1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciFlatArrayKlass.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "ci/ciSymbols.hpp" 29 #include "classfile/vmIntrinsics.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/klass.inline.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/c2compiler.hpp" 40 #include "opto/castnode.hpp" 41 #include "opto/cfgnode.hpp" 42 #include "opto/convertnode.hpp" 43 #include "opto/countbitsnode.hpp" 44 #include "opto/idealKit.hpp" 45 #include "opto/library_call.hpp" 46 #include "opto/mathexactnode.hpp" 47 #include "opto/mulnode.hpp" 48 #include "opto/narrowptrnode.hpp" 49 #include "opto/opaquenode.hpp" 50 #include "opto/parse.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/rootnode.hpp" 53 #include "opto/subnode.hpp" 54 #include "opto/vectornode.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "prims/jvmtiThreadState.hpp" 57 #include "prims/unsafe.hpp" 58 #include "runtime/jniHandles.inline.hpp" 59 #include "runtime/objectMonitor.hpp" 60 #include "runtime/sharedRuntime.hpp" 61 #include "runtime/stubRoutines.hpp" 62 #include "utilities/macros.hpp" 63 #include "utilities/powerOfTwo.hpp" 64 65 //---------------------------make_vm_intrinsic---------------------------- 66 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 67 vmIntrinsicID id = m->intrinsic_id(); 68 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 69 70 if (!m->is_loaded()) { 71 // Do not attempt to inline unloaded methods. 72 return nullptr; 73 } 74 75 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 76 bool is_available = false; 77 78 { 79 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 80 // the compiler must transition to '_thread_in_vm' state because both 81 // methods access VM-internal data. 82 VM_ENTRY_MARK; 83 methodHandle mh(THREAD, m->get_Method()); 84 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 85 if (is_available && is_virtual) { 86 is_available = vmIntrinsics::does_virtual_dispatch(id); 87 } 88 } 89 90 if (is_available) { 91 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 92 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 93 return new LibraryIntrinsic(m, is_virtual, 94 vmIntrinsics::predicates_needed(id), 95 vmIntrinsics::does_virtual_dispatch(id), 96 id); 97 } else { 98 return nullptr; 99 } 100 } 101 102 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 103 LibraryCallKit kit(jvms, this); 104 Compile* C = kit.C; 105 int nodes = C->unique(); 106 #ifndef PRODUCT 107 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 108 char buf[1000]; 109 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 110 tty->print_cr("Intrinsic %s", str); 111 } 112 #endif 113 ciMethod* callee = kit.callee(); 114 const int bci = kit.bci(); 115 #ifdef ASSERT 116 Node* ctrl = kit.control(); 117 #endif 118 // Try to inline the intrinsic. 119 if (callee->check_intrinsic_candidate() && 120 kit.try_to_inline(_last_predicate)) { 121 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 122 : "(intrinsic)"; 123 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 124 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 125 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 126 if (C->log()) { 127 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 128 vmIntrinsics::name_at(intrinsic_id()), 129 (is_virtual() ? " virtual='1'" : ""), 130 C->unique() - nodes); 131 } 132 // Push the result from the inlined method onto the stack. 133 kit.push_result(); 134 return kit.transfer_exceptions_into_jvms(); 135 } 136 137 // The intrinsic bailed out 138 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 139 if (jvms->has_method()) { 140 // Not a root compile. 141 const char* msg; 142 if (callee->intrinsic_candidate()) { 143 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 144 } else { 145 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 146 : "failed to inline (intrinsic), method not annotated"; 147 } 148 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 149 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 150 } else { 151 // Root compile 152 ResourceMark rm; 153 stringStream msg_stream; 154 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 155 vmIntrinsics::name_at(intrinsic_id()), 156 is_virtual() ? " (virtual)" : "", bci); 157 const char *msg = msg_stream.freeze(); 158 log_debug(jit, inlining)("%s", msg); 159 if (C->print_intrinsics() || C->print_inlining()) { 160 tty->print("%s", msg); 161 } 162 } 163 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 164 165 return nullptr; 166 } 167 168 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 169 LibraryCallKit kit(jvms, this); 170 Compile* C = kit.C; 171 int nodes = C->unique(); 172 _last_predicate = predicate; 173 #ifndef PRODUCT 174 assert(is_predicated() && predicate < predicates_count(), "sanity"); 175 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 176 char buf[1000]; 177 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 178 tty->print_cr("Predicate for intrinsic %s", str); 179 } 180 #endif 181 ciMethod* callee = kit.callee(); 182 const int bci = kit.bci(); 183 184 Node* slow_ctl = kit.try_to_predicate(predicate); 185 if (!kit.failing()) { 186 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 187 : "(intrinsic, predicate)"; 188 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 189 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 190 191 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 192 if (C->log()) { 193 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 194 vmIntrinsics::name_at(intrinsic_id()), 195 (is_virtual() ? " virtual='1'" : ""), 196 C->unique() - nodes); 197 } 198 return slow_ctl; // Could be null if the check folds. 199 } 200 201 // The intrinsic bailed out 202 if (jvms->has_method()) { 203 // Not a root compile. 204 const char* msg = "failed to generate predicate for intrinsic"; 205 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 206 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 207 } else { 208 // Root compile 209 ResourceMark rm; 210 stringStream msg_stream; 211 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 212 vmIntrinsics::name_at(intrinsic_id()), 213 is_virtual() ? " (virtual)" : "", bci); 214 const char *msg = msg_stream.freeze(); 215 log_debug(jit, inlining)("%s", msg); 216 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 217 } 218 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 219 return nullptr; 220 } 221 222 bool LibraryCallKit::try_to_inline(int predicate) { 223 // Handle symbolic names for otherwise undistinguished boolean switches: 224 const bool is_store = true; 225 const bool is_compress = true; 226 const bool is_static = true; 227 const bool is_volatile = true; 228 229 if (!jvms()->has_method()) { 230 // Root JVMState has a null method. 231 assert(map()->memory()->Opcode() == Op_Parm, ""); 232 // Insert the memory aliasing node 233 set_all_memory(reset_memory()); 234 } 235 assert(merged_memory(), ""); 236 237 switch (intrinsic_id()) { 238 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 239 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 240 case vmIntrinsics::_getClass: return inline_native_getClass(); 241 242 case vmIntrinsics::_ceil: 243 case vmIntrinsics::_floor: 244 case vmIntrinsics::_rint: 245 case vmIntrinsics::_dsin: 246 case vmIntrinsics::_dcos: 247 case vmIntrinsics::_dtan: 248 case vmIntrinsics::_dtanh: 249 case vmIntrinsics::_dabs: 250 case vmIntrinsics::_fabs: 251 case vmIntrinsics::_iabs: 252 case vmIntrinsics::_labs: 253 case vmIntrinsics::_datan2: 254 case vmIntrinsics::_dsqrt: 255 case vmIntrinsics::_dsqrt_strict: 256 case vmIntrinsics::_dexp: 257 case vmIntrinsics::_dlog: 258 case vmIntrinsics::_dlog10: 259 case vmIntrinsics::_dpow: 260 case vmIntrinsics::_dcopySign: 261 case vmIntrinsics::_fcopySign: 262 case vmIntrinsics::_dsignum: 263 case vmIntrinsics::_roundF: 264 case vmIntrinsics::_roundD: 265 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 266 267 case vmIntrinsics::_notify: 268 case vmIntrinsics::_notifyAll: 269 return inline_notify(intrinsic_id()); 270 271 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 272 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 273 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 274 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 275 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 276 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 277 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 278 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 279 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 280 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 281 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 282 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 283 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 284 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 285 286 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 287 288 case vmIntrinsics::_arraySort: return inline_array_sort(); 289 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 290 291 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 292 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 293 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 294 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 295 296 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 297 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 298 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 299 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 300 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 301 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 302 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 303 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 304 305 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 306 307 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 308 309 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 310 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 311 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 312 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 313 314 case vmIntrinsics::_compressStringC: 315 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 316 case vmIntrinsics::_inflateStringC: 317 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 318 319 case vmIntrinsics::_makePrivateBuffer: return inline_unsafe_make_private_buffer(); 320 case vmIntrinsics::_finishPrivateBuffer: return inline_unsafe_finish_private_buffer(); 321 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 322 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 323 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 324 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 325 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 326 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 327 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 328 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 329 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 330 case vmIntrinsics::_getValue: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false, true); 331 332 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 333 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 334 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 335 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 336 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 337 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 338 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 339 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 340 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 341 case vmIntrinsics::_putValue: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false, true); 342 343 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 344 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 345 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 346 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 347 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 348 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 349 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 350 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 351 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 352 353 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 354 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 355 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 356 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 357 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 358 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 359 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 360 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 361 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 362 363 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 364 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 365 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 366 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 367 368 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 369 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 370 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 371 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 372 373 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 374 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 375 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 376 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 377 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 378 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 379 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 380 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 381 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 382 383 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 384 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 385 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 386 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 387 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 388 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 389 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 390 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 391 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 392 393 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 394 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 395 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 396 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 397 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 398 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 399 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 400 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 401 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 402 403 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 404 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 405 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 406 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 407 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 408 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 409 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 410 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 411 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 412 413 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 414 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 415 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 416 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 417 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 418 419 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 420 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 421 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 422 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 423 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 424 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 425 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 426 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 427 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 428 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 429 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 430 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 431 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 432 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 433 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 434 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 435 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 436 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 437 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 438 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 439 440 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 441 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 442 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 443 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 444 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 445 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 446 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 447 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 448 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 449 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 450 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 451 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 452 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 453 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 454 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 455 456 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 457 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 458 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 459 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 460 461 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 462 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 463 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 464 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 465 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 466 467 case vmIntrinsics::_loadFence: 468 case vmIntrinsics::_storeFence: 469 case vmIntrinsics::_storeStoreFence: 470 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 471 472 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 473 474 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 475 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 476 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 477 478 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 479 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 480 481 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 482 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 483 484 #if INCLUDE_JVMTI 485 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 486 "notifyJvmtiStart", true, false); 487 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 488 "notifyJvmtiEnd", false, true); 489 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 490 "notifyJvmtiMount", false, false); 491 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 492 "notifyJvmtiUnmount", false, false); 493 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 494 #endif 495 496 #ifdef JFR_HAVE_INTRINSICS 497 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 498 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 499 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 500 #endif 501 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 502 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 503 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 504 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 505 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 506 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 507 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 508 case vmIntrinsics::_isFlatArray: return inline_unsafe_isFlatArray(); 509 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 510 case vmIntrinsics::_getLength: return inline_native_getLength(); 511 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 512 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 513 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 514 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 515 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 516 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 517 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 518 519 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 520 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 521 case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false); 522 case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true); 523 case vmIntrinsics::_newNullableAtomicArray: return inline_newArray(/* null_free */ false, /* atomic */ true); 524 525 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 526 527 case vmIntrinsics::_isInstance: 528 case vmIntrinsics::_isHidden: 529 case vmIntrinsics::_getSuperclass: 530 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 531 532 case vmIntrinsics::_floatToRawIntBits: 533 case vmIntrinsics::_floatToIntBits: 534 case vmIntrinsics::_intBitsToFloat: 535 case vmIntrinsics::_doubleToRawLongBits: 536 case vmIntrinsics::_doubleToLongBits: 537 case vmIntrinsics::_longBitsToDouble: 538 case vmIntrinsics::_floatToFloat16: 539 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 540 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 541 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 542 case vmIntrinsics::_floatIsFinite: 543 case vmIntrinsics::_floatIsInfinite: 544 case vmIntrinsics::_doubleIsFinite: 545 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 546 547 case vmIntrinsics::_numberOfLeadingZeros_i: 548 case vmIntrinsics::_numberOfLeadingZeros_l: 549 case vmIntrinsics::_numberOfTrailingZeros_i: 550 case vmIntrinsics::_numberOfTrailingZeros_l: 551 case vmIntrinsics::_bitCount_i: 552 case vmIntrinsics::_bitCount_l: 553 case vmIntrinsics::_reverse_i: 554 case vmIntrinsics::_reverse_l: 555 case vmIntrinsics::_reverseBytes_i: 556 case vmIntrinsics::_reverseBytes_l: 557 case vmIntrinsics::_reverseBytes_s: 558 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 559 560 case vmIntrinsics::_compress_i: 561 case vmIntrinsics::_compress_l: 562 case vmIntrinsics::_expand_i: 563 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 564 565 case vmIntrinsics::_compareUnsigned_i: 566 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 567 568 case vmIntrinsics::_divideUnsigned_i: 569 case vmIntrinsics::_divideUnsigned_l: 570 case vmIntrinsics::_remainderUnsigned_i: 571 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 572 573 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 574 575 case vmIntrinsics::_Reference_get: return inline_reference_get(); 576 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 577 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 578 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 579 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 580 581 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 582 583 case vmIntrinsics::_aescrypt_encryptBlock: 584 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 585 586 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 587 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 588 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 589 590 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 591 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 592 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 593 594 case vmIntrinsics::_counterMode_AESCrypt: 595 return inline_counterMode_AESCrypt(intrinsic_id()); 596 597 case vmIntrinsics::_galoisCounterMode_AESCrypt: 598 return inline_galoisCounterMode_AESCrypt(); 599 600 case vmIntrinsics::_md5_implCompress: 601 case vmIntrinsics::_sha_implCompress: 602 case vmIntrinsics::_sha2_implCompress: 603 case vmIntrinsics::_sha5_implCompress: 604 case vmIntrinsics::_sha3_implCompress: 605 return inline_digestBase_implCompress(intrinsic_id()); 606 case vmIntrinsics::_double_keccak: 607 return inline_double_keccak(); 608 609 case vmIntrinsics::_digestBase_implCompressMB: 610 return inline_digestBase_implCompressMB(predicate); 611 612 case vmIntrinsics::_multiplyToLen: 613 return inline_multiplyToLen(); 614 615 case vmIntrinsics::_squareToLen: 616 return inline_squareToLen(); 617 618 case vmIntrinsics::_mulAdd: 619 return inline_mulAdd(); 620 621 case vmIntrinsics::_montgomeryMultiply: 622 return inline_montgomeryMultiply(); 623 case vmIntrinsics::_montgomerySquare: 624 return inline_montgomerySquare(); 625 626 case vmIntrinsics::_bigIntegerRightShiftWorker: 627 return inline_bigIntegerShift(true); 628 case vmIntrinsics::_bigIntegerLeftShiftWorker: 629 return inline_bigIntegerShift(false); 630 631 case vmIntrinsics::_vectorizedMismatch: 632 return inline_vectorizedMismatch(); 633 634 case vmIntrinsics::_ghash_processBlocks: 635 return inline_ghash_processBlocks(); 636 case vmIntrinsics::_chacha20Block: 637 return inline_chacha20Block(); 638 case vmIntrinsics::_kyberNtt: 639 return inline_kyberNtt(); 640 case vmIntrinsics::_kyberInverseNtt: 641 return inline_kyberInverseNtt(); 642 case vmIntrinsics::_kyberNttMult: 643 return inline_kyberNttMult(); 644 case vmIntrinsics::_kyberAddPoly_2: 645 return inline_kyberAddPoly_2(); 646 case vmIntrinsics::_kyberAddPoly_3: 647 return inline_kyberAddPoly_3(); 648 case vmIntrinsics::_kyber12To16: 649 return inline_kyber12To16(); 650 case vmIntrinsics::_kyberBarrettReduce: 651 return inline_kyberBarrettReduce(); 652 case vmIntrinsics::_dilithiumAlmostNtt: 653 return inline_dilithiumAlmostNtt(); 654 case vmIntrinsics::_dilithiumAlmostInverseNtt: 655 return inline_dilithiumAlmostInverseNtt(); 656 case vmIntrinsics::_dilithiumNttMult: 657 return inline_dilithiumNttMult(); 658 case vmIntrinsics::_dilithiumMontMulByConstant: 659 return inline_dilithiumMontMulByConstant(); 660 case vmIntrinsics::_dilithiumDecomposePoly: 661 return inline_dilithiumDecomposePoly(); 662 case vmIntrinsics::_base64_encodeBlock: 663 return inline_base64_encodeBlock(); 664 case vmIntrinsics::_base64_decodeBlock: 665 return inline_base64_decodeBlock(); 666 case vmIntrinsics::_poly1305_processBlocks: 667 return inline_poly1305_processBlocks(); 668 case vmIntrinsics::_intpoly_montgomeryMult_P256: 669 return inline_intpoly_montgomeryMult_P256(); 670 case vmIntrinsics::_intpoly_assign: 671 return inline_intpoly_assign(); 672 case vmIntrinsics::_encodeISOArray: 673 case vmIntrinsics::_encodeByteISOArray: 674 return inline_encodeISOArray(false); 675 case vmIntrinsics::_encodeAsciiArray: 676 return inline_encodeISOArray(true); 677 678 case vmIntrinsics::_updateCRC32: 679 return inline_updateCRC32(); 680 case vmIntrinsics::_updateBytesCRC32: 681 return inline_updateBytesCRC32(); 682 case vmIntrinsics::_updateByteBufferCRC32: 683 return inline_updateByteBufferCRC32(); 684 685 case vmIntrinsics::_updateBytesCRC32C: 686 return inline_updateBytesCRC32C(); 687 case vmIntrinsics::_updateDirectByteBufferCRC32C: 688 return inline_updateDirectByteBufferCRC32C(); 689 690 case vmIntrinsics::_updateBytesAdler32: 691 return inline_updateBytesAdler32(); 692 case vmIntrinsics::_updateByteBufferAdler32: 693 return inline_updateByteBufferAdler32(); 694 695 case vmIntrinsics::_profileBoolean: 696 return inline_profileBoolean(); 697 case vmIntrinsics::_isCompileConstant: 698 return inline_isCompileConstant(); 699 700 case vmIntrinsics::_countPositives: 701 return inline_countPositives(); 702 703 case vmIntrinsics::_fmaD: 704 case vmIntrinsics::_fmaF: 705 return inline_fma(intrinsic_id()); 706 707 case vmIntrinsics::_isDigit: 708 case vmIntrinsics::_isLowerCase: 709 case vmIntrinsics::_isUpperCase: 710 case vmIntrinsics::_isWhitespace: 711 return inline_character_compare(intrinsic_id()); 712 713 case vmIntrinsics::_min: 714 case vmIntrinsics::_max: 715 case vmIntrinsics::_min_strict: 716 case vmIntrinsics::_max_strict: 717 case vmIntrinsics::_minL: 718 case vmIntrinsics::_maxL: 719 case vmIntrinsics::_minF: 720 case vmIntrinsics::_maxF: 721 case vmIntrinsics::_minD: 722 case vmIntrinsics::_maxD: 723 case vmIntrinsics::_minF_strict: 724 case vmIntrinsics::_maxF_strict: 725 case vmIntrinsics::_minD_strict: 726 case vmIntrinsics::_maxD_strict: 727 return inline_min_max(intrinsic_id()); 728 729 case vmIntrinsics::_VectorUnaryOp: 730 return inline_vector_nary_operation(1); 731 case vmIntrinsics::_VectorBinaryOp: 732 return inline_vector_nary_operation(2); 733 case vmIntrinsics::_VectorTernaryOp: 734 return inline_vector_nary_operation(3); 735 case vmIntrinsics::_VectorFromBitsCoerced: 736 return inline_vector_frombits_coerced(); 737 case vmIntrinsics::_VectorMaskOp: 738 return inline_vector_mask_operation(); 739 case vmIntrinsics::_VectorLoadOp: 740 return inline_vector_mem_operation(/*is_store=*/false); 741 case vmIntrinsics::_VectorLoadMaskedOp: 742 return inline_vector_mem_masked_operation(/*is_store*/false); 743 case vmIntrinsics::_VectorStoreOp: 744 return inline_vector_mem_operation(/*is_store=*/true); 745 case vmIntrinsics::_VectorStoreMaskedOp: 746 return inline_vector_mem_masked_operation(/*is_store=*/true); 747 case vmIntrinsics::_VectorGatherOp: 748 return inline_vector_gather_scatter(/*is_scatter*/ false); 749 case vmIntrinsics::_VectorScatterOp: 750 return inline_vector_gather_scatter(/*is_scatter*/ true); 751 case vmIntrinsics::_VectorReductionCoerced: 752 return inline_vector_reduction(); 753 case vmIntrinsics::_VectorTest: 754 return inline_vector_test(); 755 case vmIntrinsics::_VectorBlend: 756 return inline_vector_blend(); 757 case vmIntrinsics::_VectorRearrange: 758 return inline_vector_rearrange(); 759 case vmIntrinsics::_VectorSelectFrom: 760 return inline_vector_select_from(); 761 case vmIntrinsics::_VectorCompare: 762 return inline_vector_compare(); 763 case vmIntrinsics::_VectorBroadcastInt: 764 return inline_vector_broadcast_int(); 765 case vmIntrinsics::_VectorConvert: 766 return inline_vector_convert(); 767 case vmIntrinsics::_VectorInsert: 768 return inline_vector_insert(); 769 case vmIntrinsics::_VectorExtract: 770 return inline_vector_extract(); 771 case vmIntrinsics::_VectorCompressExpand: 772 return inline_vector_compress_expand(); 773 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 774 return inline_vector_select_from_two_vectors(); 775 case vmIntrinsics::_IndexVector: 776 return inline_index_vector(); 777 case vmIntrinsics::_IndexPartiallyInUpperRange: 778 return inline_index_partially_in_upper_range(); 779 780 case vmIntrinsics::_getObjectSize: 781 return inline_getObjectSize(); 782 783 case vmIntrinsics::_blackhole: 784 return inline_blackhole(); 785 786 default: 787 // If you get here, it may be that someone has added a new intrinsic 788 // to the list in vmIntrinsics.hpp without implementing it here. 789 #ifndef PRODUCT 790 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 791 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 792 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 793 } 794 #endif 795 return false; 796 } 797 } 798 799 Node* LibraryCallKit::try_to_predicate(int predicate) { 800 if (!jvms()->has_method()) { 801 // Root JVMState has a null method. 802 assert(map()->memory()->Opcode() == Op_Parm, ""); 803 // Insert the memory aliasing node 804 set_all_memory(reset_memory()); 805 } 806 assert(merged_memory(), ""); 807 808 switch (intrinsic_id()) { 809 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 810 return inline_cipherBlockChaining_AESCrypt_predicate(false); 811 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 812 return inline_cipherBlockChaining_AESCrypt_predicate(true); 813 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 814 return inline_electronicCodeBook_AESCrypt_predicate(false); 815 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 816 return inline_electronicCodeBook_AESCrypt_predicate(true); 817 case vmIntrinsics::_counterMode_AESCrypt: 818 return inline_counterMode_AESCrypt_predicate(); 819 case vmIntrinsics::_digestBase_implCompressMB: 820 return inline_digestBase_implCompressMB_predicate(predicate); 821 case vmIntrinsics::_galoisCounterMode_AESCrypt: 822 return inline_galoisCounterMode_AESCrypt_predicate(); 823 824 default: 825 // If you get here, it may be that someone has added a new intrinsic 826 // to the list in vmIntrinsics.hpp without implementing it here. 827 #ifndef PRODUCT 828 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 829 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 830 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 831 } 832 #endif 833 Node* slow_ctl = control(); 834 set_control(top()); // No fast path intrinsic 835 return slow_ctl; 836 } 837 } 838 839 //------------------------------set_result------------------------------- 840 // Helper function for finishing intrinsics. 841 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 842 record_for_igvn(region); 843 set_control(_gvn.transform(region)); 844 set_result( _gvn.transform(value)); 845 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 846 } 847 848 //------------------------------generate_guard--------------------------- 849 // Helper function for generating guarded fast-slow graph structures. 850 // The given 'test', if true, guards a slow path. If the test fails 851 // then a fast path can be taken. (We generally hope it fails.) 852 // In all cases, GraphKit::control() is updated to the fast path. 853 // The returned value represents the control for the slow path. 854 // The return value is never 'top'; it is either a valid control 855 // or null if it is obvious that the slow path can never be taken. 856 // Also, if region and the slow control are not null, the slow edge 857 // is appended to the region. 858 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 859 if (stopped()) { 860 // Already short circuited. 861 return nullptr; 862 } 863 864 // Build an if node and its projections. 865 // If test is true we take the slow path, which we assume is uncommon. 866 if (_gvn.type(test) == TypeInt::ZERO) { 867 // The slow branch is never taken. No need to build this guard. 868 return nullptr; 869 } 870 871 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 872 873 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 874 if (if_slow == top()) { 875 // The slow branch is never taken. No need to build this guard. 876 return nullptr; 877 } 878 879 if (region != nullptr) 880 region->add_req(if_slow); 881 882 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 883 set_control(if_fast); 884 885 return if_slow; 886 } 887 888 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 889 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 890 } 891 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 892 return generate_guard(test, region, PROB_FAIR); 893 } 894 895 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 896 Node* *pos_index) { 897 if (stopped()) 898 return nullptr; // already stopped 899 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 900 return nullptr; // index is already adequately typed 901 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 902 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 903 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 904 if (is_neg != nullptr && pos_index != nullptr) { 905 // Emulate effect of Parse::adjust_map_after_if. 906 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 907 (*pos_index) = _gvn.transform(ccast); 908 } 909 return is_neg; 910 } 911 912 // Make sure that 'position' is a valid limit index, in [0..length]. 913 // There are two equivalent plans for checking this: 914 // A. (offset + copyLength) unsigned<= arrayLength 915 // B. offset <= (arrayLength - copyLength) 916 // We require that all of the values above, except for the sum and 917 // difference, are already known to be non-negative. 918 // Plan A is robust in the face of overflow, if offset and copyLength 919 // are both hugely positive. 920 // 921 // Plan B is less direct and intuitive, but it does not overflow at 922 // all, since the difference of two non-negatives is always 923 // representable. Whenever Java methods must perform the equivalent 924 // check they generally use Plan B instead of Plan A. 925 // For the moment we use Plan A. 926 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 927 Node* subseq_length, 928 Node* array_length, 929 RegionNode* region) { 930 if (stopped()) 931 return nullptr; // already stopped 932 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 933 if (zero_offset && subseq_length->eqv_uncast(array_length)) 934 return nullptr; // common case of whole-array copy 935 Node* last = subseq_length; 936 if (!zero_offset) // last += offset 937 last = _gvn.transform(new AddINode(last, offset)); 938 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 939 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 940 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 941 return is_over; 942 } 943 944 // Emit range checks for the given String.value byte array 945 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 946 if (stopped()) { 947 return; // already stopped 948 } 949 RegionNode* bailout = new RegionNode(1); 950 record_for_igvn(bailout); 951 if (char_count) { 952 // Convert char count to byte count 953 count = _gvn.transform(new LShiftINode(count, intcon(1))); 954 } 955 956 // Offset and count must not be negative 957 generate_negative_guard(offset, bailout); 958 generate_negative_guard(count, bailout); 959 // Offset + count must not exceed length of array 960 generate_limit_guard(offset, count, load_array_length(array), bailout); 961 962 if (bailout->req() > 1) { 963 PreserveJVMState pjvms(this); 964 set_control(_gvn.transform(bailout)); 965 uncommon_trap(Deoptimization::Reason_intrinsic, 966 Deoptimization::Action_maybe_recompile); 967 } 968 } 969 970 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 971 bool is_immutable) { 972 ciKlass* thread_klass = env()->Thread_klass(); 973 const Type* thread_type 974 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 975 976 Node* thread = _gvn.transform(new ThreadLocalNode()); 977 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 978 tls_output = thread; 979 980 Node* thread_obj_handle 981 = (is_immutable 982 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 983 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 984 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 985 thread_obj_handle = _gvn.transform(thread_obj_handle); 986 987 DecoratorSet decorators = IN_NATIVE; 988 if (is_immutable) { 989 decorators |= C2_IMMUTABLE_MEMORY; 990 } 991 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 992 } 993 994 //--------------------------generate_current_thread-------------------- 995 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 996 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 997 /*is_immutable*/false); 998 } 999 1000 //--------------------------generate_virtual_thread-------------------- 1001 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 1002 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 1003 !C->method()->changes_current_thread()); 1004 } 1005 1006 //------------------------------make_string_method_node------------------------ 1007 // Helper method for String intrinsic functions. This version is called with 1008 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1009 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1010 // containing the lengths of str1 and str2. 1011 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1012 Node* result = nullptr; 1013 switch (opcode) { 1014 case Op_StrIndexOf: 1015 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1016 str1_start, cnt1, str2_start, cnt2, ae); 1017 break; 1018 case Op_StrComp: 1019 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1020 str1_start, cnt1, str2_start, cnt2, ae); 1021 break; 1022 case Op_StrEquals: 1023 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1024 // Use the constant length if there is one because optimized match rule may exist. 1025 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1026 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1027 break; 1028 default: 1029 ShouldNotReachHere(); 1030 return nullptr; 1031 } 1032 1033 // All these intrinsics have checks. 1034 C->set_has_split_ifs(true); // Has chance for split-if optimization 1035 clear_upper_avx(); 1036 1037 return _gvn.transform(result); 1038 } 1039 1040 //------------------------------inline_string_compareTo------------------------ 1041 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1042 Node* arg1 = argument(0); 1043 Node* arg2 = argument(1); 1044 1045 arg1 = must_be_not_null(arg1, true); 1046 arg2 = must_be_not_null(arg2, true); 1047 1048 // Get start addr and length of first argument 1049 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1050 Node* arg1_cnt = load_array_length(arg1); 1051 1052 // Get start addr and length of second argument 1053 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1054 Node* arg2_cnt = load_array_length(arg2); 1055 1056 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1057 set_result(result); 1058 return true; 1059 } 1060 1061 //------------------------------inline_string_equals------------------------ 1062 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1063 Node* arg1 = argument(0); 1064 Node* arg2 = argument(1); 1065 1066 // paths (plus control) merge 1067 RegionNode* region = new RegionNode(3); 1068 Node* phi = new PhiNode(region, TypeInt::BOOL); 1069 1070 if (!stopped()) { 1071 1072 arg1 = must_be_not_null(arg1, true); 1073 arg2 = must_be_not_null(arg2, true); 1074 1075 // Get start addr and length of first argument 1076 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1077 Node* arg1_cnt = load_array_length(arg1); 1078 1079 // Get start addr and length of second argument 1080 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1081 Node* arg2_cnt = load_array_length(arg2); 1082 1083 // Check for arg1_cnt != arg2_cnt 1084 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1085 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1086 Node* if_ne = generate_slow_guard(bol, nullptr); 1087 if (if_ne != nullptr) { 1088 phi->init_req(2, intcon(0)); 1089 region->init_req(2, if_ne); 1090 } 1091 1092 // Check for count == 0 is done by assembler code for StrEquals. 