1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciUtilities.inline.hpp"
  29 #include "classfile/vmIntrinsics.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/castnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/convertnode.hpp"
  43 #include "opto/countbitsnode.hpp"
  44 #include "opto/idealKit.hpp"
  45 #include "opto/library_call.hpp"
  46 #include "opto/mathexactnode.hpp"
  47 #include "opto/mulnode.hpp"
  48 #include "opto/narrowptrnode.hpp"
  49 #include "opto/opaquenode.hpp"
  50 #include "opto/parse.hpp"
  51 #include "opto/runtime.hpp"
  52 #include "opto/rootnode.hpp"
  53 #include "opto/subnode.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/unsafe.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/powerOfTwo.hpp"
  63 
  64 //---------------------------make_vm_intrinsic----------------------------
  65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  66   vmIntrinsicID id = m->intrinsic_id();
  67   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  68 
  69   if (!m->is_loaded()) {
  70     // Do not attempt to inline unloaded methods.
  71     return nullptr;
  72   }
  73 
  74   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  75   bool is_available = false;
  76 
  77   {
  78     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  79     // the compiler must transition to '_thread_in_vm' state because both
  80     // methods access VM-internal data.
  81     VM_ENTRY_MARK;
  82     methodHandle mh(THREAD, m->get_Method());
  83     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  84     if (is_available && is_virtual) {
  85       is_available = vmIntrinsics::does_virtual_dispatch(id);
  86     }
  87   }
  88 
  89   if (is_available) {
  90     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  91     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  92     return new LibraryIntrinsic(m, is_virtual,
  93                                 vmIntrinsics::predicates_needed(id),
  94                                 vmIntrinsics::does_virtual_dispatch(id),
  95                                 id);
  96   } else {
  97     return nullptr;
  98   }
  99 }
 100 
 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 102   LibraryCallKit kit(jvms, this);
 103   Compile* C = kit.C;
 104   int nodes = C->unique();
 105 #ifndef PRODUCT
 106   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 107     char buf[1000];
 108     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 109     tty->print_cr("Intrinsic %s", str);
 110   }
 111 #endif
 112   ciMethod* callee = kit.callee();
 113   const int bci    = kit.bci();
 114 #ifdef ASSERT
 115   Node* ctrl = kit.control();
 116 #endif
 117   // Try to inline the intrinsic.
 118   if (callee->check_intrinsic_candidate() &&
 119       kit.try_to_inline(_last_predicate)) {
 120     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 121                                           : "(intrinsic)";
 122     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 123     if (C->print_intrinsics() || C->print_inlining()) {
 124       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 125     }
 126     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 127     if (C->log()) {
 128       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 129                      vmIntrinsics::name_at(intrinsic_id()),
 130                      (is_virtual() ? " virtual='1'" : ""),
 131                      C->unique() - nodes);
 132     }
 133     // Push the result from the inlined method onto the stack.
 134     kit.push_result();
 135     C->print_inlining_update(this);
 136     return kit.transfer_exceptions_into_jvms();
 137   }
 138 
 139   // The intrinsic bailed out
 140   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 141   if (jvms->has_method()) {
 142     // Not a root compile.
 143     const char* msg;
 144     if (callee->intrinsic_candidate()) {
 145       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 146     } else {
 147       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 148                          : "failed to inline (intrinsic), method not annotated";
 149     }
 150     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 151     if (C->print_intrinsics() || C->print_inlining()) {
 152       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 153     }
 154   } else {
 155     // Root compile
 156     ResourceMark rm;
 157     stringStream msg_stream;
 158     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 159                      vmIntrinsics::name_at(intrinsic_id()),
 160                      is_virtual() ? " (virtual)" : "", bci);
 161     const char *msg = msg_stream.freeze();
 162     log_debug(jit, inlining)("%s", msg);
 163     if (C->print_intrinsics() || C->print_inlining()) {
 164       tty->print("%s", msg);
 165     }
 166   }
 167   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 168   C->print_inlining_update(this);
 169 
 170   return nullptr;
 171 }
 172 
 173 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 174   LibraryCallKit kit(jvms, this);
 175   Compile* C = kit.C;
 176   int nodes = C->unique();
 177   _last_predicate = predicate;
 178 #ifndef PRODUCT
 179   assert(is_predicated() && predicate < predicates_count(), "sanity");
 180   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 181     char buf[1000];
 182     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 183     tty->print_cr("Predicate for intrinsic %s", str);
 184   }
 185 #endif
 186   ciMethod* callee = kit.callee();
 187   const int bci    = kit.bci();
 188 
 189   Node* slow_ctl = kit.try_to_predicate(predicate);
 190   if (!kit.failing()) {
 191     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 192                                           : "(intrinsic, predicate)";
 193     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 194     if (C->print_intrinsics() || C->print_inlining()) {
 195       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 196     }
 197     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 198     if (C->log()) {
 199       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 200                      vmIntrinsics::name_at(intrinsic_id()),
 201                      (is_virtual() ? " virtual='1'" : ""),
 202                      C->unique() - nodes);
 203     }
 204     return slow_ctl; // Could be null if the check folds.
 205   }
 206 
 207   // The intrinsic bailed out
 208   if (jvms->has_method()) {
 209     // Not a root compile.
 210     const char* msg = "failed to generate predicate for intrinsic";
 211     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 212     if (C->print_intrinsics() || C->print_inlining()) {
 213       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 214     }
 215   } else {
 216     // Root compile
 217     ResourceMark rm;
 218     stringStream msg_stream;
 219     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 220                      vmIntrinsics::name_at(intrinsic_id()),
 221                      is_virtual() ? " (virtual)" : "", bci);
 222     const char *msg = msg_stream.freeze();
 223     log_debug(jit, inlining)("%s", msg);
 224     if (C->print_intrinsics() || C->print_inlining()) {
 225       C->print_inlining_stream()->print("%s", msg);
 226     }
 227   }
 228   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 229   return nullptr;
 230 }
 231 
 232 bool LibraryCallKit::try_to_inline(int predicate) {
 233   // Handle symbolic names for otherwise undistinguished boolean switches:
 234   const bool is_store       = true;
 235   const bool is_compress    = true;
 236   const bool is_static      = true;
 237   const bool is_volatile    = true;
 238 
 239   if (!jvms()->has_method()) {
 240     // Root JVMState has a null method.
 241     assert(map()->memory()->Opcode() == Op_Parm, "");
 242     // Insert the memory aliasing node
 243     set_all_memory(reset_memory());
 244   }
 245   assert(merged_memory(), "");
 246 
 247   switch (intrinsic_id()) {
 248   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 249   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 250   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 251 
 252   case vmIntrinsics::_ceil:
 253   case vmIntrinsics::_floor:
 254   case vmIntrinsics::_rint:
 255   case vmIntrinsics::_dsin:
 256   case vmIntrinsics::_dcos:
 257   case vmIntrinsics::_dtan:
 258   case vmIntrinsics::_dabs:
 259   case vmIntrinsics::_fabs:
 260   case vmIntrinsics::_iabs:
 261   case vmIntrinsics::_labs:
 262   case vmIntrinsics::_datan2:
 263   case vmIntrinsics::_dsqrt:
 264   case vmIntrinsics::_dsqrt_strict:
 265   case vmIntrinsics::_dexp:
 266   case vmIntrinsics::_dlog:
 267   case vmIntrinsics::_dlog10:
 268   case vmIntrinsics::_dpow:
 269   case vmIntrinsics::_dcopySign:
 270   case vmIntrinsics::_fcopySign:
 271   case vmIntrinsics::_dsignum:
 272   case vmIntrinsics::_roundF:
 273   case vmIntrinsics::_roundD:
 274   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 275 
 276   case vmIntrinsics::_notify:
 277   case vmIntrinsics::_notifyAll:
 278     return inline_notify(intrinsic_id());
 279 
 280   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 281   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 282   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 283   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 284   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 285   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 286   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 287   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 288   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 289   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 290   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 291   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 292   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 293   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 294 
 295   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 296 
 297   case vmIntrinsics::_arraySort:                return inline_array_sort();
 298   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 299 
 300   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 301   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 302   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 303   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 304 
 305   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 306   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 307   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 308   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 309   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 310   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 311   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 312   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 313 
 314   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 315 
 316   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 317 
 318   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 319   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 320   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 321   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 322 
 323   case vmIntrinsics::_compressStringC:
 324   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 325   case vmIntrinsics::_inflateStringC:
 326   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 327 
 328   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 329   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 330   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 331   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 332   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 333   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 334   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 335   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 336   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 337   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 338   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 339   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 340 
 341   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 342   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 343   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 344   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 345   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 346   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 347   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 348   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 349   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 350   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 351 
 352   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 353   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 354   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 355   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 356   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 357   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 358   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 359   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 360   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 361 
 362   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 363   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 364   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 365   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 366   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 367   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 368   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 369   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 370   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 371 
 372   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 373   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 374   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 375   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 376 
 377   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 378   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 379   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 380   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 381 
 382   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 383   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 384   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 385   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 386   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 387   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 388   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 389   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 390   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 391 
 392   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 393   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 394   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 395   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 396   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 397   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 398   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 399   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 400   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 401 
 402   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 403   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 404   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 405   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 406   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 407   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 408   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 409   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 410   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 411 
 412   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 413   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 414   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 415   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 416   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 417   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 418   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 419   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 420   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 421 
 422   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 423   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 424   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 425   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 426   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 427 
 428   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 429   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 430   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 431   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 432   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 433   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 434   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 435   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 436   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 437   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 438   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 439   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 440   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 441   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 442   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 443   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 444   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 445   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 446   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 447   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 448 
 449   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 450   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 451   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 452   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 453   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 454   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 455   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 456   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 457   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 458   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 459   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 460   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 461   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 462   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 463   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 464 
 465   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 466   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 467   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 468   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 469 
 470   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 471   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 472   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 473   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 474   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 475 
 476   case vmIntrinsics::_loadFence:
 477   case vmIntrinsics::_storeFence:
 478   case vmIntrinsics::_storeStoreFence:
 479   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 480 
 481   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 482 
 483   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 484   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 485   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 486 
 487   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 488   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 489 
 490 #if INCLUDE_JVMTI
 491   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 492                                                                                          "notifyJvmtiStart", true, false);
 493   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 494                                                                                          "notifyJvmtiEnd", false, true);
 495   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 496                                                                                          "notifyJvmtiMount", false, false);
 497   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 498                                                                                          "notifyJvmtiUnmount", false, false);
 499   case vmIntrinsics::_notifyJvmtiVThreadHideFrames:     return inline_native_notify_jvmti_hide();
 500   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 501 #endif
 502 
 503 #ifdef JFR_HAVE_INTRINSICS
 504   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 505   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 506   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 507 #endif
 508   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 509   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 510   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 511   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 512   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 513   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 514   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 515   case vmIntrinsics::_isFlatArray:              return inline_unsafe_isFlatArray();
 516   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 517   case vmIntrinsics::_getLength:                return inline_native_getLength();
 518   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 519   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 520   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 521   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 522   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 523   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 524   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 525 
 526   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 527   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 528   case vmIntrinsics::_newNullRestrictedArray:   return inline_newNullRestrictedArray();
 529 
 530   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 531 
 532   case vmIntrinsics::_isInstance:
 533   case vmIntrinsics::_getModifiers:
 534   case vmIntrinsics::_isInterface:
 535   case vmIntrinsics::_isArray:
 536   case vmIntrinsics::_isPrimitive:
 537   case vmIntrinsics::_isHidden:
 538   case vmIntrinsics::_getSuperclass:
 539   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 540 
 541   case vmIntrinsics::_floatToRawIntBits:
 542   case vmIntrinsics::_floatToIntBits:
 543   case vmIntrinsics::_intBitsToFloat:
 544   case vmIntrinsics::_doubleToRawLongBits:
 545   case vmIntrinsics::_doubleToLongBits:
 546   case vmIntrinsics::_longBitsToDouble:
 547   case vmIntrinsics::_floatToFloat16:
 548   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 549 
 550   case vmIntrinsics::_floatIsFinite:
 551   case vmIntrinsics::_floatIsInfinite:
 552   case vmIntrinsics::_doubleIsFinite:
 553   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 554 
 555   case vmIntrinsics::_numberOfLeadingZeros_i:
 556   case vmIntrinsics::_numberOfLeadingZeros_l:
 557   case vmIntrinsics::_numberOfTrailingZeros_i:
 558   case vmIntrinsics::_numberOfTrailingZeros_l:
 559   case vmIntrinsics::_bitCount_i:
 560   case vmIntrinsics::_bitCount_l:
 561   case vmIntrinsics::_reverse_i:
 562   case vmIntrinsics::_reverse_l:
 563   case vmIntrinsics::_reverseBytes_i:
 564   case vmIntrinsics::_reverseBytes_l:
 565   case vmIntrinsics::_reverseBytes_s:
 566   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 567 
 568   case vmIntrinsics::_compress_i:
 569   case vmIntrinsics::_compress_l:
 570   case vmIntrinsics::_expand_i:
 571   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 572 
 573   case vmIntrinsics::_compareUnsigned_i:
 574   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 575 
 576   case vmIntrinsics::_divideUnsigned_i:
 577   case vmIntrinsics::_divideUnsigned_l:
 578   case vmIntrinsics::_remainderUnsigned_i:
 579   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 580 
 581   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 582 
 583   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 584   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 585   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 586 
 587   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 588 
 589   case vmIntrinsics::_aescrypt_encryptBlock:
 590   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 591 
 592   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 593   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 594     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 595 
 596   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 597   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 598     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 599 
 600   case vmIntrinsics::_counterMode_AESCrypt:
 601     return inline_counterMode_AESCrypt(intrinsic_id());
 602 
 603   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 604     return inline_galoisCounterMode_AESCrypt();
 605 
 606   case vmIntrinsics::_md5_implCompress:
 607   case vmIntrinsics::_sha_implCompress:
 608   case vmIntrinsics::_sha2_implCompress:
 609   case vmIntrinsics::_sha5_implCompress:
 610   case vmIntrinsics::_sha3_implCompress:
 611     return inline_digestBase_implCompress(intrinsic_id());
 612 
 613   case vmIntrinsics::_digestBase_implCompressMB:
 614     return inline_digestBase_implCompressMB(predicate);
 615 
 616   case vmIntrinsics::_multiplyToLen:
 617     return inline_multiplyToLen();
 618 
 619   case vmIntrinsics::_squareToLen:
 620     return inline_squareToLen();
 621 
 622   case vmIntrinsics::_mulAdd:
 623     return inline_mulAdd();
 624 
 625   case vmIntrinsics::_montgomeryMultiply:
 626     return inline_montgomeryMultiply();
 627   case vmIntrinsics::_montgomerySquare:
 628     return inline_montgomerySquare();
 629 
 630   case vmIntrinsics::_bigIntegerRightShiftWorker:
 631     return inline_bigIntegerShift(true);
 632   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 633     return inline_bigIntegerShift(false);
 634 
 635   case vmIntrinsics::_vectorizedMismatch:
 636     return inline_vectorizedMismatch();
 637 
 638   case vmIntrinsics::_ghash_processBlocks:
 639     return inline_ghash_processBlocks();
 640   case vmIntrinsics::_chacha20Block:
 641     return inline_chacha20Block();
 642   case vmIntrinsics::_base64_encodeBlock:
 643     return inline_base64_encodeBlock();
 644   case vmIntrinsics::_base64_decodeBlock:
 645     return inline_base64_decodeBlock();
 646   case vmIntrinsics::_poly1305_processBlocks:
 647     return inline_poly1305_processBlocks();
 648   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 649     return inline_intpoly_montgomeryMult_P256();
 650   case vmIntrinsics::_intpoly_assign:
 651     return inline_intpoly_assign();
 652   case vmIntrinsics::_encodeISOArray:
 653   case vmIntrinsics::_encodeByteISOArray:
 654     return inline_encodeISOArray(false);
 655   case vmIntrinsics::_encodeAsciiArray:
 656     return inline_encodeISOArray(true);
 657 
 658   case vmIntrinsics::_updateCRC32:
 659     return inline_updateCRC32();
 660   case vmIntrinsics::_updateBytesCRC32:
 661     return inline_updateBytesCRC32();
 662   case vmIntrinsics::_updateByteBufferCRC32:
 663     return inline_updateByteBufferCRC32();
 664 
 665   case vmIntrinsics::_updateBytesCRC32C:
 666     return inline_updateBytesCRC32C();
 667   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 668     return inline_updateDirectByteBufferCRC32C();
 669 
 670   case vmIntrinsics::_updateBytesAdler32:
 671     return inline_updateBytesAdler32();
 672   case vmIntrinsics::_updateByteBufferAdler32:
 673     return inline_updateByteBufferAdler32();
 674 
 675   case vmIntrinsics::_profileBoolean:
 676     return inline_profileBoolean();
 677   case vmIntrinsics::_isCompileConstant:
 678     return inline_isCompileConstant();
 679 
 680   case vmIntrinsics::_countPositives:
 681     return inline_countPositives();
 682 
 683   case vmIntrinsics::_fmaD:
 684   case vmIntrinsics::_fmaF:
 685     return inline_fma(intrinsic_id());
 686 
 687   case vmIntrinsics::_isDigit:
 688   case vmIntrinsics::_isLowerCase:
 689   case vmIntrinsics::_isUpperCase:
 690   case vmIntrinsics::_isWhitespace:
 691     return inline_character_compare(intrinsic_id());
 692 
 693   case vmIntrinsics::_min:
 694   case vmIntrinsics::_max:
 695   case vmIntrinsics::_min_strict:
 696   case vmIntrinsics::_max_strict:
 697     return inline_min_max(intrinsic_id());
 698 
 699   case vmIntrinsics::_maxF:
 700   case vmIntrinsics::_minF:
 701   case vmIntrinsics::_maxD:
 702   case vmIntrinsics::_minD:
 703   case vmIntrinsics::_maxF_strict:
 704   case vmIntrinsics::_minF_strict:
 705   case vmIntrinsics::_maxD_strict:
 706   case vmIntrinsics::_minD_strict:
 707       return inline_fp_min_max(intrinsic_id());
 708 
 709   case vmIntrinsics::_VectorUnaryOp:
 710     return inline_vector_nary_operation(1);
 711   case vmIntrinsics::_VectorBinaryOp:
 712     return inline_vector_nary_operation(2);
 713   case vmIntrinsics::_VectorTernaryOp:
 714     return inline_vector_nary_operation(3);
 715   case vmIntrinsics::_VectorFromBitsCoerced:
 716     return inline_vector_frombits_coerced();
 717   case vmIntrinsics::_VectorShuffleIota:
 718     return inline_vector_shuffle_iota();
 719   case vmIntrinsics::_VectorMaskOp:
 720     return inline_vector_mask_operation();
 721   case vmIntrinsics::_VectorShuffleToVector:
 722     return inline_vector_shuffle_to_vector();
 723   case vmIntrinsics::_VectorLoadOp:
 724     return inline_vector_mem_operation(/*is_store=*/false);
 725   case vmIntrinsics::_VectorLoadMaskedOp:
 726     return inline_vector_mem_masked_operation(/*is_store*/false);
 727   case vmIntrinsics::_VectorStoreOp:
 728     return inline_vector_mem_operation(/*is_store=*/true);
 729   case vmIntrinsics::_VectorStoreMaskedOp:
 730     return inline_vector_mem_masked_operation(/*is_store=*/true);
 731   case vmIntrinsics::_VectorGatherOp:
 732     return inline_vector_gather_scatter(/*is_scatter*/ false);
 733   case vmIntrinsics::_VectorScatterOp:
 734     return inline_vector_gather_scatter(/*is_scatter*/ true);
 735   case vmIntrinsics::_VectorReductionCoerced:
 736     return inline_vector_reduction();
 737   case vmIntrinsics::_VectorTest:
 738     return inline_vector_test();
 739   case vmIntrinsics::_VectorBlend:
 740     return inline_vector_blend();
 741   case vmIntrinsics::_VectorRearrange:
 742     return inline_vector_rearrange();
 743   case vmIntrinsics::_VectorCompare:
 744     return inline_vector_compare();
 745   case vmIntrinsics::_VectorBroadcastInt:
 746     return inline_vector_broadcast_int();
 747   case vmIntrinsics::_VectorConvert:
 748     return inline_vector_convert();
 749   case vmIntrinsics::_VectorInsert:
 750     return inline_vector_insert();
 751   case vmIntrinsics::_VectorExtract:
 752     return inline_vector_extract();
 753   case vmIntrinsics::_VectorCompressExpand:
 754     return inline_vector_compress_expand();
 755   case vmIntrinsics::_IndexVector:
 756     return inline_index_vector();
 757   case vmIntrinsics::_IndexPartiallyInUpperRange:
 758     return inline_index_partially_in_upper_range();
 759 
 760   case vmIntrinsics::_getObjectSize:
 761     return inline_getObjectSize();
 762 
 763   case vmIntrinsics::_blackhole:
 764     return inline_blackhole();
 765 
 766   default:
 767     // If you get here, it may be that someone has added a new intrinsic
 768     // to the list in vmIntrinsics.hpp without implementing it here.
 769 #ifndef PRODUCT
 770     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 771       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 772                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 773     }
 774 #endif
 775     return false;
 776   }
 777 }
 778 
 779 Node* LibraryCallKit::try_to_predicate(int predicate) {
 780   if (!jvms()->has_method()) {
 781     // Root JVMState has a null method.
 782     assert(map()->memory()->Opcode() == Op_Parm, "");
 783     // Insert the memory aliasing node
 784     set_all_memory(reset_memory());
 785   }
 786   assert(merged_memory(), "");
 787 
 788   switch (intrinsic_id()) {
 789   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 790     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 791   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 792     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 793   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 794     return inline_electronicCodeBook_AESCrypt_predicate(false);
 795   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 796     return inline_electronicCodeBook_AESCrypt_predicate(true);
 797   case vmIntrinsics::_counterMode_AESCrypt:
 798     return inline_counterMode_AESCrypt_predicate();
 799   case vmIntrinsics::_digestBase_implCompressMB:
 800     return inline_digestBase_implCompressMB_predicate(predicate);
 801   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 802     return inline_galoisCounterMode_AESCrypt_predicate();
 803 
 804   default:
 805     // If you get here, it may be that someone has added a new intrinsic
 806     // to the list in vmIntrinsics.hpp without implementing it here.
 807 #ifndef PRODUCT
 808     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 809       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 810                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 811     }
 812 #endif
 813     Node* slow_ctl = control();
 814     set_control(top()); // No fast path intrinsic
 815     return slow_ctl;
 816   }
 817 }
 818 
 819 //------------------------------set_result-------------------------------
 820 // Helper function for finishing intrinsics.
 821 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 822   record_for_igvn(region);
 823   set_control(_gvn.transform(region));
 824   set_result( _gvn.transform(value));
 825   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 826 }
 827 
 828 //------------------------------generate_guard---------------------------
 829 // Helper function for generating guarded fast-slow graph structures.
 830 // The given 'test', if true, guards a slow path.  If the test fails
 831 // then a fast path can be taken.  (We generally hope it fails.)
 832 // In all cases, GraphKit::control() is updated to the fast path.
 833 // The returned value represents the control for the slow path.
 834 // The return value is never 'top'; it is either a valid control
 835 // or null if it is obvious that the slow path can never be taken.
 836 // Also, if region and the slow control are not null, the slow edge
 837 // is appended to the region.
 838 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 839   if (stopped()) {
 840     // Already short circuited.
 841     return nullptr;
 842   }
 843 
 844   // Build an if node and its projections.
 845   // If test is true we take the slow path, which we assume is uncommon.
 846   if (_gvn.type(test) == TypeInt::ZERO) {
 847     // The slow branch is never taken.  No need to build this guard.
 848     return nullptr;
 849   }
 850 
 851   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 852 
 853   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 854   if (if_slow == top()) {
 855     // The slow branch is never taken.  No need to build this guard.
 856     return nullptr;
 857   }
 858 
 859   if (region != nullptr)
 860     region->add_req(if_slow);
 861 
 862   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 863   set_control(if_fast);
 864 
 865   return if_slow;
 866 }
 867 
 868 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 869   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 870 }
 871 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 872   return generate_guard(test, region, PROB_FAIR);
 873 }
 874 
 875 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 876                                                      Node* *pos_index) {
 877   if (stopped())
 878     return nullptr;                // already stopped
 879   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 880     return nullptr;                // index is already adequately typed
 881   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 882   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 883   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 884   if (is_neg != nullptr && pos_index != nullptr) {
 885     // Emulate effect of Parse::adjust_map_after_if.
 886     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 887     (*pos_index) = _gvn.transform(ccast);
 888   }
 889   return is_neg;
 890 }
 891 
 892 // Make sure that 'position' is a valid limit index, in [0..length].
 893 // There are two equivalent plans for checking this:
 894 //   A. (offset + copyLength)  unsigned<=  arrayLength
 895 //   B. offset  <=  (arrayLength - copyLength)
 896 // We require that all of the values above, except for the sum and
 897 // difference, are already known to be non-negative.
 898 // Plan A is robust in the face of overflow, if offset and copyLength
 899 // are both hugely positive.
 900 //
 901 // Plan B is less direct and intuitive, but it does not overflow at
 902 // all, since the difference of two non-negatives is always
 903 // representable.  Whenever Java methods must perform the equivalent
 904 // check they generally use Plan B instead of Plan A.
 905 // For the moment we use Plan A.
 906 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 907                                                   Node* subseq_length,
 908                                                   Node* array_length,
 909                                                   RegionNode* region) {
 910   if (stopped())
 911     return nullptr;                // already stopped
 912   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 913   if (zero_offset && subseq_length->eqv_uncast(array_length))
 914     return nullptr;                // common case of whole-array copy
 915   Node* last = subseq_length;
 916   if (!zero_offset)             // last += offset
 917     last = _gvn.transform(new AddINode(last, offset));
 918   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 919   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 920   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 921   return is_over;
 922 }
 923 
 924 // Emit range checks for the given String.value byte array
 925 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 926   if (stopped()) {
 927     return; // already stopped
 928   }
 929   RegionNode* bailout = new RegionNode(1);
 930   record_for_igvn(bailout);
 931   if (char_count) {
 932     // Convert char count to byte count
 933     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 934   }
 935 
 936   // Offset and count must not be negative
 937   generate_negative_guard(offset, bailout);
 938   generate_negative_guard(count, bailout);
 939   // Offset + count must not exceed length of array
 940   generate_limit_guard(offset, count, load_array_length(array), bailout);
 941 
 942   if (bailout->req() > 1) {
 943     PreserveJVMState pjvms(this);
 944     set_control(_gvn.transform(bailout));
 945     uncommon_trap(Deoptimization::Reason_intrinsic,
 946                   Deoptimization::Action_maybe_recompile);
 947   }
 948 }
 949 
 950 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 951                                             bool is_immutable) {
 952   ciKlass* thread_klass = env()->Thread_klass();
 953   const Type* thread_type
 954     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 955 
 956   Node* thread = _gvn.transform(new ThreadLocalNode());
 957   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 958   tls_output = thread;
 959 
 960   Node* thread_obj_handle
 961     = (is_immutable
 962       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
 963         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 964       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 965   thread_obj_handle = _gvn.transform(thread_obj_handle);
 966 
 967   DecoratorSet decorators = IN_NATIVE;
 968   if (is_immutable) {
 969     decorators |= C2_IMMUTABLE_MEMORY;
 970   }
 971   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 972 }
 973 
 974 //--------------------------generate_current_thread--------------------
 975 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 976   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 977                                /*is_immutable*/false);
 978 }
 979 
 980 //--------------------------generate_virtual_thread--------------------
 981 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 982   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 983                                !C->method()->changes_current_thread());
 984 }
 985 
 986 //------------------------------make_string_method_node------------------------
 987 // Helper method for String intrinsic functions. This version is called with
 988 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 989 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 990 // containing the lengths of str1 and str2.
 991 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 992   Node* result = nullptr;
 993   switch (opcode) {
 994   case Op_StrIndexOf:
 995     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 996                                 str1_start, cnt1, str2_start, cnt2, ae);
 997     break;
 998   case Op_StrComp:
 999     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1000                              str1_start, cnt1, str2_start, cnt2, ae);
1001     break;
1002   case Op_StrEquals:
1003     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1004     // Use the constant length if there is one because optimized match rule may exist.
1005     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1006                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1007     break;
1008   default:
1009     ShouldNotReachHere();
1010     return nullptr;
1011   }
1012 
1013   // All these intrinsics have checks.
1014   C->set_has_split_ifs(true); // Has chance for split-if optimization
1015   clear_upper_avx();
1016 
1017   return _gvn.transform(result);
1018 }
1019 
1020 //------------------------------inline_string_compareTo------------------------
1021 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1022   Node* arg1 = argument(0);
1023   Node* arg2 = argument(1);
1024 
1025   arg1 = must_be_not_null(arg1, true);
1026   arg2 = must_be_not_null(arg2, true);
1027 
1028   // Get start addr and length of first argument
1029   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1030   Node* arg1_cnt    = load_array_length(arg1);
1031 
1032   // Get start addr and length of second argument
1033   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1034   Node* arg2_cnt    = load_array_length(arg2);
1035 
1036   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1037   set_result(result);
1038   return true;
1039 }
1040 
1041 //------------------------------inline_string_equals------------------------
1042 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1043   Node* arg1 = argument(0);
1044   Node* arg2 = argument(1);
1045 
1046   // paths (plus control) merge
1047   RegionNode* region = new RegionNode(3);
1048   Node* phi = new PhiNode(region, TypeInt::BOOL);
1049 
1050   if (!stopped()) {
1051 
1052     arg1 = must_be_not_null(arg1, true);
1053     arg2 = must_be_not_null(arg2, true);
1054 
1055     // Get start addr and length of first argument
1056     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1057     Node* arg1_cnt    = load_array_length(arg1);
1058 
1059     // Get start addr and length of second argument
1060     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1061     Node* arg2_cnt    = load_array_length(arg2);
1062 
1063     // Check for arg1_cnt != arg2_cnt
1064     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1065     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1066     Node* if_ne = generate_slow_guard(bol, nullptr);
1067     if (if_ne != nullptr) {
1068       phi->init_req(2, intcon(0));
1069       region->init_req(2, if_ne);
1070     }
1071 
1072     // Check for count == 0 is done by assembler code for StrEquals.
1073 
1074     if (!stopped()) {
1075       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1076       phi->init_req(1, equals);
1077       region->init_req(1, control());
1078     }
1079   }
1080 
1081   // post merge
1082   set_control(_gvn.transform(region));
1083   record_for_igvn(region);
1084 
1085   set_result(_gvn.transform(phi));
1086   return true;
1087 }
1088 
1089 //------------------------------inline_array_equals----------------------------
1090 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1091   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1092   Node* arg1 = argument(0);
1093   Node* arg2 = argument(1);
1094 
1095   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1096   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1097   clear_upper_avx();
1098 
1099   return true;
1100 }
1101 
1102 
1103 //------------------------------inline_countPositives------------------------------
1104 bool LibraryCallKit::inline_countPositives() {
1105   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1106     return false;
1107   }
1108 
1109   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1110   // no receiver since it is static method
1111   Node* ba         = argument(0);
1112   Node* offset     = argument(1);
1113   Node* len        = argument(2);
1114 
1115   ba = must_be_not_null(ba, true);
1116 
1117   // Range checks
1118   generate_string_range_check(ba, offset, len, false);
1119   if (stopped()) {
1120     return true;
1121   }
1122   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1123   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1124   set_result(_gvn.transform(result));
1125   clear_upper_avx();
1126   return true;
1127 }
1128 
1129 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1130   Node* index = argument(0);
1131   Node* length = bt == T_INT ? argument(1) : argument(2);
1132   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1133     return false;
1134   }
1135 
1136   // check that length is positive
1137   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1138   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1139 
1140   {
1141     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1142     uncommon_trap(Deoptimization::Reason_intrinsic,
1143                   Deoptimization::Action_make_not_entrant);
1144   }
1145 
1146   if (stopped()) {
1147     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1148     return true;
1149   }
1150 
1151   // length is now known positive, add a cast node to make this explicit
1152   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1153   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1154       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1155       ConstraintCastNode::RegularDependency, bt);
1156   casted_length = _gvn.transform(casted_length);
1157   replace_in_map(length, casted_length);
1158   length = casted_length;
1159 
1160   // Use an unsigned comparison for the range check itself
1161   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1162   BoolTest::mask btest = BoolTest::lt;
1163   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1164   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1165   _gvn.set_type(rc, rc->Value(&_gvn));
1166   if (!rc_bool->is_Con()) {
1167     record_for_igvn(rc);
1168   }
1169   set_control(_gvn.transform(new IfTrueNode(rc)));
1170   {
1171     PreserveJVMState pjvms(this);
1172     set_control(_gvn.transform(new IfFalseNode(rc)));
1173     uncommon_trap(Deoptimization::Reason_range_check,
1174                   Deoptimization::Action_make_not_entrant);
1175   }
1176 
1177   if (stopped()) {
1178     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1179     return true;
1180   }
1181 
1182   // index is now known to be >= 0 and < length, cast it
1183   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1184       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1185       ConstraintCastNode::RegularDependency, bt);
1186   result = _gvn.transform(result);
1187   set_result(result);
1188   replace_in_map(index, result);
1189   return true;
1190 }
1191 
1192 //------------------------------inline_string_indexOf------------------------
1193 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1194   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1195     return false;
1196   }
1197   Node* src = argument(0);
1198   Node* tgt = argument(1);
1199 
1200   // Make the merge point
1201   RegionNode* result_rgn = new RegionNode(4);
1202   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1203 
1204   src = must_be_not_null(src, true);
1205   tgt = must_be_not_null(tgt, true);
1206 
1207   // Get start addr and length of source string
1208   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1209   Node* src_count = load_array_length(src);
1210 
1211   // Get start addr and length of substring
1212   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1213   Node* tgt_count = load_array_length(tgt);
1214 
1215   Node* result = nullptr;
1216   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1217 
1218   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1219     // Divide src size by 2 if String is UTF16 encoded
1220     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1221   }
1222   if (ae == StrIntrinsicNode::UU) {
1223     // Divide substring size by 2 if String is UTF16 encoded
1224     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1225   }
1226 
1227   if (call_opt_stub) {
1228     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1229                                    StubRoutines::_string_indexof_array[ae],
1230                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1231                                    src_count, tgt_start, tgt_count);
1232     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1233   } else {
1234     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1235                                result_rgn, result_phi, ae);
1236   }
1237   if (result != nullptr) {
1238     result_phi->init_req(3, result);
1239     result_rgn->init_req(3, control());
1240   }
1241   set_control(_gvn.transform(result_rgn));
1242   record_for_igvn(result_rgn);
1243   set_result(_gvn.transform(result_phi));
1244 
1245   return true;
1246 }
1247 
1248 //-----------------------------inline_string_indexOfI-----------------------
1249 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1250   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1251     return false;
1252   }
1253   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1254     return false;
1255   }
1256 
1257   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1258   Node* src         = argument(0); // byte[]
1259   Node* src_count   = argument(1); // char count
1260   Node* tgt         = argument(2); // byte[]
1261   Node* tgt_count   = argument(3); // char count
1262   Node* from_index  = argument(4); // char index
1263 
1264   src = must_be_not_null(src, true);
1265   tgt = must_be_not_null(tgt, true);
1266 
1267   // Multiply byte array index by 2 if String is UTF16 encoded
1268   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1269   src_count = _gvn.transform(new SubINode(src_count, from_index));
1270   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1271   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1272 
1273   // Range checks
1274   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1275   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1276   if (stopped()) {
1277     return true;
1278   }
1279 
1280   RegionNode* region = new RegionNode(5);
1281   Node* phi = new PhiNode(region, TypeInt::INT);
1282   Node* result = nullptr;
1283 
1284   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1285 
1286   if (call_opt_stub) {
1287     assert(arrayOopDesc::base_offset_in_bytes(T_BYTE) >= 16, "Needed for indexOf");
1288     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1289                                    StubRoutines::_string_indexof_array[ae],
1290                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1291                                    src_count, tgt_start, tgt_count);
1292     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1293   } else {
1294     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1295                                region, phi, ae);
1296   }
1297   if (result != nullptr) {
1298     // The result is index relative to from_index if substring was found, -1 otherwise.
