for a similar 4211 // situation. 4212 mirror = null_check(mirror); 4213 // If mirror or obj is dead, only null-path is taken. 4214 if (stopped()) return true; 4215 4216 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4217 4218 // Now load the mirror's klass metaobject, and null-check it. 4219 // Side-effects region with the control path if the klass is null. 4220 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4221 // If kls is null, we have a primitive mirror. 4222 phi->init_req(_prim_path, prim_return_value); 4223 if (stopped()) { set_result(region, phi); return true; } 4224 bool safe_for_replace = (region->in(_prim_path) == top()); 4225 4226 Node* p; // handy temp 4227 Node* null_ctl; 4228 4229 // Now that we have the non-null klass, we can perform the real query. 4230 // For constant classes, the query will constant-fold in LoadNode::Value. 4231 Node* query_value = top(); 4232 switch (id) { 4233 case vmIntrinsics::_isInstance: 4234 // nothing is an instance of a primitive type 4235 query_value = gen_instanceof(obj, kls, safe_for_replace); 4236 break; 4237 4238 case vmIntrinsics::_isHidden: 4239 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4240 if (generate_hidden_class_guard(kls, region) != nullptr) 4241 // A guard was added. If the guard is taken, it was an hidden class. 4242 phi->add_req(intcon(1)); 4243 // If we fall through, it's a plain class. 4244 query_value = intcon(0); 4245 break; 4246 4247 4248 case vmIntrinsics::_getSuperclass: 4249 // The rules here are somewhat unfortunate, but we can still do better 4250 // with random logic than with a JNI call. 4251 // Interfaces store null or Object as _super, but must report null. 4252 // Arrays store an intermediate super as _super, but must report Object. 4253 // Other types can report the actual _super. 4254 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4255 if (generate_interface_guard(kls, region) != nullptr) 4256 // A guard was added. If the guard is taken, it was an interface. 4257 phi->add_req(null()); 4258 if (generate_array_guard(kls, region) != nullptr) 4259 // A guard was added. If the guard is taken, it was an array. 4260 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4261 // If we fall through, it's a plain class. Get its _super. 4262 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4263 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4264 null_ctl = top(); 4265 kls = null_check_oop(kls, &null_ctl); 4266 if (null_ctl != top()) { 4267 // If the guard is taken, Object.superClass is null (both klass and mirror). 4268 region->add_req(null_ctl); 4269 phi ->add_req(null()); 4270 } 4271 if (!stopped()) { 4272 query_value = load_mirror_from_klass(kls); 4273 } 4274 break; 4275 4276 case vmIntrinsics::_getClassAccessFlags: 4277 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4278 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4279 break; 4280 4281 default: 4282 fatal_unexpected_iid(id); 4283 break; 4284 } 4285 4286 // Fall-through is the normal case of a query to a real class. 4287 phi->init_req(1, query_value); 4288 region->init_req(1, control()); 4289 4290 C->set_has_split_ifs(true); // Has chance for split-if optimization 4291 set_result(region, phi); 4292 return true; 4293 } 4294 4295 4296 //-------------------------inline_Class_cast------------------- 4297 bool LibraryCallKit::inline_Class_cast() { 4298 Node* mirror = argument(0); // Class 4299 Node* obj = argument(1); 4300 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4301 if (mirror_con == nullptr) { 4302 return false; // dead path (mirror->is_top()). 4303 } 4304 if (obj == nullptr || obj->is_top()) { 4305 return false; // dead path 4306 } 4307 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4308 4309 // First, see if Class.cast() can be folded statically. 4310 // java_mirror_type() returns non-null for compile-time Class constants. 4311 bool is_null_free_array = false; 4312 ciType* tm = mirror_con->java_mirror_type(&is_null_free_array); 4313 if (tm != nullptr && tm->is_klass() && 4314 tp != nullptr) { 4315 if (!tp->is_loaded()) { 4316 // Don't use intrinsic when class is not loaded. 4317 return false; 4318 } else { 4319 const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces); 4320 if (is_null_free_array) { 4321 tklass = tklass->is_aryklassptr()->cast_to_null_free(); 4322 } 4323 int static_res = C->static_subtype_check(tklass, tp->as_klass_type()); 4324 if (static_res == Compile::SSC_always_true) { 4325 // isInstance() is true - fold the code. 4326 set_result(obj); 4327 return true; 4328 } else if (static_res == Compile::SSC_always_false) { 4329 // Don't use intrinsic, have to throw ClassCastException. 4330 // If the reference is null, the non-intrinsic bytecode will 4331 // be optimized appropriately. 4332 return false; 4333 } 4334 } 4335 } 4336 4337 // Bailout intrinsic and do normal inlining if exception path is frequent. 4338 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4339 return false; 4340 } 4341 4342 // Generate dynamic checks. 4343 // Class.cast() is java implementation of _checkcast bytecode. 4344 // Do checkcast (Parse::do_checkcast()) optimizations here. 4345 4346 mirror = null_check(mirror); 4347 // If mirror is dead, only null-path is taken. 4348 if (stopped()) { 4349 return true; 4350 } 4351 4352 // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive). 4353 enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT }; 4354 RegionNode* region = new RegionNode(PATH_LIMIT); 4355 record_for_igvn(region); 4356 4357 // Now load the mirror's klass metaobject, and null-check it. 4358 // If kls is null, we have a primitive mirror and 4359 // nothing is an instance of a primitive type. 4360 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4361 4362 Node* res = top(); 4363 Node* io = i_o(); 4364 Node* mem = merged_memory(); 4365 if (!stopped()) { 4366 4367 Node* bad_type_ctrl = top(); 4368 // Do checkcast optimizations. 4369 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4370 region->init_req(_bad_type_path, bad_type_ctrl); 4371 } 4372 if (region->in(_prim_path) != top() || 4373 region->in(_bad_type_path) != top() || 4374 region->in(_npe_path) != top()) { 4375 // Let Interpreter throw ClassCastException. 4376 PreserveJVMState pjvms(this); 4377 set_control(_gvn.transform(region)); 4378 // Set IO and memory because gen_checkcast may override them when buffering inline types 4379 set_i_o(io); 4380 set_all_memory(mem); 4381 uncommon_trap(Deoptimization::Reason_intrinsic, 4382 Deoptimization::Action_maybe_recompile); 4383 } 4384 if (!stopped()) { 4385 set_result(res); 4386 } 4387 return true; 4388 } 4389 4390 4391 //--------------------------inline_native_subtype_check------------------------ 4392 // This intrinsic takes the JNI calls out of the heart of 4393 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4394 bool LibraryCallKit::inline_native_subtype_check() { 4395 // Pull both arguments off the stack. 4396 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4397 args[0] = argument(0); 4398 args[1] = argument(1); 4399 Node* klasses[2]; // corresponding Klasses: superk, subk 4400 klasses[0] = klasses[1] = top(); 4401 4402 enum { 4403 // A full decision tree on {superc is prim, subc is prim}: 4404 _prim_0_path = 1, // {P,N} => false 4405 // {P,P} & superc!=subc => false 4406 _prim_same_path, // {P,P} & superc==subc => true 4407 _prim_1_path, // {N,P} => false 4408 _ref_subtype_path, // {N,N} & subtype check wins => true 4409 _both_ref_path, // {N,N} & subtype check loses => false 4410 PATH_LIMIT 4411 }; 4412 4413 RegionNode* region = new RegionNode(PATH_LIMIT); 4414 RegionNode* prim_region = new RegionNode(2); 4415 Node* phi = new PhiNode(region, TypeInt::BOOL); 4416 record_for_igvn(region); 4417 record_for_igvn(prim_region); 4418 4419 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4420 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4421 int class_klass_offset = java_lang_Class::klass_offset(); 4422 4423 // First null-check both mirrors and load each mirror's klass metaobject. 4424 int which_arg; 4425 for (which_arg = 0; which_arg <= 1; which_arg++) { 4426 Node* arg = args[which_arg]; 4427 arg = null_check(arg); 4428 if (stopped()) break; 4429 args[which_arg] = arg; 4430 4431 Node* p = basic_plus_adr(arg, class_klass_offset); 4432 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4433 klasses[which_arg] = _gvn.transform(kls); 4434 } 4435 4436 // Having loaded both klasses, test each for null. 4437 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4438 for (which_arg = 0; which_arg <= 1; which_arg++) { 4439 Node* kls = klasses[which_arg]; 4440 Node* null_ctl = top(); 4441 kls = null_check_oop(kls, &null_ctl, never_see_null); 4442 if (which_arg == 0) { 4443 prim_region->init_req(1, null_ctl); 4444 } else { 4445 region->init_req(_prim_1_path, null_ctl); 4446 } 4447 if (stopped()) break; 4448 klasses[which_arg] = kls; 4449 } 4450 4451 if (!stopped()) { 4452 // now we have two reference types, in klasses[0..1] 4453 Node* subk = klasses[1]; // the argument to isAssignableFrom 4454 Node* superk = klasses[0]; // the receiver 4455 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4456 region->set_req(_ref_subtype_path, control()); 4457 } 4458 4459 // If both operands are primitive (both klasses null), then 4460 // we must return true when they are identical primitives. 4461 // It is convenient to test this after the first null klass check. 4462 // This path is also used if superc is a value mirror. 4463 set_control(_gvn.transform(prim_region)); 4464 if (!stopped()) { 4465 // Since superc is primitive, make a guard for the superc==subc case. 4466 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4467 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4468 generate_fair_guard(bol_eq, region); 4469 if (region->req() == PATH_LIMIT+1) { 4470 // A guard was added. If the added guard is taken, superc==subc. 4471 region->swap_edges(PATH_LIMIT, _prim_same_path); 4472 region->del_req(PATH_LIMIT); 4473 } 4474 region->set_req(_prim_0_path, control()); // Not equal after all. 4475 } 4476 4477 // these are the only paths that produce 'true': 4478 phi->set_req(_prim_same_path, intcon(1)); 4479 phi->set_req(_ref_subtype_path, intcon(1)); 4480 4481 // pull together the cases: 4482 assert(region->req() == PATH_LIMIT, "sane region"); 4483 for (uint i = 1; i < region->req(); i++) { 4484 Node* ctl = region->in(i); 4485 if (ctl == nullptr || ctl == top()) { 4486 region->set_req(i, top()); 4487 phi ->set_req(i, top()); 4488 } else if (phi->in(i) == nullptr) { 4489 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4490 } 4491 } 4492 4493 set_control(_gvn.transform(region)); 4494 set_result(_gvn.transform(phi)); 4495 return true; 4496 } 4497 4498 //---------------------generate_array_guard_common------------------------ 4499 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) { 4500 4501 if (stopped()) { 4502 return nullptr; 4503 } 4504 4505 // Like generate_guard, adds a new path onto the region. 4506 jint layout_con = 0; 4507 Node* layout_val = get_layout_helper(kls, layout_con); 4508 if (layout_val == nullptr) { 4509 bool query = 0; 4510 switch(kind) { 4511 case ObjectArray: query = Klass::layout_helper_is_objArray(layout_con); break; 4512 case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break; 4513 case TypeArray: query = Klass::layout_helper_is_typeArray(layout_con); break; 4514 case AnyArray: query = Klass::layout_helper_is_array(layout_con); break; 4515 case NonArray: query = !Klass::layout_helper_is_array(layout_con); break; 4516 default: 4517 ShouldNotReachHere(); 4518 } 4519 if (!query) { 4520 return nullptr; // never a branch 4521 } else { // always a branch 4522 Node* always_branch = control(); 4523 if (region != nullptr) 4524 region->add_req(always_branch); 4525 set_control(top()); 4526 return always_branch; 4527 } 4528 } 4529 unsigned int value = 0; 4530 BoolTest::mask btest = BoolTest::illegal; 4531 switch(kind) { 4532 case ObjectArray: 4533 case NonObjectArray: { 4534 value = Klass::_lh_array_tag_obj_value; 4535 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4536 btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne; 4537 break; 4538 } 4539 case TypeArray: { 4540 value = Klass::_lh_array_tag_type_value; 4541 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4542 btest = BoolTest::eq; 4543 break; 4544 } 4545 case AnyArray: value = Klass::_lh_neutral_value; btest = BoolTest::lt; break; 4546 case NonArray: value = Klass::_lh_neutral_value; btest = BoolTest::gt; break; 4547 default: 4548 ShouldNotReachHere(); 4549 } 4550 // Now test the correct condition. 4551 jint nval = (jint)value; 4552 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4553 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4554 Node* ctrl = generate_fair_guard(bol, region); 4555 Node* is_array_ctrl = kind == NonArray ? control() : ctrl; 4556 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4557 // Keep track of the fact that 'obj' is an array to prevent 4558 // array specific accesses from floating above the guard. 4559 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4560 } 4561 return ctrl; 4562 } 4563 4564 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal); 4565 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal); 4566 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length); 4567 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) { 4568 assert(null_free || atomic, "nullable implies atomic"); 4569 Node* componentType = argument(0); 4570 Node* length = argument(1); 4571 Node* init_val = null_free ? argument(2) : nullptr; 4572 4573 const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr(); 4574 if (tp != nullptr) { 4575 ciInstanceKlass* ik = tp->instance_klass(); 4576 if (ik == C->env()->Class_klass()) { 4577 ciType* t = tp->java_mirror_type(); 4578 if (t != nullptr && t->is_inlinetype()) { 4579 ciInlineKlass* vk = t->as_inline_klass(); 4580 bool flat = vk->maybe_flat_in_array(); 4581 if (flat && atomic) { 4582 // Only flat if we have a corresponding atomic layout 4583 flat = null_free ? vk->has_atomic_layout() : vk->has_nullable_atomic_layout(); 4584 } 4585 // TODO 8350865 refactor 4586 if (flat && !atomic) { 4587 flat = vk->has_non_atomic_layout(); 4588 } 4589 4590 // TOOD 8350865 ZGC needs card marks on initializing oop stores 4591 if (UseZGC && null_free && !flat) { 4592 return false; 4593 } 4594 4595 ciArrayKlass* array_klass = ciArrayKlass::make(t, flat, null_free, atomic); 4596 if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) { 4597 const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces); 4598 if (null_free) { 4599 if (init_val->is_InlineType()) { 4600 if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) { 4601 // Zeroing is enough because the init value is the all-zero value 4602 init_val = nullptr; 4603 } else { 4604 init_val = init_val->as_InlineType()->buffer(this); 4605 } 4606 } 4607 // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)? 4608 } 4609 Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val); 4610 const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr(); 4611 assert(arytype->is_null_free() == null_free, "inconsistency"); 4612 assert(arytype->is_not_null_free() == !null_free, "inconsistency"); 4613 assert(arytype->is_flat() == flat, "inconsistency"); 4614 assert(arytype->is_aryptr()->is_not_flat() == !flat, "inconsistency"); 4615 set_result(obj); 4616 return true; 4617 } 4618 } 4619 } 4620 } 4621 return false; 4622 } 4623 4624 //-----------------------inline_native_newArray-------------------------- 4625 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length); 4626 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4627 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4628 Node* mirror; 4629 Node* count_val; 4630 if (uninitialized) { 4631 null_check_receiver(); 4632 mirror = argument(1); 4633 count_val = argument(2); 4634 } else { 4635 mirror = argument(0); 4636 count_val = argument(1); 4637 } 4638 4639 mirror = null_check(mirror); 4640 // If mirror or obj is dead, only null-path is taken. 4641 if (stopped()) return true; 4642 4643 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4644 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4645 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4646 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4647 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4648 4649 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4650 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4651 result_reg, _slow_path); 4652 Node* normal_ctl = control(); 4653 Node* no_array_ctl = result_reg->in(_slow_path); 4654 4655 // Generate code for the slow case. We make a call to newArray(). 4656 set_control(no_array_ctl); 4657 if (!stopped()) { 4658 // Either the input type is void.class, or else the 4659 // array klass has not yet been cached. Either the 4660 // ensuing call will throw an exception, or else it 4661 // will cache the array klass for next time. 4662 PreserveJVMState pjvms(this); 4663 CallJavaNode* slow_call = nullptr; 4664 if (uninitialized) { 4665 // Generate optimized virtual call (holder class 'Unsafe' is final) 4666 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4667 } else { 4668 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4669 } 4670 Node* slow_result = set_results_for_java_call(slow_call); 4671 // this->control() comes from set_results_for_java_call 4672 result_reg->set_req(_slow_path, control()); 4673 result_val->set_req(_slow_path, slow_result); 4674 result_io ->set_req(_slow_path, i_o()); 4675 result_mem->set_req(_slow_path, reset_memory()); 4676 } 4677 4678 set_control(normal_ctl); 4679 if (!stopped()) { 4680 // Normal case: The array type has been cached in the java.lang.Class. 4681 // The following call works fine even if the array type is polymorphic. 4682 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4683 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4684 result_reg->init_req(_normal_path, control()); 4685 result_val->init_req(_normal_path, obj); 4686 result_io ->init_req(_normal_path, i_o()); 4687 result_mem->init_req(_normal_path, reset_memory()); 4688 4689 if (uninitialized) { 4690 // Mark the allocation so that zeroing is skipped 4691 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4692 alloc->maybe_set_complete(&_gvn); 4693 } 4694 } 4695 4696 // Return the combined state. 4697 set_i_o( _gvn.transform(result_io) ); 4698 set_all_memory( _gvn.transform(result_mem)); 4699 4700 C->set_has_split_ifs(true); // Has chance for split-if optimization 4701 set_result(result_reg, result_val); 4702 return true; 4703 } 4704 4705 //----------------------inline_native_getLength-------------------------- 4706 // public static native int java.lang.reflect.Array.getLength(Object array); 4707 bool LibraryCallKit::inline_native_getLength() { 4708 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4709 4710 Node* array = null_check(argument(0)); 4711 // If array is dead, only null-path is taken. 4712 if (stopped()) return true; 4713 4714 // Deoptimize if it is a non-array. 4715 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4716 4717 if (non_array != nullptr) { 4718 PreserveJVMState pjvms(this); 4719 set_control(non_array); 4720 uncommon_trap(Deoptimization::Reason_intrinsic, 4721 Deoptimization::Action_maybe_recompile); 4722 } 4723 4724 // If control is dead, only non-array-path is taken. 4725 if (stopped()) return true; 4726 4727 // The works fine even if the array type is polymorphic. 4728 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4729 Node* result = load_array_length(array); 4730 4731 C->set_has_split_ifs(true); // Has chance for split-if optimization 4732 set_result(result); 4733 return true; 4734 } 4735 4736 //------------------------inline_array_copyOf---------------------------- 4737 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4738 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4739 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4740 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4741 4742 // Get the arguments. 4743 Node* original = argument(0); 4744 Node* start = is_copyOfRange? argument(1): intcon(0); 4745 Node* end = is_copyOfRange? argument(2): argument(1); 4746 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4747 4748 Node* newcopy = nullptr; 4749 4750 // Set the original stack and the reexecute bit for the interpreter to reexecute 4751 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4752 { PreserveReexecuteState preexecs(this); 4753 jvms()->set_should_reexecute(true); 4754 4755 array_type_mirror = null_check(array_type_mirror); 4756 original = null_check(original); 4757 4758 // Check if a null path was taken unconditionally. 4759 if (stopped()) return true; 4760 4761 Node* orig_length = load_array_length(original); 4762 4763 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4764 klass_node = null_check(klass_node); 4765 4766 RegionNode* bailout = new RegionNode(1); 4767 record_for_igvn(bailout); 4768 4769 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4770 // Bail out if that is so. 4771 // Inline type array may have object field that would require a 4772 // write barrier. Conservatively, go to slow path. 4773 // TODO 8251971: Optimize for the case when flat src/dst are later found 4774 // to not contain oops (i.e., move this check to the macro expansion phase). 4775 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4776 const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr(); 4777 const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr(); 4778 bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) && 4779 // Can src array be flat and contain oops? 4780 (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) && 4781 // Can dest array be flat and contain oops? 4782 tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops()); 4783 Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout); 4784 if (not_objArray != nullptr) { 4785 // Improve the klass node's type from the new optimistic assumption: 4786 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4787 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0)); 4788 Node* cast = new CastPPNode(control(), klass_node, akls); 4789 klass_node = _gvn.transform(cast); 4790 } 4791 4792 // Bail out if either start or end is negative. 4793 generate_negative_guard(start, bailout, &start); 4794 generate_negative_guard(end, bailout, &end); 4795 4796 Node* length = end; 4797 if (_gvn.type(start) != TypeInt::ZERO) { 4798 length = _gvn.transform(new SubINode(end, start)); 4799 } 4800 4801 // Bail out if length is negative (i.e., if start > end). 4802 // Without this the new_array would throw 4803 // NegativeArraySizeException but IllegalArgumentException is what 4804 // should be thrown 4805 generate_negative_guard(length, bailout, &length); 4806 4807 // Handle inline type arrays 4808 bool can_validate = !too_many_traps(Deoptimization::Reason_class_check); 4809 if (!stopped()) { 4810 // TODO JDK-8329224 4811 if (!orig_t->is_null_free()) { 4812 // Not statically known to be null free, add a check 4813 generate_fair_guard(null_free_array_test(original), bailout); 4814 } 4815 orig_t = _gvn.type(original)->isa_aryptr(); 4816 if (orig_t != nullptr && orig_t->is_flat()) { 4817 // Src is flat, check that dest is flat as well 4818 if (exclude_flat) { 4819 // Dest can't be flat, bail out 4820 bailout->add_req(control()); 4821 set_control(top()); 4822 } else { 4823 generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout); 4824 } 4825 // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy. 4826 } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) && 4827 // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated). 4828 ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) { 4829 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 4830 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 4831 generate_fair_guard(flat_array_test(load_object_klass(original)), bailout); 4832 if (orig_t != nullptr) { 4833 orig_t = orig_t->cast_to_not_flat(); 4834 original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t)); 4835 } 4836 } 4837 if (!can_validate) { 4838 // No validation. The subtype check emitted at macro expansion time will not go to the slow 4839 // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays. 4840 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free. 4841 generate_fair_guard(flat_array_test(klass_node), bailout); 4842 generate_fair_guard(null_free_array_test(original), bailout); 4843 } 4844 } 4845 4846 // Bail out if start is larger than the original length 4847 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4848 generate_negative_guard(orig_tail, bailout, &orig_tail); 4849 4850 if (bailout->req() > 1) { 4851 PreserveJVMState pjvms(this); 4852 set_control(_gvn.transform(bailout)); 4853 uncommon_trap(Deoptimization::Reason_intrinsic, 4854 Deoptimization::Action_maybe_recompile); 4855 } 4856 4857 if (!stopped()) { 4858 // How many elements will we copy from the original? 