1093 1094 if (!stopped()) { 1095 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1096 phi->init_req(1, equals); 1097 region->init_req(1, control()); 1098 } 1099 } 1100 1101 // post merge 1102 set_control(_gvn.transform(region)); 1103 record_for_igvn(region); 1104 1105 set_result(_gvn.transform(phi)); 1106 return true; 1107 } 1108 1109 //------------------------------inline_array_equals---------------------------- 1110 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1111 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1112 Node* arg1 = argument(0); 1113 Node* arg2 = argument(1); 1114 1115 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1116 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1117 clear_upper_avx(); 1118 1119 return true; 1120 } 1121 1122 1123 //------------------------------inline_countPositives------------------------------ 1124 bool LibraryCallKit::inline_countPositives() { 1125 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1126 return false; 1127 } 1128 1129 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1130 // no receiver since it is static method 1131 Node* ba = argument(0); 1132 Node* offset = argument(1); 1133 Node* len = argument(2); 1134 1135 ba = must_be_not_null(ba, true); 1136 1137 // Range checks 1138 generate_string_range_check(ba, offset, len, false); 1139 if (stopped()) { 1140 return true; 1141 } 1142 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1143 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1144 set_result(_gvn.transform(result)); 1145 clear_upper_avx(); 1146 return true; 1147 } 1148 1149 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1150 Node* index = argument(0); 1151 Node* length = bt == T_INT ? argument(1) : argument(2); 1152 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1153 return false; 1154 } 1155 1156 // check that length is positive 1157 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1158 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1159 1160 { 1161 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1162 uncommon_trap(Deoptimization::Reason_intrinsic, 1163 Deoptimization::Action_make_not_entrant); 1164 } 1165 1166 if (stopped()) { 1167 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1168 return true; 1169 } 1170 1171 // length is now known positive, add a cast node to make this explicit 1172 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1173 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1174 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1175 ConstraintCastNode::RegularDependency, bt); 1176 casted_length = _gvn.transform(casted_length); 1177 replace_in_map(length, casted_length); 1178 length = casted_length; 1179 1180 // Use an unsigned comparison for the range check itself 1181 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1182 BoolTest::mask btest = BoolTest::lt; 1183 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1184 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1185 _gvn.set_type(rc, rc->Value(&_gvn)); 1186 if (!rc_bool->is_Con()) { 1187 record_for_igvn(rc); 1188 } 1189 set_control(_gvn.transform(new IfTrueNode(rc))); 1190 { 1191 PreserveJVMState pjvms(this); 1192 set_control(_gvn.transform(new IfFalseNode(rc))); 1193 uncommon_trap(Deoptimization::Reason_range_check, 1194 Deoptimization::Action_make_not_entrant); 1195 } 1196 1197 if (stopped()) { 1198 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1199 return true; 1200 } 1201 1202 // index is now known to be >= 0 and < length, cast it 1203 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1204 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1205 ConstraintCastNode::RegularDependency, bt); 1206 result = _gvn.transform(result); 1207 set_result(result); 1208 replace_in_map(index, result); 1209 return true; 1210 } 1211 1212 //------------------------------inline_string_indexOf------------------------ 1213 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1214 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1215 return false; 1216 } 1217 Node* src = argument(0); 1218 Node* tgt = argument(1); 1219 1220 // Make the merge point 1221 RegionNode* result_rgn = new RegionNode(4); 1222 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1223 1224 src = must_be_not_null(src, true); 1225 tgt = must_be_not_null(tgt, true); 1226 1227 // Get start addr and length of source string 1228 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1229 Node* src_count = load_array_length(src); 1230 1231 // Get start addr and length of substring 1232 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1233 Node* tgt_count = load_array_length(tgt); 1234 1235 Node* result = nullptr; 1236 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1237 1238 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1239 // Divide src size by 2 if String is UTF16 encoded 1240 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1241 } 1242 if (ae == StrIntrinsicNode::UU) { 1243 // Divide substring size by 2 if String is UTF16 encoded 1244 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1245 } 1246 1247 if (call_opt_stub) { 1248 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1249 StubRoutines::_string_indexof_array[ae], 1250 "stringIndexOf", TypePtr::BOTTOM, src_start, 1251 src_count, tgt_start, tgt_count); 1252 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1253 } else { 1254 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1255 result_rgn, result_phi, ae); 1256 } 1257 if (result != nullptr) { 1258 result_phi->init_req(3, result); 1259 result_rgn->init_req(3, control()); 1260 } 1261 set_control(_gvn.transform(result_rgn)); 1262 record_for_igvn(result_rgn); 1263 set_result(_gvn.transform(result_phi)); 1264 1265 return true; 1266 } 1267 1268 //-----------------------------inline_string_indexOfI----------------------- 1269 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1270 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1271 return false; 1272 } 1273 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1274 return false; 1275 } 1276 1277 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1278 Node* src = argument(0); // byte[] 1279 Node* src_count = argument(1); // char count 1280 Node* tgt = argument(2); // byte[] 1281 Node* tgt_count = argument(3); // char count 1282 Node* from_index = argument(4); // char index 1283 1284 src = must_be_not_null(src, true); 1285 tgt = must_be_not_null(tgt, true); 1286 1287 // Multiply byte array index by 2 if String is UTF16 encoded 1288 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1289 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1290 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1291 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1292 1293 // Range checks 1294 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1295 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1296 if (stopped()) { 1297 return true; 1298 } 1299 1300 RegionNode* region = new RegionNode(5); 1301 Node* phi = new PhiNode(region, TypeInt::INT); 1302 Node* result = nullptr; 1303 1304 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1305 1306 if (call_opt_stub) { 1307 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1308 StubRoutines::_string_indexof_array[ae], 1309 "stringIndexOf", TypePtr::BOTTOM, src_start, 1310 src_count, tgt_start, tgt_count); 1311 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1312 } else { 1313 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1314 region, phi, ae); 1315 } 1316 if (result != nullptr) { 1317 // The result is index relative to from_index if substring was found, -1 otherwise. 1318 // Generate code which will fold into cmove. 1319 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1320 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1321 1322 Node* if_lt = generate_slow_guard(bol, nullptr); 1323 if (if_lt != nullptr) { 1324 // result == -1 1325 phi->init_req(3, result); 1326 region->init_req(3, if_lt); 1327 } 1328 if (!stopped()) { 1329 result = _gvn.transform(new AddINode(result, from_index)); 1330 phi->init_req(4, result); 1331 region->init_req(4, control()); 1332 } 1333 } 1334 1335 set_control(_gvn.transform(region)); 1336 record_for_igvn(region); 1337 set_result(_gvn.transform(phi)); 1338 clear_upper_avx(); 1339 1340 return true; 1341 } 1342 1343 // Create StrIndexOfNode with fast path checks 1344 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1345 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1346 // Check for substr count > string count 1347 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1348 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1349 Node* if_gt = generate_slow_guard(bol, nullptr); 1350 if (if_gt != nullptr) { 1351 phi->init_req(1, intcon(-1)); 1352 region->init_req(1, if_gt); 1353 } 1354 if (!stopped()) { 1355 // Check for substr count == 0 1356 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1357 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1358 Node* if_zero = generate_slow_guard(bol, nullptr); 1359 if (if_zero != nullptr) { 1360 phi->init_req(2, intcon(0)); 1361 region->init_req(2, if_zero); 1362 } 1363 } 1364 if (!stopped()) { 1365 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1366 } 1367 return nullptr; 1368 } 1369 1370 //-----------------------------inline_string_indexOfChar----------------------- 1371 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1372 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1373 return false; 1374 } 1375 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1376 return false; 1377 } 1378 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1379 Node* src = argument(0); // byte[] 1380 Node* int_ch = argument(1); 1381 Node* from_index = argument(2); 1382 Node* max = argument(3); 1383 1384 src = must_be_not_null(src, true); 1385 1386 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1387 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1388 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1389 1390 // Range checks 1391 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1392 1393 // Check for int_ch >= 0 1394 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1395 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1396 { 1397 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1398 uncommon_trap(Deoptimization::Reason_intrinsic, 1399 Deoptimization::Action_maybe_recompile); 1400 } 1401 if (stopped()) { 1402 return true; 1403 } 1404 1405 RegionNode* region = new RegionNode(3); 1406 Node* phi = new PhiNode(region, TypeInt::INT); 1407 1408 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1409 C->set_has_split_ifs(true); // Has chance for split-if optimization 1410 _gvn.transform(result); 1411 1412 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1413 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1414 1415 Node* if_lt = generate_slow_guard(bol, nullptr); 1416 if (if_lt != nullptr) { 1417 // result == -1 1418 phi->init_req(2, result); 1419 region->init_req(2, if_lt); 1420 } 1421 if (!stopped()) { 1422 result = _gvn.transform(new AddINode(result, from_index)); 1423 phi->init_req(1, result); 1424 region->init_req(1, control()); 1425 } 1426 set_control(_gvn.transform(region)); 1427 record_for_igvn(region); 1428 set_result(_gvn.transform(phi)); 1429 clear_upper_avx(); 1430 1431 return true; 1432 } 1433 //---------------------------inline_string_copy--------------------- 1434 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1435 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1436 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1437 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1438 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1439 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1440 bool LibraryCallKit::inline_string_copy(bool compress) { 1441 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1442 return false; 1443 } 1444 int nargs = 5; // 2 oops, 3 ints 1445 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1446 1447 Node* src = argument(0); 1448 Node* src_offset = argument(1); 1449 Node* dst = argument(2); 1450 Node* dst_offset = argument(3); 1451 Node* length = argument(4); 1452 1453 // Check for allocation before we add nodes that would confuse 1454 // tightly_coupled_allocation() 1455 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1456 1457 // Figure out the size and type of the elements we will be copying. 1458 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1459 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1460 if (src_type == nullptr || dst_type == nullptr) { 1461 return false; 1462 } 1463 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1464 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1465 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1466 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1467 "Unsupported array types for inline_string_copy"); 1468 1469 src = must_be_not_null(src, true); 1470 dst = must_be_not_null(dst, true); 1471 1472 // Convert char[] offsets to byte[] offsets 1473 bool convert_src = (compress && src_elem == T_BYTE); 1474 bool convert_dst = (!compress && dst_elem == T_BYTE); 1475 if (convert_src) { 1476 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1477 } else if (convert_dst) { 1478 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1479 } 1480 1481 // Range checks 1482 generate_string_range_check(src, src_offset, length, convert_src); 1483 generate_string_range_check(dst, dst_offset, length, convert_dst); 1484 if (stopped()) { 1485 return true; 1486 } 1487 1488 Node* src_start = array_element_address(src, src_offset, src_elem); 1489 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1490 // 'src_start' points to src array + scaled offset 1491 // 'dst_start' points to dst array + scaled offset 1492 Node* count = nullptr; 1493 if (compress) { 1494 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1495 } else { 1496 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1497 } 1498 1499 if (alloc != nullptr) { 1500 if (alloc->maybe_set_complete(&_gvn)) { 1501 // "You break it, you buy it." 1502 InitializeNode* init = alloc->initialization(); 1503 assert(init->is_complete(), "we just did this"); 1504 init->set_complete_with_arraycopy(); 1505 assert(dst->is_CheckCastPP(), "sanity"); 1506 assert(dst->in(0)->in(0) == init, "dest pinned"); 1507 } 1508 // Do not let stores that initialize this object be reordered with 1509 // a subsequent store that would make this object accessible by 1510 // other threads. 1511 // Record what AllocateNode this StoreStore protects so that 1512 // escape analysis can go from the MemBarStoreStoreNode to the 1513 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1514 // based on the escape status of the AllocateNode. 1515 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1516 } 1517 if (compress) { 1518 set_result(_gvn.transform(count)); 1519 } 1520 clear_upper_avx(); 1521 1522 return true; 1523 } 1524 1525 #ifdef _LP64 1526 #define XTOP ,top() /*additional argument*/ 1527 #else //_LP64 1528 #define XTOP /*no additional argument*/ 1529 #endif //_LP64 1530 1531 //------------------------inline_string_toBytesU-------------------------- 1532 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1533 bool LibraryCallKit::inline_string_toBytesU() { 1534 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1535 return false; 1536 } 1537 // Get the arguments. 1538 Node* value = argument(0); 1539 Node* offset = argument(1); 1540 Node* length = argument(2); 1541 1542 Node* newcopy = nullptr; 1543 1544 // Set the original stack and the reexecute bit for the interpreter to reexecute 1545 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1546 { PreserveReexecuteState preexecs(this); 1547 jvms()->set_should_reexecute(true); 1548 1549 // Check if a null path was taken unconditionally. 1550 value = null_check(value); 1551 1552 RegionNode* bailout = new RegionNode(1); 1553 record_for_igvn(bailout); 1554 1555 // Range checks 1556 generate_negative_guard(offset, bailout); 1557 generate_negative_guard(length, bailout); 1558 generate_limit_guard(offset, length, load_array_length(value), bailout); 1559 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1560 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1561 1562 if (bailout->req() > 1) { 1563 PreserveJVMState pjvms(this); 1564 set_control(_gvn.transform(bailout)); 1565 uncommon_trap(Deoptimization::Reason_intrinsic, 1566 Deoptimization::Action_maybe_recompile); 1567 } 1568 if (stopped()) { 1569 return true; 1570 } 1571 1572 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1573 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1574 newcopy = new_array(klass_node, size, 0); // no arguments to push 1575 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1576 guarantee(alloc != nullptr, "created above"); 1577 1578 // Calculate starting addresses. 1579 Node* src_start = array_element_address(value, offset, T_CHAR); 1580 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1581 1582 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1583 const TypeInt* toffset = gvn().type(offset)->is_int(); 1584 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1585 1586 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1587 const char* copyfunc_name = "arraycopy"; 1588 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1589 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1590 OptoRuntime::fast_arraycopy_Type(), 1591 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1592 src_start, dst_start, ConvI2X(length) XTOP); 1593 // Do not let reads from the cloned object float above the arraycopy. 1594 if (alloc->maybe_set_complete(&_gvn)) { 1595 // "You break it, you buy it." 1596 InitializeNode* init = alloc->initialization(); 1597 assert(init->is_complete(), "we just did this"); 1598 init->set_complete_with_arraycopy(); 1599 assert(newcopy->is_CheckCastPP(), "sanity"); 1600 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1601 } 1602 // Do not let stores that initialize this object be reordered with 1603 // a subsequent store that would make this object accessible by 1604 // other threads. 1605 // Record what AllocateNode this StoreStore protects so that 1606 // escape analysis can go from the MemBarStoreStoreNode to the 1607 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1608 // based on the escape status of the AllocateNode. 1609 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1610 } // original reexecute is set back here 1611 1612 C->set_has_split_ifs(true); // Has chance for split-if optimization 1613 if (!stopped()) { 1614 set_result(newcopy); 1615 } 1616 clear_upper_avx(); 1617 1618 return true; 1619 } 1620 1621 //------------------------inline_string_getCharsU-------------------------- 1622 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1623 bool LibraryCallKit::inline_string_getCharsU() { 1624 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1625 return false; 1626 } 1627 1628 // Get the arguments. 1629 Node* src = argument(0); 1630 Node* src_begin = argument(1); 1631 Node* src_end = argument(2); // exclusive offset (i < src_end) 1632 Node* dst = argument(3); 1633 Node* dst_begin = argument(4); 1634 1635 // Check for allocation before we add nodes that would confuse 1636 // tightly_coupled_allocation() 1637 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1638 1639 // Check if a null path was taken unconditionally. 1640 src = null_check(src); 1641 dst = null_check(dst); 1642 if (stopped()) { 1643 return true; 1644 } 1645 1646 // Get length and convert char[] offset to byte[] offset 1647 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1648 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1649 1650 // Range checks 1651 generate_string_range_check(src, src_begin, length, true); 1652 generate_string_range_check(dst, dst_begin, length, false); 1653 if (stopped()) { 1654 return true; 1655 } 1656 1657 if (!stopped()) { 1658 // Calculate starting addresses. 1659 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1660 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1661 1662 // Check if array addresses are aligned to HeapWordSize 1663 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1664 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1665 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1666 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1667 1668 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1669 const char* copyfunc_name = "arraycopy"; 1670 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1671 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1672 OptoRuntime::fast_arraycopy_Type(), 1673 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1674 src_start, dst_start, ConvI2X(length) XTOP); 1675 // Do not let reads from the cloned object float above the arraycopy. 1676 if (alloc != nullptr) { 1677 if (alloc->maybe_set_complete(&_gvn)) { 1678 // "You break it, you buy it." 1679 InitializeNode* init = alloc->initialization(); 1680 assert(init->is_complete(), "we just did this"); 1681 init->set_complete_with_arraycopy(); 1682 assert(dst->is_CheckCastPP(), "sanity"); 1683 assert(dst->in(0)->in(0) == init, "dest pinned"); 1684 } 1685 // Do not let stores that initialize this object be reordered with 1686 // a subsequent store that would make this object accessible by 1687 // other threads. 1688 // Record what AllocateNode this StoreStore protects so that 1689 // escape analysis can go from the MemBarStoreStoreNode to the 1690 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1691 // based on the escape status of the AllocateNode. 1692 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1693 } else { 1694 insert_mem_bar(Op_MemBarCPUOrder); 1695 } 1696 } 1697 1698 C->set_has_split_ifs(true); // Has chance for split-if optimization 1699 return true; 1700 } 1701 1702 //----------------------inline_string_char_access---------------------------- 1703 // Store/Load char to/from byte[] array. 1704 // static void StringUTF16.putChar(byte[] val, int index, int c) 1705 // static char StringUTF16.getChar(byte[] val, int index) 1706 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1707 Node* value = argument(0); 1708 Node* index = argument(1); 1709 Node* ch = is_store ? argument(2) : nullptr; 1710 1711 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1712 // correctly requires matched array shapes. 1713 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1714 "sanity: byte[] and char[] bases agree"); 1715 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1716 "sanity: byte[] and char[] scales agree"); 1717 1718 // Bail when getChar over constants is requested: constant folding would 1719 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1720 // Java method would constant fold nicely instead. 1721 if (!is_store && value->is_Con() && index->is_Con()) { 1722 return false; 1723 } 1724 1725 // Save state and restore on bailout 1726 uint old_sp = sp(); 1727 SafePointNode* old_map = clone_map(); 1728 1729 value = must_be_not_null(value, true); 1730 1731 Node* adr = array_element_address(value, index, T_CHAR); 1732 if (adr->is_top()) { 1733 set_map(old_map); 1734 set_sp(old_sp); 1735 return false; 1736 } 1737 destruct_map_clone(old_map); 1738 if (is_store) { 1739 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1740 } else { 1741 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1742 set_result(ch); 1743 } 1744 return true; 1745 } 1746 1747 1748 //------------------------------inline_math----------------------------------- 1749 // public static double Math.abs(double) 1750 // public static double Math.sqrt(double) 1751 // public static double Math.log(double) 1752 // public static double Math.log10(double) 1753 // public static double Math.round(double) 1754 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1755 Node* arg = argument(0); 1756 Node* n = nullptr; 1757 switch (id) { 1758 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1759 case vmIntrinsics::_dsqrt: 1760 case vmIntrinsics::_dsqrt_strict: 1761 n = new SqrtDNode(C, control(), arg); break; 1762 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1763 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1764 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1765 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1766 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1767 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1768 default: fatal_unexpected_iid(id); break; 1769 } 1770 set_result(_gvn.transform(n)); 1771 return true; 1772 } 1773 1774 //------------------------------inline_math----------------------------------- 1775 // public static float Math.abs(float) 1776 // public static int Math.abs(int) 1777 // public static long Math.abs(long) 1778 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1779 Node* arg = argument(0); 1780 Node* n = nullptr; 1781 switch (id) { 1782 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1783 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1784 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1785 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1786 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1787 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1788 default: fatal_unexpected_iid(id); break; 1789 } 1790 set_result(_gvn.transform(n)); 1791 return true; 1792 } 1793 1794 //------------------------------runtime_math----------------------------- 1795 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1796 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1797 "must be (DD)D or (D)D type"); 1798 1799 // Inputs 1800 Node* a = argument(0); 1801 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1802 1803 const TypePtr* no_memory_effects = nullptr; 1804 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1805 no_memory_effects, 1806 a, top(), b, b ? top() : nullptr); 1807 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1808 #ifdef ASSERT 1809 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1810 assert(value_top == top(), "second value must be top"); 1811 #endif 1812 1813 set_result(value); 1814 return true; 1815 } 1816 1817 //------------------------------inline_math_pow----------------------------- 1818 bool LibraryCallKit::inline_math_pow() { 1819 Node* exp = argument(2); 1820 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1821 if (d != nullptr) { 1822 if (d->getd() == 2.0) { 1823 // Special case: pow(x, 2.0) => x * x 1824 Node* base = argument(0); 1825 set_result(_gvn.transform(new MulDNode(base, base))); 1826 return true; 1827 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1828 // Special case: pow(x, 0.5) => sqrt(x) 1829 Node* base = argument(0); 1830 Node* zero = _gvn.zerocon(T_DOUBLE); 1831 1832 RegionNode* region = new RegionNode(3); 1833 Node* phi = new PhiNode(region, Type::DOUBLE); 1834 1835 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1836 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1837 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1838 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1839 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1840 1841 Node* if_pow = generate_slow_guard(test, nullptr); 1842 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1843 phi->init_req(1, value_sqrt); 1844 region->init_req(1, control()); 1845 1846 if (if_pow != nullptr) { 1847 set_control(if_pow); 1848 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1849 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1850 const TypePtr* no_memory_effects = nullptr; 1851 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1852 no_memory_effects, base, top(), exp, top()); 1853 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1854 #ifdef ASSERT 1855 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1856 assert(value_top == top(), "second value must be top"); 1857 #endif 1858 phi->init_req(2, value_pow); 1859 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1860 } 1861 1862 C->set_has_split_ifs(true); // Has chance for split-if optimization 1863 set_control(_gvn.transform(region)); 1864 record_for_igvn(region); 1865 set_result(_gvn.transform(phi)); 1866 1867 return true; 1868 } 1869 } 1870 1871 return StubRoutines::dpow() != nullptr ? 1872 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1873 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1874 } 1875 1876 //------------------------------inline_math_native----------------------------- 1877 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1878 switch (id) { 1879 case vmIntrinsics::_dsin: 1880 return StubRoutines::dsin() != nullptr ? 1881 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1882 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1883 case vmIntrinsics::_dcos: 1884 return StubRoutines::dcos() != nullptr ? 1885 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1886 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1887 case vmIntrinsics::_dtan: 1888 return StubRoutines::dtan() != nullptr ? 1889 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1890 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1891 case vmIntrinsics::_dtanh: 1892 return StubRoutines::dtanh() != nullptr ? 1893 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1894 case vmIntrinsics::_dexp: 1895 return StubRoutines::dexp() != nullptr ? 1896 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1897 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1898 case vmIntrinsics::_dlog: 1899 return StubRoutines::dlog() != nullptr ? 1900 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1901 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1902 case vmIntrinsics::_dlog10: 1903 return StubRoutines::dlog10() != nullptr ? 1904 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1905 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1906 1907 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1908 case vmIntrinsics::_ceil: 1909 case vmIntrinsics::_floor: 1910 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1911 1912 case vmIntrinsics::_dsqrt: 1913 case vmIntrinsics::_dsqrt_strict: 1914 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1915 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1916 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1917 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1918 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1919 1920 case vmIntrinsics::_dpow: return inline_math_pow(); 1921 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1922 case vmIntrinsics::_fcopySign: return inline_math(id); 1923 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1924 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1925 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1926 1927 // These intrinsics are not yet correctly implemented 1928 case vmIntrinsics::_datan2: 1929 return false; 1930 1931 default: 1932 fatal_unexpected_iid(id); 1933 return false; 1934 } 1935 } 1936 1937 //----------------------------inline_notify-----------------------------------* 1938 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1939 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1940 address func; 1941 if (id == vmIntrinsics::_notify) { 1942 func = OptoRuntime::monitor_notify_Java(); 1943 } else { 1944 func = OptoRuntime::monitor_notifyAll_Java(); 1945 } 1946 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1947 make_slow_call_ex(call, env()->Throwable_klass(), false); 1948 return true; 1949 } 1950 1951 1952 //----------------------------inline_min_max----------------------------------- 1953 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1954 Node* a = nullptr; 1955 Node* b = nullptr; 1956 Node* n = nullptr; 1957 switch (id) { 1958 case vmIntrinsics::_min: 1959 case vmIntrinsics::_max: 1960 case vmIntrinsics::_minF: 1961 case vmIntrinsics::_maxF: 1962 case vmIntrinsics::_minF_strict: 1963 case vmIntrinsics::_maxF_strict: 1964 case vmIntrinsics::_min_strict: 1965 case vmIntrinsics::_max_strict: 1966 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1967 a = argument(0); 1968 b = argument(1); 1969 break; 1970 case vmIntrinsics::_minD: 1971 case vmIntrinsics::_maxD: 1972 case vmIntrinsics::_minD_strict: 1973 case vmIntrinsics::_maxD_strict: 1974 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1975 a = argument(0); 1976 b = argument(2); 1977 break; 1978 case vmIntrinsics::_minL: 1979 case vmIntrinsics::_maxL: 1980 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1981 a = argument(0); 1982 b = argument(2); 1983 break; 1984 default: 1985 fatal_unexpected_iid(id); 1986 break; 1987 } 1988 1989 switch (id) { 1990 case vmIntrinsics::_min: 1991 case vmIntrinsics::_min_strict: 1992 n = new MinINode(a, b); 1993 break; 1994 case vmIntrinsics::_max: 1995 case vmIntrinsics::_max_strict: 1996 n = new MaxINode(a, b); 1997 break; 1998 case vmIntrinsics::_minF: 1999 case vmIntrinsics::_minF_strict: 2000 n = new MinFNode(a, b); 2001 break; 2002 case vmIntrinsics::_maxF: 2003 case vmIntrinsics::_maxF_strict: 2004 n = new MaxFNode(a, b); 2005 break; 2006 case vmIntrinsics::_minD: 2007 case vmIntrinsics::_minD_strict: 2008 n = new MinDNode(a, b); 2009 break; 2010 case vmIntrinsics::_maxD: 2011 case vmIntrinsics::_maxD_strict: 2012 n = new MaxDNode(a, b); 2013 break; 2014 case vmIntrinsics::_minL: 2015 n = new MinLNode(_gvn.C, a, b); 2016 break; 2017 case vmIntrinsics::_maxL: 2018 n = new MaxLNode(_gvn.C, a, b); 2019 break; 2020 default: 2021 fatal_unexpected_iid(id); 2022 break; 2023 } 2024 2025 set_result(_gvn.transform(n)); 2026 return true; 2027 } 2028 2029 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) { 2030 if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic, 2031 env()->ArithmeticException_instance())) { 2032 // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces), 2033 // so let's bail out intrinsic rather than risking deopting again. 2034 return false; 2035 } 2036 2037 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2038 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2039 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2040 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2041 2042 { 2043 PreserveJVMState pjvms(this); 2044 PreserveReexecuteState preexecs(this); 2045 jvms()->set_should_reexecute(true); 2046 2047 set_control(slow_path); 2048 set_i_o(i_o()); 2049 2050 builtin_throw(Deoptimization::Reason_intrinsic, 2051 env()->ArithmeticException_instance(), 2052 /*allow_too_many_traps*/ false); 2053 } 2054 2055 set_control(fast_path); 2056 set_result(math); 2057 return true; 2058 } 2059 2060 template <typename OverflowOp> 2061 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2062 typedef typename OverflowOp::MathOp MathOp; 2063 2064 MathOp* mathOp = new MathOp(arg1, arg2); 2065 Node* operation = _gvn.transform( mathOp ); 2066 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2067 return inline_math_mathExact(operation, ofcheck); 2068 } 2069 2070 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2071 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2072 } 2073 2074 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2075 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2076 } 2077 2078 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2079 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2080 } 2081 2082 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2083 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2084 } 2085 2086 bool LibraryCallKit::inline_math_negateExactI() { 2087 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2088 } 2089 2090 bool LibraryCallKit::inline_math_negateExactL() { 2091 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2092 } 2093 2094 bool LibraryCallKit::inline_math_multiplyExactI() { 2095 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2096 } 2097 2098 bool LibraryCallKit::inline_math_multiplyExactL() { 2099 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2100 } 2101 2102 bool LibraryCallKit::inline_math_multiplyHigh() { 2103 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2104 return true; 2105 } 2106 2107 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2108 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2109 return true; 2110 } 2111 2112 inline int 2113 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2114 const TypePtr* base_type = TypePtr::NULL_PTR; 2115 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2116 if (base_type == nullptr) { 2117 // Unknown type. 2118 return Type::AnyPtr; 2119 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2120 // Since this is a null+long form, we have to switch to a rawptr. 2121 base = _gvn.transform(new CastX2PNode(offset)); 2122 offset = MakeConX(0); 2123 return Type::RawPtr; 2124 } else if (base_type->base() == Type::RawPtr) { 2125 return Type::RawPtr; 2126 } else if (base_type->isa_oopptr()) { 2127 // Base is never null => always a heap address. 2128 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2129 return Type::OopPtr; 2130 } 2131 // Offset is small => always a heap address. 2132 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2133 if (offset_type != nullptr && 2134 base_type->offset() == 0 && // (should always be?) 2135 offset_type->_lo >= 0 && 2136 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2137 return Type::OopPtr; 2138 } else if (type == T_OBJECT) { 2139 // off heap access to an oop doesn't make any sense. Has to be on 2140 // heap. 2141 return Type::OopPtr; 2142 } 2143 // Otherwise, it might either be oop+off or null+addr. 2144 return Type::AnyPtr; 2145 } else { 2146 // No information: 2147 return Type::AnyPtr; 2148 } 2149 } 2150 2151 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2152 Node* uncasted_base = base; 2153 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2154 if (kind == Type::RawPtr) { 2155 return basic_plus_adr(top(), uncasted_base, offset); 2156 } else if (kind == Type::AnyPtr) { 2157 assert(base == uncasted_base, "unexpected base change"); 2158 if (can_cast) { 2159 if (!_gvn.type(base)->speculative_maybe_null() && 2160 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2161 // According to profiling, this access is always on 2162 // heap. Casting the base to not null and thus avoiding membars 2163 // around the access should allow better optimizations 2164 Node* null_ctl = top(); 2165 base = null_check_oop(base, &null_ctl, true, true, true); 2166 assert(null_ctl->is_top(), "no null control here"); 2167 return basic_plus_adr(base, offset); 2168 } else if (_gvn.type(base)->speculative_always_null() && 2169 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2170 // According to profiling, this access is always off 2171 // heap. 2172 base = null_assert(base); 2173 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2174 offset = MakeConX(0); 2175 return basic_plus_adr(top(), raw_base, offset); 2176 } 2177 } 2178 // We don't know if it's an on heap or off heap access. Fall back 2179 // to raw memory access. 2180 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2181 return basic_plus_adr(top(), raw, offset); 2182 } else { 2183 assert(base == uncasted_base, "unexpected base change"); 2184 // We know it's an on heap access so base can't be null 2185 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2186 base = must_be_not_null(base, true); 2187 } 2188 return basic_plus_adr(base, offset); 2189 } 2190 } 2191 2192 //--------------------------inline_number_methods----------------------------- 2193 // inline int Integer.numberOfLeadingZeros(int) 2194 // inline int Long.numberOfLeadingZeros(long) 2195 // 2196 // inline int Integer.numberOfTrailingZeros(int) 2197 // inline int Long.numberOfTrailingZeros(long) 2198 // 2199 // inline int Integer.bitCount(int) 2200 // inline int Long.bitCount(long) 2201 // 2202 // inline char Character.reverseBytes(char) 2203 // inline short Short.reverseBytes(short) 2204 // inline int Integer.reverseBytes(int) 2205 // inline long Long.reverseBytes(long) 2206 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2207 Node* arg = argument(0); 2208 Node* n = nullptr; 2209 switch (id) { 2210 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2211 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2212 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2213 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2214 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2215 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2216 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2217 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2218 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2219 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2220 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2221 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2222 default: fatal_unexpected_iid(id); break; 2223 } 2224 set_result(_gvn.transform(n)); 2225 return true; 2226 } 2227 2228 //--------------------------inline_bitshuffle_methods----------------------------- 2229 // inline int Integer.compress(int, int) 2230 // inline int Integer.expand(int, int) 2231 // inline long Long.compress(long, long) 2232 // inline long Long.expand(long, long) 2233 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2234 Node* n = nullptr; 2235 switch (id) { 2236 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2237 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2238 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2239 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2240 default: fatal_unexpected_iid(id); break; 2241 } 2242 set_result(_gvn.transform(n)); 2243 return true; 2244 } 2245 2246 //--------------------------inline_number_methods----------------------------- 2247 // inline int Integer.compareUnsigned(int, int) 2248 // inline int Long.compareUnsigned(long, long) 2249 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2250 Node* arg1 = argument(0); 2251 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2252 Node* n = nullptr; 2253 switch (id) { 2254 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2255 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2256 default: fatal_unexpected_iid(id); break; 2257 } 2258 set_result(_gvn.transform(n)); 2259 return true; 2260 } 2261 2262 //--------------------------inline_unsigned_divmod_methods----------------------------- 2263 // inline int Integer.divideUnsigned(int, int) 2264 // inline int Integer.remainderUnsigned(int, int) 2265 // inline long Long.divideUnsigned(long, long) 2266 // inline long Long.remainderUnsigned(long, long) 2267 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2268 Node* n = nullptr; 2269 switch (id) { 2270 case vmIntrinsics::_divideUnsigned_i: { 2271 zero_check_int(argument(1)); 2272 // Compile-time detect of null-exception 2273 if (stopped()) { 2274 return true; // keep the graph constructed so far 2275 } 2276 n = new UDivINode(control(), argument(0), argument(1)); 2277 break; 2278 } 2279 case vmIntrinsics::_divideUnsigned_l: { 2280 zero_check_long(argument(2)); 2281 // Compile-time detect of null-exception 2282 if (stopped()) { 2283 return true; // keep the graph constructed so far 2284 } 2285 n = new UDivLNode(control(), argument(0), argument(2)); 2286 break; 2287 } 2288 case vmIntrinsics::_remainderUnsigned_i: { 2289 zero_check_int(argument(1)); 2290 // Compile-time detect of null-exception 2291 if (stopped()) { 2292 return true; // keep the graph constructed so far 2293 } 2294 n = new UModINode(control(), argument(0), argument(1)); 2295 break; 2296 } 2297 case vmIntrinsics::_remainderUnsigned_l: { 2298 zero_check_long(argument(2)); 2299 // Compile-time detect of null-exception 2300 if (stopped()) { 2301 return true; // keep the graph constructed so far 2302 } 2303 n = new UModLNode(control(), argument(0), argument(2)); 2304 break; 2305 } 2306 default: fatal_unexpected_iid(id); break; 2307 } 2308 set_result(_gvn.transform(n)); 2309 return true; 2310 } 2311 2312 //----------------------------inline_unsafe_access---------------------------- 2313 2314 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2315 // Attempt to infer a sharper value type from the offset and base type. 2316 ciKlass* sharpened_klass = nullptr; 2317 bool null_free = false; 2318 2319 // See if it is an instance field, with an object type. 2320 if (alias_type->field() != nullptr) { 2321 if (alias_type->field()->type()->is_klass()) { 2322 sharpened_klass = alias_type->field()->type()->as_klass(); 2323 null_free = alias_type->field()->is_null_free(); 2324 } 2325 } 2326 2327 const TypeOopPtr* result = nullptr; 2328 // See if it is a narrow oop array. 2329 if (adr_type->isa_aryptr()) { 2330 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2331 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2332 null_free = adr_type->is_aryptr()->is_null_free(); 2333 if (elem_type != nullptr && elem_type->is_loaded()) { 2334 // Sharpen the value type. 2335 result = elem_type; 2336 } 2337 } 2338 } 2339 2340 // The sharpened class might be unloaded if there is no class loader 2341 // contraint in place. 2342 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2343 // Sharpen the value type. 2344 result = TypeOopPtr::make_from_klass(sharpened_klass); 2345 if (null_free) { 2346 result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 2347 } 2348 } 2349 if (result != nullptr) { 2350 #ifndef PRODUCT 2351 if (C->print_intrinsics() || C->print_inlining()) { 2352 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2353 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2354 } 2355 #endif 2356 } 2357 return result; 2358 } 2359 2360 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2361 switch (kind) { 2362 case Relaxed: 2363 return MO_UNORDERED; 2364 case Opaque: 2365 return MO_RELAXED; 2366 case Acquire: 2367 return MO_ACQUIRE; 2368 case Release: 2369 return MO_RELEASE; 2370 case Volatile: 2371 return MO_SEQ_CST; 2372 default: 2373 ShouldNotReachHere(); 2374 return 0; 2375 } 2376 } 2377 2378 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) { 2379 if (callee()->is_static()) return false; // caller must have the capability! 2380 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2381 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2382 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2383 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2384 2385 if (is_reference_type(type)) { 2386 decorators |= ON_UNKNOWN_OOP_REF; 2387 } 2388 2389 if (unaligned) { 2390 decorators |= C2_UNALIGNED; 2391 } 2392 2393 #ifndef PRODUCT 2394 { 2395 ResourceMark rm; 2396 // Check the signatures. 