1299     // Generate code which will fold into cmove.
1300     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1301     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1302 
1303     Node* if_lt = generate_slow_guard(bol, nullptr);
1304     if (if_lt != nullptr) {
1305       // result == -1
1306       phi->init_req(3, result);
1307       region->init_req(3, if_lt);
1308     }
1309     if (!stopped()) {
1310       result = _gvn.transform(new AddINode(result, from_index));
1311       phi->init_req(4, result);
1312       region->init_req(4, control());
1313     }
1314   }
1315 
1316   set_control(_gvn.transform(region));
1317   record_for_igvn(region);
1318   set_result(_gvn.transform(phi));
1319   clear_upper_avx();
1320 
1321   return true;
1322 }
1323 
1324 // Create StrIndexOfNode with fast path checks
1325 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1326                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1327   // Check for substr count > string count
1328   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1329   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1330   Node* if_gt = generate_slow_guard(bol, nullptr);
1331   if (if_gt != nullptr) {
1332     phi->init_req(1, intcon(-1));
1333     region->init_req(1, if_gt);
1334   }
1335   if (!stopped()) {
1336     // Check for substr count == 0
1337     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1338     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1339     Node* if_zero = generate_slow_guard(bol, nullptr);
1340     if (if_zero != nullptr) {
1341       phi->init_req(2, intcon(0));
1342       region->init_req(2, if_zero);
1343     }
1344   }
1345   if (!stopped()) {
1346     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1347   }
1348   return nullptr;
1349 }
1350 
1351 //-----------------------------inline_string_indexOfChar-----------------------
1352 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1353   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1354     return false;
1355   }
1356   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1357     return false;
1358   }
1359   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1360   Node* src         = argument(0); // byte[]
1361   Node* int_ch      = argument(1);
1362   Node* from_index  = argument(2);
1363   Node* max         = argument(3);
1364 
1365   src = must_be_not_null(src, true);
1366 
1367   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1368   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1369   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1370 
1371   // Range checks
1372   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1373 
1374   // Check for int_ch >= 0
1375   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1376   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1377   {
1378     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1379     uncommon_trap(Deoptimization::Reason_intrinsic,
1380                   Deoptimization::Action_maybe_recompile);
1381   }
1382   if (stopped()) {
1383     return true;
1384   }
1385 
1386   RegionNode* region = new RegionNode(3);
1387   Node* phi = new PhiNode(region, TypeInt::INT);
1388 
1389   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1390   C->set_has_split_ifs(true); // Has chance for split-if optimization
1391   _gvn.transform(result);
1392 
1393   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1394   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1395 
1396   Node* if_lt = generate_slow_guard(bol, nullptr);
1397   if (if_lt != nullptr) {
1398     // result == -1
1399     phi->init_req(2, result);
1400     region->init_req(2, if_lt);
1401   }
1402   if (!stopped()) {
1403     result = _gvn.transform(new AddINode(result, from_index));
1404     phi->init_req(1, result);
1405     region->init_req(1, control());
1406   }
1407   set_control(_gvn.transform(region));
1408   record_for_igvn(region);
1409   set_result(_gvn.transform(phi));
1410   clear_upper_avx();
1411 
1412   return true;
1413 }
1414 //---------------------------inline_string_copy---------------------
1415 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1416 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1417 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1418 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1419 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1420 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1421 bool LibraryCallKit::inline_string_copy(bool compress) {
1422   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1423     return false;
1424   }
1425   int nargs = 5;  // 2 oops, 3 ints
1426   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1427 
1428   Node* src         = argument(0);
1429   Node* src_offset  = argument(1);
1430   Node* dst         = argument(2);
1431   Node* dst_offset  = argument(3);
1432   Node* length      = argument(4);
1433 
1434   // Check for allocation before we add nodes that would confuse
1435   // tightly_coupled_allocation()
1436   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1437 
1438   // Figure out the size and type of the elements we will be copying.
1439   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1440   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1441   if (src_type == nullptr || dst_type == nullptr) {
1442     return false;
1443   }
1444   BasicType src_elem = src_type->elem()->array_element_basic_type();
1445   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1446   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1447          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1448          "Unsupported array types for inline_string_copy");
1449 
1450   src = must_be_not_null(src, true);
1451   dst = must_be_not_null(dst, true);
1452 
1453   // Convert char[] offsets to byte[] offsets
1454   bool convert_src = (compress && src_elem == T_BYTE);
1455   bool convert_dst = (!compress && dst_elem == T_BYTE);
1456   if (convert_src) {
1457     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1458   } else if (convert_dst) {
1459     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1460   }
1461 
1462   // Range checks
1463   generate_string_range_check(src, src_offset, length, convert_src);
1464   generate_string_range_check(dst, dst_offset, length, convert_dst);
1465   if (stopped()) {
1466     return true;
1467   }
1468 
1469   Node* src_start = array_element_address(src, src_offset, src_elem);
1470   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1471   // 'src_start' points to src array + scaled offset
1472   // 'dst_start' points to dst array + scaled offset
1473   Node* count = nullptr;
1474   if (compress) {
1475     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1476   } else {
1477     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1478   }
1479 
1480   if (alloc != nullptr) {
1481     if (alloc->maybe_set_complete(&_gvn)) {
1482       // "You break it, you buy it."
1483       InitializeNode* init = alloc->initialization();
1484       assert(init->is_complete(), "we just did this");
1485       init->set_complete_with_arraycopy();
1486       assert(dst->is_CheckCastPP(), "sanity");
1487       assert(dst->in(0)->in(0) == init, "dest pinned");
1488     }
1489     // Do not let stores that initialize this object be reordered with
1490     // a subsequent store that would make this object accessible by
1491     // other threads.
1492     // Record what AllocateNode this StoreStore protects so that
1493     // escape analysis can go from the MemBarStoreStoreNode to the
1494     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1495     // based on the escape status of the AllocateNode.
1496     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1497   }
1498   if (compress) {
1499     set_result(_gvn.transform(count));
1500   }
1501   clear_upper_avx();
1502 
1503   return true;
1504 }
1505 
1506 #ifdef _LP64
1507 #define XTOP ,top() /*additional argument*/
1508 #else  //_LP64
1509 #define XTOP        /*no additional argument*/
1510 #endif //_LP64
1511 
1512 //------------------------inline_string_toBytesU--------------------------
1513 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1514 bool LibraryCallKit::inline_string_toBytesU() {
1515   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1516     return false;
1517   }
1518   // Get the arguments.
1519   Node* value     = argument(0);
1520   Node* offset    = argument(1);
1521   Node* length    = argument(2);
1522 
1523   Node* newcopy = nullptr;
1524 
1525   // Set the original stack and the reexecute bit for the interpreter to reexecute
1526   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1527   { PreserveReexecuteState preexecs(this);
1528     jvms()->set_should_reexecute(true);
1529 
1530     // Check if a null path was taken unconditionally.
1531     value = null_check(value);
1532 
1533     RegionNode* bailout = new RegionNode(1);
1534     record_for_igvn(bailout);
1535 
1536     // Range checks
1537     generate_negative_guard(offset, bailout);
1538     generate_negative_guard(length, bailout);
1539     generate_limit_guard(offset, length, load_array_length(value), bailout);
1540     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1541     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1542 
1543     if (bailout->req() > 1) {
1544       PreserveJVMState pjvms(this);
1545       set_control(_gvn.transform(bailout));
1546       uncommon_trap(Deoptimization::Reason_intrinsic,
1547                     Deoptimization::Action_maybe_recompile);
1548     }
1549     if (stopped()) {
1550       return true;
1551     }
1552 
1553     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1554     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1555     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1556     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1557     guarantee(alloc != nullptr, "created above");
1558 
1559     // Calculate starting addresses.
1560     Node* src_start = array_element_address(value, offset, T_CHAR);
1561     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1562 
1563     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1564     const TypeInt* toffset = gvn().type(offset)->is_int();
1565     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1566 
1567     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1568     const char* copyfunc_name = "arraycopy";
1569     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1570     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1571                       OptoRuntime::fast_arraycopy_Type(),
1572                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1573                       src_start, dst_start, ConvI2X(length) XTOP);
1574     // Do not let reads from the cloned object float above the arraycopy.
1575     if (alloc->maybe_set_complete(&_gvn)) {
1576       // "You break it, you buy it."
1577       InitializeNode* init = alloc->initialization();
1578       assert(init->is_complete(), "we just did this");
1579       init->set_complete_with_arraycopy();
1580       assert(newcopy->is_CheckCastPP(), "sanity");
1581       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1582     }
1583     // Do not let stores that initialize this object be reordered with
1584     // a subsequent store that would make this object accessible by
1585     // other threads.
1586     // Record what AllocateNode this StoreStore protects so that
1587     // escape analysis can go from the MemBarStoreStoreNode to the
1588     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1589     // based on the escape status of the AllocateNode.
1590     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1591   } // original reexecute is set back here
1592 
1593   C->set_has_split_ifs(true); // Has chance for split-if optimization
1594   if (!stopped()) {
1595     set_result(newcopy);
1596   }
1597   clear_upper_avx();
1598 
1599   return true;
1600 }
1601 
1602 //------------------------inline_string_getCharsU--------------------------
1603 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1604 bool LibraryCallKit::inline_string_getCharsU() {
1605   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1606     return false;
1607   }
1608 
1609   // Get the arguments.
1610   Node* src       = argument(0);
1611   Node* src_begin = argument(1);
1612   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1613   Node* dst       = argument(3);
1614   Node* dst_begin = argument(4);
1615 
1616   // Check for allocation before we add nodes that would confuse
1617   // tightly_coupled_allocation()
1618   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1619 
1620   // Check if a null path was taken unconditionally.
1621   src = null_check(src);
1622   dst = null_check(dst);
1623   if (stopped()) {
1624     return true;
1625   }
1626 
1627   // Get length and convert char[] offset to byte[] offset
1628   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1629   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1630 
1631   // Range checks
1632   generate_string_range_check(src, src_begin, length, true);
1633   generate_string_range_check(dst, dst_begin, length, false);
1634   if (stopped()) {
1635     return true;
1636   }
1637 
1638   if (!stopped()) {
1639     // Calculate starting addresses.
1640     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1641     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1642 
1643     // Check if array addresses are aligned to HeapWordSize
1644     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1645     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1646     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1647                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1648 
1649     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1650     const char* copyfunc_name = "arraycopy";
1651     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1652     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1653                       OptoRuntime::fast_arraycopy_Type(),
1654                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1655                       src_start, dst_start, ConvI2X(length) XTOP);
1656     // Do not let reads from the cloned object float above the arraycopy.
1657     if (alloc != nullptr) {
1658       if (alloc->maybe_set_complete(&_gvn)) {
1659         // "You break it, you buy it."
1660         InitializeNode* init = alloc->initialization();
1661         assert(init->is_complete(), "we just did this");
1662         init->set_complete_with_arraycopy();
1663         assert(dst->is_CheckCastPP(), "sanity");
1664         assert(dst->in(0)->in(0) == init, "dest pinned");
1665       }
1666       // Do not let stores that initialize this object be reordered with
1667       // a subsequent store that would make this object accessible by
1668       // other threads.
1669       // Record what AllocateNode this StoreStore protects so that
1670       // escape analysis can go from the MemBarStoreStoreNode to the
1671       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1672       // based on the escape status of the AllocateNode.
1673       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1674     } else {
1675       insert_mem_bar(Op_MemBarCPUOrder);
1676     }
1677   }
1678 
1679   C->set_has_split_ifs(true); // Has chance for split-if optimization
1680   return true;
1681 }
1682 
1683 //----------------------inline_string_char_access----------------------------
1684 // Store/Load char to/from byte[] array.
1685 // static void StringUTF16.putChar(byte[] val, int index, int c)
1686 // static char StringUTF16.getChar(byte[] val, int index)
1687 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1688   Node* value  = argument(0);
1689   Node* index  = argument(1);
1690   Node* ch = is_store ? argument(2) : nullptr;
1691 
1692   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1693   // correctly requires matched array shapes.
1694   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1695           "sanity: byte[] and char[] bases agree");
1696   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1697           "sanity: byte[] and char[] scales agree");
1698 
1699   // Bail when getChar over constants is requested: constant folding would
1700   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1701   // Java method would constant fold nicely instead.
1702   if (!is_store && value->is_Con() && index->is_Con()) {
1703     return false;
1704   }
1705 
1706   // Save state and restore on bailout
1707   uint old_sp = sp();
1708   SafePointNode* old_map = clone_map();
1709 
1710   value = must_be_not_null(value, true);
1711 
1712   Node* adr = array_element_address(value, index, T_CHAR);
1713   if (adr->is_top()) {
1714     set_map(old_map);
1715     set_sp(old_sp);
1716     return false;
1717   }
1718   destruct_map_clone(old_map);
1719   if (is_store) {
1720     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1721   } else {
1722     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1723     set_result(ch);
1724   }
1725   return true;
1726 }
1727 
1728 //--------------------------round_double_node--------------------------------
1729 // Round a double node if necessary.
1730 Node* LibraryCallKit::round_double_node(Node* n) {
1731   if (Matcher::strict_fp_requires_explicit_rounding) {
1732 #ifdef IA32
1733     if (UseSSE < 2) {
1734       n = _gvn.transform(new RoundDoubleNode(nullptr, n));
1735     }
1736 #else
1737     Unimplemented();
1738 #endif // IA32
1739   }
1740   return n;
1741 }
1742 
1743 //------------------------------inline_math-----------------------------------
1744 // public static double Math.abs(double)
1745 // public static double Math.sqrt(double)
1746 // public static double Math.log(double)
1747 // public static double Math.log10(double)
1748 // public static double Math.round(double)
1749 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1750   Node* arg = round_double_node(argument(0));
1751   Node* n = nullptr;
1752   switch (id) {
1753   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1754   case vmIntrinsics::_dsqrt:
1755   case vmIntrinsics::_dsqrt_strict:
1756                               n = new SqrtDNode(C, control(),  arg);  break;
1757   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1758   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1759   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1760   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1761   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break;
1762   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1763   default:  fatal_unexpected_iid(id);  break;
1764   }
1765   set_result(_gvn.transform(n));
1766   return true;
1767 }
1768 
1769 //------------------------------inline_math-----------------------------------
1770 // public static float Math.abs(float)
1771 // public static int Math.abs(int)
1772 // public static long Math.abs(long)
1773 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1774   Node* arg = argument(0);
1775   Node* n = nullptr;
1776   switch (id) {
1777   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1778   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1779   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1780   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1781   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1782   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1783   default:  fatal_unexpected_iid(id);  break;
1784   }
1785   set_result(_gvn.transform(n));
1786   return true;
1787 }
1788 
1789 //------------------------------runtime_math-----------------------------
1790 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1791   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1792          "must be (DD)D or (D)D type");
1793 
1794   // Inputs
1795   Node* a = round_double_node(argument(0));
1796   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr;
1797 
1798   const TypePtr* no_memory_effects = nullptr;
1799   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1800                                  no_memory_effects,
1801                                  a, top(), b, b ? top() : nullptr);
1802   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1803 #ifdef ASSERT
1804   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1805   assert(value_top == top(), "second value must be top");
1806 #endif
1807 
1808   set_result(value);
1809   return true;
1810 }
1811 
1812 //------------------------------inline_math_pow-----------------------------
1813 bool LibraryCallKit::inline_math_pow() {
1814   Node* exp = round_double_node(argument(2));
1815   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1816   if (d != nullptr) {
1817     if (d->getd() == 2.0) {
1818       // Special case: pow(x, 2.0) => x * x
1819       Node* base = round_double_node(argument(0));
1820       set_result(_gvn.transform(new MulDNode(base, base)));
1821       return true;
1822     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1823       // Special case: pow(x, 0.5) => sqrt(x)
1824       Node* base = round_double_node(argument(0));
1825       Node* zero = _gvn.zerocon(T_DOUBLE);
1826 
1827       RegionNode* region = new RegionNode(3);
1828       Node* phi = new PhiNode(region, Type::DOUBLE);
1829 
1830       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1831       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1832       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1833       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1834       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1835 
1836       Node* if_pow = generate_slow_guard(test, nullptr);
1837       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1838       phi->init_req(1, value_sqrt);
1839       region->init_req(1, control());
1840 
1841       if (if_pow != nullptr) {
1842         set_control(if_pow);
1843         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1844                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1845         const TypePtr* no_memory_effects = nullptr;
1846         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1847                                        no_memory_effects, base, top(), exp, top());
1848         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1849 #ifdef ASSERT
1850         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1851         assert(value_top == top(), "second value must be top");
1852 #endif
1853         phi->init_req(2, value_pow);
1854         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1855       }
1856 
1857       C->set_has_split_ifs(true); // Has chance for split-if optimization
1858       set_control(_gvn.transform(region));
1859       record_for_igvn(region);
1860       set_result(_gvn.transform(phi));
1861 
1862       return true;
1863     }
1864   }
1865 
1866   return StubRoutines::dpow() != nullptr ?
1867     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1868     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1869 }
1870 
1871 //------------------------------inline_math_native-----------------------------
1872 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1873   switch (id) {
1874   case vmIntrinsics::_dsin:
1875     return StubRoutines::dsin() != nullptr ?
1876       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1877       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1878   case vmIntrinsics::_dcos:
1879     return StubRoutines::dcos() != nullptr ?
1880       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1881       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1882   case vmIntrinsics::_dtan:
1883     return StubRoutines::dtan() != nullptr ?
1884       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1885       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1886   case vmIntrinsics::_dexp:
1887     return StubRoutines::dexp() != nullptr ?
1888       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1889       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1890   case vmIntrinsics::_dlog:
1891     return StubRoutines::dlog() != nullptr ?
1892       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1893       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1894   case vmIntrinsics::_dlog10:
1895     return StubRoutines::dlog10() != nullptr ?
1896       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1897       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1898 
1899   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1900   case vmIntrinsics::_ceil:
1901   case vmIntrinsics::_floor:
1902   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1903 
1904   case vmIntrinsics::_dsqrt:
1905   case vmIntrinsics::_dsqrt_strict:
1906                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1907   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1908   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1909   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1910   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1911 
1912   case vmIntrinsics::_dpow:      return inline_math_pow();
1913   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1914   case vmIntrinsics::_fcopySign: return inline_math(id);
1915   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1916   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1917   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1918 
1919    // These intrinsics are not yet correctly implemented
1920   case vmIntrinsics::_datan2:
1921     return false;
1922 
1923   default:
1924     fatal_unexpected_iid(id);
1925     return false;
1926   }
1927 }
1928 
1929 //----------------------------inline_notify-----------------------------------*
1930 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1931   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1932   address func;
1933   if (id == vmIntrinsics::_notify) {
1934     func = OptoRuntime::monitor_notify_Java();
1935   } else {
1936     func = OptoRuntime::monitor_notifyAll_Java();
1937   }
1938   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1939   make_slow_call_ex(call, env()->Throwable_klass(), false);
1940   return true;
1941 }
1942 
1943 
1944 //----------------------------inline_min_max-----------------------------------
1945 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1946   set_result(generate_min_max(id, argument(0), argument(1)));
1947   return true;
1948 }
1949 
1950 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1951   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1952   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1953   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1954   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1955 
1956   {
1957     PreserveJVMState pjvms(this);
1958     PreserveReexecuteState preexecs(this);
1959     jvms()->set_should_reexecute(true);
1960 
1961     set_control(slow_path);
1962     set_i_o(i_o());
1963 
1964     uncommon_trap(Deoptimization::Reason_intrinsic,
1965                   Deoptimization::Action_none);
1966   }
1967 
1968   set_control(fast_path);
1969   set_result(math);
1970 }
1971 
1972 template <typename OverflowOp>
1973 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1974   typedef typename OverflowOp::MathOp MathOp;
1975 
1976   MathOp* mathOp = new MathOp(arg1, arg2);
1977   Node* operation = _gvn.transform( mathOp );
1978   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1979   inline_math_mathExact(operation, ofcheck);
1980   return true;
1981 }
1982 
1983 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1984   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1985 }
1986 
1987 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1988   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1989 }
1990 
1991 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1992   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1993 }
1994 
1995 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1996   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1997 }
1998 
1999 bool LibraryCallKit::inline_math_negateExactI() {
2000   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2001 }
2002 
2003 bool LibraryCallKit::inline_math_negateExactL() {
2004   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2005 }
2006 
2007 bool LibraryCallKit::inline_math_multiplyExactI() {
2008   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2009 }
2010 
2011 bool LibraryCallKit::inline_math_multiplyExactL() {
2012   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2013 }
2014 
2015 bool LibraryCallKit::inline_math_multiplyHigh() {
2016   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2017   return true;
2018 }
2019 
2020 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2021   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2022   return true;
2023 }
2024 
2025 Node*
2026 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2027   Node* result_val = nullptr;
2028   switch (id) {
2029   case vmIntrinsics::_min:
2030   case vmIntrinsics::_min_strict:
2031     result_val = _gvn.transform(new MinINode(x0, y0));
2032     break;
2033   case vmIntrinsics::_max:
2034   case vmIntrinsics::_max_strict:
2035     result_val = _gvn.transform(new MaxINode(x0, y0));
2036     break;
2037   default:
2038     fatal_unexpected_iid(id);
2039     break;
2040   }
2041   return result_val;
2042 }
2043 
2044 inline int
2045 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2046   const TypePtr* base_type = TypePtr::NULL_PTR;
2047   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2048   if (base_type == nullptr) {
2049     // Unknown type.
2050     return Type::AnyPtr;
2051   } else if (base_type == TypePtr::NULL_PTR) {
2052     // Since this is a null+long form, we have to switch to a rawptr.
2053     base   = _gvn.transform(new CastX2PNode(offset));
2054     offset = MakeConX(0);
2055     return Type::RawPtr;
2056   } else if (base_type->base() == Type::RawPtr) {
2057     return Type::RawPtr;
2058   } else if (base_type->isa_oopptr()) {
2059     // Base is never null => always a heap address.
2060     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2061       return Type::OopPtr;
2062     }
2063     // Offset is small => always a heap address.
2064     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2065     if (offset_type != nullptr &&
2066         base_type->offset() == 0 &&     // (should always be?)
2067         offset_type->_lo >= 0 &&
2068         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2069       return Type::OopPtr;
2070     } else if (type == T_OBJECT) {
2071       // off heap access to an oop doesn't make any sense. Has to be on
2072       // heap.
2073       return Type::OopPtr;
2074     }
2075     // Otherwise, it might either be oop+off or null+addr.
2076     return Type::AnyPtr;
2077   } else {
2078     // No information:
2079     return Type::AnyPtr;
2080   }
2081 }
2082 
2083 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2084   Node* uncasted_base = base;
2085   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2086   if (kind == Type::RawPtr) {
2087     return basic_plus_adr(top(), uncasted_base, offset);
2088   } else if (kind == Type::AnyPtr) {
2089     assert(base == uncasted_base, "unexpected base change");
2090     if (can_cast) {
2091       if (!_gvn.type(base)->speculative_maybe_null() &&
2092           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2093         // According to profiling, this access is always on
2094         // heap. Casting the base to not null and thus avoiding membars
2095         // around the access should allow better optimizations
2096         Node* null_ctl = top();
2097         base = null_check_oop(base, &null_ctl, true, true, true);
2098         assert(null_ctl->is_top(), "no null control here");
2099         return basic_plus_adr(base, offset);
2100       } else if (_gvn.type(base)->speculative_always_null() &&
2101                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2102         // According to profiling, this access is always off
2103         // heap.
2104         base = null_assert(base);
2105         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2106         offset = MakeConX(0);
2107         return basic_plus_adr(top(), raw_base, offset);
2108       }
2109     }
2110     // We don't know if it's an on heap or off heap access. Fall back
2111     // to raw memory access.
2112     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2113     return basic_plus_adr(top(), raw, offset);
2114   } else {
2115     assert(base == uncasted_base, "unexpected base change");
2116     // We know it's an on heap access so base can't be null
2117     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2118       base = must_be_not_null(base, true);
2119     }
2120     return basic_plus_adr(base, offset);
2121   }
2122 }
2123 
2124 //--------------------------inline_number_methods-----------------------------
2125 // inline int     Integer.numberOfLeadingZeros(int)
2126 // inline int        Long.numberOfLeadingZeros(long)
2127 //
2128 // inline int     Integer.numberOfTrailingZeros(int)
2129 // inline int        Long.numberOfTrailingZeros(long)
2130 //
2131 // inline int     Integer.bitCount(int)
2132 // inline int        Long.bitCount(long)
2133 //
2134 // inline char  Character.reverseBytes(char)
2135 // inline short     Short.reverseBytes(short)
2136 // inline int     Integer.reverseBytes(int)
2137 // inline long       Long.reverseBytes(long)
2138 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2139   Node* arg = argument(0);
2140   Node* n = nullptr;
2141   switch (id) {
2142   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2143   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2144   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2145   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2146   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2147   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2148   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2149   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2150   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2151   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2152   case vmIntrinsics::_reverse_i:                n = new ReverseINode(0, arg); break;
2153   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(0, arg); break;
2154   default:  fatal_unexpected_iid(id);  break;
2155   }
2156   set_result(_gvn.transform(n));
2157   return true;
2158 }
2159 
2160 //--------------------------inline_bitshuffle_methods-----------------------------
2161 // inline int Integer.compress(int, int)
2162 // inline int Integer.expand(int, int)
2163 // inline long Long.compress(long, long)
2164 // inline long Long.expand(long, long)
2165 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2166   Node* n = nullptr;
2167   switch (id) {
2168     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2169     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2170     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2171     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2172     default:  fatal_unexpected_iid(id);  break;
2173   }
2174   set_result(_gvn.transform(n));
2175   return true;
2176 }
2177 
2178 //--------------------------inline_number_methods-----------------------------
2179 // inline int Integer.compareUnsigned(int, int)
2180 // inline int    Long.compareUnsigned(long, long)
2181 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2182   Node* arg1 = argument(0);
2183   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2184   Node* n = nullptr;
2185   switch (id) {
2186     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2187     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2188     default:  fatal_unexpected_iid(id);  break;
2189   }
2190   set_result(_gvn.transform(n));
2191   return true;
2192 }
2193 
2194 //--------------------------inline_unsigned_divmod_methods-----------------------------
2195 // inline int Integer.divideUnsigned(int, int)
2196 // inline int Integer.remainderUnsigned(int, int)
2197 // inline long Long.divideUnsigned(long, long)
2198 // inline long Long.remainderUnsigned(long, long)
2199 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2200   Node* n = nullptr;
2201   switch (id) {
2202     case vmIntrinsics::_divideUnsigned_i: {
2203       zero_check_int(argument(1));
2204       // Compile-time detect of null-exception
2205       if (stopped()) {
2206         return true; // keep the graph constructed so far
2207       }
2208       n = new UDivINode(control(), argument(0), argument(1));
2209       break;
2210     }
2211     case vmIntrinsics::_divideUnsigned_l: {
2212       zero_check_long(argument(2));
2213       // Compile-time detect of null-exception
2214       if (stopped()) {
2215         return true; // keep the graph constructed so far
2216       }
2217       n = new UDivLNode(control(), argument(0), argument(2));
2218       break;
2219     }
2220     case vmIntrinsics::_remainderUnsigned_i: {
2221       zero_check_int(argument(1));
2222       // Compile-time detect of null-exception
2223       if (stopped()) {
2224         return true; // keep the graph constructed so far
2225       }
2226       n = new UModINode(control(), argument(0), argument(1));
2227       break;
2228     }
2229     case vmIntrinsics::_remainderUnsigned_l: {
2230       zero_check_long(argument(2));
2231       // Compile-time detect of null-exception
2232       if (stopped()) {
2233         return true; // keep the graph constructed so far
2234       }
2235       n = new UModLNode(control(), argument(0), argument(2));
2236       break;
2237     }
2238     default:  fatal_unexpected_iid(id);  break;
2239   }
2240   set_result(_gvn.transform(n));
2241   return true;
2242 }
2243 
2244 //----------------------------inline_unsafe_access----------------------------
2245 
2246 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2247   // Attempt to infer a sharper value type from the offset and base type.
2248   ciKlass* sharpened_klass = nullptr;
2249   bool null_free = false;
2250 
2251   // See if it is an instance field, with an object type.
2252   if (alias_type->field() != nullptr) {
2253     if (alias_type->field()->type()->is_klass()) {
2254       sharpened_klass = alias_type->field()->type()->as_klass();
2255       null_free = alias_type->field()->is_null_free();
2256     }
2257   }
2258 
2259   const TypeOopPtr* result = nullptr;
2260   // See if it is a narrow oop array.
2261   if (adr_type->isa_aryptr()) {
2262     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2263       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2264       null_free = adr_type->is_aryptr()->is_null_free();
2265       if (elem_type != nullptr && elem_type->is_loaded()) {
2266         // Sharpen the value type.
2267         result = elem_type;
2268       }
2269     }
2270   }
2271 
2272   // The sharpened class might be unloaded if there is no class loader
2273   // contraint in place.
2274   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2275     // Sharpen the value type.
2276     result = TypeOopPtr::make_from_klass(sharpened_klass);
2277     if (null_free) {
2278       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2279     }
2280   }
2281   if (result != nullptr) {
2282 #ifndef PRODUCT
2283     if (C->print_intrinsics() || C->print_inlining()) {
2284       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2285       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2286     }
2287 #endif
2288   }
2289   return result;
2290 }
2291 
2292 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2293   switch (kind) {
2294       case Relaxed:
2295         return MO_UNORDERED;
2296       case Opaque:
2297         return MO_RELAXED;
2298       case Acquire:
2299         return MO_ACQUIRE;
2300       case Release:
2301         return MO_RELEASE;
2302       case Volatile:
2303         return MO_SEQ_CST;
2304       default:
2305         ShouldNotReachHere();
2306         return 0;
2307   }
2308 }
2309 
2310 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2311   if (callee()->is_static())  return false;  // caller must have the capability!
2312   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2313   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2314   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2315   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2316 
2317   if (is_reference_type(type)) {
2318     decorators |= ON_UNKNOWN_OOP_REF;
2319   }
2320 
2321   if (unaligned) {
2322     decorators |= C2_UNALIGNED;
2323   }
2324 
2325 #ifndef PRODUCT
2326   {
2327     ResourceMark rm;
2328     // Check the signatures.
2329     ciSignature* sig = callee()->signature();
2330 #ifdef ASSERT
2331     if (!is_store) {
2332       // Object getReference(Object base, int/long offset), etc.