4859 // The answer is MinI(orig_tail, length). 4860 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4861 4862 // Generate a direct call to the right arraycopy function(s). 4863 // We know the copy is disjoint but we might not know if the 4864 // oop stores need checking. 4865 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4866 // This will fail a store-check if x contains any non-nulls. 4867 4868 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4869 // loads/stores but it is legal only if we're sure the 4870 // Arrays.copyOf would succeed. So we need all input arguments 4871 // to the copyOf to be validated, including that the copy to the 4872 // new array won't trigger an ArrayStoreException. That subtype 4873 // check can be optimized if we know something on the type of 4874 // the input array from type speculation. 4875 if (_gvn.type(klass_node)->singleton()) { 4876 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4877 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4878 4879 int test = C->static_subtype_check(superk, subk); 4880 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4881 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4882 if (t_original->speculative_type() != nullptr) { 4883 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4884 } 4885 } 4886 } 4887 4888 bool validated = false; 4889 // Reason_class_check rather than Reason_intrinsic because we 4890 // want to intrinsify even if this traps. 4891 if (can_validate) { 4892 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4893 4894 if (not_subtype_ctrl != top()) { 4895 PreserveJVMState pjvms(this); 4896 set_control(not_subtype_ctrl); 4897 uncommon_trap(Deoptimization::Reason_class_check, 4898 Deoptimization::Action_make_not_entrant); 4899 assert(stopped(), "Should be stopped"); 4900 } 4901 validated = true; 4902 } 4903 4904 if (!stopped()) { 4905 newcopy = new_array(klass_node, length, 0); // no arguments to push 4906 4907 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4908 load_object_klass(original), klass_node); 4909 if (!is_copyOfRange) { 4910 ac->set_copyof(validated); 4911 } else { 4912 ac->set_copyofrange(validated); 4913 } 4914 Node* n = _gvn.transform(ac); 4915 if (n == ac) { 4916 ac->connect_outputs(this); 4917 } else { 4918 assert(validated, "shouldn't transform if all arguments not validated"); 4919 set_all_memory(n); 4920 } 4921 } 4922 } 4923 } // original reexecute is set back here 4924 4925 C->set_has_split_ifs(true); // Has chance for split-if optimization 4926 if (!stopped()) { 4927 set_result(newcopy); 4928 } 4929 return true; 4930 } 4931 4932 4933 //----------------------generate_virtual_guard--------------------------- 4934 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4935 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4936 RegionNode* slow_region) { 4937 ciMethod* method = callee(); 4938 int vtable_index = method->vtable_index(); 4939 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4940 "bad index %d", vtable_index); 4941 // Get the Method* out of the appropriate vtable entry. 4942 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4943 vtable_index*vtableEntry::size_in_bytes() + 4944 in_bytes(vtableEntry::method_offset()); 4945 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4946 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4947 4948 // Compare the target method with the expected method (e.g., Object.hashCode). 4949 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4950 4951 Node* native_call = makecon(native_call_addr); 4952 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4953 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4954 4955 return generate_slow_guard(test_native, slow_region); 4956 } 4957 4958 //-----------------------generate_method_call---------------------------- 4959 // Use generate_method_call to make a slow-call to the real 4960 // method if the fast path fails. An alternative would be to 4961 // use a stub like OptoRuntime::slow_arraycopy_Java. 4962 // This only works for expanding the current library call, 4963 // not another intrinsic. (E.g., don't use this for making an 4964 // arraycopy call inside of the copyOf intrinsic.) 4965 CallJavaNode* 4966 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4967 // When compiling the intrinsic method itself, do not use this technique. 4968 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4969 4970 ciMethod* method = callee(); 4971 // ensure the JVMS we have will be correct for this call 4972 guarantee(method_id == method->intrinsic_id(), "must match"); 4973 4974 const TypeFunc* tf = TypeFunc::make(method); 4975 if (res_not_null) { 4976 assert(tf->return_type() == T_OBJECT, ""); 4977 const TypeTuple* range = tf->range_cc(); 4978 const Type** fields = TypeTuple::fields(range->cnt()); 4979 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4980 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4981 tf = TypeFunc::make(tf->domain_cc(), new_range); 4982 } 4983 CallJavaNode* slow_call; 4984 if (is_static) { 4985 assert(!is_virtual, ""); 4986 slow_call = new CallStaticJavaNode(C, tf, 4987 SharedRuntime::get_resolve_static_call_stub(), method); 4988 } else if (is_virtual) { 4989 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4990 int vtable_index = Method::invalid_vtable_index; 4991 if (UseInlineCaches) { 4992 // Suppress the vtable call 4993 } else { 4994 // hashCode and clone are not a miranda methods, 4995 // so the vtable index is fixed. 4996 // No need to use the linkResolver to get it. 4997 vtable_index = method->vtable_index(); 4998 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4999 "bad index %d", vtable_index); 5000 } 5001 slow_call = new CallDynamicJavaNode(tf, 5002 SharedRuntime::get_resolve_virtual_call_stub(), 5003 method, vtable_index); 5004 } else { // neither virtual nor static: opt_virtual 5005 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 5006 slow_call = new CallStaticJavaNode(C, tf, 5007 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 5008 slow_call->set_optimized_virtual(true); 5009 } 5010 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 5011 // To be able to issue a direct call (optimized virtual or virtual) 5012 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 5013 // about the method being invoked should be attached to the call site to 5014 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 5015 slow_call->set_override_symbolic_info(true); 5016 } 5017 set_arguments_for_java_call(slow_call); 5018 set_edges_for_java_call(slow_call); 5019 return slow_call; 5020 } 5021 5022 5023 /** 5024 * Build special case code for calls to hashCode on an object. This call may 5025 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 5026 * slightly different code. 5027 */ 5028 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 5029 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 5030 assert(!(is_virtual && is_static), "either virtual, special, or static"); 5031 5032 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 5033 5034 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5035 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 5036 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 5037 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5038 Node* obj = argument(0); 5039 5040 // Don't intrinsify hashcode on inline types for now. 5041 // The "is locked" runtime check below also serves as inline type check and goes to the slow path. 5042 if (gvn().type(obj)->is_inlinetypeptr()) { 5043 return false; 5044 } 5045 5046 if (!is_static) { 5047 // Check for hashing null object 5048 obj = null_check_receiver(); 5049 if (stopped()) return true; // unconditionally null 5050 result_reg->init_req(_null_path, top()); 5051 result_val->init_req(_null_path, top()); 5052 } else { 5053 // Do a null check, and return zero if null. 5054 // System.identityHashCode(null) == 0 5055 Node* null_ctl = top(); 5056 obj = null_check_oop(obj, &null_ctl); 5057 result_reg->init_req(_null_path, null_ctl); 5058 result_val->init_req(_null_path, _gvn.intcon(0)); 5059 } 5060 5061 // Unconditionally null? Then return right away. 5062 if (stopped()) { 5063 set_control( result_reg->in(_null_path)); 5064 if (!stopped()) 5065 set_result(result_val->in(_null_path)); 5066 return true; 5067 } 5068 5069 // We only go to the fast case code if we pass a number of guards. The 5070 // paths which do not pass are accumulated in the slow_region. 5071 RegionNode* slow_region = new RegionNode(1); 5072 record_for_igvn(slow_region); 5073 5074 // If this is a virtual call, we generate a funny guard. We pull out 5075 // the vtable entry corresponding to hashCode() from the target object. 5076 // If the target method which we are calling happens to be the native 5077 // Object hashCode() method, we pass the guard. We do not need this 5078 // guard for non-virtual calls -- the caller is known to be the native 5079 // Object hashCode(). 5080 if (is_virtual) { 5081 // After null check, get the object's klass. 5082 Node* obj_klass = load_object_klass(obj); 5083 generate_virtual_guard(obj_klass, slow_region); 5084 } 5085 5086 // Get the header out of the object, use LoadMarkNode when available 5087 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 5088 // The control of the load must be null. Otherwise, the load can move before 5089 // the null check after castPP removal. 5090 Node* no_ctrl = nullptr; 5091 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 5092 5093 if (!UseObjectMonitorTable) { 5094 // Test the header to see if it is safe to read w.r.t. locking. 5095 // This also serves as guard against inline types 5096 Node *lock_mask = _gvn.MakeConX(markWord::inline_type_mask_in_place); 5097 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 5098 if (LockingMode == LM_LIGHTWEIGHT) { 5099 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 5100 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 5101 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 5102 5103 generate_slow_guard(test_monitor, slow_region); 5104 } else { 5105 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 5106 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 5107 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 5108 5109 generate_slow_guard(test_not_unlocked, slow_region); 5110 } 5111 } 5112 5113 // Get the hash value and check to see that it has been properly assigned. 5114 // We depend on hash_mask being at most 32 bits and avoid the use of 5115 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 5116 // vm: see markWord.hpp. 5117 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 5118 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 5119 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 5120 // This hack lets the hash bits live anywhere in the mark object now, as long 5121 // as the shift drops the relevant bits into the low 32 bits. Note that 5122 // Java spec says that HashCode is an int so there's no point in capturing 5123 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 5124 hshifted_header = ConvX2I(hshifted_header); 5125 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 5126 5127 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 5128 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 5129 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 5130 5131 generate_slow_guard(test_assigned, slow_region); 5132 5133 Node* init_mem = reset_memory(); 5134 // fill in the rest of the null path: 5135 result_io ->init_req(_null_path, i_o()); 5136 result_mem->init_req(_null_path, init_mem); 5137 5138 result_val->init_req(_fast_path, hash_val); 5139 result_reg->init_req(_fast_path, control()); 5140 result_io ->init_req(_fast_path, i_o()); 5141 result_mem->init_req(_fast_path, init_mem); 5142 5143 // Generate code for the slow case. We make a call to hashCode(). 5144 set_control(_gvn.transform(slow_region)); 5145 if (!stopped()) { 5146 // No need for PreserveJVMState, because we're using up the present state. 5147 set_all_memory(init_mem); 5148 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 5149 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 5150 Node* slow_result = set_results_for_java_call(slow_call); 5151 // this->control() comes from set_results_for_java_call 5152 result_reg->init_req(_slow_path, control()); 5153 result_val->init_req(_slow_path, slow_result); 5154 result_io ->set_req(_slow_path, i_o()); 5155 result_mem ->set_req(_slow_path, reset_memory()); 5156 } 5157 5158 // Return the combined state. 5159 set_i_o( _gvn.transform(result_io) ); 5160 set_all_memory( _gvn.transform(result_mem)); 5161 5162 set_result(result_reg, result_val); 5163 return true; 5164 } 5165 5166 //---------------------------inline_native_getClass---------------------------- 5167 // public final native Class<?> java.lang.Object.getClass(); 5168 // 5169 // Build special case code for calls to getClass on an object. 5170 bool LibraryCallKit::inline_native_getClass() { 5171 Node* obj = argument(0); 5172 if (obj->is_InlineType()) { 5173 const Type* t = _gvn.type(obj); 5174 if (t->maybe_null()) { 5175 null_check(obj); 5176 } 5177 set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror()))); 5178 return true; 5179 } 5180 obj = null_check_receiver(); 5181 if (stopped()) return true; 5182 set_result(load_mirror_from_klass(load_object_klass(obj))); 5183 return true; 5184 } 5185 5186 //-----------------inline_native_Reflection_getCallerClass--------------------- 5187 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 5188 // 5189 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 5190 // 5191 // NOTE: This code must perform the same logic as JVM_GetCallerClass 5192 // in that it must skip particular security frames and checks for 5193 // caller sensitive methods. 5194 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 5195 #ifndef PRODUCT 5196 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5197 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 5198 } 5199 #endif 5200 5201 if (!jvms()->has_method()) { 5202 #ifndef PRODUCT 5203 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5204 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 5205 } 5206 #endif 5207 return false; 5208 } 5209 5210 // Walk back up the JVM state to find the caller at the required 5211 // depth. 5212 JVMState* caller_jvms = jvms(); 5213 5214 // Cf. JVM_GetCallerClass 5215 // NOTE: Start the loop at depth 1 because the current JVM state does 5216 // not include the Reflection.getCallerClass() frame. 5217 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 5218 ciMethod* m = caller_jvms->method(); 5219 switch (n) { 5220 case 0: 5221 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 5222 break; 5223 case 1: 5224 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 5225 if (!m->caller_sensitive()) { 5226 #ifndef PRODUCT 5227 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5228 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 5229 } 5230 #endif 5231 return false; // bail-out; let JVM_GetCallerClass do the work 5232 } 5233 break; 5234 default: 5235 if (!m->is_ignored_by_security_stack_walk()) { 5236 // We have reached the desired frame; return the holder class. 5237 // Acquire method holder as java.lang.Class and push as constant. 5238 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 5239 ciInstance* caller_mirror = caller_klass->java_mirror(); 5240 set_result(makecon(TypeInstPtr::make(caller_mirror))); 5241 5242 #ifndef PRODUCT 5243 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5244 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 5245 tty->print_cr(" JVM state at this point:"); 5246 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5247 ciMethod* m = jvms()->of_depth(i)->method(); 5248 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5249 } 5250 } 5251 #endif 5252 return true; 5253 } 5254 break; 5255 } 5256 } 5257 5258 #ifndef PRODUCT 5259 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5260 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 5261 tty->print_cr(" JVM state at this point:"); 5262 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5263 ciMethod* m = jvms()->of_depth(i)->method(); 5264 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5265 } 5266 } 5267 #endif 5268 5269 return false; // bail-out; let JVM_GetCallerClass do the work 5270 } 5271 5272 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 5273 Node* arg = argument(0); 5274 Node* result = nullptr; 5275 5276 switch (id) { 5277 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 5278 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 5279 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 5280 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 5281 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 5282 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 5283 5284 case vmIntrinsics::_doubleToLongBits: { 5285 // two paths (plus control) merge in a wood 5286 RegionNode *r = new RegionNode(3); 5287 Node *phi = new PhiNode(r, TypeLong::LONG); 5288 5289 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 5290 // Build the boolean node 5291 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5292 5293 // Branch either way. 5294 // NaN case is less traveled, which makes all the difference. 5295 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5296 Node *opt_isnan = _gvn.transform(ifisnan); 5297 assert( opt_isnan->is_If(), "Expect an IfNode"); 5298 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5299 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5300 5301 set_control(iftrue); 5302 5303 static const jlong nan_bits = CONST64(0x7ff8000000000000); 5304 Node *slow_result = longcon(nan_bits); // return NaN 5305 phi->init_req(1, _gvn.transform( slow_result )); 5306 r->init_req(1, iftrue); 5307 5308 // Else fall through 5309 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5310 set_control(iffalse); 5311 5312 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 5313 r->init_req(2, iffalse); 5314 5315 // Post merge 5316 set_control(_gvn.transform(r)); 5317 record_for_igvn(r); 5318 5319 C->set_has_split_ifs(true); // Has chance for split-if optimization 5320 result = phi; 5321 assert(result->bottom_type()->isa_long(), "must be"); 5322 break; 5323 } 5324 5325 case vmIntrinsics::_floatToIntBits: { 5326 // two paths (plus control) merge in a wood 5327 RegionNode *r = new RegionNode(3); 5328 Node *phi = new PhiNode(r, TypeInt::INT); 5329 5330 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 5331 // Build the boolean node 5332 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5333 5334 // Branch either way. 5335 // NaN case is less traveled, which makes all the difference. 5336 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5337 Node *opt_isnan = _gvn.transform(ifisnan); 5338 assert( opt_isnan->is_If(), "Expect an IfNode"); 5339 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5340 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5341 5342 set_control(iftrue); 5343 5344 static const jint nan_bits = 0x7fc00000; 5345 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 5346 phi->init_req(1, _gvn.transform( slow_result )); 5347 r->init_req(1, iftrue); 5348 5349 // Else fall through 5350 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5351 set_control(iffalse); 5352 5353 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 5354 r->init_req(2, iffalse); 5355 5356 // Post merge 5357 set_control(_gvn.transform(r)); 5358 record_for_igvn(r); 5359 5360 C->set_has_split_ifs(true); // Has chance for split-if optimization 5361 result = phi; 5362 assert(result->bottom_type()->isa_int(), "must be"); 5363 break; 5364 } 5365 5366 default: 5367 fatal_unexpected_iid(id); 5368 break; 5369 } 5370 set_result(_gvn.transform(result)); 5371 return true; 5372 } 5373 5374 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5375 Node* arg = argument(0); 5376 Node* result = nullptr; 5377 5378 switch (id) { 5379 case vmIntrinsics::_floatIsInfinite: 5380 result = new IsInfiniteFNode(arg); 5381 break; 5382 case vmIntrinsics::_floatIsFinite: 5383 result = new IsFiniteFNode(arg); 5384 break; 5385 case vmIntrinsics::_doubleIsInfinite: 5386 result = new IsInfiniteDNode(arg); 5387 break; 5388 case vmIntrinsics::_doubleIsFinite: 5389 result = new IsFiniteDNode(arg); 5390 break; 5391 default: 5392 fatal_unexpected_iid(id); 5393 break; 5394 } 5395 set_result(_gvn.transform(result)); 5396 return true; 5397 } 5398 5399 //----------------------inline_unsafe_copyMemory------------------------- 5400 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5401 5402 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5403 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5404 const Type* base_t = gvn.type(base); 5405 5406 bool in_native = (base_t == TypePtr::NULL_PTR); 5407 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5408 bool is_mixed = !in_heap && !in_native; 5409 5410 if (is_mixed) { 5411 return true; // mixed accesses can touch both on-heap and off-heap memory 5412 } 5413 if (in_heap) { 5414 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5415 if (!is_prim_array) { 5416 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5417 // there's not enough type information available to determine proper memory slice for it. 5418 return true; 5419 } 5420 } 5421 return false; 5422 } 5423 5424 bool LibraryCallKit::inline_unsafe_copyMemory() { 5425 if (callee()->is_static()) return false; // caller must have the capability! 5426 null_check_receiver(); // null-check receiver 5427 if (stopped()) return true; 5428 5429 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5430 5431 Node* src_base = argument(1); // type: oop 5432 Node* src_off = ConvL2X(argument(2)); // type: long 5433 Node* dst_base = argument(4); // type: oop 5434 Node* dst_off = ConvL2X(argument(5)); // type: long 5435 Node* size = ConvL2X(argument(7)); // type: long 5436 5437 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5438 "fieldOffset must be byte-scaled"); 5439 5440 Node* src_addr = make_unsafe_address(src_base, src_off); 5441 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5442 5443 Node* thread = _gvn.transform(new ThreadLocalNode()); 5444 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5445 BasicType doing_unsafe_access_bt = T_BYTE; 5446 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5447 5448 // update volatile field 5449 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5450 5451 int flags = RC_LEAF | RC_NO_FP; 5452 5453 const TypePtr* dst_type = TypePtr::BOTTOM; 5454 5455 // Adjust memory effects of the runtime call based on input values. 5456 if (!has_wide_mem(_gvn, src_addr, src_base) && 5457 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5458 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5459 5460 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5461 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5462 flags |= RC_NARROW_MEM; // narrow in memory 5463 } 5464 } 5465 5466 // Call it. Note that the length argument is not scaled. 5467 make_runtime_call(flags, 5468 OptoRuntime::fast_arraycopy_Type(), 5469 StubRoutines::unsafe_arraycopy(), 5470 "unsafe_arraycopy", 5471 dst_type, 5472 src_addr, dst_addr, size XTOP); 5473 5474 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5475 5476 return true; 5477 } 5478 5479 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5480 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5481 bool LibraryCallKit::inline_unsafe_setMemory() { 5482 if (callee()->is_static()) return false; // caller must have the capability! 5483 null_check_receiver(); // null-check receiver 5484 if (stopped()) return true; 5485 5486 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5487 5488 Node* dst_base = argument(1); // type: oop 5489 Node* dst_off = ConvL2X(argument(2)); // type: long 5490 Node* size = ConvL2X(argument(4)); // type: long 5491 Node* byte = argument(6); // type: byte 5492 5493 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5494 "fieldOffset must be byte-scaled"); 5495 5496 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5497 5498 Node* thread = _gvn.transform(new ThreadLocalNode()); 5499 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5500 BasicType doing_unsafe_access_bt = T_BYTE; 5501 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5502 5503 // update volatile field 5504 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5505 5506 int flags = RC_LEAF | RC_NO_FP; 5507 5508 const TypePtr* dst_type = TypePtr::BOTTOM; 5509 5510 // Adjust memory effects of the runtime call based on input values. 5511 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5512 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5513 5514 flags |= RC_NARROW_MEM; // narrow in memory 5515 } 5516 5517 // Call it. Note that the length argument is not scaled. 