2397 ciSignature* sig = callee()->signature(); 2398 #ifdef ASSERT 2399 if (!is_store) { 2400 // Object getReference(Object base, int/long offset), etc. 2401 BasicType rtype = sig->return_type()->basic_type(); 2402 assert(rtype == type, "getter must return the expected value"); 2403 assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments"); 2404 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2405 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2406 } else { 2407 // void putReference(Object base, int/long offset, Object x), etc. 2408 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2409 assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments"); 2410 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2411 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2412 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2413 assert(vtype == type, "putter must accept the expected value"); 2414 } 2415 #endif // ASSERT 2416 } 2417 #endif //PRODUCT 2418 2419 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2420 2421 Node* receiver = argument(0); // type: oop 2422 2423 // Build address expression. 2424 Node* heap_base_oop = top(); 2425 2426 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2427 Node* base = argument(1); // type: oop 2428 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2429 Node* offset = argument(2); // type: long 2430 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2431 // to be plain byte offsets, which are also the same as those accepted 2432 // by oopDesc::field_addr. 2433 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2434 "fieldOffset must be byte-scaled"); 2435 2436 ciInlineKlass* inline_klass = nullptr; 2437 if (is_flat) { 2438 const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr(); 2439 if (cls == nullptr || cls->const_oop() == nullptr) { 2440 return false; 2441 } 2442 ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type(); 2443 if (!mirror_type->is_inlinetype()) { 2444 return false; 2445 } 2446 inline_klass = mirror_type->as_inline_klass(); 2447 } 2448 2449 if (base->is_InlineType()) { 2450 assert(!is_store, "InlineTypeNodes are non-larval value objects"); 2451 InlineTypeNode* vt = base->as_InlineType(); 2452 if (offset->is_Con()) { 2453 long off = find_long_con(offset, 0); 2454 ciInlineKlass* vk = vt->type()->inline_klass(); 2455 if ((long)(int)off != off || !vk->contains_field_offset(off)) { 2456 return false; 2457 } 2458 2459 ciField* field = vk->get_non_flat_field_by_offset(off); 2460 if (field != nullptr) { 2461 BasicType bt = type2field[field->type()->basic_type()]; 2462 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2463 bt = T_OBJECT; 2464 } 2465 if (bt == type && (!field->is_flat() || field->type() == inline_klass)) { 2466 Node* value = vt->field_value_by_offset(off, false); 2467 if (value->is_InlineType()) { 2468 value = value->as_InlineType()->adjust_scalarization_depth(this); 2469 } 2470 set_result(value); 2471 return true; 2472 } 2473 } 2474 } 2475 { 2476 // Re-execute the unsafe access if allocation triggers deoptimization. 2477 PreserveReexecuteState preexecs(this); 2478 jvms()->set_should_reexecute(true); 2479 vt = vt->buffer(this); 2480 } 2481 base = vt->get_oop(); 2482 } 2483 2484 // 32-bit machines ignore the high half! 2485 offset = ConvL2X(offset); 2486 2487 // Save state and restore on bailout 2488 uint old_sp = sp(); 2489 SafePointNode* old_map = clone_map(); 2490 2491 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2492 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2493 2494 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2495 if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) { 2496 decorators |= IN_NATIVE; // off-heap primitive access 2497 } else { 2498 set_map(old_map); 2499 set_sp(old_sp); 2500 return false; // off-heap oop accesses are not supported 2501 } 2502 } else { 2503 heap_base_oop = base; // on-heap or mixed access 2504 } 2505 2506 // Can base be null? Otherwise, always on-heap access. 2507 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2508 2509 if (!can_access_non_heap) { 2510 decorators |= IN_HEAP; 2511 } 2512 2513 Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr; 2514 2515 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2516 if (adr_type == TypePtr::NULL_PTR) { 2517 set_map(old_map); 2518 set_sp(old_sp); 2519 return false; // off-heap access with zero address 2520 } 2521 2522 // Try to categorize the address. 2523 Compile::AliasType* alias_type = C->alias_type(adr_type); 2524 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2525 2526 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2527 alias_type->adr_type() == TypeAryPtr::RANGE) { 2528 set_map(old_map); 2529 set_sp(old_sp); 2530 return false; // not supported 2531 } 2532 2533 bool mismatched = false; 2534 BasicType bt = T_ILLEGAL; 2535 ciField* field = nullptr; 2536 if (adr_type->isa_instptr()) { 2537 const TypeInstPtr* instptr = adr_type->is_instptr(); 2538 ciInstanceKlass* k = instptr->instance_klass(); 2539 int off = instptr->offset(); 2540 if (instptr->const_oop() != nullptr && 2541 k == ciEnv::current()->Class_klass() && 2542 instptr->offset() >= (k->size_helper() * wordSize)) { 2543 k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 2544 field = k->get_field_by_offset(off, true); 2545 } else { 2546 field = k->get_non_flat_field_by_offset(off); 2547 } 2548 if (field != nullptr) { 2549 bt = type2field[field->type()->basic_type()]; 2550 } 2551 if (bt != alias_type->basic_type()) { 2552 // Type mismatch. Is it an access to a nested flat field? 2553 field = k->get_field_by_offset(off, false); 2554 if (field != nullptr) { 2555 bt = type2field[field->type()->basic_type()]; 2556 } 2557 } 2558 assert(bt == alias_type->basic_type() || is_flat, "should match"); 2559 } else { 2560 bt = alias_type->basic_type(); 2561 } 2562 2563 if (bt != T_ILLEGAL) { 2564 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2565 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2566 // Alias type doesn't differentiate between byte[] and boolean[]). 2567 // Use address type to get the element type. 2568 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2569 } 2570 if (is_reference_type(bt, true)) { 2571 // accessing an array field with getReference is not a mismatch 2572 bt = T_OBJECT; 2573 } 2574 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2575 // Don't intrinsify mismatched object accesses 2576 set_map(old_map); 2577 set_sp(old_sp); 2578 return false; 2579 } 2580 mismatched = (bt != type); 2581 } else if (alias_type->adr_type()->isa_oopptr()) { 2582 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2583 } 2584 2585 if (is_flat) { 2586 if (adr_type->isa_instptr()) { 2587 if (field == nullptr || field->type() != inline_klass) { 2588 mismatched = true; 2589 } 2590 } else if (adr_type->isa_aryptr()) { 2591 const Type* elem = adr_type->is_aryptr()->elem(); 2592 if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) { 2593 mismatched = true; 2594 } 2595 } else { 2596 mismatched = true; 2597 } 2598 if (is_store) { 2599 const Type* val_t = _gvn.type(val); 2600 if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) { 2601 set_map(old_map); 2602 set_sp(old_sp); 2603 return false; 2604 } 2605 } 2606 } 2607 2608 destruct_map_clone(old_map); 2609 assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2610 2611 if (mismatched) { 2612 decorators |= C2_MISMATCHED; 2613 } 2614 2615 // First guess at the value type. 2616 const Type *value_type = Type::get_const_basic_type(type); 2617 2618 // Figure out the memory ordering. 2619 decorators |= mo_decorator_for_access_kind(kind); 2620 2621 if (!is_store) { 2622 if (type == T_OBJECT && !is_flat) { 2623 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2624 if (tjp != nullptr) { 2625 value_type = tjp; 2626 } 2627 } 2628 } 2629 2630 receiver = null_check(receiver); 2631 if (stopped()) { 2632 return true; 2633 } 2634 // Heap pointers get a null-check from the interpreter, 2635 // as a courtesy. However, this is not guaranteed by Unsafe, 2636 // and it is not possible to fully distinguish unintended nulls 2637 // from intended ones in this API. 2638 2639 if (!is_store) { 2640 Node* p = nullptr; 2641 // Try to constant fold a load from a constant field 2642 2643 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) { 2644 // final or stable field 2645 p = make_constant_from_field(field, heap_base_oop); 2646 } 2647 2648 if (p == nullptr) { // Could not constant fold the load 2649 if (is_flat) { 2650 if (adr_type->isa_instptr() && !mismatched) { 2651 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2652 int offset = adr_type->is_instptr()->offset(); 2653 p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, nullptr, holder, offset, false, -1, decorators); 2654 } else { 2655 p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, nullptr, 0, false, -1, decorators); 2656 } 2657 } else { 2658 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2659 const TypeOopPtr* ptr = value_type->make_oopptr(); 2660 if (ptr != nullptr && ptr->is_inlinetypeptr()) { 2661 // Load a non-flattened inline type from memory 2662 p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass()); 2663 } 2664 } 2665 // Normalize the value returned by getBoolean in the following cases 2666 if (type == T_BOOLEAN && 2667 (mismatched || 2668 heap_base_oop == top() || // - heap_base_oop is null or 2669 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2670 // and the unsafe access is made to large offset 2671 // (i.e., larger than the maximum offset necessary for any 2672 // field access) 2673 ) { 2674 IdealKit ideal = IdealKit(this); 2675 #define __ ideal. 2676 IdealVariable normalized_result(ideal); 2677 __ declarations_done(); 2678 __ set(normalized_result, p); 2679 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2680 __ set(normalized_result, ideal.ConI(1)); 2681 ideal.end_if(); 2682 final_sync(ideal); 2683 p = __ value(normalized_result); 2684 #undef __ 2685 } 2686 } 2687 if (type == T_ADDRESS) { 2688 p = gvn().transform(new CastP2XNode(nullptr, p)); 2689 p = ConvX2UL(p); 2690 } 2691 // The load node has the control of the preceding MemBarCPUOrder. All 2692 // following nodes will have the control of the MemBarCPUOrder inserted at 2693 // the end of this method. So, pushing the load onto the stack at a later 2694 // point is fine. 2695 set_result(p); 2696 } else { 2697 if (bt == T_ADDRESS) { 2698 // Repackage the long as a pointer. 2699 val = ConvL2X(val); 2700 val = gvn().transform(new CastX2PNode(val)); 2701 } 2702 if (is_flat) { 2703 if (adr_type->isa_instptr() && !mismatched) { 2704 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2705 int offset = adr_type->is_instptr()->offset(); 2706 val->as_InlineType()->store_flat(this, base, base, nullptr, holder, offset, false, -1, decorators); 2707 } else { 2708 val->as_InlineType()->store_flat(this, base, adr, nullptr, val->bottom_type()->inline_klass(), 0, false, -1, decorators); 2709 } 2710 } else { 2711 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2712 } 2713 } 2714 2715 return true; 2716 } 2717 2718 bool LibraryCallKit::inline_unsafe_make_private_buffer() { 2719 Node* receiver = argument(0); 2720 Node* value = argument(1); 2721 2722 const Type* type = gvn().type(value); 2723 if (!type->is_inlinetypeptr()) { 2724 C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type"); 2725 return false; 2726 } 2727 2728 null_check(receiver); 2729 if (stopped()) { 2730 return true; 2731 } 2732 2733 value = null_check(value); 2734 if (stopped()) { 2735 return true; 2736 } 2737 2738 ciInlineKlass* vk = type->inline_klass(); 2739 Node* klass = makecon(TypeKlassPtr::make(vk)); 2740 Node* obj = new_instance(klass); 2741 AllocateNode::Ideal_allocation(obj)->_larval = true; 2742 2743 assert(value->is_InlineType(), "must be an InlineTypeNode"); 2744 value->as_InlineType()->store(this, obj, obj, vk); 2745 2746 set_result(obj); 2747 return true; 2748 } 2749 2750 bool LibraryCallKit::inline_unsafe_finish_private_buffer() { 2751 Node* receiver = argument(0); 2752 Node* buffer = argument(1); 2753 2754 const Type* type = gvn().type(buffer); 2755 if (!type->is_inlinetypeptr()) { 2756 C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type"); 2757 return false; 2758 } 2759 2760 AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer); 2761 if (alloc == nullptr) { 2762 C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer"); 2763 return false; 2764 } 2765 2766 null_check(receiver); 2767 if (stopped()) { 2768 return true; 2769 } 2770 2771 // Unset the larval bit in the object header 2772 Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned); 2773 Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place))); 2774 access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP); 2775 2776 // We must ensure that the buffer is properly published 2777 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress)); 2778 assert(!type->maybe_null(), "result of an allocation should not be null"); 2779 set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass())); 2780 return true; 2781 } 2782 2783 //----------------------------inline_unsafe_load_store---------------------------- 2784 // This method serves a couple of different customers (depending on LoadStoreKind): 2785 // 2786 // LS_cmp_swap: 2787 // 2788 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2789 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2790 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2791 // 2792 // LS_cmp_swap_weak: 2793 // 2794 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2795 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2796 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2797 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2798 // 2799 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2800 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2801 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2802 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2803 // 2804 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2805 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2806 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2807 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2808 // 2809 // LS_cmp_exchange: 2810 // 2811 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2812 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2813 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2814 // 2815 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2816 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2817 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2818 // 2819 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2820 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2821 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2822 // 2823 // LS_get_add: 2824 // 2825 // int getAndAddInt( Object o, long offset, int delta) 2826 // long getAndAddLong(Object o, long offset, long delta) 2827 // 2828 // LS_get_set: 2829 // 2830 // int getAndSet(Object o, long offset, int newValue) 2831 // long getAndSet(Object o, long offset, long newValue) 2832 // Object getAndSet(Object o, long offset, Object newValue) 2833 // 2834 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2835 // This basic scheme here is the same as inline_unsafe_access, but 2836 // differs in enough details that combining them would make the code 2837 // overly confusing. (This is a true fact! I originally combined 2838 // them, but even I was confused by it!) As much code/comments as 2839 // possible are retained from inline_unsafe_access though to make 2840 // the correspondences clearer. - dl 2841 2842 if (callee()->is_static()) return false; // caller must have the capability! 2843 2844 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2845 decorators |= mo_decorator_for_access_kind(access_kind); 2846 2847 #ifndef PRODUCT 2848 BasicType rtype; 2849 { 2850 ResourceMark rm; 2851 // Check the signatures. 2852 ciSignature* sig = callee()->signature(); 2853 rtype = sig->return_type()->basic_type(); 2854 switch(kind) { 2855 case LS_get_add: 2856 case LS_get_set: { 2857 // Check the signatures. 2858 #ifdef ASSERT 2859 assert(rtype == type, "get and set must return the expected type"); 2860 assert(sig->count() == 3, "get and set has 3 arguments"); 2861 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2862 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2863 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2864 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2865 #endif // ASSERT 2866 break; 2867 } 2868 case LS_cmp_swap: 2869 case LS_cmp_swap_weak: { 2870 // Check the signatures. 2871 #ifdef ASSERT 2872 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2873 assert(sig->count() == 4, "CAS has 4 arguments"); 2874 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2875 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2876 #endif // ASSERT 2877 break; 2878 } 2879 case LS_cmp_exchange: { 2880 // Check the signatures. 2881 #ifdef ASSERT 2882 assert(rtype == type, "CAS must return the expected type"); 2883 assert(sig->count() == 4, "CAS has 4 arguments"); 2884 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2885 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2886 #endif // ASSERT 2887 break; 2888 } 2889 default: 2890 ShouldNotReachHere(); 2891 } 2892 } 2893 #endif //PRODUCT 2894 2895 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2896 2897 // Get arguments: 2898 Node* receiver = nullptr; 2899 Node* base = nullptr; 2900 Node* offset = nullptr; 2901 Node* oldval = nullptr; 2902 Node* newval = nullptr; 2903 switch(kind) { 2904 case LS_cmp_swap: 2905 case LS_cmp_swap_weak: 2906 case LS_cmp_exchange: { 2907 const bool two_slot_type = type2size[type] == 2; 2908 receiver = argument(0); // type: oop 2909 base = argument(1); // type: oop 2910 offset = argument(2); // type: long 2911 oldval = argument(4); // type: oop, int, or long 2912 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2913 break; 2914 } 2915 case LS_get_add: 2916 case LS_get_set: { 2917 receiver = argument(0); // type: oop 2918 base = argument(1); // type: oop 2919 offset = argument(2); // type: long 2920 oldval = nullptr; 2921 newval = argument(4); // type: oop, int, or long 2922 break; 2923 } 2924 default: 2925 ShouldNotReachHere(); 2926 } 2927 2928 // Build field offset expression. 2929 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2930 // to be plain byte offsets, which are also the same as those accepted 2931 // by oopDesc::field_addr. 2932 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2933 // 32-bit machines ignore the high half of long offsets 2934 offset = ConvL2X(offset); 2935 // Save state and restore on bailout 2936 uint old_sp = sp(); 2937 SafePointNode* old_map = clone_map(); 2938 Node* adr = make_unsafe_address(base, offset,type, false); 2939 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2940 2941 Compile::AliasType* alias_type = C->alias_type(adr_type); 2942 BasicType bt = alias_type->basic_type(); 2943 if (bt != T_ILLEGAL && 2944 (is_reference_type(bt) != (type == T_OBJECT))) { 2945 // Don't intrinsify mismatched object accesses. 2946 set_map(old_map); 2947 set_sp(old_sp); 2948 return false; 2949 } 2950 2951 destruct_map_clone(old_map); 2952 2953 // For CAS, unlike inline_unsafe_access, there seems no point in 2954 // trying to refine types. Just use the coarse types here. 2955 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2956 const Type *value_type = Type::get_const_basic_type(type); 2957 2958 switch (kind) { 2959 case LS_get_set: 2960 case LS_cmp_exchange: { 2961 if (type == T_OBJECT) { 2962 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2963 if (tjp != nullptr) { 2964 value_type = tjp; 2965 } 2966 } 2967 break; 2968 } 2969 case LS_cmp_swap: 2970 case LS_cmp_swap_weak: 2971 case LS_get_add: 2972 break; 2973 default: 2974 ShouldNotReachHere(); 2975 } 2976 2977 // Null check receiver. 2978 receiver = null_check(receiver); 2979 if (stopped()) { 2980 return true; 2981 } 2982 2983 int alias_idx = C->get_alias_index(adr_type); 2984 2985 if (is_reference_type(type)) { 2986 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2987 2988 if (oldval != nullptr && oldval->is_InlineType()) { 2989 // Re-execute the unsafe access if allocation triggers deoptimization. 2990 PreserveReexecuteState preexecs(this); 2991 jvms()->set_should_reexecute(true); 2992 oldval = oldval->as_InlineType()->buffer(this)->get_oop(); 2993 } 2994 if (newval != nullptr && newval->is_InlineType()) { 2995 // Re-execute the unsafe access if allocation triggers deoptimization. 2996 PreserveReexecuteState preexecs(this); 2997 jvms()->set_should_reexecute(true); 2998 newval = newval->as_InlineType()->buffer(this)->get_oop(); 2999 } 3000 3001 // Transformation of a value which could be null pointer (CastPP #null) 3002 // could be delayed during Parse (for example, in adjust_map_after_if()). 3003 // Execute transformation here to avoid barrier generation in such case. 3004 if (_gvn.type(newval) == TypePtr::NULL_PTR) 3005 newval = _gvn.makecon(TypePtr::NULL_PTR); 3006 3007 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 3008 // Refine the value to a null constant, when it is known to be null 3009 oldval = _gvn.makecon(TypePtr::NULL_PTR); 3010 } 3011 } 3012 3013 Node* result = nullptr; 3014 switch (kind) { 3015 case LS_cmp_exchange: { 3016 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 3017 oldval, newval, value_type, type, decorators); 3018 break; 3019 } 3020 case LS_cmp_swap_weak: 3021 decorators |= C2_WEAK_CMPXCHG; 3022 case LS_cmp_swap: { 3023 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 3024 oldval, newval, value_type, type, decorators); 3025 break; 3026 } 3027 case LS_get_set: { 3028 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 3029 newval, value_type, type, decorators); 3030 break; 3031 } 3032 case LS_get_add: { 3033 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 3034 newval, value_type, type, decorators); 3035 break; 3036 } 3037 default: 3038 ShouldNotReachHere(); 3039 } 3040 3041 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 3042 set_result(result); 3043 return true; 3044 } 3045 3046 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 3047 // Regardless of form, don't allow previous ld/st to move down, 3048 // then issue acquire, release, or volatile mem_bar. 3049 insert_mem_bar(Op_MemBarCPUOrder); 3050 switch(id) { 3051 case vmIntrinsics::_loadFence: 3052 insert_mem_bar(Op_LoadFence); 3053 return true; 3054 case vmIntrinsics::_storeFence: 3055 insert_mem_bar(Op_StoreFence); 3056 return true; 3057 case vmIntrinsics::_storeStoreFence: 3058 insert_mem_bar(Op_StoreStoreFence); 3059 return true; 3060 case vmIntrinsics::_fullFence: 3061 insert_mem_bar(Op_MemBarVolatile); 3062 return true; 3063 default: 3064 fatal_unexpected_iid(id); 3065 return false; 3066 } 3067 } 3068 3069 bool LibraryCallKit::inline_onspinwait() { 3070 insert_mem_bar(Op_OnSpinWait); 3071 return true; 3072 } 3073 3074 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 3075 if (!kls->is_Con()) { 3076 return true; 3077 } 3078 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 3079 if (klsptr == nullptr) { 3080 return true; 3081 } 3082 ciInstanceKlass* ik = klsptr->instance_klass(); 3083 // don't need a guard for a klass that is already initialized 3084 return !ik->is_initialized(); 3085 } 3086 3087 //----------------------------inline_unsafe_writeback0------------------------- 3088 // public native void Unsafe.writeback0(long address) 3089 bool LibraryCallKit::inline_unsafe_writeback0() { 3090 if (!Matcher::has_match_rule(Op_CacheWB)) { 3091 return false; 3092 } 3093 #ifndef PRODUCT 3094 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 3095 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 3096 ciSignature* sig = callee()->signature(); 3097 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 3098 #endif 3099 null_check_receiver(); // null-check, then ignore 3100 Node *addr = argument(1); 3101 addr = new CastX2PNode(addr); 3102 addr = _gvn.transform(addr); 3103 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 3104 flush = _gvn.transform(flush); 3105 set_memory(flush, TypeRawPtr::BOTTOM); 3106 return true; 3107 } 3108 3109 //----------------------------inline_unsafe_writeback0------------------------- 3110 // public native void Unsafe.writeback0(long address) 3111 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 3112 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 3113 return false; 3114 } 3115 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 3116 return false; 3117 } 3118 #ifndef PRODUCT 3119 assert(Matcher::has_match_rule(Op_CacheWB), 3120 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 3121 : "found match rule for CacheWBPostSync but not CacheWB")); 3122 3123 #endif 3124 null_check_receiver(); // null-check, then ignore 3125 Node *sync; 3126 if (is_pre) { 3127 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3128 } else { 3129 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3130 } 3131 sync = _gvn.transform(sync); 3132 set_memory(sync, TypeRawPtr::BOTTOM); 3133 return true; 3134 } 3135 3136 //----------------------------inline_unsafe_allocate--------------------------- 3137 // public native Object Unsafe.allocateInstance(Class<?> cls); 3138 bool LibraryCallKit::inline_unsafe_allocate() { 3139 3140 #if INCLUDE_JVMTI 3141 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3142 return false; 3143 } 3144 #endif //INCLUDE_JVMTI 3145 3146 if (callee()->is_static()) return false; // caller must have the capability! 3147 3148 null_check_receiver(); // null-check, then ignore 3149 Node* cls = null_check(argument(1)); 3150 if (stopped()) return true; 3151 3152 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 3153 kls = null_check(kls); 3154 if (stopped()) return true; // argument was like int.class 3155 3156 #if INCLUDE_JVMTI 3157 // Don't try to access new allocated obj in the intrinsic. 3158 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 3159 // Deoptimize and allocate in interpreter instead. 3160 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 3161 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 3162 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 3163 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3164 { 3165 BuildCutout unless(this, tst, PROB_MAX); 3166 uncommon_trap(Deoptimization::Reason_intrinsic, 3167 Deoptimization::Action_make_not_entrant); 3168 } 3169 if (stopped()) { 3170 return true; 3171 } 3172 #endif //INCLUDE_JVMTI 3173 3174 Node* test = nullptr; 3175 if (LibraryCallKit::klass_needs_init_guard(kls)) { 3176 // Note: The argument might still be an illegal value like 3177 // Serializable.class or Object[].class. The runtime will handle it. 3178 // But we must make an explicit check for initialization. 3179 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 3180 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 3181 // can generate code to load it as unsigned byte. 3182 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 3183 Node* bits = intcon(InstanceKlass::fully_initialized); 3184 test = _gvn.transform(new SubINode(inst, bits)); 3185 // The 'test' is non-zero if we need to take a slow path. 3186 } 3187 Node* obj = nullptr; 3188 const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr(); 3189 if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) { 3190 obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this); 3191 } else { 3192 obj = new_instance(kls, test); 3193 } 3194 set_result(obj); 3195 return true; 3196 } 3197 3198 //------------------------inline_native_time_funcs-------------- 3199 // inline code for System.currentTimeMillis() and System.nanoTime() 3200 // these have the same type and signature 3201 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 3202 const TypeFunc* tf = OptoRuntime::void_long_Type(); 3203 const TypePtr* no_memory_effects = nullptr; 3204 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 3205 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 3206 #ifdef ASSERT 3207 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 3208 assert(value_top == top(), "second value must be top"); 3209 #endif 3210 set_result(value); 3211 return true; 3212 } 3213 3214 3215 #if INCLUDE_JVMTI 3216 3217 // When notifications are disabled then just update the VTMS transition bit and return. 3218 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3219 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3220 if (!DoJVMTIVirtualThreadTransitions) { 3221 return true; 3222 } 3223 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3224 IdealKit ideal(this); 3225 3226 Node* ONE = ideal.ConI(1); 3227 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3228 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3229 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3230 3231 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3232 sync_kit(ideal); 3233 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3234 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3235 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3236 ideal.sync_kit(this); 3237 } ideal.else_(); { 3238 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3239 Node* thread = ideal.thread(); 3240 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3241 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3242 3243 sync_kit(ideal); 3244 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3245 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3246 3247 ideal.sync_kit(this); 3248 } ideal.end_if(); 3249 final_sync(ideal); 3250 3251 return true; 3252 } 3253 3254 // Always update the is_disable_suspend bit. 3255 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3256 if (!DoJVMTIVirtualThreadTransitions) { 3257 return true; 3258 } 3259 IdealKit ideal(this); 3260 3261 { 3262 // unconditionally update the is_disable_suspend bit in current JavaThread 3263 Node* thread = ideal.thread(); 3264 Node* arg = _gvn.transform(argument(0)); // argument for notification 3265 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3266 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3267 3268 sync_kit(ideal); 3269 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3270 ideal.sync_kit(this); 3271 } 3272 final_sync(ideal); 3273 3274 return true; 3275 } 3276 3277 #endif // INCLUDE_JVMTI 3278 3279 #ifdef JFR_HAVE_INTRINSICS 3280 3281 /** 3282 * if oop->klass != null 3283 * // normal class 3284 * epoch = _epoch_state ? 2 : 1 3285 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3286 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3287 * } 3288 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3289 * else 3290 * // primitive class 3291 * if oop->array_klass != null 3292 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3293 * else 3294 * id = LAST_TYPE_ID + 1 // void class path 3295 * if (!signaled) 3296 * signaled = true 3297 */ 3298 bool LibraryCallKit::inline_native_classID() { 3299 Node* cls = argument(0); 3300 3301 IdealKit ideal(this); 3302 #define __ ideal. 3303 IdealVariable result(ideal); __ declarations_done(); 3304 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3305 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3306 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3307 3308 3309 __ if_then(kls, BoolTest::ne, null()); { 3310 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3311 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3312 3313 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3314 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3315 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3316 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3317 mask = _gvn.transform(new OrLNode(mask, epoch)); 3318 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3319 3320 float unlikely = PROB_UNLIKELY(0.999); 3321 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3322 sync_kit(ideal); 3323 make_runtime_call(RC_LEAF, 3324 OptoRuntime::class_id_load_barrier_Type(), 3325 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3326 "class id load barrier", 3327 TypePtr::BOTTOM, 3328 kls); 3329 ideal.sync_kit(this); 3330 } __ end_if(); 3331 3332 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3333 } __ else_(); { 3334 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3335 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3336 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3337 __ if_then(array_kls, BoolTest::ne, null()); { 3338 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3339 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3340 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3341 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3342 } __ else_(); { 3343 // void class case 3344 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3345 } __ end_if(); 3346 3347 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3348 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3349 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3350 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3351 } __ end_if(); 3352 } __ end_if(); 3353 3354 final_sync(ideal); 3355 set_result(ideal.value(result)); 3356 #undef __ 3357 return true; 3358 } 3359 3360 //------------------------inline_native_jvm_commit------------------ 3361 bool LibraryCallKit::inline_native_jvm_commit() { 3362 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3363 3364 // Save input memory and i_o state. 3365 Node* input_memory_state = reset_memory(); 3366 set_all_memory(input_memory_state); 3367 Node* input_io_state = i_o(); 3368 3369 // TLS. 3370 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3371 // Jfr java buffer. 3372 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3373 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3374 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3375 3376 // Load the current value of the notified field in the JfrThreadLocal. 3377 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3378 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3379 3380 // Test for notification. 3381 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3382 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3383 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3384 3385 // True branch, is notified. 3386 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3387 set_control(is_notified); 3388 3389 // Reset notified state. 3390 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3391 Node* notified_reset_memory = reset_memory(); 3392 3393 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3394 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3395 // Convert the machine-word to a long. 3396 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3397 3398 // False branch, not notified. 3399 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3400 set_control(not_notified); 3401 set_all_memory(input_memory_state); 3402 3403 // Arg is the next position as a long. 3404 Node* arg = argument(0); 3405 // Convert long to machine-word. 3406 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3407 3408 // Store the next_position to the underlying jfr java buffer. 3409 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3410 3411 Node* commit_memory = reset_memory(); 3412 set_all_memory(commit_memory); 3413 3414 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3415 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3416 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3417 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3418 3419 // And flags with lease constant. 3420 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3421 3422 // Branch on lease to conditionalize returning the leased java buffer. 3423 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3424 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3425 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3426 3427 // False branch, not a lease. 3428 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3429 3430 // True branch, is lease. 3431 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3432 set_control(is_lease); 3433 3434 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3435 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3436 OptoRuntime::void_void_Type(), 3437 SharedRuntime::jfr_return_lease(), 3438 "return_lease", TypePtr::BOTTOM); 3439 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3440 3441 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3442 record_for_igvn(lease_compare_rgn); 3443 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3444 record_for_igvn(lease_compare_mem); 3445 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3446 record_for_igvn(lease_compare_io); 3447 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3448 record_for_igvn(lease_result_value); 3449 3450 // Update control and phi nodes. 3451 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3452 lease_compare_rgn->init_req(_false_path, not_lease); 3453 3454 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3455 lease_compare_mem->init_req(_false_path, commit_memory); 3456 3457 lease_compare_io->init_req(_true_path, i_o()); 3458 lease_compare_io->init_req(_false_path, input_io_state); 3459 3460 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3461 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3462 3463 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3464 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3465 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3466 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3467 3468 // Update control and phi nodes. 3469 result_rgn->init_req(_true_path, is_notified); 3470 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3471 3472 result_mem->init_req(_true_path, notified_reset_memory); 3473 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3474 3475 result_io->init_req(_true_path, input_io_state); 3476 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3477 3478 result_value->init_req(_true_path, current_pos); 3479 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3480 3481 // Set output state. 3482 set_control(_gvn.transform(result_rgn)); 3483 set_all_memory(_gvn.transform(result_mem)); 3484 set_i_o(_gvn.transform(result_io)); 3485 set_result(result_rgn, result_value); 3486 return true; 3487 } 3488 3489 /* 3490 * The intrinsic is a model of this pseudo-code: 3491 * 3492 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3493 * jobject h_event_writer = tl->java_event_writer(); 3494 * if (h_event_writer == nullptr) { 3495 * return nullptr; 3496 * } 3497 * oop threadObj = Thread::threadObj(); 3498 * oop vthread = java_lang_Thread::vthread(threadObj); 3499 * traceid tid; 3500 * bool pinVirtualThread; 3501 * bool excluded; 3502 * if (vthread != threadObj) { // i.e. current thread is virtual 3503 * tid = java_lang_Thread::tid(vthread); 3504 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3505 * pinVirtualThread = VMContinuations; 3506 * excluded = vthread_epoch_raw & excluded_mask; 3507 * if (!excluded) { 3508 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3509 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3510 * if (vthread_epoch != current_epoch) { 3511 * write_checkpoint(); 3512 * } 3513 * } 3514 * } else { 3515 * tid = java_lang_Thread::tid(threadObj); 3516 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3517 * pinVirtualThread = false; 3518 * excluded = thread_epoch_raw & excluded_mask; 3519 * } 3520 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3521 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3522 * if (tid_in_event_writer != tid) { 3523 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3524 * setField(event_writer, "excluded", excluded); 3525 * setField(event_writer, "threadID", tid); 3526 * } 3527 * return event_writer 3528 */ 3529 bool LibraryCallKit::inline_native_getEventWriter() { 3530 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3531 3532 // Save input memory and i_o state. 3533 Node* input_memory_state = reset_memory(); 3534 set_all_memory(input_memory_state); 3535 Node* input_io_state = i_o(); 3536 3537 // The most significant bit of the u2 is used to denote thread exclusion 3538 Node* excluded_shift = _gvn.intcon(15); 3539 Node* excluded_mask = _gvn.intcon(1 << 15); 3540 // The epoch generation is the range [1-32767] 3541 Node* epoch_mask = _gvn.intcon(32767); 3542 3543 // TLS 3544 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3545 3546 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3547 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3548 3549 // Load the eventwriter jobject handle. 3550 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3551 3552 // Null check the jobject handle. 3553 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3554 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3555 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3556 3557 // False path, jobj is null. 3558 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3559 3560 // True path, jobj is not null. 3561 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3562 3563 set_control(jobj_is_not_null); 3564 3565 // Load the threadObj for the CarrierThread. 3566 Node* threadObj = generate_current_thread(tls_ptr); 3567 3568 // Load the vthread. 3569 Node* vthread = generate_virtual_thread(tls_ptr); 3570 3571 // If vthread != threadObj, this is a virtual thread. 3572 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3573 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3574 IfNode* iff_vthread_not_equal_threadObj = 3575 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3576 3577 // False branch, fallback to threadObj. 3578 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3579 set_control(vthread_equal_threadObj); 3580 3581 // Load the tid field from the vthread object. 3582 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3583 3584 // Load the raw epoch value from the threadObj. 3585 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3586 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3587 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3588 TypeInt::CHAR, T_CHAR, 3589 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3590 3591 // Mask off the excluded information from the epoch. 3592 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3593 3594 // True branch, this is a virtual thread. 3595 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3596 set_control(vthread_not_equal_threadObj); 3597 3598 // Load the tid field from the vthread object. 3599 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3600 3601 // Continuation support determines if a virtual thread should be pinned. 3602 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3603 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3604 3605 // Load the raw epoch value from the vthread. 3606 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3607 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3608 TypeInt::CHAR, T_CHAR, 3609 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3610 3611 // Mask off the excluded information from the epoch. 3612 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3613 3614 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3615 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3616 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3617 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3618 3619 // False branch, vthread is excluded, no need to write epoch info. 3620 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3621 3622 // True branch, vthread is included, update epoch info. 3623 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3624 set_control(included); 3625 3626 // Get epoch value. 3627 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3628 3629 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3630 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3631 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3632 3633 // Compare the epoch in the vthread to the current epoch generation. 3634 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3635 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3636 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3637 3638 // False path, epoch is equal, checkpoint information is valid. 3639 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3640 3641 // True path, epoch is not equal, write a checkpoint for the vthread. 3642 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3643 3644 set_control(epoch_is_not_equal); 3645 3646 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3647 // The call also updates the native thread local thread id and the vthread with the current epoch. 