2333       BasicType rtype = sig->return_type()->basic_type();
2334       assert(rtype == type, "getter must return the expected value");
2335       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2336       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2337       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2338     } else {
2339       // void putReference(Object base, int/long offset, Object x), etc.
2340       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2341       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2342       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2343       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2344       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2345       assert(vtype == type, "putter must accept the expected value");
2346     }
2347 #endif // ASSERT
2348  }
2349 #endif //PRODUCT
2350 
2351   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2352 
2353   Node* receiver = argument(0);  // type: oop
2354 
2355   // Build address expression.
2356   Node* heap_base_oop = top();
2357 
2358   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2359   Node* base = argument(1);  // type: oop
2360   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2361   Node* offset = argument(2);  // type: long
2362   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2363   // to be plain byte offsets, which are also the same as those accepted
2364   // by oopDesc::field_addr.
2365   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2366          "fieldOffset must be byte-scaled");
2367 
2368   ciInlineKlass* inline_klass = nullptr;
2369   if (is_flat) {
2370     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2371     if (cls == nullptr || cls->const_oop() == nullptr) {
2372       return false;
2373     }
2374     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2375     if (!mirror_type->is_inlinetype()) {
2376       return false;
2377     }
2378     inline_klass = mirror_type->as_inline_klass();
2379   }
2380 
2381   if (base->is_InlineType()) {
2382     InlineTypeNode* vt = base->as_InlineType();
2383     if (is_store) {
2384       if (!vt->is_allocated(&_gvn)) {
2385         return false;
2386       }
2387       base = vt->get_oop();
2388     } else {
2389       if (offset->is_Con()) {
2390         long off = find_long_con(offset, 0);
2391         ciInlineKlass* vk = vt->type()->inline_klass();
2392         if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2393           return false;
2394         }
2395 
2396         ciField* field = vk->get_non_flat_field_by_offset(off);
2397         if (field != nullptr) {
2398           BasicType bt = type2field[field->type()->basic_type()];
2399           if (bt == T_ARRAY || bt == T_NARROWOOP) {
2400             bt = T_OBJECT;
2401           }
2402           if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2403             Node* value = vt->field_value_by_offset(off, false);
2404             if (value->is_InlineType()) {
2405               value = value->as_InlineType()->adjust_scalarization_depth(this);
2406             }
2407             set_result(value);
2408             return true;
2409           }
2410         }
2411       }
2412       {
2413         // Re-execute the unsafe access if allocation triggers deoptimization.
2414         PreserveReexecuteState preexecs(this);
2415         jvms()->set_should_reexecute(true);
2416         vt = vt->buffer(this);
2417       }
2418       base = vt->get_oop();
2419     }
2420   }
2421 
2422   // 32-bit machines ignore the high half!
2423   offset = ConvL2X(offset);
2424 
2425   // Save state and restore on bailout
2426   uint old_sp = sp();
2427   SafePointNode* old_map = clone_map();
2428 
2429   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2430 
2431   if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) {
2432     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2433       decorators |= IN_NATIVE; // off-heap primitive access
2434     } else {
2435       set_map(old_map);
2436       set_sp(old_sp);
2437       return false; // off-heap oop accesses are not supported
2438     }
2439   } else {
2440     heap_base_oop = base; // on-heap or mixed access
2441   }
2442 
2443   // Can base be null? Otherwise, always on-heap access.
2444   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2445 
2446   if (!can_access_non_heap) {
2447     decorators |= IN_HEAP;
2448   }
2449 
2450   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2451 
2452   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2453   if (adr_type == TypePtr::NULL_PTR) {
2454     set_map(old_map);
2455     set_sp(old_sp);
2456     return false; // off-heap access with zero address
2457   }
2458 
2459   // Try to categorize the address.
2460   Compile::AliasType* alias_type = C->alias_type(adr_type);
2461   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2462 
2463   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2464       alias_type->adr_type() == TypeAryPtr::RANGE) {
2465     set_map(old_map);
2466     set_sp(old_sp);
2467     return false; // not supported
2468   }
2469 
2470   bool mismatched = false;
2471   BasicType bt = T_ILLEGAL;
2472   ciField* field = nullptr;
2473   if (adr_type->isa_instptr()) {
2474     const TypeInstPtr* instptr = adr_type->is_instptr();
2475     ciInstanceKlass* k = instptr->instance_klass();
2476     int off = instptr->offset();
2477     if (instptr->const_oop() != nullptr &&
2478         k == ciEnv::current()->Class_klass() &&
2479         instptr->offset() >= (k->size_helper() * wordSize)) {
2480       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2481       field = k->get_field_by_offset(off, true);
2482     } else {
2483       field = k->get_non_flat_field_by_offset(off);
2484     }
2485     if (field != nullptr) {
2486       bt = type2field[field->type()->basic_type()];
2487     }
2488     assert(bt == alias_type->basic_type() || is_flat, "should match");
2489   } else {
2490     bt = alias_type->basic_type();
2491   }
2492 
2493   if (bt != T_ILLEGAL) {
2494     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2495     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2496       // Alias type doesn't differentiate between byte[] and boolean[]).
2497       // Use address type to get the element type.
2498       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2499     }
2500     if (is_reference_type(bt, true)) {
2501       // accessing an array field with getReference is not a mismatch
2502       bt = T_OBJECT;
2503     }
2504     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2505       // Don't intrinsify mismatched object accesses
2506       set_map(old_map);
2507       set_sp(old_sp);
2508       return false;
2509     }
2510     mismatched = (bt != type);
2511   } else if (alias_type->adr_type()->isa_oopptr()) {
2512     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2513   }
2514 
2515   if (is_flat) {
2516     if (adr_type->isa_instptr()) {
2517       if (field == nullptr || field->type() != inline_klass) {
2518         mismatched = true;
2519       }
2520     } else if (adr_type->isa_aryptr()) {
2521       const Type* elem = adr_type->is_aryptr()->elem();
2522       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2523         mismatched = true;
2524       }
2525     } else {
2526       mismatched = true;
2527     }
2528     if (is_store) {
2529       const Type* val_t = _gvn.type(val);
2530       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2531         set_map(old_map);
2532         set_sp(old_sp);
2533         return false;
2534       }
2535     }
2536   }
2537 
2538   destruct_map_clone(old_map);
2539   assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2540 
2541   if (mismatched) {
2542     decorators |= C2_MISMATCHED;
2543   }
2544 
2545   // First guess at the value type.
2546   const Type *value_type = Type::get_const_basic_type(type);
2547 
2548   // Figure out the memory ordering.
2549   decorators |= mo_decorator_for_access_kind(kind);
2550 
2551   if (!is_store) {
2552     if (type == T_OBJECT && !is_flat) {
2553       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2554       if (tjp != nullptr) {
2555         value_type = tjp;
2556       }
2557     }
2558   }
2559 
2560   receiver = null_check(receiver);
2561   if (stopped()) {
2562     return true;
2563   }
2564   // Heap pointers get a null-check from the interpreter,
2565   // as a courtesy.  However, this is not guaranteed by Unsafe,
2566   // and it is not possible to fully distinguish unintended nulls
2567   // from intended ones in this API.
2568 
2569   if (!is_store) {
2570     Node* p = nullptr;
2571     // Try to constant fold a load from a constant field
2572 
2573     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2574       // final or stable field
2575       p = make_constant_from_field(field, heap_base_oop);
2576     }
2577 
2578     if (p == nullptr) { // Could not constant fold the load
2579       if (is_flat) {
2580         if (adr_type->isa_instptr() && !mismatched) {
2581           ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2582           int offset = adr_type->is_instptr()->offset();
2583           p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, holder, offset, decorators);
2584         } else {
2585           p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, 0, decorators);
2586         }
2587       } else {
2588         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2589         const TypeOopPtr* ptr = value_type->make_oopptr();
2590         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2591           // Load a non-flattened inline type from memory
2592           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass(), !ptr->maybe_null());
2593         }
2594       }
2595       // Normalize the value returned by getBoolean in the following cases
2596       if (type == T_BOOLEAN &&
2597           (mismatched ||
2598            heap_base_oop == top() ||                  // - heap_base_oop is null or
2599            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2600                                                       //   and the unsafe access is made to large offset
2601                                                       //   (i.e., larger than the maximum offset necessary for any
2602                                                       //   field access)
2603             ) {
2604           IdealKit ideal = IdealKit(this);
2605 #define __ ideal.
2606           IdealVariable normalized_result(ideal);
2607           __ declarations_done();
2608           __ set(normalized_result, p);
2609           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2610           __ set(normalized_result, ideal.ConI(1));
2611           ideal.end_if();
2612           final_sync(ideal);
2613           p = __ value(normalized_result);
2614 #undef __
2615       }
2616     }
2617     if (type == T_ADDRESS) {
2618       p = gvn().transform(new CastP2XNode(nullptr, p));
2619       p = ConvX2UL(p);
2620     }
2621     // The load node has the control of the preceding MemBarCPUOrder.  All
2622     // following nodes will have the control of the MemBarCPUOrder inserted at
2623     // the end of this method.  So, pushing the load onto the stack at a later
2624     // point is fine.
2625     set_result(p);
2626   } else {
2627     if (bt == T_ADDRESS) {
2628       // Repackage the long as a pointer.
2629       val = ConvL2X(val);
2630       val = gvn().transform(new CastX2PNode(val));
2631     }
2632     if (is_flat) {
2633       if (adr_type->isa_instptr() && !mismatched) {
2634         ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2635         int offset = adr_type->is_instptr()->offset();
2636         val->as_InlineType()->store_flat(this, base, base, holder, offset, decorators);
2637       } else {
2638         val->as_InlineType()->store_flat(this, base, adr, nullptr, 0, decorators);
2639       }
2640     } else {
2641       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2642     }
2643   }
2644 
2645   if (argument(1)->is_InlineType() && is_store) {
2646     InlineTypeNode* value = InlineTypeNode::make_from_oop(this, base, _gvn.type(argument(1))->inline_klass());
2647     value = value->make_larval(this, false);
2648     replace_in_map(argument(1), value);
2649   }
2650 
2651   return true;
2652 }
2653 
2654 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2655   Node* receiver = argument(0);
2656   Node* value = argument(1);
2657   if (!value->is_InlineType()) {
2658     return false;
2659   }
2660 
2661   receiver = null_check(receiver);
2662   if (stopped()) {
2663     return true;
2664   }
2665 
2666   set_result(value->as_InlineType()->make_larval(this, true));
2667   return true;
2668 }
2669 
2670 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2671   Node* receiver = argument(0);
2672   Node* buffer = argument(1);
2673   if (!buffer->is_InlineType()) {
2674     return false;
2675   }
2676   InlineTypeNode* vt = buffer->as_InlineType();
2677   if (!vt->is_allocated(&_gvn)) {
2678     return false;
2679   }
2680   // TODO 8239003 Why is this needed?
2681   if (AllocateNode::Ideal_allocation(vt->get_oop()) == nullptr) {
2682     return false;
2683   }
2684 
2685   receiver = null_check(receiver);
2686   if (stopped()) {
2687     return true;
2688   }
2689 
2690   set_result(vt->finish_larval(this));
2691   return true;
2692 }
2693 
2694 //----------------------------inline_unsafe_load_store----------------------------
2695 // This method serves a couple of different customers (depending on LoadStoreKind):
2696 //
2697 // LS_cmp_swap:
2698 //
2699 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2700 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2701 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2702 //
2703 // LS_cmp_swap_weak:
2704 //
2705 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2706 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2707 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2708 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2709 //
2710 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2711 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2712 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2713 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2714 //
2715 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2716 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2717 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2718 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2719 //
2720 // LS_cmp_exchange:
2721 //
2722 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2723 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2724 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2725 //
2726 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2727 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2728 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2729 //
2730 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2731 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2732 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2733 //
2734 // LS_get_add:
2735 //
2736 //   int  getAndAddInt( Object o, long offset, int  delta)
2737 //   long getAndAddLong(Object o, long offset, long delta)
2738 //
2739 // LS_get_set:
2740 //
2741 //   int    getAndSet(Object o, long offset, int    newValue)
2742 //   long   getAndSet(Object o, long offset, long   newValue)
2743 //   Object getAndSet(Object o, long offset, Object newValue)
2744 //
2745 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2746   // This basic scheme here is the same as inline_unsafe_access, but
2747   // differs in enough details that combining them would make the code
2748   // overly confusing.  (This is a true fact! I originally combined
2749   // them, but even I was confused by it!) As much code/comments as
2750   // possible are retained from inline_unsafe_access though to make
2751   // the correspondences clearer. - dl
2752 
2753   if (callee()->is_static())  return false;  // caller must have the capability!
2754 
2755   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2756   decorators |= mo_decorator_for_access_kind(access_kind);
2757 
2758 #ifndef PRODUCT
2759   BasicType rtype;
2760   {
2761     ResourceMark rm;
2762     // Check the signatures.
2763     ciSignature* sig = callee()->signature();
2764     rtype = sig->return_type()->basic_type();
2765     switch(kind) {
2766       case LS_get_add:
2767       case LS_get_set: {
2768       // Check the signatures.
2769 #ifdef ASSERT
2770       assert(rtype == type, "get and set must return the expected type");
2771       assert(sig->count() == 3, "get and set has 3 arguments");
2772       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2773       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2774       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2775       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2776 #endif // ASSERT
2777         break;
2778       }
2779       case LS_cmp_swap:
2780       case LS_cmp_swap_weak: {
2781       // Check the signatures.
2782 #ifdef ASSERT
2783       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2784       assert(sig->count() == 4, "CAS has 4 arguments");
2785       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2786       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2787 #endif // ASSERT
2788         break;
2789       }
2790       case LS_cmp_exchange: {
2791       // Check the signatures.
2792 #ifdef ASSERT
2793       assert(rtype == type, "CAS must return the expected type");
2794       assert(sig->count() == 4, "CAS has 4 arguments");
2795       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2796       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2797 #endif // ASSERT
2798         break;
2799       }
2800       default:
2801         ShouldNotReachHere();
2802     }
2803   }
2804 #endif //PRODUCT
2805 
2806   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2807 
2808   // Get arguments:
2809   Node* receiver = nullptr;
2810   Node* base     = nullptr;
2811   Node* offset   = nullptr;
2812   Node* oldval   = nullptr;
2813   Node* newval   = nullptr;
2814   switch(kind) {
2815     case LS_cmp_swap:
2816     case LS_cmp_swap_weak:
2817     case LS_cmp_exchange: {
2818       const bool two_slot_type = type2size[type] == 2;
2819       receiver = argument(0);  // type: oop
2820       base     = argument(1);  // type: oop
2821       offset   = argument(2);  // type: long
2822       oldval   = argument(4);  // type: oop, int, or long
2823       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2824       break;
2825     }
2826     case LS_get_add:
2827     case LS_get_set: {
2828       receiver = argument(0);  // type: oop
2829       base     = argument(1);  // type: oop
2830       offset   = argument(2);  // type: long
2831       oldval   = nullptr;
2832       newval   = argument(4);  // type: oop, int, or long
2833       break;
2834     }
2835     default:
2836       ShouldNotReachHere();
2837   }
2838 
2839   // Build field offset expression.
2840   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2841   // to be plain byte offsets, which are also the same as those accepted
2842   // by oopDesc::field_addr.
2843   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2844   // 32-bit machines ignore the high half of long offsets
2845   offset = ConvL2X(offset);
2846   // Save state and restore on bailout
2847   uint old_sp = sp();
2848   SafePointNode* old_map = clone_map();
2849   Node* adr = make_unsafe_address(base, offset,type, false);
2850   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2851 
2852   Compile::AliasType* alias_type = C->alias_type(adr_type);
2853   BasicType bt = alias_type->basic_type();
2854   if (bt != T_ILLEGAL &&
2855       (is_reference_type(bt) != (type == T_OBJECT))) {
2856     // Don't intrinsify mismatched object accesses.
2857     set_map(old_map);
2858     set_sp(old_sp);
2859     return false;
2860   }
2861 
2862   destruct_map_clone(old_map);
2863 
2864   // For CAS, unlike inline_unsafe_access, there seems no point in
2865   // trying to refine types. Just use the coarse types here.
2866   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2867   const Type *value_type = Type::get_const_basic_type(type);
2868 
2869   switch (kind) {
2870     case LS_get_set:
2871     case LS_cmp_exchange: {
2872       if (type == T_OBJECT) {
2873         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2874         if (tjp != nullptr) {
2875           value_type = tjp;
2876         }
2877       }
2878       break;
2879     }
2880     case LS_cmp_swap:
2881     case LS_cmp_swap_weak:
2882     case LS_get_add:
2883       break;
2884     default:
2885       ShouldNotReachHere();
2886   }
2887 
2888   // Null check receiver.
2889   receiver = null_check(receiver);
2890   if (stopped()) {
2891     return true;
2892   }
2893 
2894   int alias_idx = C->get_alias_index(adr_type);
2895 
2896   if (is_reference_type(type)) {
2897     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2898 
2899     if (oldval != nullptr && oldval->is_InlineType()) {
2900       // Re-execute the unsafe access if allocation triggers deoptimization.
2901       PreserveReexecuteState preexecs(this);
2902       jvms()->set_should_reexecute(true);
2903       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
2904     }
2905     if (newval != nullptr && newval->is_InlineType()) {
2906       // Re-execute the unsafe access if allocation triggers deoptimization.
2907       PreserveReexecuteState preexecs(this);
2908       jvms()->set_should_reexecute(true);
2909       newval = newval->as_InlineType()->buffer(this)->get_oop();
2910     }
2911 
2912     // Transformation of a value which could be null pointer (CastPP #null)
2913     // could be delayed during Parse (for example, in adjust_map_after_if()).
2914     // Execute transformation here to avoid barrier generation in such case.
2915     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2916       newval = _gvn.makecon(TypePtr::NULL_PTR);
2917 
2918     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2919       // Refine the value to a null constant, when it is known to be null
2920       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2921     }
2922   }
2923 
2924   Node* result = nullptr;
2925   switch (kind) {
2926     case LS_cmp_exchange: {
2927       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2928                                             oldval, newval, value_type, type, decorators);
2929       break;
2930     }
2931     case LS_cmp_swap_weak:
2932       decorators |= C2_WEAK_CMPXCHG;
2933     case LS_cmp_swap: {
2934       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2935                                              oldval, newval, value_type, type, decorators);
2936       break;
2937     }
2938     case LS_get_set: {
2939       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2940                                      newval, value_type, type, decorators);
2941       break;
2942     }
2943     case LS_get_add: {
2944       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2945                                     newval, value_type, type, decorators);
2946       break;
2947     }
2948     default:
2949       ShouldNotReachHere();
2950   }
2951 
2952   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2953   set_result(result);
2954   return true;
2955 }
2956 
2957 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2958   // Regardless of form, don't allow previous ld/st to move down,
2959   // then issue acquire, release, or volatile mem_bar.
2960   insert_mem_bar(Op_MemBarCPUOrder);
2961   switch(id) {
2962     case vmIntrinsics::_loadFence:
2963       insert_mem_bar(Op_LoadFence);
2964       return true;
2965     case vmIntrinsics::_storeFence:
2966       insert_mem_bar(Op_StoreFence);
2967       return true;
2968     case vmIntrinsics::_storeStoreFence:
2969       insert_mem_bar(Op_StoreStoreFence);
2970       return true;
2971     case vmIntrinsics::_fullFence:
2972       insert_mem_bar(Op_MemBarVolatile);
2973       return true;
2974     default:
2975       fatal_unexpected_iid(id);
2976       return false;
2977   }
2978 }
2979 
2980 bool LibraryCallKit::inline_onspinwait() {
2981   insert_mem_bar(Op_OnSpinWait);
2982   return true;
2983 }
2984 
2985 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2986   if (!kls->is_Con()) {
2987     return true;
2988   }
2989   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2990   if (klsptr == nullptr) {
2991     return true;
2992   }
2993   ciInstanceKlass* ik = klsptr->instance_klass();
2994   // don't need a guard for a klass that is already initialized
2995   return !ik->is_initialized();
2996 }
2997 
2998 //----------------------------inline_unsafe_writeback0-------------------------
2999 // public native void Unsafe.writeback0(long address)
3000 bool LibraryCallKit::inline_unsafe_writeback0() {
3001   if (!Matcher::has_match_rule(Op_CacheWB)) {
3002     return false;
3003   }
3004 #ifndef PRODUCT
3005   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
3006   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
3007   ciSignature* sig = callee()->signature();
3008   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
3009 #endif
3010   null_check_receiver();  // null-check, then ignore
3011   Node *addr = argument(1);
3012   addr = new CastX2PNode(addr);
3013   addr = _gvn.transform(addr);
3014   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
3015   flush = _gvn.transform(flush);
3016   set_memory(flush, TypeRawPtr::BOTTOM);
3017   return true;
3018 }
3019 
3020 //----------------------------inline_unsafe_writeback0-------------------------
3021 // public native void Unsafe.writeback0(long address)
3022 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
3023   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
3024     return false;
3025   }
3026   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
3027     return false;
3028   }
3029 #ifndef PRODUCT
3030   assert(Matcher::has_match_rule(Op_CacheWB),
3031          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
3032                 : "found match rule for CacheWBPostSync but not CacheWB"));
3033 
3034 #endif
3035   null_check_receiver();  // null-check, then ignore
3036   Node *sync;
3037   if (is_pre) {
3038     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
3039   } else {
3040     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
3041   }
3042   sync = _gvn.transform(sync);
3043   set_memory(sync, TypeRawPtr::BOTTOM);
3044   return true;
3045 }
3046 
3047 //----------------------------inline_unsafe_allocate---------------------------
3048 // public native Object Unsafe.allocateInstance(Class<?> cls);
3049 bool LibraryCallKit::inline_unsafe_allocate() {
3050 
3051 #if INCLUDE_JVMTI
3052   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3053     return false;
3054   }
3055 #endif //INCLUDE_JVMTI
3056 
3057   if (callee()->is_static())  return false;  // caller must have the capability!
3058 
3059   null_check_receiver();  // null-check, then ignore
3060   Node* cls = null_check(argument(1));
3061   if (stopped())  return true;
3062 
3063   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
3064   kls = null_check(kls);
3065   if (stopped())  return true;  // argument was like int.class
3066 
3067 #if INCLUDE_JVMTI
3068     // Don't try to access new allocated obj in the intrinsic.
3069     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
3070     // Deoptimize and allocate in interpreter instead.
3071     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
3072     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
3073     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
3074     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3075     {
3076       BuildCutout unless(this, tst, PROB_MAX);
3077       uncommon_trap(Deoptimization::Reason_intrinsic,
3078                     Deoptimization::Action_make_not_entrant);
3079     }
3080     if (stopped()) {
3081       return true;
3082     }
3083 #endif //INCLUDE_JVMTI
3084 
3085   Node* test = nullptr;
3086   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3087     // Note:  The argument might still be an illegal value like
3088     // Serializable.class or Object[].class.   The runtime will handle it.
3089     // But we must make an explicit check for initialization.
3090     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3091     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3092     // can generate code to load it as unsigned byte.
3093     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3094     Node* bits = intcon(InstanceKlass::fully_initialized);
3095     test = _gvn.transform(new SubINode(inst, bits));
3096     // The 'test' is non-zero if we need to take a slow path.
3097   }
3098   Node* obj = nullptr;
3099   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3100   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3101     obj = InlineTypeNode::make_default(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3102   } else {
3103     obj = new_instance(kls, test);
3104   }
3105   set_result(obj);
3106   return true;
3107 }
3108 
3109 //------------------------inline_native_time_funcs--------------
3110 // inline code for System.currentTimeMillis() and System.nanoTime()
3111 // these have the same type and signature
3112 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3113   const TypeFunc* tf = OptoRuntime::void_long_Type();
3114   const TypePtr* no_memory_effects = nullptr;
3115   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3116   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3117 #ifdef ASSERT
3118   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3119   assert(value_top == top(), "second value must be top");
3120 #endif
3121   set_result(value);
3122   return true;
3123 }
3124 
3125 
3126 #if INCLUDE_JVMTI
3127 
3128 // When notifications are disabled then just update the VTMS transition bit and return.
3129 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
3130 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
3131   if (!DoJVMTIVirtualThreadTransitions) {
3132     return true;
3133   }
3134   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
3135   IdealKit ideal(this);
3136 
3137   Node* ONE = ideal.ConI(1);
3138   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
3139   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
3140   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3141 
3142   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
3143     sync_kit(ideal);
3144     // if notifyJvmti enabled then make a call to the given SharedRuntime function
3145     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
3146     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
3147     ideal.sync_kit(this);
3148   } ideal.else_(); {
3149     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
3150     Node* thread = ideal.thread();
3151     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
3152     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
3153     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3154 
3155     sync_kit(ideal);
3156     access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3157     access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3158 
3159     ideal.sync_kit(this);
3160   } ideal.end_if();
3161   final_sync(ideal);
3162 
3163   return true;
3164 }
3165 
3166 // Always update the temporary VTMS transition bit.
3167 bool LibraryCallKit::inline_native_notify_jvmti_hide() {
3168   if (!DoJVMTIVirtualThreadTransitions) {
3169     return true;
3170   }
3171   IdealKit ideal(this);
3172 
3173   {
3174     // unconditionally update the temporary VTMS transition bit in current JavaThread
3175     Node* thread = ideal.thread();
3176     Node* hide = _gvn.transform(argument(0)); // hide argument for temporary VTMS transition notification
3177     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset()));
3178     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3179 
3180     sync_kit(ideal);
3181     access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3182     ideal.sync_kit(this);
3183   }
3184   final_sync(ideal);
3185 
3186   return true;
3187 }
3188 
3189 // Always update the is_disable_suspend bit.
3190 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
3191   if (!DoJVMTIVirtualThreadTransitions) {
3192     return true;
3193   }
3194   IdealKit ideal(this);
3195 
3196   {
3197     // unconditionally update the is_disable_suspend bit in current JavaThread
3198     Node* thread = ideal.thread();
3199     Node* arg = _gvn.transform(argument(0)); // argument for notification
3200     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
3201     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3202 
3203     sync_kit(ideal);
3204     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3205     ideal.sync_kit(this);
3206   }
3207   final_sync(ideal);
3208 
3209   return true;
3210 }
3211 
3212 #endif // INCLUDE_JVMTI
3213 
3214 #ifdef JFR_HAVE_INTRINSICS
3215 
3216 /**
3217  * if oop->klass != null
3218  *   // normal class
3219  *   epoch = _epoch_state ? 2 : 1
3220  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3221  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3222  *   }
3223  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3224  * else
3225  *   // primitive class
3226  *   if oop->array_klass != null
3227  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3228  *   else
3229  *     id = LAST_TYPE_ID + 1 // void class path
3230  *   if (!signaled)
3231  *     signaled = true
3232  */
3233 bool LibraryCallKit::inline_native_classID() {
3234   Node* cls = argument(0);
3235 
3236   IdealKit ideal(this);
3237 #define __ ideal.
3238   IdealVariable result(ideal); __ declarations_done();
3239   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3240                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3241                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3242 
3243 
3244   __ if_then(kls, BoolTest::ne, null()); {
3245     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3246     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3247 
3248     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3249     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3250     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3251     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3252     mask = _gvn.transform(new OrLNode(mask, epoch));
3253     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3254 
3255     float unlikely  = PROB_UNLIKELY(0.999);
3256     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3257       sync_kit(ideal);
3258       make_runtime_call(RC_LEAF,
3259                         OptoRuntime::class_id_load_barrier_Type(),
3260                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3261                         "class id load barrier",
3262                         TypePtr::BOTTOM,
3263                         kls);
3264       ideal.sync_kit(this);
3265     } __ end_if();
3266 
3267     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3268   } __ else_(); {
3269     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3270                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3271                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3272     __ if_then(array_kls, BoolTest::ne, null()); {
3273       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3274       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3275       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3276       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3277     } __ else_(); {
3278       // void class case
3279       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3280     } __ end_if();
3281 
3282     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3283     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3284     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3285       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3286     } __ end_if();
3287   } __ end_if();
3288 
3289   final_sync(ideal);
3290   set_result(ideal.value(result));
3291 #undef __
3292   return true;
3293 }
3294 
3295 //------------------------inline_native_jvm_commit------------------
3296 bool LibraryCallKit::inline_native_jvm_commit() {
3297   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3298 
3299   // Save input memory and i_o state.
3300   Node* input_memory_state = reset_memory();
3301   set_all_memory(input_memory_state);
3302   Node* input_io_state = i_o();
3303 
3304   // TLS.
3305   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3306   // Jfr java buffer.
3307   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3308   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3309   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3310 
3311   // Load the current value of the notified field in the JfrThreadLocal.
3312   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3313   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3314 
3315   // Test for notification.
3316   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3317   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3318   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3319 
3320   // True branch, is notified.
3321   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3322   set_control(is_notified);
3323 
3324   // Reset notified state.
3325   Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered);
3326 
3327   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3328   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3329   // Convert the machine-word to a long.
3330   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3331 
3332   // False branch, not notified.
3333   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3334   set_control(not_notified);
3335   set_all_memory(input_memory_state);
3336 
3337   // Arg is the next position as a long.
3338   Node* arg = argument(0);
3339   // Convert long to machine-word.
3340   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3341 
3342   // Store the next_position to the underlying jfr java buffer.
3343   Node* commit_memory;
3344 #ifdef _LP64
3345   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release);
3346 #else
3347   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release);
3348 #endif
3349 
3350   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3351   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3352   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3353   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3354 
3355   // And flags with lease constant.
3356   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3357 
3358   // Branch on lease to conditionalize returning the leased java buffer.
3359   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3360   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3361   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3362 
3363   // False branch, not a lease.
3364   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3365 
3366   // True branch, is lease.
3367   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3368   set_control(is_lease);
3369 
3370   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3371   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3372                                               OptoRuntime::void_void_Type(),
3373                                               StubRoutines::jfr_return_lease(),
3374                                               "return_lease", TypePtr::BOTTOM);
3375   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3376 
3377   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3378   record_for_igvn(lease_compare_rgn);
3379   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3380   record_for_igvn(lease_compare_mem);
3381   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3382   record_for_igvn(lease_compare_io);
3383   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3384   record_for_igvn(lease_result_value);
3385 
3386   // Update control and phi nodes.
3387   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3388   lease_compare_rgn->init_req(_false_path, not_lease);
3389 
3390   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3391   lease_compare_mem->init_req(_false_path, commit_memory);
3392 
3393   lease_compare_io->init_req(_true_path, i_o());
3394   lease_compare_io->init_req(_false_path, input_io_state);
3395 
3396   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3397   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3398 
3399   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3400   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3401   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3402   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3403 
3404   // Update control and phi nodes.
3405   result_rgn->init_req(_true_path, is_notified);
3406   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3407 
3408   result_mem->init_req(_true_path, notified_reset_memory);
3409   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3410 
3411   result_io->init_req(_true_path, input_io_state);
3412   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3413 
3414   result_value->init_req(_true_path, current_pos);
3415   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3416 
3417   // Set output state.
3418   set_control(_gvn.transform(result_rgn));
3419   set_all_memory(_gvn.transform(result_mem));
3420   set_i_o(_gvn.transform(result_io));
3421   set_result(result_rgn, result_value);
3422   return true;
3423 }
3424 
3425 /*
3426  * The intrinsic is a model of this pseudo-code:
3427  *
3428  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3429  * jobject h_event_writer = tl->java_event_writer();
3430  * if (h_event_writer == nullptr) {
3431  *   return nullptr;
3432  * }
3433  * oop threadObj = Thread::threadObj();
3434  * oop vthread = java_lang_Thread::vthread(threadObj);
3435  * traceid tid;
3436  * bool excluded;
3437  * if (vthread != threadObj) {  // i.e. current thread is virtual
3438  *   tid = java_lang_Thread::tid(vthread);
3439  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3440  *   excluded = vthread_epoch_raw & excluded_mask;
3441  *   if (!excluded) {
3442  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3443  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3444  *     if (vthread_epoch != current_epoch) {
3445  *       write_checkpoint();
3446  *     }
3447  *   }
3448  * } else {
3449  *   tid = java_lang_Thread::tid(threadObj);
3450  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3451  *   excluded = thread_epoch_raw & excluded_mask;
3452  * }
3453  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3454  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3455  * if (tid_in_event_writer != tid) {
3456  *   setField(event_writer, "threadID", tid);
3457  *   setField(event_writer, "excluded", excluded);
3458  * }
3459  * return event_writer
3460  */
3461 bool LibraryCallKit::inline_native_getEventWriter() {
3462   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3463 
3464   // Save input memory and i_o state.
3465   Node* input_memory_state = reset_memory();
3466   set_all_memory(input_memory_state);
3467   Node* input_io_state = i_o();
3468 
3469   Node* excluded_mask = _gvn.intcon(32768);
3470   Node* epoch_mask = _gvn.intcon(32767);
3471 
3472   // TLS
3473   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3474 
3475   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3476   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3477 
3478   // Load the eventwriter jobject handle.
3479   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3480 
3481   // Null check the jobject handle.
3482   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3483   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3484   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3485 
3486   // False path, jobj is null.
3487   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3488 
3489   // True path, jobj is not null.
3490   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3491 
3492   set_control(jobj_is_not_null);
3493 
3494   // Load the threadObj for the CarrierThread.