5518 make_runtime_call(flags, 5519 OptoRuntime::unsafe_setmemory_Type(), 5520 StubRoutines::unsafe_setmemory(), 5521 "unsafe_setmemory", 5522 dst_type, 5523 dst_addr, size XTOP, byte); 5524 5525 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5526 5527 return true; 5528 } 5529 5530 #undef XTOP 5531 5532 //----------------------inline_unsafe_isFlatArray------------------------ 5533 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass); 5534 // This intrinsic exploits assumptions made by the native implementation 5535 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks. 5536 bool LibraryCallKit::inline_unsafe_isFlatArray() { 5537 Node* cls = argument(1); 5538 Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset()); 5539 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, 5540 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT)); 5541 Node* result = flat_array_test(kls); 5542 set_result(result); 5543 return true; 5544 } 5545 5546 //------------------------clone_coping----------------------------------- 5547 // Helper function for inline_native_clone. 5548 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5549 assert(obj_size != nullptr, ""); 5550 Node* raw_obj = alloc_obj->in(1); 5551 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5552 5553 AllocateNode* alloc = nullptr; 5554 if (ReduceBulkZeroing && 5555 // If we are implementing an array clone without knowing its source type 5556 // (can happen when compiling the array-guarded branch of a reflective 5557 // Object.clone() invocation), initialize the array within the allocation. 5558 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5559 // to a runtime clone call that assumes fully initialized source arrays. 5560 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5561 // We will be completely responsible for initializing this object - 5562 // mark Initialize node as complete. 5563 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5564 // The object was just allocated - there should be no any stores! 5565 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5566 // Mark as complete_with_arraycopy so that on AllocateNode 5567 // expansion, we know this AllocateNode is initialized by an array 5568 // copy and a StoreStore barrier exists after the array copy. 5569 alloc->initialization()->set_complete_with_arraycopy(); 5570 } 5571 5572 Node* size = _gvn.transform(obj_size); 5573 access_clone(obj, alloc_obj, size, is_array); 5574 5575 // Do not let reads from the cloned object float above the arraycopy. 5576 if (alloc != nullptr) { 5577 // Do not let stores that initialize this object be reordered with 5578 // a subsequent store that would make this object accessible by 5579 // other threads. 5580 // Record what AllocateNode this StoreStore protects so that 5581 // escape analysis can go from the MemBarStoreStoreNode to the 5582 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5583 // based on the escape status of the AllocateNode. 5584 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5585 } else { 5586 insert_mem_bar(Op_MemBarCPUOrder); 5587 } 5588 } 5589 5590 //------------------------inline_native_clone---------------------------- 5591 // protected native Object java.lang.Object.clone(); 5592 // 5593 // Here are the simple edge cases: 5594 // null receiver => normal trap 5595 // virtual and clone was overridden => slow path to out-of-line clone 5596 // not cloneable or finalizer => slow path to out-of-line Object.clone 5597 // 5598 // The general case has two steps, allocation and copying. 5599 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5600 // 5601 // Copying also has two cases, oop arrays and everything else. 5602 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5603 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5604 // 5605 // These steps fold up nicely if and when the cloned object's klass 5606 // can be sharply typed as an object array, a type array, or an instance. 5607 // 5608 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5609 PhiNode* result_val; 5610 5611 // Set the reexecute bit for the interpreter to reexecute 5612 // the bytecode that invokes Object.clone if deoptimization happens. 5613 { PreserveReexecuteState preexecs(this); 5614 jvms()->set_should_reexecute(true); 5615 5616 Node* obj = argument(0); 5617 obj = null_check_receiver(); 5618 if (stopped()) return true; 5619 5620 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5621 if (obj_type->is_inlinetypeptr()) { 5622 // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have 5623 // no identity. 5624 set_result(obj); 5625 return true; 5626 } 5627 5628 // If we are going to clone an instance, we need its exact type to 5629 // know the number and types of fields to convert the clone to 5630 // loads/stores. Maybe a speculative type can help us. 5631 if (!obj_type->klass_is_exact() && 5632 obj_type->speculative_type() != nullptr && 5633 obj_type->speculative_type()->is_instance_klass() && 5634 !obj_type->speculative_type()->is_inlinetype()) { 5635 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5636 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5637 !spec_ik->has_injected_fields()) { 5638 if (!obj_type->isa_instptr() || 5639 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5640 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5641 } 5642 } 5643 } 5644 5645 // Conservatively insert a memory barrier on all memory slices. 5646 // Do not let writes into the original float below the clone. 5647 insert_mem_bar(Op_MemBarCPUOrder); 5648 5649 // paths into result_reg: 5650 enum { 5651 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5652 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5653 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5654 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5655 PATH_LIMIT 5656 }; 5657 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5658 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5659 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5660 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5661 record_for_igvn(result_reg); 5662 5663 // TODO 8350865 For arrays, this might be folded and then not account for atomic arrays 5664 Node* obj_klass = load_object_klass(obj); 5665 // We only go to the fast case code if we pass a number of guards. 5666 // The paths which do not pass are accumulated in the slow_region. 5667 RegionNode* slow_region = new RegionNode(1); 5668 record_for_igvn(slow_region); 5669 5670 Node* array_obj = obj; 5671 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5672 if (array_ctl != nullptr) { 5673 // It's an array. 5674 PreserveJVMState pjvms(this); 5675 set_control(array_ctl); 5676 5677 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5678 const TypeAryPtr* ary_ptr = obj_type->isa_aryptr(); 5679 if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) && 5680 obj_type->can_be_inline_array() && 5681 (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) { 5682 // Flat inline type array may have object field that would require a 5683 // write barrier. Conservatively, go to slow path. 5684 generate_fair_guard(flat_array_test(obj_klass), slow_region); 5685 } 5686 5687 if (!stopped()) { 5688 Node* obj_length = load_array_length(array_obj); 5689 Node* array_size = nullptr; // Size of the array without object alignment padding. 5690 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5691 5692 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5693 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5694 // If it is an oop array, it requires very special treatment, 5695 // because gc barriers are required when accessing the array. 5696 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5697 if (is_obja != nullptr) { 5698 PreserveJVMState pjvms2(this); 5699 set_control(is_obja); 5700 // Generate a direct call to the right arraycopy function(s). 5701 // Clones are always tightly coupled. 5702 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5703 ac->set_clone_oop_array(); 5704 Node* n = _gvn.transform(ac); 5705 assert(n == ac, "cannot disappear"); 5706 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5707 5708 result_reg->init_req(_objArray_path, control()); 5709 result_val->init_req(_objArray_path, alloc_obj); 5710 result_i_o ->set_req(_objArray_path, i_o()); 5711 result_mem ->set_req(_objArray_path, reset_memory()); 5712 } 5713 } 5714 // Otherwise, there are no barriers to worry about. 5715 // (We can dispense with card marks if we know the allocation 5716 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5717 // causes the non-eden paths to take compensating steps to 5718 // simulate a fresh allocation, so that no further 5719 // card marks are required in compiled code to initialize 5720 // the object.) 5721 5722 if (!stopped()) { 5723 copy_to_clone(obj, alloc_obj, array_size, true); 5724 5725 // Present the results of the copy. 5726 result_reg->init_req(_array_path, control()); 5727 result_val->init_req(_array_path, alloc_obj); 5728 result_i_o ->set_req(_array_path, i_o()); 5729 result_mem ->set_req(_array_path, reset_memory()); 5730 } 5731 } 5732 } 5733 5734 if (!stopped()) { 5735 // It's an instance (we did array above). Make the slow-path tests. 5736 // If this is a virtual call, we generate a funny guard. We grab 5737 // the vtable entry corresponding to clone() from the target object. 5738 // If the target method which we are calling happens to be the 5739 // Object clone() method, we pass the guard. We do not need this 5740 // guard for non-virtual calls; the caller is known to be the native 5741 // Object clone(). 5742 if (is_virtual) { 5743 generate_virtual_guard(obj_klass, slow_region); 5744 } 5745 5746 // The object must be easily cloneable and must not have a finalizer. 5747 // Both of these conditions may be checked in a single test. 5748 // We could optimize the test further, but we don't care. 5749 generate_misc_flags_guard(obj_klass, 5750 // Test both conditions: 5751 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5752 // Must be cloneable but not finalizer: 5753 KlassFlags::_misc_is_cloneable_fast, 5754 slow_region); 5755 } 5756 5757 if (!stopped()) { 5758 // It's an instance, and it passed the slow-path tests. 5759 PreserveJVMState pjvms(this); 5760 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5761 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5762 // is reexecuted if deoptimization occurs and there could be problems when merging 5763 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5764 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5765 5766 copy_to_clone(obj, alloc_obj, obj_size, false); 5767 5768 // Present the results of the slow call. 5769 result_reg->init_req(_instance_path, control()); 5770 result_val->init_req(_instance_path, alloc_obj); 5771 result_i_o ->set_req(_instance_path, i_o()); 5772 result_mem ->set_req(_instance_path, reset_memory()); 5773 } 5774 5775 // Generate code for the slow case. We make a call to clone(). 5776 set_control(_gvn.transform(slow_region)); 5777 if (!stopped()) { 5778 PreserveJVMState pjvms(this); 5779 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5780 // We need to deoptimize on exception (see comment above) 5781 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5782 // this->control() comes from set_results_for_java_call 5783 result_reg->init_req(_slow_path, control()); 5784 result_val->init_req(_slow_path, slow_result); 5785 result_i_o ->set_req(_slow_path, i_o()); 5786 result_mem ->set_req(_slow_path, reset_memory()); 5787 } 5788 5789 // Return the combined state. 5790 set_control( _gvn.transform(result_reg)); 5791 set_i_o( _gvn.transform(result_i_o)); 5792 set_all_memory( _gvn.transform(result_mem)); 5793 } // original reexecute is set back here 5794 5795 set_result(_gvn.transform(result_val)); 5796 return true; 5797 } 5798 5799 // If we have a tightly coupled allocation, the arraycopy may take care 5800 // of the array initialization. If one of the guards we insert between 5801 // the allocation and the arraycopy causes a deoptimization, an 5802 // uninitialized array will escape the compiled method. To prevent that 5803 // we set the JVM state for uncommon traps between the allocation and 5804 // the arraycopy to the state before the allocation so, in case of 5805 // deoptimization, we'll reexecute the allocation and the 5806 // initialization. 5807 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5808 if (alloc != nullptr) { 5809 ciMethod* trap_method = alloc->jvms()->method(); 5810 int trap_bci = alloc->jvms()->bci(); 5811 5812 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5813 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5814 // Make sure there's no store between the allocation and the 5815 // arraycopy otherwise visible side effects could be rexecuted 5816 // in case of deoptimization and cause incorrect execution. 5817 bool no_interfering_store = true; 5818 Node* mem = alloc->in(TypeFunc::Memory); 5819 if (mem->is_MergeMem()) { 5820 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5821 Node* n = mms.memory(); 5822 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5823 assert(n->is_Store(), "what else?"); 5824 no_interfering_store = false; 5825 break; 5826 } 5827 } 5828 } else { 5829 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5830 Node* n = mms.memory(); 5831 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5832 assert(n->is_Store(), "what else?"); 5833 no_interfering_store = false; 5834 break; 5835 } 5836 } 5837 } 5838 5839 if (no_interfering_store) { 5840 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5841 5842 JVMState* saved_jvms = jvms(); 5843 saved_reexecute_sp = _reexecute_sp; 5844 5845 set_jvms(sfpt->jvms()); 5846 _reexecute_sp = jvms()->sp(); 5847 5848 return saved_jvms; 5849 } 5850 } 5851 } 5852 return nullptr; 5853 } 5854 5855 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5856 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5857 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5858 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5859 uint size = alloc->req(); 5860 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5861 old_jvms->set_map(sfpt); 5862 for (uint i = 0; i < size; i++) { 5863 sfpt->init_req(i, alloc->in(i)); 5864 } 5865 int adjustment = 1; 5866 const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr(); 5867 if (ary_klass_ptr->is_null_free()) { 5868 // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which 5869 // also requires the componentType and initVal on stack for re-execution. 5870 // Re-create and push the componentType. 5871 ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass(); 5872 ciInstance* instance = klass->component_mirror_instance(); 5873 const TypeInstPtr* t_instance = TypeInstPtr::make(instance); 5874 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance)); 5875 adjustment++; 5876 } 5877 // re-push array length for deoptimization 5878 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength)); 5879 if (ary_klass_ptr->is_null_free()) { 5880 // Re-create and push the initVal. 5881 Node* init_val = alloc->in(AllocateNode::InitValue); 5882 if (init_val == nullptr) { 5883 init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass()); 5884 } else if (UseCompressedOops) { 5885 init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr())); 5886 } 5887 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val); 5888 adjustment++; 5889 } 5890 old_jvms->set_sp(old_jvms->sp() + adjustment); 5891 old_jvms->set_monoff(old_jvms->monoff() + adjustment); 5892 old_jvms->set_scloff(old_jvms->scloff() + adjustment); 5893 old_jvms->set_endoff(old_jvms->endoff() + adjustment); 5894 old_jvms->set_should_reexecute(true); 5895 5896 sfpt->set_i_o(map()->i_o()); 5897 sfpt->set_memory(map()->memory()); 5898 sfpt->set_control(map()->control()); 5899 return sfpt; 5900 } 5901 5902 // In case of a deoptimization, we restart execution at the 5903 // allocation, allocating a new array. We would leave an uninitialized 5904 // array in the heap that GCs wouldn't expect. Move the allocation 5905 // after the traps so we don't allocate the array if we 5906 // deoptimize. This is possible because tightly_coupled_allocation() 5907 // guarantees there's no observer of the allocated array at this point 5908 // and the control flow is simple enough. 5909 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5910 int saved_reexecute_sp, uint new_idx) { 5911 if (saved_jvms_before_guards != nullptr && !stopped()) { 5912 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5913 5914 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5915 // restore JVM state to the state at the arraycopy 5916 saved_jvms_before_guards->map()->set_control(map()->control()); 5917 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5918 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5919 // If we've improved the types of some nodes (null check) while 5920 // emitting the guards, propagate them to the current state 5921 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5922 set_jvms(saved_jvms_before_guards); 5923 _reexecute_sp = saved_reexecute_sp; 5924 5925 // Remove the allocation from above the guards 5926 CallProjections* callprojs = alloc->extract_projections(true); 5927 InitializeNode* init = alloc->initialization(); 5928 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5929 C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5930 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5931 5932 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5933 // the allocation (i.e. is only valid if the allocation succeeds): 5934 // 1) replace CastIINode with AllocateArrayNode's length here 5935 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5936 // 5937 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5938 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5939 Node* init_control = init->proj_out(TypeFunc::Control); 5940 Node* alloc_length = alloc->Ideal_length(); 5941 #ifdef ASSERT 5942 Node* prev_cast = nullptr; 5943 #endif 5944 for (uint i = 0; i < init_control->outcnt(); i++) { 5945 Node* init_out = init_control->raw_out(i); 5946 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5947 #ifdef ASSERT 5948 if (prev_cast == nullptr) { 5949 prev_cast = init_out; 5950 } else { 5951 if (prev_cast->cmp(*init_out) == false) { 5952 prev_cast->dump(); 5953 init_out->dump(); 5954 assert(false, "not equal CastIINode"); 5955 } 5956 } 5957 #endif 5958 C->gvn_replace_by(init_out, alloc_length); 5959 } 5960 } 5961 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5962 5963 // move the allocation here (after the guards) 5964 _gvn.hash_delete(alloc); 5965 alloc->set_req(TypeFunc::Control, control()); 5966 alloc->set_req(TypeFunc::I_O, i_o()); 5967 Node *mem = reset_memory(); 5968 set_all_memory(mem); 5969 alloc->set_req(TypeFunc::Memory, mem); 5970 set_control(init->proj_out_or_null(TypeFunc::Control)); 5971 set_i_o(callprojs->fallthrough_ioproj); 5972 5973 // Update memory as done in GraphKit::set_output_for_allocation() 5974 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5975 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5976 if (ary_type->isa_aryptr() && length_type != nullptr) { 5977 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5978 } 5979 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5980 int elemidx = C->get_alias_index(telemref); 5981 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5982 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5983 5984 Node* allocx = _gvn.transform(alloc); 5985 assert(allocx == alloc, "where has the allocation gone?"); 5986 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5987 5988 _gvn.hash_delete(dest); 5989 dest->set_req(0, control()); 5990 Node* destx = _gvn.transform(dest); 5991 assert(destx == dest, "where has the allocation result gone?"); 5992 5993 array_ideal_length(alloc, ary_type, true); 5994 } 5995 } 5996 5997 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5998 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5999 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 6000 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 6001 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 6002 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 6003 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 6004 JVMState* saved_jvms_before_guards) { 6005 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 6006 // There is at least one unrelated uncommon trap which needs to be replaced. 6007 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 6008 6009 JVMState* saved_jvms = jvms(); 6010 const int saved_reexecute_sp = _reexecute_sp; 6011 set_jvms(sfpt->jvms()); 6012 _reexecute_sp = jvms()->sp(); 6013 6014 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 6015 6016 // Restore state 6017 set_jvms(saved_jvms); 6018 _reexecute_sp = saved_reexecute_sp; 6019 } 6020 } 6021 6022 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 6023 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 6024 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 6025 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 6026 while (if_proj->is_IfProj()) { 6027 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 6028 if (uncommon_trap != nullptr) { 6029 create_new_uncommon_trap(uncommon_trap); 6030 } 6031 assert(if_proj->in(0)->is_If(), "must be If"); 6032 if_proj = if_proj->in(0)->in(0); 6033 } 6034 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 6035 "must have reached control projection of init node"); 6036 } 6037 6038 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 6039 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 6040 assert(trap_request != 0, "no valid UCT trap request"); 6041 PreserveJVMState pjvms(this); 6042 set_control(uncommon_trap_call->in(0)); 6043 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 6044 Deoptimization::trap_request_action(trap_request)); 6045 assert(stopped(), "Should be stopped"); 6046 _gvn.hash_delete(uncommon_trap_call); 6047 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 6048 } 6049 6050 // Common checks for array sorting intrinsics arguments. 6051 // Returns `true` if checks passed. 6052 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 6053 // check address of the class 6054 if (elementType == nullptr || elementType->is_top()) { 6055 return false; // dead path 6056 } 6057 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 6058 if (elem_klass == nullptr) { 6059 return false; // dead path 6060 } 6061 // java_mirror_type() returns non-null for compile-time Class constants only 6062 ciType* elem_type = elem_klass->java_mirror_type(); 6063 if (elem_type == nullptr) { 6064 return false; 6065 } 6066 bt = elem_type->basic_type(); 6067 // Disable the intrinsic if the CPU does not support SIMD sort 6068 if (!Matcher::supports_simd_sort(bt)) { 6069 return false; 6070 } 6071 // check address of the array 6072 if (obj == nullptr || obj->is_top()) { 6073 return false; // dead path 6074 } 6075 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 6076 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 6077 return false; // failed input validation 6078 } 6079 return true; 6080 } 6081 6082 //------------------------------inline_array_partition----------------------- 6083 bool LibraryCallKit::inline_array_partition() { 6084 address stubAddr = StubRoutines::select_array_partition_function(); 6085 if (stubAddr == nullptr) { 6086 return false; // Intrinsic's stub is not implemented on this platform 6087 } 6088 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 6089 6090 // no receiver because it is a static method 6091 Node* elementType = argument(0); 6092 Node* obj = argument(1); 6093 Node* offset = argument(2); // long 6094 Node* fromIndex = argument(4); 6095 Node* toIndex = argument(5); 6096 Node* indexPivot1 = argument(6); 6097 Node* indexPivot2 = argument(7); 6098 // PartitionOperation: argument(8) is ignored 6099 6100 Node* pivotIndices = nullptr; 6101 BasicType bt = T_ILLEGAL; 6102 6103 if (!check_array_sort_arguments(elementType, obj, bt)) { 6104 return false; 6105 } 6106 null_check(obj); 6107 // If obj is dead, only null-path is taken. 