3648 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3649 OptoRuntime::jfr_write_checkpoint_Type(), 3650 SharedRuntime::jfr_write_checkpoint(), 3651 "write_checkpoint", TypePtr::BOTTOM); 3652 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3653 3654 // vthread epoch != current epoch 3655 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3656 record_for_igvn(epoch_compare_rgn); 3657 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3658 record_for_igvn(epoch_compare_mem); 3659 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3660 record_for_igvn(epoch_compare_io); 3661 3662 // Update control and phi nodes. 3663 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3664 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3665 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3666 epoch_compare_mem->init_req(_false_path, input_memory_state); 3667 epoch_compare_io->init_req(_true_path, i_o()); 3668 epoch_compare_io->init_req(_false_path, input_io_state); 3669 3670 // excluded != true 3671 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3672 record_for_igvn(exclude_compare_rgn); 3673 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3674 record_for_igvn(exclude_compare_mem); 3675 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3676 record_for_igvn(exclude_compare_io); 3677 3678 // Update control and phi nodes. 3679 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3680 exclude_compare_rgn->init_req(_false_path, excluded); 3681 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3682 exclude_compare_mem->init_req(_false_path, input_memory_state); 3683 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3684 exclude_compare_io->init_req(_false_path, input_io_state); 3685 3686 // vthread != threadObj 3687 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3688 record_for_igvn(vthread_compare_rgn); 3689 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3690 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3691 record_for_igvn(vthread_compare_io); 3692 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3693 record_for_igvn(tid); 3694 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3695 record_for_igvn(exclusion); 3696 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3697 record_for_igvn(pinVirtualThread); 3698 3699 // Update control and phi nodes. 3700 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3701 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3702 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3703 vthread_compare_mem->init_req(_false_path, input_memory_state); 3704 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3705 vthread_compare_io->init_req(_false_path, input_io_state); 3706 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3707 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3708 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3709 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3710 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3711 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3712 3713 // Update branch state. 3714 set_control(_gvn.transform(vthread_compare_rgn)); 3715 set_all_memory(_gvn.transform(vthread_compare_mem)); 3716 set_i_o(_gvn.transform(vthread_compare_io)); 3717 3718 // Load the event writer oop by dereferencing the jobject handle. 3719 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3720 assert(klass_EventWriter->is_loaded(), "invariant"); 3721 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3722 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3723 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3724 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3725 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3726 3727 // Load the current thread id from the event writer object. 3728 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3729 // Get the field offset to, conditionally, store an updated tid value later. 3730 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3731 // Get the field offset to, conditionally, store an updated exclusion value later. 3732 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3733 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3734 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3735 3736 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3737 record_for_igvn(event_writer_tid_compare_rgn); 3738 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3739 record_for_igvn(event_writer_tid_compare_mem); 3740 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3741 record_for_igvn(event_writer_tid_compare_io); 3742 3743 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3744 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3745 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3746 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3747 3748 // False path, tids are the same. 3749 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3750 3751 // True path, tid is not equal, need to update the tid in the event writer. 3752 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3753 record_for_igvn(tid_is_not_equal); 3754 3755 // Store the pin state to the event writer. 3756 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3757 3758 // Store the exclusion state to the event writer. 3759 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3760 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3761 3762 // Store the tid to the event writer. 3763 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3764 3765 // Update control and phi nodes. 3766 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3767 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3768 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3769 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3770 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3771 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3772 3773 // Result of top level CFG, Memory, IO and Value. 3774 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3775 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3776 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3777 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3778 3779 // Result control. 3780 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3781 result_rgn->init_req(_false_path, jobj_is_null); 3782 3783 // Result memory. 3784 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3785 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3786 3787 // Result IO. 3788 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3789 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3790 3791 // Result value. 3792 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3793 result_value->init_req(_false_path, null()); // return null 3794 3795 // Set output state. 3796 set_control(_gvn.transform(result_rgn)); 3797 set_all_memory(_gvn.transform(result_mem)); 3798 set_i_o(_gvn.transform(result_io)); 3799 set_result(result_rgn, result_value); 3800 return true; 3801 } 3802 3803 /* 3804 * The intrinsic is a model of this pseudo-code: 3805 * 3806 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3807 * if (carrierThread != thread) { // is virtual thread 3808 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3809 * bool excluded = vthread_epoch_raw & excluded_mask; 3810 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3811 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3812 * if (!excluded) { 3813 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3814 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3815 * } 3816 * Atomic::release_store(&tl->_vthread, true); 3817 * return; 3818 * } 3819 * Atomic::release_store(&tl->_vthread, false); 3820 */ 3821 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3822 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3823 3824 Node* input_memory_state = reset_memory(); 3825 set_all_memory(input_memory_state); 3826 3827 // The most significant bit of the u2 is used to denote thread exclusion 3828 Node* excluded_mask = _gvn.intcon(1 << 15); 3829 // The epoch generation is the range [1-32767] 3830 Node* epoch_mask = _gvn.intcon(32767); 3831 3832 Node* const carrierThread = generate_current_thread(jt); 3833 // If thread != carrierThread, this is a virtual thread. 3834 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3835 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3836 IfNode* iff_thread_not_equal_carrierThread = 3837 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3838 3839 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3840 3841 // False branch, is carrierThread. 3842 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3843 // Store release 3844 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3845 3846 set_all_memory(input_memory_state); 3847 3848 // True branch, is virtual thread. 3849 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3850 set_control(thread_not_equal_carrierThread); 3851 3852 // Load the raw epoch value from the vthread. 3853 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3854 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3855 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3856 3857 // Mask off the excluded information from the epoch. 3858 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3859 3860 // Load the tid field from the thread. 3861 Node* tid = load_field_from_object(thread, "tid", "J"); 3862 3863 // Store the vthread tid to the jfr thread local. 3864 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3865 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3866 3867 // Branch is_excluded to conditionalize updating the epoch . 3868 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3869 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3870 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3871 3872 // True branch, vthread is excluded, no need to write epoch info. 3873 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3874 set_control(excluded); 3875 Node* vthread_is_excluded = _gvn.intcon(1); 3876 3877 // False branch, vthread is included, update epoch info. 3878 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3879 set_control(included); 3880 Node* vthread_is_included = _gvn.intcon(0); 3881 3882 // Get epoch value. 3883 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3884 3885 // Store the vthread epoch to the jfr thread local. 3886 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3887 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3888 3889 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3890 record_for_igvn(excluded_rgn); 3891 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3892 record_for_igvn(excluded_mem); 3893 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3894 record_for_igvn(exclusion); 3895 3896 // Merge the excluded control and memory. 3897 excluded_rgn->init_req(_true_path, excluded); 3898 excluded_rgn->init_req(_false_path, included); 3899 excluded_mem->init_req(_true_path, tid_memory); 3900 excluded_mem->init_req(_false_path, included_memory); 3901 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3902 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3903 3904 // Set intermediate state. 3905 set_control(_gvn.transform(excluded_rgn)); 3906 set_all_memory(excluded_mem); 3907 3908 // Store the vthread exclusion state to the jfr thread local. 3909 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3910 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3911 3912 // Store release 3913 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3914 3915 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3916 record_for_igvn(thread_compare_rgn); 3917 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3918 record_for_igvn(thread_compare_mem); 3919 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3920 record_for_igvn(vthread); 3921 3922 // Merge the thread_compare control and memory. 3923 thread_compare_rgn->init_req(_true_path, control()); 3924 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3925 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3926 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3927 3928 // Set output state. 3929 set_control(_gvn.transform(thread_compare_rgn)); 3930 set_all_memory(_gvn.transform(thread_compare_mem)); 3931 } 3932 3933 #endif // JFR_HAVE_INTRINSICS 3934 3935 //------------------------inline_native_currentCarrierThread------------------ 3936 bool LibraryCallKit::inline_native_currentCarrierThread() { 3937 Node* junk = nullptr; 3938 set_result(generate_current_thread(junk)); 3939 return true; 3940 } 3941 3942 //------------------------inline_native_currentThread------------------ 3943 bool LibraryCallKit::inline_native_currentThread() { 3944 Node* junk = nullptr; 3945 set_result(generate_virtual_thread(junk)); 3946 return true; 3947 } 3948 3949 //------------------------inline_native_setVthread------------------ 3950 bool LibraryCallKit::inline_native_setCurrentThread() { 3951 assert(C->method()->changes_current_thread(), 3952 "method changes current Thread but is not annotated ChangesCurrentThread"); 3953 Node* arr = argument(1); 3954 Node* thread = _gvn.transform(new ThreadLocalNode()); 3955 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3956 Node* thread_obj_handle 3957 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3958 thread_obj_handle = _gvn.transform(thread_obj_handle); 3959 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3960 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3961 3962 // Change the _monitor_owner_id of the JavaThread 3963 Node* tid = load_field_from_object(arr, "tid", "J"); 3964 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3965 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3966 3967 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3968 return true; 3969 } 3970 3971 const Type* LibraryCallKit::scopedValueCache_type() { 3972 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3973 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3974 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true); 3975 3976 // Because we create the scopedValue cache lazily we have to make the 3977 // type of the result BotPTR. 3978 bool xk = etype->klass_is_exact(); 3979 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0)); 3980 return objects_type; 3981 } 3982 3983 Node* LibraryCallKit::scopedValueCache_helper() { 3984 Node* thread = _gvn.transform(new ThreadLocalNode()); 3985 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3986 // We cannot use immutable_memory() because we might flip onto a 3987 // different carrier thread, at which point we'll need to use that 3988 // carrier thread's cache. 3989 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3990 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3991 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3992 } 3993 3994 //------------------------inline_native_scopedValueCache------------------ 3995 bool LibraryCallKit::inline_native_scopedValueCache() { 3996 Node* cache_obj_handle = scopedValueCache_helper(); 3997 const Type* objects_type = scopedValueCache_type(); 3998 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3999 4000 return true; 4001 } 4002 4003 //------------------------inline_native_setScopedValueCache------------------ 4004 bool LibraryCallKit::inline_native_setScopedValueCache() { 4005 Node* arr = argument(0); 4006 Node* cache_obj_handle = scopedValueCache_helper(); 4007 const Type* objects_type = scopedValueCache_type(); 4008 4009 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 4010 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 4011 4012 return true; 4013 } 4014 4015 //------------------------inline_native_Continuation_pin and unpin----------- 4016 4017 // Shared implementation routine for both pin and unpin. 4018 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 4019 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 4020 4021 // Save input memory. 4022 Node* input_memory_state = reset_memory(); 4023 set_all_memory(input_memory_state); 4024 4025 // TLS 4026 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 4027 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 4028 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 4029 4030 // Null check the last continuation object. 4031 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 4032 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 4033 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 4034 4035 // False path, last continuation is null. 4036 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 4037 4038 // True path, last continuation is not null. 4039 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 4040 4041 set_control(continuation_is_not_null); 4042 4043 // Load the pin count from the last continuation. 4044 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 4045 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 4046 4047 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 4048 Node* pin_count_rhs; 4049 if (unpin) { 4050 pin_count_rhs = _gvn.intcon(0); 4051 } else { 4052 pin_count_rhs = _gvn.intcon(UINT32_MAX); 4053 } 4054 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 4055 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 4056 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 4057 4058 // True branch, pin count over/underflow. 4059 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 4060 { 4061 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 4062 // which will throw IllegalStateException for pin count over/underflow. 4063 // No memory changed so far - we can use memory create by reset_memory() 4064 // at the beginning of this intrinsic. No need to call reset_memory() again. 4065 PreserveJVMState pjvms(this); 4066 set_control(pin_count_over_underflow); 4067 uncommon_trap(Deoptimization::Reason_intrinsic, 4068 Deoptimization::Action_none); 4069 assert(stopped(), "invariant"); 4070 } 4071 4072 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 4073 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 4074 set_control(valid_pin_count); 4075 4076 Node* next_pin_count; 4077 if (unpin) { 4078 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 4079 } else { 4080 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 4081 } 4082 4083 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 4084 4085 // Result of top level CFG and Memory. 4086 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 4087 record_for_igvn(result_rgn); 4088 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 4089 record_for_igvn(result_mem); 4090 4091 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 4092 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 4093 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 4094 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 4095 4096 // Set output state. 4097 set_control(_gvn.transform(result_rgn)); 4098 set_all_memory(_gvn.transform(result_mem)); 4099 4100 return true; 4101 } 4102 4103 //-----------------------load_klass_from_mirror_common------------------------- 4104 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 4105 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 4106 // and branch to the given path on the region. 4107 // If never_see_null, take an uncommon trap on null, so we can optimistically 4108 // compile for the non-null case. 4109 // If the region is null, force never_see_null = true. 4110 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 4111 bool never_see_null, 4112 RegionNode* region, 4113 int null_path, 4114 int offset) { 4115 if (region == nullptr) never_see_null = true; 4116 Node* p = basic_plus_adr(mirror, offset); 4117 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4118 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 4119 Node* null_ctl = top(); 4120 kls = null_check_oop(kls, &null_ctl, never_see_null); 4121 if (region != nullptr) { 4122 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 4123 region->init_req(null_path, null_ctl); 4124 } else { 4125 assert(null_ctl == top(), "no loose ends"); 4126 } 4127 return kls; 4128 } 4129 4130 //--------------------(inline_native_Class_query helpers)--------------------- 4131 // Use this for JVM_ACC_INTERFACE. 4132 // Fall through if (mods & mask) == bits, take the guard otherwise. 4133 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 4134 ByteSize offset, const Type* type, BasicType bt) { 4135 // Branch around if the given klass has the given modifier bit set. 4136 // Like generate_guard, adds a new path onto the region. 4137 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 4138 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 4139 Node* mask = intcon(modifier_mask); 4140 Node* bits = intcon(modifier_bits); 4141 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 4142 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 4143 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 4144 return generate_fair_guard(bol, region); 4145 } 4146 4147 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 4148 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 4149 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 4150 } 4151 4152 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 4153 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 4154 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 4155 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 4156 } 4157 4158 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 4159 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 4160 } 4161 4162 //-------------------------inline_native_Class_query------------------- 4163 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 4164 const Type* return_type = TypeInt::BOOL; 4165 Node* prim_return_value = top(); // what happens if it's a primitive class? 4166 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4167 bool expect_prim = false; // most of these guys expect to work on refs 4168 4169 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 4170 4171 Node* mirror = argument(0); 4172 Node* obj = top(); 4173 4174 switch (id) { 4175 case vmIntrinsics::_isInstance: 4176 // nothing is an instance of a primitive type 4177 prim_return_value = intcon(0); 4178 obj = argument(1); 4179 break; 4180 case vmIntrinsics::_isHidden: 4181 prim_return_value = intcon(0); 4182 break; 4183 case vmIntrinsics::_getSuperclass: 4184 prim_return_value = null(); 4185 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 4186 break; 4187 case vmIntrinsics::_getClassAccessFlags: 4188 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 4189 return_type = TypeInt::CHAR; 4190 break; 4191 default: 4192 fatal_unexpected_iid(id); 4193 break; 4194 } 4195 4196 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4197 if (mirror_con == nullptr) return false; // cannot happen? 4198 4199 #ifndef PRODUCT 4200 if (C->print_intrinsics() || C->print_inlining()) { 4201 ciType* k = mirror_con->java_mirror_type(); 4202 if (k) { 4203 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 4204 k->print_name(); 4205 tty->cr(); 4206 } 4207 } 4208 #endif 4209 4210 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 4211 RegionNode* region = new RegionNode(PATH_LIMIT); 4212 record_for_igvn(region); 4213 PhiNode* phi = new PhiNode(region, return_type); 4214 4215 // The mirror will never be null of Reflection.getClassAccessFlags, however 4216 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4217 // if it is. See bug 4774291. 4218 4219 // For Reflection.getClassAccessFlags(), the null check occurs in 4220 // the wrong place; see inline_unsafe_access(), above, for a similar 4221 // situation. 4222 mirror = null_check(mirror); 4223 // If mirror or obj is dead, only null-path is taken. 4224 if (stopped()) return true; 4225 4226 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4227 4228 // Now load the mirror's klass metaobject, and null-check it. 4229 // Side-effects region with the control path if the klass is null. 4230 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4231 // If kls is null, we have a primitive mirror. 4232 phi->init_req(_prim_path, prim_return_value); 4233 if (stopped()) { set_result(region, phi); return true; } 4234 bool safe_for_replace = (region->in(_prim_path) == top()); 4235 4236 Node* p; // handy temp 4237 Node* null_ctl; 4238 4239 // Now that we have the non-null klass, we can perform the real query. 4240 // For constant classes, the query will constant-fold in LoadNode::Value. 4241 Node* query_value = top(); 4242 switch (id) { 4243 case vmIntrinsics::_isInstance: 4244 // nothing is an instance of a primitive type 4245 query_value = gen_instanceof(obj, kls, safe_for_replace); 4246 break; 4247 4248 case vmIntrinsics::_isHidden: 4249 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4250 if (generate_hidden_class_guard(kls, region) != nullptr) 4251 // A guard was added. If the guard is taken, it was an hidden class. 4252 phi->add_req(intcon(1)); 4253 // If we fall through, it's a plain class. 4254 query_value = intcon(0); 4255 break; 4256 4257 4258 case vmIntrinsics::_getSuperclass: 4259 // The rules here are somewhat unfortunate, but we can still do better 4260 // with random logic than with a JNI call. 4261 // Interfaces store null or Object as _super, but must report null. 4262 // Arrays store an intermediate super as _super, but must report Object. 4263 // Other types can report the actual _super. 4264 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4265 if (generate_interface_guard(kls, region) != nullptr) 4266 // A guard was added. If the guard is taken, it was an interface. 4267 phi->add_req(null()); 4268 if (generate_array_guard(kls, region) != nullptr) 4269 // A guard was added. If the guard is taken, it was an array. 4270 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4271 // If we fall through, it's a plain class. Get its _super. 4272 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4273 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4274 null_ctl = top(); 4275 kls = null_check_oop(kls, &null_ctl); 4276 if (null_ctl != top()) { 4277 // If the guard is taken, Object.superClass is null (both klass and mirror). 4278 region->add_req(null_ctl); 4279 phi ->add_req(null()); 4280 } 4281 if (!stopped()) { 4282 query_value = load_mirror_from_klass(kls); 4283 } 4284 break; 4285 4286 case vmIntrinsics::_getClassAccessFlags: 4287 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4288 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4289 break; 4290 4291 default: 4292 fatal_unexpected_iid(id); 4293 break; 4294 } 4295 4296 // Fall-through is the normal case of a query to a real class. 4297 phi->init_req(1, query_value); 4298 region->init_req(1, control()); 4299 4300 C->set_has_split_ifs(true); // Has chance for split-if optimization 4301 set_result(region, phi); 4302 return true; 4303 } 4304 4305 4306 //-------------------------inline_Class_cast------------------- 4307 bool LibraryCallKit::inline_Class_cast() { 4308 Node* mirror = argument(0); // Class 4309 Node* obj = argument(1); 4310 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4311 if (mirror_con == nullptr) { 4312 return false; // dead path (mirror->is_top()). 4313 } 4314 if (obj == nullptr || obj->is_top()) { 4315 return false; // dead path 4316 } 4317 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4318 4319 // First, see if Class.cast() can be folded statically. 4320 // java_mirror_type() returns non-null for compile-time Class constants. 4321 bool is_null_free_array = false; 4322 ciType* tm = mirror_con->java_mirror_type(&is_null_free_array); 4323 if (tm != nullptr && tm->is_klass() && 4324 tp != nullptr) { 4325 if (!tp->is_loaded()) { 4326 // Don't use intrinsic when class is not loaded. 4327 return false; 4328 } else { 4329 const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces); 4330 if (is_null_free_array) { 4331 tklass = tklass->is_aryklassptr()->cast_to_null_free(); 4332 } 4333 int static_res = C->static_subtype_check(tklass, tp->as_klass_type()); 4334 if (static_res == Compile::SSC_always_true) { 4335 // isInstance() is true - fold the code. 4336 set_result(obj); 4337 return true; 4338 } else if (static_res == Compile::SSC_always_false) { 4339 // Don't use intrinsic, have to throw ClassCastException. 4340 // If the reference is null, the non-intrinsic bytecode will 4341 // be optimized appropriately. 4342 return false; 4343 } 4344 } 4345 } 4346 4347 // Bailout intrinsic and do normal inlining if exception path is frequent. 4348 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4349 return false; 4350 } 4351 4352 // Generate dynamic checks. 4353 // Class.cast() is java implementation of _checkcast bytecode. 4354 // Do checkcast (Parse::do_checkcast()) optimizations here. 4355 4356 mirror = null_check(mirror); 4357 // If mirror is dead, only null-path is taken. 4358 if (stopped()) { 4359 return true; 4360 } 4361 4362 // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive). 4363 enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT }; 4364 RegionNode* region = new RegionNode(PATH_LIMIT); 4365 record_for_igvn(region); 4366 4367 // Now load the mirror's klass metaobject, and null-check it. 4368 // If kls is null, we have a primitive mirror and 4369 // nothing is an instance of a primitive type. 4370 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4371 4372 Node* res = top(); 4373 Node* io = i_o(); 4374 Node* mem = merged_memory(); 4375 if (!stopped()) { 4376 4377 Node* bad_type_ctrl = top(); 4378 // Do checkcast optimizations. 4379 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4380 region->init_req(_bad_type_path, bad_type_ctrl); 4381 } 4382 if (region->in(_prim_path) != top() || 4383 region->in(_bad_type_path) != top() || 4384 region->in(_npe_path) != top()) { 4385 // Let Interpreter throw ClassCastException. 4386 PreserveJVMState pjvms(this); 4387 set_control(_gvn.transform(region)); 4388 // Set IO and memory because gen_checkcast may override them when buffering inline types 4389 set_i_o(io); 4390 set_all_memory(mem); 4391 uncommon_trap(Deoptimization::Reason_intrinsic, 4392 Deoptimization::Action_maybe_recompile); 4393 } 4394 if (!stopped()) { 4395 set_result(res); 4396 } 4397 return true; 4398 } 4399 4400 4401 //--------------------------inline_native_subtype_check------------------------ 4402 // This intrinsic takes the JNI calls out of the heart of 4403 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4404 bool LibraryCallKit::inline_native_subtype_check() { 4405 // Pull both arguments off the stack. 4406 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4407 args[0] = argument(0); 4408 args[1] = argument(1); 4409 Node* klasses[2]; // corresponding Klasses: superk, subk 4410 klasses[0] = klasses[1] = top(); 4411 4412 enum { 4413 // A full decision tree on {superc is prim, subc is prim}: 4414 _prim_0_path = 1, // {P,N} => false 4415 // {P,P} & superc!=subc => false 4416 _prim_same_path, // {P,P} & superc==subc => true 4417 _prim_1_path, // {N,P} => false 4418 _ref_subtype_path, // {N,N} & subtype check wins => true 4419 _both_ref_path, // {N,N} & subtype check loses => false 4420 PATH_LIMIT 4421 }; 4422 4423 RegionNode* region = new RegionNode(PATH_LIMIT); 4424 RegionNode* prim_region = new RegionNode(2); 4425 Node* phi = new PhiNode(region, TypeInt::BOOL); 4426 record_for_igvn(region); 4427 record_for_igvn(prim_region); 4428 4429 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4430 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4431 int class_klass_offset = java_lang_Class::klass_offset(); 4432 4433 // First null-check both mirrors and load each mirror's klass metaobject. 4434 int which_arg; 4435 for (which_arg = 0; which_arg <= 1; which_arg++) { 4436 Node* arg = args[which_arg]; 4437 arg = null_check(arg); 4438 if (stopped()) break; 4439 args[which_arg] = arg; 4440 4441 Node* p = basic_plus_adr(arg, class_klass_offset); 4442 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4443 klasses[which_arg] = _gvn.transform(kls); 4444 } 4445 4446 // Having loaded both klasses, test each for null. 4447 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4448 for (which_arg = 0; which_arg <= 1; which_arg++) { 4449 Node* kls = klasses[which_arg]; 4450 Node* null_ctl = top(); 4451 kls = null_check_oop(kls, &null_ctl, never_see_null); 4452 if (which_arg == 0) { 4453 prim_region->init_req(1, null_ctl); 4454 } else { 4455 region->init_req(_prim_1_path, null_ctl); 4456 } 4457 if (stopped()) break; 4458 klasses[which_arg] = kls; 4459 } 4460 4461 if (!stopped()) { 4462 // now we have two reference types, in klasses[0..1] 4463 Node* subk = klasses[1]; // the argument to isAssignableFrom 4464 Node* superk = klasses[0]; // the receiver 4465 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4466 region->set_req(_ref_subtype_path, control()); 4467 } 4468 4469 // If both operands are primitive (both klasses null), then 4470 // we must return true when they are identical primitives. 4471 // It is convenient to test this after the first null klass check. 4472 // This path is also used if superc is a value mirror. 4473 set_control(_gvn.transform(prim_region)); 4474 if (!stopped()) { 4475 // Since superc is primitive, make a guard for the superc==subc case. 4476 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4477 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4478 generate_fair_guard(bol_eq, region); 4479 if (region->req() == PATH_LIMIT+1) { 4480 // A guard was added. If the added guard is taken, superc==subc. 4481 region->swap_edges(PATH_LIMIT, _prim_same_path); 4482 region->del_req(PATH_LIMIT); 4483 } 4484 region->set_req(_prim_0_path, control()); // Not equal after all. 4485 } 4486 4487 // these are the only paths that produce 'true': 4488 phi->set_req(_prim_same_path, intcon(1)); 4489 phi->set_req(_ref_subtype_path, intcon(1)); 4490 4491 // pull together the cases: 4492 assert(region->req() == PATH_LIMIT, "sane region"); 4493 for (uint i = 1; i < region->req(); i++) { 4494 Node* ctl = region->in(i); 4495 if (ctl == nullptr || ctl == top()) { 4496 region->set_req(i, top()); 4497 phi ->set_req(i, top()); 4498 } else if (phi->in(i) == nullptr) { 4499 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4500 } 4501 } 4502 4503 set_control(_gvn.transform(region)); 4504 set_result(_gvn.transform(phi)); 4505 return true; 4506 } 4507 4508 //---------------------generate_array_guard_common------------------------ 4509 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) { 4510 4511 if (stopped()) { 4512 return nullptr; 4513 } 4514 4515 // Like generate_guard, adds a new path onto the region. 4516 jint layout_con = 0; 4517 Node* layout_val = get_layout_helper(kls, layout_con); 4518 if (layout_val == nullptr) { 4519 bool query = 0; 4520 switch(kind) { 4521 case ObjectArray: query = Klass::layout_helper_is_objArray(layout_con); break; 4522 case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break; 4523 case TypeArray: query = Klass::layout_helper_is_typeArray(layout_con); break; 4524 case AnyArray: query = Klass::layout_helper_is_array(layout_con); break; 4525 case NonArray: query = !Klass::layout_helper_is_array(layout_con); break; 4526 default: 4527 ShouldNotReachHere(); 4528 } 4529 if (!query) { 4530 return nullptr; // never a branch 4531 } else { // always a branch 4532 Node* always_branch = control(); 4533 if (region != nullptr) 4534 region->add_req(always_branch); 4535 set_control(top()); 4536 return always_branch; 4537 } 4538 } 4539 unsigned int value = 0; 4540 BoolTest::mask btest = BoolTest::illegal; 4541 switch(kind) { 4542 case ObjectArray: 4543 case NonObjectArray: { 4544 value = Klass::_lh_array_tag_obj_value; 4545 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4546 btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne; 4547 break; 4548 } 4549 case TypeArray: { 4550 value = Klass::_lh_array_tag_type_value; 4551 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4552 btest = BoolTest::eq; 4553 break; 4554 } 4555 case AnyArray: value = Klass::_lh_neutral_value; btest = BoolTest::lt; break; 4556 case NonArray: value = Klass::_lh_neutral_value; btest = BoolTest::gt; break; 4557 default: 4558 ShouldNotReachHere(); 4559 } 4560 // Now test the correct condition. 4561 jint nval = (jint)value; 4562 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4563 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4564 Node* ctrl = generate_fair_guard(bol, region); 4565 Node* is_array_ctrl = kind == NonArray ? control() : ctrl; 4566 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4567 // Keep track of the fact that 'obj' is an array to prevent 4568 // array specific accesses from floating above the guard. 4569 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4570 } 4571 return ctrl; 4572 } 4573 4574 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal); 4575 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal); 4576 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length); 4577 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) { 4578 assert(null_free || atomic, "nullable implies atomic"); 4579 Node* componentType = argument(0); 4580 Node* length = argument(1); 4581 Node* init_val = null_free ? argument(2) : nullptr; 4582 4583 const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr(); 4584 if (tp != nullptr) { 4585 ciInstanceKlass* ik = tp->instance_klass(); 4586 if (ik == C->env()->Class_klass()) { 4587 ciType* t = tp->java_mirror_type(); 4588 if (t != nullptr && t->is_inlinetype()) { 4589 ciInlineKlass* vk = t->as_inline_klass(); 4590 bool flat = vk->maybe_flat_in_array(); 4591 if (flat && atomic) { 4592 // Only flat if we have a corresponding atomic layout 4593 flat = null_free ? vk->has_atomic_layout() : vk->has_nullable_atomic_layout(); 4594 } 4595 // TODO 8350865 refactor 4596 if (flat && !atomic) { 4597 flat = vk->has_non_atomic_layout(); 4598 } 4599 4600 // TOOD 8350865 ZGC needs card marks on initializing oop stores 4601 if (UseZGC && null_free && !flat) { 4602 return false; 4603 } 4604 4605 ciArrayKlass* array_klass = ciArrayKlass::make(t, flat, null_free, atomic); 4606 if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) { 4607 const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces); 4608 if (null_free) { 4609 if (init_val->is_InlineType()) { 4610 if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) { 4611 // Zeroing is enough because the init value is the all-zero value 4612 init_val = nullptr; 4613 } else { 4614 init_val = init_val->as_InlineType()->buffer(this); 4615 } 4616 } 4617 // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)? 4618 } 4619 Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val); 4620 const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr(); 4621 assert(arytype->is_null_free() == null_free, "inconsistency"); 4622 assert(arytype->is_not_null_free() == !null_free, "inconsistency"); 4623 assert(arytype->is_flat() == flat, "inconsistency"); 4624 assert(arytype->is_aryptr()->is_not_flat() == !flat, "inconsistency"); 4625 set_result(obj); 4626 return true; 4627 } 4628 } 4629 } 4630 } 4631 return false; 4632 } 4633 4634 //-----------------------inline_native_newArray-------------------------- 4635 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length); 4636 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4637 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4638 Node* mirror; 4639 Node* count_val; 4640 if (uninitialized) { 4641 null_check_receiver(); 4642 mirror = argument(1); 4643 count_val = argument(2); 4644 } else { 4645 mirror = argument(0); 4646 count_val = argument(1); 4647 } 4648 4649 mirror = null_check(mirror); 4650 // If mirror or obj is dead, only null-path is taken. 4651 if (stopped()) return true; 4652 4653 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4654 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4655 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4656 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4657 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4658 4659 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4660 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4661 result_reg, _slow_path); 4662 Node* normal_ctl = control(); 4663 Node* no_array_ctl = result_reg->in(_slow_path); 4664 4665 // Generate code for the slow case. We make a call to newArray(). 4666 set_control(no_array_ctl); 4667 if (!stopped()) { 4668 // Either the input type is void.class, or else the 4669 // array klass has not yet been cached. Either the 4670 // ensuing call will throw an exception, or else it 4671 // will cache the array klass for next time. 4672 PreserveJVMState pjvms(this); 4673 CallJavaNode* slow_call = nullptr; 4674 if (uninitialized) { 4675 // Generate optimized virtual call (holder class 'Unsafe' is final) 4676 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4677 } else { 4678 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4679 } 4680 Node* slow_result = set_results_for_java_call(slow_call); 4681 // this->control() comes from set_results_for_java_call 4682 result_reg->set_req(_slow_path, control()); 4683 result_val->set_req(_slow_path, slow_result); 4684 result_io ->set_req(_slow_path, i_o()); 4685 result_mem->set_req(_slow_path, reset_memory()); 4686 } 4687 4688 set_control(normal_ctl); 4689 if (!stopped()) { 4690 // Normal case: The array type has been cached in the java.lang.Class. 4691 // The following call works fine even if the array type is polymorphic. 4692 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4693 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4694 result_reg->init_req(_normal_path, control()); 4695 result_val->init_req(_normal_path, obj); 4696 result_io ->init_req(_normal_path, i_o()); 4697 result_mem->init_req(_normal_path, reset_memory()); 4698 4699 if (uninitialized) { 4700 // Mark the allocation so that zeroing is skipped 4701 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4702 alloc->maybe_set_complete(&_gvn); 4703 } 4704 } 4705 4706 // Return the combined state. 4707 set_i_o( _gvn.transform(result_io) ); 4708 set_all_memory( _gvn.transform(result_mem)); 4709 4710 C->set_has_split_ifs(true); // Has chance for split-if optimization 4711 set_result(result_reg, result_val); 4712 return true; 4713 } 4714 4715 //----------------------inline_native_getLength-------------------------- 4716 // public static native int java.lang.reflect.Array.getLength(Object array); 4717 bool LibraryCallKit::inline_native_getLength() { 4718 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4719 4720 Node* array = null_check(argument(0)); 4721 // If array is dead, only null-path is taken. 4722 if (stopped()) return true; 4723 4724 // Deoptimize if it is a non-array. 4725 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4726 4727 if (non_array != nullptr) { 4728 PreserveJVMState pjvms(this); 4729 set_control(non_array); 4730 uncommon_trap(Deoptimization::Reason_intrinsic, 4731 Deoptimization::Action_maybe_recompile); 4732 } 4733 4734 // If control is dead, only non-array-path is taken. 4735 if (stopped()) return true; 4736 4737 // The works fine even if the array type is polymorphic. 4738 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4739 Node* result = load_array_length(array); 4740 4741 C->set_has_split_ifs(true); // Has chance for split-if optimization 4742 set_result(result); 4743 return true; 4744 } 4745 4746 //------------------------inline_array_copyOf---------------------------- 4747 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4748 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4749 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4750 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4751 4752 // Get the arguments. 4753 Node* original = argument(0); 4754 Node* start = is_copyOfRange? argument(1): intcon(0); 4755 Node* end = is_copyOfRange? argument(2): argument(1); 4756 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4757 4758 Node* newcopy = nullptr; 4759 4760 // Set the original stack and the reexecute bit for the interpreter to reexecute 4761 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4762 { PreserveReexecuteState preexecs(this); 4763 jvms()->set_should_reexecute(true); 4764 4765 array_type_mirror = null_check(array_type_mirror); 4766 original = null_check(original); 4767 4768 // Check if a null path was taken unconditionally. 4769 if (stopped()) return true; 4770 4771 Node* orig_length = load_array_length(original); 4772 4773 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4774 klass_node = null_check(klass_node); 4775 4776 RegionNode* bailout = new RegionNode(1); 4777 record_for_igvn(bailout); 4778 4779 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4780 // Bail out if that is so. 4781 // Inline type array may have object field that would require a 4782 // write barrier. Conservatively, go to slow path. 4783 // TODO 8251971: Optimize for the case when flat src/dst are later found 4784 // to not contain oops (i.e., move this check to the macro expansion phase). 