3495   Node* threadObj = generate_current_thread(tls_ptr);
3496 
3497   // Load the vthread.
3498   Node* vthread = generate_virtual_thread(tls_ptr);
3499 
3500   // If vthread != threadObj, this is a virtual thread.
3501   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3502   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3503   IfNode* iff_vthread_not_equal_threadObj =
3504     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3505 
3506   // False branch, fallback to threadObj.
3507   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3508   set_control(vthread_equal_threadObj);
3509 
3510   // Load the tid field from the vthread object.
3511   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3512 
3513   // Load the raw epoch value from the threadObj.
3514   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3515   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3516                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3517 
3518   // Mask off the excluded information from the epoch.
3519   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3520 
3521   // True branch, this is a virtual thread.
3522   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3523   set_control(vthread_not_equal_threadObj);
3524 
3525   // Load the tid field from the vthread object.
3526   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3527 
3528   // Load the raw epoch value from the vthread.
3529   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3530   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3531                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3532 
3533   // Mask off the excluded information from the epoch.
3534   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3535 
3536   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3537   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3538   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3539   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3540 
3541   // False branch, vthread is excluded, no need to write epoch info.
3542   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3543 
3544   // True branch, vthread is included, update epoch info.
3545   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3546   set_control(included);
3547 
3548   // Get epoch value.
3549   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3550 
3551   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3552   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3553   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3554 
3555   // Compare the epoch in the vthread to the current epoch generation.
3556   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3557   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3558   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3559 
3560   // False path, epoch is equal, checkpoint information is valid.
3561   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3562 
3563   // True path, epoch is not equal, write a checkpoint for the vthread.
3564   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3565 
3566   set_control(epoch_is_not_equal);
3567 
3568   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3569   // The call also updates the native thread local thread id and the vthread with the current epoch.
3570   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3571                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3572                                                   StubRoutines::jfr_write_checkpoint(),
3573                                                   "write_checkpoint", TypePtr::BOTTOM);
3574   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3575 
3576   // vthread epoch != current epoch
3577   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3578   record_for_igvn(epoch_compare_rgn);
3579   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3580   record_for_igvn(epoch_compare_mem);
3581   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3582   record_for_igvn(epoch_compare_io);
3583 
3584   // Update control and phi nodes.
3585   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3586   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3587   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3588   epoch_compare_mem->init_req(_false_path, input_memory_state);
3589   epoch_compare_io->init_req(_true_path, i_o());
3590   epoch_compare_io->init_req(_false_path, input_io_state);
3591 
3592   // excluded != true
3593   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3594   record_for_igvn(exclude_compare_rgn);
3595   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3596   record_for_igvn(exclude_compare_mem);
3597   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3598   record_for_igvn(exclude_compare_io);
3599 
3600   // Update control and phi nodes.
3601   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3602   exclude_compare_rgn->init_req(_false_path, excluded);
3603   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3604   exclude_compare_mem->init_req(_false_path, input_memory_state);
3605   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3606   exclude_compare_io->init_req(_false_path, input_io_state);
3607 
3608   // vthread != threadObj
3609   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3610   record_for_igvn(vthread_compare_rgn);
3611   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3612   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3613   record_for_igvn(vthread_compare_io);
3614   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3615   record_for_igvn(tid);
3616   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3617   record_for_igvn(exclusion);
3618 
3619   // Update control and phi nodes.
3620   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3621   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3622   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3623   vthread_compare_mem->init_req(_false_path, input_memory_state);
3624   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3625   vthread_compare_io->init_req(_false_path, input_io_state);
3626   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3627   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3628   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3629   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3630 
3631   // Update branch state.
3632   set_control(_gvn.transform(vthread_compare_rgn));
3633   set_all_memory(_gvn.transform(vthread_compare_mem));
3634   set_i_o(_gvn.transform(vthread_compare_io));
3635 
3636   // Load the event writer oop by dereferencing the jobject handle.
3637   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3638   assert(klass_EventWriter->is_loaded(), "invariant");
3639   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3640   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3641   const TypeOopPtr* const xtype = aklass->as_instance_type();
3642   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3643   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3644 
3645   // Load the current thread id from the event writer object.
3646   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3647   // Get the field offset to, conditionally, store an updated tid value later.
3648   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3649   const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr();
3650   // Get the field offset to, conditionally, store an updated exclusion value later.
3651   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3652   const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr();
3653 
3654   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3655   record_for_igvn(event_writer_tid_compare_rgn);
3656   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3657   record_for_igvn(event_writer_tid_compare_mem);
3658   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3659   record_for_igvn(event_writer_tid_compare_io);
3660 
3661   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3662   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3663   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3664   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3665 
3666   // False path, tids are the same.
3667   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3668 
3669   // True path, tid is not equal, need to update the tid in the event writer.
3670   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3671   record_for_igvn(tid_is_not_equal);
3672 
3673   // Store the exclusion state to the event writer.
3674   store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered);
3675 
3676   // Store the tid to the event writer.
3677   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered);
3678 
3679   // Update control and phi nodes.
3680   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3681   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3682   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3683   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3684   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3685   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3686 
3687   // Result of top level CFG, Memory, IO and Value.
3688   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3689   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3690   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3691   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3692 
3693   // Result control.
3694   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3695   result_rgn->init_req(_false_path, jobj_is_null);
3696 
3697   // Result memory.
3698   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3699   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3700 
3701   // Result IO.
3702   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3703   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3704 
3705   // Result value.
3706   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3707   result_value->init_req(_false_path, null()); // return null
3708 
3709   // Set output state.
3710   set_control(_gvn.transform(result_rgn));
3711   set_all_memory(_gvn.transform(result_mem));
3712   set_i_o(_gvn.transform(result_io));
3713   set_result(result_rgn, result_value);
3714   return true;
3715 }
3716 
3717 /*
3718  * The intrinsic is a model of this pseudo-code:
3719  *
3720  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3721  * if (carrierThread != thread) { // is virtual thread
3722  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3723  *   bool excluded = vthread_epoch_raw & excluded_mask;
3724  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3725  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3726  *   if (!excluded) {
3727  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3728  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3729  *   }
3730  *   Atomic::release_store(&tl->_vthread, true);
3731  *   return;
3732  * }
3733  * Atomic::release_store(&tl->_vthread, false);
3734  */
3735 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3736   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3737 
3738   Node* input_memory_state = reset_memory();
3739   set_all_memory(input_memory_state);
3740 
3741   Node* excluded_mask = _gvn.intcon(32768);
3742   Node* epoch_mask = _gvn.intcon(32767);
3743 
3744   Node* const carrierThread = generate_current_thread(jt);
3745   // If thread != carrierThread, this is a virtual thread.
3746   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3747   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3748   IfNode* iff_thread_not_equal_carrierThread =
3749     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3750 
3751   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3752 
3753   // False branch, is carrierThread.
3754   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3755   // Store release
3756   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3757 
3758   set_all_memory(input_memory_state);
3759 
3760   // True branch, is virtual thread.
3761   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3762   set_control(thread_not_equal_carrierThread);
3763 
3764   // Load the raw epoch value from the vthread.
3765   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3766   Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3767                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3768 
3769   // Mask off the excluded information from the epoch.
3770   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3771 
3772   // Load the tid field from the thread.
3773   Node* tid = load_field_from_object(thread, "tid", "J");
3774 
3775   // Store the vthread tid to the jfr thread local.
3776   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3777   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true);
3778 
3779   // Branch is_excluded to conditionalize updating the epoch .
3780   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3781   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3782   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3783 
3784   // True branch, vthread is excluded, no need to write epoch info.
3785   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3786   set_control(excluded);
3787   Node* vthread_is_excluded = _gvn.intcon(1);
3788 
3789   // False branch, vthread is included, update epoch info.
3790   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3791   set_control(included);
3792   Node* vthread_is_included = _gvn.intcon(0);
3793 
3794   // Get epoch value.
3795   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3796 
3797   // Store the vthread epoch to the jfr thread local.
3798   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3799   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true);
3800 
3801   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3802   record_for_igvn(excluded_rgn);
3803   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3804   record_for_igvn(excluded_mem);
3805   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3806   record_for_igvn(exclusion);
3807 
3808   // Merge the excluded control and memory.
3809   excluded_rgn->init_req(_true_path, excluded);
3810   excluded_rgn->init_req(_false_path, included);
3811   excluded_mem->init_req(_true_path, tid_memory);
3812   excluded_mem->init_req(_false_path, included_memory);
3813   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3814   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3815 
3816   // Set intermediate state.
3817   set_control(_gvn.transform(excluded_rgn));
3818   set_all_memory(excluded_mem);
3819 
3820   // Store the vthread exclusion state to the jfr thread local.
3821   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3822   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true);
3823 
3824   // Store release
3825   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3826 
3827   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3828   record_for_igvn(thread_compare_rgn);
3829   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3830   record_for_igvn(thread_compare_mem);
3831   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3832   record_for_igvn(vthread);
3833 
3834   // Merge the thread_compare control and memory.
3835   thread_compare_rgn->init_req(_true_path, control());
3836   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3837   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3838   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3839 
3840   // Set output state.
3841   set_control(_gvn.transform(thread_compare_rgn));
3842   set_all_memory(_gvn.transform(thread_compare_mem));
3843 }
3844 
3845 #endif // JFR_HAVE_INTRINSICS
3846 
3847 //------------------------inline_native_currentCarrierThread------------------
3848 bool LibraryCallKit::inline_native_currentCarrierThread() {
3849   Node* junk = nullptr;
3850   set_result(generate_current_thread(junk));
3851   return true;
3852 }
3853 
3854 //------------------------inline_native_currentThread------------------
3855 bool LibraryCallKit::inline_native_currentThread() {
3856   Node* junk = nullptr;
3857   set_result(generate_virtual_thread(junk));
3858   return true;
3859 }
3860 
3861 //------------------------inline_native_setVthread------------------
3862 bool LibraryCallKit::inline_native_setCurrentThread() {
3863   assert(C->method()->changes_current_thread(),
3864          "method changes current Thread but is not annotated ChangesCurrentThread");
3865   Node* arr = argument(1);
3866   Node* thread = _gvn.transform(new ThreadLocalNode());
3867   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3868   Node* thread_obj_handle
3869     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3870   thread_obj_handle = _gvn.transform(thread_obj_handle);
3871   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3872   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3873   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3874   return true;
3875 }
3876 
3877 const Type* LibraryCallKit::scopedValueCache_type() {
3878   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3879   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3880   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3881 
3882   // Because we create the scopedValue cache lazily we have to make the
3883   // type of the result BotPTR.
3884   bool xk = etype->klass_is_exact();
3885   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
3886   return objects_type;
3887 }
3888 
3889 Node* LibraryCallKit::scopedValueCache_helper() {
3890   Node* thread = _gvn.transform(new ThreadLocalNode());
3891   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3892   // We cannot use immutable_memory() because we might flip onto a
3893   // different carrier thread, at which point we'll need to use that
3894   // carrier thread's cache.
3895   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3896   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3897   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3898 }
3899 
3900 //------------------------inline_native_scopedValueCache------------------
3901 bool LibraryCallKit::inline_native_scopedValueCache() {
3902   Node* cache_obj_handle = scopedValueCache_helper();
3903   const Type* objects_type = scopedValueCache_type();
3904   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3905 
3906   return true;
3907 }
3908 
3909 //------------------------inline_native_setScopedValueCache------------------
3910 bool LibraryCallKit::inline_native_setScopedValueCache() {
3911   Node* arr = argument(0);
3912   Node* cache_obj_handle = scopedValueCache_helper();
3913   const Type* objects_type = scopedValueCache_type();
3914 
3915   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3916   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3917 
3918   return true;
3919 }
3920 
3921 //-----------------------load_klass_from_mirror_common-------------------------
3922 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3923 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3924 // and branch to the given path on the region.
3925 // If never_see_null, take an uncommon trap on null, so we can optimistically
3926 // compile for the non-null case.
3927 // If the region is null, force never_see_null = true.
3928 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3929                                                     bool never_see_null,
3930                                                     RegionNode* region,
3931                                                     int null_path,
3932                                                     int offset) {
3933   if (region == nullptr)  never_see_null = true;
3934   Node* p = basic_plus_adr(mirror, offset);
3935   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3936   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3937   Node* null_ctl = top();
3938   kls = null_check_oop(kls, &null_ctl, never_see_null);
3939   if (region != nullptr) {
3940     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3941     region->init_req(null_path, null_ctl);
3942   } else {
3943     assert(null_ctl == top(), "no loose ends");
3944   }
3945   return kls;
3946 }
3947 
3948 //--------------------(inline_native_Class_query helpers)---------------------
3949 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3950 // Fall through if (mods & mask) == bits, take the guard otherwise.
3951 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3952   // Branch around if the given klass has the given modifier bit set.
3953   // Like generate_guard, adds a new path onto the region.
3954   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3955   Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered);
3956   Node* mask = intcon(modifier_mask);
3957   Node* bits = intcon(modifier_bits);
3958   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3959   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3960   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3961   return generate_fair_guard(bol, region);
3962 }
3963 
3964 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3965   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3966 }
3967 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3968   return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region);
3969 }
3970 
3971 //-------------------------inline_native_Class_query-------------------
3972 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3973   const Type* return_type = TypeInt::BOOL;
3974   Node* prim_return_value = top();  // what happens if it's a primitive class?
3975   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3976   bool expect_prim = false;     // most of these guys expect to work on refs
3977 
3978   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3979 
3980   Node* mirror = argument(0);
3981   Node* obj    = top();
3982 
3983   switch (id) {
3984   case vmIntrinsics::_isInstance:
3985     // nothing is an instance of a primitive type
3986     prim_return_value = intcon(0);
3987     obj = argument(1);
3988     break;
3989   case vmIntrinsics::_getModifiers:
3990     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3991     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3992     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3993     break;
3994   case vmIntrinsics::_isInterface:
3995     prim_return_value = intcon(0);
3996     break;
3997   case vmIntrinsics::_isArray:
3998     prim_return_value = intcon(0);
3999     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
4000     break;
4001   case vmIntrinsics::_isPrimitive:
4002     prim_return_value = intcon(1);
4003     expect_prim = true;  // obviously
4004     break;
4005   case vmIntrinsics::_isHidden:
4006     prim_return_value = intcon(0);
4007     break;
4008   case vmIntrinsics::_getSuperclass:
4009     prim_return_value = null();
4010     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
4011     break;
4012   case vmIntrinsics::_getClassAccessFlags:
4013     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
4014     return_type = TypeInt::INT;  // not bool!  6297094
4015     break;
4016   default:
4017     fatal_unexpected_iid(id);
4018     break;
4019   }
4020 
4021   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4022   if (mirror_con == nullptr)  return false;  // cannot happen?
4023 
4024 #ifndef PRODUCT
4025   if (C->print_intrinsics() || C->print_inlining()) {
4026     ciType* k = mirror_con->java_mirror_type();
4027     if (k) {
4028       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
4029       k->print_name();
4030       tty->cr();
4031     }
4032   }
4033 #endif
4034 
4035   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
4036   RegionNode* region = new RegionNode(PATH_LIMIT);
4037   record_for_igvn(region);
4038   PhiNode* phi = new PhiNode(region, return_type);
4039 
4040   // The mirror will never be null of Reflection.getClassAccessFlags, however
4041   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
4042   // if it is. See bug 4774291.
4043 
4044   // For Reflection.getClassAccessFlags(), the null check occurs in
4045   // the wrong place; see inline_unsafe_access(), above, for a similar
4046   // situation.
4047   mirror = null_check(mirror);
4048   // If mirror or obj is dead, only null-path is taken.
4049   if (stopped())  return true;
4050 
4051   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
4052 
4053   // Now load the mirror's klass metaobject, and null-check it.
4054   // Side-effects region with the control path if the klass is null.
4055   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
4056   // If kls is null, we have a primitive mirror.
4057   phi->init_req(_prim_path, prim_return_value);
4058   if (stopped()) { set_result(region, phi); return true; }
4059   bool safe_for_replace = (region->in(_prim_path) == top());
4060 
4061   Node* p;  // handy temp
4062   Node* null_ctl;
4063 
4064   // Now that we have the non-null klass, we can perform the real query.
4065   // For constant classes, the query will constant-fold in LoadNode::Value.
4066   Node* query_value = top();
4067   switch (id) {
4068   case vmIntrinsics::_isInstance:
4069     // nothing is an instance of a primitive type
4070     query_value = gen_instanceof(obj, kls, safe_for_replace);
4071     break;
4072 
4073   case vmIntrinsics::_getModifiers:
4074     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
4075     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4076     break;
4077 
4078   case vmIntrinsics::_isInterface:
4079     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4080     if (generate_interface_guard(kls, region) != nullptr)
4081       // A guard was added.  If the guard is taken, it was an interface.
4082       phi->add_req(intcon(1));
4083     // If we fall through, it's a plain class.
4084     query_value = intcon(0);
4085     break;
4086 
4087   case vmIntrinsics::_isArray:
4088     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
4089     if (generate_array_guard(kls, region) != nullptr)
4090       // A guard was added.  If the guard is taken, it was an array.
4091       phi->add_req(intcon(1));
4092     // If we fall through, it's a plain class.
4093     query_value = intcon(0);
4094     break;
4095 
4096   case vmIntrinsics::_isPrimitive:
4097     query_value = intcon(0); // "normal" path produces false
4098     break;
4099 
4100   case vmIntrinsics::_isHidden:
4101     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
4102     if (generate_hidden_class_guard(kls, region) != nullptr)
4103       // A guard was added.  If the guard is taken, it was an hidden class.
4104       phi->add_req(intcon(1));
4105     // If we fall through, it's a plain class.
4106     query_value = intcon(0);
4107     break;
4108 
4109 
4110   case vmIntrinsics::_getSuperclass:
4111     // The rules here are somewhat unfortunate, but we can still do better
4112     // with random logic than with a JNI call.
4113     // Interfaces store null or Object as _super, but must report null.
4114     // Arrays store an intermediate super as _super, but must report Object.
4115     // Other types can report the actual _super.
4116     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4117     if (generate_interface_guard(kls, region) != nullptr)
4118       // A guard was added.  If the guard is taken, it was an interface.
4119       phi->add_req(null());
4120     if (generate_array_guard(kls, region) != nullptr)
4121       // A guard was added.  If the guard is taken, it was an array.
4122       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4123     // If we fall through, it's a plain class.  Get its _super.
4124     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4125     kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4126     null_ctl = top();
4127     kls = null_check_oop(kls, &null_ctl);
4128     if (null_ctl != top()) {
4129       // If the guard is taken, Object.superClass is null (both klass and mirror).
4130       region->add_req(null_ctl);
4131       phi   ->add_req(null());
4132     }
4133     if (!stopped()) {
4134       query_value = load_mirror_from_klass(kls);
4135     }
4136     break;
4137 
4138   case vmIntrinsics::_getClassAccessFlags:
4139     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4140     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4141     break;
4142 
4143   default:
4144     fatal_unexpected_iid(id);
4145     break;
4146   }
4147 
4148   // Fall-through is the normal case of a query to a real class.
4149   phi->init_req(1, query_value);
4150   region->init_req(1, control());
4151 
4152   C->set_has_split_ifs(true); // Has chance for split-if optimization
4153   set_result(region, phi);
4154   return true;
4155 }
4156 
4157 
4158 //-------------------------inline_Class_cast-------------------
4159 bool LibraryCallKit::inline_Class_cast() {
4160   Node* mirror = argument(0); // Class
4161   Node* obj    = argument(1);
4162   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4163   if (mirror_con == nullptr) {
4164     return false;  // dead path (mirror->is_top()).
4165   }
4166   if (obj == nullptr || obj->is_top()) {
4167     return false;  // dead path
4168   }
4169   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4170 
4171   // First, see if Class.cast() can be folded statically.
4172   // java_mirror_type() returns non-null for compile-time Class constants.
4173   bool is_null_free_array = false;
4174   ciType* tm = mirror_con->java_mirror_type(&is_null_free_array);
4175   if (tm != nullptr && tm->is_klass() &&
4176       tp != nullptr) {
4177     if (!tp->is_loaded()) {
4178       // Don't use intrinsic when class is not loaded.
4179       return false;
4180     } else {
4181       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4182       if (is_null_free_array) {
4183         tklass = tklass->is_aryklassptr()->cast_to_null_free();
4184       }
4185       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4186       if (static_res == Compile::SSC_always_true) {
4187         // isInstance() is true - fold the code.
4188         set_result(obj);
4189         return true;
4190       } else if (static_res == Compile::SSC_always_false) {
4191         // Don't use intrinsic, have to throw ClassCastException.
4192         // If the reference is null, the non-intrinsic bytecode will
4193         // be optimized appropriately.
4194         return false;
4195       }
4196     }
4197   }
4198 
4199   // Bailout intrinsic and do normal inlining if exception path is frequent.
4200   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4201     return false;
4202   }
4203 
4204   // Generate dynamic checks.
4205   // Class.cast() is java implementation of _checkcast bytecode.
4206   // Do checkcast (Parse::do_checkcast()) optimizations here.
4207 
4208   mirror = null_check(mirror);
4209   // If mirror is dead, only null-path is taken.
4210   if (stopped()) {
4211     return true;
4212   }
4213 
4214   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4215   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4216   RegionNode* region = new RegionNode(PATH_LIMIT);
4217   record_for_igvn(region);
4218 
4219   // Now load the mirror's klass metaobject, and null-check it.
4220   // If kls is null, we have a primitive mirror and
4221   // nothing is an instance of a primitive type.
4222   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4223 
4224   Node* res = top();
4225   Node* io = i_o();
4226   Node* mem = merged_memory();
4227   if (!stopped()) {
4228 
4229     Node* bad_type_ctrl = top();
4230     // Do checkcast optimizations.
4231     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4232     region->init_req(_bad_type_path, bad_type_ctrl);
4233   }
4234   if (region->in(_prim_path) != top() ||
4235       region->in(_bad_type_path) != top() ||
4236       region->in(_npe_path) != top()) {
4237     // Let Interpreter throw ClassCastException.
4238     PreserveJVMState pjvms(this);
4239     set_control(_gvn.transform(region));
4240     // Set IO and memory because gen_checkcast may override them when buffering inline types
4241     set_i_o(io);
4242     set_all_memory(mem);
4243     uncommon_trap(Deoptimization::Reason_intrinsic,
4244                   Deoptimization::Action_maybe_recompile);
4245   }
4246   if (!stopped()) {
4247     set_result(res);
4248   }
4249   return true;
4250 }
4251 
4252 
4253 //--------------------------inline_native_subtype_check------------------------
4254 // This intrinsic takes the JNI calls out of the heart of
4255 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4256 bool LibraryCallKit::inline_native_subtype_check() {
4257   // Pull both arguments off the stack.
4258   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4259   args[0] = argument(0);
4260   args[1] = argument(1);
4261   Node* klasses[2];             // corresponding Klasses: superk, subk
4262   klasses[0] = klasses[1] = top();
4263 
4264   enum {
4265     // A full decision tree on {superc is prim, subc is prim}:
4266     _prim_0_path = 1,           // {P,N} => false
4267                                 // {P,P} & superc!=subc => false
4268     _prim_same_path,            // {P,P} & superc==subc => true
4269     _prim_1_path,               // {N,P} => false
4270     _ref_subtype_path,          // {N,N} & subtype check wins => true
4271     _both_ref_path,             // {N,N} & subtype check loses => false
4272     PATH_LIMIT
4273   };
4274 
4275   RegionNode* region = new RegionNode(PATH_LIMIT);
4276   RegionNode* prim_region = new RegionNode(2);
4277   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4278   record_for_igvn(region);
4279   record_for_igvn(prim_region);
4280 
4281   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4282   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4283   int class_klass_offset = java_lang_Class::klass_offset();
4284 
4285   // First null-check both mirrors and load each mirror's klass metaobject.
4286   int which_arg;
4287   for (which_arg = 0; which_arg <= 1; which_arg++) {
4288     Node* arg = args[which_arg];
4289     arg = null_check(arg);
4290     if (stopped())  break;
4291     args[which_arg] = arg;
4292 
4293     Node* p = basic_plus_adr(arg, class_klass_offset);
4294     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4295     klasses[which_arg] = _gvn.transform(kls);
4296   }
4297 
4298   // Having loaded both klasses, test each for null.
4299   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4300   for (which_arg = 0; which_arg <= 1; which_arg++) {
4301     Node* kls = klasses[which_arg];
4302     Node* null_ctl = top();
4303     kls = null_check_oop(kls, &null_ctl, never_see_null);
4304     if (which_arg == 0) {
4305       prim_region->init_req(1, null_ctl);
4306     } else {
4307       region->init_req(_prim_1_path, null_ctl);
4308     }
4309     if (stopped())  break;
4310     klasses[which_arg] = kls;
4311   }
4312 
4313   if (!stopped()) {
4314     // now we have two reference types, in klasses[0..1]
4315     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4316     Node* superk = klasses[0];  // the receiver
4317     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4318     region->set_req(_ref_subtype_path, control());
4319   }
4320 
4321   // If both operands are primitive (both klasses null), then
4322   // we must return true when they are identical primitives.
4323   // It is convenient to test this after the first null klass check.
4324   // This path is also used if superc is a value mirror.
4325   set_control(_gvn.transform(prim_region));
4326   if (!stopped()) {
4327     // Since superc is primitive, make a guard for the superc==subc case.
4328     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4329     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4330     generate_fair_guard(bol_eq, region);
4331     if (region->req() == PATH_LIMIT+1) {
4332       // A guard was added.  If the added guard is taken, superc==subc.
4333       region->swap_edges(PATH_LIMIT, _prim_same_path);
4334       region->del_req(PATH_LIMIT);
4335     }
4336     region->set_req(_prim_0_path, control()); // Not equal after all.
4337   }
4338 
4339   // these are the only paths that produce 'true':
4340   phi->set_req(_prim_same_path,   intcon(1));
4341   phi->set_req(_ref_subtype_path, intcon(1));
4342 
4343   // pull together the cases:
4344   assert(region->req() == PATH_LIMIT, "sane region");
4345   for (uint i = 1; i < region->req(); i++) {
4346     Node* ctl = region->in(i);
4347     if (ctl == nullptr || ctl == top()) {
4348       region->set_req(i, top());
4349       phi   ->set_req(i, top());
4350     } else if (phi->in(i) == nullptr) {
4351       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4352     }
4353   }
4354 
4355   set_control(_gvn.transform(region));
4356   set_result(_gvn.transform(phi));
4357   return true;
4358 }
4359 
4360 //---------------------generate_array_guard_common------------------------
4361 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind) {
4362 
4363   if (stopped()) {
4364     return nullptr;
4365   }
4366 
4367   // Like generate_guard, adds a new path onto the region.
4368   jint  layout_con = 0;
4369   Node* layout_val = get_layout_helper(kls, layout_con);
4370   if (layout_val == nullptr) {
4371     bool query = 0;
4372     switch(kind) {
4373       case ObjectArray:    query = Klass::layout_helper_is_objArray(layout_con); break;
4374       case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break;
4375       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4376       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4377       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4378       default:
4379         ShouldNotReachHere();
4380     }
4381     if (!query) {
4382       return nullptr;                       // never a branch
4383     } else {                             // always a branch
4384       Node* always_branch = control();
4385       if (region != nullptr)
4386         region->add_req(always_branch);
4387       set_control(top());
4388       return always_branch;
4389     }
4390   }
4391   unsigned int value = 0;
4392   BoolTest::mask btest = BoolTest::illegal;
4393   switch(kind) {
4394     case ObjectArray:
4395     case NonObjectArray: {
4396       value = Klass::_lh_array_tag_obj_value;
4397       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4398       btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne;
4399       break;
4400     }
4401     case TypeArray: {
4402       value = Klass::_lh_array_tag_type_value;
4403       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4404       btest = BoolTest::eq;
4405       break;
4406     }
4407     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4408     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4409     default:
4410       ShouldNotReachHere();
4411   }
4412   // Now test the correct condition.
4413   jint nval = (jint)value;
4414   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4415   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4416   return generate_fair_guard(bol, region);
4417 }
4418 
4419 //-----------------------inline_newNullRestrictedArray--------------------------
4420 // public static native Object[] newNullRestrictedArray(Class<?> componentType, int length);
4421 bool LibraryCallKit::inline_newNullRestrictedArray() {
4422   Node* componentType = argument(0);
4423   Node* length = argument(1);
4424 
4425   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4426   if (tp != nullptr) {
4427     ciInstanceKlass* ik = tp->instance_klass();
4428     if (ik == C->env()->Class_klass()) {
4429       ciType* t = tp->java_mirror_type();
4430       if (t != nullptr && t->is_inlinetype()) {
4431         ciArrayKlass* array_klass = ciArrayKlass::make(t, true);
4432         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4433           const TypeAryKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces)->is_aryklassptr();
4434           array_klass_type = array_klass_type->cast_to_null_free();
4435           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false);  // no arguments to push
4436           set_result(obj);
4437           assert(gvn().type(obj)->is_aryptr()->is_null_free(), "must be null-free");
4438           return true;
4439         }
4440       }
4441     }
4442   }
4443   return false;
4444 }
4445 
4446 //-----------------------inline_native_newArray--------------------------
4447 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4448 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4449 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4450   Node* mirror;
4451   Node* count_val;
4452   if (uninitialized) {
4453     null_check_receiver();
4454     mirror    = argument(1);
4455     count_val = argument(2);
4456   } else {
4457     mirror    = argument(0);
4458     count_val = argument(1);
4459   }
4460 
4461   mirror = null_check(mirror);
4462   // If mirror or obj is dead, only null-path is taken.
4463   if (stopped())  return true;
4464 
4465   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4466   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4467   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4468   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4469   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4470 
4471   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4472   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4473                                                   result_reg, _slow_path);
4474   Node* normal_ctl   = control();
4475   Node* no_array_ctl = result_reg->in(_slow_path);
4476 
4477   // Generate code for the slow case.  We make a call to newArray().
4478   set_control(no_array_ctl);
4479   if (!stopped()) {
4480     // Either the input type is void.class, or else the
4481     // array klass has not yet been cached.  Either the
4482     // ensuing call will throw an exception, or else it
4483     // will cache the array klass for next time.
4484     PreserveJVMState pjvms(this);
4485     CallJavaNode* slow_call = nullptr;
4486     if (uninitialized) {
4487       // Generate optimized virtual call (holder class 'Unsafe' is final)
4488       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4489     } else {
4490       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4491     }
4492     Node* slow_result = set_results_for_java_call(slow_call);
4493     // this->control() comes from set_results_for_java_call
4494     result_reg->set_req(_slow_path, control());
4495     result_val->set_req(_slow_path, slow_result);
4496     result_io ->set_req(_slow_path, i_o());
4497     result_mem->set_req(_slow_path, reset_memory());
4498   }
4499 
4500   set_control(normal_ctl);
4501   if (!stopped()) {
4502     // Normal case:  The array type has been cached in the java.lang.Class.
4503     // The following call works fine even if the array type is polymorphic.
4504     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4505     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4506     result_reg->init_req(_normal_path, control());
4507     result_val->init_req(_normal_path, obj);
4508     result_io ->init_req(_normal_path, i_o());
4509     result_mem->init_req(_normal_path, reset_memory());
4510 
4511     if (uninitialized) {
4512       // Mark the allocation so that zeroing is skipped
4513       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4514       alloc->maybe_set_complete(&_gvn);
4515     }
4516   }
4517 
4518   // Return the combined state.
4519   set_i_o(        _gvn.transform(result_io)  );
4520   set_all_memory( _gvn.transform(result_mem));
4521 
4522   C->set_has_split_ifs(true); // Has chance for split-if optimization
4523   set_result(result_reg, result_val);
4524   return true;
4525 }
4526 
4527 //----------------------inline_native_getLength--------------------------
4528 // public static native int java.lang.reflect.Array.getLength(Object array);
4529 bool LibraryCallKit::inline_native_getLength() {
4530   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4531 
4532   Node* array = null_check(argument(0));
4533   // If array is dead, only null-path is taken.
4534   if (stopped())  return true;
4535 
4536   // Deoptimize if it is a non-array.
4537   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr);
4538 
4539   if (non_array != nullptr) {
4540     PreserveJVMState pjvms(this);
4541     set_control(non_array);
4542     uncommon_trap(Deoptimization::Reason_intrinsic,
4543                   Deoptimization::Action_maybe_recompile);
4544   }
4545 
4546   // If control is dead, only non-array-path is taken.
4547   if (stopped())  return true;
4548 
4549   // The works fine even if the array type is polymorphic.
4550   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4551   Node* result = load_array_length(array);
4552 
4553   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4554   set_result(result);
4555   return true;
4556 }
4557 
4558 //------------------------inline_array_copyOf----------------------------
4559 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4560 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4561 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4562   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4563 
4564   // Get the arguments.
4565   Node* original          = argument(0);
4566   Node* start             = is_copyOfRange? argument(1): intcon(0);
4567   Node* end               = is_copyOfRange? argument(2): argument(1);
4568   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4569 
4570   Node* newcopy = nullptr;
4571 
4572   // Set the original stack and the reexecute bit for the interpreter to reexecute
4573   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4574   { PreserveReexecuteState preexecs(this);
4575     jvms()->set_should_reexecute(true);
4576 
4577     array_type_mirror = null_check(array_type_mirror);
4578     original          = null_check(original);
4579 
4580     // Check if a null path was taken unconditionally.