6108 if (stopped()) { 6109 return true; 6110 } 6111 // Set the original stack and the reexecute bit for the interpreter to reexecute 6112 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 6113 { PreserveReexecuteState preexecs(this); 6114 jvms()->set_should_reexecute(true); 6115 6116 Node* obj_adr = make_unsafe_address(obj, offset); 6117 6118 // create the pivotIndices array of type int and size = 2 6119 Node* size = intcon(2); 6120 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 6121 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 6122 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 6123 guarantee(alloc != nullptr, "created above"); 6124 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 6125 6126 // pass the basic type enum to the stub 6127 Node* elemType = intcon(bt); 6128 6129 // Call the stub 6130 const char *stubName = "array_partition_stub"; 6131 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 6132 stubAddr, stubName, TypePtr::BOTTOM, 6133 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 6134 indexPivot1, indexPivot2); 6135 6136 } // original reexecute is set back here 6137 6138 if (!stopped()) { 6139 set_result(pivotIndices); 6140 } 6141 6142 return true; 6143 } 6144 6145 6146 //------------------------------inline_array_sort----------------------- 6147 bool LibraryCallKit::inline_array_sort() { 6148 address stubAddr = StubRoutines::select_arraysort_function(); 6149 if (stubAddr == nullptr) { 6150 return false; // Intrinsic's stub is not implemented on this platform 6151 } 6152 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 6153 6154 // no receiver because it is a static method 6155 Node* elementType = argument(0); 6156 Node* obj = argument(1); 6157 Node* offset = argument(2); // long 6158 Node* fromIndex = argument(4); 6159 Node* toIndex = argument(5); 6160 // SortOperation: argument(6) is ignored 6161 6162 BasicType bt = T_ILLEGAL; 6163 6164 if (!check_array_sort_arguments(elementType, obj, bt)) { 6165 return false; 6166 } 6167 null_check(obj); 6168 // If obj is dead, only null-path is taken. 6169 if (stopped()) { 6170 return true; 6171 } 6172 Node* obj_adr = make_unsafe_address(obj, offset); 6173 6174 // pass the basic type enum to the stub 6175 Node* elemType = intcon(bt); 6176 6177 // Call the stub. 6178 const char *stubName = "arraysort_stub"; 6179 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 6180 stubAddr, stubName, TypePtr::BOTTOM, 6181 obj_adr, elemType, fromIndex, toIndex); 6182 6183 return true; 6184 } 6185 6186 6187 //------------------------------inline_arraycopy----------------------- 6188 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 6189 // Object dest, int destPos, 6190 // int length); 6191 bool LibraryCallKit::inline_arraycopy() { 6192 // Get the arguments. 6193 Node* src = argument(0); // type: oop 6194 Node* src_offset = argument(1); // type: int 6195 Node* dest = argument(2); // type: oop 6196 Node* dest_offset = argument(3); // type: int 6197 Node* length = argument(4); // type: int 6198 6199 uint new_idx = C->unique(); 6200 6201 // Check for allocation before we add nodes that would confuse 6202 // tightly_coupled_allocation() 6203 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 6204 6205 int saved_reexecute_sp = -1; 6206 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 6207 // See arraycopy_restore_alloc_state() comment 6208 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 6209 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 6210 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 6211 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 6212 6213 // The following tests must be performed 6214 // (1) src and dest are arrays. 6215 // (2) src and dest arrays must have elements of the same BasicType 6216 // (3) src and dest must not be null. 6217 // (4) src_offset must not be negative. 6218 // (5) dest_offset must not be negative. 6219 // (6) length must not be negative. 6220 // (7) src_offset + length must not exceed length of src. 6221 // (8) dest_offset + length must not exceed length of dest. 6222 // (9) each element of an oop array must be assignable 6223 6224 // (3) src and dest must not be null. 6225 // always do this here because we need the JVM state for uncommon traps 6226 Node* null_ctl = top(); 6227 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 6228 assert(null_ctl->is_top(), "no null control here"); 6229 dest = null_check(dest, T_ARRAY); 6230 6231 if (!can_emit_guards) { 6232 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 6233 // guards but the arraycopy node could still take advantage of a 6234 // tightly allocated allocation. tightly_coupled_allocation() is 6235 // called again to make sure it takes the null check above into 6236 // account: the null check is mandatory and if it caused an 6237 // uncommon trap to be emitted then the allocation can't be 6238 // considered tightly coupled in this context. 6239 alloc = tightly_coupled_allocation(dest); 6240 } 6241 6242 bool validated = false; 6243 6244 const Type* src_type = _gvn.type(src); 6245 const Type* dest_type = _gvn.type(dest); 6246 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6247 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6248 6249 // Do we have the type of src? 6250 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6251 // Do we have the type of dest? 6252 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6253 // Is the type for src from speculation? 6254 bool src_spec = false; 6255 // Is the type for dest from speculation? 6256 bool dest_spec = false; 6257 6258 if ((!has_src || !has_dest) && can_emit_guards) { 6259 // We don't have sufficient type information, let's see if 6260 // speculative types can help. We need to have types for both src 6261 // and dest so that it pays off. 6262 6263 // Do we already have or could we have type information for src 6264 bool could_have_src = has_src; 6265 // Do we already have or could we have type information for dest 6266 bool could_have_dest = has_dest; 6267 6268 ciKlass* src_k = nullptr; 6269 if (!has_src) { 6270 src_k = src_type->speculative_type_not_null(); 6271 if (src_k != nullptr && src_k->is_array_klass()) { 6272 could_have_src = true; 6273 } 6274 } 6275 6276 ciKlass* dest_k = nullptr; 6277 if (!has_dest) { 6278 dest_k = dest_type->speculative_type_not_null(); 6279 if (dest_k != nullptr && dest_k->is_array_klass()) { 6280 could_have_dest = true; 6281 } 6282 } 6283 6284 if (could_have_src && could_have_dest) { 6285 // This is going to pay off so emit the required guards 6286 if (!has_src) { 6287 src = maybe_cast_profiled_obj(src, src_k, true); 6288 src_type = _gvn.type(src); 6289 top_src = src_type->isa_aryptr(); 6290 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6291 src_spec = true; 6292 } 6293 if (!has_dest) { 6294 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6295 dest_type = _gvn.type(dest); 6296 top_dest = dest_type->isa_aryptr(); 6297 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6298 dest_spec = true; 6299 } 6300 } 6301 } 6302 6303 if (has_src && has_dest && can_emit_guards) { 6304 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 6305 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 6306 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 6307 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 6308 6309 if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) { 6310 // If both arrays are object arrays then having the exact types 6311 // for both will remove the need for a subtype check at runtime 6312 // before the call and may make it possible to pick a faster copy 6313 // routine (without a subtype check on every element) 6314 // Do we have the exact type of src? 6315 bool could_have_src = src_spec; 6316 // Do we have the exact type of dest? 6317 bool could_have_dest = dest_spec; 6318 ciKlass* src_k = nullptr; 6319 ciKlass* dest_k = nullptr; 6320 if (!src_spec) { 6321 src_k = src_type->speculative_type_not_null(); 6322 if (src_k != nullptr && src_k->is_array_klass()) { 6323 could_have_src = true; 6324 } 6325 } 6326 if (!dest_spec) { 6327 dest_k = dest_type->speculative_type_not_null(); 6328 if (dest_k != nullptr && dest_k->is_array_klass()) { 6329 could_have_dest = true; 6330 } 6331 } 6332 if (could_have_src && could_have_dest) { 6333 // If we can have both exact types, emit the missing guards 6334 if (could_have_src && !src_spec) { 6335 src = maybe_cast_profiled_obj(src, src_k, true); 6336 src_type = _gvn.type(src); 6337 top_src = src_type->isa_aryptr(); 6338 } 6339 if (could_have_dest && !dest_spec) { 6340 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6341 dest_type = _gvn.type(dest); 6342 top_dest = dest_type->isa_aryptr(); 6343 } 6344 } 6345 } 6346 } 6347 6348 ciMethod* trap_method = method(); 6349 int trap_bci = bci(); 6350 if (saved_jvms_before_guards != nullptr) { 6351 trap_method = alloc->jvms()->method(); 6352 trap_bci = alloc->jvms()->bci(); 6353 } 6354 6355 bool negative_length_guard_generated = false; 6356 6357 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 6358 can_emit_guards && !src->is_top() && !dest->is_top()) { 6359 // validate arguments: enables transformation the ArrayCopyNode 6360 validated = true; 6361 6362 RegionNode* slow_region = new RegionNode(1); 6363 record_for_igvn(slow_region); 6364 6365 // (1) src and dest are arrays. 6366 generate_non_array_guard(load_object_klass(src), slow_region, &src); 6367 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 6368 6369 // (2) src and dest arrays must have elements of the same BasicType 6370 // done at macro expansion or at Ideal transformation time 6371 6372 // (4) src_offset must not be negative. 6373 generate_negative_guard(src_offset, slow_region); 6374 6375 // (5) dest_offset must not be negative. 6376 generate_negative_guard(dest_offset, slow_region); 6377 6378 // (7) src_offset + length must not exceed length of src. 6379 generate_limit_guard(src_offset, length, 6380 load_array_length(src), 6381 slow_region); 6382 6383 // (8) dest_offset + length must not exceed length of dest. 6384 generate_limit_guard(dest_offset, length, 6385 load_array_length(dest), 6386 slow_region); 6387 6388 // (6) length must not be negative. 6389 // This is also checked in generate_arraycopy() during macro expansion, but 6390 // we also have to check it here for the case where the ArrayCopyNode will 6391 // be eliminated by Escape Analysis. 6392 if (EliminateAllocations) { 6393 generate_negative_guard(length, slow_region); 6394 negative_length_guard_generated = true; 6395 } 6396 6397 // (9) each element of an oop array must be assignable 6398 Node* dest_klass = load_object_klass(dest); 6399 if (src != dest) { 6400 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 6401 slow_region->add_req(not_subtype_ctrl); 6402 } 6403 6404 // TODO 8350865 Fix below logic. Also handle atomicity. 6405 generate_fair_guard(flat_array_test(src), slow_region); 6406 generate_fair_guard(flat_array_test(dest), slow_region); 6407 6408 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 6409 const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 6410 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6411 src_type = _gvn.type(src); 6412 top_src = src_type->isa_aryptr(); 6413 6414 // Handle flat inline type arrays (null-free arrays are handled by the subtype check above) 6415 if (!stopped() && UseArrayFlattening) { 6416 // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here. 6417 assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat"); 6418 if (top_src != nullptr && top_src->is_flat()) { 6419 // Src is flat, check that dest is flat as well 6420 if (top_dest != nullptr && !top_dest->is_flat()) { 6421 generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region); 6422 // Since dest is flat and src <: dest, dest must have the same type as src. 6423 top_dest = top_src->cast_to_exactness(false); 6424 assert(top_dest->is_flat(), "dest must be flat"); 6425 dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest)); 6426 } 6427 } else if (top_src == nullptr || !top_src->is_not_flat()) { 6428 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 6429 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 6430 assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat"); 6431 generate_fair_guard(flat_array_test(src), slow_region); 6432 if (top_src != nullptr) { 6433 top_src = top_src->cast_to_not_flat(); 6434 src = _gvn.transform(new CheckCastPPNode(control(), src, top_src)); 6435 } 6436 } 6437 } 6438 6439 { 6440 PreserveJVMState pjvms(this); 6441 set_control(_gvn.transform(slow_region)); 6442 uncommon_trap(Deoptimization::Reason_intrinsic, 6443 Deoptimization::Action_make_not_entrant); 6444 assert(stopped(), "Should be stopped"); 6445 } 6446 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6447 } 6448 6449 if (stopped()) { 6450 return true; 6451 } 6452 6453 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6454 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6455 // so the compiler has a chance to eliminate them: during macro expansion, 6456 // we have to set their control (CastPP nodes are eliminated). 6457 load_object_klass(src), load_object_klass(dest), 6458 load_array_length(src), load_array_length(dest)); 6459 6460 ac->set_arraycopy(validated); 6461 6462 Node* n = _gvn.transform(ac); 6463 if (n == ac) { 6464 ac->connect_outputs(this); 6465 } else { 6466 assert(validated, "shouldn't transform if all arguments not validated"); 6467 set_all_memory(n); 6468 } 6469 clear_upper_avx(); 6470 6471 6472 return true; 6473 } 6474 6475 6476 // Helper function which determines if an arraycopy immediately follows 6477 // an allocation, with no intervening tests or other escapes for the object. 6478 AllocateArrayNode* 6479 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6480 if (stopped()) return nullptr; // no fast path 6481 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6482 6483 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6484 if (alloc == nullptr) return nullptr; 6485 6486 Node* rawmem = memory(Compile::AliasIdxRaw); 6487 // Is the allocation's memory state untouched? 6488 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6489 // Bail out if there have been raw-memory effects since the allocation. 6490 // (Example: There might have been a call or safepoint.) 6491 return nullptr; 6492 } 6493 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6494 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6495 return nullptr; 6496 } 6497 6498 // There must be no unexpected observers of this allocation. 6499 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6500 Node* obs = ptr->fast_out(i); 6501 if (obs != this->map()) { 6502 return nullptr; 6503 } 6504 } 6505 6506 // This arraycopy must unconditionally follow the allocation of the ptr. 6507 Node* alloc_ctl = ptr->in(0); 6508 Node* ctl = control(); 6509 while (ctl != alloc_ctl) { 6510 // There may be guards which feed into the slow_region. 6511 // Any other control flow means that we might not get a chance 6512 // to finish initializing the allocated object. 6513 // Various low-level checks bottom out in uncommon traps. These 6514 // are considered safe since we've already checked above that 6515 // there is no unexpected observer of this allocation. 6516 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6517 assert(ctl->in(0)->is_If(), "must be If"); 6518 ctl = ctl->in(0)->in(0); 6519 } else { 6520 return nullptr; 6521 } 6522 } 6523 6524 // If we get this far, we have an allocation which immediately 6525 // precedes the arraycopy, and we can take over zeroing the new object. 6526 // The arraycopy will finish the initialization, and provide 6527 // a new control state to which we will anchor the destination pointer. 6528 6529 return alloc; 6530 } 6531 6532 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6533 if (node->is_IfProj()) { 6534 Node* other_proj = node->as_IfProj()->other_if_proj(); 6535 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6536 Node* obs = other_proj->fast_out(j); 6537 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6538 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6539 return obs->as_CallStaticJava(); 6540 } 6541 } 6542 } 6543 return nullptr; 6544 } 6545 6546 //-------------inline_encodeISOArray----------------------------------- 6547 // encode char[] to byte[] in ISO_8859_1 or ASCII 6548 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6549 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6550 // no receiver since it is static method 6551 Node *src = argument(0); 6552 Node *src_offset = argument(1); 6553 Node *dst = argument(2); 6554 Node *dst_offset = argument(3); 6555 Node *length = argument(4); 6556 6557 src = must_be_not_null(src, true); 6558 dst = must_be_not_null(dst, true); 6559 6560 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6561 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6562 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6563 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6564 // failed array check 6565 return false; 6566 } 6567 6568 // Figure out the size and type of the elements we will be copying. 6569 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6570 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6571 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6572 return false; 6573 } 6574 6575 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6576 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6577 // 'src_start' points to src array + scaled offset 6578 // 'dst_start' points to dst array + scaled offset 6579 6580 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6581 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6582 enc = _gvn.transform(enc); 6583 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6584 set_memory(res_mem, mtype); 6585 set_result(enc); 6586 clear_upper_avx(); 6587 6588 return true; 6589 } 6590 6591 //-------------inline_multiplyToLen----------------------------------- 6592 bool LibraryCallKit::inline_multiplyToLen() { 6593 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6594 6595 address stubAddr = StubRoutines::multiplyToLen(); 6596 if (stubAddr == nullptr) { 6597 return false; // Intrinsic's stub is not implemented on this platform 6598 } 6599 const char* stubName = "multiplyToLen"; 6600 6601 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6602 6603 // no receiver because it is a static method 6604 Node* x = argument(0); 6605 Node* xlen = argument(1); 6606 Node* y = argument(2); 6607 Node* ylen = argument(3); 6608 Node* z = argument(4); 6609 6610 x = must_be_not_null(x, true); 6611 y = must_be_not_null(y, true); 6612 6613 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6614 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6615 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6616 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6617 // failed array check 6618 return false; 6619 } 6620 6621 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6622 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6623 if (x_elem != T_INT || y_elem != T_INT) { 6624 return false; 6625 } 6626 6627 Node* x_start = array_element_address(x, intcon(0), x_elem); 6628 Node* y_start = array_element_address(y, intcon(0), y_elem); 6629 // 'x_start' points to x array + scaled xlen 6630 // 'y_start' points to y array + scaled ylen 6631 6632 Node* z_start = array_element_address(z, intcon(0), T_INT); 6633 6634 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6635 OptoRuntime::multiplyToLen_Type(), 6636 stubAddr, stubName, TypePtr::BOTTOM, 6637 x_start, xlen, y_start, ylen, z_start); 6638 6639 C->set_has_split_ifs(true); // Has chance for split-if optimization 6640 set_result(z); 6641 return true; 6642 } 6643 6644 //-------------inline_squareToLen------------------------------------ 6645 bool LibraryCallKit::inline_squareToLen() { 6646 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6647 6648 address stubAddr = StubRoutines::squareToLen(); 6649 if (stubAddr == nullptr) { 6650 return false; // Intrinsic's stub is not implemented on this platform 6651 } 6652 const char* stubName = "squareToLen"; 6653 6654 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6655 6656 Node* x = argument(0); 6657 Node* len = argument(1); 6658 Node* z = argument(2); 6659 Node* zlen = argument(3); 6660 6661 x = must_be_not_null(x, true); 6662 z = must_be_not_null(z, true); 6663 6664 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6665 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6666 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6667 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6668 // failed array check 6669 return false; 6670 } 6671 6672 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6673 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6674 if (x_elem != T_INT || z_elem != T_INT) { 6675 return false; 6676 } 6677 6678 6679 Node* x_start = array_element_address(x, intcon(0), x_elem); 6680 Node* z_start = array_element_address(z, intcon(0), z_elem); 6681 6682 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6683 OptoRuntime::squareToLen_Type(), 6684 stubAddr, stubName, TypePtr::BOTTOM, 6685 x_start, len, z_start, zlen); 6686 6687 set_result(z); 6688 return true; 6689 } 6690 6691 //-------------inline_mulAdd------------------------------------------ 6692 bool LibraryCallKit::inline_mulAdd() { 6693 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6694 6695 address stubAddr = StubRoutines::mulAdd(); 6696 if (stubAddr == nullptr) { 6697 return false; // Intrinsic's stub is not implemented on this platform 6698 } 6699 const char* stubName = "mulAdd"; 6700 6701 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6702 6703 Node* out = argument(0); 6704 Node* in = argument(1); 6705 Node* offset = argument(2); 6706 Node* len = argument(3); 6707 Node* k = argument(4); 6708 6709 in = must_be_not_null(in, true); 6710 out = must_be_not_null(out, true); 6711 6712 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6713 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6714 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6715 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6716 // failed array check 6717 return false; 6718 } 6719 6720 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6721 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6722 if (out_elem != T_INT || in_elem != T_INT) { 6723 return false; 6724 } 6725 6726 Node* outlen = load_array_length(out); 6727 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6728 Node* out_start = array_element_address(out, intcon(0), out_elem); 6729 Node* in_start = array_element_address(in, intcon(0), in_elem); 6730 6731 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6732 OptoRuntime::mulAdd_Type(), 6733 stubAddr, stubName, TypePtr::BOTTOM, 6734 out_start,in_start, new_offset, len, k); 6735 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6736 set_result(result); 6737 return true; 6738 } 6739 6740 //-------------inline_montgomeryMultiply----------------------------------- 6741 bool LibraryCallKit::inline_montgomeryMultiply() { 6742 address stubAddr = StubRoutines::montgomeryMultiply(); 6743 if (stubAddr == nullptr) { 6744 return false; // Intrinsic's stub is not implemented on this platform 6745 } 6746 6747 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6748 const char* stubName = "montgomery_multiply"; 6749 6750 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6751 6752 Node* a = argument(0); 6753 Node* b = argument(1); 6754 Node* n = argument(2); 6755 Node* len = argument(3); 6756 Node* inv = argument(4); 6757 Node* m = argument(6); 6758 6759 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6760 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6761 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6762 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6763 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6764 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6765 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6766 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6767 // failed array check 6768 return false; 6769 } 6770 6771 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6772 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6773 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6774 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6775 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6776 return false; 6777 } 6778 6779 // Make the call 6780 { 6781 Node* a_start = array_element_address(a, intcon(0), a_elem); 6782 Node* b_start = array_element_address(b, intcon(0), b_elem); 6783 Node* n_start = array_element_address(n, intcon(0), n_elem); 6784 Node* m_start = array_element_address(m, intcon(0), m_elem); 6785 6786 Node* call = make_runtime_call(RC_LEAF, 6787 OptoRuntime::montgomeryMultiply_Type(), 6788 stubAddr, stubName, TypePtr::BOTTOM, 6789 a_start, b_start, n_start, len, inv, top(), 6790 m_start); 6791 set_result(m); 6792 } 6793 6794 return true; 6795 } 6796 6797 bool LibraryCallKit::inline_montgomerySquare() { 6798 address stubAddr = StubRoutines::montgomerySquare(); 6799 if (stubAddr == nullptr) { 6800 return false; // Intrinsic's stub is not implemented on this platform 6801 } 6802 6803 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6804 const char* stubName = "montgomery_square"; 6805 6806 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6807 6808 Node* a = argument(0); 6809 Node* n = argument(1); 6810 Node* len = argument(2); 6811 Node* inv = argument(3); 6812 Node* m = argument(5); 6813 6814 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6815 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6816 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6817 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6818 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6819 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6820 // failed array check 6821 return false; 6822 } 6823 6824 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6825 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6826 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6827 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6828 return false; 6829 } 6830 6831 // Make the call 6832 { 6833 Node* a_start = array_element_address(a, intcon(0), a_elem); 6834 Node* n_start = array_element_address(n, intcon(0), n_elem); 6835 Node* m_start = array_element_address(m, intcon(0), m_elem); 6836 6837 Node* call = make_runtime_call(RC_LEAF, 6838 OptoRuntime::montgomerySquare_Type(), 6839 stubAddr, stubName, TypePtr::BOTTOM, 6840 a_start, n_start, len, inv, top(), 6841 m_start); 6842 set_result(m); 6843 } 6844 6845 return true; 6846 } 6847 6848 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6849 address stubAddr = nullptr; 6850 const char* stubName = nullptr; 6851 6852 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6853 if (stubAddr == nullptr) { 6854 return false; // Intrinsic's stub is not implemented on this platform 6855 } 6856 6857 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6858 6859 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6860 6861 Node* newArr = argument(0); 6862 Node* oldArr = argument(1); 6863 Node* newIdx = argument(2); 6864 Node* shiftCount = argument(3); 6865 Node* numIter = argument(4); 6866 6867 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6868 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6869 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6870 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6871 return false; 6872 } 6873 6874 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6875 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6876 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6877 return false; 6878 } 6879 6880 // Make the call 6881 { 6882 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6883 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6884 6885 Node* call = make_runtime_call(RC_LEAF, 6886 OptoRuntime::bigIntegerShift_Type(), 6887 stubAddr, 6888 stubName, 6889 TypePtr::BOTTOM, 6890 newArr_start, 6891 oldArr_start, 6892 newIdx, 6893 shiftCount, 6894 numIter); 6895 } 6896 6897 return true; 6898 } 6899 6900 //-------------inline_vectorizedMismatch------------------------------ 6901 bool LibraryCallKit::inline_vectorizedMismatch() { 6902 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6903 6904 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6905 Node* obja = argument(0); // Object 6906 Node* aoffset = argument(1); // long 6907 Node* objb = argument(3); // Object 6908 Node* boffset = argument(4); // long 6909 Node* length = argument(6); // int 6910 Node* scale = argument(7); // int 6911 6912 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6913 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6914 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6915 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6916 scale == top()) { 6917 return false; // failed input validation 6918 } 6919 6920 Node* obja_adr = make_unsafe_address(obja, aoffset); 6921 Node* objb_adr = make_unsafe_address(objb, boffset); 6922 6923 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6924 // 6925 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6926 // if (length <= inline_limit) { 6927 // inline_path: 6928 // vmask = VectorMaskGen length 6929 // vload1 = LoadVectorMasked obja, vmask 6930 // vload2 = LoadVectorMasked objb, vmask 6931 // result1 = VectorCmpMasked vload1, vload2, vmask 6932 // } else { 6933 // call_stub_path: 6934 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6935 // } 6936 // exit_block: 6937 // return Phi(result1, result2); 6938 // 6939 enum { inline_path = 1, // input is small enough to process it all at once 6940 stub_path = 2, // input is too large; call into the VM 6941 PATH_LIMIT = 3 6942 }; 6943 6944 Node* exit_block = new RegionNode(PATH_LIMIT); 6945 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6946 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6947 6948 Node* call_stub_path = control(); 6949 6950 BasicType elem_bt = T_ILLEGAL; 6951 6952 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6953 if (scale_t->is_con()) { 6954 switch (scale_t->get_con()) { 6955 case 0: elem_bt = T_BYTE; break; 6956 case 1: elem_bt = T_SHORT; break; 6957 case 2: elem_bt = T_INT; break; 6958 case 3: elem_bt = T_LONG; break; 6959 6960 default: elem_bt = T_ILLEGAL; break; // not supported 6961 } 6962 } 6963 6964 int inline_limit = 0; 6965 bool do_partial_inline = false; 6966 6967 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6968 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6969 do_partial_inline = inline_limit >= 16; 6970 } 6971 6972 if (do_partial_inline) { 6973 assert(elem_bt != T_ILLEGAL, "sanity"); 6974 6975 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6976 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6977 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6978 6979 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6980 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6981 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6982 6983 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6984 6985 if (!stopped()) { 6986 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6987 6988 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6989 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6990 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6991 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6992 6993 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6994 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6995 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6996 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6997 6998 exit_block->init_req(inline_path, control()); 6999 memory_phi->init_req(inline_path, map()->memory()); 7000 result_phi->init_req(inline_path, result); 7001 7002 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 7003 clear_upper_avx(); 7004 } 7005 } 7006 } 7007 7008 if (call_stub_path != nullptr) { 7009 set_control(call_stub_path); 7010 7011 Node* call = make_runtime_call(RC_LEAF, 7012 OptoRuntime::vectorizedMismatch_Type(), 7013 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 7014 obja_adr, objb_adr, length, scale); 7015 7016 exit_block->init_req(stub_path, control()); 7017 memory_phi->init_req(stub_path, map()->memory()); 7018 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 7019 } 7020 7021 exit_block = _gvn.transform(exit_block); 7022 memory_phi = _gvn.transform(memory_phi); 7023 result_phi = _gvn.transform(result_phi); 7024 7025 set_control(exit_block); 7026 set_all_memory(memory_phi); 7027 set_result(result_phi); 7028 7029 return true; 7030 } 7031 7032 //------------------------------inline_vectorizedHashcode---------------------------- 7033 bool LibraryCallKit::inline_vectorizedHashCode() { 7034 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 7035 7036 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 7037 Node* array = argument(0); 7038 Node* offset = argument(1); 7039 Node* length = argument(2); 7040 Node* initialValue = argument(3); 7041 Node* basic_type = argument(4); 7042 7043 if (basic_type == top()) { 7044 return false; // failed input validation 7045 } 7046 7047 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 7048 if (!basic_type_t->is_con()) { 7049 return false; // Only intrinsify if mode argument is constant 7050 } 7051 7052 array = must_be_not_null(array, true); 7053 7054 BasicType bt = (BasicType)basic_type_t->get_con(); 7055 7056 // Resolve address of first element 7057 Node* array_start = array_element_address(array, offset, bt); 7058 7059 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 7060 array_start, length, initialValue, basic_type))); 7061 clear_upper_avx(); 7062 7063 return true; 7064 } 7065 7066 /** 7067 * Calculate CRC32 for byte. 7068 * int java.util.zip.CRC32.update(int crc, int b) 7069 */ 7070 bool LibraryCallKit::inline_updateCRC32() { 7071 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7072 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 7073 // no receiver since it is static method 7074 Node* crc = argument(0); // type: int 7075 Node* b = argument(1); // type: int 7076 7077 /* 7078 * int c = ~ crc; 7079 * b = timesXtoThe32[(b ^ c) & 0xFF]; 7080 * b = b ^ (c >>> 8); 7081 * crc = ~b; 7082 */ 7083 7084 Node* M1 = intcon(-1); 7085 crc = _gvn.transform(new XorINode(crc, M1)); 7086 Node* result = _gvn.transform(new XorINode(crc, b)); 7087 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 7088 7089 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 7090 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 7091 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 7092 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 7093 7094 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 7095 result = _gvn.transform(new XorINode(crc, result)); 7096 result = _gvn.transform(new XorINode(result, M1)); 7097 set_result(result); 7098 return true; 7099 } 7100 7101 /** 7102 * Calculate CRC32 for byte[] array. 7103 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 7104 */ 7105 bool LibraryCallKit::inline_updateBytesCRC32() { 7106 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7107 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7108 // no receiver since it is static method 7109 Node* crc = argument(0); // type: int 7110 Node* src = argument(1); // type: oop 7111 Node* offset = argument(2); // type: int 7112 Node* length = argument(3); // type: int 7113 7114 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7115 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7116 // failed array check 7117 return false; 7118 } 7119 7120 // Figure out the size and type of the elements we will be copying. 7121 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7122 if (src_elem != T_BYTE) { 7123 return false; 7124 } 7125 7126 // 'src_start' points to src array + scaled offset 7127 src = must_be_not_null(src, true); 7128 Node* src_start = array_element_address(src, offset, src_elem); 7129 7130 // We assume that range check is done by caller. 7131 // TODO: generate range check (offset+length < src.length) in debug VM. 7132 7133 // Call the stub. 7134 address stubAddr = StubRoutines::updateBytesCRC32(); 7135 const char *stubName = "updateBytesCRC32"; 7136 7137 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7138 stubAddr, stubName, TypePtr::BOTTOM, 7139 crc, src_start, length); 7140 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7141 set_result(result); 7142 return true; 7143 } 7144 7145 /** 7146 * Calculate CRC32 for ByteBuffer. 7147 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 7148 */ 7149 bool LibraryCallKit::inline_updateByteBufferCRC32() { 7150 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7151 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7152 // no receiver since it is static method 7153 Node* crc = argument(0); // type: int 7154 Node* src = argument(1); // type: long 7155 Node* offset = argument(3); // type: int 7156 Node* length = argument(4); // type: int 7157 7158 src = ConvL2X(src); // adjust Java long to machine word 7159 Node* base = _gvn.transform(new CastX2PNode(src)); 7160 offset = ConvI2X(offset); 7161 7162 // 'src_start' points to src array + scaled offset 7163 Node* src_start = basic_plus_adr(top(), base, offset); 7164 7165 // Call the stub. 7166 address stubAddr = StubRoutines::updateBytesCRC32(); 7167 const char *stubName = "updateBytesCRC32"; 7168 7169 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7170 stubAddr, stubName, TypePtr::BOTTOM, 7171 crc, src_start, length); 7172 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7173 set_result(result); 7174 return true; 7175 } 7176 7177 //------------------------------get_table_from_crc32c_class----------------------- 7178 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 7179 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 7180 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 7181 7182 return table; 7183 } 7184 7185 //------------------------------inline_updateBytesCRC32C----------------------- 7186 // 7187 // Calculate CRC32C for byte[] array. 7188 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 7189 // 7190 bool LibraryCallKit::inline_updateBytesCRC32C() { 7191 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7192 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7193 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7194 // no receiver since it is a static method 7195 Node* crc = argument(0); // type: int 7196 Node* src = argument(1); // type: oop 7197 Node* offset = argument(2); // type: int 7198 Node* end = argument(3); // type: int 7199 7200 Node* length = _gvn.transform(new SubINode(end, offset)); 7201 7202 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7203 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7204 // failed array check 7205 return false; 7206 } 7207 7208 // Figure out the size and type of the elements we will be copying. 7209 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7210 if (src_elem != T_BYTE) { 7211 return false; 7212 } 7213 7214 // 'src_start' points to src array + scaled offset 7215 src = must_be_not_null(src, true); 7216 Node* src_start = array_element_address(src, offset, src_elem); 7217 7218 // static final int[] byteTable in class CRC32C 7219 Node* table = get_table_from_crc32c_class(callee()->holder()); 7220 table = must_be_not_null(table, true); 7221 Node* table_start = array_element_address(table, intcon(0), T_INT); 7222 7223 // We assume that range check is done by caller. 7224 // TODO: generate range check (offset+length < src.length) in debug VM. 7225 7226 // Call the stub. 7227 address stubAddr = StubRoutines::updateBytesCRC32C(); 7228 const char *stubName = "updateBytesCRC32C"; 7229 7230 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7231 stubAddr, stubName, TypePtr::BOTTOM, 7232 crc, src_start, length, table_start); 7233 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7234 set_result(result); 7235 return true; 7236 } 7237 7238 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 7239 // 7240 // Calculate CRC32C for DirectByteBuffer. 7241 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 7242 // 7243 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 7244 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7245 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 7246 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7247 // no receiver since it is a static method 7248 Node* crc = argument(0); // type: int 7249 Node* src = argument(1); // type: long 7250 Node* offset = argument(3); // type: int 7251 Node* end = argument(4); // type: int 7252 7253 Node* length = _gvn.transform(new SubINode(end, offset)); 7254 7255 src = ConvL2X(src); // adjust Java long to machine word 7256 Node* base = _gvn.transform(new CastX2PNode(src)); 7257 offset = ConvI2X(offset); 7258 7259 // 'src_start' points to src array + scaled offset 7260 Node* src_start = basic_plus_adr(top(), base, offset); 7261 7262 // static final int[] byteTable in class CRC32C 7263 Node* table = get_table_from_crc32c_class(callee()->holder()); 7264 table = must_be_not_null(table, true); 7265 Node* table_start = array_element_address(table, intcon(0), T_INT); 7266 7267 // Call the stub. 7268 address stubAddr = StubRoutines::updateBytesCRC32C(); 7269 const char *stubName = "updateBytesCRC32C"; 7270 7271 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7272 stubAddr, stubName, TypePtr::BOTTOM, 7273 crc, src_start, length, table_start); 7274 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7275 set_result(result); 7276 return true; 7277 } 7278 7279 //------------------------------inline_updateBytesAdler32---------------------- 7280 // 7281 // Calculate Adler32 checksum for byte[] array. 7282 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 7283 // 7284 bool LibraryCallKit::inline_updateBytesAdler32() { 7285 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7286 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7287 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7288 // no receiver since it is static method 7289 Node* crc = argument(0); // type: int 7290 Node* src = argument(1); // type: oop 7291 Node* offset = argument(2); // type: int 7292 Node* length = argument(3); // type: int 7293 7294 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7295 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7296 // failed array check 7297 return false; 7298 } 7299 7300 // Figure out the size and type of the elements we will be copying. 7301 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7302 if (src_elem != T_BYTE) { 7303 return false; 7304 } 7305 7306 // 'src_start' points to src array + scaled offset 7307 Node* src_start = array_element_address(src, offset, src_elem); 7308 7309 // We assume that range check is done by caller. 7310 // TODO: generate range check (offset+length < src.length) in debug VM. 7311 7312 // Call the stub. 7313 address stubAddr = StubRoutines::updateBytesAdler32(); 7314 const char *stubName = "updateBytesAdler32"; 7315 7316 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7317 stubAddr, stubName, TypePtr::BOTTOM, 7318 crc, src_start, length); 7319 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7320 set_result(result); 7321 return true; 7322 } 7323 7324 //------------------------------inline_updateByteBufferAdler32--------------- 7325 // 7326 // Calculate Adler32 checksum for DirectByteBuffer. 7327 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 7328 // 7329 bool LibraryCallKit::inline_updateByteBufferAdler32() { 7330 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7331 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7332 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7333 // no receiver since it is static method 7334 Node* crc = argument(0); // type: int 7335 Node* src = argument(1); // type: long 7336 Node* offset = argument(3); // type: int 7337 Node* length = argument(4); // type: int 7338 7339 src = ConvL2X(src); // adjust Java long to machine word 7340 Node* base = _gvn.transform(new CastX2PNode(src)); 7341 offset = ConvI2X(offset); 7342 7343 // 'src_start' points to src array + scaled offset 7344 Node* src_start = basic_plus_adr(top(), base, offset); 7345 7346 // Call the stub. 7347 address stubAddr = StubRoutines::updateBytesAdler32(); 7348 const char *stubName = "updateBytesAdler32"; 7349 7350 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7351 stubAddr, stubName, TypePtr::BOTTOM, 7352 crc, src_start, length); 7353 7354 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7355 set_result(result); 7356 return true; 7357 } 7358 7359 //----------------------------inline_reference_get---------------------------- 7360 // public T java.lang.ref.Reference.get(); 7361 bool LibraryCallKit::inline_reference_get() { 7362 const int referent_offset = java_lang_ref_Reference::referent_offset(); 7363 7364 // Get the argument: 7365 Node* reference_obj = null_check_receiver(); 7366 if (stopped()) return true; 7367 7368 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 7369 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7370 decorators, /*is_static*/ false, nullptr); 7371 if (result == nullptr) return false; 7372 7373 // Add memory barrier to prevent commoning reads from this field 7374 // across safepoint since GC can change its value. 7375 insert_mem_bar(Op_MemBarCPUOrder); 7376 7377 set_result(result); 7378 return true; 7379 } 7380 7381 //----------------------------inline_reference_refersTo0---------------------------- 7382 // bool java.lang.ref.Reference.refersTo0(); 7383 // bool java.lang.ref.PhantomReference.refersTo0(); 7384 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 7385 // Get arguments: 7386 Node* reference_obj = null_check_receiver(); 7387 Node* other_obj = argument(1); 7388 if (stopped()) return true; 7389 7390 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7391 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7392 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7393 decorators, /*is_static*/ false, nullptr); 7394 if (referent == nullptr) return false; 7395 7396 // Add memory barrier to prevent commoning reads from this field 7397 // across safepoint since GC can change its value. 7398 insert_mem_bar(Op_MemBarCPUOrder); 7399 7400 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 7401 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7402 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 7403 7404 RegionNode* region = new RegionNode(3); 7405 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 7406 7407 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 7408 region->init_req(1, if_true); 7409 phi->init_req(1, intcon(1)); 7410 7411 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 7412 region->init_req(2, if_false); 7413 phi->init_req(2, intcon(0)); 7414 7415 set_control(_gvn.transform(region)); 7416 record_for_igvn(region); 7417 set_result(_gvn.transform(phi)); 7418 return true; 7419 } 7420 7421 //----------------------------inline_reference_clear0---------------------------- 7422 // void java.lang.ref.Reference.clear0(); 7423 // void java.lang.ref.PhantomReference.clear0(); 7424 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 7425 // This matches the implementation in JVM_ReferenceClear, see the comments there. 7426 7427 // Get arguments 7428 Node* reference_obj = null_check_receiver(); 7429 if (stopped()) return true; 7430 7431 // Common access parameters 7432 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7433 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7434 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 7435 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 7436 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 7437 7438 Node* referent = access_load_at(reference_obj, 7439 referent_field_addr, 7440 referent_field_addr_type, 7441 val_type, 7442 T_OBJECT, 7443 decorators); 7444 7445 IdealKit ideal(this); 7446 #define __ ideal. 7447 __ if_then(referent, BoolTest::ne, null()); 7448 sync_kit(ideal); 7449 access_store_at(reference_obj, 7450 referent_field_addr, 7451 referent_field_addr_type, 7452 null(), 7453 val_type, 7454 T_OBJECT, 7455 decorators); 7456 __ sync_kit(this); 7457 __ end_if(); 7458 final_sync(ideal); 7459 #undef __ 7460 7461 return true; 7462 } 7463 7464 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7465 DecoratorSet decorators, bool is_static, 7466 ciInstanceKlass* fromKls) { 7467 if (fromKls == nullptr) { 7468 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7469 assert(tinst != nullptr, "obj is null"); 7470 assert(tinst->is_loaded(), "obj is not loaded"); 7471 fromKls = tinst->instance_klass(); 7472 } else { 7473 assert(is_static, "only for static field access"); 7474 } 7475 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7476 ciSymbol::make(fieldTypeString), 7477 is_static); 7478 7479 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7480 if (field == nullptr) return (Node *) nullptr; 7481 7482 if (is_static) { 7483 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7484 fromObj = makecon(tip); 7485 } 7486 7487 // Next code copied from Parse::do_get_xxx(): 7488 7489 // Compute address and memory type. 7490 int offset = field->offset_in_bytes(); 7491 bool is_vol = field->is_volatile(); 7492 ciType* field_klass = field->type(); 7493 assert(field_klass->is_loaded(), "should be loaded"); 7494 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7495 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7496 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7497 "slice of address and input slice don't match"); 7498 BasicType bt = field->layout_type(); 7499 7500 // Build the resultant type of the load 7501 const Type *type; 7502 if (bt == T_OBJECT) { 7503 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7504 } else { 7505 type = Type::get_const_basic_type(bt); 7506 } 7507 7508 if (is_vol) { 7509 decorators |= MO_SEQ_CST; 7510 } 7511 7512 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7513 } 7514 7515 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7516 bool is_exact /* true */, bool is_static /* false */, 7517 ciInstanceKlass * fromKls /* nullptr */) { 7518 if (fromKls == nullptr) { 7519 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7520 assert(tinst != nullptr, "obj is null"); 7521 assert(tinst->is_loaded(), "obj is not loaded"); 7522 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7523 fromKls = tinst->instance_klass(); 7524 } 7525 else { 7526 assert(is_static, "only for static field access"); 7527 } 7528 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7529 ciSymbol::make(fieldTypeString), 7530 is_static); 7531 7532 assert(field != nullptr, "undefined field"); 7533 assert(!field->is_volatile(), "not defined for volatile fields"); 7534 7535 if (is_static) { 7536 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7537 fromObj = makecon(tip); 7538 } 7539 7540 // Next code copied from Parse::do_get_xxx(): 7541 7542 // Compute address and memory type. 7543 int offset = field->offset_in_bytes(); 7544 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7545 7546 return adr; 7547 } 7548 7549 //------------------------------inline_aescrypt_Block----------------------- 7550 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7551 address stubAddr = nullptr; 7552 const char *stubName; 7553 assert(UseAES, "need AES instruction support"); 7554 7555 switch(id) { 7556 case vmIntrinsics::_aescrypt_encryptBlock: 7557 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7558 stubName = "aescrypt_encryptBlock"; 7559 break; 7560 case vmIntrinsics::_aescrypt_decryptBlock: 7561 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7562 stubName = "aescrypt_decryptBlock"; 7563 break; 7564 default: 7565 break; 7566 } 7567 if (stubAddr == nullptr) return false; 7568 7569 Node* aescrypt_object = argument(0); 7570 Node* src = argument(1); 7571 Node* src_offset = argument(2); 7572 Node* dest = argument(3); 7573 Node* dest_offset = argument(4); 7574 7575 src = must_be_not_null(src, true); 7576 dest = must_be_not_null(dest, true); 7577 7578 // (1) src and dest are arrays. 