4785 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4786 const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr(); 4787 const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr(); 4788 bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) && 4789 // Can src array be flat and contain oops? 4790 (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) && 4791 // Can dest array be flat and contain oops? 4792 tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops()); 4793 Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout); 4794 if (not_objArray != nullptr) { 4795 // Improve the klass node's type from the new optimistic assumption: 4796 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4797 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0)); 4798 Node* cast = new CastPPNode(control(), klass_node, akls); 4799 klass_node = _gvn.transform(cast); 4800 } 4801 4802 // Bail out if either start or end is negative. 4803 generate_negative_guard(start, bailout, &start); 4804 generate_negative_guard(end, bailout, &end); 4805 4806 Node* length = end; 4807 if (_gvn.type(start) != TypeInt::ZERO) { 4808 length = _gvn.transform(new SubINode(end, start)); 4809 } 4810 4811 // Bail out if length is negative (i.e., if start > end). 4812 // Without this the new_array would throw 4813 // NegativeArraySizeException but IllegalArgumentException is what 4814 // should be thrown 4815 generate_negative_guard(length, bailout, &length); 4816 4817 // Handle inline type arrays 4818 bool can_validate = !too_many_traps(Deoptimization::Reason_class_check); 4819 if (!stopped()) { 4820 // TODO JDK-8329224 4821 if (!orig_t->is_null_free()) { 4822 // Not statically known to be null free, add a check 4823 generate_fair_guard(null_free_array_test(original), bailout); 4824 } 4825 orig_t = _gvn.type(original)->isa_aryptr(); 4826 if (orig_t != nullptr && orig_t->is_flat()) { 4827 // Src is flat, check that dest is flat as well 4828 if (exclude_flat) { 4829 // Dest can't be flat, bail out 4830 bailout->add_req(control()); 4831 set_control(top()); 4832 } else { 4833 generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout); 4834 } 4835 // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy. 4836 } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) && 4837 // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated). 4838 ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) { 4839 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 4840 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 4841 generate_fair_guard(flat_array_test(load_object_klass(original)), bailout); 4842 if (orig_t != nullptr) { 4843 orig_t = orig_t->cast_to_not_flat(); 4844 original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t)); 4845 } 4846 } 4847 if (!can_validate) { 4848 // No validation. The subtype check emitted at macro expansion time will not go to the slow 4849 // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays. 4850 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free. 4851 generate_fair_guard(flat_array_test(klass_node), bailout); 4852 generate_fair_guard(null_free_array_test(original), bailout); 4853 } 4854 } 4855 4856 // Bail out if start is larger than the original length 4857 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4858 generate_negative_guard(orig_tail, bailout, &orig_tail); 4859 4860 if (bailout->req() > 1) { 4861 PreserveJVMState pjvms(this); 4862 set_control(_gvn.transform(bailout)); 4863 uncommon_trap(Deoptimization::Reason_intrinsic, 4864 Deoptimization::Action_maybe_recompile); 4865 } 4866 4867 if (!stopped()) { 4868 // How many elements will we copy from the original? 4869 // The answer is MinI(orig_tail, length). 4870 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4871 4872 // Generate a direct call to the right arraycopy function(s). 4873 // We know the copy is disjoint but we might not know if the 4874 // oop stores need checking. 4875 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4876 // This will fail a store-check if x contains any non-nulls. 4877 4878 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4879 // loads/stores but it is legal only if we're sure the 4880 // Arrays.copyOf would succeed. So we need all input arguments 4881 // to the copyOf to be validated, including that the copy to the 4882 // new array won't trigger an ArrayStoreException. That subtype 4883 // check can be optimized if we know something on the type of 4884 // the input array from type speculation. 4885 if (_gvn.type(klass_node)->singleton()) { 4886 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4887 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4888 4889 int test = C->static_subtype_check(superk, subk); 4890 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4891 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4892 if (t_original->speculative_type() != nullptr) { 4893 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4894 } 4895 } 4896 } 4897 4898 bool validated = false; 4899 // Reason_class_check rather than Reason_intrinsic because we 4900 // want to intrinsify even if this traps. 4901 if (can_validate) { 4902 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4903 4904 if (not_subtype_ctrl != top()) { 4905 PreserveJVMState pjvms(this); 4906 set_control(not_subtype_ctrl); 4907 uncommon_trap(Deoptimization::Reason_class_check, 4908 Deoptimization::Action_make_not_entrant); 4909 assert(stopped(), "Should be stopped"); 4910 } 4911 validated = true; 4912 } 4913 4914 if (!stopped()) { 4915 newcopy = new_array(klass_node, length, 0); // no arguments to push 4916 4917 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4918 load_object_klass(original), klass_node); 4919 if (!is_copyOfRange) { 4920 ac->set_copyof(validated); 4921 } else { 4922 ac->set_copyofrange(validated); 4923 } 4924 Node* n = _gvn.transform(ac); 4925 if (n == ac) { 4926 ac->connect_outputs(this); 4927 } else { 4928 assert(validated, "shouldn't transform if all arguments not validated"); 4929 set_all_memory(n); 4930 } 4931 } 4932 } 4933 } // original reexecute is set back here 4934 4935 C->set_has_split_ifs(true); // Has chance for split-if optimization 4936 if (!stopped()) { 4937 set_result(newcopy); 4938 } 4939 return true; 4940 } 4941 4942 4943 //----------------------generate_virtual_guard--------------------------- 4944 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4945 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4946 RegionNode* slow_region) { 4947 ciMethod* method = callee(); 4948 int vtable_index = method->vtable_index(); 4949 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4950 "bad index %d", vtable_index); 4951 // Get the Method* out of the appropriate vtable entry. 4952 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4953 vtable_index*vtableEntry::size_in_bytes() + 4954 in_bytes(vtableEntry::method_offset()); 4955 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4956 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4957 4958 // Compare the target method with the expected method (e.g., Object.hashCode). 4959 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4960 4961 Node* native_call = makecon(native_call_addr); 4962 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4963 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4964 4965 return generate_slow_guard(test_native, slow_region); 4966 } 4967 4968 //-----------------------generate_method_call---------------------------- 4969 // Use generate_method_call to make a slow-call to the real 4970 // method if the fast path fails. An alternative would be to 4971 // use a stub like OptoRuntime::slow_arraycopy_Java. 4972 // This only works for expanding the current library call, 4973 // not another intrinsic. (E.g., don't use this for making an 4974 // arraycopy call inside of the copyOf intrinsic.) 4975 CallJavaNode* 4976 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4977 // When compiling the intrinsic method itself, do not use this technique. 4978 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4979 4980 ciMethod* method = callee(); 4981 // ensure the JVMS we have will be correct for this call 4982 guarantee(method_id == method->intrinsic_id(), "must match"); 4983 4984 const TypeFunc* tf = TypeFunc::make(method); 4985 if (res_not_null) { 4986 assert(tf->return_type() == T_OBJECT, ""); 4987 const TypeTuple* range = tf->range_cc(); 4988 const Type** fields = TypeTuple::fields(range->cnt()); 4989 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4990 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4991 tf = TypeFunc::make(tf->domain_cc(), new_range); 4992 } 4993 CallJavaNode* slow_call; 4994 if (is_static) { 4995 assert(!is_virtual, ""); 4996 slow_call = new CallStaticJavaNode(C, tf, 4997 SharedRuntime::get_resolve_static_call_stub(), method); 4998 } else if (is_virtual) { 4999 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 5000 int vtable_index = Method::invalid_vtable_index; 5001 if (UseInlineCaches) { 5002 // Suppress the vtable call 5003 } else { 5004 // hashCode and clone are not a miranda methods, 5005 // so the vtable index is fixed. 5006 // No need to use the linkResolver to get it. 5007 vtable_index = method->vtable_index(); 5008 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 5009 "bad index %d", vtable_index); 5010 } 5011 slow_call = new CallDynamicJavaNode(tf, 5012 SharedRuntime::get_resolve_virtual_call_stub(), 5013 method, vtable_index); 5014 } else { // neither virtual nor static: opt_virtual 5015 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 5016 slow_call = new CallStaticJavaNode(C, tf, 5017 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 5018 slow_call->set_optimized_virtual(true); 5019 } 5020 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 5021 // To be able to issue a direct call (optimized virtual or virtual) 5022 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 5023 // about the method being invoked should be attached to the call site to 5024 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 5025 slow_call->set_override_symbolic_info(true); 5026 } 5027 set_arguments_for_java_call(slow_call); 5028 set_edges_for_java_call(slow_call); 5029 return slow_call; 5030 } 5031 5032 5033 /** 5034 * Build special case code for calls to hashCode on an object. This call may 5035 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 5036 * slightly different code. 5037 */ 5038 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 5039 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 5040 assert(!(is_virtual && is_static), "either virtual, special, or static"); 5041 5042 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 5043 5044 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5045 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 5046 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 5047 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5048 Node* obj = argument(0); 5049 5050 // Don't intrinsify hashcode on inline types for now. 5051 // The "is locked" runtime check below also serves as inline type check and goes to the slow path. 5052 if (gvn().type(obj)->is_inlinetypeptr()) { 5053 return false; 5054 } 5055 5056 if (!is_static) { 5057 // Check for hashing null object 5058 obj = null_check_receiver(); 5059 if (stopped()) return true; // unconditionally null 5060 result_reg->init_req(_null_path, top()); 5061 result_val->init_req(_null_path, top()); 5062 } else { 5063 // Do a null check, and return zero if null. 5064 // System.identityHashCode(null) == 0 5065 Node* null_ctl = top(); 5066 obj = null_check_oop(obj, &null_ctl); 5067 result_reg->init_req(_null_path, null_ctl); 5068 result_val->init_req(_null_path, _gvn.intcon(0)); 5069 } 5070 5071 // Unconditionally null? Then return right away. 5072 if (stopped()) { 5073 set_control( result_reg->in(_null_path)); 5074 if (!stopped()) 5075 set_result(result_val->in(_null_path)); 5076 return true; 5077 } 5078 5079 // We only go to the fast case code if we pass a number of guards. The 5080 // paths which do not pass are accumulated in the slow_region. 5081 RegionNode* slow_region = new RegionNode(1); 5082 record_for_igvn(slow_region); 5083 5084 // If this is a virtual call, we generate a funny guard. We pull out 5085 // the vtable entry corresponding to hashCode() from the target object. 5086 // If the target method which we are calling happens to be the native 5087 // Object hashCode() method, we pass the guard. We do not need this 5088 // guard for non-virtual calls -- the caller is known to be the native 5089 // Object hashCode(). 5090 if (is_virtual) { 5091 // After null check, get the object's klass. 5092 Node* obj_klass = load_object_klass(obj); 5093 generate_virtual_guard(obj_klass, slow_region); 5094 } 5095 5096 // Get the header out of the object, use LoadMarkNode when available 5097 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 5098 // The control of the load must be null. Otherwise, the load can move before 5099 // the null check after castPP removal. 5100 Node* no_ctrl = nullptr; 5101 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 5102 5103 if (!UseObjectMonitorTable) { 5104 // Test the header to see if it is safe to read w.r.t. locking. 5105 // This also serves as guard against inline types 5106 Node *lock_mask = _gvn.MakeConX(markWord::inline_type_mask_in_place); 5107 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 5108 if (LockingMode == LM_LIGHTWEIGHT) { 5109 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 5110 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 5111 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 5112 5113 generate_slow_guard(test_monitor, slow_region); 5114 } else { 5115 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 5116 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 5117 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 5118 5119 generate_slow_guard(test_not_unlocked, slow_region); 5120 } 5121 } 5122 5123 // Get the hash value and check to see that it has been properly assigned. 5124 // We depend on hash_mask being at most 32 bits and avoid the use of 5125 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 5126 // vm: see markWord.hpp. 5127 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 5128 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 5129 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 5130 // This hack lets the hash bits live anywhere in the mark object now, as long 5131 // as the shift drops the relevant bits into the low 32 bits. Note that 5132 // Java spec says that HashCode is an int so there's no point in capturing 5133 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 5134 hshifted_header = ConvX2I(hshifted_header); 5135 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 5136 5137 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 5138 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 5139 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 5140 5141 generate_slow_guard(test_assigned, slow_region); 5142 5143 Node* init_mem = reset_memory(); 5144 // fill in the rest of the null path: 5145 result_io ->init_req(_null_path, i_o()); 5146 result_mem->init_req(_null_path, init_mem); 5147 5148 result_val->init_req(_fast_path, hash_val); 5149 result_reg->init_req(_fast_path, control()); 5150 result_io ->init_req(_fast_path, i_o()); 5151 result_mem->init_req(_fast_path, init_mem); 5152 5153 // Generate code for the slow case. We make a call to hashCode(). 5154 set_control(_gvn.transform(slow_region)); 5155 if (!stopped()) { 5156 // No need for PreserveJVMState, because we're using up the present state. 5157 set_all_memory(init_mem); 5158 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 5159 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 5160 Node* slow_result = set_results_for_java_call(slow_call); 5161 // this->control() comes from set_results_for_java_call 5162 result_reg->init_req(_slow_path, control()); 5163 result_val->init_req(_slow_path, slow_result); 5164 result_io ->set_req(_slow_path, i_o()); 5165 result_mem ->set_req(_slow_path, reset_memory()); 5166 } 5167 5168 // Return the combined state. 5169 set_i_o( _gvn.transform(result_io) ); 5170 set_all_memory( _gvn.transform(result_mem)); 5171 5172 set_result(result_reg, result_val); 5173 return true; 5174 } 5175 5176 //---------------------------inline_native_getClass---------------------------- 5177 // public final native Class<?> java.lang.Object.getClass(); 5178 // 5179 // Build special case code for calls to getClass on an object. 5180 bool LibraryCallKit::inline_native_getClass() { 5181 Node* obj = argument(0); 5182 if (obj->is_InlineType()) { 5183 const Type* t = _gvn.type(obj); 5184 if (t->maybe_null()) { 5185 null_check(obj); 5186 } 5187 set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror()))); 5188 return true; 5189 } 5190 obj = null_check_receiver(); 5191 if (stopped()) return true; 5192 set_result(load_mirror_from_klass(load_object_klass(obj))); 5193 return true; 5194 } 5195 5196 //-----------------inline_native_Reflection_getCallerClass--------------------- 5197 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 5198 // 5199 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 5200 // 5201 // NOTE: This code must perform the same logic as JVM_GetCallerClass 5202 // in that it must skip particular security frames and checks for 5203 // caller sensitive methods. 5204 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 5205 #ifndef PRODUCT 5206 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5207 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 5208 } 5209 #endif 5210 5211 if (!jvms()->has_method()) { 5212 #ifndef PRODUCT 5213 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5214 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 5215 } 5216 #endif 5217 return false; 5218 } 5219 5220 // Walk back up the JVM state to find the caller at the required 5221 // depth. 5222 JVMState* caller_jvms = jvms(); 5223 5224 // Cf. JVM_GetCallerClass 5225 // NOTE: Start the loop at depth 1 because the current JVM state does 5226 // not include the Reflection.getCallerClass() frame. 5227 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 5228 ciMethod* m = caller_jvms->method(); 5229 switch (n) { 5230 case 0: 5231 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 5232 break; 5233 case 1: 5234 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 5235 if (!m->caller_sensitive()) { 5236 #ifndef PRODUCT 5237 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5238 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 5239 } 5240 #endif 5241 return false; // bail-out; let JVM_GetCallerClass do the work 5242 } 5243 break; 5244 default: 5245 if (!m->is_ignored_by_security_stack_walk()) { 5246 // We have reached the desired frame; return the holder class. 5247 // Acquire method holder as java.lang.Class and push as constant. 5248 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 5249 ciInstance* caller_mirror = caller_klass->java_mirror(); 5250 set_result(makecon(TypeInstPtr::make(caller_mirror))); 5251 5252 #ifndef PRODUCT 5253 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5254 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 5255 tty->print_cr(" JVM state at this point:"); 5256 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5257 ciMethod* m = jvms()->of_depth(i)->method(); 5258 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5259 } 5260 } 5261 #endif 5262 return true; 5263 } 5264 break; 5265 } 5266 } 5267 5268 #ifndef PRODUCT 5269 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5270 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 5271 tty->print_cr(" JVM state at this point:"); 5272 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5273 ciMethod* m = jvms()->of_depth(i)->method(); 5274 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5275 } 5276 } 5277 #endif 5278 5279 return false; // bail-out; let JVM_GetCallerClass do the work 5280 } 5281 5282 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 5283 Node* arg = argument(0); 5284 Node* result = nullptr; 5285 5286 switch (id) { 5287 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 5288 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 5289 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 5290 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 5291 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 5292 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 5293 5294 case vmIntrinsics::_doubleToLongBits: { 5295 // two paths (plus control) merge in a wood 5296 RegionNode *r = new RegionNode(3); 5297 Node *phi = new PhiNode(r, TypeLong::LONG); 5298 5299 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 5300 // Build the boolean node 5301 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5302 5303 // Branch either way. 5304 // NaN case is less traveled, which makes all the difference. 5305 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5306 Node *opt_isnan = _gvn.transform(ifisnan); 5307 assert( opt_isnan->is_If(), "Expect an IfNode"); 5308 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5309 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5310 5311 set_control(iftrue); 5312 5313 static const jlong nan_bits = CONST64(0x7ff8000000000000); 5314 Node *slow_result = longcon(nan_bits); // return NaN 5315 phi->init_req(1, _gvn.transform( slow_result )); 5316 r->init_req(1, iftrue); 5317 5318 // Else fall through 5319 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5320 set_control(iffalse); 5321 5322 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 5323 r->init_req(2, iffalse); 5324 5325 // Post merge 5326 set_control(_gvn.transform(r)); 5327 record_for_igvn(r); 5328 5329 C->set_has_split_ifs(true); // Has chance for split-if optimization 5330 result = phi; 5331 assert(result->bottom_type()->isa_long(), "must be"); 5332 break; 5333 } 5334 5335 case vmIntrinsics::_floatToIntBits: { 5336 // two paths (plus control) merge in a wood 5337 RegionNode *r = new RegionNode(3); 5338 Node *phi = new PhiNode(r, TypeInt::INT); 5339 5340 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 5341 // Build the boolean node 5342 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5343 5344 // Branch either way. 5345 // NaN case is less traveled, which makes all the difference. 5346 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5347 Node *opt_isnan = _gvn.transform(ifisnan); 5348 assert( opt_isnan->is_If(), "Expect an IfNode"); 5349 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5350 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5351 5352 set_control(iftrue); 5353 5354 static const jint nan_bits = 0x7fc00000; 5355 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 5356 phi->init_req(1, _gvn.transform( slow_result )); 5357 r->init_req(1, iftrue); 5358 5359 // Else fall through 5360 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5361 set_control(iffalse); 5362 5363 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 5364 r->init_req(2, iffalse); 5365 5366 // Post merge 5367 set_control(_gvn.transform(r)); 5368 record_for_igvn(r); 5369 5370 C->set_has_split_ifs(true); // Has chance for split-if optimization 5371 result = phi; 5372 assert(result->bottom_type()->isa_int(), "must be"); 5373 break; 5374 } 5375 5376 default: 5377 fatal_unexpected_iid(id); 5378 break; 5379 } 5380 set_result(_gvn.transform(result)); 5381 return true; 5382 } 5383 5384 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5385 Node* arg = argument(0); 5386 Node* result = nullptr; 5387 5388 switch (id) { 5389 case vmIntrinsics::_floatIsInfinite: 5390 result = new IsInfiniteFNode(arg); 5391 break; 5392 case vmIntrinsics::_floatIsFinite: 5393 result = new IsFiniteFNode(arg); 5394 break; 5395 case vmIntrinsics::_doubleIsInfinite: 5396 result = new IsInfiniteDNode(arg); 5397 break; 5398 case vmIntrinsics::_doubleIsFinite: 5399 result = new IsFiniteDNode(arg); 5400 break; 5401 default: 5402 fatal_unexpected_iid(id); 5403 break; 5404 } 5405 set_result(_gvn.transform(result)); 5406 return true; 5407 } 5408 5409 //----------------------inline_unsafe_copyMemory------------------------- 5410 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5411 5412 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5413 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5414 const Type* base_t = gvn.type(base); 5415 5416 bool in_native = (base_t == TypePtr::NULL_PTR); 5417 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5418 bool is_mixed = !in_heap && !in_native; 5419 5420 if (is_mixed) { 5421 return true; // mixed accesses can touch both on-heap and off-heap memory 5422 } 5423 if (in_heap) { 5424 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5425 if (!is_prim_array) { 5426 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5427 // there's not enough type information available to determine proper memory slice for it. 5428 return true; 5429 } 5430 } 5431 return false; 5432 } 5433 5434 bool LibraryCallKit::inline_unsafe_copyMemory() { 5435 if (callee()->is_static()) return false; // caller must have the capability! 5436 null_check_receiver(); // null-check receiver 5437 if (stopped()) return true; 5438 5439 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5440 5441 Node* src_base = argument(1); // type: oop 5442 Node* src_off = ConvL2X(argument(2)); // type: long 5443 Node* dst_base = argument(4); // type: oop 5444 Node* dst_off = ConvL2X(argument(5)); // type: long 5445 Node* size = ConvL2X(argument(7)); // type: long 5446 5447 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5448 "fieldOffset must be byte-scaled"); 5449 5450 Node* src_addr = make_unsafe_address(src_base, src_off); 5451 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5452 5453 Node* thread = _gvn.transform(new ThreadLocalNode()); 5454 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5455 BasicType doing_unsafe_access_bt = T_BYTE; 5456 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5457 5458 // update volatile field 5459 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5460 5461 int flags = RC_LEAF | RC_NO_FP; 5462 5463 const TypePtr* dst_type = TypePtr::BOTTOM; 5464 5465 // Adjust memory effects of the runtime call based on input values. 5466 if (!has_wide_mem(_gvn, src_addr, src_base) && 5467 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5468 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5469 5470 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5471 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5472 flags |= RC_NARROW_MEM; // narrow in memory 5473 } 5474 } 5475 5476 // Call it. Note that the length argument is not scaled. 5477 make_runtime_call(flags, 5478 OptoRuntime::fast_arraycopy_Type(), 5479 StubRoutines::unsafe_arraycopy(), 5480 "unsafe_arraycopy", 5481 dst_type, 5482 src_addr, dst_addr, size XTOP); 5483 5484 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5485 5486 return true; 5487 } 5488 5489 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5490 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5491 bool LibraryCallKit::inline_unsafe_setMemory() { 5492 if (callee()->is_static()) return false; // caller must have the capability! 5493 null_check_receiver(); // null-check receiver 5494 if (stopped()) return true; 5495 5496 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5497 5498 Node* dst_base = argument(1); // type: oop 5499 Node* dst_off = ConvL2X(argument(2)); // type: long 5500 Node* size = ConvL2X(argument(4)); // type: long 5501 Node* byte = argument(6); // type: byte 5502 5503 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5504 "fieldOffset must be byte-scaled"); 5505 5506 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5507 5508 Node* thread = _gvn.transform(new ThreadLocalNode()); 5509 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5510 BasicType doing_unsafe_access_bt = T_BYTE; 5511 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5512 5513 // update volatile field 5514 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5515 5516 int flags = RC_LEAF | RC_NO_FP; 5517 5518 const TypePtr* dst_type = TypePtr::BOTTOM; 5519 5520 // Adjust memory effects of the runtime call based on input values. 5521 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5522 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5523 5524 flags |= RC_NARROW_MEM; // narrow in memory 5525 } 5526 5527 // Call it. Note that the length argument is not scaled. 5528 make_runtime_call(flags, 5529 OptoRuntime::unsafe_setmemory_Type(), 5530 StubRoutines::unsafe_setmemory(), 5531 "unsafe_setmemory", 5532 dst_type, 5533 dst_addr, size XTOP, byte); 5534 5535 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5536 5537 return true; 5538 } 5539 5540 #undef XTOP 5541 5542 //----------------------inline_unsafe_isFlatArray------------------------ 5543 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass); 5544 // This intrinsic exploits assumptions made by the native implementation 5545 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks. 5546 bool LibraryCallKit::inline_unsafe_isFlatArray() { 5547 Node* cls = argument(1); 5548 Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset()); 5549 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, 5550 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT)); 5551 Node* result = flat_array_test(kls); 5552 set_result(result); 5553 return true; 5554 } 5555 5556 //------------------------clone_coping----------------------------------- 5557 // Helper function for inline_native_clone. 5558 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5559 assert(obj_size != nullptr, ""); 5560 Node* raw_obj = alloc_obj->in(1); 5561 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5562 5563 AllocateNode* alloc = nullptr; 5564 if (ReduceBulkZeroing && 5565 // If we are implementing an array clone without knowing its source type 5566 // (can happen when compiling the array-guarded branch of a reflective 5567 // Object.clone() invocation), initialize the array within the allocation. 5568 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5569 // to a runtime clone call that assumes fully initialized source arrays. 5570 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5571 // We will be completely responsible for initializing this object - 5572 // mark Initialize node as complete. 5573 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5574 // The object was just allocated - there should be no any stores! 5575 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5576 // Mark as complete_with_arraycopy so that on AllocateNode 5577 // expansion, we know this AllocateNode is initialized by an array 5578 // copy and a StoreStore barrier exists after the array copy. 5579 alloc->initialization()->set_complete_with_arraycopy(); 5580 } 5581 5582 Node* size = _gvn.transform(obj_size); 5583 access_clone(obj, alloc_obj, size, is_array); 5584 5585 // Do not let reads from the cloned object float above the arraycopy. 5586 if (alloc != nullptr) { 5587 // Do not let stores that initialize this object be reordered with 5588 // a subsequent store that would make this object accessible by 5589 // other threads. 5590 // Record what AllocateNode this StoreStore protects so that 5591 // escape analysis can go from the MemBarStoreStoreNode to the 5592 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5593 // based on the escape status of the AllocateNode. 5594 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5595 } else { 5596 insert_mem_bar(Op_MemBarCPUOrder); 5597 } 5598 } 5599 5600 //------------------------inline_native_clone---------------------------- 5601 // protected native Object java.lang.Object.clone(); 5602 // 5603 // Here are the simple edge cases: 5604 // null receiver => normal trap 5605 // virtual and clone was overridden => slow path to out-of-line clone 5606 // not cloneable or finalizer => slow path to out-of-line Object.clone 5607 // 5608 // The general case has two steps, allocation and copying. 5609 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5610 // 5611 // Copying also has two cases, oop arrays and everything else. 5612 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5613 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5614 // 5615 // These steps fold up nicely if and when the cloned object's klass 5616 // can be sharply typed as an object array, a type array, or an instance. 5617 // 5618 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5619 PhiNode* result_val; 5620 5621 // Set the reexecute bit for the interpreter to reexecute 5622 // the bytecode that invokes Object.clone if deoptimization happens. 5623 { PreserveReexecuteState preexecs(this); 5624 jvms()->set_should_reexecute(true); 5625 5626 Node* obj = argument(0); 5627 obj = null_check_receiver(); 5628 if (stopped()) return true; 5629 5630 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5631 if (obj_type->is_inlinetypeptr()) { 5632 // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have 5633 // no identity. 5634 set_result(obj); 5635 return true; 5636 } 5637 5638 // If we are going to clone an instance, we need its exact type to 5639 // know the number and types of fields to convert the clone to 5640 // loads/stores. Maybe a speculative type can help us. 5641 if (!obj_type->klass_is_exact() && 5642 obj_type->speculative_type() != nullptr && 5643 obj_type->speculative_type()->is_instance_klass() && 5644 !obj_type->speculative_type()->is_inlinetype()) { 5645 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5646 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5647 !spec_ik->has_injected_fields()) { 5648 if (!obj_type->isa_instptr() || 5649 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5650 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5651 } 5652 } 5653 } 5654 5655 // Conservatively insert a memory barrier on all memory slices. 5656 // Do not let writes into the original float below the clone. 5657 insert_mem_bar(Op_MemBarCPUOrder); 5658 5659 // paths into result_reg: 5660 enum { 5661 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5662 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5663 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5664 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5665 PATH_LIMIT 5666 }; 5667 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5668 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5669 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5670 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5671 record_for_igvn(result_reg); 5672 5673 // TODO 8350865 For arrays, this might be folded and then not account for atomic arrays 5674 Node* obj_klass = load_object_klass(obj); 5675 // We only go to the fast case code if we pass a number of guards. 5676 // The paths which do not pass are accumulated in the slow_region. 5677 RegionNode* slow_region = new RegionNode(1); 5678 record_for_igvn(slow_region); 5679 5680 Node* array_obj = obj; 5681 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5682 if (array_ctl != nullptr) { 5683 // It's an array. 5684 PreserveJVMState pjvms(this); 5685 set_control(array_ctl); 5686 5687 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5688 const TypeAryPtr* ary_ptr = obj_type->isa_aryptr(); 5689 if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) && 5690 obj_type->can_be_inline_array() && 5691 (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) { 5692 // Flat inline type array may have object field that would require a 5693 // write barrier. Conservatively, go to slow path. 5694 generate_fair_guard(flat_array_test(obj_klass), slow_region); 5695 } 5696 5697 if (!stopped()) { 5698 Node* obj_length = load_array_length(array_obj); 5699 Node* array_size = nullptr; // Size of the array without object alignment padding. 5700 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5701 5702 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5703 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5704 // If it is an oop array, it requires very special treatment, 5705 // because gc barriers are required when accessing the array. 5706 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5707 if (is_obja != nullptr) { 5708 PreserveJVMState pjvms2(this); 5709 set_control(is_obja); 5710 // Generate a direct call to the right arraycopy function(s). 5711 // Clones are always tightly coupled. 5712 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5713 ac->set_clone_oop_array(); 5714 Node* n = _gvn.transform(ac); 5715 assert(n == ac, "cannot disappear"); 5716 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5717 5718 result_reg->init_req(_objArray_path, control()); 5719 result_val->init_req(_objArray_path, alloc_obj); 5720 result_i_o ->set_req(_objArray_path, i_o()); 5721 result_mem ->set_req(_objArray_path, reset_memory()); 5722 } 5723 } 5724 // Otherwise, there are no barriers to worry about. 5725 // (We can dispense with card marks if we know the allocation 5726 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5727 // causes the non-eden paths to take compensating steps to 5728 // simulate a fresh allocation, so that no further 5729 // card marks are required in compiled code to initialize 5730 // the object.) 5731 5732 if (!stopped()) { 5733 copy_to_clone(obj, alloc_obj, array_size, true); 5734 5735 // Present the results of the copy. 5736 result_reg->init_req(_array_path, control()); 5737 result_val->init_req(_array_path, alloc_obj); 5738 result_i_o ->set_req(_array_path, i_o()); 5739 result_mem ->set_req(_array_path, reset_memory()); 5740 } 5741 } 5742 } 5743 5744 if (!stopped()) { 5745 // It's an instance (we did array above). Make the slow-path tests. 5746 // If this is a virtual call, we generate a funny guard. We grab 5747 // the vtable entry corresponding to clone() from the target object. 5748 // If the target method which we are calling happens to be the 5749 // Object clone() method, we pass the guard. We do not need this 5750 // guard for non-virtual calls; the caller is known to be the native 5751 // Object clone(). 5752 if (is_virtual) { 5753 generate_virtual_guard(obj_klass, slow_region); 5754 } 5755 5756 // The object must be easily cloneable and must not have a finalizer. 5757 // Both of these conditions may be checked in a single test. 5758 // We could optimize the test further, but we don't care. 5759 generate_misc_flags_guard(obj_klass, 5760 // Test both conditions: 5761 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5762 // Must be cloneable but not finalizer: 5763 KlassFlags::_misc_is_cloneable_fast, 5764 slow_region); 5765 } 5766 5767 if (!stopped()) { 5768 // It's an instance, and it passed the slow-path tests. 5769 PreserveJVMState pjvms(this); 5770 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5771 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5772 // is reexecuted if deoptimization occurs and there could be problems when merging 5773 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5774 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5775 5776 copy_to_clone(obj, alloc_obj, obj_size, false); 5777 5778 // Present the results of the slow call. 5779 result_reg->init_req(_instance_path, control()); 5780 result_val->init_req(_instance_path, alloc_obj); 5781 result_i_o ->set_req(_instance_path, i_o()); 5782 result_mem ->set_req(_instance_path, reset_memory()); 5783 } 5784 5785 // Generate code for the slow case. We make a call to clone(). 5786 set_control(_gvn.transform(slow_region)); 5787 if (!stopped()) { 5788 PreserveJVMState pjvms(this); 5789 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5790 // We need to deoptimize on exception (see comment above) 5791 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5792 // this->control() comes from set_results_for_java_call 5793 result_reg->init_req(_slow_path, control()); 5794 result_val->init_req(_slow_path, slow_result); 5795 result_i_o ->set_req(_slow_path, i_o()); 5796 result_mem ->set_req(_slow_path, reset_memory()); 5797 } 5798 5799 // Return the combined state. 5800 set_control( _gvn.transform(result_reg)); 5801 set_i_o( _gvn.transform(result_i_o)); 5802 set_all_memory( _gvn.transform(result_mem)); 5803 } // original reexecute is set back here 5804 5805 set_result(_gvn.transform(result_val)); 5806 return true; 5807 } 5808 5809 // If we have a tightly coupled allocation, the arraycopy may take care 5810 // of the array initialization. If one of the guards we insert between 5811 // the allocation and the arraycopy causes a deoptimization, an 5812 // uninitialized array will escape the compiled method. To prevent that 5813 // we set the JVM state for uncommon traps between the allocation and 5814 // the arraycopy to the state before the allocation so, in case of 5815 // deoptimization, we'll reexecute the allocation and the 5816 // initialization. 5817 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5818 if (alloc != nullptr) { 5819 ciMethod* trap_method = alloc->jvms()->method(); 5820 int trap_bci = alloc->jvms()->bci(); 5821 5822 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5823 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5824 // Make sure there's no store between the allocation and the 5825 // arraycopy otherwise visible side effects could be rexecuted 5826 // in case of deoptimization and cause incorrect execution. 5827 bool no_interfering_store = true; 5828 Node* mem = alloc->in(TypeFunc::Memory); 5829 if (mem->is_MergeMem()) { 5830 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5831 Node* n = mms.memory(); 5832 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5833 assert(n->is_Store(), "what else?"); 5834 no_interfering_store = false; 5835 break; 5836 } 5837 } 5838 } else { 5839 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5840 Node* n = mms.memory(); 5841 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5842 assert(n->is_Store(), "what else?"); 5843 no_interfering_store = false; 5844 break; 5845 } 5846 } 5847 } 5848 5849 if (no_interfering_store) { 5850 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5851 5852 JVMState* saved_jvms = jvms(); 5853 saved_reexecute_sp = _reexecute_sp; 5854 5855 set_jvms(sfpt->jvms()); 5856 _reexecute_sp = jvms()->sp(); 5857 5858 return saved_jvms; 5859 } 5860 } 5861 } 5862 return nullptr; 5863 } 5864 5865 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5866 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5867 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5868 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5869 uint size = alloc->req(); 5870 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5871 old_jvms->set_map(sfpt); 5872 for (uint i = 0; i < size; i++) { 5873 sfpt->init_req(i, alloc->in(i)); 5874 } 5875 int adjustment = 1; 5876 const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr(); 5877 if (ary_klass_ptr->is_null_free()) { 5878 // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which 5879 // also requires the componentType and initVal on stack for re-execution. 5880 // Re-create and push the componentType. 5881 ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass(); 5882 ciInstance* instance = klass->component_mirror_instance(); 5883 const TypeInstPtr* t_instance = TypeInstPtr::make(instance); 5884 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance)); 5885 adjustment++; 5886 } 5887 // re-push array length for deoptimization 5888 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength)); 5889 if (ary_klass_ptr->is_null_free()) { 5890 // Re-create and push the initVal. 5891 Node* init_val = alloc->in(AllocateNode::InitValue); 5892 if (init_val == nullptr) { 5893 init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass()); 5894 } else if (UseCompressedOops) { 5895 init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr())); 5896 } 5897 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val); 5898 adjustment++; 5899 } 5900 old_jvms->set_sp(old_jvms->sp() + adjustment); 5901 old_jvms->set_monoff(old_jvms->monoff() + adjustment); 5902 old_jvms->set_scloff(old_jvms->scloff() + adjustment); 5903 old_jvms->set_endoff(old_jvms->endoff() + adjustment); 5904 old_jvms->set_should_reexecute(true); 5905 5906 sfpt->set_i_o(map()->i_o()); 5907 sfpt->set_memory(map()->memory()); 5908 sfpt->set_control(map()->control()); 5909 return sfpt; 5910 } 5911 5912 // In case of a deoptimization, we restart execution at the 5913 // allocation, allocating a new array. We would leave an uninitialized 5914 // array in the heap that GCs wouldn't expect. Move the allocation 5915 // after the traps so we don't allocate the array if we 5916 // deoptimize. This is possible because tightly_coupled_allocation() 5917 // guarantees there's no observer of the allocated array at this point 5918 // and the control flow is simple enough. 