4581     if (stopped())  return true;
4582 
4583     Node* orig_length = load_array_length(original);
4584 
4585     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4586     klass_node = null_check(klass_node);
4587 
4588     RegionNode* bailout = new RegionNode(1);
4589     record_for_igvn(bailout);
4590 
4591     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4592     // Bail out if that is so.
4593     // Inline type array may have object field that would require a
4594     // write barrier. Conservatively, go to slow path.
4595     // TODO 8251971: Optimize for the case when flat src/dst are later found
4596     // to not contain oops (i.e., move this check to the macro expansion phase).
4597     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4598     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
4599     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
4600     bool exclude_flat = UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
4601                         // Can src array be flat and contain oops?
4602                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
4603                         // Can dest array be flat and contain oops?
4604                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
4605     Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
4606     if (not_objArray != nullptr) {
4607       // Improve the klass node's type from the new optimistic assumption:
4608       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4609       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
4610       Node* cast = new CastPPNode(control(), klass_node, akls);
4611       klass_node = _gvn.transform(cast);
4612     }
4613 
4614     // Bail out if either start or end is negative.
4615     generate_negative_guard(start, bailout, &start);
4616     generate_negative_guard(end,   bailout, &end);
4617 
4618     Node* length = end;
4619     if (_gvn.type(start) != TypeInt::ZERO) {
4620       length = _gvn.transform(new SubINode(end, start));
4621     }
4622 
4623     // Bail out if length is negative (i.e., if start > end).
4624     // Without this the new_array would throw
4625     // NegativeArraySizeException but IllegalArgumentException is what
4626     // should be thrown
4627     generate_negative_guard(length, bailout, &length);
4628 
4629     // Handle inline type arrays
4630     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
4631     if (!stopped()) {
4632       // TODO JDK-8329224
4633       if (!orig_t->is_null_free()) {
4634         // Not statically known to be null free, add a check
4635         generate_fair_guard(null_free_array_test(original), bailout);
4636       }
4637       orig_t = _gvn.type(original)->isa_aryptr();
4638       if (orig_t != nullptr && orig_t->is_flat()) {
4639         // Src is flat, check that dest is flat as well
4640         if (exclude_flat) {
4641           // Dest can't be flat, bail out
4642           bailout->add_req(control());
4643           set_control(top());
4644         } else {
4645           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
4646         }
4647       } else if (UseFlatArray && (orig_t == nullptr || !orig_t->is_not_flat()) &&
4648                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
4649                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
4650         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
4651         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
4652         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
4653         if (orig_t != nullptr) {
4654           orig_t = orig_t->cast_to_not_flat();
4655           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
4656         }
4657       }
4658       if (!can_validate) {
4659         // No validation. The subtype check emitted at macro expansion time will not go to the slow
4660         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
4661         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
4662         generate_fair_guard(flat_array_test(klass_node), bailout);
4663         generate_fair_guard(null_free_array_test(original), bailout);
4664       }
4665     }
4666 
4667     // Bail out if start is larger than the original length
4668     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4669     generate_negative_guard(orig_tail, bailout, &orig_tail);
4670 
4671     if (bailout->req() > 1) {
4672       PreserveJVMState pjvms(this);
4673       set_control(_gvn.transform(bailout));
4674       uncommon_trap(Deoptimization::Reason_intrinsic,
4675                     Deoptimization::Action_maybe_recompile);
4676     }
4677 
4678     if (!stopped()) {
4679       // How many elements will we copy from the original?
4680       // The answer is MinI(orig_tail, length).
4681       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4682 
4683       // Generate a direct call to the right arraycopy function(s).
4684       // We know the copy is disjoint but we might not know if the
4685       // oop stores need checking.
4686       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4687       // This will fail a store-check if x contains any non-nulls.
4688 
4689       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4690       // loads/stores but it is legal only if we're sure the
4691       // Arrays.copyOf would succeed. So we need all input arguments
4692       // to the copyOf to be validated, including that the copy to the
4693       // new array won't trigger an ArrayStoreException. That subtype
4694       // check can be optimized if we know something on the type of
4695       // the input array from type speculation.
4696       if (_gvn.type(klass_node)->singleton()) {
4697         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4698         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4699 
4700         int test = C->static_subtype_check(superk, subk);
4701         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4702           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4703           if (t_original->speculative_type() != nullptr) {
4704             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4705           }
4706         }
4707       }
4708 
4709       bool validated = false;
4710       // Reason_class_check rather than Reason_intrinsic because we
4711       // want to intrinsify even if this traps.
4712       if (can_validate) {
4713         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4714 
4715         if (not_subtype_ctrl != top()) {
4716           PreserveJVMState pjvms(this);
4717           set_control(not_subtype_ctrl);
4718           uncommon_trap(Deoptimization::Reason_class_check,
4719                         Deoptimization::Action_make_not_entrant);
4720           assert(stopped(), "Should be stopped");
4721         }
4722         validated = true;
4723       }
4724 
4725       if (!stopped()) {
4726         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4727 
4728         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4729                                                 load_object_klass(original), klass_node);
4730         if (!is_copyOfRange) {
4731           ac->set_copyof(validated);
4732         } else {
4733           ac->set_copyofrange(validated);
4734         }
4735         Node* n = _gvn.transform(ac);
4736         if (n == ac) {
4737           ac->connect_outputs(this);
4738         } else {
4739           assert(validated, "shouldn't transform if all arguments not validated");
4740           set_all_memory(n);
4741         }
4742       }
4743     }
4744   } // original reexecute is set back here
4745 
4746   C->set_has_split_ifs(true); // Has chance for split-if optimization
4747   if (!stopped()) {
4748     set_result(newcopy);
4749   }
4750   return true;
4751 }
4752 
4753 
4754 //----------------------generate_virtual_guard---------------------------
4755 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4756 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4757                                              RegionNode* slow_region) {
4758   ciMethod* method = callee();
4759   int vtable_index = method->vtable_index();
4760   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4761          "bad index %d", vtable_index);
4762   // Get the Method* out of the appropriate vtable entry.
4763   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4764                      vtable_index*vtableEntry::size_in_bytes() +
4765                      in_bytes(vtableEntry::method_offset());
4766   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4767   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4768 
4769   // Compare the target method with the expected method (e.g., Object.hashCode).
4770   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4771 
4772   Node* native_call = makecon(native_call_addr);
4773   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4774   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4775 
4776   return generate_slow_guard(test_native, slow_region);
4777 }
4778 
4779 //-----------------------generate_method_call----------------------------
4780 // Use generate_method_call to make a slow-call to the real
4781 // method if the fast path fails.  An alternative would be to
4782 // use a stub like OptoRuntime::slow_arraycopy_Java.
4783 // This only works for expanding the current library call,
4784 // not another intrinsic.  (E.g., don't use this for making an
4785 // arraycopy call inside of the copyOf intrinsic.)
4786 CallJavaNode*
4787 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4788   // When compiling the intrinsic method itself, do not use this technique.
4789   guarantee(callee() != C->method(), "cannot make slow-call to self");
4790 
4791   ciMethod* method = callee();
4792   // ensure the JVMS we have will be correct for this call
4793   guarantee(method_id == method->intrinsic_id(), "must match");
4794 
4795   const TypeFunc* tf = TypeFunc::make(method);
4796   if (res_not_null) {
4797     assert(tf->return_type() == T_OBJECT, "");
4798     const TypeTuple* range = tf->range_cc();
4799     const Type** fields = TypeTuple::fields(range->cnt());
4800     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4801     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4802     tf = TypeFunc::make(tf->domain_cc(), new_range);
4803   }
4804   CallJavaNode* slow_call;
4805   if (is_static) {
4806     assert(!is_virtual, "");
4807     slow_call = new CallStaticJavaNode(C, tf,
4808                            SharedRuntime::get_resolve_static_call_stub(), method);
4809   } else if (is_virtual) {
4810     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4811     int vtable_index = Method::invalid_vtable_index;
4812     if (UseInlineCaches) {
4813       // Suppress the vtable call
4814     } else {
4815       // hashCode and clone are not a miranda methods,
4816       // so the vtable index is fixed.
4817       // No need to use the linkResolver to get it.
4818        vtable_index = method->vtable_index();
4819        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4820               "bad index %d", vtable_index);
4821     }
4822     slow_call = new CallDynamicJavaNode(tf,
4823                           SharedRuntime::get_resolve_virtual_call_stub(),
4824                           method, vtable_index);
4825   } else {  // neither virtual nor static:  opt_virtual
4826     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4827     slow_call = new CallStaticJavaNode(C, tf,
4828                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4829     slow_call->set_optimized_virtual(true);
4830   }
4831   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4832     // To be able to issue a direct call (optimized virtual or virtual)
4833     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4834     // about the method being invoked should be attached to the call site to
4835     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4836     slow_call->set_override_symbolic_info(true);
4837   }
4838   set_arguments_for_java_call(slow_call);
4839   set_edges_for_java_call(slow_call);
4840   return slow_call;
4841 }
4842 
4843 
4844 /**
4845  * Build special case code for calls to hashCode on an object. This call may
4846  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4847  * slightly different code.
4848  */
4849 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4850   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4851   assert(!(is_virtual && is_static), "either virtual, special, or static");
4852 
4853   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4854 
4855   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4856   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4857   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4858   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4859   Node* obj = argument(0);
4860 
4861   // Don't intrinsify hashcode on inline types for now.
4862   // The "is locked" runtime check below also serves as inline type check and goes to the slow path.
4863   if (gvn().type(obj)->is_inlinetypeptr()) {
4864     return false;
4865   }
4866 
4867   if (!is_static) {
4868     // Check for hashing null object
4869     obj = null_check_receiver();
4870     if (stopped())  return true;        // unconditionally null
4871     result_reg->init_req(_null_path, top());
4872     result_val->init_req(_null_path, top());
4873   } else {
4874     // Do a null check, and return zero if null.
4875     // System.identityHashCode(null) == 0
4876     Node* null_ctl = top();
4877     obj = null_check_oop(obj, &null_ctl);
4878     result_reg->init_req(_null_path, null_ctl);
4879     result_val->init_req(_null_path, _gvn.intcon(0));
4880   }
4881 
4882   // Unconditionally null?  Then return right away.
4883   if (stopped()) {
4884     set_control( result_reg->in(_null_path));
4885     if (!stopped())
4886       set_result(result_val->in(_null_path));
4887     return true;
4888   }
4889 
4890   // We only go to the fast case code if we pass a number of guards.  The
4891   // paths which do not pass are accumulated in the slow_region.
4892   RegionNode* slow_region = new RegionNode(1);
4893   record_for_igvn(slow_region);
4894 
4895   // If this is a virtual call, we generate a funny guard.  We pull out
4896   // the vtable entry corresponding to hashCode() from the target object.
4897   // If the target method which we are calling happens to be the native
4898   // Object hashCode() method, we pass the guard.  We do not need this
4899   // guard for non-virtual calls -- the caller is known to be the native
4900   // Object hashCode().
4901   if (is_virtual) {
4902     // After null check, get the object's klass.
4903     Node* obj_klass = load_object_klass(obj);
4904     generate_virtual_guard(obj_klass, slow_region);
4905   }
4906 
4907   // Get the header out of the object, use LoadMarkNode when available
4908   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4909   // The control of the load must be null. Otherwise, the load can move before
4910   // the null check after castPP removal.
4911   Node* no_ctrl = nullptr;
4912   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4913 
4914   // Test the header to see if it is safe to read w.r.t. locking.
4915   // This also serves as guard against inline types
4916   Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
4917   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4918   if (LockingMode == LM_LIGHTWEIGHT) {
4919     Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4920     Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4921     Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4922 
4923     generate_slow_guard(test_monitor, slow_region);
4924   } else {
4925     Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4926     Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4927     Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4928 
4929     generate_slow_guard(test_not_unlocked, slow_region);
4930   }
4931 
4932   // Get the hash value and check to see that it has been properly assigned.
4933   // We depend on hash_mask being at most 32 bits and avoid the use of
4934   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4935   // vm: see markWord.hpp.
4936   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4937   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4938   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4939   // This hack lets the hash bits live anywhere in the mark object now, as long
4940   // as the shift drops the relevant bits into the low 32 bits.  Note that
4941   // Java spec says that HashCode is an int so there's no point in capturing
4942   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4943   hshifted_header      = ConvX2I(hshifted_header);
4944   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4945 
4946   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4947   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4948   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4949 
4950   generate_slow_guard(test_assigned, slow_region);
4951 
4952   Node* init_mem = reset_memory();
4953   // fill in the rest of the null path:
4954   result_io ->init_req(_null_path, i_o());
4955   result_mem->init_req(_null_path, init_mem);
4956 
4957   result_val->init_req(_fast_path, hash_val);
4958   result_reg->init_req(_fast_path, control());
4959   result_io ->init_req(_fast_path, i_o());
4960   result_mem->init_req(_fast_path, init_mem);
4961 
4962   // Generate code for the slow case.  We make a call to hashCode().
4963   set_control(_gvn.transform(slow_region));
4964   if (!stopped()) {
4965     // No need for PreserveJVMState, because we're using up the present state.
4966     set_all_memory(init_mem);
4967     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4968     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
4969     Node* slow_result = set_results_for_java_call(slow_call);
4970     // this->control() comes from set_results_for_java_call
4971     result_reg->init_req(_slow_path, control());
4972     result_val->init_req(_slow_path, slow_result);
4973     result_io  ->set_req(_slow_path, i_o());
4974     result_mem ->set_req(_slow_path, reset_memory());
4975   }
4976 
4977   // Return the combined state.
4978   set_i_o(        _gvn.transform(result_io)  );
4979   set_all_memory( _gvn.transform(result_mem));
4980 
4981   set_result(result_reg, result_val);
4982   return true;
4983 }
4984 
4985 //---------------------------inline_native_getClass----------------------------
4986 // public final native Class<?> java.lang.Object.getClass();
4987 //
4988 // Build special case code for calls to getClass on an object.
4989 bool LibraryCallKit::inline_native_getClass() {
4990   Node* obj = argument(0);
4991   if (obj->is_InlineType()) {
4992     const Type* t = _gvn.type(obj);
4993     if (t->maybe_null()) {
4994       null_check(obj);
4995     }
4996     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
4997     return true;
4998   }
4999   obj = null_check_receiver();
5000   if (stopped())  return true;
5001   set_result(load_mirror_from_klass(load_object_klass(obj)));
5002   return true;
5003 }
5004 
5005 //-----------------inline_native_Reflection_getCallerClass---------------------
5006 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5007 //
5008 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5009 //
5010 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5011 // in that it must skip particular security frames and checks for
5012 // caller sensitive methods.
5013 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5014 #ifndef PRODUCT
5015   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5016     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5017   }
5018 #endif
5019 
5020   if (!jvms()->has_method()) {
5021 #ifndef PRODUCT
5022     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5023       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
5024     }
5025 #endif
5026     return false;
5027   }
5028 
5029   // Walk back up the JVM state to find the caller at the required
5030   // depth.
5031   JVMState* caller_jvms = jvms();
5032 
5033   // Cf. JVM_GetCallerClass
5034   // NOTE: Start the loop at depth 1 because the current JVM state does
5035   // not include the Reflection.getCallerClass() frame.
5036   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
5037     ciMethod* m = caller_jvms->method();
5038     switch (n) {
5039     case 0:
5040       fatal("current JVM state does not include the Reflection.getCallerClass frame");
5041       break;
5042     case 1:
5043       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
5044       if (!m->caller_sensitive()) {
5045 #ifndef PRODUCT
5046         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5047           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
5048         }
5049 #endif
5050         return false;  // bail-out; let JVM_GetCallerClass do the work
5051       }
5052       break;
5053     default:
5054       if (!m->is_ignored_by_security_stack_walk()) {
5055         // We have reached the desired frame; return the holder class.
5056         // Acquire method holder as java.lang.Class and push as constant.
5057         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
5058         ciInstance* caller_mirror = caller_klass->java_mirror();
5059         set_result(makecon(TypeInstPtr::make(caller_mirror)));
5060 
5061 #ifndef PRODUCT
5062         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5063           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
5064           tty->print_cr("  JVM state at this point:");
5065           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
5066             ciMethod* m = jvms()->of_depth(i)->method();
5067             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
5068           }
5069         }
5070 #endif
5071         return true;
5072       }
5073       break;
5074     }
5075   }
5076 
5077 #ifndef PRODUCT
5078   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5079     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
5080     tty->print_cr("  JVM state at this point:");
5081     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
5082       ciMethod* m = jvms()->of_depth(i)->method();
5083       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
5084     }
5085   }
5086 #endif
5087 
5088   return false;  // bail-out; let JVM_GetCallerClass do the work
5089 }
5090 
5091 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
5092   Node* arg = argument(0);
5093   Node* result = nullptr;
5094 
5095   switch (id) {
5096   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
5097   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
5098   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
5099   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
5100   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
5101   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
5102 
5103   case vmIntrinsics::_doubleToLongBits: {
5104     // two paths (plus control) merge in a wood
5105     RegionNode *r = new RegionNode(3);
5106     Node *phi = new PhiNode(r, TypeLong::LONG);
5107 
5108     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
5109     // Build the boolean node
5110     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5111 
5112     // Branch either way.
5113     // NaN case is less traveled, which makes all the difference.
5114     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5115     Node *opt_isnan = _gvn.transform(ifisnan);
5116     assert( opt_isnan->is_If(), "Expect an IfNode");
5117     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5118     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5119 
5120     set_control(iftrue);
5121 
5122     static const jlong nan_bits = CONST64(0x7ff8000000000000);
5123     Node *slow_result = longcon(nan_bits); // return NaN
5124     phi->init_req(1, _gvn.transform( slow_result ));
5125     r->init_req(1, iftrue);
5126 
5127     // Else fall through
5128     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5129     set_control(iffalse);
5130 
5131     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
5132     r->init_req(2, iffalse);
5133 
5134     // Post merge
5135     set_control(_gvn.transform(r));
5136     record_for_igvn(r);
5137 
5138     C->set_has_split_ifs(true); // Has chance for split-if optimization
5139     result = phi;
5140     assert(result->bottom_type()->isa_long(), "must be");
5141     break;
5142   }
5143 
5144   case vmIntrinsics::_floatToIntBits: {
5145     // two paths (plus control) merge in a wood
5146     RegionNode *r = new RegionNode(3);
5147     Node *phi = new PhiNode(r, TypeInt::INT);
5148 
5149     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
5150     // Build the boolean node
5151     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5152 
5153     // Branch either way.
5154     // NaN case is less traveled, which makes all the difference.
5155     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5156     Node *opt_isnan = _gvn.transform(ifisnan);
5157     assert( opt_isnan->is_If(), "Expect an IfNode");
5158     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5159     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5160 
5161     set_control(iftrue);
5162 
5163     static const jint nan_bits = 0x7fc00000;
5164     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
5165     phi->init_req(1, _gvn.transform( slow_result ));
5166     r->init_req(1, iftrue);
5167 
5168     // Else fall through
5169     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5170     set_control(iffalse);
5171 
5172     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
5173     r->init_req(2, iffalse);
5174 
5175     // Post merge
5176     set_control(_gvn.transform(r));
5177     record_for_igvn(r);
5178 
5179     C->set_has_split_ifs(true); // Has chance for split-if optimization
5180     result = phi;
5181     assert(result->bottom_type()->isa_int(), "must be");
5182     break;
5183   }
5184 
5185   default:
5186     fatal_unexpected_iid(id);
5187     break;
5188   }
5189   set_result(_gvn.transform(result));
5190   return true;
5191 }
5192 
5193 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
5194   Node* arg = argument(0);
5195   Node* result = nullptr;
5196 
5197   switch (id) {
5198   case vmIntrinsics::_floatIsInfinite:
5199     result = new IsInfiniteFNode(arg);
5200     break;
5201   case vmIntrinsics::_floatIsFinite:
5202     result = new IsFiniteFNode(arg);
5203     break;
5204   case vmIntrinsics::_doubleIsInfinite:
5205     result = new IsInfiniteDNode(arg);
5206     break;
5207   case vmIntrinsics::_doubleIsFinite:
5208     result = new IsFiniteDNode(arg);
5209     break;
5210   default:
5211     fatal_unexpected_iid(id);
5212     break;
5213   }
5214   set_result(_gvn.transform(result));
5215   return true;
5216 }
5217 
5218 //----------------------inline_unsafe_copyMemory-------------------------
5219 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
5220 
5221 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
5222   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
5223   const Type*       base_t = gvn.type(base);
5224 
5225   bool in_native = (base_t == TypePtr::NULL_PTR);
5226   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
5227   bool is_mixed  = !in_heap && !in_native;
5228 
5229   if (is_mixed) {
5230     return true; // mixed accesses can touch both on-heap and off-heap memory
5231   }
5232   if (in_heap) {
5233     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
5234     if (!is_prim_array) {
5235       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
5236       // there's not enough type information available to determine proper memory slice for it.
5237       return true;
5238     }
5239   }
5240   return false;
5241 }
5242 
5243 bool LibraryCallKit::inline_unsafe_copyMemory() {
5244   if (callee()->is_static())  return false;  // caller must have the capability!
5245   null_check_receiver();  // null-check receiver
5246   if (stopped())  return true;
5247 
5248   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5249 
5250   Node* src_base =         argument(1);  // type: oop
5251   Node* src_off  = ConvL2X(argument(2)); // type: long
5252   Node* dst_base =         argument(4);  // type: oop
5253   Node* dst_off  = ConvL2X(argument(5)); // type: long
5254   Node* size     = ConvL2X(argument(7)); // type: long
5255 
5256   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5257          "fieldOffset must be byte-scaled");
5258 
5259   Node* src_addr = make_unsafe_address(src_base, src_off);
5260   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5261 
5262   Node* thread = _gvn.transform(new ThreadLocalNode());
5263   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5264   BasicType doing_unsafe_access_bt = T_BYTE;
5265   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5266 
5267   // update volatile field
5268   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5269 
5270   int flags = RC_LEAF | RC_NO_FP;
5271 
5272   const TypePtr* dst_type = TypePtr::BOTTOM;
5273 
5274   // Adjust memory effects of the runtime call based on input values.
5275   if (!has_wide_mem(_gvn, src_addr, src_base) &&
5276       !has_wide_mem(_gvn, dst_addr, dst_base)) {
5277     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5278 
5279     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5280     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5281       flags |= RC_NARROW_MEM; // narrow in memory
5282     }
5283   }
5284 
5285   // Call it.  Note that the length argument is not scaled.
5286   make_runtime_call(flags,
5287                     OptoRuntime::fast_arraycopy_Type(),
5288                     StubRoutines::unsafe_arraycopy(),
5289                     "unsafe_arraycopy",
5290                     dst_type,
5291                     src_addr, dst_addr, size XTOP);
5292 
5293   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5294 
5295   return true;
5296 }
5297 
5298 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5299 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5300 bool LibraryCallKit::inline_unsafe_setMemory() {
5301   if (callee()->is_static())  return false;  // caller must have the capability!
5302   null_check_receiver();  // null-check receiver
5303   if (stopped())  return true;
5304 
5305   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5306 
5307   Node* dst_base =         argument(1);  // type: oop
5308   Node* dst_off  = ConvL2X(argument(2)); // type: long
5309   Node* size     = ConvL2X(argument(4)); // type: long
5310   Node* byte     =         argument(6);  // type: byte
5311 
5312   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5313          "fieldOffset must be byte-scaled");
5314 
5315   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5316 
5317   Node* thread = _gvn.transform(new ThreadLocalNode());
5318   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5319   BasicType doing_unsafe_access_bt = T_BYTE;
5320   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5321 
5322   // update volatile field
5323   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5324 
5325   int flags = RC_LEAF | RC_NO_FP;
5326 
5327   const TypePtr* dst_type = TypePtr::BOTTOM;
5328 
5329   // Adjust memory effects of the runtime call based on input values.
5330   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5331     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5332 
5333     flags |= RC_NARROW_MEM; // narrow in memory
5334   }
5335 
5336   // Call it.  Note that the length argument is not scaled.
5337   make_runtime_call(flags,
5338                     OptoRuntime::make_setmemory_Type(),
5339                     StubRoutines::unsafe_setmemory(),
5340                     "unsafe_setmemory",
5341                     dst_type,
5342                     dst_addr, size XTOP, byte);
5343 
5344   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5345 
5346   return true;
5347 }
5348 
5349 #undef XTOP
5350 
5351 //----------------------inline_unsafe_isFlatArray------------------------
5352 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass);
5353 // This intrinsic exploits assumptions made by the native implementation
5354 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks.
5355 bool LibraryCallKit::inline_unsafe_isFlatArray() {
5356   Node* cls = argument(1);
5357   Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset());
5358   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p,
5359                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
5360   Node* result = flat_array_test(kls);
5361   set_result(result);
5362   return true;
5363 }
5364 
5365 //------------------------clone_coping-----------------------------------
5366 // Helper function for inline_native_clone.
5367 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5368   assert(obj_size != nullptr, "");
5369   Node* raw_obj = alloc_obj->in(1);
5370   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5371 
5372   AllocateNode* alloc = nullptr;
5373   if (ReduceBulkZeroing &&
5374       // If we are implementing an array clone without knowing its source type
5375       // (can happen when compiling the array-guarded branch of a reflective
5376       // Object.clone() invocation), initialize the array within the allocation.
5377       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5378       // to a runtime clone call that assumes fully initialized source arrays.
5379       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5380     // We will be completely responsible for initializing this object -
5381     // mark Initialize node as complete.
5382     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5383     // The object was just allocated - there should be no any stores!
5384     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5385     // Mark as complete_with_arraycopy so that on AllocateNode
5386     // expansion, we know this AllocateNode is initialized by an array
5387     // copy and a StoreStore barrier exists after the array copy.
5388     alloc->initialization()->set_complete_with_arraycopy();
5389   }
5390 
5391   Node* size = _gvn.transform(obj_size);
5392   access_clone(obj, alloc_obj, size, is_array);
5393 
5394   // Do not let reads from the cloned object float above the arraycopy.
5395   if (alloc != nullptr) {
5396     // Do not let stores that initialize this object be reordered with
5397     // a subsequent store that would make this object accessible by
5398     // other threads.
5399     // Record what AllocateNode this StoreStore protects so that
5400     // escape analysis can go from the MemBarStoreStoreNode to the
5401     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5402     // based on the escape status of the AllocateNode.
5403     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5404   } else {
5405     insert_mem_bar(Op_MemBarCPUOrder);
5406   }
5407 }
5408 
5409 //------------------------inline_native_clone----------------------------
5410 // protected native Object java.lang.Object.clone();
5411 //
5412 // Here are the simple edge cases:
5413 //  null receiver => normal trap
5414 //  virtual and clone was overridden => slow path to out-of-line clone
5415 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5416 //
5417 // The general case has two steps, allocation and copying.
5418 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5419 //
5420 // Copying also has two cases, oop arrays and everything else.
5421 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5422 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5423 //
5424 // These steps fold up nicely if and when the cloned object's klass
5425 // can be sharply typed as an object array, a type array, or an instance.
5426 //
5427 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5428   PhiNode* result_val;
5429 
5430   // Set the reexecute bit for the interpreter to reexecute
5431   // the bytecode that invokes Object.clone if deoptimization happens.
5432   { PreserveReexecuteState preexecs(this);
5433     jvms()->set_should_reexecute(true);
5434 
5435     Node* obj = argument(0);
5436     obj = null_check_receiver();
5437     if (stopped())  return true;
5438 
5439     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5440     if (obj_type->is_inlinetypeptr()) {
5441       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5442       // no identity.
5443       set_result(obj);
5444       return true;
5445     }
5446 
5447     // If we are going to clone an instance, we need its exact type to
5448     // know the number and types of fields to convert the clone to
5449     // loads/stores. Maybe a speculative type can help us.
5450     if (!obj_type->klass_is_exact() &&
5451         obj_type->speculative_type() != nullptr &&
5452         obj_type->speculative_type()->is_instance_klass() &&
5453         !obj_type->speculative_type()->is_inlinetype()) {
5454       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5455       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5456           !spec_ik->has_injected_fields()) {
5457         if (!obj_type->isa_instptr() ||
5458             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5459           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5460         }
5461       }
5462     }
5463 
5464     // Conservatively insert a memory barrier on all memory slices.
5465     // Do not let writes into the original float below the clone.
5466     insert_mem_bar(Op_MemBarCPUOrder);
5467 
5468     // paths into result_reg:
5469     enum {
5470       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5471       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5472       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5473       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5474       PATH_LIMIT
5475     };
5476     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5477     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5478     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5479     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5480     record_for_igvn(result_reg);
5481 
5482     Node* obj_klass = load_object_klass(obj);
5483     // We only go to the fast case code if we pass a number of guards.
5484     // The paths which do not pass are accumulated in the slow_region.
5485     RegionNode* slow_region = new RegionNode(1);
5486     record_for_igvn(slow_region);
5487 
5488     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5489     if (array_ctl != nullptr) {
5490       // It's an array.
5491       PreserveJVMState pjvms(this);
5492       set_control(array_ctl);
5493 
5494       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5495       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5496       if (UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5497           obj_type->can_be_inline_array() &&
5498           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5499         // Flat inline type array may have object field that would require a
5500         // write barrier. Conservatively, go to slow path.
5501         generate_fair_guard(flat_array_test(obj_klass), slow_region);
5502       }
5503 
5504       if (!stopped()) {
5505         Node* obj_length = load_array_length(obj);
5506         Node* array_size = nullptr; // Size of the array without object alignment padding.
5507         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5508 
5509         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5510         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5511           // If it is an oop array, it requires very special treatment,
5512           // because gc barriers are required when accessing the array.
5513           Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5514           if (is_obja != nullptr) {
5515             PreserveJVMState pjvms2(this);
5516             set_control(is_obja);
5517             // Generate a direct call to the right arraycopy function(s).
5518             // Clones are always tightly coupled.
5519             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5520             ac->set_clone_oop_array();
5521             Node* n = _gvn.transform(ac);
5522             assert(n == ac, "cannot disappear");
5523             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5524 
5525             result_reg->init_req(_objArray_path, control());
5526             result_val->init_req(_objArray_path, alloc_obj);
5527             result_i_o ->set_req(_objArray_path, i_o());
5528             result_mem ->set_req(_objArray_path, reset_memory());
5529           }
5530         }
5531         // Otherwise, there are no barriers to worry about.
5532         // (We can dispense with card marks if we know the allocation
5533         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5534         //  causes the non-eden paths to take compensating steps to
5535         //  simulate a fresh allocation, so that no further
5536         //  card marks are required in compiled code to initialize
5537         //  the object.)
5538 
5539         if (!stopped()) {
5540           copy_to_clone(obj, alloc_obj, array_size, true);
5541 
5542           // Present the results of the copy.
5543           result_reg->init_req(_array_path, control());
5544           result_val->init_req(_array_path, alloc_obj);
5545           result_i_o ->set_req(_array_path, i_o());
5546           result_mem ->set_req(_array_path, reset_memory());
5547         }
5548       }
5549     }
5550 
5551     if (!stopped()) {
5552       // It's an instance (we did array above).  Make the slow-path tests.
5553       // If this is a virtual call, we generate a funny guard.  We grab
5554       // the vtable entry corresponding to clone() from the target object.
5555       // If the target method which we are calling happens to be the
5556       // Object clone() method, we pass the guard.  We do not need this
5557       // guard for non-virtual calls; the caller is known to be the native
5558       // Object clone().
5559       if (is_virtual) {
5560         generate_virtual_guard(obj_klass, slow_region);
5561       }
5562 
5563       // The object must be easily cloneable and must not have a finalizer.
5564       // Both of these conditions may be checked in a single test.
5565       // We could optimize the test further, but we don't care.
5566       generate_access_flags_guard(obj_klass,
5567                                   // Test both conditions:
5568                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
5569                                   // Must be cloneable but not finalizer:
5570                                   JVM_ACC_IS_CLONEABLE_FAST,
5571                                   slow_region);
5572     }
5573 
5574     if (!stopped()) {
5575       // It's an instance, and it passed the slow-path tests.
5576       PreserveJVMState pjvms(this);
5577       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5578       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5579       // is reexecuted if deoptimization occurs and there could be problems when merging
5580       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5581       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5582 
5583       copy_to_clone(obj, alloc_obj, obj_size, false);
5584 
5585       // Present the results of the slow call.
5586       result_reg->init_req(_instance_path, control());
5587       result_val->init_req(_instance_path, alloc_obj);
5588       result_i_o ->set_req(_instance_path, i_o());
5589       result_mem ->set_req(_instance_path, reset_memory());
5590     }
5591 
5592     // Generate code for the slow case.  We make a call to clone().
5593     set_control(_gvn.transform(slow_region));
5594     if (!stopped()) {
5595       PreserveJVMState pjvms(this);
5596       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5597       // We need to deoptimize on exception (see comment above)
5598       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5599       // this->control() comes from set_results_for_java_call
5600       result_reg->init_req(_slow_path, control());
5601       result_val->init_req(_slow_path, slow_result);
5602       result_i_o ->set_req(_slow_path, i_o());
5603       result_mem ->set_req(_slow_path, reset_memory());
5604     }
5605 
5606     // Return the combined state.