7579 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7580 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7581 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7582 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7583 7584 // for the quick and dirty code we will skip all the checks. 7585 // we are just trying to get the call to be generated. 7586 Node* src_start = src; 7587 Node* dest_start = dest; 7588 if (src_offset != nullptr || dest_offset != nullptr) { 7589 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7590 src_start = array_element_address(src, src_offset, T_BYTE); 7591 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7592 } 7593 7594 // now need to get the start of its expanded key array 7595 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7596 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7597 if (k_start == nullptr) return false; 7598 7599 // Call the stub. 7600 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7601 stubAddr, stubName, TypePtr::BOTTOM, 7602 src_start, dest_start, k_start); 7603 7604 return true; 7605 } 7606 7607 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7608 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7609 address stubAddr = nullptr; 7610 const char *stubName = nullptr; 7611 7612 assert(UseAES, "need AES instruction support"); 7613 7614 switch(id) { 7615 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7616 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7617 stubName = "cipherBlockChaining_encryptAESCrypt"; 7618 break; 7619 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7620 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7621 stubName = "cipherBlockChaining_decryptAESCrypt"; 7622 break; 7623 default: 7624 break; 7625 } 7626 if (stubAddr == nullptr) return false; 7627 7628 Node* cipherBlockChaining_object = argument(0); 7629 Node* src = argument(1); 7630 Node* src_offset = argument(2); 7631 Node* len = argument(3); 7632 Node* dest = argument(4); 7633 Node* dest_offset = argument(5); 7634 7635 src = must_be_not_null(src, false); 7636 dest = must_be_not_null(dest, false); 7637 7638 // (1) src and dest are arrays. 7639 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7640 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7641 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7642 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7643 7644 // checks are the responsibility of the caller 7645 Node* src_start = src; 7646 Node* dest_start = dest; 7647 if (src_offset != nullptr || dest_offset != nullptr) { 7648 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7649 src_start = array_element_address(src, src_offset, T_BYTE); 7650 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7651 } 7652 7653 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7654 // (because of the predicated logic executed earlier). 7655 // so we cast it here safely. 7656 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7657 7658 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7659 if (embeddedCipherObj == nullptr) return false; 7660 7661 // cast it to what we know it will be at runtime 7662 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7663 assert(tinst != nullptr, "CBC obj is null"); 7664 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7665 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7666 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7667 7668 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7669 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7670 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7671 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7672 aescrypt_object = _gvn.transform(aescrypt_object); 7673 7674 // we need to get the start of the aescrypt_object's expanded key array 7675 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7676 if (k_start == nullptr) return false; 7677 7678 // similarly, get the start address of the r vector 7679 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7680 if (objRvec == nullptr) return false; 7681 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7682 7683 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7684 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7685 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7686 stubAddr, stubName, TypePtr::BOTTOM, 7687 src_start, dest_start, k_start, r_start, len); 7688 7689 // return cipher length (int) 7690 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7691 set_result(retvalue); 7692 return true; 7693 } 7694 7695 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7696 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7697 address stubAddr = nullptr; 7698 const char *stubName = nullptr; 7699 7700 assert(UseAES, "need AES instruction support"); 7701 7702 switch (id) { 7703 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7704 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7705 stubName = "electronicCodeBook_encryptAESCrypt"; 7706 break; 7707 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7708 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7709 stubName = "electronicCodeBook_decryptAESCrypt"; 7710 break; 7711 default: 7712 break; 7713 } 7714 7715 if (stubAddr == nullptr) return false; 7716 7717 Node* electronicCodeBook_object = argument(0); 7718 Node* src = argument(1); 7719 Node* src_offset = argument(2); 7720 Node* len = argument(3); 7721 Node* dest = argument(4); 7722 Node* dest_offset = argument(5); 7723 7724 // (1) src and dest are arrays. 7725 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7726 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7727 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7728 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7729 7730 // checks are the responsibility of the caller 7731 Node* src_start = src; 7732 Node* dest_start = dest; 7733 if (src_offset != nullptr || dest_offset != nullptr) { 7734 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7735 src_start = array_element_address(src, src_offset, T_BYTE); 7736 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7737 } 7738 7739 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7740 // (because of the predicated logic executed earlier). 7741 // so we cast it here safely. 7742 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7743 7744 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7745 if (embeddedCipherObj == nullptr) return false; 7746 7747 // cast it to what we know it will be at runtime 7748 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7749 assert(tinst != nullptr, "ECB obj is null"); 7750 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7751 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7752 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7753 7754 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7755 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7756 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7757 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7758 aescrypt_object = _gvn.transform(aescrypt_object); 7759 7760 // we need to get the start of the aescrypt_object's expanded key array 7761 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7762 if (k_start == nullptr) return false; 7763 7764 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7765 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7766 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7767 stubAddr, stubName, TypePtr::BOTTOM, 7768 src_start, dest_start, k_start, len); 7769 7770 // return cipher length (int) 7771 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7772 set_result(retvalue); 7773 return true; 7774 } 7775 7776 //------------------------------inline_counterMode_AESCrypt----------------------- 7777 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7778 assert(UseAES, "need AES instruction support"); 7779 if (!UseAESCTRIntrinsics) return false; 7780 7781 address stubAddr = nullptr; 7782 const char *stubName = nullptr; 7783 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7784 stubAddr = StubRoutines::counterMode_AESCrypt(); 7785 stubName = "counterMode_AESCrypt"; 7786 } 7787 if (stubAddr == nullptr) return false; 7788 7789 Node* counterMode_object = argument(0); 7790 Node* src = argument(1); 7791 Node* src_offset = argument(2); 7792 Node* len = argument(3); 7793 Node* dest = argument(4); 7794 Node* dest_offset = argument(5); 7795 7796 // (1) src and dest are arrays. 7797 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7798 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7799 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7800 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7801 7802 // checks are the responsibility of the caller 7803 Node* src_start = src; 7804 Node* dest_start = dest; 7805 if (src_offset != nullptr || dest_offset != nullptr) { 7806 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7807 src_start = array_element_address(src, src_offset, T_BYTE); 7808 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7809 } 7810 7811 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7812 // (because of the predicated logic executed earlier). 7813 // so we cast it here safely. 7814 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7815 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7816 if (embeddedCipherObj == nullptr) return false; 7817 // cast it to what we know it will be at runtime 7818 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7819 assert(tinst != nullptr, "CTR obj is null"); 7820 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7821 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7822 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7823 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7824 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7825 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7826 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7827 aescrypt_object = _gvn.transform(aescrypt_object); 7828 // we need to get the start of the aescrypt_object's expanded key array 7829 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7830 if (k_start == nullptr) return false; 7831 // similarly, get the start address of the r vector 7832 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7833 if (obj_counter == nullptr) return false; 7834 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7835 7836 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7837 if (saved_encCounter == nullptr) return false; 7838 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7839 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7840 7841 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7842 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7843 OptoRuntime::counterMode_aescrypt_Type(), 7844 stubAddr, stubName, TypePtr::BOTTOM, 7845 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7846 7847 // return cipher length (int) 7848 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7849 set_result(retvalue); 7850 return true; 7851 } 7852 7853 //------------------------------get_key_start_from_aescrypt_object----------------------- 7854 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7855 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7856 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7857 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7858 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7859 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7860 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7861 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7862 if (objSessionK == nullptr) { 7863 return (Node *) nullptr; 7864 } 7865 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7866 #else 7867 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7868 #endif // PPC64 7869 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7870 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7871 7872 // now have the array, need to get the start address of the K array 7873 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7874 return k_start; 7875 } 7876 7877 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7878 // Return node representing slow path of predicate check. 7879 // the pseudo code we want to emulate with this predicate is: 7880 // for encryption: 7881 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7882 // for decryption: 7883 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7884 // note cipher==plain is more conservative than the original java code but that's OK 7885 // 7886 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7887 // The receiver was checked for null already. 7888 Node* objCBC = argument(0); 7889 7890 Node* src = argument(1); 7891 Node* dest = argument(4); 7892 7893 // Load embeddedCipher field of CipherBlockChaining object. 7894 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7895 7896 // get AESCrypt klass for instanceOf check 7897 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7898 // will have same classloader as CipherBlockChaining object 7899 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7900 assert(tinst != nullptr, "CBCobj is null"); 7901 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7902 7903 // we want to do an instanceof comparison against the AESCrypt class 7904 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7905 if (!klass_AESCrypt->is_loaded()) { 7906 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7907 Node* ctrl = control(); 7908 set_control(top()); // no regular fast path 7909 return ctrl; 7910 } 7911 7912 src = must_be_not_null(src, true); 7913 dest = must_be_not_null(dest, true); 7914 7915 // Resolve oops to stable for CmpP below. 7916 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7917 7918 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7919 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7920 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7921 7922 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7923 7924 // for encryption, we are done 7925 if (!decrypting) 7926 return instof_false; // even if it is null 7927 7928 // for decryption, we need to add a further check to avoid 7929 // taking the intrinsic path when cipher and plain are the same 7930 // see the original java code for why. 7931 RegionNode* region = new RegionNode(3); 7932 region->init_req(1, instof_false); 7933 7934 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7935 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7936 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7937 region->init_req(2, src_dest_conjoint); 7938 7939 record_for_igvn(region); 7940 return _gvn.transform(region); 7941 } 7942 7943 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7944 // Return node representing slow path of predicate check. 7945 // the pseudo code we want to emulate with this predicate is: 7946 // for encryption: 7947 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7948 // for decryption: 7949 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7950 // note cipher==plain is more conservative than the original java code but that's OK 7951 // 7952 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7953 // The receiver was checked for null already. 7954 Node* objECB = argument(0); 7955 7956 // Load embeddedCipher field of ElectronicCodeBook object. 7957 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7958 7959 // get AESCrypt klass for instanceOf check 7960 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7961 // will have same classloader as ElectronicCodeBook object 7962 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7963 assert(tinst != nullptr, "ECBobj is null"); 7964 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7965 7966 // we want to do an instanceof comparison against the AESCrypt class 7967 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7968 if (!klass_AESCrypt->is_loaded()) { 7969 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7970 Node* ctrl = control(); 7971 set_control(top()); // no regular fast path 7972 return ctrl; 7973 } 7974 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7975 7976 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7977 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7978 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7979 7980 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7981 7982 // for encryption, we are done 7983 if (!decrypting) 7984 return instof_false; // even if it is null 7985 7986 // for decryption, we need to add a further check to avoid 7987 // taking the intrinsic path when cipher and plain are the same 7988 // see the original java code for why. 7989 RegionNode* region = new RegionNode(3); 7990 region->init_req(1, instof_false); 7991 Node* src = argument(1); 7992 Node* dest = argument(4); 7993 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7994 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7995 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7996 region->init_req(2, src_dest_conjoint); 7997 7998 record_for_igvn(region); 7999 return _gvn.transform(region); 8000 } 8001 8002 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 8003 // Return node representing slow path of predicate check. 8004 // the pseudo code we want to emulate with this predicate is: 8005 // for encryption: 8006 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8007 // for decryption: 8008 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8009 // note cipher==plain is more conservative than the original java code but that's OK 8010 // 8011 8012 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 8013 // The receiver was checked for null already. 8014 Node* objCTR = argument(0); 8015 8016 // Load embeddedCipher field of CipherBlockChaining object. 8017 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8018 8019 // get AESCrypt klass for instanceOf check 8020 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8021 // will have same classloader as CipherBlockChaining object 8022 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 8023 assert(tinst != nullptr, "CTRobj is null"); 8024 assert(tinst->is_loaded(), "CTRobj is not loaded"); 8025 8026 // we want to do an instanceof comparison against the AESCrypt class 8027 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8028 if (!klass_AESCrypt->is_loaded()) { 8029 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8030 Node* ctrl = control(); 8031 set_control(top()); // no regular fast path 8032 return ctrl; 8033 } 8034 8035 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8036 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8037 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8038 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8039 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8040 8041 return instof_false; // even if it is null 8042 } 8043 8044 //------------------------------inline_ghash_processBlocks 8045 bool LibraryCallKit::inline_ghash_processBlocks() { 8046 address stubAddr; 8047 const char *stubName; 8048 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 8049 8050 stubAddr = StubRoutines::ghash_processBlocks(); 8051 stubName = "ghash_processBlocks"; 8052 8053 Node* data = argument(0); 8054 Node* offset = argument(1); 8055 Node* len = argument(2); 8056 Node* state = argument(3); 8057 Node* subkeyH = argument(4); 8058 8059 state = must_be_not_null(state, true); 8060 subkeyH = must_be_not_null(subkeyH, true); 8061 data = must_be_not_null(data, true); 8062 8063 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8064 assert(state_start, "state is null"); 8065 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 8066 assert(subkeyH_start, "subkeyH is null"); 8067 Node* data_start = array_element_address(data, offset, T_BYTE); 8068 assert(data_start, "data is null"); 8069 8070 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 8071 OptoRuntime::ghash_processBlocks_Type(), 8072 stubAddr, stubName, TypePtr::BOTTOM, 8073 state_start, subkeyH_start, data_start, len); 8074 return true; 8075 } 8076 8077 //------------------------------inline_chacha20Block 8078 bool LibraryCallKit::inline_chacha20Block() { 8079 address stubAddr; 8080 const char *stubName; 8081 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 8082 8083 stubAddr = StubRoutines::chacha20Block(); 8084 stubName = "chacha20Block"; 8085 8086 Node* state = argument(0); 8087 Node* result = argument(1); 8088 8089 state = must_be_not_null(state, true); 8090 result = must_be_not_null(result, true); 8091 8092 Node* state_start = array_element_address(state, intcon(0), T_INT); 8093 assert(state_start, "state is null"); 8094 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 8095 assert(result_start, "result is null"); 8096 8097 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 8098 OptoRuntime::chacha20Block_Type(), 8099 stubAddr, stubName, TypePtr::BOTTOM, 8100 state_start, result_start); 8101 // return key stream length (int) 8102 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 8103 set_result(retvalue); 8104 return true; 8105 } 8106 8107 //------------------------------inline_kyberNtt 8108 bool LibraryCallKit::inline_kyberNtt() { 8109 address stubAddr; 8110 const char *stubName; 8111 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8112 assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters"); 8113 8114 stubAddr = StubRoutines::kyberNtt(); 8115 stubName = "kyberNtt"; 8116 if (!stubAddr) return false; 8117 8118 Node* coeffs = argument(0); 8119 Node* ntt_zetas = argument(1); 8120 8121 coeffs = must_be_not_null(coeffs, true); 8122 ntt_zetas = must_be_not_null(ntt_zetas, true); 8123 8124 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 8125 assert(coeffs_start, "coeffs is null"); 8126 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_SHORT); 8127 assert(ntt_zetas_start, "ntt_zetas is null"); 8128 Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8129 OptoRuntime::kyberNtt_Type(), 8130 stubAddr, stubName, TypePtr::BOTTOM, 8131 coeffs_start, ntt_zetas_start); 8132 // return an int 8133 Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms)); 8134 set_result(retvalue); 8135 return true; 8136 } 8137 8138 //------------------------------inline_kyberInverseNtt 8139 bool LibraryCallKit::inline_kyberInverseNtt() { 8140 address stubAddr; 8141 const char *stubName; 8142 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8143 assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters"); 8144 8145 stubAddr = StubRoutines::kyberInverseNtt(); 8146 stubName = "kyberInverseNtt"; 8147 if (!stubAddr) return false; 8148 8149 Node* coeffs = argument(0); 8150 Node* zetas = argument(1); 8151 8152 coeffs = must_be_not_null(coeffs, true); 8153 zetas = must_be_not_null(zetas, true); 8154 8155 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 8156 assert(coeffs_start, "coeffs is null"); 8157 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 8158 assert(zetas_start, "inverseNtt_zetas is null"); 8159 Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8160 OptoRuntime::kyberInverseNtt_Type(), 8161 stubAddr, stubName, TypePtr::BOTTOM, 8162 coeffs_start, zetas_start); 8163 8164 // return an int 8165 Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms)); 8166 set_result(retvalue); 8167 return true; 8168 } 8169 8170 //------------------------------inline_kyberNttMult 8171 bool LibraryCallKit::inline_kyberNttMult() { 8172 address stubAddr; 8173 const char *stubName; 8174 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8175 assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters"); 8176 8177 stubAddr = StubRoutines::kyberNttMult(); 