5919 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5920 int saved_reexecute_sp, uint new_idx) { 5921 if (saved_jvms_before_guards != nullptr && !stopped()) { 5922 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5923 5924 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5925 // restore JVM state to the state at the arraycopy 5926 saved_jvms_before_guards->map()->set_control(map()->control()); 5927 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5928 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5929 // If we've improved the types of some nodes (null check) while 5930 // emitting the guards, propagate them to the current state 5931 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5932 set_jvms(saved_jvms_before_guards); 5933 _reexecute_sp = saved_reexecute_sp; 5934 5935 // Remove the allocation from above the guards 5936 CallProjections* callprojs = alloc->extract_projections(true); 5937 InitializeNode* init = alloc->initialization(); 5938 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5939 C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5940 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5941 5942 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5943 // the allocation (i.e. is only valid if the allocation succeeds): 5944 // 1) replace CastIINode with AllocateArrayNode's length here 5945 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5946 // 5947 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5948 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5949 Node* init_control = init->proj_out(TypeFunc::Control); 5950 Node* alloc_length = alloc->Ideal_length(); 5951 #ifdef ASSERT 5952 Node* prev_cast = nullptr; 5953 #endif 5954 for (uint i = 0; i < init_control->outcnt(); i++) { 5955 Node* init_out = init_control->raw_out(i); 5956 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5957 #ifdef ASSERT 5958 if (prev_cast == nullptr) { 5959 prev_cast = init_out; 5960 } else { 5961 if (prev_cast->cmp(*init_out) == false) { 5962 prev_cast->dump(); 5963 init_out->dump(); 5964 assert(false, "not equal CastIINode"); 5965 } 5966 } 5967 #endif 5968 C->gvn_replace_by(init_out, alloc_length); 5969 } 5970 } 5971 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5972 5973 // move the allocation here (after the guards) 5974 _gvn.hash_delete(alloc); 5975 alloc->set_req(TypeFunc::Control, control()); 5976 alloc->set_req(TypeFunc::I_O, i_o()); 5977 Node *mem = reset_memory(); 5978 set_all_memory(mem); 5979 alloc->set_req(TypeFunc::Memory, mem); 5980 set_control(init->proj_out_or_null(TypeFunc::Control)); 5981 set_i_o(callprojs->fallthrough_ioproj); 5982 5983 // Update memory as done in GraphKit::set_output_for_allocation() 5984 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5985 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5986 if (ary_type->isa_aryptr() && length_type != nullptr) { 5987 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5988 } 5989 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5990 int elemidx = C->get_alias_index(telemref); 5991 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5992 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5993 5994 Node* allocx = _gvn.transform(alloc); 5995 assert(allocx == alloc, "where has the allocation gone?"); 5996 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5997 5998 _gvn.hash_delete(dest); 5999 dest->set_req(0, control()); 6000 Node* destx = _gvn.transform(dest); 6001 assert(destx == dest, "where has the allocation result gone?"); 6002 6003 array_ideal_length(alloc, ary_type, true); 6004 } 6005 } 6006 6007 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 6008 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 6009 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 6010 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 6011 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 6012 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 6013 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 6014 JVMState* saved_jvms_before_guards) { 6015 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 6016 // There is at least one unrelated uncommon trap which needs to be replaced. 6017 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 6018 6019 JVMState* saved_jvms = jvms(); 6020 const int saved_reexecute_sp = _reexecute_sp; 6021 set_jvms(sfpt->jvms()); 6022 _reexecute_sp = jvms()->sp(); 6023 6024 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 6025 6026 // Restore state 6027 set_jvms(saved_jvms); 6028 _reexecute_sp = saved_reexecute_sp; 6029 } 6030 } 6031 6032 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 6033 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 6034 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 6035 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 6036 while (if_proj->is_IfProj()) { 6037 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 6038 if (uncommon_trap != nullptr) { 6039 create_new_uncommon_trap(uncommon_trap); 6040 } 6041 assert(if_proj->in(0)->is_If(), "must be If"); 6042 if_proj = if_proj->in(0)->in(0); 6043 } 6044 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 6045 "must have reached control projection of init node"); 6046 } 6047 6048 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 6049 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 6050 assert(trap_request != 0, "no valid UCT trap request"); 6051 PreserveJVMState pjvms(this); 6052 set_control(uncommon_trap_call->in(0)); 6053 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 6054 Deoptimization::trap_request_action(trap_request)); 6055 assert(stopped(), "Should be stopped"); 6056 _gvn.hash_delete(uncommon_trap_call); 6057 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 6058 } 6059 6060 // Common checks for array sorting intrinsics arguments. 6061 // Returns `true` if checks passed. 6062 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 6063 // check address of the class 6064 if (elementType == nullptr || elementType->is_top()) { 6065 return false; // dead path 6066 } 6067 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 6068 if (elem_klass == nullptr) { 6069 return false; // dead path 6070 } 6071 // java_mirror_type() returns non-null for compile-time Class constants only 6072 ciType* elem_type = elem_klass->java_mirror_type(); 6073 if (elem_type == nullptr) { 6074 return false; 6075 } 6076 bt = elem_type->basic_type(); 6077 // Disable the intrinsic if the CPU does not support SIMD sort 6078 if (!Matcher::supports_simd_sort(bt)) { 6079 return false; 6080 } 6081 // check address of the array 6082 if (obj == nullptr || obj->is_top()) { 6083 return false; // dead path 6084 } 6085 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 6086 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 6087 return false; // failed input validation 6088 } 6089 return true; 6090 } 6091 6092 //------------------------------inline_array_partition----------------------- 6093 bool LibraryCallKit::inline_array_partition() { 6094 address stubAddr = StubRoutines::select_array_partition_function(); 6095 if (stubAddr == nullptr) { 6096 return false; // Intrinsic's stub is not implemented on this platform 6097 } 6098 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 6099 6100 // no receiver because it is a static method 6101 Node* elementType = argument(0); 6102 Node* obj = argument(1); 6103 Node* offset = argument(2); // long 6104 Node* fromIndex = argument(4); 6105 Node* toIndex = argument(5); 6106 Node* indexPivot1 = argument(6); 6107 Node* indexPivot2 = argument(7); 6108 // PartitionOperation: argument(8) is ignored 6109 6110 Node* pivotIndices = nullptr; 6111 BasicType bt = T_ILLEGAL; 6112 6113 if (!check_array_sort_arguments(elementType, obj, bt)) { 6114 return false; 6115 } 6116 null_check(obj); 6117 // If obj is dead, only null-path is taken. 6118 if (stopped()) { 6119 return true; 6120 } 6121 // Set the original stack and the reexecute bit for the interpreter to reexecute 6122 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 6123 { PreserveReexecuteState preexecs(this); 6124 jvms()->set_should_reexecute(true); 6125 6126 Node* obj_adr = make_unsafe_address(obj, offset); 6127 6128 // create the pivotIndices array of type int and size = 2 6129 Node* size = intcon(2); 6130 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 6131 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 6132 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 6133 guarantee(alloc != nullptr, "created above"); 6134 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 6135 6136 // pass the basic type enum to the stub 6137 Node* elemType = intcon(bt); 6138 6139 // Call the stub 6140 const char *stubName = "array_partition_stub"; 6141 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 6142 stubAddr, stubName, TypePtr::BOTTOM, 6143 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 6144 indexPivot1, indexPivot2); 6145 6146 } // original reexecute is set back here 6147 6148 if (!stopped()) { 6149 set_result(pivotIndices); 6150 } 6151 6152 return true; 6153 } 6154 6155 6156 //------------------------------inline_array_sort----------------------- 6157 bool LibraryCallKit::inline_array_sort() { 6158 address stubAddr = StubRoutines::select_arraysort_function(); 6159 if (stubAddr == nullptr) { 6160 return false; // Intrinsic's stub is not implemented on this platform 6161 } 6162 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 6163 6164 // no receiver because it is a static method 6165 Node* elementType = argument(0); 6166 Node* obj = argument(1); 6167 Node* offset = argument(2); // long 6168 Node* fromIndex = argument(4); 6169 Node* toIndex = argument(5); 6170 // SortOperation: argument(6) is ignored 6171 6172 BasicType bt = T_ILLEGAL; 6173 6174 if (!check_array_sort_arguments(elementType, obj, bt)) { 6175 return false; 6176 } 6177 null_check(obj); 6178 // If obj is dead, only null-path is taken. 6179 if (stopped()) { 6180 return true; 6181 } 6182 Node* obj_adr = make_unsafe_address(obj, offset); 6183 6184 // pass the basic type enum to the stub 6185 Node* elemType = intcon(bt); 6186 6187 // Call the stub. 6188 const char *stubName = "arraysort_stub"; 6189 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 6190 stubAddr, stubName, TypePtr::BOTTOM, 6191 obj_adr, elemType, fromIndex, toIndex); 6192 6193 return true; 6194 } 6195 6196 6197 //------------------------------inline_arraycopy----------------------- 6198 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 6199 // Object dest, int destPos, 6200 // int length); 6201 bool LibraryCallKit::inline_arraycopy() { 6202 // Get the arguments. 6203 Node* src = argument(0); // type: oop 6204 Node* src_offset = argument(1); // type: int 6205 Node* dest = argument(2); // type: oop 6206 Node* dest_offset = argument(3); // type: int 6207 Node* length = argument(4); // type: int 6208 6209 uint new_idx = C->unique(); 6210 6211 // Check for allocation before we add nodes that would confuse 6212 // tightly_coupled_allocation() 6213 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 6214 6215 int saved_reexecute_sp = -1; 6216 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 6217 // See arraycopy_restore_alloc_state() comment 6218 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 6219 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 6220 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 6221 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 6222 6223 // The following tests must be performed 6224 // (1) src and dest are arrays. 6225 // (2) src and dest arrays must have elements of the same BasicType 6226 // (3) src and dest must not be null. 6227 // (4) src_offset must not be negative. 6228 // (5) dest_offset must not be negative. 6229 // (6) length must not be negative. 6230 // (7) src_offset + length must not exceed length of src. 6231 // (8) dest_offset + length must not exceed length of dest. 6232 // (9) each element of an oop array must be assignable 6233 6234 // (3) src and dest must not be null. 6235 // always do this here because we need the JVM state for uncommon traps 6236 Node* null_ctl = top(); 6237 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 6238 assert(null_ctl->is_top(), "no null control here"); 6239 dest = null_check(dest, T_ARRAY); 6240 6241 if (!can_emit_guards) { 6242 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 6243 // guards but the arraycopy node could still take advantage of a 6244 // tightly allocated allocation. tightly_coupled_allocation() is 6245 // called again to make sure it takes the null check above into 6246 // account: the null check is mandatory and if it caused an 6247 // uncommon trap to be emitted then the allocation can't be 6248 // considered tightly coupled in this context. 6249 alloc = tightly_coupled_allocation(dest); 6250 } 6251 6252 bool validated = false; 6253 6254 const Type* src_type = _gvn.type(src); 6255 const Type* dest_type = _gvn.type(dest); 6256 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6257 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6258 6259 // Do we have the type of src? 6260 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6261 // Do we have the type of dest? 6262 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6263 // Is the type for src from speculation? 6264 bool src_spec = false; 6265 // Is the type for dest from speculation? 6266 bool dest_spec = false; 6267 6268 if ((!has_src || !has_dest) && can_emit_guards) { 6269 // We don't have sufficient type information, let's see if 6270 // speculative types can help. We need to have types for both src 6271 // and dest so that it pays off. 6272 6273 // Do we already have or could we have type information for src 6274 bool could_have_src = has_src; 6275 // Do we already have or could we have type information for dest 6276 bool could_have_dest = has_dest; 6277 6278 ciKlass* src_k = nullptr; 6279 if (!has_src) { 6280 src_k = src_type->speculative_type_not_null(); 6281 if (src_k != nullptr && src_k->is_array_klass()) { 6282 could_have_src = true; 6283 } 6284 } 6285 6286 ciKlass* dest_k = nullptr; 6287 if (!has_dest) { 6288 dest_k = dest_type->speculative_type_not_null(); 6289 if (dest_k != nullptr && dest_k->is_array_klass()) { 6290 could_have_dest = true; 6291 } 6292 } 6293 6294 if (could_have_src && could_have_dest) { 6295 // This is going to pay off so emit the required guards 6296 if (!has_src) { 6297 src = maybe_cast_profiled_obj(src, src_k, true); 6298 src_type = _gvn.type(src); 6299 top_src = src_type->isa_aryptr(); 6300 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6301 src_spec = true; 6302 } 6303 if (!has_dest) { 6304 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6305 dest_type = _gvn.type(dest); 6306 top_dest = dest_type->isa_aryptr(); 6307 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6308 dest_spec = true; 6309 } 6310 } 6311 } 6312 6313 if (has_src && has_dest && can_emit_guards) { 6314 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 6315 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 6316 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 6317 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 6318 6319 if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) { 6320 // If both arrays are object arrays then having the exact types 6321 // for both will remove the need for a subtype check at runtime 6322 // before the call and may make it possible to pick a faster copy 6323 // routine (without a subtype check on every element) 6324 // Do we have the exact type of src? 6325 bool could_have_src = src_spec; 6326 // Do we have the exact type of dest? 6327 bool could_have_dest = dest_spec; 6328 ciKlass* src_k = nullptr; 6329 ciKlass* dest_k = nullptr; 6330 if (!src_spec) { 6331 src_k = src_type->speculative_type_not_null(); 6332 if (src_k != nullptr && src_k->is_array_klass()) { 6333 could_have_src = true; 6334 } 6335 } 6336 if (!dest_spec) { 6337 dest_k = dest_type->speculative_type_not_null(); 6338 if (dest_k != nullptr && dest_k->is_array_klass()) { 6339 could_have_dest = true; 6340 } 6341 } 6342 if (could_have_src && could_have_dest) { 6343 // If we can have both exact types, emit the missing guards 6344 if (could_have_src && !src_spec) { 6345 src = maybe_cast_profiled_obj(src, src_k, true); 6346 src_type = _gvn.type(src); 6347 top_src = src_type->isa_aryptr(); 6348 } 6349 if (could_have_dest && !dest_spec) { 6350 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6351 dest_type = _gvn.type(dest); 6352 top_dest = dest_type->isa_aryptr(); 6353 } 6354 } 6355 } 6356 } 6357 6358 ciMethod* trap_method = method(); 6359 int trap_bci = bci(); 6360 if (saved_jvms_before_guards != nullptr) { 6361 trap_method = alloc->jvms()->method(); 6362 trap_bci = alloc->jvms()->bci(); 6363 } 6364 6365 bool negative_length_guard_generated = false; 6366 6367 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 6368 can_emit_guards && !src->is_top() && !dest->is_top()) { 6369 // validate arguments: enables transformation the ArrayCopyNode 6370 validated = true; 6371 6372 RegionNode* slow_region = new RegionNode(1); 6373 record_for_igvn(slow_region); 6374 6375 // (1) src and dest are arrays. 6376 generate_non_array_guard(load_object_klass(src), slow_region, &src); 6377 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 6378 6379 // (2) src and dest arrays must have elements of the same BasicType 6380 // done at macro expansion or at Ideal transformation time 6381 6382 // (4) src_offset must not be negative. 6383 generate_negative_guard(src_offset, slow_region); 6384 6385 // (5) dest_offset must not be negative. 6386 generate_negative_guard(dest_offset, slow_region); 6387 6388 // (7) src_offset + length must not exceed length of src. 6389 generate_limit_guard(src_offset, length, 6390 load_array_length(src), 6391 slow_region); 6392 6393 // (8) dest_offset + length must not exceed length of dest. 6394 generate_limit_guard(dest_offset, length, 6395 load_array_length(dest), 6396 slow_region); 6397 6398 // (6) length must not be negative. 6399 // This is also checked in generate_arraycopy() during macro expansion, but 6400 // we also have to check it here for the case where the ArrayCopyNode will 6401 // be eliminated by Escape Analysis. 6402 if (EliminateAllocations) { 6403 generate_negative_guard(length, slow_region); 6404 negative_length_guard_generated = true; 6405 } 6406 6407 // (9) each element of an oop array must be assignable 6408 Node* dest_klass = load_object_klass(dest); 6409 if (src != dest) { 6410 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 6411 slow_region->add_req(not_subtype_ctrl); 6412 } 6413 6414 // TODO 8350865 Fix below logic. Also handle atomicity. 6415 generate_fair_guard(flat_array_test(src), slow_region); 6416 generate_fair_guard(flat_array_test(dest), slow_region); 6417 6418 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 6419 const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 6420 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6421 src_type = _gvn.type(src); 6422 top_src = src_type->isa_aryptr(); 6423 6424 // Handle flat inline type arrays (null-free arrays are handled by the subtype check above) 6425 if (!stopped() && UseArrayFlattening) { 6426 // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here. 6427 assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat"); 6428 if (top_src != nullptr && top_src->is_flat()) { 6429 // Src is flat, check that dest is flat as well 6430 if (top_dest != nullptr && !top_dest->is_flat()) { 6431 generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region); 6432 // Since dest is flat and src <: dest, dest must have the same type as src. 6433 top_dest = top_src->cast_to_exactness(false); 6434 assert(top_dest->is_flat(), "dest must be flat"); 6435 dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest)); 6436 } 6437 } else if (top_src == nullptr || !top_src->is_not_flat()) { 6438 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 6439 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 6440 assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat"); 6441 generate_fair_guard(flat_array_test(src), slow_region); 6442 if (top_src != nullptr) { 6443 top_src = top_src->cast_to_not_flat(); 6444 src = _gvn.transform(new CheckCastPPNode(control(), src, top_src)); 6445 } 6446 } 6447 } 6448 6449 { 6450 PreserveJVMState pjvms(this); 6451 set_control(_gvn.transform(slow_region)); 6452 uncommon_trap(Deoptimization::Reason_intrinsic, 6453 Deoptimization::Action_make_not_entrant); 6454 assert(stopped(), "Should be stopped"); 6455 } 6456 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6457 } 6458 6459 if (stopped()) { 6460 return true; 6461 } 6462 6463 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6464 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6465 // so the compiler has a chance to eliminate them: during macro expansion, 6466 // we have to set their control (CastPP nodes are eliminated). 6467 load_object_klass(src), load_object_klass(dest), 6468 load_array_length(src), load_array_length(dest)); 6469 6470 ac->set_arraycopy(validated); 6471 6472 Node* n = _gvn.transform(ac); 6473 if (n == ac) { 6474 ac->connect_outputs(this); 6475 } else { 6476 assert(validated, "shouldn't transform if all arguments not validated"); 6477 set_all_memory(n); 6478 } 6479 clear_upper_avx(); 6480 6481 6482 return true; 6483 } 6484 6485 6486 // Helper function which determines if an arraycopy immediately follows 6487 // an allocation, with no intervening tests or other escapes for the object. 6488 AllocateArrayNode* 6489 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6490 if (stopped()) return nullptr; // no fast path 6491 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6492 6493 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6494 if (alloc == nullptr) return nullptr; 6495 6496 Node* rawmem = memory(Compile::AliasIdxRaw); 6497 // Is the allocation's memory state untouched? 6498 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6499 // Bail out if there have been raw-memory effects since the allocation. 6500 // (Example: There might have been a call or safepoint.) 6501 return nullptr; 6502 } 6503 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6504 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6505 return nullptr; 6506 } 6507 6508 // There must be no unexpected observers of this allocation. 6509 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6510 Node* obs = ptr->fast_out(i); 6511 if (obs != this->map()) { 6512 return nullptr; 6513 } 6514 } 6515 6516 // This arraycopy must unconditionally follow the allocation of the ptr. 6517 Node* alloc_ctl = ptr->in(0); 6518 Node* ctl = control(); 6519 while (ctl != alloc_ctl) { 6520 // There may be guards which feed into the slow_region. 6521 // Any other control flow means that we might not get a chance 6522 // to finish initializing the allocated object. 6523 // Various low-level checks bottom out in uncommon traps. These 6524 // are considered safe since we've already checked above that 6525 // there is no unexpected observer of this allocation. 6526 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6527 assert(ctl->in(0)->is_If(), "must be If"); 6528 ctl = ctl->in(0)->in(0); 6529 } else { 6530 return nullptr; 6531 } 6532 } 6533 6534 // If we get this far, we have an allocation which immediately 6535 // precedes the arraycopy, and we can take over zeroing the new object. 6536 // The arraycopy will finish the initialization, and provide 6537 // a new control state to which we will anchor the destination pointer. 6538 6539 return alloc; 6540 } 6541 6542 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6543 if (node->is_IfProj()) { 6544 Node* other_proj = node->as_IfProj()->other_if_proj(); 6545 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6546 Node* obs = other_proj->fast_out(j); 6547 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6548 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6549 return obs->as_CallStaticJava(); 6550 } 6551 } 6552 } 6553 return nullptr; 6554 } 6555 6556 //-------------inline_encodeISOArray----------------------------------- 6557 // encode char[] to byte[] in ISO_8859_1 or ASCII 6558 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6559 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6560 // no receiver since it is static method 6561 Node *src = argument(0); 6562 Node *src_offset = argument(1); 6563 Node *dst = argument(2); 6564 Node *dst_offset = argument(3); 6565 Node *length = argument(4); 6566 6567 src = must_be_not_null(src, true); 6568 dst = must_be_not_null(dst, true); 6569 6570 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6571 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6572 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6573 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6574 // failed array check 6575 return false; 6576 } 6577 6578 // Figure out the size and type of the elements we will be copying. 6579 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6580 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6581 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6582 return false; 6583 } 6584 6585 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6586 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6587 // 'src_start' points to src array + scaled offset 6588 // 'dst_start' points to dst array + scaled offset 6589 6590 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6591 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6592 enc = _gvn.transform(enc); 6593 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6594 set_memory(res_mem, mtype); 6595 set_result(enc); 6596 clear_upper_avx(); 6597 6598 return true; 6599 } 6600 6601 //-------------inline_multiplyToLen----------------------------------- 6602 bool LibraryCallKit::inline_multiplyToLen() { 6603 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6604 6605 address stubAddr = StubRoutines::multiplyToLen(); 6606 if (stubAddr == nullptr) { 6607 return false; // Intrinsic's stub is not implemented on this platform 6608 } 6609 const char* stubName = "multiplyToLen"; 6610 6611 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6612 6613 // no receiver because it is a static method 6614 Node* x = argument(0); 6615 Node* xlen = argument(1); 6616 Node* y = argument(2); 6617 Node* ylen = argument(3); 6618 Node* z = argument(4); 6619 6620 x = must_be_not_null(x, true); 6621 y = must_be_not_null(y, true); 6622 6623 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6624 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6625 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6626 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6627 // failed array check 6628 return false; 6629 } 6630 6631 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6632 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6633 if (x_elem != T_INT || y_elem != T_INT) { 6634 return false; 6635 } 6636 6637 Node* x_start = array_element_address(x, intcon(0), x_elem); 6638 Node* y_start = array_element_address(y, intcon(0), y_elem); 6639 // 'x_start' points to x array + scaled xlen 6640 // 'y_start' points to y array + scaled ylen 6641 6642 Node* z_start = array_element_address(z, intcon(0), T_INT); 6643 6644 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6645 OptoRuntime::multiplyToLen_Type(), 6646 stubAddr, stubName, TypePtr::BOTTOM, 6647 x_start, xlen, y_start, ylen, z_start); 6648 6649 C->set_has_split_ifs(true); // Has chance for split-if optimization 6650 set_result(z); 6651 return true; 6652 } 6653 6654 //-------------inline_squareToLen------------------------------------ 6655 bool LibraryCallKit::inline_squareToLen() { 6656 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6657 6658 address stubAddr = StubRoutines::squareToLen(); 6659 if (stubAddr == nullptr) { 6660 return false; // Intrinsic's stub is not implemented on this platform 6661 } 6662 const char* stubName = "squareToLen"; 6663 6664 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6665 6666 Node* x = argument(0); 6667 Node* len = argument(1); 6668 Node* z = argument(2); 6669 Node* zlen = argument(3); 6670 6671 x = must_be_not_null(x, true); 6672 z = must_be_not_null(z, true); 6673 6674 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6675 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6676 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6677 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6678 // failed array check 6679 return false; 6680 } 6681 6682 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6683 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6684 if (x_elem != T_INT || z_elem != T_INT) { 6685 return false; 6686 } 6687 6688 6689 Node* x_start = array_element_address(x, intcon(0), x_elem); 6690 Node* z_start = array_element_address(z, intcon(0), z_elem); 6691 6692 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6693 OptoRuntime::squareToLen_Type(), 6694 stubAddr, stubName, TypePtr::BOTTOM, 6695 x_start, len, z_start, zlen); 6696 6697 set_result(z); 6698 return true; 6699 } 6700 6701 //-------------inline_mulAdd------------------------------------------ 6702 bool LibraryCallKit::inline_mulAdd() { 6703 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6704 6705 address stubAddr = StubRoutines::mulAdd(); 6706 if (stubAddr == nullptr) { 6707 return false; // Intrinsic's stub is not implemented on this platform 6708 } 6709 const char* stubName = "mulAdd"; 6710 6711 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6712 6713 Node* out = argument(0); 6714 Node* in = argument(1); 6715 Node* offset = argument(2); 6716 Node* len = argument(3); 6717 Node* k = argument(4); 6718 6719 in = must_be_not_null(in, true); 6720 out = must_be_not_null(out, true); 6721 6722 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6723 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6724 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6725 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6726 // failed array check 6727 return false; 6728 } 6729 6730 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6731 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6732 if (out_elem != T_INT || in_elem != T_INT) { 6733 return false; 6734 } 6735 6736 Node* outlen = load_array_length(out); 6737 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6738 Node* out_start = array_element_address(out, intcon(0), out_elem); 6739 Node* in_start = array_element_address(in, intcon(0), in_elem); 6740 6741 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6742 OptoRuntime::mulAdd_Type(), 6743 stubAddr, stubName, TypePtr::BOTTOM, 6744 out_start,in_start, new_offset, len, k); 6745 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6746 set_result(result); 6747 return true; 6748 } 6749 6750 //-------------inline_montgomeryMultiply----------------------------------- 6751 bool LibraryCallKit::inline_montgomeryMultiply() { 6752 address stubAddr = StubRoutines::montgomeryMultiply(); 6753 if (stubAddr == nullptr) { 6754 return false; // Intrinsic's stub is not implemented on this platform 6755 } 6756 6757 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6758 const char* stubName = "montgomery_multiply"; 6759 6760 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6761 6762 Node* a = argument(0); 6763 Node* b = argument(1); 6764 Node* n = argument(2); 6765 Node* len = argument(3); 6766 Node* inv = argument(4); 6767 Node* m = argument(6); 6768 6769 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6770 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6771 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6772 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6773 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6774 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6775 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6776 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6777 // failed array check 6778 return false; 6779 } 6780 6781 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6782 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6783 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6784 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6785 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6786 return false; 6787 } 6788 6789 // Make the call 6790 { 6791 Node* a_start = array_element_address(a, intcon(0), a_elem); 6792 Node* b_start = array_element_address(b, intcon(0), b_elem); 6793 Node* n_start = array_element_address(n, intcon(0), n_elem); 6794 Node* m_start = array_element_address(m, intcon(0), m_elem); 6795 6796 Node* call = make_runtime_call(RC_LEAF, 6797 OptoRuntime::montgomeryMultiply_Type(), 6798 stubAddr, stubName, TypePtr::BOTTOM, 6799 a_start, b_start, n_start, len, inv, top(), 6800 m_start); 6801 set_result(m); 6802 } 6803 6804 return true; 6805 } 6806 6807 bool LibraryCallKit::inline_montgomerySquare() { 6808 address stubAddr = StubRoutines::montgomerySquare(); 6809 if (stubAddr == nullptr) { 6810 return false; // Intrinsic's stub is not implemented on this platform 6811 } 6812 6813 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6814 const char* stubName = "montgomery_square"; 6815 6816 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6817 6818 Node* a = argument(0); 6819 Node* n = argument(1); 6820 Node* len = argument(2); 6821 Node* inv = argument(3); 6822 Node* m = argument(5); 6823 6824 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6825 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6826 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6827 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6828 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6829 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6830 // failed array check 6831 return false; 6832 } 6833 6834 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6835 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6836 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6837 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6838 return false; 6839 } 6840 6841 // Make the call 6842 { 6843 Node* a_start = array_element_address(a, intcon(0), a_elem); 6844 Node* n_start = array_element_address(n, intcon(0), n_elem); 6845 Node* m_start = array_element_address(m, intcon(0), m_elem); 6846 6847 Node* call = make_runtime_call(RC_LEAF, 6848 OptoRuntime::montgomerySquare_Type(), 6849 stubAddr, stubName, TypePtr::BOTTOM, 6850 a_start, n_start, len, inv, top(), 6851 m_start); 6852 set_result(m); 6853 } 6854 6855 return true; 6856 } 6857 6858 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6859 address stubAddr = nullptr; 6860 const char* stubName = nullptr; 6861 6862 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6863 if (stubAddr == nullptr) { 6864 return false; // Intrinsic's stub is not implemented on this platform 6865 } 6866 6867 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6868 6869 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6870 6871 Node* newArr = argument(0); 6872 Node* oldArr = argument(1); 6873 Node* newIdx = argument(2); 6874 Node* shiftCount = argument(3); 6875 Node* numIter = argument(4); 6876 6877 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6878 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6879 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6880 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6881 return false; 6882 } 6883 6884 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6885 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6886 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6887 return false; 6888 } 6889 6890 // Make the call 6891 { 6892 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6893 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6894 6895 Node* call = make_runtime_call(RC_LEAF, 6896 OptoRuntime::bigIntegerShift_Type(), 6897 stubAddr, 6898 stubName, 6899 TypePtr::BOTTOM, 6900 newArr_start, 6901 oldArr_start, 6902 newIdx, 6903 shiftCount, 6904 numIter); 6905 } 6906 6907 return true; 6908 } 6909 6910 //-------------inline_vectorizedMismatch------------------------------ 6911 bool LibraryCallKit::inline_vectorizedMismatch() { 6912 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6913 6914 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6915 Node* obja = argument(0); // Object 6916 Node* aoffset = argument(1); // long 6917 Node* objb = argument(3); // Object 6918 Node* boffset = argument(4); // long 6919 Node* length = argument(6); // int 6920 Node* scale = argument(7); // int 6921 6922 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6923 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6924 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6925 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6926 scale == top()) { 6927 return false; // failed input validation 6928 } 6929 6930 Node* obja_adr = make_unsafe_address(obja, aoffset); 6931 Node* objb_adr = make_unsafe_address(objb, boffset); 6932 6933 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6934 // 6935 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6936 // if (length <= inline_limit) { 6937 // inline_path: 6938 // vmask = VectorMaskGen length 6939 // vload1 = LoadVectorMasked obja, vmask 6940 // vload2 = LoadVectorMasked objb, vmask 6941 // result1 = VectorCmpMasked vload1, vload2, vmask 6942 // } else { 6943 // call_stub_path: 6944 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6945 // } 6946 // exit_block: 6947 // return Phi(result1, result2); 6948 // 6949 enum { inline_path = 1, // input is small enough to process it all at once 6950 stub_path = 2, // input is too large; call into the VM 6951 PATH_LIMIT = 3 6952 }; 6953 6954 Node* exit_block = new RegionNode(PATH_LIMIT); 6955 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6956 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6957 6958 Node* call_stub_path = control(); 6959 6960 BasicType elem_bt = T_ILLEGAL; 6961 6962 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6963 if (scale_t->is_con()) { 6964 switch (scale_t->get_con()) { 6965 case 0: elem_bt = T_BYTE; break; 6966 case 1: elem_bt = T_SHORT; break; 6967 case 2: elem_bt = T_INT; break; 6968 case 3: elem_bt = T_LONG; break; 6969 6970 default: elem_bt = T_ILLEGAL; break; // not supported 6971 } 6972 } 6973 6974 int inline_limit = 0; 6975 bool do_partial_inline = false; 6976 6977 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6978 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6979 do_partial_inline = inline_limit >= 16; 6980 } 6981 6982 if (do_partial_inline) { 6983 assert(elem_bt != T_ILLEGAL, "sanity"); 6984 6985 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6986 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6987 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6988 6989 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6990 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6991 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6992 6993 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6994 6995 if (!stopped()) { 6996 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6997 6998 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6999 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 7000 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 7001 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 7002 7003 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 7004 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 7005 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 7006 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 7007 7008 exit_block->init_req(inline_path, control()); 7009 memory_phi->init_req(inline_path, map()->memory()); 7010 result_phi->init_req(inline_path, result); 7011 7012 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 7013 clear_upper_avx(); 7014 } 7015 } 7016 } 7017 7018 if (call_stub_path != nullptr) { 7019 set_control(call_stub_path); 7020 7021 Node* call = make_runtime_call(RC_LEAF, 7022 OptoRuntime::vectorizedMismatch_Type(), 7023 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 7024 obja_adr, objb_adr, length, scale); 7025 7026 exit_block->init_req(stub_path, control()); 7027 memory_phi->init_req(stub_path, map()->memory()); 7028 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 7029 } 7030 7031 exit_block = _gvn.transform(exit_block); 7032 memory_phi = _gvn.transform(memory_phi); 7033 result_phi = _gvn.transform(result_phi); 7034 7035 set_control(exit_block); 7036 set_all_memory(memory_phi); 7037 set_result(result_phi); 7038 7039 return true; 7040 } 7041 7042 //------------------------------inline_vectorizedHashcode---------------------------- 7043 bool LibraryCallKit::inline_vectorizedHashCode() { 7044 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 7045 7046 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 7047 Node* array = argument(0); 7048 Node* offset = argument(1); 7049 Node* length = argument(2); 7050 Node* initialValue = argument(3); 7051 Node* basic_type = argument(4); 7052 7053 if (basic_type == top()) { 7054 return false; // failed input validation 7055 } 7056 7057 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 7058 if (!basic_type_t->is_con()) { 7059 return false; // Only intrinsify if mode argument is constant 7060 } 7061 7062 array = must_be_not_null(array, true); 7063 7064 BasicType bt = (BasicType)basic_type_t->get_con(); 7065 7066 // Resolve address of first element 7067 Node* array_start = array_element_address(array, offset, bt); 7068 7069 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 7070 array_start, length, initialValue, basic_type))); 7071 clear_upper_avx(); 7072 7073 return true; 7074 } 7075 7076 /** 7077 * Calculate CRC32 for byte. 7078 * int java.util.zip.CRC32.update(int crc, int b) 7079 */ 7080 bool LibraryCallKit::inline_updateCRC32() { 7081 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7082 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 7083 // no receiver since it is static method 7084 Node* crc = argument(0); // type: int 7085 Node* b = argument(1); // type: int 7086 7087 /* 7088 * int c = ~ crc; 7089 * b = timesXtoThe32[(b ^ c) & 0xFF]; 7090 * b = b ^ (c >>> 8); 7091 * crc = ~b; 7092 */ 7093 7094 Node* M1 = intcon(-1); 7095 crc = _gvn.transform(new XorINode(crc, M1)); 7096 Node* result = _gvn.transform(new XorINode(crc, b)); 7097 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 7098 7099 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 7100 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 7101 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 7102 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 7103 7104 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 7105 result = _gvn.transform(new XorINode(crc, result)); 7106 result = _gvn.transform(new XorINode(result, M1)); 7107 set_result(result); 7108 return true; 7109 } 7110 7111 /** 7112 * Calculate CRC32 for byte[] array. 7113 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 7114 */ 7115 bool LibraryCallKit::inline_updateBytesCRC32() { 7116 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7117 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7118 // no receiver since it is static method 7119 Node* crc = argument(0); // type: int 7120 Node* src = argument(1); // type: oop 7121 Node* offset = argument(2); // type: int 7122 Node* length = argument(3); // type: int 7123 7124 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7125 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7126 // failed array check 7127 return false; 7128 } 7129 7130 // Figure out the size and type of the elements we will be copying. 7131 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7132 if (src_elem != T_BYTE) { 7133 return false; 7134 } 7135 7136 // 'src_start' points to src array + scaled offset 7137 src = must_be_not_null(src, true); 7138 Node* src_start = array_element_address(src, offset, src_elem); 7139 7140 // We assume that range check is done by caller. 7141 // TODO: generate range check (offset+length < src.length) in debug VM. 7142 7143 // Call the stub. 7144 address stubAddr = StubRoutines::updateBytesCRC32(); 7145 const char *stubName = "updateBytesCRC32"; 7146 7147 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7148 stubAddr, stubName, TypePtr::BOTTOM, 7149 crc, src_start, length); 7150 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7151 set_result(result); 7152 return true; 7153 } 7154 7155 /** 7156 * Calculate CRC32 for ByteBuffer. 