5607     set_control(    _gvn.transform(result_reg));
5608     set_i_o(        _gvn.transform(result_i_o));
5609     set_all_memory( _gvn.transform(result_mem));
5610   } // original reexecute is set back here
5611 
5612   set_result(_gvn.transform(result_val));
5613   return true;
5614 }
5615 
5616 // If we have a tightly coupled allocation, the arraycopy may take care
5617 // of the array initialization. If one of the guards we insert between
5618 // the allocation and the arraycopy causes a deoptimization, an
5619 // uninitialized array will escape the compiled method. To prevent that
5620 // we set the JVM state for uncommon traps between the allocation and
5621 // the arraycopy to the state before the allocation so, in case of
5622 // deoptimization, we'll reexecute the allocation and the
5623 // initialization.
5624 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5625   if (alloc != nullptr) {
5626     ciMethod* trap_method = alloc->jvms()->method();
5627     int trap_bci = alloc->jvms()->bci();
5628 
5629     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5630         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5631       // Make sure there's no store between the allocation and the
5632       // arraycopy otherwise visible side effects could be rexecuted
5633       // in case of deoptimization and cause incorrect execution.
5634       bool no_interfering_store = true;
5635       Node* mem = alloc->in(TypeFunc::Memory);
5636       if (mem->is_MergeMem()) {
5637         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5638           Node* n = mms.memory();
5639           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5640             assert(n->is_Store(), "what else?");
5641             no_interfering_store = false;
5642             break;
5643           }
5644         }
5645       } else {
5646         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5647           Node* n = mms.memory();
5648           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5649             assert(n->is_Store(), "what else?");
5650             no_interfering_store = false;
5651             break;
5652           }
5653         }
5654       }
5655 
5656       if (no_interfering_store) {
5657         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5658 
5659         JVMState* saved_jvms = jvms();
5660         saved_reexecute_sp = _reexecute_sp;
5661 
5662         set_jvms(sfpt->jvms());
5663         _reexecute_sp = jvms()->sp();
5664 
5665         return saved_jvms;
5666       }
5667     }
5668   }
5669   return nullptr;
5670 }
5671 
5672 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5673 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5674 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5675   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5676   uint size = alloc->req();
5677   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5678   old_jvms->set_map(sfpt);
5679   for (uint i = 0; i < size; i++) {
5680     sfpt->init_req(i, alloc->in(i));
5681   }
5682   int adjustment = 1;
5683   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
5684   if (ary_klass_ptr->is_null_free()) {
5685     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newNullRestrictedArray
5686     // which requires both the component type and the array length on stack for re-execution. Re-create and push
5687     // the component type.
5688     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
5689     ciInstance* instance = klass->component_mirror_instance();
5690     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
5691     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
5692     adjustment++;
5693   }
5694   // re-push array length for deoptimization
5695   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
5696   old_jvms->set_sp(old_jvms->sp() + adjustment);
5697   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
5698   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
5699   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
5700   old_jvms->set_should_reexecute(true);
5701 
5702   sfpt->set_i_o(map()->i_o());
5703   sfpt->set_memory(map()->memory());
5704   sfpt->set_control(map()->control());
5705   return sfpt;
5706 }
5707 
5708 // In case of a deoptimization, we restart execution at the
5709 // allocation, allocating a new array. We would leave an uninitialized
5710 // array in the heap that GCs wouldn't expect. Move the allocation
5711 // after the traps so we don't allocate the array if we
5712 // deoptimize. This is possible because tightly_coupled_allocation()
5713 // guarantees there's no observer of the allocated array at this point
5714 // and the control flow is simple enough.
5715 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5716                                                     int saved_reexecute_sp, uint new_idx) {
5717   if (saved_jvms_before_guards != nullptr && !stopped()) {
5718     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5719 
5720     assert(alloc != nullptr, "only with a tightly coupled allocation");
5721     // restore JVM state to the state at the arraycopy
5722     saved_jvms_before_guards->map()->set_control(map()->control());
5723     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5724     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5725     // If we've improved the types of some nodes (null check) while
5726     // emitting the guards, propagate them to the current state
5727     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5728     set_jvms(saved_jvms_before_guards);
5729     _reexecute_sp = saved_reexecute_sp;
5730 
5731     // Remove the allocation from above the guards
5732     CallProjections* callprojs = alloc->extract_projections(true);
5733     InitializeNode* init = alloc->initialization();
5734     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5735     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5736     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5737 
5738     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5739     // the allocation (i.e. is only valid if the allocation succeeds):
5740     // 1) replace CastIINode with AllocateArrayNode's length here
5741     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5742     //
5743     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5744     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5745     Node* init_control = init->proj_out(TypeFunc::Control);
5746     Node* alloc_length = alloc->Ideal_length();
5747 #ifdef ASSERT
5748     Node* prev_cast = nullptr;
5749 #endif
5750     for (uint i = 0; i < init_control->outcnt(); i++) {
5751       Node* init_out = init_control->raw_out(i);
5752       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5753 #ifdef ASSERT
5754         if (prev_cast == nullptr) {
5755           prev_cast = init_out;
5756         } else {
5757           if (prev_cast->cmp(*init_out) == false) {
5758             prev_cast->dump();
5759             init_out->dump();
5760             assert(false, "not equal CastIINode");
5761           }
5762         }
5763 #endif
5764         C->gvn_replace_by(init_out, alloc_length);
5765       }
5766     }
5767     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5768 
5769     // move the allocation here (after the guards)
5770     _gvn.hash_delete(alloc);
5771     alloc->set_req(TypeFunc::Control, control());
5772     alloc->set_req(TypeFunc::I_O, i_o());
5773     Node *mem = reset_memory();
5774     set_all_memory(mem);
5775     alloc->set_req(TypeFunc::Memory, mem);
5776     set_control(init->proj_out_or_null(TypeFunc::Control));
5777     set_i_o(callprojs->fallthrough_ioproj);
5778 
5779     // Update memory as done in GraphKit::set_output_for_allocation()
5780     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5781     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5782     if (ary_type->isa_aryptr() && length_type != nullptr) {
5783       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5784     }
5785     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5786     int            elemidx  = C->get_alias_index(telemref);
5787     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5788     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5789 
5790     Node* allocx = _gvn.transform(alloc);
5791     assert(allocx == alloc, "where has the allocation gone?");
5792     assert(dest->is_CheckCastPP(), "not an allocation result?");
5793 
5794     _gvn.hash_delete(dest);
5795     dest->set_req(0, control());
5796     Node* destx = _gvn.transform(dest);
5797     assert(destx == dest, "where has the allocation result gone?");
5798 
5799     array_ideal_length(alloc, ary_type, true);
5800   }
5801 }
5802 
5803 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5804 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5805 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5806 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5807 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5808 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5809 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5810                                                                        JVMState* saved_jvms_before_guards) {
5811   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5812     // There is at least one unrelated uncommon trap which needs to be replaced.
5813     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5814 
5815     JVMState* saved_jvms = jvms();
5816     const int saved_reexecute_sp = _reexecute_sp;
5817     set_jvms(sfpt->jvms());
5818     _reexecute_sp = jvms()->sp();
5819 
5820     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5821 
5822     // Restore state
5823     set_jvms(saved_jvms);
5824     _reexecute_sp = saved_reexecute_sp;
5825   }
5826 }
5827 
5828 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5829 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5830 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5831   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5832   while (if_proj->is_IfProj()) {
5833     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5834     if (uncommon_trap != nullptr) {
5835       create_new_uncommon_trap(uncommon_trap);
5836     }
5837     assert(if_proj->in(0)->is_If(), "must be If");
5838     if_proj = if_proj->in(0)->in(0);
5839   }
5840   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5841          "must have reached control projection of init node");
5842 }
5843 
5844 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5845   const int trap_request = uncommon_trap_call->uncommon_trap_request();
5846   assert(trap_request != 0, "no valid UCT trap request");
5847   PreserveJVMState pjvms(this);
5848   set_control(uncommon_trap_call->in(0));
5849   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5850                 Deoptimization::trap_request_action(trap_request));
5851   assert(stopped(), "Should be stopped");
5852   _gvn.hash_delete(uncommon_trap_call);
5853   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5854 }
5855 
5856 // Common checks for array sorting intrinsics arguments.
5857 // Returns `true` if checks passed.
5858 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
5859   // check address of the class
5860   if (elementType == nullptr || elementType->is_top()) {
5861     return false;  // dead path
5862   }
5863   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5864   if (elem_klass == nullptr) {
5865     return false;  // dead path
5866   }
5867   // java_mirror_type() returns non-null for compile-time Class constants only
5868   ciType* elem_type = elem_klass->java_mirror_type();
5869   if (elem_type == nullptr) {
5870     return false;
5871   }
5872   bt = elem_type->basic_type();
5873   // Disable the intrinsic if the CPU does not support SIMD sort
5874   if (!Matcher::supports_simd_sort(bt)) {
5875     return false;
5876   }
5877   // check address of the array
5878   if (obj == nullptr || obj->is_top()) {
5879     return false;  // dead path
5880   }
5881   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5882   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
5883     return false; // failed input validation
5884   }
5885   return true;
5886 }
5887 
5888 //------------------------------inline_array_partition-----------------------
5889 bool LibraryCallKit::inline_array_partition() {
5890   address stubAddr = StubRoutines::select_array_partition_function();
5891   if (stubAddr == nullptr) {
5892     return false; // Intrinsic's stub is not implemented on this platform
5893   }
5894   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
5895 
5896   // no receiver because it is a static method
5897   Node* elementType     = argument(0);
5898   Node* obj             = argument(1);
5899   Node* offset          = argument(2); // long
5900   Node* fromIndex       = argument(4);
5901   Node* toIndex         = argument(5);
5902   Node* indexPivot1     = argument(6);
5903   Node* indexPivot2     = argument(7);
5904   // PartitionOperation:  argument(8) is ignored
5905 
5906   Node* pivotIndices = nullptr;
5907   BasicType bt = T_ILLEGAL;
5908 
5909   if (!check_array_sort_arguments(elementType, obj, bt)) {
5910     return false;
5911   }
5912   null_check(obj);
5913   // If obj is dead, only null-path is taken.
5914   if (stopped()) {
5915     return true;
5916   }
5917   // Set the original stack and the reexecute bit for the interpreter to reexecute
5918   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
5919   { PreserveReexecuteState preexecs(this);
5920     jvms()->set_should_reexecute(true);
5921 
5922     Node* obj_adr = make_unsafe_address(obj, offset);
5923 
5924     // create the pivotIndices array of type int and size = 2
5925     Node* size = intcon(2);
5926     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
5927     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
5928     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
5929     guarantee(alloc != nullptr, "created above");
5930     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
5931 
5932     // pass the basic type enum to the stub
5933     Node* elemType = intcon(bt);
5934 
5935     // Call the stub
5936     const char *stubName = "array_partition_stub";
5937     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
5938                       stubAddr, stubName, TypePtr::BOTTOM,
5939                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
5940                       indexPivot1, indexPivot2);
5941 
5942   } // original reexecute is set back here
5943 
5944   if (!stopped()) {
5945     set_result(pivotIndices);
5946   }
5947 
5948   return true;
5949 }
5950 
5951 
5952 //------------------------------inline_array_sort-----------------------
5953 bool LibraryCallKit::inline_array_sort() {
5954   address stubAddr = StubRoutines::select_arraysort_function();
5955   if (stubAddr == nullptr) {
5956     return false; // Intrinsic's stub is not implemented on this platform
5957   }
5958   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
5959 
5960   // no receiver because it is a static method
5961   Node* elementType     = argument(0);
5962   Node* obj             = argument(1);
5963   Node* offset          = argument(2); // long
5964   Node* fromIndex       = argument(4);
5965   Node* toIndex         = argument(5);
5966   // SortOperation:       argument(6) is ignored
5967 
5968   BasicType bt = T_ILLEGAL;
5969 
5970   if (!check_array_sort_arguments(elementType, obj, bt)) {
5971     return false;
5972   }
5973   null_check(obj);
5974   // If obj is dead, only null-path is taken.
5975   if (stopped()) {
5976     return true;
5977   }
5978   Node* obj_adr = make_unsafe_address(obj, offset);
5979 
5980   // pass the basic type enum to the stub
5981   Node* elemType = intcon(bt);
5982 
5983   // Call the stub.
5984   const char *stubName = "arraysort_stub";
5985   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
5986                     stubAddr, stubName, TypePtr::BOTTOM,
5987                     obj_adr, elemType, fromIndex, toIndex);
5988 
5989   return true;
5990 }
5991 
5992 
5993 //------------------------------inline_arraycopy-----------------------
5994 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5995 //                                                      Object dest, int destPos,
5996 //                                                      int length);
5997 bool LibraryCallKit::inline_arraycopy() {
5998   // Get the arguments.
5999   Node* src         = argument(0);  // type: oop
6000   Node* src_offset  = argument(1);  // type: int
6001   Node* dest        = argument(2);  // type: oop
6002   Node* dest_offset = argument(3);  // type: int
6003   Node* length      = argument(4);  // type: int
6004 
6005   uint new_idx = C->unique();
6006 
6007   // Check for allocation before we add nodes that would confuse
6008   // tightly_coupled_allocation()
6009   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
6010 
6011   int saved_reexecute_sp = -1;
6012   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
6013   // See arraycopy_restore_alloc_state() comment
6014   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
6015   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
6016   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
6017   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
6018 
6019   // The following tests must be performed
6020   // (1) src and dest are arrays.
6021   // (2) src and dest arrays must have elements of the same BasicType
6022   // (3) src and dest must not be null.
6023   // (4) src_offset must not be negative.
6024   // (5) dest_offset must not be negative.
6025   // (6) length must not be negative.
6026   // (7) src_offset + length must not exceed length of src.
6027   // (8) dest_offset + length must not exceed length of dest.
6028   // (9) each element of an oop array must be assignable
6029 
6030   // (3) src and dest must not be null.
6031   // always do this here because we need the JVM state for uncommon traps
6032   Node* null_ctl = top();
6033   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
6034   assert(null_ctl->is_top(), "no null control here");
6035   dest = null_check(dest, T_ARRAY);
6036 
6037   if (!can_emit_guards) {
6038     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
6039     // guards but the arraycopy node could still take advantage of a
6040     // tightly allocated allocation. tightly_coupled_allocation() is
6041     // called again to make sure it takes the null check above into
6042     // account: the null check is mandatory and if it caused an
6043     // uncommon trap to be emitted then the allocation can't be
6044     // considered tightly coupled in this context.
6045     alloc = tightly_coupled_allocation(dest);
6046   }
6047 
6048   bool validated = false;
6049 
6050   const Type* src_type  = _gvn.type(src);
6051   const Type* dest_type = _gvn.type(dest);
6052   const TypeAryPtr* top_src  = src_type->isa_aryptr();
6053   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6054 
6055   // Do we have the type of src?
6056   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6057   // Do we have the type of dest?
6058   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6059   // Is the type for src from speculation?
6060   bool src_spec = false;
6061   // Is the type for dest from speculation?
6062   bool dest_spec = false;
6063 
6064   if ((!has_src || !has_dest) && can_emit_guards) {
6065     // We don't have sufficient type information, let's see if
6066     // speculative types can help. We need to have types for both src
6067     // and dest so that it pays off.
6068 
6069     // Do we already have or could we have type information for src
6070     bool could_have_src = has_src;
6071     // Do we already have or could we have type information for dest
6072     bool could_have_dest = has_dest;
6073 
6074     ciKlass* src_k = nullptr;
6075     if (!has_src) {
6076       src_k = src_type->speculative_type_not_null();
6077       if (src_k != nullptr && src_k->is_array_klass()) {
6078         could_have_src = true;
6079       }
6080     }
6081 
6082     ciKlass* dest_k = nullptr;
6083     if (!has_dest) {
6084       dest_k = dest_type->speculative_type_not_null();
6085       if (dest_k != nullptr && dest_k->is_array_klass()) {
6086         could_have_dest = true;
6087       }
6088     }
6089 
6090     if (could_have_src && could_have_dest) {
6091       // This is going to pay off so emit the required guards
6092       if (!has_src) {
6093         src = maybe_cast_profiled_obj(src, src_k, true);
6094         src_type  = _gvn.type(src);
6095         top_src  = src_type->isa_aryptr();
6096         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6097         src_spec = true;
6098       }
6099       if (!has_dest) {
6100         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6101         dest_type  = _gvn.type(dest);
6102         top_dest  = dest_type->isa_aryptr();
6103         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6104         dest_spec = true;
6105       }
6106     }
6107   }
6108 
6109   if (has_src && has_dest && can_emit_guards) {
6110     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6111     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6112     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6113     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6114 
6115     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6116       // If both arrays are object arrays then having the exact types
6117       // for both will remove the need for a subtype check at runtime
6118       // before the call and may make it possible to pick a faster copy
6119       // routine (without a subtype check on every element)
6120       // Do we have the exact type of src?
6121       bool could_have_src = src_spec;
6122       // Do we have the exact type of dest?
6123       bool could_have_dest = dest_spec;
6124       ciKlass* src_k = nullptr;
6125       ciKlass* dest_k = nullptr;
6126       if (!src_spec) {
6127         src_k = src_type->speculative_type_not_null();
6128         if (src_k != nullptr && src_k->is_array_klass()) {
6129           could_have_src = true;
6130         }
6131       }
6132       if (!dest_spec) {
6133         dest_k = dest_type->speculative_type_not_null();
6134         if (dest_k != nullptr && dest_k->is_array_klass()) {
6135           could_have_dest = true;
6136         }
6137       }
6138       if (could_have_src && could_have_dest) {
6139         // If we can have both exact types, emit the missing guards
6140         if (could_have_src && !src_spec) {
6141           src = maybe_cast_profiled_obj(src, src_k, true);
6142           src_type = _gvn.type(src);
6143           top_src = src_type->isa_aryptr();
6144         }
6145         if (could_have_dest && !dest_spec) {
6146           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6147           dest_type = _gvn.type(dest);
6148           top_dest = dest_type->isa_aryptr();
6149         }
6150       }
6151     }
6152   }
6153 
6154   ciMethod* trap_method = method();
6155   int trap_bci = bci();
6156   if (saved_jvms_before_guards != nullptr) {
6157     trap_method = alloc->jvms()->method();
6158     trap_bci = alloc->jvms()->bci();
6159   }
6160 
6161   bool negative_length_guard_generated = false;
6162 
6163   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6164       can_emit_guards && !src->is_top() && !dest->is_top()) {
6165     // validate arguments: enables transformation the ArrayCopyNode
6166     validated = true;
6167 
6168     RegionNode* slow_region = new RegionNode(1);
6169     record_for_igvn(slow_region);
6170 
6171     // (1) src and dest are arrays.
6172     generate_non_array_guard(load_object_klass(src), slow_region);
6173     generate_non_array_guard(load_object_klass(dest), slow_region);
6174 
6175     // (2) src and dest arrays must have elements of the same BasicType
6176     // done at macro expansion or at Ideal transformation time
6177 
6178     // (4) src_offset must not be negative.
6179     generate_negative_guard(src_offset, slow_region);
6180 
6181     // (5) dest_offset must not be negative.
6182     generate_negative_guard(dest_offset, slow_region);
6183 
6184     // (7) src_offset + length must not exceed length of src.
6185     generate_limit_guard(src_offset, length,
6186                          load_array_length(src),
6187                          slow_region);
6188 
6189     // (8) dest_offset + length must not exceed length of dest.
6190     generate_limit_guard(dest_offset, length,
6191                          load_array_length(dest),
6192                          slow_region);
6193 
6194     // (6) length must not be negative.
6195     // This is also checked in generate_arraycopy() during macro expansion, but
6196     // we also have to check it here for the case where the ArrayCopyNode will
6197     // be eliminated by Escape Analysis.
6198     if (EliminateAllocations) {
6199       generate_negative_guard(length, slow_region);
6200       negative_length_guard_generated = true;
6201     }
6202 
6203     // (9) each element of an oop array must be assignable
6204     Node* dest_klass = load_object_klass(dest);
6205     if (src != dest) {
6206       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6207       slow_region->add_req(not_subtype_ctrl);
6208     }
6209 
6210     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6211     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6212     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6213     src_type = _gvn.type(src);
6214     top_src  = src_type->isa_aryptr();
6215 
6216     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6217     if (!stopped() && UseFlatArray) {
6218       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6219       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6220       if (top_src != nullptr && top_src->is_flat()) {
6221         // Src is flat, check that dest is flat as well
6222         if (top_dest != nullptr && !top_dest->is_flat()) {
6223           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6224           // Since dest is flat and src <: dest, dest must have the same type as src.
6225           top_dest = top_src->cast_to_exactness(false);
6226           assert(top_dest->is_flat(), "dest must be flat");
6227           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6228         }
6229       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6230         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6231         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6232         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6233         generate_fair_guard(flat_array_test(src), slow_region);
6234         if (top_src != nullptr) {
6235           top_src = top_src->cast_to_not_flat();
6236           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6237         }
6238       }
6239     }
6240 
6241     {
6242       PreserveJVMState pjvms(this);
6243       set_control(_gvn.transform(slow_region));
6244       uncommon_trap(Deoptimization::Reason_intrinsic,
6245                     Deoptimization::Action_make_not_entrant);
6246       assert(stopped(), "Should be stopped");
6247     }
6248     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6249   }
6250 
6251   if (stopped()) {
6252     return true;
6253   }
6254 
6255   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6256                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6257                                           // so the compiler has a chance to eliminate them: during macro expansion,
6258                                           // we have to set their control (CastPP nodes are eliminated).
6259                                           load_object_klass(src), load_object_klass(dest),
6260                                           load_array_length(src), load_array_length(dest));
6261 
6262   ac->set_arraycopy(validated);
6263 
6264   Node* n = _gvn.transform(ac);
6265   if (n == ac) {
6266     ac->connect_outputs(this);
6267   } else {
6268     assert(validated, "shouldn't transform if all arguments not validated");
6269     set_all_memory(n);
6270   }
6271   clear_upper_avx();
6272 
6273 
6274   return true;
6275 }
6276 
6277 
6278 // Helper function which determines if an arraycopy immediately follows
6279 // an allocation, with no intervening tests or other escapes for the object.
6280 AllocateArrayNode*
6281 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
6282   if (stopped())             return nullptr;  // no fast path
6283   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
6284 
6285   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
6286   if (alloc == nullptr)  return nullptr;
6287 
6288   Node* rawmem = memory(Compile::AliasIdxRaw);
6289   // Is the allocation's memory state untouched?
6290   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
6291     // Bail out if there have been raw-memory effects since the allocation.
6292     // (Example:  There might have been a call or safepoint.)
6293     return nullptr;
6294   }
6295   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
6296   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
6297     return nullptr;
6298   }
6299 
6300   // There must be no unexpected observers of this allocation.
6301   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
6302     Node* obs = ptr->fast_out(i);
6303     if (obs != this->map()) {
6304       return nullptr;
6305     }
6306   }
6307 
6308   // This arraycopy must unconditionally follow the allocation of the ptr.
6309   Node* alloc_ctl = ptr->in(0);
6310   Node* ctl = control();
6311   while (ctl != alloc_ctl) {
6312     // There may be guards which feed into the slow_region.
6313     // Any other control flow means that we might not get a chance
6314     // to finish initializing the allocated object.
6315     // Various low-level checks bottom out in uncommon traps. These
6316     // are considered safe since we've already checked above that
6317     // there is no unexpected observer of this allocation.
6318     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6319       assert(ctl->in(0)->is_If(), "must be If");
6320       ctl = ctl->in(0)->in(0);
6321     } else {
6322       return nullptr;
6323     }
6324   }
6325 
6326   // If we get this far, we have an allocation which immediately
6327   // precedes the arraycopy, and we can take over zeroing the new object.
6328   // The arraycopy will finish the initialization, and provide
6329   // a new control state to which we will anchor the destination pointer.
6330 
6331   return alloc;
6332 }
6333 
6334 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6335   if (node->is_IfProj()) {
6336     Node* other_proj = node->as_IfProj()->other_if_proj();
6337     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6338       Node* obs = other_proj->fast_out(j);
6339       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6340           (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
6341         return obs->as_CallStaticJava();
6342       }
6343     }
6344   }
6345   return nullptr;
6346 }
6347 
6348 //-------------inline_encodeISOArray-----------------------------------
6349 // encode char[] to byte[] in ISO_8859_1 or ASCII
6350 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6351   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6352   // no receiver since it is static method
6353   Node *src         = argument(0);
6354   Node *src_offset  = argument(1);
6355   Node *dst         = argument(2);
6356   Node *dst_offset  = argument(3);
6357   Node *length      = argument(4);
6358 
6359   src = must_be_not_null(src, true);
6360   dst = must_be_not_null(dst, true);
6361 
6362   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6363   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6364   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6365       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6366     // failed array check
6367     return false;
6368   }
6369 
6370   // Figure out the size and type of the elements we will be copying.
6371   BasicType src_elem = src_type->elem()->array_element_basic_type();
6372   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6373   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6374     return false;
6375   }
6376 
6377   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6378   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6379   // 'src_start' points to src array + scaled offset
6380   // 'dst_start' points to dst array + scaled offset
6381 
6382   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6383   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6384   enc = _gvn.transform(enc);
6385   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6386   set_memory(res_mem, mtype);
6387   set_result(enc);
6388   clear_upper_avx();
6389 
6390   return true;
6391 }
6392 
6393 //-------------inline_multiplyToLen-----------------------------------
6394 bool LibraryCallKit::inline_multiplyToLen() {
6395   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6396 
6397   address stubAddr = StubRoutines::multiplyToLen();
6398   if (stubAddr == nullptr) {
6399     return false; // Intrinsic's stub is not implemented on this platform
6400   }
6401   const char* stubName = "multiplyToLen";
6402 
6403   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6404 
6405   // no receiver because it is a static method
6406   Node* x    = argument(0);
6407   Node* xlen = argument(1);
6408   Node* y    = argument(2);
6409   Node* ylen = argument(3);
6410   Node* z    = argument(4);
6411 
6412   x = must_be_not_null(x, true);
6413   y = must_be_not_null(y, true);
6414 
6415   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6416   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6417   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6418       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6419     // failed array check
6420     return false;
6421   }
6422 
6423   BasicType x_elem = x_type->elem()->array_element_basic_type();
6424   BasicType y_elem = y_type->elem()->array_element_basic_type();
6425   if (x_elem != T_INT || y_elem != T_INT) {
6426     return false;
6427   }
6428 
6429   Node* x_start = array_element_address(x, intcon(0), x_elem);
6430   Node* y_start = array_element_address(y, intcon(0), y_elem);
6431   // 'x_start' points to x array + scaled xlen
6432   // 'y_start' points to y array + scaled ylen
6433 
6434   Node* z_start = array_element_address(z, intcon(0), T_INT);
6435 
6436   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6437                                  OptoRuntime::multiplyToLen_Type(),
6438                                  stubAddr, stubName, TypePtr::BOTTOM,
6439                                  x_start, xlen, y_start, ylen, z_start);
6440 
6441   C->set_has_split_ifs(true); // Has chance for split-if optimization
6442   set_result(z);
6443   return true;
6444 }
6445 
6446 //-------------inline_squareToLen------------------------------------
6447 bool LibraryCallKit::inline_squareToLen() {
6448   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6449 
6450   address stubAddr = StubRoutines::squareToLen();
6451   if (stubAddr == nullptr) {
6452     return false; // Intrinsic's stub is not implemented on this platform
6453   }
6454   const char* stubName = "squareToLen";
6455 
6456   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6457 
6458   Node* x    = argument(0);
6459   Node* len  = argument(1);
6460   Node* z    = argument(2);
6461   Node* zlen = argument(3);
6462 
6463   x = must_be_not_null(x, true);
6464   z = must_be_not_null(z, true);
6465 
6466   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6467   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6468   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6469       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6470     // failed array check
6471     return false;
6472   }
6473 
6474   BasicType x_elem = x_type->elem()->array_element_basic_type();
6475   BasicType z_elem = z_type->elem()->array_element_basic_type();
6476   if (x_elem != T_INT || z_elem != T_INT) {
6477     return false;
6478   }
6479 
6480 
6481   Node* x_start = array_element_address(x, intcon(0), x_elem);
6482   Node* z_start = array_element_address(z, intcon(0), z_elem);
6483 
6484   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6485                                   OptoRuntime::squareToLen_Type(),
6486                                   stubAddr, stubName, TypePtr::BOTTOM,
6487                                   x_start, len, z_start, zlen);
6488 
6489   set_result(z);
6490   return true;
6491 }
6492 
6493 //-------------inline_mulAdd------------------------------------------
6494 bool LibraryCallKit::inline_mulAdd() {
6495   assert(UseMulAddIntrinsic, "not implemented on this platform");
6496 
6497   address stubAddr = StubRoutines::mulAdd();
6498   if (stubAddr == nullptr) {
6499     return false; // Intrinsic's stub is not implemented on this platform
6500   }
6501   const char* stubName = "mulAdd";
6502 
6503   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6504 
6505   Node* out      = argument(0);
6506   Node* in       = argument(1);
6507   Node* offset   = argument(2);
6508   Node* len      = argument(3);
6509   Node* k        = argument(4);
6510 
6511   in = must_be_not_null(in, true);
6512   out = must_be_not_null(out, true);
6513 
6514   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6515   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6516   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6517        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6518     // failed array check
6519     return false;
6520   }
6521 
6522   BasicType out_elem = out_type->elem()->array_element_basic_type();
6523   BasicType in_elem = in_type->elem()->array_element_basic_type();
6524   if (out_elem != T_INT || in_elem != T_INT) {
6525     return false;
6526   }
6527 
6528   Node* outlen = load_array_length(out);
6529   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6530   Node* out_start = array_element_address(out, intcon(0), out_elem);
6531   Node* in_start = array_element_address(in, intcon(0), in_elem);
6532 
6533   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6534                                   OptoRuntime::mulAdd_Type(),
6535                                   stubAddr, stubName, TypePtr::BOTTOM,
6536                                   out_start,in_start, new_offset, len, k);
6537   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6538   set_result(result);
6539   return true;
6540 }
6541 
6542 //-------------inline_montgomeryMultiply-----------------------------------
6543 bool LibraryCallKit::inline_montgomeryMultiply() {
6544   address stubAddr = StubRoutines::montgomeryMultiply();
6545   if (stubAddr == nullptr) {
6546     return false; // Intrinsic's stub is not implemented on this platform
6547   }
6548 
6549   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6550   const char* stubName = "montgomery_multiply";
6551 
6552   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6553 
6554   Node* a    = argument(0);
6555   Node* b    = argument(1);
6556   Node* n    = argument(2);
6557   Node* len  = argument(3);
6558   Node* inv  = argument(4);
6559   Node* m    = argument(6);
6560 
6561   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6562   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6563   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6564   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6565   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6566       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6567       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6568       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6569     // failed array check
6570     return false;
6571   }
6572 
6573   BasicType a_elem = a_type->elem()->array_element_basic_type();
6574   BasicType b_elem = b_type->elem()->array_element_basic_type();
6575   BasicType n_elem = n_type->elem()->array_element_basic_type();
6576   BasicType m_elem = m_type->elem()->array_element_basic_type();
6577   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6578     return false;
6579   }
6580 
6581   // Make the call
6582   {
6583     Node* a_start = array_element_address(a, intcon(0), a_elem);
6584     Node* b_start = array_element_address(b, intcon(0), b_elem);
6585     Node* n_start = array_element_address(n, intcon(0), n_elem);
6586     Node* m_start = array_element_address(m, intcon(0), m_elem);
6587 
6588     Node* call = make_runtime_call(RC_LEAF,
6589                                    OptoRuntime::montgomeryMultiply_Type(),
6590                                    stubAddr, stubName, TypePtr::BOTTOM,
6591                                    a_start, b_start, n_start, len, inv, top(),
6592                                    m_start);
6593     set_result(m);
6594   }
6595 
6596   return true;
6597 }
6598 
6599 bool LibraryCallKit::inline_montgomerySquare() {
6600   address stubAddr = StubRoutines::montgomerySquare();
6601   if (stubAddr == nullptr) {
6602     return false; // Intrinsic's stub is not implemented on this platform
6603   }
6604 
6605   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6606   const char* stubName = "montgomery_square";
6607 
6608   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6609 
6610   Node* a    = argument(0);
6611   Node* n    = argument(1);
6612   Node* len  = argument(2);
6613   Node* inv  = argument(3);
6614   Node* m    = argument(5);
6615 
6616   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6617   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6618   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6619   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6620       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6621       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6622     // failed array check
6623     return false;
6624   }
6625 
6626   BasicType a_elem = a_type->elem()->array_element_basic_type();
6627   BasicType n_elem = n_type->elem()->array_element_basic_type();
6628   BasicType m_elem = m_type->elem()->array_element_basic_type();
6629   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6630     return false;
6631   }
6632 
6633   // Make the call
6634   {
6635     Node* a_start = array_element_address(a, intcon(0), a_elem);
6636     Node* n_start = array_element_address(n, intcon(0), n_elem);
6637     Node* m_start = array_element_address(m, intcon(0), m_elem);
6638 
6639     Node* call = make_runtime_call(RC_LEAF,
6640                                    OptoRuntime::montgomerySquare_Type(),
6641                                    stubAddr, stubName, TypePtr::BOTTOM,
6642                                    a_start, n_start, len, inv, top(),
6643                                    m_start);
6644     set_result(m);
6645   }
6646 
6647   return true;
6648 }
6649 
6650 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6651   address stubAddr = nullptr;
6652   const char* stubName = nullptr;
6653 
6654   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6655   if (stubAddr == nullptr) {
6656     return false; // Intrinsic's stub is not implemented on this platform
6657   }
6658 
6659   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6660 
6661   assert(callee()->signature()->size() == 5, "expected 5 arguments");
6662 
6663   Node* newArr = argument(0);
6664   Node* oldArr = argument(1);
6665   Node* newIdx = argument(2);
6666   Node* shiftCount = argument(3);
6667   Node* numIter = argument(4);
6668 
6669   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6670   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6671   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6672       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6673     return false;
6674   }
6675 
6676   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6677   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6678   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6679     return false;
6680   }
6681 
6682   // Make the call
6683   {
6684     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6685     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6686 
6687     Node* call = make_runtime_call(RC_LEAF,
6688                                    OptoRuntime::bigIntegerShift_Type(),
6689                                    stubAddr,
6690                                    stubName,
6691                                    TypePtr::BOTTOM,
6692                                    newArr_start,
6693                                    oldArr_start,
6694                                    newIdx,
6695                                    shiftCount,
6696                                    numIter);
6697   }
6698 
6699   return true;
6700 }
6701 
6702 //-------------inline_vectorizedMismatch------------------------------
6703 bool LibraryCallKit::inline_vectorizedMismatch() {
6704   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6705 
6706   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6707   Node* obja    = argument(0); // Object
6708   Node* aoffset = argument(1); // long
6709   Node* objb    = argument(3); // Object
6710   Node* boffset = argument(4); // long
6711   Node* length  = argument(6); // int
6712   Node* scale   = argument(7); // int
6713 
6714   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6715   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6716   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6717       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6718       scale == top()) {
6719     return false; // failed input validation
6720   }
6721 
6722   Node* obja_adr = make_unsafe_address(obja, aoffset);
6723   Node* objb_adr = make_unsafe_address(objb, boffset);
6724 
6725   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6726   //
6727   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
6728   //    if (length <= inline_limit) {
6729   //      inline_path:
6730   //        vmask   = VectorMaskGen length
6731   //        vload1  = LoadVectorMasked obja, vmask
6732   //        vload2  = LoadVectorMasked objb, vmask
6733   //        result1 = VectorCmpMasked vload1, vload2, vmask
6734   //    } else {
6735   //      call_stub_path:
6736   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6737   //    }
6738   //    exit_block:
6739   //      return Phi(result1, result2);
6740   //
6741   enum { inline_path = 1,  // input is small enough to process it all at once
6742          stub_path   = 2,  // input is too large; call into the VM
6743          PATH_LIMIT  = 3
6744   };
6745 
6746   Node* exit_block = new RegionNode(PATH_LIMIT);
6747   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6748   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6749 
6750   Node* call_stub_path = control();
6751 
6752   BasicType elem_bt = T_ILLEGAL;
6753 
6754   const TypeInt* scale_t = _gvn.type(scale)->is_int();
6755   if (scale_t->is_con()) {
6756     switch (scale_t->get_con()) {
6757       case 0: elem_bt = T_BYTE;  break;
6758       case 1: elem_bt = T_SHORT; break;
6759       case 2: elem_bt = T_INT;   break;
6760       case 3: elem_bt = T_LONG;  break;
6761 
6762       default: elem_bt = T_ILLEGAL; break; // not supported
6763     }
6764   }
6765 
6766   int inline_limit = 0;
6767   bool do_partial_inline = false;
6768 
6769   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6770     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6771     do_partial_inline = inline_limit >= 16;
6772   }
6773 
6774   if (do_partial_inline) {
6775     assert(elem_bt != T_ILLEGAL, "sanity");
6776 
6777     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
6778         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6779         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
6780 
6781       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6782       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6783       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6784 
6785       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6786 
6787       if (!stopped()) {
6788         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6789 
6790         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6791         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6792         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6793         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6794 
6795         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6796         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6797         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6798         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6799 
6800         exit_block->init_req(inline_path, control());
6801         memory_phi->init_req(inline_path, map()->memory());
6802         result_phi->init_req(inline_path, result);
6803 
6804         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6805         clear_upper_avx();
6806       }
6807     }
6808   }
6809 
6810   if (call_stub_path != nullptr) {
6811     set_control(call_stub_path);
6812 
6813     Node* call = make_runtime_call(RC_LEAF,
6814                                    OptoRuntime::vectorizedMismatch_Type(),
6815                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6816                                    obja_adr, objb_adr, length, scale);
6817 
6818     exit_block->init_req(stub_path, control());
6819     memory_phi->init_req(stub_path, map()->memory());
6820     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6821   }
6822 
6823   exit_block = _gvn.transform(exit_block);
6824   memory_phi = _gvn.transform(memory_phi);
6825   result_phi = _gvn.transform(result_phi);
6826 
6827   set_control(exit_block);
6828   set_all_memory(memory_phi);
6829   set_result(result_phi);
6830 
6831   return true;
6832 }
6833 
6834 //------------------------------inline_vectorizedHashcode----------------------------
6835 bool LibraryCallKit::inline_vectorizedHashCode() {
6836   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6837 
6838   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6839   Node* array          = argument(0);
6840   Node* offset         = argument(1);
6841   Node* length         = argument(2);
6842   Node* initialValue   = argument(3);
6843   Node* basic_type     = argument(4);
6844 
6845   if (basic_type == top()) {
6846     return false; // failed input validation
6847   }
6848 
6849   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6850   if (!basic_type_t->is_con()) {
6851     return false; // Only intrinsify if mode argument is constant
6852   }
6853 
6854   array = must_be_not_null(array, true);
6855 
6856   BasicType bt = (BasicType)basic_type_t->get_con();
6857 
6858   // Resolve address of first element
6859   Node* array_start = array_element_address(array, offset, bt);
6860 
6861   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6862     array_start, length, initialValue, basic_type)));
6863   clear_upper_avx();
6864 
6865   return true;
6866 }
6867 
6868 /**
6869  * Calculate CRC32 for byte.