8178 stubName = "kyberNttMult"; 8179 if (!stubAddr) return false; 8180 8181 Node* result = argument(0); 8182 Node* ntta = argument(1); 8183 Node* nttb = argument(2); 8184 Node* zetas = argument(3); 8185 8186 result = must_be_not_null(result, true); 8187 ntta = must_be_not_null(ntta, true); 8188 nttb = must_be_not_null(nttb, true); 8189 zetas = must_be_not_null(zetas, true); 8190 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 8191 assert(result_start, "result is null"); 8192 Node* ntta_start = array_element_address(ntta, intcon(0), T_SHORT); 8193 assert(ntta_start, "ntta is null"); 8194 Node* nttb_start = array_element_address(nttb, intcon(0), T_SHORT); 8195 assert(nttb_start, "nttb is null"); 8196 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 8197 assert(zetas_start, "nttMult_zetas is null"); 8198 Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 8199 OptoRuntime::kyberNttMult_Type(), 8200 stubAddr, stubName, TypePtr::BOTTOM, 8201 result_start, ntta_start, nttb_start, 8202 zetas_start); 8203 8204 // return an int 8205 Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms)); 8206 set_result(retvalue); 8207 8208 return true; 8209 } 8210 8211 //------------------------------inline_kyberAddPoly_2 8212 bool LibraryCallKit::inline_kyberAddPoly_2() { 8213 address stubAddr; 8214 const char *stubName; 8215 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8216 assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters"); 8217 8218 stubAddr = StubRoutines::kyberAddPoly_2(); 8219 stubName = "kyberAddPoly_2"; 8220 if (!stubAddr) return false; 8221 8222 Node* result = argument(0); 8223 Node* a = argument(1); 8224 Node* b = argument(2); 8225 8226 result = must_be_not_null(result, true); 8227 a = must_be_not_null(a, true); 8228 b = must_be_not_null(b, true); 8229 8230 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 8231 assert(result_start, "result is null"); 8232 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 8233 assert(a_start, "a is null"); 8234 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 8235 assert(b_start, "b is null"); 8236 Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP, 8237 OptoRuntime::kyberAddPoly_2_Type(), 8238 stubAddr, stubName, TypePtr::BOTTOM, 8239 result_start, a_start, b_start); 8240 // return an int 8241 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms)); 8242 set_result(retvalue); 8243 return true; 8244 } 8245 8246 //------------------------------inline_kyberAddPoly_3 8247 bool LibraryCallKit::inline_kyberAddPoly_3() { 8248 address stubAddr; 8249 const char *stubName; 8250 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8251 assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters"); 8252 8253 stubAddr = StubRoutines::kyberAddPoly_3(); 8254 stubName = "kyberAddPoly_3"; 8255 if (!stubAddr) return false; 8256 8257 Node* result = argument(0); 8258 Node* a = argument(1); 8259 Node* b = argument(2); 8260 Node* c = argument(3); 8261 8262 result = must_be_not_null(result, true); 8263 a = must_be_not_null(a, true); 8264 b = must_be_not_null(b, true); 8265 c = must_be_not_null(c, true); 8266 8267 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 8268 assert(result_start, "result is null"); 8269 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 8270 assert(a_start, "a is null"); 8271 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 8272 assert(b_start, "b is null"); 8273 Node* c_start = array_element_address(c, intcon(0), T_SHORT); 8274 assert(c_start, "c is null"); 8275 Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP, 8276 OptoRuntime::kyberAddPoly_3_Type(), 8277 stubAddr, stubName, TypePtr::BOTTOM, 8278 result_start, a_start, b_start, c_start); 8279 // return an int 8280 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms)); 8281 set_result(retvalue); 8282 return true; 8283 } 8284 8285 //------------------------------inline_kyber12To16 8286 bool LibraryCallKit::inline_kyber12To16() { 8287 address stubAddr; 8288 const char *stubName; 8289 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8290 assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters"); 8291 8292 stubAddr = StubRoutines::kyber12To16(); 8293 stubName = "kyber12To16"; 8294 if (!stubAddr) return false; 8295 8296 Node* condensed = argument(0); 8297 Node* condensedOffs = argument(1); 8298 Node* parsed = argument(2); 8299 Node* parsedLength = argument(3); 8300 8301 condensed = must_be_not_null(condensed, true); 8302 parsed = must_be_not_null(parsed, true); 8303 8304 Node* condensed_start = array_element_address(condensed, intcon(0), T_BYTE); 8305 assert(condensed_start, "condensed is null"); 8306 Node* parsed_start = array_element_address(parsed, intcon(0), T_SHORT); 8307 assert(parsed_start, "parsed is null"); 8308 Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP, 8309 OptoRuntime::kyber12To16_Type(), 8310 stubAddr, stubName, TypePtr::BOTTOM, 8311 condensed_start, condensedOffs, parsed_start, parsedLength); 8312 // return an int 8313 Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms)); 8314 set_result(retvalue); 8315 return true; 8316 8317 } 8318 8319 //------------------------------inline_kyberBarrettReduce 8320 bool LibraryCallKit::inline_kyberBarrettReduce() { 8321 address stubAddr; 8322 const char *stubName; 8323 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8324 assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters"); 8325 8326 stubAddr = StubRoutines::kyberBarrettReduce(); 8327 stubName = "kyberBarrettReduce"; 8328 if (!stubAddr) return false; 8329 8330 Node* coeffs = argument(0); 8331 8332 coeffs = must_be_not_null(coeffs, true); 8333 8334 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 8335 assert(coeffs_start, "coeffs is null"); 8336 Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP, 8337 OptoRuntime::kyberBarrettReduce_Type(), 8338 stubAddr, stubName, TypePtr::BOTTOM, 8339 coeffs_start); 8340 // return an int 8341 Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms)); 8342 set_result(retvalue); 8343 return true; 8344 } 8345 8346 //------------------------------inline_dilithiumAlmostNtt 8347 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 8348 address stubAddr; 8349 const char *stubName; 8350 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8351 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 8352 8353 stubAddr = StubRoutines::dilithiumAlmostNtt(); 8354 stubName = "dilithiumAlmostNtt"; 8355 if (!stubAddr) return false; 8356 8357 Node* coeffs = argument(0); 8358 Node* ntt_zetas = argument(1); 8359 8360 coeffs = must_be_not_null(coeffs, true); 8361 ntt_zetas = must_be_not_null(ntt_zetas, true); 8362 8363 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8364 assert(coeffs_start, "coeffs is null"); 8365 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 8366 assert(ntt_zetas_start, "ntt_zetas is null"); 8367 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8368 OptoRuntime::dilithiumAlmostNtt_Type(), 8369 stubAddr, stubName, TypePtr::BOTTOM, 8370 coeffs_start, ntt_zetas_start); 8371 // return an int 8372 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 8373 set_result(retvalue); 8374 return true; 8375 } 8376 8377 //------------------------------inline_dilithiumAlmostInverseNtt 8378 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 8379 address stubAddr; 8380 const char *stubName; 8381 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8382 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 8383 8384 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 8385 stubName = "dilithiumAlmostInverseNtt"; 8386 if (!stubAddr) return false; 8387 8388 Node* coeffs = argument(0); 8389 Node* zetas = argument(1); 8390 8391 coeffs = must_be_not_null(coeffs, true); 8392 zetas = must_be_not_null(zetas, true); 8393 8394 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8395 assert(coeffs_start, "coeffs is null"); 8396 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 8397 assert(zetas_start, "inverseNtt_zetas is null"); 8398 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8399 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 8400 stubAddr, stubName, TypePtr::BOTTOM, 8401 coeffs_start, zetas_start); 8402 // return an int 8403 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 8404 set_result(retvalue); 8405 return true; 8406 } 8407 8408 //------------------------------inline_dilithiumNttMult 8409 bool LibraryCallKit::inline_dilithiumNttMult() { 8410 address stubAddr; 8411 const char *stubName; 8412 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8413 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 8414 8415 stubAddr = StubRoutines::dilithiumNttMult(); 8416 stubName = "dilithiumNttMult"; 8417 if (!stubAddr) return false; 8418 8419 Node* result = argument(0); 8420 Node* ntta = argument(1); 8421 Node* nttb = argument(2); 8422 Node* zetas = argument(3); 8423 8424 result = must_be_not_null(result, true); 8425 ntta = must_be_not_null(ntta, true); 8426 nttb = must_be_not_null(nttb, true); 8427 zetas = must_be_not_null(zetas, true); 8428 8429 Node* result_start = array_element_address(result, intcon(0), T_INT); 8430 assert(result_start, "result is null"); 8431 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 8432 assert(ntta_start, "ntta is null"); 8433 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 8434 assert(nttb_start, "nttb is null"); 8435 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 8436 OptoRuntime::dilithiumNttMult_Type(), 8437 stubAddr, stubName, TypePtr::BOTTOM, 8438 result_start, ntta_start, nttb_start); 8439 8440 // return an int 8441 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 8442 set_result(retvalue); 8443 8444 return true; 8445 } 8446 8447 //------------------------------inline_dilithiumMontMulByConstant 8448 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 8449 address stubAddr; 8450 const char *stubName; 8451 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8452 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 8453 8454 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 8455 stubName = "dilithiumMontMulByConstant"; 8456 if (!stubAddr) return false; 8457 8458 Node* coeffs = argument(0); 8459 Node* constant = argument(1); 8460 8461 coeffs = must_be_not_null(coeffs, true); 8462 8463 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8464 assert(coeffs_start, "coeffs is null"); 8465 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 8466 OptoRuntime::dilithiumMontMulByConstant_Type(), 8467 stubAddr, stubName, TypePtr::BOTTOM, 8468 coeffs_start, constant); 8469 8470 // return an int 8471 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 8472 set_result(retvalue); 8473 return true; 8474 } 8475 8476 8477 //------------------------------inline_dilithiumDecomposePoly 8478 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 8479 address stubAddr; 8480 const char *stubName; 8481 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8482 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 8483 8484 stubAddr = StubRoutines::dilithiumDecomposePoly(); 8485 stubName = "dilithiumDecomposePoly"; 8486 if (!stubAddr) return false; 8487 8488 Node* input = argument(0); 8489 Node* lowPart = argument(1); 8490 Node* highPart = argument(2); 8491 Node* twoGamma2 = argument(3); 8492 Node* multiplier = argument(4); 8493 8494 input = must_be_not_null(input, true); 8495 lowPart = must_be_not_null(lowPart, true); 8496 highPart = must_be_not_null(highPart, true); 8497 8498 Node* input_start = array_element_address(input, intcon(0), T_INT); 8499 assert(input_start, "input is null"); 8500 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 8501 assert(lowPart_start, "lowPart is null"); 8502 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 8503 assert(highPart_start, "highPart is null"); 8504 8505 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 8506 OptoRuntime::dilithiumDecomposePoly_Type(), 8507 stubAddr, stubName, TypePtr::BOTTOM, 8508 input_start, lowPart_start, highPart_start, 8509 twoGamma2, multiplier); 8510 8511 // return an int 8512 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 8513 set_result(retvalue); 8514 return true; 8515 } 8516 8517 bool LibraryCallKit::inline_base64_encodeBlock() { 8518 address stubAddr; 8519 const char *stubName; 8520 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8521 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8522 stubAddr = StubRoutines::base64_encodeBlock(); 8523 stubName = "encodeBlock"; 8524 8525 if (!stubAddr) return false; 8526 Node* base64obj = argument(0); 8527 Node* src = argument(1); 8528 Node* offset = argument(2); 8529 Node* len = argument(3); 8530 Node* dest = argument(4); 8531 Node* dp = argument(5); 8532 Node* isURL = argument(6); 8533 8534 src = must_be_not_null(src, true); 8535 dest = must_be_not_null(dest, true); 8536 8537 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8538 assert(src_start, "source array is null"); 8539 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8540 assert(dest_start, "destination array is null"); 8541 8542 Node* base64 = make_runtime_call(RC_LEAF, 8543 OptoRuntime::base64_encodeBlock_Type(), 8544 stubAddr, stubName, TypePtr::BOTTOM, 8545 src_start, offset, len, dest_start, dp, isURL); 8546 return true; 8547 } 8548 8549 bool LibraryCallKit::inline_base64_decodeBlock() { 8550 address stubAddr; 8551 const char *stubName; 8552 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8553 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8554 stubAddr = StubRoutines::base64_decodeBlock(); 8555 stubName = "decodeBlock"; 8556 8557 if (!stubAddr) return false; 8558 Node* base64obj = argument(0); 8559 Node* src = argument(1); 8560 Node* src_offset = argument(2); 8561 Node* len = argument(3); 8562 Node* dest = argument(4); 8563 Node* dest_offset = argument(5); 8564 Node* isURL = argument(6); 8565 Node* isMIME = argument(7); 8566 8567 src = must_be_not_null(src, true); 8568 dest = must_be_not_null(dest, true); 8569 8570 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8571 assert(src_start, "source array is null"); 8572 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8573 assert(dest_start, "destination array is null"); 8574 8575 Node* call = make_runtime_call(RC_LEAF, 8576 OptoRuntime::base64_decodeBlock_Type(), 8577 stubAddr, stubName, TypePtr::BOTTOM, 8578 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8579 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8580 set_result(result); 8581 return true; 8582 } 8583 8584 bool LibraryCallKit::inline_poly1305_processBlocks() { 8585 address stubAddr; 8586 const char *stubName; 8587 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8588 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8589 stubAddr = StubRoutines::poly1305_processBlocks(); 8590 stubName = "poly1305_processBlocks"; 8591 8592 if (!stubAddr) return false; 8593 null_check_receiver(); // null-check receiver 8594 if (stopped()) return true; 8595 8596 Node* input = argument(1); 8597 Node* input_offset = argument(2); 8598 Node* len = argument(3); 8599 Node* alimbs = argument(4); 8600 Node* rlimbs = argument(5); 8601 8602 input = must_be_not_null(input, true); 8603 alimbs = must_be_not_null(alimbs, true); 8604 rlimbs = must_be_not_null(rlimbs, true); 8605 8606 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8607 assert(input_start, "input array is null"); 8608 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8609 assert(acc_start, "acc array is null"); 8610 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8611 assert(r_start, "r array is null"); 8612 8613 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8614 OptoRuntime::poly1305_processBlocks_Type(), 8615 stubAddr, stubName, TypePtr::BOTTOM, 8616 input_start, len, acc_start, r_start); 8617 return true; 8618 } 8619 8620 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8621 address stubAddr; 8622 const char *stubName; 8623 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8624 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8625 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8626 stubName = "intpoly_montgomeryMult_P256"; 8627 8628 if (!stubAddr) return false; 8629 null_check_receiver(); // null-check receiver 8630 if (stopped()) return true; 8631 8632 Node* a = argument(1); 8633 Node* b = argument(2); 8634 Node* r = argument(3); 8635 8636 a = must_be_not_null(a, true); 8637 b = must_be_not_null(b, true); 8638 r = must_be_not_null(r, true); 8639 8640 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8641 assert(a_start, "a array is null"); 8642 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8643 assert(b_start, "b array is null"); 8644 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8645 assert(r_start, "r array is null"); 8646 8647 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8648 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8649 stubAddr, stubName, TypePtr::BOTTOM, 8650 a_start, b_start, r_start); 8651 return true; 8652 } 8653 8654 bool LibraryCallKit::inline_intpoly_assign() { 8655 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8656 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8657 const char *stubName = "intpoly_assign"; 8658 address stubAddr = StubRoutines::intpoly_assign(); 8659 if (!stubAddr) return false; 8660 8661 Node* set = argument(0); 8662 Node* a = argument(1); 8663 Node* b = argument(2); 8664 Node* arr_length = load_array_length(a); 8665 8666 a = must_be_not_null(a, true); 8667 b = must_be_not_null(b, true); 8668 8669 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8670 assert(a_start, "a array is null"); 8671 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8672 assert(b_start, "b array is null"); 8673 8674 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8675 OptoRuntime::intpoly_assign_Type(), 8676 stubAddr, stubName, TypePtr::BOTTOM, 8677 set, a_start, b_start, arr_length); 8678 return true; 8679 } 8680 8681 //------------------------------inline_digestBase_implCompress----------------------- 8682 // 8683 // Calculate MD5 for single-block byte[] array. 8684 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8685 // 8686 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8687 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8688 // 8689 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8690 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8691 // 8692 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8693 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8694 // 8695 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8696 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8697 // 8698 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8699 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8700 8701 Node* digestBase_obj = argument(0); 8702 Node* src = argument(1); // type oop 8703 Node* ofs = argument(2); // type int 8704 8705 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8706 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8707 // failed array check 8708 return false; 8709 } 8710 // Figure out the size and type of the elements we will be copying. 8711 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8712 if (src_elem != T_BYTE) { 8713 return false; 8714 } 8715 // 'src_start' points to src array + offset 8716 src = must_be_not_null(src, true); 8717 Node* src_start = array_element_address(src, ofs, src_elem); 8718 Node* state = nullptr; 8719 Node* block_size = nullptr; 8720 address stubAddr; 8721 const char *stubName; 8722 8723 switch(id) { 8724 case vmIntrinsics::_md5_implCompress: 8725 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8726 state = get_state_from_digest_object(digestBase_obj, T_INT); 8727 stubAddr = StubRoutines::md5_implCompress(); 8728 stubName = "md5_implCompress"; 8729 break; 8730 case vmIntrinsics::_sha_implCompress: 8731 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8732 state = get_state_from_digest_object(digestBase_obj, T_INT); 8733 stubAddr = StubRoutines::sha1_implCompress(); 8734 stubName = "sha1_implCompress"; 8735 break; 8736 case vmIntrinsics::_sha2_implCompress: 8737 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8738 state = get_state_from_digest_object(digestBase_obj, T_INT); 8739 stubAddr = StubRoutines::sha256_implCompress(); 8740 stubName = "sha256_implCompress"; 8741 break; 8742 case vmIntrinsics::_sha5_implCompress: 8743 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8744 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8745 stubAddr = StubRoutines::sha512_implCompress(); 8746 stubName = "sha512_implCompress"; 8747 break; 8748 case vmIntrinsics::_sha3_implCompress: 8749 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8750 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8751 stubAddr = StubRoutines::sha3_implCompress(); 8752 stubName = "sha3_implCompress"; 8753 block_size = get_block_size_from_digest_object(digestBase_obj); 8754 if (block_size == nullptr) return false; 8755 break; 8756 default: 8757 fatal_unexpected_iid(id); 8758 return false; 8759 } 8760 if (state == nullptr) return false; 8761 8762 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8763 if (stubAddr == nullptr) return false; 8764 8765 // Call the stub. 8766 Node* call; 8767 if (block_size == nullptr) { 8768 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8769 stubAddr, stubName, TypePtr::BOTTOM, 8770 src_start, state); 8771 } else { 8772 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8773 stubAddr, stubName, TypePtr::BOTTOM, 8774 src_start, state, block_size); 8775 } 8776 8777 return true; 8778 } 8779 8780 //------------------------------inline_double_keccak 8781 bool LibraryCallKit::inline_double_keccak() { 8782 address stubAddr; 8783 const char *stubName; 8784 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8785 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8786 8787 stubAddr = StubRoutines::double_keccak(); 8788 stubName = "double_keccak"; 8789 if (!stubAddr) return false; 8790 8791 Node* status0 = argument(0); 8792 Node* status1 = argument(1); 8793 8794 status0 = must_be_not_null(status0, true); 8795 status1 = must_be_not_null(status1, true); 8796 8797 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8798 assert(status0_start, "status0 is null"); 8799 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8800 assert(status1_start, "status1 is null"); 8801 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8802 OptoRuntime::double_keccak_Type(), 8803 stubAddr, stubName, TypePtr::BOTTOM, 8804 status0_start, status1_start); 8805 // return an int 8806 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8807 set_result(retvalue); 8808 return true; 8809 } 8810 8811 8812 //------------------------------inline_digestBase_implCompressMB----------------------- 8813 // 8814 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8815 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8816 // 8817 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8818 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8819 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8820 assert((uint)predicate < 5, "sanity"); 8821 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8822 8823 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8824 Node* src = argument(1); // byte[] array 8825 Node* ofs = argument(2); // type int 8826 Node* limit = argument(3); // type int 8827 8828 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8829 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8830 // failed array check 8831 return false; 8832 } 8833 // Figure out the size and type of the elements we will be copying. 