7157 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 7158 */ 7159 bool LibraryCallKit::inline_updateByteBufferCRC32() { 7160 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7161 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7162 // no receiver since it is static method 7163 Node* crc = argument(0); // type: int 7164 Node* src = argument(1); // type: long 7165 Node* offset = argument(3); // type: int 7166 Node* length = argument(4); // type: int 7167 7168 src = ConvL2X(src); // adjust Java long to machine word 7169 Node* base = _gvn.transform(new CastX2PNode(src)); 7170 offset = ConvI2X(offset); 7171 7172 // 'src_start' points to src array + scaled offset 7173 Node* src_start = basic_plus_adr(top(), base, offset); 7174 7175 // Call the stub. 7176 address stubAddr = StubRoutines::updateBytesCRC32(); 7177 const char *stubName = "updateBytesCRC32"; 7178 7179 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7180 stubAddr, stubName, TypePtr::BOTTOM, 7181 crc, src_start, length); 7182 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7183 set_result(result); 7184 return true; 7185 } 7186 7187 //------------------------------get_table_from_crc32c_class----------------------- 7188 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 7189 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 7190 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 7191 7192 return table; 7193 } 7194 7195 //------------------------------inline_updateBytesCRC32C----------------------- 7196 // 7197 // Calculate CRC32C for byte[] array. 7198 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 7199 // 7200 bool LibraryCallKit::inline_updateBytesCRC32C() { 7201 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7202 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7203 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7204 // no receiver since it is a static method 7205 Node* crc = argument(0); // type: int 7206 Node* src = argument(1); // type: oop 7207 Node* offset = argument(2); // type: int 7208 Node* end = argument(3); // type: int 7209 7210 Node* length = _gvn.transform(new SubINode(end, offset)); 7211 7212 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7213 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7214 // failed array check 7215 return false; 7216 } 7217 7218 // Figure out the size and type of the elements we will be copying. 7219 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7220 if (src_elem != T_BYTE) { 7221 return false; 7222 } 7223 7224 // 'src_start' points to src array + scaled offset 7225 src = must_be_not_null(src, true); 7226 Node* src_start = array_element_address(src, offset, src_elem); 7227 7228 // static final int[] byteTable in class CRC32C 7229 Node* table = get_table_from_crc32c_class(callee()->holder()); 7230 table = must_be_not_null(table, true); 7231 Node* table_start = array_element_address(table, intcon(0), T_INT); 7232 7233 // We assume that range check is done by caller. 7234 // TODO: generate range check (offset+length < src.length) in debug VM. 7235 7236 // Call the stub. 7237 address stubAddr = StubRoutines::updateBytesCRC32C(); 7238 const char *stubName = "updateBytesCRC32C"; 7239 7240 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7241 stubAddr, stubName, TypePtr::BOTTOM, 7242 crc, src_start, length, table_start); 7243 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7244 set_result(result); 7245 return true; 7246 } 7247 7248 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 7249 // 7250 // Calculate CRC32C for DirectByteBuffer. 7251 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 7252 // 7253 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 7254 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7255 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 7256 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7257 // no receiver since it is a static method 7258 Node* crc = argument(0); // type: int 7259 Node* src = argument(1); // type: long 7260 Node* offset = argument(3); // type: int 7261 Node* end = argument(4); // type: int 7262 7263 Node* length = _gvn.transform(new SubINode(end, offset)); 7264 7265 src = ConvL2X(src); // adjust Java long to machine word 7266 Node* base = _gvn.transform(new CastX2PNode(src)); 7267 offset = ConvI2X(offset); 7268 7269 // 'src_start' points to src array + scaled offset 7270 Node* src_start = basic_plus_adr(top(), base, offset); 7271 7272 // static final int[] byteTable in class CRC32C 7273 Node* table = get_table_from_crc32c_class(callee()->holder()); 7274 table = must_be_not_null(table, true); 7275 Node* table_start = array_element_address(table, intcon(0), T_INT); 7276 7277 // Call the stub. 7278 address stubAddr = StubRoutines::updateBytesCRC32C(); 7279 const char *stubName = "updateBytesCRC32C"; 7280 7281 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7282 stubAddr, stubName, TypePtr::BOTTOM, 7283 crc, src_start, length, table_start); 7284 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7285 set_result(result); 7286 return true; 7287 } 7288 7289 //------------------------------inline_updateBytesAdler32---------------------- 7290 // 7291 // Calculate Adler32 checksum for byte[] array. 7292 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 7293 // 7294 bool LibraryCallKit::inline_updateBytesAdler32() { 7295 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7296 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7297 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7298 // no receiver since it is static method 7299 Node* crc = argument(0); // type: int 7300 Node* src = argument(1); // type: oop 7301 Node* offset = argument(2); // type: int 7302 Node* length = argument(3); // type: int 7303 7304 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7305 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7306 // failed array check 7307 return false; 7308 } 7309 7310 // Figure out the size and type of the elements we will be copying. 7311 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7312 if (src_elem != T_BYTE) { 7313 return false; 7314 } 7315 7316 // 'src_start' points to src array + scaled offset 7317 Node* src_start = array_element_address(src, offset, src_elem); 7318 7319 // We assume that range check is done by caller. 7320 // TODO: generate range check (offset+length < src.length) in debug VM. 7321 7322 // Call the stub. 7323 address stubAddr = StubRoutines::updateBytesAdler32(); 7324 const char *stubName = "updateBytesAdler32"; 7325 7326 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7327 stubAddr, stubName, TypePtr::BOTTOM, 7328 crc, src_start, length); 7329 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7330 set_result(result); 7331 return true; 7332 } 7333 7334 //------------------------------inline_updateByteBufferAdler32--------------- 7335 // 7336 // Calculate Adler32 checksum for DirectByteBuffer. 7337 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 7338 // 7339 bool LibraryCallKit::inline_updateByteBufferAdler32() { 7340 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7341 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7342 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7343 // no receiver since it is static method 7344 Node* crc = argument(0); // type: int 7345 Node* src = argument(1); // type: long 7346 Node* offset = argument(3); // type: int 7347 Node* length = argument(4); // type: int 7348 7349 src = ConvL2X(src); // adjust Java long to machine word 7350 Node* base = _gvn.transform(new CastX2PNode(src)); 7351 offset = ConvI2X(offset); 7352 7353 // 'src_start' points to src array + scaled offset 7354 Node* src_start = basic_plus_adr(top(), base, offset); 7355 7356 // Call the stub. 7357 address stubAddr = StubRoutines::updateBytesAdler32(); 7358 const char *stubName = "updateBytesAdler32"; 7359 7360 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7361 stubAddr, stubName, TypePtr::BOTTOM, 7362 crc, src_start, length); 7363 7364 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7365 set_result(result); 7366 return true; 7367 } 7368 7369 //----------------------------inline_reference_get---------------------------- 7370 // public T java.lang.ref.Reference.get(); 7371 bool LibraryCallKit::inline_reference_get() { 7372 const int referent_offset = java_lang_ref_Reference::referent_offset(); 7373 7374 // Get the argument: 7375 Node* reference_obj = null_check_receiver(); 7376 if (stopped()) return true; 7377 7378 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 7379 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7380 decorators, /*is_static*/ false, nullptr); 7381 if (result == nullptr) return false; 7382 7383 // Add memory barrier to prevent commoning reads from this field 7384 // across safepoint since GC can change its value. 7385 insert_mem_bar(Op_MemBarCPUOrder); 7386 7387 set_result(result); 7388 return true; 7389 } 7390 7391 //----------------------------inline_reference_refersTo0---------------------------- 7392 // bool java.lang.ref.Reference.refersTo0(); 7393 // bool java.lang.ref.PhantomReference.refersTo0(); 7394 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 7395 // Get arguments: 7396 Node* reference_obj = null_check_receiver(); 7397 Node* other_obj = argument(1); 7398 if (stopped()) return true; 7399 7400 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7401 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7402 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7403 decorators, /*is_static*/ false, nullptr); 7404 if (referent == nullptr) return false; 7405 7406 // Add memory barrier to prevent commoning reads from this field 7407 // across safepoint since GC can change its value. 7408 insert_mem_bar(Op_MemBarCPUOrder); 7409 7410 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 7411 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7412 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 7413 7414 RegionNode* region = new RegionNode(3); 7415 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 7416 7417 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 7418 region->init_req(1, if_true); 7419 phi->init_req(1, intcon(1)); 7420 7421 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 7422 region->init_req(2, if_false); 7423 phi->init_req(2, intcon(0)); 7424 7425 set_control(_gvn.transform(region)); 7426 record_for_igvn(region); 7427 set_result(_gvn.transform(phi)); 7428 return true; 7429 } 7430 7431 //----------------------------inline_reference_clear0---------------------------- 7432 // void java.lang.ref.Reference.clear0(); 7433 // void java.lang.ref.PhantomReference.clear0(); 7434 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 7435 // This matches the implementation in JVM_ReferenceClear, see the comments there. 7436 7437 // Get arguments 7438 Node* reference_obj = null_check_receiver(); 7439 if (stopped()) return true; 7440 7441 // Common access parameters 7442 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7443 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7444 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 7445 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 7446 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 7447 7448 Node* referent = access_load_at(reference_obj, 7449 referent_field_addr, 7450 referent_field_addr_type, 7451 val_type, 7452 T_OBJECT, 7453 decorators); 7454 7455 IdealKit ideal(this); 7456 #define __ ideal. 7457 __ if_then(referent, BoolTest::ne, null()); 7458 sync_kit(ideal); 7459 access_store_at(reference_obj, 7460 referent_field_addr, 7461 referent_field_addr_type, 7462 null(), 7463 val_type, 7464 T_OBJECT, 7465 decorators); 7466 __ sync_kit(this); 7467 __ end_if(); 7468 final_sync(ideal); 7469 #undef __ 7470 7471 return true; 7472 } 7473 7474 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7475 DecoratorSet decorators, bool is_static, 7476 ciInstanceKlass* fromKls) { 7477 if (fromKls == nullptr) { 7478 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7479 assert(tinst != nullptr, "obj is null"); 7480 assert(tinst->is_loaded(), "obj is not loaded"); 7481 fromKls = tinst->instance_klass(); 7482 } else { 7483 assert(is_static, "only for static field access"); 7484 } 7485 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7486 ciSymbol::make(fieldTypeString), 7487 is_static); 7488 7489 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7490 if (field == nullptr) return (Node *) nullptr; 7491 7492 if (is_static) { 7493 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7494 fromObj = makecon(tip); 7495 } 7496 7497 // Next code copied from Parse::do_get_xxx(): 7498 7499 // Compute address and memory type. 7500 int offset = field->offset_in_bytes(); 7501 bool is_vol = field->is_volatile(); 7502 ciType* field_klass = field->type(); 7503 assert(field_klass->is_loaded(), "should be loaded"); 7504 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7505 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7506 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7507 "slice of address and input slice don't match"); 7508 BasicType bt = field->layout_type(); 7509 7510 // Build the resultant type of the load 7511 const Type *type; 7512 if (bt == T_OBJECT) { 7513 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7514 } else { 7515 type = Type::get_const_basic_type(bt); 7516 } 7517 7518 if (is_vol) { 7519 decorators |= MO_SEQ_CST; 7520 } 7521 7522 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7523 } 7524 7525 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7526 bool is_exact /* true */, bool is_static /* false */, 7527 ciInstanceKlass * fromKls /* nullptr */) { 7528 if (fromKls == nullptr) { 7529 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7530 assert(tinst != nullptr, "obj is null"); 7531 assert(tinst->is_loaded(), "obj is not loaded"); 7532 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7533 fromKls = tinst->instance_klass(); 7534 } 7535 else { 7536 assert(is_static, "only for static field access"); 7537 } 7538 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7539 ciSymbol::make(fieldTypeString), 7540 is_static); 7541 7542 assert(field != nullptr, "undefined field"); 7543 assert(!field->is_volatile(), "not defined for volatile fields"); 7544 7545 if (is_static) { 7546 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7547 fromObj = makecon(tip); 7548 } 7549 7550 // Next code copied from Parse::do_get_xxx(): 7551 7552 // Compute address and memory type. 7553 int offset = field->offset_in_bytes(); 7554 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7555 7556 return adr; 7557 } 7558 7559 //------------------------------inline_aescrypt_Block----------------------- 7560 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7561 address stubAddr = nullptr; 7562 const char *stubName; 7563 assert(UseAES, "need AES instruction support"); 7564 7565 switch(id) { 7566 case vmIntrinsics::_aescrypt_encryptBlock: 7567 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7568 stubName = "aescrypt_encryptBlock"; 7569 break; 7570 case vmIntrinsics::_aescrypt_decryptBlock: 7571 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7572 stubName = "aescrypt_decryptBlock"; 7573 break; 7574 default: 7575 break; 7576 } 7577 if (stubAddr == nullptr) return false; 7578 7579 Node* aescrypt_object = argument(0); 7580 Node* src = argument(1); 7581 Node* src_offset = argument(2); 7582 Node* dest = argument(3); 7583 Node* dest_offset = argument(4); 7584 7585 src = must_be_not_null(src, true); 7586 dest = must_be_not_null(dest, true); 7587 7588 // (1) src and dest are arrays. 7589 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7590 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7591 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7592 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7593 7594 // for the quick and dirty code we will skip all the checks. 7595 // we are just trying to get the call to be generated. 7596 Node* src_start = src; 7597 Node* dest_start = dest; 7598 if (src_offset != nullptr || dest_offset != nullptr) { 7599 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7600 src_start = array_element_address(src, src_offset, T_BYTE); 7601 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7602 } 7603 7604 // now need to get the start of its expanded key array 7605 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7606 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7607 if (k_start == nullptr) return false; 7608 7609 // Call the stub. 7610 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7611 stubAddr, stubName, TypePtr::BOTTOM, 7612 src_start, dest_start, k_start); 7613 7614 return true; 7615 } 7616 7617 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7618 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7619 address stubAddr = nullptr; 7620 const char *stubName = nullptr; 7621 7622 assert(UseAES, "need AES instruction support"); 7623 7624 switch(id) { 7625 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7626 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7627 stubName = "cipherBlockChaining_encryptAESCrypt"; 7628 break; 7629 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7630 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7631 stubName = "cipherBlockChaining_decryptAESCrypt"; 7632 break; 7633 default: 7634 break; 7635 } 7636 if (stubAddr == nullptr) return false; 7637 7638 Node* cipherBlockChaining_object = argument(0); 7639 Node* src = argument(1); 7640 Node* src_offset = argument(2); 7641 Node* len = argument(3); 7642 Node* dest = argument(4); 7643 Node* dest_offset = argument(5); 7644 7645 src = must_be_not_null(src, false); 7646 dest = must_be_not_null(dest, false); 7647 7648 // (1) src and dest are arrays. 7649 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7650 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7651 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7652 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7653 7654 // checks are the responsibility of the caller 7655 Node* src_start = src; 7656 Node* dest_start = dest; 7657 if (src_offset != nullptr || dest_offset != nullptr) { 7658 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7659 src_start = array_element_address(src, src_offset, T_BYTE); 7660 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7661 } 7662 7663 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7664 // (because of the predicated logic executed earlier). 7665 // so we cast it here safely. 7666 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7667 7668 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7669 if (embeddedCipherObj == nullptr) return false; 7670 7671 // cast it to what we know it will be at runtime 7672 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7673 assert(tinst != nullptr, "CBC obj is null"); 7674 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7675 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7676 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7677 7678 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7679 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7680 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7681 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7682 aescrypt_object = _gvn.transform(aescrypt_object); 7683 7684 // we need to get the start of the aescrypt_object's expanded key array 7685 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7686 if (k_start == nullptr) return false; 7687 7688 // similarly, get the start address of the r vector 7689 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7690 if (objRvec == nullptr) return false; 7691 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7692 7693 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7694 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7695 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7696 stubAddr, stubName, TypePtr::BOTTOM, 7697 src_start, dest_start, k_start, r_start, len); 7698 7699 // return cipher length (int) 7700 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7701 set_result(retvalue); 7702 return true; 7703 } 7704 7705 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7706 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7707 address stubAddr = nullptr; 7708 const char *stubName = nullptr; 7709 7710 assert(UseAES, "need AES instruction support"); 7711 7712 switch (id) { 7713 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7714 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7715 stubName = "electronicCodeBook_encryptAESCrypt"; 7716 break; 7717 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7718 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7719 stubName = "electronicCodeBook_decryptAESCrypt"; 7720 break; 7721 default: 7722 break; 7723 } 7724 7725 if (stubAddr == nullptr) return false; 7726 7727 Node* electronicCodeBook_object = argument(0); 7728 Node* src = argument(1); 7729 Node* src_offset = argument(2); 7730 Node* len = argument(3); 7731 Node* dest = argument(4); 7732 Node* dest_offset = argument(5); 7733 7734 // (1) src and dest are arrays. 7735 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7736 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7737 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7738 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7739 7740 // checks are the responsibility of the caller 7741 Node* src_start = src; 7742 Node* dest_start = dest; 7743 if (src_offset != nullptr || dest_offset != nullptr) { 7744 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7745 src_start = array_element_address(src, src_offset, T_BYTE); 7746 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7747 } 7748 7749 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7750 // (because of the predicated logic executed earlier). 7751 // so we cast it here safely. 7752 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7753 7754 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7755 if (embeddedCipherObj == nullptr) return false; 7756 7757 // cast it to what we know it will be at runtime 7758 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7759 assert(tinst != nullptr, "ECB obj is null"); 7760 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7761 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7762 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7763 7764 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7765 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7766 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7767 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7768 aescrypt_object = _gvn.transform(aescrypt_object); 7769 7770 // we need to get the start of the aescrypt_object's expanded key array 7771 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7772 if (k_start == nullptr) return false; 7773 7774 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7775 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7776 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7777 stubAddr, stubName, TypePtr::BOTTOM, 7778 src_start, dest_start, k_start, len); 7779 7780 // return cipher length (int) 7781 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7782 set_result(retvalue); 7783 return true; 7784 } 7785 7786 //------------------------------inline_counterMode_AESCrypt----------------------- 7787 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7788 assert(UseAES, "need AES instruction support"); 7789 if (!UseAESCTRIntrinsics) return false; 7790 7791 address stubAddr = nullptr; 7792 const char *stubName = nullptr; 7793 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7794 stubAddr = StubRoutines::counterMode_AESCrypt(); 7795 stubName = "counterMode_AESCrypt"; 7796 } 7797 if (stubAddr == nullptr) return false; 7798 7799 Node* counterMode_object = argument(0); 7800 Node* src = argument(1); 7801 Node* src_offset = argument(2); 7802 Node* len = argument(3); 7803 Node* dest = argument(4); 7804 Node* dest_offset = argument(5); 7805 7806 // (1) src and dest are arrays. 7807 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7808 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7809 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7810 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7811 7812 // checks are the responsibility of the caller 7813 Node* src_start = src; 7814 Node* dest_start = dest; 7815 if (src_offset != nullptr || dest_offset != nullptr) { 7816 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7817 src_start = array_element_address(src, src_offset, T_BYTE); 7818 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7819 } 7820 7821 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7822 // (because of the predicated logic executed earlier). 7823 // so we cast it here safely. 7824 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7825 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7826 if (embeddedCipherObj == nullptr) return false; 7827 // cast it to what we know it will be at runtime 7828 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7829 assert(tinst != nullptr, "CTR obj is null"); 7830 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7831 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7832 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7833 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7834 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7835 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7836 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7837 aescrypt_object = _gvn.transform(aescrypt_object); 7838 // we need to get the start of the aescrypt_object's expanded key array 7839 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7840 if (k_start == nullptr) return false; 7841 // similarly, get the start address of the r vector 7842 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7843 if (obj_counter == nullptr) return false; 7844 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7845 7846 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7847 if (saved_encCounter == nullptr) return false; 7848 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7849 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7850 7851 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7852 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7853 OptoRuntime::counterMode_aescrypt_Type(), 7854 stubAddr, stubName, TypePtr::BOTTOM, 7855 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7856 7857 // return cipher length (int) 7858 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7859 set_result(retvalue); 7860 return true; 7861 } 7862 7863 //------------------------------get_key_start_from_aescrypt_object----------------------- 7864 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7865 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7866 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7867 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7868 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7869 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7870 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7871 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7872 if (objSessionK == nullptr) { 7873 return (Node *) nullptr; 7874 } 7875 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7876 #else 7877 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7878 #endif // PPC64 7879 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7880 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7881 7882 // now have the array, need to get the start address of the K array 7883 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7884 return k_start; 7885 } 7886 7887 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7888 // Return node representing slow path of predicate check. 7889 // the pseudo code we want to emulate with this predicate is: 7890 // for encryption: 7891 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7892 // for decryption: 7893 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7894 // note cipher==plain is more conservative than the original java code but that's OK 7895 // 7896 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7897 // The receiver was checked for null already. 7898 Node* objCBC = argument(0); 7899 7900 Node* src = argument(1); 7901 Node* dest = argument(4); 7902 7903 // Load embeddedCipher field of CipherBlockChaining object. 7904 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7905 7906 // get AESCrypt klass for instanceOf check 7907 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7908 // will have same classloader as CipherBlockChaining object 7909 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7910 assert(tinst != nullptr, "CBCobj is null"); 7911 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7912 7913 // we want to do an instanceof comparison against the AESCrypt class 7914 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7915 if (!klass_AESCrypt->is_loaded()) { 7916 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7917 Node* ctrl = control(); 7918 set_control(top()); // no regular fast path 7919 return ctrl; 7920 } 7921 7922 src = must_be_not_null(src, true); 7923 dest = must_be_not_null(dest, true); 7924 7925 // Resolve oops to stable for CmpP below. 7926 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7927 7928 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7929 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7930 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7931 7932 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7933 7934 // for encryption, we are done 7935 if (!decrypting) 7936 return instof_false; // even if it is null 7937 7938 // for decryption, we need to add a further check to avoid 7939 // taking the intrinsic path when cipher and plain are the same 7940 // see the original java code for why. 7941 RegionNode* region = new RegionNode(3); 7942 region->init_req(1, instof_false); 7943 7944 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7945 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7946 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7947 region->init_req(2, src_dest_conjoint); 7948 7949 record_for_igvn(region); 7950 return _gvn.transform(region); 7951 } 7952 7953 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7954 // Return node representing slow path of predicate check. 7955 // the pseudo code we want to emulate with this predicate is: 7956 // for encryption: 7957 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7958 // for decryption: 7959 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7960 // note cipher==plain is more conservative than the original java code but that's OK 7961 // 7962 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7963 // The receiver was checked for null already. 7964 Node* objECB = argument(0); 7965 7966 // Load embeddedCipher field of ElectronicCodeBook object. 7967 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7968 7969 // get AESCrypt klass for instanceOf check 7970 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7971 // will have same classloader as ElectronicCodeBook object 7972 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7973 assert(tinst != nullptr, "ECBobj is null"); 7974 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7975 7976 // we want to do an instanceof comparison against the AESCrypt class 7977 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7978 if (!klass_AESCrypt->is_loaded()) { 7979 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7980 Node* ctrl = control(); 7981 set_control(top()); // no regular fast path 7982 return ctrl; 7983 } 7984 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7985 7986 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7987 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7988 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7989 7990 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7991 7992 // for encryption, we are done 7993 if (!decrypting) 7994 return instof_false; // even if it is null 7995 7996 // for decryption, we need to add a further check to avoid 7997 // taking the intrinsic path when cipher and plain are the same 7998 // see the original java code for why. 7999 RegionNode* region = new RegionNode(3); 8000 region->init_req(1, instof_false); 8001 Node* src = argument(1); 8002 Node* dest = argument(4); 8003 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 8004 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 8005 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 8006 region->init_req(2, src_dest_conjoint); 8007 8008 record_for_igvn(region); 8009 return _gvn.transform(region); 8010 } 8011 8012 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 8013 // Return node representing slow path of predicate check. 8014 // the pseudo code we want to emulate with this predicate is: 8015 // for encryption: 8016 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8017 // for decryption: 8018 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8019 // note cipher==plain is more conservative than the original java code but that's OK 8020 // 8021 8022 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 8023 // The receiver was checked for null already. 8024 Node* objCTR = argument(0); 8025 8026 // Load embeddedCipher field of CipherBlockChaining object. 8027 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8028 8029 // get AESCrypt klass for instanceOf check 8030 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8031 // will have same classloader as CipherBlockChaining object 8032 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 8033 assert(tinst != nullptr, "CTRobj is null"); 8034 assert(tinst->is_loaded(), "CTRobj is not loaded"); 8035 8036 // we want to do an instanceof comparison against the AESCrypt class 8037 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8038 if (!klass_AESCrypt->is_loaded()) { 8039 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8040 Node* ctrl = control(); 8041 set_control(top()); // no regular fast path 8042 return ctrl; 8043 } 8044 8045 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8046 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8047 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8048 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8049 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8050 8051 return instof_false; // even if it is null 8052 } 8053 8054 //------------------------------inline_ghash_processBlocks 8055 bool LibraryCallKit::inline_ghash_processBlocks() { 8056 address stubAddr; 8057 const char *stubName; 8058 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 8059 8060 stubAddr = StubRoutines::ghash_processBlocks(); 8061 stubName = "ghash_processBlocks"; 8062 8063 Node* data = argument(0); 8064 Node* offset = argument(1); 8065 Node* len = argument(2); 8066 Node* state = argument(3); 8067 Node* subkeyH = argument(4); 8068 8069 state = must_be_not_null(state, true); 8070 subkeyH = must_be_not_null(subkeyH, true); 8071 data = must_be_not_null(data, true); 8072 8073 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8074 assert(state_start, "state is null"); 8075 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 8076 assert(subkeyH_start, "subkeyH is null"); 8077 Node* data_start = array_element_address(data, offset, T_BYTE); 8078 assert(data_start, "data is null"); 8079 8080 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 8081 OptoRuntime::ghash_processBlocks_Type(), 8082 stubAddr, stubName, TypePtr::BOTTOM, 8083 state_start, subkeyH_start, data_start, len); 8084 return true; 8085 } 8086 8087 //------------------------------inline_chacha20Block 8088 bool LibraryCallKit::inline_chacha20Block() { 8089 address stubAddr; 8090 const char *stubName; 8091 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 8092 8093 stubAddr = StubRoutines::chacha20Block(); 8094 stubName = "chacha20Block"; 8095 8096 Node* state = argument(0); 8097 Node* result = argument(1); 8098 8099 state = must_be_not_null(state, true); 8100 result = must_be_not_null(result, true); 8101 8102 Node* state_start = array_element_address(state, intcon(0), T_INT); 8103 assert(state_start, "state is null"); 8104 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 8105 assert(result_start, "result is null"); 8106 8107 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 8108 OptoRuntime::chacha20Block_Type(), 8109 stubAddr, stubName, TypePtr::BOTTOM, 8110 state_start, result_start); 8111 // return key stream length (int) 8112 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 8113 set_result(retvalue); 8114 return true; 8115 } 8116 8117 //------------------------------inline_kyberNtt 8118 bool LibraryCallKit::inline_kyberNtt() { 8119 address stubAddr; 8120 const char *stubName; 8121 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8122 assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters"); 8123 8124 stubAddr = StubRoutines::kyberNtt(); 8125 stubName = "kyberNtt"; 8126 if (!stubAddr) return false; 8127 8128 Node* coeffs = argument(0); 8129 Node* ntt_zetas = argument(1); 8130 8131 coeffs = must_be_not_null(coeffs, true); 8132 ntt_zetas = must_be_not_null(ntt_zetas, true); 8133 8134 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 8135 assert(coeffs_start, "coeffs is null"); 8136 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_SHORT); 8137 assert(ntt_zetas_start, "ntt_zetas is null"); 8138 Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8139 OptoRuntime::kyberNtt_Type(), 8140 stubAddr, stubName, TypePtr::BOTTOM, 8141 coeffs_start, ntt_zetas_start); 8142 // return an int 8143 Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms)); 8144 set_result(retvalue); 8145 return true; 8146 } 8147 8148 //------------------------------inline_kyberInverseNtt 8149 bool LibraryCallKit::inline_kyberInverseNtt() { 8150 address stubAddr; 8151 const char *stubName; 8152 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8153 assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters"); 8154 8155 stubAddr = StubRoutines::kyberInverseNtt(); 8156 stubName = "kyberInverseNtt"; 8157 if (!stubAddr) return false; 8158 8159 Node* coeffs = argument(0); 8160 Node* zetas = argument(1); 8161 8162 coeffs = must_be_not_null(coeffs, true); 8163 zetas = must_be_not_null(zetas, true); 8164 8165 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 8166 assert(coeffs_start, "coeffs is null"); 8167 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 8168 assert(zetas_start, "inverseNtt_zetas is null"); 8169 Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8170 OptoRuntime::kyberInverseNtt_Type(), 8171 stubAddr, stubName, TypePtr::BOTTOM, 8172 coeffs_start, zetas_start); 8173 8174 // return an int 8175 Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms)); 8176 set_result(retvalue); 8177 return true; 8178 } 8179 8180 //------------------------------inline_kyberNttMult 8181 bool LibraryCallKit::inline_kyberNttMult() { 8182 address stubAddr; 8183 const char *stubName; 8184 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8185 assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters"); 8186 8187 stubAddr = StubRoutines::kyberNttMult(); 8188 stubName = "kyberNttMult"; 8189 if (!stubAddr) return false; 8190 8191 Node* result = argument(0); 8192 Node* ntta = argument(1); 8193 Node* nttb = argument(2); 8194 Node* zetas = argument(3); 8195 8196 result = must_be_not_null(result, true); 8197 ntta = must_be_not_null(ntta, true); 8198 nttb = must_be_not_null(nttb, true); 8199 zetas = must_be_not_null(zetas, true); 8200 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 8201 assert(result_start, "result is null"); 8202 Node* ntta_start = array_element_address(ntta, intcon(0), T_SHORT); 8203 assert(ntta_start, "ntta is null"); 8204 Node* nttb_start = array_element_address(nttb, intcon(0), T_SHORT); 8205 assert(nttb_start, "nttb is null"); 8206 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 8207 assert(zetas_start, "nttMult_zetas is null"); 8208 Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 8209 OptoRuntime::kyberNttMult_Type(), 8210 stubAddr, stubName, TypePtr::BOTTOM, 8211 result_start, ntta_start, nttb_start, 8212 zetas_start); 8213 8214 // return an int 8215 Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms)); 8216 set_result(retvalue); 8217 8218 return true; 8219 } 8220 8221 //------------------------------inline_kyberAddPoly_2 8222 bool LibraryCallKit::inline_kyberAddPoly_2() { 8223 address stubAddr; 8224 const char *stubName; 8225 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8226 assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters"); 8227 8228 stubAddr = StubRoutines::kyberAddPoly_2(); 8229 stubName = "kyberAddPoly_2"; 8230 if (!stubAddr) return false; 8231 8232 Node* result = argument(0); 8233 Node* a = argument(1); 8234 Node* b = argument(2); 8235 8236 result = must_be_not_null(result, true); 8237 a = must_be_not_null(a, true); 8238 b = must_be_not_null(b, true); 8239 8240 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 8241 assert(result_start, "result is null"); 8242 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 8243 assert(a_start, "a is null"); 8244 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 8245 assert(b_start, "b is null"); 8246 Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP, 8247 OptoRuntime::kyberAddPoly_2_Type(), 8248 stubAddr, stubName, TypePtr::BOTTOM, 8249 result_start, a_start, b_start); 8250 // return an int 8251 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms)); 8252 set_result(retvalue); 8253 return true; 8254 } 8255 8256 //------------------------------inline_kyberAddPoly_3 8257 bool LibraryCallKit::inline_kyberAddPoly_3() { 8258 address stubAddr; 8259 const char *stubName; 8260 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8261 assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters"); 8262 8263 stubAddr = StubRoutines::kyberAddPoly_3(); 8264 stubName = "kyberAddPoly_3"; 8265 if (!stubAddr) return false; 8266 8267 Node* result = argument(0); 8268 Node* a = argument(1); 8269 Node* b = argument(2); 8270 Node* c = argument(3); 8271 8272 result = must_be_not_null(result, true); 8273 a = must_be_not_null(a, true); 8274 b = must_be_not_null(b, true); 8275 c = must_be_not_null(c, true); 8276 8277 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 8278 assert(result_start, "result is null"); 8279 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 8280 assert(a_start, "a is null"); 8281 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 8282 assert(b_start, "b is null"); 8283 Node* c_start = array_element_address(c, intcon(0), T_SHORT); 8284 assert(c_start, "c is null"); 8285 Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP, 8286 OptoRuntime::kyberAddPoly_3_Type(), 8287 stubAddr, stubName, TypePtr::BOTTOM, 8288 result_start, a_start, b_start, c_start); 8289 // return an int 8290 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms)); 8291 set_result(retvalue); 8292 return true; 8293 } 8294 8295 //------------------------------inline_kyber12To16 8296 bool LibraryCallKit::inline_kyber12To16() { 8297 address stubAddr; 8298 const char *stubName; 8299 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8300 assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters"); 8301 8302 stubAddr = StubRoutines::kyber12To16(); 8303 stubName = "kyber12To16"; 8304 if (!stubAddr) return false; 8305 8306 Node* condensed = argument(0); 8307 Node* condensedOffs = argument(1); 8308 Node* parsed = argument(2); 8309 Node* parsedLength = argument(3); 8310 8311 condensed = must_be_not_null(condensed, true); 8312 parsed = must_be_not_null(parsed, true); 8313 8314 Node* condensed_start = array_element_address(condensed, intcon(0), T_BYTE); 8315 assert(condensed_start, "condensed is null"); 8316 Node* parsed_start = array_element_address(parsed, intcon(0), T_SHORT); 8317 assert(parsed_start, "parsed is null"); 8318 Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP, 8319 OptoRuntime::kyber12To16_Type(), 8320 stubAddr, stubName, TypePtr::BOTTOM, 8321 condensed_start, condensedOffs, parsed_start, parsedLength); 8322 // return an int 8323 Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms)); 8324 set_result(retvalue); 8325 return true; 8326 8327 } 8328 8329 //------------------------------inline_kyberBarrettReduce 8330 bool LibraryCallKit::inline_kyberBarrettReduce() { 8331 address stubAddr; 8332 const char *stubName; 8333 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8334 assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters"); 8335 8336 stubAddr = StubRoutines::kyberBarrettReduce(); 8337 stubName = "kyberBarrettReduce"; 8338 if (!stubAddr) return false; 8339 8340 Node* coeffs = argument(0); 8341 8342 coeffs = must_be_not_null(coeffs, true); 8343 8344 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 8345 assert(coeffs_start, "coeffs is null"); 8346 Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP, 8347 OptoRuntime::kyberBarrettReduce_Type(), 8348 stubAddr, stubName, TypePtr::BOTTOM, 8349 coeffs_start); 8350 // return an int 8351 Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms)); 8352 set_result(retvalue); 8353 return true; 8354 } 8355 8356 //------------------------------inline_dilithiumAlmostNtt 8357 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 8358 address stubAddr; 8359 const char *stubName; 8360 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8361 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 8362 8363 stubAddr = StubRoutines::dilithiumAlmostNtt(); 8364 stubName = "dilithiumAlmostNtt"; 8365 if (!stubAddr) return false; 8366 8367 Node* coeffs = argument(0); 8368 Node* ntt_zetas = argument(1); 8369 8370 coeffs = must_be_not_null(coeffs, true); 8371 ntt_zetas = must_be_not_null(ntt_zetas, true); 8372 8373 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8374 assert(coeffs_start, "coeffs is null"); 8375 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 8376 assert(ntt_zetas_start, "ntt_zetas is null"); 8377 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8378 OptoRuntime::dilithiumAlmostNtt_Type(), 8379 stubAddr, stubName, TypePtr::BOTTOM, 8380 coeffs_start, ntt_zetas_start); 8381 // return an int 8382 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 8383 set_result(retvalue); 8384 return true; 8385 } 8386 8387 //------------------------------inline_dilithiumAlmostInverseNtt 8388 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 8389 address stubAddr; 8390 const char *stubName; 8391 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8392 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 8393 8394 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 8395 stubName = "dilithiumAlmostInverseNtt"; 8396 if (!stubAddr) return false; 8397 8398 Node* coeffs = argument(0); 8399 Node* zetas = argument(1); 8400 8401 coeffs = must_be_not_null(coeffs, true); 8402 zetas = must_be_not_null(zetas, true); 8403 8404 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8405 assert(coeffs_start, "coeffs is null"); 8406 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 8407 assert(zetas_start, "inverseNtt_zetas is null"); 8408 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8409 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 8410 stubAddr, stubName, TypePtr::BOTTOM, 8411 coeffs_start, zetas_start); 8412 // return an int 8413 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 8414 set_result(retvalue); 8415 return true; 8416 } 8417 8418 //------------------------------inline_dilithiumNttMult 8419 bool LibraryCallKit::inline_dilithiumNttMult() { 8420 address stubAddr; 8421 const char *stubName; 8422 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8423 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 8424 8425 stubAddr = StubRoutines::dilithiumNttMult(); 8426 stubName = "dilithiumNttMult"; 8427 if (!stubAddr) return false; 8428 8429 Node* result = argument(0); 8430 Node* ntta = argument(1); 8431 Node* nttb = argument(2); 8432 Node* zetas = argument(3); 8433 8434 result = must_be_not_null(result, true); 8435 ntta = must_be_not_null(ntta, true); 8436 nttb = must_be_not_null(nttb, true); 8437 zetas = must_be_not_null(zetas, true); 8438 8439 Node* result_start = array_element_address(result, intcon(0), T_INT); 8440 assert(result_start, "result is null"); 8441 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 8442 assert(ntta_start, "ntta is null"); 8443 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 8444 assert(nttb_start, "nttb is null"); 8445 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 8446 OptoRuntime::dilithiumNttMult_Type(), 8447 stubAddr, stubName, TypePtr::BOTTOM, 8448 result_start, ntta_start, nttb_start); 8449 8450 // return an int 8451 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 8452 set_result(retvalue); 8453 8454 return true; 8455 } 8456 8457 //------------------------------inline_dilithiumMontMulByConstant 8458 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 8459 address stubAddr; 8460 const char *stubName; 8461 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8462 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 8463 8464 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 8465 stubName = "dilithiumMontMulByConstant"; 8466 if (!stubAddr) return false; 8467 8468 Node* coeffs = argument(0); 8469 Node* constant = argument(1); 8470 8471 coeffs = must_be_not_null(coeffs, true); 8472 8473 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8474 assert(coeffs_start, "coeffs is null"); 8475 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 8476 OptoRuntime::dilithiumMontMulByConstant_Type(), 8477 stubAddr, stubName, TypePtr::BOTTOM, 8478 coeffs_start, constant); 8479 8480 // return an int 8481 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 8482 set_result(retvalue); 8483 return true; 8484 } 8485 8486 8487 //------------------------------inline_dilithiumDecomposePoly 8488 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 8489 address stubAddr; 8490 const char *stubName; 8491 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8492 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 8493 8494 stubAddr = StubRoutines::dilithiumDecomposePoly(); 8495 stubName = "dilithiumDecomposePoly"; 8496 if (!stubAddr) return false; 8497 8498 Node* input = argument(0); 8499 Node* lowPart = argument(1); 8500 Node* highPart = argument(2); 8501 Node* twoGamma2 = argument(3); 8502 Node* multiplier = argument(4); 8503 8504 input = must_be_not_null(input, true); 8505 lowPart = must_be_not_null(lowPart, true); 8506 highPart = must_be_not_null(highPart, true); 8507 8508 Node* input_start = array_element_address(input, intcon(0), T_INT); 8509 assert(input_start, "input is null"); 8510 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 8511 assert(lowPart_start, "lowPart is null"); 8512 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 8513 assert(highPart_start, "highPart is null"); 8514 8515 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 8516 OptoRuntime::dilithiumDecomposePoly_Type(), 8517 stubAddr, stubName, TypePtr::BOTTOM, 8518 input_start, lowPart_start, highPart_start, 8519 twoGamma2, multiplier); 8520 8521 // return an int 8522 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 8523 set_result(retvalue); 8524 return true; 8525 } 8526 8527 bool LibraryCallKit::inline_base64_encodeBlock() { 8528 address stubAddr; 8529 const char *stubName; 8530 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8531 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8532 stubAddr = StubRoutines::base64_encodeBlock(); 8533 stubName = "encodeBlock"; 8534 8535 if (!stubAddr) return false; 8536 Node* base64obj = argument(0); 8537 Node* src = argument(1); 8538 Node* offset = argument(2); 8539 Node* len = argument(3); 8540 Node* dest = argument(4); 8541 Node* dp = argument(5); 8542 Node* isURL = argument(6); 8543 8544 src = must_be_not_null(src, true); 8545 dest = must_be_not_null(dest, true); 8546 8547 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8548 assert(src_start, "source array is null"); 8549 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8550 assert(dest_start, "destination array is null"); 8551 8552 Node* base64 = make_runtime_call(RC_LEAF, 8553 OptoRuntime::base64_encodeBlock_Type(), 8554 stubAddr, stubName, TypePtr::BOTTOM, 8555 src_start, offset, len, dest_start, dp, isURL); 8556 return true; 8557 } 8558 8559 bool LibraryCallKit::inline_base64_decodeBlock() { 8560 address stubAddr; 8561 const char *stubName; 8562 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8563 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8564 stubAddr = StubRoutines::base64_decodeBlock(); 8565 stubName = "decodeBlock"; 8566 8567 if (!stubAddr) return false; 8568 Node* base64obj = argument(0); 8569 Node* src = argument(1); 8570 Node* src_offset = argument(2); 8571 Node* len = argument(3); 8572 Node* dest = argument(4); 8573 Node* dest_offset = argument(5); 8574 Node* isURL = argument(6); 8575 Node* isMIME = argument(7); 8576 8577 src = must_be_not_null(src, true); 8578 dest = must_be_not_null(dest, true); 8579 8580 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8581 assert(src_start, "source array is null"); 8582 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8583 assert(dest_start, "destination array is null"); 8584 8585 Node* call = make_runtime_call(RC_LEAF, 8586 OptoRuntime::base64_decodeBlock_Type(), 8587 stubAddr, stubName, TypePtr::BOTTOM, 8588 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8589 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8590 set_result(result); 8591 return true; 8592 } 8593 8594 bool LibraryCallKit::inline_poly1305_processBlocks() { 8595 address stubAddr; 8596 const char *stubName; 8597 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8598 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8599 stubAddr = StubRoutines::poly1305_processBlocks(); 8600 stubName = "poly1305_processBlocks"; 8601 8602 if (!stubAddr) return false; 8603 null_check_receiver(); // null-check receiver 8604 if (stopped()) return true; 8605 8606 Node* input = argument(1); 8607 Node* input_offset = argument(2); 8608 Node* len = argument(3); 8609 Node* alimbs = argument(4); 8610 Node* rlimbs = argument(5); 8611 8612 input = must_be_not_null(input, true); 8613 alimbs = must_be_not_null(alimbs, true); 8614 rlimbs = must_be_not_null(rlimbs, true); 8615 8616 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8617 assert(input_start, "input array is null"); 8618 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8619 assert(acc_start, "acc array is null"); 8620 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8621 assert(r_start, "r array is null"); 8622 8623 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8624 OptoRuntime::poly1305_processBlocks_Type(), 8625 stubAddr, stubName, TypePtr::BOTTOM, 8626 input_start, len, acc_start, r_start); 8627 return true; 8628 } 8629 8630 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8631 address stubAddr; 8632 const char *stubName; 8633 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8634 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8635 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8636 stubName = "intpoly_montgomeryMult_P256"; 8637 8638 if (!stubAddr) return false; 8639 null_check_receiver(); // null-check receiver 8640 if (stopped()) return true; 8641 8642 Node* a = argument(1); 8643 Node* b = argument(2); 8644 Node* r = argument(3); 8645 8646 a = must_be_not_null(a, true); 8647 b = must_be_not_null(b, true); 8648 r = must_be_not_null(r, true); 8649 8650 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8651 assert(a_start, "a array is null"); 8652 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8653 assert(b_start, "b array is null"); 8654 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8655 assert(r_start, "r array is null"); 8656 8657 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8658 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8659 stubAddr, stubName, TypePtr::BOTTOM, 8660 a_start, b_start, r_start); 8661 return true; 8662 } 8663 8664 bool LibraryCallKit::inline_intpoly_assign() { 8665 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8666 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8667 const char *stubName = "intpoly_assign"; 8668 address stubAddr = StubRoutines::intpoly_assign(); 8669 if (!stubAddr) return false; 8670 8671 Node* set = argument(0); 8672 Node* a = argument(1); 8673 Node* b = argument(2); 8674 Node* arr_length = load_array_length(a); 8675 8676 a = must_be_not_null(a, true); 8677 b = must_be_not_null(b, true); 8678 8679 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8680 assert(a_start, "a array is null"); 8681 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8682 assert(b_start, "b array is null"); 8683 8684 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8685 OptoRuntime::intpoly_assign_Type(), 8686 stubAddr, stubName, TypePtr::BOTTOM, 8687 set, a_start, b_start, arr_length); 8688 return true; 8689 } 8690 8691 //------------------------------inline_digestBase_implCompress----------------------- 8692 // 8693 // Calculate MD5 for single-block byte[] array. 8694 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8695 // 8696 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8697 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8698 // 8699 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8700 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8701 // 8702 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8703 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8704 // 8705 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8706 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8707 // 8708 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8709 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8710 8711 Node* digestBase_obj = argument(0); 8712 Node* src = argument(1); // type oop 8713 Node* ofs = argument(2); // type int 8714 8715 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8716 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8717 // failed array check 8718 return false; 8719 } 8720 // Figure out the size and type of the elements we will be copying. 8721 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8722 if (src_elem != T_BYTE) { 8723 return false; 8724 } 8725 // 'src_start' points to src array + offset 8726 src = must_be_not_null(src, true); 8727 Node* src_start = array_element_address(src, ofs, src_elem); 8728 Node* state = nullptr; 8729 Node* block_size = nullptr; 8730 address stubAddr; 8731 const char *stubName; 8732 8733 switch(id) { 8734 case vmIntrinsics::_md5_implCompress: 8735 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8736 state = get_state_from_digest_object(digestBase_obj, T_INT); 8737 stubAddr = StubRoutines::md5_implCompress(); 8738 stubName = "md5_implCompress"; 8739 break; 8740 case vmIntrinsics::_sha_implCompress: 8741 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8742 state = get_state_from_digest_object(digestBase_obj, T_INT); 8743 stubAddr = StubRoutines::sha1_implCompress(); 8744 stubName = "sha1_implCompress"; 8745 break; 8746 case vmIntrinsics::_sha2_implCompress: 8747 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8748 state = get_state_from_digest_object(digestBase_obj, T_INT); 8749 stubAddr = StubRoutines::sha256_implCompress(); 8750 stubName = "sha256_implCompress"; 8751 break; 8752 case vmIntrinsics::_sha5_implCompress: 8753 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8754 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8755 stubAddr = StubRoutines::sha512_implCompress(); 8756 stubName = "sha512_implCompress"; 8757 break; 8758 case vmIntrinsics::_sha3_implCompress: 8759 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8760 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8761 stubAddr = StubRoutines::sha3_implCompress(); 8762 stubName = "sha3_implCompress"; 8763 block_size = get_block_size_from_digest_object(digestBase_obj); 8764 if (block_size == nullptr) return false; 8765 break; 8766 default: 8767 fatal_unexpected_iid(id); 8768 return false; 8769 } 8770 if (state == nullptr) return false; 8771 8772 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8773 if (stubAddr == nullptr) return false; 8774 8775 // Call the stub. 8776 Node* call; 8777 if (block_size == nullptr) { 8778 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8779 stubAddr, stubName, TypePtr::BOTTOM, 8780 src_start, state); 8781 } else { 8782 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8783 stubAddr, stubName, TypePtr::BOTTOM, 8784 src_start, state, block_size); 8785 } 8786 8787 return true; 8788 } 8789 8790 //------------------------------inline_double_keccak 8791 bool LibraryCallKit::inline_double_keccak() { 8792 address stubAddr; 8793 const char *stubName; 8794 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8795 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8796 8797 stubAddr = StubRoutines::double_keccak(); 8798 stubName = "double_keccak"; 8799 if (!stubAddr) return false; 8800 8801 Node* status0 = argument(0); 8802 Node* status1 = argument(1); 8803 8804 status0 = must_be_not_null(status0, true); 8805 status1 = must_be_not_null(status1, true); 8806 8807 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8808 assert(status0_start, "status0 is null"); 8809 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8810 assert(status1_start, "status1 is null"); 8811 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8812 OptoRuntime::double_keccak_Type(), 8813 stubAddr, stubName, TypePtr::BOTTOM, 8814 status0_start, status1_start); 8815 // return an int 8816 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8817 set_result(retvalue); 8818 return true; 8819 } 8820 8821 8822 //------------------------------inline_digestBase_implCompressMB----------------------- 8823 // 8824 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8825 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8826 // 8827 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8828 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8829 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8830 assert((uint)predicate < 5, "sanity"); 8831 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8832 8833 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8834 Node* src = argument(1); // byte[] array 8835 Node* ofs = argument(2); // type int 8836 Node* limit = argument(3); // type int 8837 8838 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8839 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8840 // failed array check 8841 return false; 8842 } 8843 // Figure out the size and type of the elements we will be copying. 8844 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8845 if (src_elem != T_BYTE) { 8846 return false; 8847 } 8848 // 'src_start' points to src array + offset 8849 src = must_be_not_null(src, false); 8850 Node* src_start = array_element_address(src, ofs, src_elem); 8851 8852 const char* klass_digestBase_name = nullptr; 8853 const char* stub_name = nullptr; 8854 address stub_addr = nullptr; 8855 BasicType elem_type = T_INT; 8856 8857 switch (predicate) { 8858 case 0: 8859 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8860 klass_digestBase_name = "sun/security/provider/MD5"; 8861 stub_name = "md5_implCompressMB"; 8862 stub_addr = StubRoutines::md5_implCompressMB(); 8863 } 8864 break; 8865 case 1: 8866 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8867 klass_digestBase_name = "sun/security/provider/SHA"; 8868 stub_name = "sha1_implCompressMB"; 8869 stub_addr = StubRoutines::sha1_implCompressMB(); 8870 } 8871 break; 8872 case 2: 8873 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8874 klass_digestBase_name = "sun/security/provider/SHA2"; 8875 stub_name = "sha256_implCompressMB"; 8876 stub_addr = StubRoutines::sha256_implCompressMB(); 8877 } 8878 break; 8879 case 3: 8880 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8881 klass_digestBase_name = "sun/security/provider/SHA5"; 8882 stub_name = "sha512_implCompressMB"; 8883 stub_addr = StubRoutines::sha512_implCompressMB(); 8884 elem_type = T_LONG; 8885 } 8886 break; 8887 case 4: 8888 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8889 klass_digestBase_name = "sun/security/provider/SHA3"; 8890 stub_name = "sha3_implCompressMB"; 8891 stub_addr = StubRoutines::sha3_implCompressMB(); 8892 elem_type = T_LONG; 8893 } 8894 break; 8895 default: 8896 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8897 } 8898 if (klass_digestBase_name != nullptr) { 8899 assert(stub_addr != nullptr, "Stub is generated"); 8900 if (stub_addr == nullptr) return false; 8901 8902 // get DigestBase klass to lookup for SHA klass 8903 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8904 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8905 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8906 8907 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8908 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8909 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8910 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8911 } 8912 return false; 8913 } 8914 8915 //------------------------------inline_digestBase_implCompressMB----------------------- 8916 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8917 BasicType elem_type, address stubAddr, const char *stubName, 8918 Node* src_start, Node* ofs, Node* limit) { 8919 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8920 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8921 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8922 digest_obj = _gvn.transform(digest_obj); 8923 8924 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8925 if (state == nullptr) return false; 8926 8927 Node* block_size = nullptr; 8928 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8929 block_size = get_block_size_from_digest_object(digest_obj); 8930 if (block_size == nullptr) return false; 8931 } 8932 8933 // Call the stub. 8934 Node* call; 8935 if (block_size == nullptr) { 8936 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8937 OptoRuntime::digestBase_implCompressMB_Type(false), 8938 stubAddr, stubName, TypePtr::BOTTOM, 8939 src_start, state, ofs, limit); 8940 } else { 8941 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8942 OptoRuntime::digestBase_implCompressMB_Type(true), 8943 stubAddr, stubName, TypePtr::BOTTOM, 8944 src_start, state, block_size, ofs, limit); 8945 } 8946 8947 // return ofs (int) 8948 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8949 set_result(result); 8950 8951 return true; 8952 } 8953 8954 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8955 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8956 assert(UseAES, "need AES instruction support"); 8957 address stubAddr = nullptr; 8958 const char *stubName = nullptr; 8959 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8960 stubName = "galoisCounterMode_AESCrypt"; 8961 8962 if (stubAddr == nullptr) return false; 8963 8964 Node* in = argument(0); 8965 Node* inOfs = argument(1); 8966 Node* len = argument(2); 8967 Node* ct = argument(3); 8968 Node* ctOfs = argument(4); 8969 Node* out = argument(5); 8970 Node* outOfs = argument(6); 8971 Node* gctr_object = argument(7); 8972 Node* ghash_object = argument(8); 8973 8974 // (1) in, ct and out are arrays. 8975 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8976 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8977 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8978 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8979 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8980 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8981 8982 // checks are the responsibility of the caller 8983 Node* in_start = in; 8984 Node* ct_start = ct; 8985 Node* out_start = out; 8986 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8987 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8988 in_start = array_element_address(in, inOfs, T_BYTE); 8989 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8990 out_start = array_element_address(out, outOfs, T_BYTE); 8991 } 8992 8993 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8994 // (because of the predicated logic executed earlier). 8995 // so we cast it here safely. 8996 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8997 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8998 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8999 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 9000 Node* state = load_field_from_object(ghash_object, "state", "[J"); 9001 9002 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 9003 return false; 9004 } 9005 // cast it to what we know it will be at runtime 9006 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 9007 assert(tinst != nullptr, "GCTR obj is null"); 9008 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 9009 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 9010 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 9011 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 9012 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 9013 const TypeOopPtr* xtype = aklass->as_instance_type(); 9014 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 9015 aescrypt_object = _gvn.transform(aescrypt_object); 9016 // we need to get the start of the aescrypt_object's expanded key array 9017 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 9018 if (k_start == nullptr) return false; 9019 // similarly, get the start address of the r vector 9020 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 9021 Node* state_start = array_element_address(state, intcon(0), T_LONG); 9022 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 9023 9024 9025 // Call the stub, passing params 9026 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 9027 OptoRuntime::galoisCounterMode_aescrypt_Type(), 9028 stubAddr, stubName, TypePtr::BOTTOM, 9029 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 9030 9031 // return cipher length (int) 9032 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 9033 set_result(retvalue); 9034 9035 return true; 9036 } 9037 9038 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 9039 // Return node representing slow path of predicate check. 9040 // the pseudo code we want to emulate with this predicate is: 9041 // for encryption: 9042 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 9043 // for decryption: 9044 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 9045 // note cipher==plain is more conservative than the original java code but that's OK 9046 // 9047 9048 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 9049 // The receiver was checked for null already. 9050 Node* objGCTR = argument(7); 9051 // Load embeddedCipher field of GCTR object. 9052 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 9053 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 9054 9055 // get AESCrypt klass for instanceOf check 9056 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 9057 // will have same classloader as CipherBlockChaining object 9058 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 9059 assert(tinst != nullptr, "GCTR obj is null"); 9060 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 9061 9062 // we want to do an instanceof comparison against the AESCrypt class 9063 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 9064 if (!klass_AESCrypt->is_loaded()) { 9065 // if AESCrypt is not even loaded, we never take the intrinsic fast path 9066 Node* ctrl = control(); 9067 set_control(top()); // no regular fast path 9068 return ctrl; 9069 } 9070 9071 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 9072 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 9073 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 9074 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 9075 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 9076 9077 return instof_false; // even if it is null 9078 } 9079 9080 //------------------------------get_state_from_digest_object----------------------- 9081 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 9082 const char* state_type; 9083 switch (elem_type) { 9084 case T_BYTE: state_type = "[B"; break; 9085 case T_INT: state_type = "[I"; break; 9086 case T_LONG: state_type = "[J"; break; 9087 default: ShouldNotReachHere(); 9088 } 9089 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 9090 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 9091 if (digest_state == nullptr) return (Node *) nullptr; 9092 9093 // now have the array, need to get the start address of the state array 9094 Node* state = array_element_address(digest_state, intcon(0), elem_type); 9095 return state; 9096 } 9097 9098 //------------------------------get_block_size_from_sha3_object---------------------------------- 9099 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 9100 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 9101 assert (block_size != nullptr, "sanity"); 9102 return block_size; 9103 } 9104 9105 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 9106 // Return node representing slow path of predicate check. 9107 // the pseudo code we want to emulate with this predicate is: 9108 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 9109 // 9110 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 9111 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 9112 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 9113 assert((uint)predicate < 5, "sanity"); 9114 9115 // The receiver was checked for null already. 9116 Node* digestBaseObj = argument(0); 9117 9118 // get DigestBase klass for instanceOf check 9119 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 9120 assert(tinst != nullptr, "digestBaseObj is null"); 9121 assert(tinst->is_loaded(), "DigestBase is not loaded"); 9122 9123 const char* klass_name = nullptr; 9124 switch (predicate) { 9125 case 0: 9126 if (UseMD5Intrinsics) { 9127 // we want to do an instanceof comparison against the MD5 class 9128 klass_name = "sun/security/provider/MD5"; 9129 } 9130 break; 9131 case 1: 9132 if (UseSHA1Intrinsics) { 9133 // we want to do an instanceof comparison against the SHA class 9134 klass_name = "sun/security/provider/SHA"; 9135 } 9136 break; 9137 case 2: 9138 if (UseSHA256Intrinsics) { 9139 // we want to do an instanceof comparison against the SHA2 class 9140 klass_name = "sun/security/provider/SHA2"; 9141 } 9142 break; 9143 case 3: 9144 if (UseSHA512Intrinsics) { 9145 // we want to do an instanceof comparison against the SHA5 class 9146 klass_name = "sun/security/provider/SHA5"; 9147 } 9148 break; 9149 case 4: 9150 if (UseSHA3Intrinsics) { 9151 // we want to do an instanceof comparison against the SHA3 class 9152 klass_name = "sun/security/provider/SHA3"; 9153 } 9154 break; 9155 default: 9156 fatal("unknown SHA intrinsic predicate: %d", predicate); 9157 } 9158 9159 ciKlass* klass = nullptr; 9160 if (klass_name != nullptr) { 9161 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 9162 } 9163 if ((klass == nullptr) || !klass->is_loaded()) { 9164 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 9165 Node* ctrl = control(); 9166 set_control(top()); // no intrinsic path 9167 return ctrl; 9168 } 9169 ciInstanceKlass* instklass = klass->as_instance_klass(); 9170 9171 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 9172 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 9173 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 9174 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 9175 9176 return instof_false; // even if it is null 9177 } 9178 9179 //-------------inline_fma----------------------------------- 9180 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 9181 Node *a = nullptr; 9182 Node *b = nullptr; 9183 Node *c = nullptr; 9184 Node* result = nullptr; 9185 switch (id) { 9186 case vmIntrinsics::_fmaD: 9187 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 9188 // no receiver since it is static method 9189 a = argument(0); 9190 b = argument(2); 9191 c = argument(4); 9192 result = _gvn.transform(new FmaDNode(a, b, c)); 9193 break; 9194 case vmIntrinsics::_fmaF: 9195 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 9196 a = argument(0); 9197 b = argument(1); 9198 c = argument(2); 9199 result = _gvn.transform(new FmaFNode(a, b, c)); 9200 break; 9201 default: 9202 fatal_unexpected_iid(id); break; 9203 } 9204 set_result(result); 9205 return true; 9206 } 9207 9208 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 9209 // argument(0) is receiver 9210 Node* codePoint = argument(1); 9211 Node* n = nullptr; 9212 9213 switch (id) { 9214 case vmIntrinsics::_isDigit : 9215 n = new DigitNode(control(), codePoint); 9216 break; 9217 case vmIntrinsics::_isLowerCase : 9218 n = new LowerCaseNode(control(), codePoint); 9219 break; 9220 case vmIntrinsics::_isUpperCase : 9221 n = new UpperCaseNode(control(), codePoint); 9222 break; 9223 case vmIntrinsics::_isWhitespace : 9224 n = new WhitespaceNode(control(), codePoint); 9225 break; 9226 default: 9227 fatal_unexpected_iid(id); 9228 } 9229 9230 set_result(_gvn.transform(n)); 9231 return true; 9232 } 9233 9234 bool LibraryCallKit::inline_profileBoolean() { 9235 Node* counts = argument(1); 9236 const TypeAryPtr* ary = nullptr; 9237 ciArray* aobj = nullptr; 9238 if (counts->is_Con() 9239 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 9240 && (aobj = ary->const_oop()->as_array()) != nullptr 9241 && (aobj->length() == 2)) { 9242 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 9243 jint false_cnt = aobj->element_value(0).as_int(); 9244 jint true_cnt = aobj->element_value(1).as_int(); 9245 9246 if (C->log() != nullptr) { 9247 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 9248 false_cnt, true_cnt); 9249 } 9250 9251 if (false_cnt + true_cnt == 0) { 9252 // According to profile, never executed. 9253 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 9254 Deoptimization::Action_reinterpret); 9255 return true; 9256 } 9257 9258 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 9259 // is a number of each value occurrences. 9260 Node* result = argument(0); 9261 if (false_cnt == 0 || true_cnt == 0) { 9262 // According to profile, one value has been never seen. 9263 int expected_val = (false_cnt == 0) ? 1 : 0; 9264 9265 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 9266 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 9267 9268 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 9269 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 9270 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 9271 9272 { // Slow path: uncommon trap for never seen value and then reexecute 9273 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 9274 // the value has been seen at least once. 9275 PreserveJVMState pjvms(this); 9276 PreserveReexecuteState preexecs(this); 9277 jvms()->set_should_reexecute(true); 9278 9279 set_control(slow_path); 9280 set_i_o(i_o()); 9281 9282 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 9283 Deoptimization::Action_reinterpret); 9284 } 9285 // The guard for never seen value enables sharpening of the result and 9286 // returning a constant. It allows to eliminate branches on the same value 9287 // later on. 9288 set_control(fast_path); 9289 result = intcon(expected_val); 9290 } 9291 // Stop profiling. 9292 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 9293 // By replacing method body with profile data (represented as ProfileBooleanNode 9294 // on IR level) we effectively disable profiling. 9295 // It enables full speed execution once optimized code is generated. 9296 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 9297 C->record_for_igvn(profile); 9298 set_result(profile); 9299 return true; 9300 } else { 9301 // Continue profiling. 9302 // Profile data isn't available at the moment. So, execute method's bytecode version. 9303 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 9304 // is compiled and counters aren't available since corresponding MethodHandle 9305 // isn't a compile-time constant. 9306 return false; 9307 } 9308 } 9309 9310 bool LibraryCallKit::inline_isCompileConstant() { 9311 Node* n = argument(0); 9312 set_result(n->is_Con() ? intcon(1) : intcon(0)); 9313 return true; 9314 } 9315 9316 //------------------------------- inline_getObjectSize -------------------------------------- 9317 // 9318 // Calculate the runtime size of the object/array. 9319 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 9320 // 9321 bool LibraryCallKit::inline_getObjectSize() { 9322 Node* obj = argument(3); 9323 Node* klass_node = load_object_klass(obj); 9324 9325 jint layout_con = Klass::_lh_neutral_value; 9326 Node* layout_val = get_layout_helper(klass_node, layout_con); 9327 int layout_is_con = (layout_val == nullptr); 9328 9329 if (layout_is_con) { 9330 // Layout helper is constant, can figure out things at compile time. 9331 9332 if (Klass::layout_helper_is_instance(layout_con)) { 9333 // Instance case: layout_con contains the size itself. 9334 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 9335 set_result(size); 9336 } else { 9337 // Array case: size is round(header + element_size*arraylength). 9338 // Since arraylength is different for every array instance, we have to 9339 // compute the whole thing at runtime. 9340 9341 Node* arr_length = load_array_length(obj); 9342 9343 int round_mask = MinObjAlignmentInBytes - 1; 9344 int hsize = Klass::layout_helper_header_size(layout_con); 9345 int eshift = Klass::layout_helper_log2_element_size(layout_con); 9346 9347 if ((round_mask & ~right_n_bits(eshift)) == 0) { 9348 round_mask = 0; // strength-reduce it if it goes away completely 9349 } 9350 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 9351 Node* header_size = intcon(hsize + round_mask); 9352 9353 Node* lengthx = ConvI2X(arr_length); 9354 Node* headerx = ConvI2X(header_size); 9355 9356 Node* abody = lengthx; 9357 if (eshift != 0) { 9358 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 9359 } 9360 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 9361 if (round_mask != 0) { 9362 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 9363 } 9364 size = ConvX2L(size); 9365 set_result(size); 9366 } 9367 } else { 9368 // Layout helper is not constant, need to test for array-ness at runtime. 9369 9370 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 9371 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 9372 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 9373 record_for_igvn(result_reg); 9374 9375 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 9376 if (array_ctl != nullptr) { 9377 // Array case: size is round(header + element_size*arraylength). 9378 // Since arraylength is different for every array instance, we have to 9379 // compute the whole thing at runtime. 9380 9381 PreserveJVMState pjvms(this); 9382 set_control(array_ctl); 9383 Node* arr_length = load_array_length(obj); 9384 9385 int round_mask = MinObjAlignmentInBytes - 1; 9386 Node* mask = intcon(round_mask); 9387 9388 Node* hss = intcon(Klass::_lh_header_size_shift); 9389 Node* hsm = intcon(Klass::_lh_header_size_mask); 9390 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 9391 header_size = _gvn.transform(new AndINode(header_size, hsm)); 9392 header_size = _gvn.transform(new AddINode(header_size, mask)); 9393 9394 // There is no need to mask or shift this value. 9395 // The semantics of LShiftINode include an implicit mask to 0x1F. 9396 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 9397 Node* elem_shift = layout_val; 9398 9399 Node* lengthx = ConvI2X(arr_length); 9400 Node* headerx = ConvI2X(header_size); 9401 9402 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 9403 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 9404 if (round_mask != 0) { 9405 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 9406 } 9407 size = ConvX2L(size); 9408 9409 result_reg->init_req(_array_path, control()); 9410 result_val->init_req(_array_path, size); 9411 } 9412 9413 if (!stopped()) { 9414 // Instance case: the layout helper gives us instance size almost directly, 9415 // but we need to mask out the _lh_instance_slow_path_bit. 9416 Node* size = ConvI2X(layout_val); 9417 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 9418 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 9419 size = _gvn.transform(new AndXNode(size, mask)); 9420 size = ConvX2L(size); 9421 9422 result_reg->init_req(_instance_path, control()); 9423 result_val->init_req(_instance_path, size); 9424 } 9425 9426 set_result(result_reg, result_val); 9427 } 9428 9429 return true; 9430 } 9431 9432 //------------------------------- inline_blackhole -------------------------------------- 9433 // 9434 // Make sure all arguments to this node are alive. 9435 // This matches methods that were requested to be blackholed through compile commands. 9436 // 9437 bool LibraryCallKit::inline_blackhole() { 9438 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 9439 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 9440 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 9441 9442 // Blackhole node pinches only the control, not memory. This allows 9443 // the blackhole to be pinned in the loop that computes blackholed 9444 // values, but have no other side effects, like breaking the optimizations 9445 // across the blackhole. 9446 9447 Node* bh = _gvn.transform(new BlackholeNode(control())); 9448 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 9449 9450 // Bind call arguments as blackhole arguments to keep them alive 9451 uint nargs = callee()->arg_size(); 9452 for (uint i = 0; i < nargs; i++) { 9453 bh->add_req(argument(i)); 9454 } 9455 9456 return true; 9457 } 9458 9459 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 9460 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 9461 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 9462 return nullptr; // box klass is not Float16 9463 } 9464 9465 // Null check; get notnull casted pointer 9466 Node* null_ctl = top(); 9467 Node* not_null_box = null_check_oop(box, &null_ctl, true); 9468 // If not_null_box is dead, only null-path is taken 9469 if (stopped()) { 9470 set_control(null_ctl); 9471 return nullptr; 9472 } 9473 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 9474 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 9475 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 9476 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 9477 } 9478 9479 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 9480 PreserveReexecuteState preexecs(this); 9481 jvms()->set_should_reexecute(true); 9482 9483 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 9484 Node* klass_node = makecon(klass_type); 9485 Node* box = new_instance(klass_node); 9486 9487 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 9488 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 9489 9490 Node* field_store = _gvn.transform(access_store_at(box, 9491 value_field, 9492 value_adr_type, 9493 value, 9494 TypeInt::SHORT, 9495 T_SHORT, 9496 IN_HEAP)); 9497 set_memory(field_store, value_adr_type); 9498 return box; 9499 } 9500 9501 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 9502 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 9503 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 9504 return false; 9505 } 9506 9507 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 9508 if (box_type == nullptr || box_type->const_oop() == nullptr) { 9509 return false; 9510 } 9511 9512 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 9513 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 9514 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 9515 ciSymbols::short_signature(), 9516 false); 9517 assert(field != nullptr, ""); 9518 9519 // Transformed nodes 9520 Node* fld1 = nullptr; 9521 Node* fld2 = nullptr; 9522 Node* fld3 = nullptr; 9523 switch(num_args) { 9524 case 3: 9525 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 9526 if (fld3 == nullptr) { 9527 return false; 9528 } 9529 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 9530 // fall-through 9531 case 2: 9532 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 9533 if (fld2 == nullptr) { 9534 return false; 9535 } 9536 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 9537 // fall-through 9538 case 1: 9539 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 9540 if (fld1 == nullptr) { 9541 return false; 9542 } 9543 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 9544 break; 9545 default: fatal("Unsupported number of arguments %d", num_args); 9546 } 9547 9548 Node* result = nullptr; 9549 switch (id) { 9550 // Unary operations 9551 case vmIntrinsics::_sqrt_float16: 9552 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 9553 break; 9554 // Ternary operations 9555 case vmIntrinsics::_fma_float16: 9556 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 9557 break; 9558 default: 9559 fatal_unexpected_iid(id); 9560 break; 9561 } 9562 result = _gvn.transform(new ReinterpretHF2SNode(result)); 9563 set_result(box_fp16_value(float16_box_type, field, result)); 9564 return true; 9565 } 9566