6870  * int java.util.zip.CRC32.update(int crc, int b)
6871  */
6872 bool LibraryCallKit::inline_updateCRC32() {
6873   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6874   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6875   // no receiver since it is static method
6876   Node* crc  = argument(0); // type: int
6877   Node* b    = argument(1); // type: int
6878 
6879   /*
6880    *    int c = ~ crc;
6881    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6882    *    b = b ^ (c >>> 8);
6883    *    crc = ~b;
6884    */
6885 
6886   Node* M1 = intcon(-1);
6887   crc = _gvn.transform(new XorINode(crc, M1));
6888   Node* result = _gvn.transform(new XorINode(crc, b));
6889   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
6890 
6891   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6892   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
6893   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6894   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6895 
6896   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
6897   result = _gvn.transform(new XorINode(crc, result));
6898   result = _gvn.transform(new XorINode(result, M1));
6899   set_result(result);
6900   return true;
6901 }
6902 
6903 /**
6904  * Calculate CRC32 for byte[] array.
6905  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6906  */
6907 bool LibraryCallKit::inline_updateBytesCRC32() {
6908   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6909   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6910   // no receiver since it is static method
6911   Node* crc     = argument(0); // type: int
6912   Node* src     = argument(1); // type: oop
6913   Node* offset  = argument(2); // type: int
6914   Node* length  = argument(3); // type: int
6915 
6916   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6917   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6918     // failed array check
6919     return false;
6920   }
6921 
6922   // Figure out the size and type of the elements we will be copying.
6923   BasicType src_elem = src_type->elem()->array_element_basic_type();
6924   if (src_elem != T_BYTE) {
6925     return false;
6926   }
6927 
6928   // 'src_start' points to src array + scaled offset
6929   src = must_be_not_null(src, true);
6930   Node* src_start = array_element_address(src, offset, src_elem);
6931 
6932   // We assume that range check is done by caller.
6933   // TODO: generate range check (offset+length < src.length) in debug VM.
6934 
6935   // Call the stub.
6936   address stubAddr = StubRoutines::updateBytesCRC32();
6937   const char *stubName = "updateBytesCRC32";
6938 
6939   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6940                                  stubAddr, stubName, TypePtr::BOTTOM,
6941                                  crc, src_start, length);
6942   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6943   set_result(result);
6944   return true;
6945 }
6946 
6947 /**
6948  * Calculate CRC32 for ByteBuffer.
6949  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6950  */
6951 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6952   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6953   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6954   // no receiver since it is static method
6955   Node* crc     = argument(0); // type: int
6956   Node* src     = argument(1); // type: long
6957   Node* offset  = argument(3); // type: int
6958   Node* length  = argument(4); // type: int
6959 
6960   src = ConvL2X(src);  // adjust Java long to machine word
6961   Node* base = _gvn.transform(new CastX2PNode(src));
6962   offset = ConvI2X(offset);
6963 
6964   // 'src_start' points to src array + scaled offset
6965   Node* src_start = basic_plus_adr(top(), base, offset);
6966 
6967   // Call the stub.
6968   address stubAddr = StubRoutines::updateBytesCRC32();
6969   const char *stubName = "updateBytesCRC32";
6970 
6971   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6972                                  stubAddr, stubName, TypePtr::BOTTOM,
6973                                  crc, src_start, length);
6974   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6975   set_result(result);
6976   return true;
6977 }
6978 
6979 //------------------------------get_table_from_crc32c_class-----------------------
6980 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6981   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6982   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
6983 
6984   return table;
6985 }
6986 
6987 //------------------------------inline_updateBytesCRC32C-----------------------
6988 //
6989 // Calculate CRC32C for byte[] array.
6990 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6991 //
6992 bool LibraryCallKit::inline_updateBytesCRC32C() {
6993   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6994   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6995   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6996   // no receiver since it is a static method
6997   Node* crc     = argument(0); // type: int
6998   Node* src     = argument(1); // type: oop
6999   Node* offset  = argument(2); // type: int
7000   Node* end     = argument(3); // type: int
7001 
7002   Node* length = _gvn.transform(new SubINode(end, offset));
7003 
7004   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7005   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7006     // failed array check
7007     return false;
7008   }
7009 
7010   // Figure out the size and type of the elements we will be copying.
7011   BasicType src_elem = src_type->elem()->array_element_basic_type();
7012   if (src_elem != T_BYTE) {
7013     return false;
7014   }
7015 
7016   // 'src_start' points to src array + scaled offset
7017   src = must_be_not_null(src, true);
7018   Node* src_start = array_element_address(src, offset, src_elem);
7019 
7020   // static final int[] byteTable in class CRC32C
7021   Node* table = get_table_from_crc32c_class(callee()->holder());
7022   table = must_be_not_null(table, true);
7023   Node* table_start = array_element_address(table, intcon(0), T_INT);
7024 
7025   // We assume that range check is done by caller.
7026   // TODO: generate range check (offset+length < src.length) in debug VM.
7027 
7028   // Call the stub.
7029   address stubAddr = StubRoutines::updateBytesCRC32C();
7030   const char *stubName = "updateBytesCRC32C";
7031 
7032   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
7033                                  stubAddr, stubName, TypePtr::BOTTOM,
7034                                  crc, src_start, length, table_start);
7035   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7036   set_result(result);
7037   return true;
7038 }
7039 
7040 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
7041 //
7042 // Calculate CRC32C for DirectByteBuffer.
7043 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
7044 //
7045 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
7046   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
7047   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
7048   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
7049   // no receiver since it is a static method
7050   Node* crc     = argument(0); // type: int
7051   Node* src     = argument(1); // type: long
7052   Node* offset  = argument(3); // type: int
7053   Node* end     = argument(4); // type: int
7054 
7055   Node* length = _gvn.transform(new SubINode(end, offset));
7056 
7057   src = ConvL2X(src);  // adjust Java long to machine word
7058   Node* base = _gvn.transform(new CastX2PNode(src));
7059   offset = ConvI2X(offset);
7060 
7061   // 'src_start' points to src array + scaled offset
7062   Node* src_start = basic_plus_adr(top(), base, offset);
7063 
7064   // static final int[] byteTable in class CRC32C
7065   Node* table = get_table_from_crc32c_class(callee()->holder());
7066   table = must_be_not_null(table, true);
7067   Node* table_start = array_element_address(table, intcon(0), T_INT);
7068 
7069   // Call the stub.
7070   address stubAddr = StubRoutines::updateBytesCRC32C();
7071   const char *stubName = "updateBytesCRC32C";
7072 
7073   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
7074                                  stubAddr, stubName, TypePtr::BOTTOM,
7075                                  crc, src_start, length, table_start);
7076   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7077   set_result(result);
7078   return true;
7079 }
7080 
7081 //------------------------------inline_updateBytesAdler32----------------------
7082 //
7083 // Calculate Adler32 checksum for byte[] array.
7084 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
7085 //
7086 bool LibraryCallKit::inline_updateBytesAdler32() {
7087   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
7088   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
7089   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
7090   // no receiver since it is static method
7091   Node* crc     = argument(0); // type: int
7092   Node* src     = argument(1); // type: oop
7093   Node* offset  = argument(2); // type: int
7094   Node* length  = argument(3); // type: int
7095 
7096   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7097   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7098     // failed array check
7099     return false;
7100   }
7101 
7102   // Figure out the size and type of the elements we will be copying.
7103   BasicType src_elem = src_type->elem()->array_element_basic_type();
7104   if (src_elem != T_BYTE) {
7105     return false;
7106   }
7107 
7108   // 'src_start' points to src array + scaled offset
7109   Node* src_start = array_element_address(src, offset, src_elem);
7110 
7111   // We assume that range check is done by caller.
7112   // TODO: generate range check (offset+length < src.length) in debug VM.
7113 
7114   // Call the stub.
7115   address stubAddr = StubRoutines::updateBytesAdler32();
7116   const char *stubName = "updateBytesAdler32";
7117 
7118   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
7119                                  stubAddr, stubName, TypePtr::BOTTOM,
7120                                  crc, src_start, length);
7121   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7122   set_result(result);
7123   return true;
7124 }
7125 
7126 //------------------------------inline_updateByteBufferAdler32---------------
7127 //
7128 // Calculate Adler32 checksum for DirectByteBuffer.
7129 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
7130 //
7131 bool LibraryCallKit::inline_updateByteBufferAdler32() {
7132   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
7133   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
7134   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
7135   // no receiver since it is static method
7136   Node* crc     = argument(0); // type: int
7137   Node* src     = argument(1); // type: long
7138   Node* offset  = argument(3); // type: int
7139   Node* length  = argument(4); // type: int
7140 
7141   src = ConvL2X(src);  // adjust Java long to machine word
7142   Node* base = _gvn.transform(new CastX2PNode(src));
7143   offset = ConvI2X(offset);
7144 
7145   // 'src_start' points to src array + scaled offset
7146   Node* src_start = basic_plus_adr(top(), base, offset);
7147 
7148   // Call the stub.
7149   address stubAddr = StubRoutines::updateBytesAdler32();
7150   const char *stubName = "updateBytesAdler32";
7151 
7152   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
7153                                  stubAddr, stubName, TypePtr::BOTTOM,
7154                                  crc, src_start, length);
7155 
7156   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7157   set_result(result);
7158   return true;
7159 }
7160 
7161 //----------------------------inline_reference_get----------------------------
7162 // public T java.lang.ref.Reference.get();
7163 bool LibraryCallKit::inline_reference_get() {
7164   const int referent_offset = java_lang_ref_Reference::referent_offset();
7165 
7166   // Get the argument:
7167   Node* reference_obj = null_check_receiver();
7168   if (stopped()) return true;
7169 
7170   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
7171   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7172                                         decorators, /*is_static*/ false, nullptr);
7173   if (result == nullptr) return false;
7174 
7175   // Add memory barrier to prevent commoning reads from this field
7176   // across safepoint since GC can change its value.
7177   insert_mem_bar(Op_MemBarCPUOrder);
7178 
7179   set_result(result);
7180   return true;
7181 }
7182 
7183 //----------------------------inline_reference_refersTo0----------------------------
7184 // bool java.lang.ref.Reference.refersTo0();
7185 // bool java.lang.ref.PhantomReference.refersTo0();
7186 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
7187   // Get arguments:
7188   Node* reference_obj = null_check_receiver();
7189   Node* other_obj = argument(1);
7190   if (stopped()) return true;
7191 
7192   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
7193   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
7194   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7195                                           decorators, /*is_static*/ false, nullptr);
7196   if (referent == nullptr) return false;
7197 
7198   // Add memory barrier to prevent commoning reads from this field
7199   // across safepoint since GC can change its value.
7200   insert_mem_bar(Op_MemBarCPUOrder);
7201 
7202   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
7203   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
7204   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
7205 
7206   RegionNode* region = new RegionNode(3);
7207   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
7208 
7209   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
7210   region->init_req(1, if_true);
7211   phi->init_req(1, intcon(1));
7212 
7213   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
7214   region->init_req(2, if_false);
7215   phi->init_req(2, intcon(0));
7216 
7217   set_control(_gvn.transform(region));
7218   record_for_igvn(region);
7219   set_result(_gvn.transform(phi));
7220   return true;
7221 }
7222 
7223 
7224 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
7225                                              DecoratorSet decorators, bool is_static,
7226                                              ciInstanceKlass* fromKls) {
7227   if (fromKls == nullptr) {
7228     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7229     assert(tinst != nullptr, "obj is null");
7230     assert(tinst->is_loaded(), "obj is not loaded");
7231     fromKls = tinst->instance_klass();
7232   } else {
7233     assert(is_static, "only for static field access");
7234   }
7235   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7236                                               ciSymbol::make(fieldTypeString),
7237                                               is_static);
7238 
7239   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
7240   if (field == nullptr) return (Node *) nullptr;
7241 
7242   if (is_static) {
7243     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7244     fromObj = makecon(tip);
7245   }
7246 
7247   // Next code  copied from Parse::do_get_xxx():
7248 
7249   // Compute address and memory type.
7250   int offset  = field->offset_in_bytes();
7251   bool is_vol = field->is_volatile();
7252   ciType* field_klass = field->type();
7253   assert(field_klass->is_loaded(), "should be loaded");
7254   const TypePtr* adr_type = C->alias_type(field)->adr_type();
7255   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7256   BasicType bt = field->layout_type();
7257 
7258   // Build the resultant type of the load
7259   const Type *type;
7260   if (bt == T_OBJECT) {
7261     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
7262   } else {
7263     type = Type::get_const_basic_type(bt);
7264   }
7265 
7266   if (is_vol) {
7267     decorators |= MO_SEQ_CST;
7268   }
7269 
7270   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
7271 }
7272 
7273 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7274                                                  bool is_exact /* true */, bool is_static /* false */,
7275                                                  ciInstanceKlass * fromKls /* nullptr */) {
7276   if (fromKls == nullptr) {
7277     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7278     assert(tinst != nullptr, "obj is null");
7279     assert(tinst->is_loaded(), "obj is not loaded");
7280     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7281     fromKls = tinst->instance_klass();
7282   }
7283   else {
7284     assert(is_static, "only for static field access");
7285   }
7286   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7287     ciSymbol::make(fieldTypeString),
7288     is_static);
7289 
7290   assert(field != nullptr, "undefined field");
7291   assert(!field->is_volatile(), "not defined for volatile fields");
7292 
7293   if (is_static) {
7294     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7295     fromObj = makecon(tip);
7296   }
7297 
7298   // Next code  copied from Parse::do_get_xxx():
7299 
7300   // Compute address and memory type.
7301   int offset = field->offset_in_bytes();
7302   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7303 
7304   return adr;
7305 }
7306 
7307 //------------------------------inline_aescrypt_Block-----------------------
7308 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7309   address stubAddr = nullptr;
7310   const char *stubName;
7311   assert(UseAES, "need AES instruction support");
7312 
7313   switch(id) {
7314   case vmIntrinsics::_aescrypt_encryptBlock:
7315     stubAddr = StubRoutines::aescrypt_encryptBlock();
7316     stubName = "aescrypt_encryptBlock";
7317     break;
7318   case vmIntrinsics::_aescrypt_decryptBlock:
7319     stubAddr = StubRoutines::aescrypt_decryptBlock();
7320     stubName = "aescrypt_decryptBlock";
7321     break;
7322   default:
7323     break;
7324   }
7325   if (stubAddr == nullptr) return false;
7326 
7327   Node* aescrypt_object = argument(0);
7328   Node* src             = argument(1);
7329   Node* src_offset      = argument(2);
7330   Node* dest            = argument(3);
7331   Node* dest_offset     = argument(4);
7332 
7333   src = must_be_not_null(src, true);
7334   dest = must_be_not_null(dest, true);
7335 
7336   // (1) src and dest are arrays.
7337   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7338   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7339   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7340          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7341 
7342   // for the quick and dirty code we will skip all the checks.
7343   // we are just trying to get the call to be generated.
7344   Node* src_start  = src;
7345   Node* dest_start = dest;
7346   if (src_offset != nullptr || dest_offset != nullptr) {
7347     assert(src_offset != nullptr && dest_offset != nullptr, "");
7348     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7349     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7350   }
7351 
7352   // now need to get the start of its expanded key array
7353   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7354   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7355   if (k_start == nullptr) return false;
7356 
7357   // Call the stub.
7358   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7359                     stubAddr, stubName, TypePtr::BOTTOM,
7360                     src_start, dest_start, k_start);
7361 
7362   return true;
7363 }
7364 
7365 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7366 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7367   address stubAddr = nullptr;
7368   const char *stubName = nullptr;
7369 
7370   assert(UseAES, "need AES instruction support");
7371 
7372   switch(id) {
7373   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7374     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7375     stubName = "cipherBlockChaining_encryptAESCrypt";
7376     break;
7377   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7378     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7379     stubName = "cipherBlockChaining_decryptAESCrypt";
7380     break;
7381   default:
7382     break;
7383   }
7384   if (stubAddr == nullptr) return false;
7385 
7386   Node* cipherBlockChaining_object = argument(0);
7387   Node* src                        = argument(1);
7388   Node* src_offset                 = argument(2);
7389   Node* len                        = argument(3);
7390   Node* dest                       = argument(4);
7391   Node* dest_offset                = argument(5);
7392 
7393   src = must_be_not_null(src, false);
7394   dest = must_be_not_null(dest, false);
7395 
7396   // (1) src and dest are arrays.
7397   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7398   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7399   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7400          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7401 
7402   // checks are the responsibility of the caller
7403   Node* src_start  = src;
7404   Node* dest_start = dest;
7405   if (src_offset != nullptr || dest_offset != nullptr) {
7406     assert(src_offset != nullptr && dest_offset != nullptr, "");
7407     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7408     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7409   }
7410 
7411   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7412   // (because of the predicated logic executed earlier).
7413   // so we cast it here safely.
7414   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7415 
7416   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7417   if (embeddedCipherObj == nullptr) return false;
7418 
7419   // cast it to what we know it will be at runtime
7420   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7421   assert(tinst != nullptr, "CBC obj is null");
7422   assert(tinst->is_loaded(), "CBC obj is not loaded");
7423   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7424   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7425 
7426   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7427   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7428   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7429   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7430   aescrypt_object = _gvn.transform(aescrypt_object);
7431 
7432   // we need to get the start of the aescrypt_object's expanded key array
7433   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7434   if (k_start == nullptr) return false;
7435 
7436   // similarly, get the start address of the r vector
7437   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7438   if (objRvec == nullptr) return false;
7439   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7440 
7441   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7442   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7443                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7444                                      stubAddr, stubName, TypePtr::BOTTOM,
7445                                      src_start, dest_start, k_start, r_start, len);
7446 
7447   // return cipher length (int)
7448   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7449   set_result(retvalue);
7450   return true;
7451 }
7452 
7453 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7454 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7455   address stubAddr = nullptr;
7456   const char *stubName = nullptr;
7457 
7458   assert(UseAES, "need AES instruction support");
7459 
7460   switch (id) {
7461   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7462     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7463     stubName = "electronicCodeBook_encryptAESCrypt";
7464     break;
7465   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7466     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7467     stubName = "electronicCodeBook_decryptAESCrypt";
7468     break;
7469   default:
7470     break;
7471   }
7472 
7473   if (stubAddr == nullptr) return false;
7474 
7475   Node* electronicCodeBook_object = argument(0);
7476   Node* src                       = argument(1);
7477   Node* src_offset                = argument(2);
7478   Node* len                       = argument(3);
7479   Node* dest                      = argument(4);
7480   Node* dest_offset               = argument(5);
7481 
7482   // (1) src and dest are arrays.
7483   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7484   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7485   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7486          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7487 
7488   // checks are the responsibility of the caller
7489   Node* src_start = src;
7490   Node* dest_start = dest;
7491   if (src_offset != nullptr || dest_offset != nullptr) {
7492     assert(src_offset != nullptr && dest_offset != nullptr, "");
7493     src_start = array_element_address(src, src_offset, T_BYTE);
7494     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7495   }
7496 
7497   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7498   // (because of the predicated logic executed earlier).
7499   // so we cast it here safely.
7500   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7501 
7502   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7503   if (embeddedCipherObj == nullptr) return false;
7504 
7505   // cast it to what we know it will be at runtime
7506   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7507   assert(tinst != nullptr, "ECB obj is null");
7508   assert(tinst->is_loaded(), "ECB obj is not loaded");
7509   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7510   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7511 
7512   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7513   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7514   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7515   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7516   aescrypt_object = _gvn.transform(aescrypt_object);
7517 
7518   // we need to get the start of the aescrypt_object's expanded key array
7519   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7520   if (k_start == nullptr) return false;
7521 
7522   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7523   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7524                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7525                                      stubAddr, stubName, TypePtr::BOTTOM,
7526                                      src_start, dest_start, k_start, len);
7527 
7528   // return cipher length (int)
7529   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7530   set_result(retvalue);
7531   return true;
7532 }
7533 
7534 //------------------------------inline_counterMode_AESCrypt-----------------------
7535 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7536   assert(UseAES, "need AES instruction support");
7537   if (!UseAESCTRIntrinsics) return false;
7538 
7539   address stubAddr = nullptr;
7540   const char *stubName = nullptr;
7541   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7542     stubAddr = StubRoutines::counterMode_AESCrypt();
7543     stubName = "counterMode_AESCrypt";
7544   }
7545   if (stubAddr == nullptr) return false;
7546 
7547   Node* counterMode_object = argument(0);
7548   Node* src = argument(1);
7549   Node* src_offset = argument(2);
7550   Node* len = argument(3);
7551   Node* dest = argument(4);
7552   Node* dest_offset = argument(5);
7553 
7554   // (1) src and dest are arrays.
7555   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7556   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7557   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7558          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7559 
7560   // checks are the responsibility of the caller
7561   Node* src_start = src;
7562   Node* dest_start = dest;
7563   if (src_offset != nullptr || dest_offset != nullptr) {
7564     assert(src_offset != nullptr && dest_offset != nullptr, "");
7565     src_start = array_element_address(src, src_offset, T_BYTE);
7566     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7567   }
7568 
7569   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7570   // (because of the predicated logic executed earlier).
7571   // so we cast it here safely.
7572   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7573   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7574   if (embeddedCipherObj == nullptr) return false;
7575   // cast it to what we know it will be at runtime
7576   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7577   assert(tinst != nullptr, "CTR obj is null");
7578   assert(tinst->is_loaded(), "CTR obj is not loaded");
7579   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7580   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7581   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7582   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7583   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7584   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7585   aescrypt_object = _gvn.transform(aescrypt_object);
7586   // we need to get the start of the aescrypt_object's expanded key array
7587   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7588   if (k_start == nullptr) return false;
7589   // similarly, get the start address of the r vector
7590   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7591   if (obj_counter == nullptr) return false;
7592   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7593 
7594   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7595   if (saved_encCounter == nullptr) return false;
7596   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7597   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7598 
7599   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7600   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7601                                      OptoRuntime::counterMode_aescrypt_Type(),
7602                                      stubAddr, stubName, TypePtr::BOTTOM,
7603                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7604 
7605   // return cipher length (int)
7606   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7607   set_result(retvalue);
7608   return true;
7609 }
7610 
7611 //------------------------------get_key_start_from_aescrypt_object-----------------------
7612 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7613 #if defined(PPC64) || defined(S390)
7614   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7615   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7616   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7617   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7618   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7619   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7620   if (objSessionK == nullptr) {
7621     return (Node *) nullptr;
7622   }
7623   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7624 #else
7625   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7626 #endif // PPC64
7627   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7628   if (objAESCryptKey == nullptr) return (Node *) nullptr;
7629 
7630   // now have the array, need to get the start address of the K array
7631   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7632   return k_start;
7633 }
7634 
7635 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7636 // Return node representing slow path of predicate check.
7637 // the pseudo code we want to emulate with this predicate is:
7638 // for encryption:
7639 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7640 // for decryption:
7641 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7642 //    note cipher==plain is more conservative than the original java code but that's OK
7643 //
7644 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7645   // The receiver was checked for null already.
7646   Node* objCBC = argument(0);
7647 
7648   Node* src = argument(1);
7649   Node* dest = argument(4);
7650 
7651   // Load embeddedCipher field of CipherBlockChaining object.
7652   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7653 
7654   // get AESCrypt klass for instanceOf check
7655   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7656   // will have same classloader as CipherBlockChaining object
7657   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7658   assert(tinst != nullptr, "CBCobj is null");
7659   assert(tinst->is_loaded(), "CBCobj is not loaded");
7660 
7661   // we want to do an instanceof comparison against the AESCrypt class
7662   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7663   if (!klass_AESCrypt->is_loaded()) {
7664     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7665     Node* ctrl = control();
7666     set_control(top()); // no regular fast path
7667     return ctrl;
7668   }
7669 
7670   src = must_be_not_null(src, true);
7671   dest = must_be_not_null(dest, true);
7672 
7673   // Resolve oops to stable for CmpP below.
7674   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7675 
7676   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7677   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
7678   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7679 
7680   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7681 
7682   // for encryption, we are done
7683   if (!decrypting)
7684     return instof_false;  // even if it is null
7685 
7686   // for decryption, we need to add a further check to avoid
7687   // taking the intrinsic path when cipher and plain are the same
7688   // see the original java code for why.
7689   RegionNode* region = new RegionNode(3);
7690   region->init_req(1, instof_false);
7691 
7692   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7693   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7694   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7695   region->init_req(2, src_dest_conjoint);
7696 
7697   record_for_igvn(region);
7698   return _gvn.transform(region);
7699 }
7700 
7701 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7702 // Return node representing slow path of predicate check.
7703 // the pseudo code we want to emulate with this predicate is:
7704 // for encryption:
7705 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7706 // for decryption:
7707 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7708 //    note cipher==plain is more conservative than the original java code but that's OK
7709 //
7710 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7711   // The receiver was checked for null already.
7712   Node* objECB = argument(0);
7713 
7714   // Load embeddedCipher field of ElectronicCodeBook object.
7715   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7716 
7717   // get AESCrypt klass for instanceOf check
7718   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7719   // will have same classloader as ElectronicCodeBook object
7720   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7721   assert(tinst != nullptr, "ECBobj is null");
7722   assert(tinst->is_loaded(), "ECBobj is not loaded");
7723 
7724   // we want to do an instanceof comparison against the AESCrypt class
7725   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7726   if (!klass_AESCrypt->is_loaded()) {
7727     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7728     Node* ctrl = control();
7729     set_control(top()); // no regular fast path
7730     return ctrl;
7731   }
7732   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7733 
7734   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7735   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7736   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7737 
7738   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7739 
7740   // for encryption, we are done
7741   if (!decrypting)
7742     return instof_false;  // even if it is null
7743 
7744   // for decryption, we need to add a further check to avoid
7745   // taking the intrinsic path when cipher and plain are the same
7746   // see the original java code for why.
7747   RegionNode* region = new RegionNode(3);
7748   region->init_req(1, instof_false);
7749   Node* src = argument(1);
7750   Node* dest = argument(4);
7751   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7752   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7753   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7754   region->init_req(2, src_dest_conjoint);
7755 
7756   record_for_igvn(region);
7757   return _gvn.transform(region);
7758 }
7759 
7760 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7761 // Return node representing slow path of predicate check.
7762 // the pseudo code we want to emulate with this predicate is:
7763 // for encryption:
7764 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7765 // for decryption:
7766 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7767 //    note cipher==plain is more conservative than the original java code but that's OK
7768 //
7769 
7770 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7771   // The receiver was checked for null already.
7772   Node* objCTR = argument(0);
7773 
7774   // Load embeddedCipher field of CipherBlockChaining object.