8834 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8835 if (src_elem != T_BYTE) { 8836 return false; 8837 } 8838 // 'src_start' points to src array + offset 8839 src = must_be_not_null(src, false); 8840 Node* src_start = array_element_address(src, ofs, src_elem); 8841 8842 const char* klass_digestBase_name = nullptr; 8843 const char* stub_name = nullptr; 8844 address stub_addr = nullptr; 8845 BasicType elem_type = T_INT; 8846 8847 switch (predicate) { 8848 case 0: 8849 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8850 klass_digestBase_name = "sun/security/provider/MD5"; 8851 stub_name = "md5_implCompressMB"; 8852 stub_addr = StubRoutines::md5_implCompressMB(); 8853 } 8854 break; 8855 case 1: 8856 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8857 klass_digestBase_name = "sun/security/provider/SHA"; 8858 stub_name = "sha1_implCompressMB"; 8859 stub_addr = StubRoutines::sha1_implCompressMB(); 8860 } 8861 break; 8862 case 2: 8863 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8864 klass_digestBase_name = "sun/security/provider/SHA2"; 8865 stub_name = "sha256_implCompressMB"; 8866 stub_addr = StubRoutines::sha256_implCompressMB(); 8867 } 8868 break; 8869 case 3: 8870 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8871 klass_digestBase_name = "sun/security/provider/SHA5"; 8872 stub_name = "sha512_implCompressMB"; 8873 stub_addr = StubRoutines::sha512_implCompressMB(); 8874 elem_type = T_LONG; 8875 } 8876 break; 8877 case 4: 8878 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8879 klass_digestBase_name = "sun/security/provider/SHA3"; 8880 stub_name = "sha3_implCompressMB"; 8881 stub_addr = StubRoutines::sha3_implCompressMB(); 8882 elem_type = T_LONG; 8883 } 8884 break; 8885 default: 8886 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8887 } 8888 if (klass_digestBase_name != nullptr) { 8889 assert(stub_addr != nullptr, "Stub is generated"); 8890 if (stub_addr == nullptr) return false; 8891 8892 // get DigestBase klass to lookup for SHA klass 8893 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8894 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8895 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8896 8897 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8898 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8899 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8900 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8901 } 8902 return false; 8903 } 8904 8905 //------------------------------inline_digestBase_implCompressMB----------------------- 8906 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8907 BasicType elem_type, address stubAddr, const char *stubName, 8908 Node* src_start, Node* ofs, Node* limit) { 8909 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8910 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8911 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8912 digest_obj = _gvn.transform(digest_obj); 8913 8914 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8915 if (state == nullptr) return false; 8916 8917 Node* block_size = nullptr; 8918 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8919 block_size = get_block_size_from_digest_object(digest_obj); 8920 if (block_size == nullptr) return false; 8921 } 8922 8923 // Call the stub. 8924 Node* call; 8925 if (block_size == nullptr) { 8926 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8927 OptoRuntime::digestBase_implCompressMB_Type(false), 8928 stubAddr, stubName, TypePtr::BOTTOM, 8929 src_start, state, ofs, limit); 8930 } else { 8931 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8932 OptoRuntime::digestBase_implCompressMB_Type(true), 8933 stubAddr, stubName, TypePtr::BOTTOM, 8934 src_start, state, block_size, ofs, limit); 8935 } 8936 8937 // return ofs (int) 8938 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8939 set_result(result); 8940 8941 return true; 8942 } 8943 8944 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8945 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8946 assert(UseAES, "need AES instruction support"); 8947 address stubAddr = nullptr; 8948 const char *stubName = nullptr; 8949 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8950 stubName = "galoisCounterMode_AESCrypt"; 8951 8952 if (stubAddr == nullptr) return false; 8953 8954 Node* in = argument(0); 8955 Node* inOfs = argument(1); 8956 Node* len = argument(2); 8957 Node* ct = argument(3); 8958 Node* ctOfs = argument(4); 8959 Node* out = argument(5); 8960 Node* outOfs = argument(6); 8961 Node* gctr_object = argument(7); 8962 Node* ghash_object = argument(8); 8963 8964 // (1) in, ct and out are arrays. 8965 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8966 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8967 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8968 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8969 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8970 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8971 8972 // checks are the responsibility of the caller 8973 Node* in_start = in; 8974 Node* ct_start = ct; 8975 Node* out_start = out; 8976 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8977 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8978 in_start = array_element_address(in, inOfs, T_BYTE); 8979 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8980 out_start = array_element_address(out, outOfs, T_BYTE); 8981 } 8982 8983 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8984 // (because of the predicated logic executed earlier). 8985 // so we cast it here safely. 8986 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8987 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8988 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8989 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8990 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8991 8992 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8993 return false; 8994 } 8995 // cast it to what we know it will be at runtime 8996 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8997 assert(tinst != nullptr, "GCTR obj is null"); 8998 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8999 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 9000 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 9001 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 9002 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 9003 const TypeOopPtr* xtype = aklass->as_instance_type(); 9004 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 9005 aescrypt_object = _gvn.transform(aescrypt_object); 9006 // we need to get the start of the aescrypt_object's expanded key array 9007 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 9008 if (k_start == nullptr) return false; 9009 // similarly, get the start address of the r vector 9010 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 9011 Node* state_start = array_element_address(state, intcon(0), T_LONG); 9012 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 9013 9014 9015 // Call the stub, passing params 9016 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 9017 OptoRuntime::galoisCounterMode_aescrypt_Type(), 9018 stubAddr, stubName, TypePtr::BOTTOM, 9019 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 9020 9021 // return cipher length (int) 9022 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 9023 set_result(retvalue); 9024 9025 return true; 9026 } 9027 9028 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 9029 // Return node representing slow path of predicate check. 9030 // the pseudo code we want to emulate with this predicate is: 9031 // for encryption: 9032 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 9033 // for decryption: 9034 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 9035 // note cipher==plain is more conservative than the original java code but that's OK 9036 // 9037 9038 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 9039 // The receiver was checked for null already. 9040 Node* objGCTR = argument(7); 9041 // Load embeddedCipher field of GCTR object. 9042 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 9043 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 9044 9045 // get AESCrypt klass for instanceOf check 9046 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 9047 // will have same classloader as CipherBlockChaining object 9048 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 9049 assert(tinst != nullptr, "GCTR obj is null"); 9050 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 9051 9052 // we want to do an instanceof comparison against the AESCrypt class 9053 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 9054 if (!klass_AESCrypt->is_loaded()) { 9055 // if AESCrypt is not even loaded, we never take the intrinsic fast path 9056 Node* ctrl = control(); 9057 set_control(top()); // no regular fast path 9058 return ctrl; 9059 } 9060 9061 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 9062 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 9063 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 9064 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 9065 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 9066 9067 return instof_false; // even if it is null 9068 } 9069 9070 //------------------------------get_state_from_digest_object----------------------- 9071 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 9072 const char* state_type; 9073 switch (elem_type) { 9074 case T_BYTE: state_type = "[B"; break; 9075 case T_INT: state_type = "[I"; break; 9076 case T_LONG: state_type = "[J"; break; 9077 default: ShouldNotReachHere(); 9078 } 9079 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 9080 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 9081 if (digest_state == nullptr) return (Node *) nullptr; 9082 9083 // now have the array, need to get the start address of the state array 9084 Node* state = array_element_address(digest_state, intcon(0), elem_type); 9085 return state; 9086 } 9087 9088 //------------------------------get_block_size_from_sha3_object---------------------------------- 9089 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 9090 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 9091 assert (block_size != nullptr, "sanity"); 9092 return block_size; 9093 } 9094 9095 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 9096 // Return node representing slow path of predicate check. 9097 // the pseudo code we want to emulate with this predicate is: 9098 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 9099 // 9100 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 9101 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 9102 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 9103 assert((uint)predicate < 5, "sanity"); 9104 9105 // The receiver was checked for null already. 9106 Node* digestBaseObj = argument(0); 9107 9108 // get DigestBase klass for instanceOf check 9109 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 9110 assert(tinst != nullptr, "digestBaseObj is null"); 9111 assert(tinst->is_loaded(), "DigestBase is not loaded"); 9112 9113 const char* klass_name = nullptr; 9114 switch (predicate) { 9115 case 0: 9116 if (UseMD5Intrinsics) { 9117 // we want to do an instanceof comparison against the MD5 class 9118 klass_name = "sun/security/provider/MD5"; 9119 } 9120 break; 9121 case 1: 9122 if (UseSHA1Intrinsics) { 9123 // we want to do an instanceof comparison against the SHA class 9124 klass_name = "sun/security/provider/SHA"; 9125 } 9126 break; 9127 case 2: 9128 if (UseSHA256Intrinsics) { 9129 // we want to do an instanceof comparison against the SHA2 class 9130 klass_name = "sun/security/provider/SHA2"; 9131 } 9132 break; 9133 case 3: 9134 if (UseSHA512Intrinsics) { 9135 // we want to do an instanceof comparison against the SHA5 class 9136 klass_name = "sun/security/provider/SHA5"; 9137 } 9138 break; 9139 case 4: 9140 if (UseSHA3Intrinsics) { 9141 // we want to do an instanceof comparison against the SHA3 class 9142 klass_name = "sun/security/provider/SHA3"; 9143 } 9144 break; 9145 default: 9146 fatal("unknown SHA intrinsic predicate: %d", predicate); 9147 } 9148 9149 ciKlass* klass = nullptr; 9150 if (klass_name != nullptr) { 9151 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 9152 } 9153 if ((klass == nullptr) || !klass->is_loaded()) { 9154 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 9155 Node* ctrl = control(); 9156 set_control(top()); // no intrinsic path 9157 return ctrl; 9158 } 9159 ciInstanceKlass* instklass = klass->as_instance_klass(); 9160 9161 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 9162 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 9163 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 9164 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 9165 9166 return instof_false; // even if it is null 9167 } 9168 9169 //-------------inline_fma----------------------------------- 9170 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 9171 Node *a = nullptr; 9172 Node *b = nullptr; 9173 Node *c = nullptr; 9174 Node* result = nullptr; 9175 switch (id) { 9176 case vmIntrinsics::_fmaD: 9177 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 9178 // no receiver since it is static method 9179 a = argument(0); 9180 b = argument(2); 9181 c = argument(4); 9182 result = _gvn.transform(new FmaDNode(a, b, c)); 9183 break; 9184 case vmIntrinsics::_fmaF: 9185 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 9186 a = argument(0); 9187 b = argument(1); 9188 c = argument(2); 9189 result = _gvn.transform(new FmaFNode(a, b, c)); 9190 break; 9191 default: 9192 fatal_unexpected_iid(id); break; 9193 } 9194 set_result(result); 9195 return true; 9196 } 9197 9198 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 9199 // argument(0) is receiver 9200 Node* codePoint = argument(1); 9201 Node* n = nullptr; 9202 9203 switch (id) { 9204 case vmIntrinsics::_isDigit : 9205 n = new DigitNode(control(), codePoint); 9206 break; 9207 case vmIntrinsics::_isLowerCase : 9208 n = new LowerCaseNode(control(), codePoint); 9209 break; 9210 case vmIntrinsics::_isUpperCase : 9211 n = new UpperCaseNode(control(), codePoint); 9212 break; 9213 case vmIntrinsics::_isWhitespace : 9214 n = new WhitespaceNode(control(), codePoint); 9215 break; 9216 default: 9217 fatal_unexpected_iid(id); 9218 } 9219 9220 set_result(_gvn.transform(n)); 9221 return true; 9222 } 9223 9224 bool LibraryCallKit::inline_profileBoolean() { 9225 Node* counts = argument(1); 9226 const TypeAryPtr* ary = nullptr; 9227 ciArray* aobj = nullptr; 9228 if (counts->is_Con() 9229 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 9230 && (aobj = ary->const_oop()->as_array()) != nullptr 9231 && (aobj->length() == 2)) { 9232 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 9233 jint false_cnt = aobj->element_value(0).as_int(); 9234 jint true_cnt = aobj->element_value(1).as_int(); 9235 9236 if (C->log() != nullptr) { 9237 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 9238 false_cnt, true_cnt); 9239 } 9240 9241 if (false_cnt + true_cnt == 0) { 9242 // According to profile, never executed. 9243 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 9244 Deoptimization::Action_reinterpret); 9245 return true; 9246 } 9247 9248 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 9249 // is a number of each value occurrences. 9250 Node* result = argument(0); 9251 if (false_cnt == 0 || true_cnt == 0) { 9252 // According to profile, one value has been never seen. 9253 int expected_val = (false_cnt == 0) ? 1 : 0; 9254 9255 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 9256 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 9257 9258 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 9259 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 9260 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 9261 9262 { // Slow path: uncommon trap for never seen value and then reexecute 9263 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 9264 // the value has been seen at least once. 9265 PreserveJVMState pjvms(this); 9266 PreserveReexecuteState preexecs(this); 9267 jvms()->set_should_reexecute(true); 9268 9269 set_control(slow_path); 9270 set_i_o(i_o()); 9271 9272 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 9273 Deoptimization::Action_reinterpret); 9274 } 9275 // The guard for never seen value enables sharpening of the result and 9276 // returning a constant. It allows to eliminate branches on the same value 9277 // later on. 9278 set_control(fast_path); 9279 result = intcon(expected_val); 9280 } 9281 // Stop profiling. 9282 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 9283 // By replacing method body with profile data (represented as ProfileBooleanNode 9284 // on IR level) we effectively disable profiling. 9285 // It enables full speed execution once optimized code is generated. 9286 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 9287 C->record_for_igvn(profile); 9288 set_result(profile); 9289 return true; 9290 } else { 9291 // Continue profiling. 9292 // Profile data isn't available at the moment. So, execute method's bytecode version. 9293 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 9294 // is compiled and counters aren't available since corresponding MethodHandle 9295 // isn't a compile-time constant. 9296 return false; 9297 } 9298 } 9299 9300 bool LibraryCallKit::inline_isCompileConstant() { 9301 Node* n = argument(0); 9302 set_result(n->is_Con() ? intcon(1) : intcon(0)); 9303 return true; 9304 } 9305 9306 //------------------------------- inline_getObjectSize -------------------------------------- 9307 // 9308 // Calculate the runtime size of the object/array. 9309 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 9310 // 9311 bool LibraryCallKit::inline_getObjectSize() { 9312 Node* obj = argument(3); 9313 Node* klass_node = load_object_klass(obj); 9314 9315 jint layout_con = Klass::_lh_neutral_value; 9316 Node* layout_val = get_layout_helper(klass_node, layout_con); 9317 int layout_is_con = (layout_val == nullptr); 9318 9319 if (layout_is_con) { 9320 // Layout helper is constant, can figure out things at compile time. 9321 9322 if (Klass::layout_helper_is_instance(layout_con)) { 9323 // Instance case: layout_con contains the size itself. 9324 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 9325 set_result(size); 9326 } else { 9327 // Array case: size is round(header + element_size*arraylength). 9328 // Since arraylength is different for every array instance, we have to 9329 // compute the whole thing at runtime. 9330 9331 Node* arr_length = load_array_length(obj); 9332 9333 int round_mask = MinObjAlignmentInBytes - 1; 9334 int hsize = Klass::layout_helper_header_size(layout_con); 9335 int eshift = Klass::layout_helper_log2_element_size(layout_con); 9336 9337 if ((round_mask & ~right_n_bits(eshift)) == 0) { 9338 round_mask = 0; // strength-reduce it if it goes away completely 9339 } 9340 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 9341 Node* header_size = intcon(hsize + round_mask); 9342 9343 Node* lengthx = ConvI2X(arr_length); 9344 Node* headerx = ConvI2X(header_size); 9345 9346 Node* abody = lengthx; 9347 if (eshift != 0) { 9348 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 9349 } 9350 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 9351 if (round_mask != 0) { 9352 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 9353 } 9354 size = ConvX2L(size); 9355 set_result(size); 9356 } 9357 } else { 9358 // Layout helper is not constant, need to test for array-ness at runtime. 9359 9360 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 9361 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 9362 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 9363 record_for_igvn(result_reg); 9364 9365 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 9366 if (array_ctl != nullptr) { 9367 // Array case: size is round(header + element_size*arraylength). 9368 // Since arraylength is different for every array instance, we have to 9369 // compute the whole thing at runtime. 9370 9371 PreserveJVMState pjvms(this); 9372 set_control(array_ctl); 9373 Node* arr_length = load_array_length(obj); 9374 9375 int round_mask = MinObjAlignmentInBytes - 1; 9376 Node* mask = intcon(round_mask); 9377 9378 Node* hss = intcon(Klass::_lh_header_size_shift); 9379 Node* hsm = intcon(Klass::_lh_header_size_mask); 9380 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 9381 header_size = _gvn.transform(new AndINode(header_size, hsm)); 9382 header_size = _gvn.transform(new AddINode(header_size, mask)); 9383 9384 // There is no need to mask or shift this value. 9385 // The semantics of LShiftINode include an implicit mask to 0x1F. 9386 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 9387 Node* elem_shift = layout_val; 9388 9389 Node* lengthx = ConvI2X(arr_length); 9390 Node* headerx = ConvI2X(header_size); 9391 9392 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 9393 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 9394 if (round_mask != 0) { 9395 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 9396 } 9397 size = ConvX2L(size); 9398 9399 result_reg->init_req(_array_path, control()); 9400 result_val->init_req(_array_path, size); 9401 } 9402 9403 if (!stopped()) { 9404 // Instance case: the layout helper gives us instance size almost directly, 9405 // but we need to mask out the _lh_instance_slow_path_bit. 9406 Node* size = ConvI2X(layout_val); 9407 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 9408 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 9409 size = _gvn.transform(new AndXNode(size, mask)); 9410 size = ConvX2L(size); 9411 9412 result_reg->init_req(_instance_path, control()); 9413 result_val->init_req(_instance_path, size); 9414 } 9415 9416 set_result(result_reg, result_val); 9417 } 9418 9419 return true; 9420 } 9421 9422 //------------------------------- inline_blackhole -------------------------------------- 9423 // 9424 // Make sure all arguments to this node are alive. 9425 // This matches methods that were requested to be blackholed through compile commands. 9426 // 9427 bool LibraryCallKit::inline_blackhole() { 9428 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 9429 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 9430 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 9431 9432 // Blackhole node pinches only the control, not memory. This allows 9433 // the blackhole to be pinned in the loop that computes blackholed 9434 // values, but have no other side effects, like breaking the optimizations 9435 // across the blackhole. 9436 9437 Node* bh = _gvn.transform(new BlackholeNode(control())); 9438 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 9439 9440 // Bind call arguments as blackhole arguments to keep them alive 9441 uint nargs = callee()->arg_size(); 9442 for (uint i = 0; i < nargs; i++) { 9443 bh->add_req(argument(i)); 9444 } 9445 9446 return true; 9447 } 9448 9449 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 9450 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 9451 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 9452 return nullptr; // box klass is not Float16 9453 } 9454 9455 // Null check; get notnull casted pointer 9456 Node* null_ctl = top(); 9457 Node* not_null_box = null_check_oop(box, &null_ctl, true); 9458 // If not_null_box is dead, only null-path is taken 9459 if (stopped()) { 9460 set_control(null_ctl); 9461 return nullptr; 9462 } 9463 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 9464 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 9465 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 9466 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 9467 } 9468 9469 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 9470 PreserveReexecuteState preexecs(this); 9471 jvms()->set_should_reexecute(true); 9472 9473 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 9474 Node* klass_node = makecon(klass_type); 9475 Node* box = new_instance(klass_node); 9476 9477 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 9478 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 9479 9480 Node* field_store = _gvn.transform(access_store_at(box, 9481 value_field, 9482 value_adr_type, 9483 value, 9484 TypeInt::SHORT, 9485 T_SHORT, 9486 IN_HEAP)); 9487 set_memory(field_store, value_adr_type); 9488 return box; 9489 } 9490 9491 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 9492 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 9493 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 9494 return false; 9495 } 9496 9497 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 9498 if (box_type == nullptr || box_type->const_oop() == nullptr) { 9499 return false; 9500 } 9501 9502 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 9503 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 9504 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 9505 ciSymbols::short_signature(), 9506 false); 9507 assert(field != nullptr, ""); 9508 9509 // Transformed nodes 9510 Node* fld1 = nullptr; 9511 Node* fld2 = nullptr; 9512 Node* fld3 = nullptr; 9513 switch(num_args) { 9514 case 3: 9515 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 9516 if (fld3 == nullptr) { 9517 return false; 9518 } 9519 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 9520 // fall-through 9521 case 2: 9522 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 9523 if (fld2 == nullptr) { 9524 return false; 9525 } 9526 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 9527 // fall-through 9528 case 1: 9529 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 9530 if (fld1 == nullptr) { 9531 return false; 9532 } 9533 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 9534 break; 9535 default: fatal("Unsupported number of arguments %d", num_args); 9536 } 9537 9538 Node* result = nullptr; 9539 switch (id) { 9540 // Unary operations 9541 case vmIntrinsics::_sqrt_float16: 9542 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 9543 break; 9544 // Ternary operations 9545 case vmIntrinsics::_fma_float16: 9546 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 9547 break; 9548 default: 9549 fatal_unexpected_iid(id); 9550 break; 9551 } 9552 result = _gvn.transform(new ReinterpretHF2SNode(result)); 9553 set_result(box_fp16_value(float16_box_type, field, result)); 9554 return true; 9555 } 9556