7775   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7776 
7777   // get AESCrypt klass for instanceOf check
7778   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7779   // will have same classloader as CipherBlockChaining object
7780   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7781   assert(tinst != nullptr, "CTRobj is null");
7782   assert(tinst->is_loaded(), "CTRobj is not loaded");
7783 
7784   // we want to do an instanceof comparison against the AESCrypt class
7785   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7786   if (!klass_AESCrypt->is_loaded()) {
7787     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7788     Node* ctrl = control();
7789     set_control(top()); // no regular fast path
7790     return ctrl;
7791   }
7792 
7793   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7794   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7795   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7796   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7797   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7798 
7799   return instof_false; // even if it is null
7800 }
7801 
7802 //------------------------------inline_ghash_processBlocks
7803 bool LibraryCallKit::inline_ghash_processBlocks() {
7804   address stubAddr;
7805   const char *stubName;
7806   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7807 
7808   stubAddr = StubRoutines::ghash_processBlocks();
7809   stubName = "ghash_processBlocks";
7810 
7811   Node* data           = argument(0);
7812   Node* offset         = argument(1);
7813   Node* len            = argument(2);
7814   Node* state          = argument(3);
7815   Node* subkeyH        = argument(4);
7816 
7817   state = must_be_not_null(state, true);
7818   subkeyH = must_be_not_null(subkeyH, true);
7819   data = must_be_not_null(data, true);
7820 
7821   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
7822   assert(state_start, "state is null");
7823   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
7824   assert(subkeyH_start, "subkeyH is null");
7825   Node* data_start  = array_element_address(data, offset, T_BYTE);
7826   assert(data_start, "data is null");
7827 
7828   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7829                                   OptoRuntime::ghash_processBlocks_Type(),
7830                                   stubAddr, stubName, TypePtr::BOTTOM,
7831                                   state_start, subkeyH_start, data_start, len);
7832   return true;
7833 }
7834 
7835 //------------------------------inline_chacha20Block
7836 bool LibraryCallKit::inline_chacha20Block() {
7837   address stubAddr;
7838   const char *stubName;
7839   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7840 
7841   stubAddr = StubRoutines::chacha20Block();
7842   stubName = "chacha20Block";
7843 
7844   Node* state          = argument(0);
7845   Node* result         = argument(1);
7846 
7847   state = must_be_not_null(state, true);
7848   result = must_be_not_null(result, true);
7849 
7850   Node* state_start  = array_element_address(state, intcon(0), T_INT);
7851   assert(state_start, "state is null");
7852   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
7853   assert(result_start, "result is null");
7854 
7855   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7856                                   OptoRuntime::chacha20Block_Type(),
7857                                   stubAddr, stubName, TypePtr::BOTTOM,
7858                                   state_start, result_start);
7859   // return key stream length (int)
7860   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7861   set_result(retvalue);
7862   return true;
7863 }
7864 
7865 bool LibraryCallKit::inline_base64_encodeBlock() {
7866   address stubAddr;
7867   const char *stubName;
7868   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7869   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
7870   stubAddr = StubRoutines::base64_encodeBlock();
7871   stubName = "encodeBlock";
7872 
7873   if (!stubAddr) return false;
7874   Node* base64obj = argument(0);
7875   Node* src = argument(1);
7876   Node* offset = argument(2);
7877   Node* len = argument(3);
7878   Node* dest = argument(4);
7879   Node* dp = argument(5);
7880   Node* isURL = argument(6);
7881 
7882   src = must_be_not_null(src, true);
7883   dest = must_be_not_null(dest, true);
7884 
7885   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7886   assert(src_start, "source array is null");
7887   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7888   assert(dest_start, "destination array is null");
7889 
7890   Node* base64 = make_runtime_call(RC_LEAF,
7891                                    OptoRuntime::base64_encodeBlock_Type(),
7892                                    stubAddr, stubName, TypePtr::BOTTOM,
7893                                    src_start, offset, len, dest_start, dp, isURL);
7894   return true;
7895 }
7896 
7897 bool LibraryCallKit::inline_base64_decodeBlock() {
7898   address stubAddr;
7899   const char *stubName;
7900   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7901   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
7902   stubAddr = StubRoutines::base64_decodeBlock();
7903   stubName = "decodeBlock";
7904 
7905   if (!stubAddr) return false;
7906   Node* base64obj = argument(0);
7907   Node* src = argument(1);
7908   Node* src_offset = argument(2);
7909   Node* len = argument(3);
7910   Node* dest = argument(4);
7911   Node* dest_offset = argument(5);
7912   Node* isURL = argument(6);
7913   Node* isMIME = argument(7);
7914 
7915   src = must_be_not_null(src, true);
7916   dest = must_be_not_null(dest, true);
7917 
7918   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7919   assert(src_start, "source array is null");
7920   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7921   assert(dest_start, "destination array is null");
7922 
7923   Node* call = make_runtime_call(RC_LEAF,
7924                                  OptoRuntime::base64_decodeBlock_Type(),
7925                                  stubAddr, stubName, TypePtr::BOTTOM,
7926                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
7927   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7928   set_result(result);
7929   return true;
7930 }
7931 
7932 bool LibraryCallKit::inline_poly1305_processBlocks() {
7933   address stubAddr;
7934   const char *stubName;
7935   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
7936   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
7937   stubAddr = StubRoutines::poly1305_processBlocks();
7938   stubName = "poly1305_processBlocks";
7939 
7940   if (!stubAddr) return false;
7941   null_check_receiver();  // null-check receiver
7942   if (stopped())  return true;
7943 
7944   Node* input = argument(1);
7945   Node* input_offset = argument(2);
7946   Node* len = argument(3);
7947   Node* alimbs = argument(4);
7948   Node* rlimbs = argument(5);
7949 
7950   input = must_be_not_null(input, true);
7951   alimbs = must_be_not_null(alimbs, true);
7952   rlimbs = must_be_not_null(rlimbs, true);
7953 
7954   Node* input_start = array_element_address(input, input_offset, T_BYTE);
7955   assert(input_start, "input array is null");
7956   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
7957   assert(acc_start, "acc array is null");
7958   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
7959   assert(r_start, "r array is null");
7960 
7961   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7962                                  OptoRuntime::poly1305_processBlocks_Type(),
7963                                  stubAddr, stubName, TypePtr::BOTTOM,
7964                                  input_start, len, acc_start, r_start);
7965   return true;
7966 }
7967 
7968 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
7969   address stubAddr;
7970   const char *stubName;
7971   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7972   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
7973   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
7974   stubName = "intpoly_montgomeryMult_P256";
7975 
7976   if (!stubAddr) return false;
7977   null_check_receiver();  // null-check receiver
7978   if (stopped())  return true;
7979 
7980   Node* a = argument(1);
7981   Node* b = argument(2);
7982   Node* r = argument(3);
7983 
7984   a = must_be_not_null(a, true);
7985   b = must_be_not_null(b, true);
7986   r = must_be_not_null(r, true);
7987 
7988   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7989   assert(a_start, "a array is NULL");
7990   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7991   assert(b_start, "b array is NULL");
7992   Node* r_start = array_element_address(r, intcon(0), T_LONG);
7993   assert(r_start, "r array is NULL");
7994 
7995   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7996                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
7997                                  stubAddr, stubName, TypePtr::BOTTOM,
7998                                  a_start, b_start, r_start);
7999   return true;
8000 }
8001 
8002 bool LibraryCallKit::inline_intpoly_assign() {
8003   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8004   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
8005   const char *stubName = "intpoly_assign";
8006   address stubAddr = StubRoutines::intpoly_assign();
8007   if (!stubAddr) return false;
8008 
8009   Node* set = argument(0);
8010   Node* a = argument(1);
8011   Node* b = argument(2);
8012   Node* arr_length = load_array_length(a);
8013 
8014   a = must_be_not_null(a, true);
8015   b = must_be_not_null(b, true);
8016 
8017   Node* a_start = array_element_address(a, intcon(0), T_LONG);
8018   assert(a_start, "a array is NULL");
8019   Node* b_start = array_element_address(b, intcon(0), T_LONG);
8020   assert(b_start, "b array is NULL");
8021 
8022   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8023                                  OptoRuntime::intpoly_assign_Type(),
8024                                  stubAddr, stubName, TypePtr::BOTTOM,
8025                                  set, a_start, b_start, arr_length);
8026   return true;
8027 }
8028 
8029 //------------------------------inline_digestBase_implCompress-----------------------
8030 //
8031 // Calculate MD5 for single-block byte[] array.
8032 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
8033 //
8034 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
8035 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
8036 //
8037 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
8038 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
8039 //
8040 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
8041 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
8042 //
8043 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
8044 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
8045 //
8046 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
8047   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
8048 
8049   Node* digestBase_obj = argument(0);
8050   Node* src            = argument(1); // type oop
8051   Node* ofs            = argument(2); // type int
8052 
8053   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8054   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8055     // failed array check
8056     return false;
8057   }
8058   // Figure out the size and type of the elements we will be copying.
8059   BasicType src_elem = src_type->elem()->array_element_basic_type();
8060   if (src_elem != T_BYTE) {
8061     return false;
8062   }
8063   // 'src_start' points to src array + offset
8064   src = must_be_not_null(src, true);
8065   Node* src_start = array_element_address(src, ofs, src_elem);
8066   Node* state = nullptr;
8067   Node* block_size = nullptr;
8068   address stubAddr;
8069   const char *stubName;
8070 
8071   switch(id) {
8072   case vmIntrinsics::_md5_implCompress:
8073     assert(UseMD5Intrinsics, "need MD5 instruction support");
8074     state = get_state_from_digest_object(digestBase_obj, T_INT);
8075     stubAddr = StubRoutines::md5_implCompress();
8076     stubName = "md5_implCompress";
8077     break;
8078   case vmIntrinsics::_sha_implCompress:
8079     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
8080     state = get_state_from_digest_object(digestBase_obj, T_INT);
8081     stubAddr = StubRoutines::sha1_implCompress();
8082     stubName = "sha1_implCompress";
8083     break;
8084   case vmIntrinsics::_sha2_implCompress:
8085     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
8086     state = get_state_from_digest_object(digestBase_obj, T_INT);
8087     stubAddr = StubRoutines::sha256_implCompress();
8088     stubName = "sha256_implCompress";
8089     break;
8090   case vmIntrinsics::_sha5_implCompress:
8091     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
8092     state = get_state_from_digest_object(digestBase_obj, T_LONG);
8093     stubAddr = StubRoutines::sha512_implCompress();
8094     stubName = "sha512_implCompress";
8095     break;
8096   case vmIntrinsics::_sha3_implCompress:
8097     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
8098     state = get_state_from_digest_object(digestBase_obj, T_LONG);
8099     stubAddr = StubRoutines::sha3_implCompress();
8100     stubName = "sha3_implCompress";
8101     block_size = get_block_size_from_digest_object(digestBase_obj);
8102     if (block_size == nullptr) return false;
8103     break;
8104   default:
8105     fatal_unexpected_iid(id);
8106     return false;
8107   }
8108   if (state == nullptr) return false;
8109 
8110   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
8111   if (stubAddr == nullptr) return false;
8112 
8113   // Call the stub.
8114   Node* call;
8115   if (block_size == nullptr) {
8116     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
8117                              stubAddr, stubName, TypePtr::BOTTOM,
8118                              src_start, state);
8119   } else {
8120     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
8121                              stubAddr, stubName, TypePtr::BOTTOM,
8122                              src_start, state, block_size);
8123   }
8124 
8125   return true;
8126 }
8127 
8128 //------------------------------inline_digestBase_implCompressMB-----------------------
8129 //
8130 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
8131 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
8132 //
8133 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
8134   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8135          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8136   assert((uint)predicate < 5, "sanity");
8137   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
8138 
8139   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
8140   Node* src            = argument(1); // byte[] array
8141   Node* ofs            = argument(2); // type int
8142   Node* limit          = argument(3); // type int
8143 
8144   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8145   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8146     // failed array check
8147     return false;
8148   }
8149   // Figure out the size and type of the elements we will be copying.
8150   BasicType src_elem = src_type->elem()->array_element_basic_type();
8151   if (src_elem != T_BYTE) {
8152     return false;
8153   }
8154   // 'src_start' points to src array + offset
8155   src = must_be_not_null(src, false);
8156   Node* src_start = array_element_address(src, ofs, src_elem);
8157 
8158   const char* klass_digestBase_name = nullptr;
8159   const char* stub_name = nullptr;
8160   address     stub_addr = nullptr;
8161   BasicType elem_type = T_INT;
8162 
8163   switch (predicate) {
8164   case 0:
8165     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
8166       klass_digestBase_name = "sun/security/provider/MD5";
8167       stub_name = "md5_implCompressMB";
8168       stub_addr = StubRoutines::md5_implCompressMB();
8169     }
8170     break;
8171   case 1:
8172     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
8173       klass_digestBase_name = "sun/security/provider/SHA";
8174       stub_name = "sha1_implCompressMB";
8175       stub_addr = StubRoutines::sha1_implCompressMB();
8176     }
8177     break;
8178   case 2:
8179     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
8180       klass_digestBase_name = "sun/security/provider/SHA2";
8181       stub_name = "sha256_implCompressMB";
8182       stub_addr = StubRoutines::sha256_implCompressMB();
8183     }
8184     break;
8185   case 3:
8186     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
8187       klass_digestBase_name = "sun/security/provider/SHA5";
8188       stub_name = "sha512_implCompressMB";
8189       stub_addr = StubRoutines::sha512_implCompressMB();
8190       elem_type = T_LONG;
8191     }
8192     break;
8193   case 4:
8194     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
8195       klass_digestBase_name = "sun/security/provider/SHA3";
8196       stub_name = "sha3_implCompressMB";
8197       stub_addr = StubRoutines::sha3_implCompressMB();
8198       elem_type = T_LONG;
8199     }
8200     break;
8201   default:
8202     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
8203   }
8204   if (klass_digestBase_name != nullptr) {
8205     assert(stub_addr != nullptr, "Stub is generated");
8206     if (stub_addr == nullptr) return false;
8207 
8208     // get DigestBase klass to lookup for SHA klass
8209     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
8210     assert(tinst != nullptr, "digestBase_obj is not instance???");
8211     assert(tinst->is_loaded(), "DigestBase is not loaded");
8212 
8213     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
8214     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
8215     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
8216     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
8217   }
8218   return false;
8219 }
8220 
8221 //------------------------------inline_digestBase_implCompressMB-----------------------
8222 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
8223                                                       BasicType elem_type, address stubAddr, const char *stubName,
8224                                                       Node* src_start, Node* ofs, Node* limit) {
8225   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
8226   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
8227   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
8228   digest_obj = _gvn.transform(digest_obj);
8229 
8230   Node* state = get_state_from_digest_object(digest_obj, elem_type);
8231   if (state == nullptr) return false;
8232 
8233   Node* block_size = nullptr;
8234   if (strcmp("sha3_implCompressMB", stubName) == 0) {
8235     block_size = get_block_size_from_digest_object(digest_obj);
8236     if (block_size == nullptr) return false;
8237   }
8238 
8239   // Call the stub.
8240   Node* call;
8241   if (block_size == nullptr) {
8242     call = make_runtime_call(RC_LEAF|RC_NO_FP,
8243                              OptoRuntime::digestBase_implCompressMB_Type(false),
8244                              stubAddr, stubName, TypePtr::BOTTOM,
8245                              src_start, state, ofs, limit);
8246   } else {
8247      call = make_runtime_call(RC_LEAF|RC_NO_FP,
8248                              OptoRuntime::digestBase_implCompressMB_Type(true),
8249                              stubAddr, stubName, TypePtr::BOTTOM,
8250                              src_start, state, block_size, ofs, limit);
8251   }
8252 
8253   // return ofs (int)
8254   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8255   set_result(result);
8256 
8257   return true;
8258 }
8259 
8260 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
8261 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
8262   assert(UseAES, "need AES instruction support");
8263   address stubAddr = nullptr;
8264   const char *stubName = nullptr;
8265   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
8266   stubName = "galoisCounterMode_AESCrypt";
8267 
8268   if (stubAddr == nullptr) return false;
8269 
8270   Node* in      = argument(0);
8271   Node* inOfs   = argument(1);
8272   Node* len     = argument(2);
8273   Node* ct      = argument(3);
8274   Node* ctOfs   = argument(4);
8275   Node* out     = argument(5);
8276   Node* outOfs  = argument(6);
8277   Node* gctr_object = argument(7);
8278   Node* ghash_object = argument(8);
8279 
8280   // (1) in, ct and out are arrays.
8281   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
8282   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
8283   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
8284   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
8285           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
8286          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
8287 
8288   // checks are the responsibility of the caller
8289   Node* in_start = in;
8290   Node* ct_start = ct;
8291   Node* out_start = out;
8292   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
8293     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
8294     in_start = array_element_address(in, inOfs, T_BYTE);
8295     ct_start = array_element_address(ct, ctOfs, T_BYTE);
8296     out_start = array_element_address(out, outOfs, T_BYTE);
8297   }
8298 
8299   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8300   // (because of the predicated logic executed earlier).
8301   // so we cast it here safely.
8302   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8303   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8304   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
8305   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
8306   Node* state = load_field_from_object(ghash_object, "state", "[J");
8307 
8308   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
8309     return false;
8310   }
8311   // cast it to what we know it will be at runtime
8312   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
8313   assert(tinst != nullptr, "GCTR obj is null");
8314   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8315   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8316   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8317   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8318   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8319   const TypeOopPtr* xtype = aklass->as_instance_type();
8320   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8321   aescrypt_object = _gvn.transform(aescrypt_object);
8322   // we need to get the start of the aescrypt_object's expanded key array
8323   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8324   if (k_start == nullptr) return false;
8325   // similarly, get the start address of the r vector
8326   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
8327   Node* state_start = array_element_address(state, intcon(0), T_LONG);
8328   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
8329 
8330 
8331   // Call the stub, passing params
8332   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8333                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
8334                                stubAddr, stubName, TypePtr::BOTTOM,
8335                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
8336 
8337   // return cipher length (int)
8338   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
8339   set_result(retvalue);
8340 
8341   return true;
8342 }
8343 
8344 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
8345 // Return node representing slow path of predicate check.
8346 // the pseudo code we want to emulate with this predicate is:
8347 // for encryption:
8348 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8349 // for decryption:
8350 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8351 //    note cipher==plain is more conservative than the original java code but that's OK
8352 //
8353 
8354 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
8355   // The receiver was checked for null already.
8356   Node* objGCTR = argument(7);
8357   // Load embeddedCipher field of GCTR object.
8358   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8359   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
8360 
8361   // get AESCrypt klass for instanceOf check
8362   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8363   // will have same classloader as CipherBlockChaining object
8364   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
8365   assert(tinst != nullptr, "GCTR obj is null");
8366   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8367 
8368   // we want to do an instanceof comparison against the AESCrypt class
8369   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8370   if (!klass_AESCrypt->is_loaded()) {
8371     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8372     Node* ctrl = control();
8373     set_control(top()); // no regular fast path
8374     return ctrl;
8375   }
8376 
8377   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8378   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8379   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8380   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8381   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8382 
8383   return instof_false; // even if it is null
8384 }
8385 
8386 //------------------------------get_state_from_digest_object-----------------------
8387 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
8388   const char* state_type;
8389   switch (elem_type) {
8390     case T_BYTE: state_type = "[B"; break;
8391     case T_INT:  state_type = "[I"; break;
8392     case T_LONG: state_type = "[J"; break;
8393     default: ShouldNotReachHere();
8394   }
8395   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
8396   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
8397   if (digest_state == nullptr) return (Node *) nullptr;
8398 
8399   // now have the array, need to get the start address of the state array
8400   Node* state = array_element_address(digest_state, intcon(0), elem_type);
8401   return state;
8402 }
8403 
8404 //------------------------------get_block_size_from_sha3_object----------------------------------
8405 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
8406   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
8407   assert (block_size != nullptr, "sanity");
8408   return block_size;
8409 }
8410 
8411 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8412 // Return node representing slow path of predicate check.
8413 // the pseudo code we want to emulate with this predicate is:
8414 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
8415 //
8416 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8417   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8418          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8419   assert((uint)predicate < 5, "sanity");
8420 
8421   // The receiver was checked for null already.
8422   Node* digestBaseObj = argument(0);
8423 
8424   // get DigestBase klass for instanceOf check
8425   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8426   assert(tinst != nullptr, "digestBaseObj is null");
8427   assert(tinst->is_loaded(), "DigestBase is not loaded");
8428 
8429   const char* klass_name = nullptr;
8430   switch (predicate) {
8431   case 0:
8432     if (UseMD5Intrinsics) {
8433       // we want to do an instanceof comparison against the MD5 class
8434       klass_name = "sun/security/provider/MD5";
8435     }
8436     break;
8437   case 1:
8438     if (UseSHA1Intrinsics) {
8439       // we want to do an instanceof comparison against the SHA class
8440       klass_name = "sun/security/provider/SHA";
8441     }
8442     break;
8443   case 2:
8444     if (UseSHA256Intrinsics) {
8445       // we want to do an instanceof comparison against the SHA2 class
8446       klass_name = "sun/security/provider/SHA2";
8447     }
8448     break;
8449   case 3:
8450     if (UseSHA512Intrinsics) {
8451       // we want to do an instanceof comparison against the SHA5 class
8452       klass_name = "sun/security/provider/SHA5";
8453     }
8454     break;
8455   case 4:
8456     if (UseSHA3Intrinsics) {
8457       // we want to do an instanceof comparison against the SHA3 class
8458       klass_name = "sun/security/provider/SHA3";
8459     }
8460     break;
8461   default:
8462     fatal("unknown SHA intrinsic predicate: %d", predicate);
8463   }
8464 
8465   ciKlass* klass = nullptr;
8466   if (klass_name != nullptr) {
8467     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
8468   }
8469   if ((klass == nullptr) || !klass->is_loaded()) {
8470     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8471     Node* ctrl = control();
8472     set_control(top()); // no intrinsic path
8473     return ctrl;
8474   }
8475   ciInstanceKlass* instklass = klass->as_instance_klass();
8476 
8477   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
8478   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8479   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8480   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8481 
8482   return instof_false;  // even if it is null
8483 }
8484 
8485 //-------------inline_fma-----------------------------------
8486 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8487   Node *a = nullptr;
8488   Node *b = nullptr;
8489   Node *c = nullptr;
8490   Node* result = nullptr;
8491   switch (id) {
8492   case vmIntrinsics::_fmaD:
8493     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8494     // no receiver since it is static method
8495     a = round_double_node(argument(0));
8496     b = round_double_node(argument(2));
8497     c = round_double_node(argument(4));
8498     result = _gvn.transform(new FmaDNode(control(), a, b, c));
8499     break;
8500   case vmIntrinsics::_fmaF:
8501     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8502     a = argument(0);
8503     b = argument(1);
8504     c = argument(2);
8505     result = _gvn.transform(new FmaFNode(control(), a, b, c));
8506     break;
8507   default:
8508     fatal_unexpected_iid(id);  break;
8509   }
8510   set_result(result);
8511   return true;
8512 }
8513 
8514 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8515   // argument(0) is receiver
8516   Node* codePoint = argument(1);
8517   Node* n = nullptr;
8518 
8519   switch (id) {
8520     case vmIntrinsics::_isDigit :
8521       n = new DigitNode(control(), codePoint);
8522       break;
8523     case vmIntrinsics::_isLowerCase :
8524       n = new LowerCaseNode(control(), codePoint);
8525       break;
8526     case vmIntrinsics::_isUpperCase :
8527       n = new UpperCaseNode(control(), codePoint);
8528       break;
8529     case vmIntrinsics::_isWhitespace :
8530       n = new WhitespaceNode(control(), codePoint);
8531       break;
8532     default:
8533       fatal_unexpected_iid(id);
8534   }
8535 
8536   set_result(_gvn.transform(n));
8537   return true;
8538 }
8539 
8540 //------------------------------inline_fp_min_max------------------------------
8541 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
8542 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
8543 
8544   // The intrinsic should be used only when the API branches aren't predictable,
8545   // the last one performing the most important comparison. The following heuristic
8546   // uses the branch statistics to eventually bail out if necessary.
8547 
8548   ciMethodData *md = callee()->method_data();
8549 
8550   if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) {
8551     ciCallProfile cp = caller()->call_profile_at_bci(bci());
8552 
8553     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
8554       // Bail out if the call-site didn't contribute enough to the statistics.
8555       return false;
8556     }
8557 
8558     uint taken = 0, not_taken = 0;
8559 
8560     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
8561       if (p->is_BranchData()) {
8562         taken = ((ciBranchData*)p)->taken();
8563         not_taken = ((ciBranchData*)p)->not_taken();
8564       }
8565     }
8566 
8567     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
8568     balance = balance < 0 ? -balance : balance;
8569     if ( balance > 0.2 ) {
8570       // Bail out if the most important branch is predictable enough.
8571       return false;
8572     }
8573   }
8574 */
8575 
8576   Node *a = nullptr;
8577   Node *b = nullptr;
8578   Node *n = nullptr;
8579   switch (id) {
8580   case vmIntrinsics::_maxF:
8581   case vmIntrinsics::_minF:
8582   case vmIntrinsics::_maxF_strict:
8583   case vmIntrinsics::_minF_strict:
8584     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
8585     a = argument(0);
8586     b = argument(1);
8587     break;
8588   case vmIntrinsics::_maxD:
8589   case vmIntrinsics::_minD:
8590   case vmIntrinsics::_maxD_strict:
8591   case vmIntrinsics::_minD_strict:
8592     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
8593     a = round_double_node(argument(0));
8594     b = round_double_node(argument(2));
8595     break;
8596   default:
8597     fatal_unexpected_iid(id);
8598     break;
8599   }
8600   switch (id) {
8601   case vmIntrinsics::_maxF:
8602   case vmIntrinsics::_maxF_strict:
8603     n = new MaxFNode(a, b);
8604     break;
8605   case vmIntrinsics::_minF:
8606   case vmIntrinsics::_minF_strict:
8607     n = new MinFNode(a, b);
8608     break;
8609   case vmIntrinsics::_maxD:
8610   case vmIntrinsics::_maxD_strict:
8611     n = new MaxDNode(a, b);
8612     break;
8613   case vmIntrinsics::_minD:
8614   case vmIntrinsics::_minD_strict:
8615     n = new MinDNode(a, b);
8616     break;
8617   default:
8618     fatal_unexpected_iid(id);
8619     break;
8620   }
8621   set_result(_gvn.transform(n));
8622   return true;
8623 }
8624 
8625 bool LibraryCallKit::inline_profileBoolean() {
8626   Node* counts = argument(1);
8627   const TypeAryPtr* ary = nullptr;
8628   ciArray* aobj = nullptr;
8629   if (counts->is_Con()
8630       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8631       && (aobj = ary->const_oop()->as_array()) != nullptr
8632       && (aobj->length() == 2)) {
8633     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8634     jint false_cnt = aobj->element_value(0).as_int();
8635     jint  true_cnt = aobj->element_value(1).as_int();
8636 
8637     if (C->log() != nullptr) {
8638       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8639                      false_cnt, true_cnt);
8640     }
8641 
8642     if (false_cnt + true_cnt == 0) {
8643       // According to profile, never executed.
8644       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8645                           Deoptimization::Action_reinterpret);
8646       return true;
8647     }
8648 
8649     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8650     // is a number of each value occurrences.
8651     Node* result = argument(0);
8652     if (false_cnt == 0 || true_cnt == 0) {
8653       // According to profile, one value has been never seen.
8654       int expected_val = (false_cnt == 0) ? 1 : 0;
8655 
8656       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8657       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8658 
8659       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8660       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8661       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8662 
8663       { // Slow path: uncommon trap for never seen value and then reexecute
8664         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8665         // the value has been seen at least once.
8666         PreserveJVMState pjvms(this);
8667         PreserveReexecuteState preexecs(this);
8668         jvms()->set_should_reexecute(true);
8669 
8670         set_control(slow_path);
8671         set_i_o(i_o());
8672 
8673         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8674                             Deoptimization::Action_reinterpret);
8675       }
8676       // The guard for never seen value enables sharpening of the result and
8677       // returning a constant. It allows to eliminate branches on the same value
8678       // later on.
8679       set_control(fast_path);
8680       result = intcon(expected_val);
8681     }
8682     // Stop profiling.
8683     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8684     // By replacing method body with profile data (represented as ProfileBooleanNode
8685     // on IR level) we effectively disable profiling.
8686     // It enables full speed execution once optimized code is generated.
8687     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8688     C->record_for_igvn(profile);
8689     set_result(profile);
8690     return true;
8691   } else {
8692     // Continue profiling.
8693     // Profile data isn't available at the moment. So, execute method's bytecode version.
8694     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8695     // is compiled and counters aren't available since corresponding MethodHandle
8696     // isn't a compile-time constant.
8697     return false;
8698   }
8699 }
8700 
8701 bool LibraryCallKit::inline_isCompileConstant() {
8702   Node* n = argument(0);
8703   set_result(n->is_Con() ? intcon(1) : intcon(0));
8704   return true;
8705 }
8706 
8707 //------------------------------- inline_getObjectSize --------------------------------------
8708 //
8709 // Calculate the runtime size of the object/array.
8710 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8711 //
8712 bool LibraryCallKit::inline_getObjectSize() {
8713   Node* obj = argument(3);
8714   Node* klass_node = load_object_klass(obj);
8715 
8716   jint  layout_con = Klass::_lh_neutral_value;
8717   Node* layout_val = get_layout_helper(klass_node, layout_con);
8718   int   layout_is_con = (layout_val == nullptr);
8719 
8720   if (layout_is_con) {
8721     // Layout helper is constant, can figure out things at compile time.
8722 
8723     if (Klass::layout_helper_is_instance(layout_con)) {
8724       // Instance case:  layout_con contains the size itself.
8725       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8726       set_result(size);
8727     } else {
8728       // Array case: size is round(header + element_size*arraylength).
8729       // Since arraylength is different for every array instance, we have to
8730       // compute the whole thing at runtime.
8731 
8732       Node* arr_length = load_array_length(obj);
8733 
8734       int round_mask = MinObjAlignmentInBytes - 1;
8735       int hsize  = Klass::layout_helper_header_size(layout_con);
8736       int eshift = Klass::layout_helper_log2_element_size(layout_con);
8737 
8738       if ((round_mask & ~right_n_bits(eshift)) == 0) {
8739         round_mask = 0;  // strength-reduce it if it goes away completely
8740       }
8741       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8742       Node* header_size = intcon(hsize + round_mask);
8743 
8744       Node* lengthx = ConvI2X(arr_length);
8745       Node* headerx = ConvI2X(header_size);
8746 
8747       Node* abody = lengthx;
8748       if (eshift != 0) {
8749         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8750       }
8751       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8752       if (round_mask != 0) {
8753         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8754       }
8755       size = ConvX2L(size);
8756       set_result(size);
8757     }
8758   } else {
8759     // Layout helper is not constant, need to test for array-ness at runtime.
8760 
8761     enum { _instance_path = 1, _array_path, PATH_LIMIT };
8762     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8763     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8764     record_for_igvn(result_reg);
8765 
8766     Node* array_ctl = generate_array_guard(klass_node, nullptr);
8767     if (array_ctl != nullptr) {
8768       // Array case: size is round(header + element_size*arraylength).
8769       // Since arraylength is different for every array instance, we have to
8770       // compute the whole thing at runtime.
8771 
8772       PreserveJVMState pjvms(this);
8773       set_control(array_ctl);
8774       Node* arr_length = load_array_length(obj);
8775 
8776       int round_mask = MinObjAlignmentInBytes - 1;
8777       Node* mask = intcon(round_mask);
8778 
8779       Node* hss = intcon(Klass::_lh_header_size_shift);
8780       Node* hsm = intcon(Klass::_lh_header_size_mask);
8781       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
8782       header_size = _gvn.transform(new AndINode(header_size, hsm));
8783       header_size = _gvn.transform(new AddINode(header_size, mask));
8784 
8785       // There is no need to mask or shift this value.
8786       // The semantics of LShiftINode include an implicit mask to 0x1F.
8787       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
8788       Node* elem_shift = layout_val;
8789 
8790       Node* lengthx = ConvI2X(arr_length);
8791       Node* headerx = ConvI2X(header_size);
8792 
8793       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
8794       Node* size = _gvn.transform(new AddXNode(headerx, abody));
8795       if (round_mask != 0) {
8796         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
8797       }
8798       size = ConvX2L(size);
8799 
8800       result_reg->init_req(_array_path, control());
8801       result_val->init_req(_array_path, size);
8802     }
8803 
8804     if (!stopped()) {
8805       // Instance case: the layout helper gives us instance size almost directly,
8806       // but we need to mask out the _lh_instance_slow_path_bit.
8807       Node* size = ConvI2X(layout_val);
8808       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
8809       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
8810       size = _gvn.transform(new AndXNode(size, mask));
8811       size = ConvX2L(size);
8812 
8813       result_reg->init_req(_instance_path, control());
8814       result_val->init_req(_instance_path, size);
8815     }
8816 
8817     set_result(result_reg, result_val);
8818   }
8819 
8820   return true;
8821 }
8822 
8823 //------------------------------- inline_blackhole --------------------------------------
8824 //
8825 // Make sure all arguments to this node are alive.
8826 // This matches methods that were requested to be blackholed through compile commands.
8827 //
8828 bool LibraryCallKit::inline_blackhole() {
8829   assert(callee()->is_static(), "Should have been checked before: only static methods here");
8830   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
8831   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
8832 
8833   // Blackhole node pinches only the control, not memory. This allows
8834   // the blackhole to be pinned in the loop that computes blackholed
8835   // values, but have no other side effects, like breaking the optimizations
8836   // across the blackhole.
8837 
8838   Node* bh = _gvn.transform(new BlackholeNode(control()));
8839   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
8840 
8841   // Bind call arguments as blackhole arguments to keep them alive
8842   uint nargs = callee()->arg_size();
8843   for (uint i = 0; i < nargs; i++) {
8844     bh->add_req(argument(i));
8845   }
8846 
8847   return true;
8848 }