1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciInstanceKlass.hpp"
  29 #include "ci/ciUtilities.inline.hpp"
  30 #include "ci/ciSymbols.hpp"
  31 #include "classfile/vmIntrinsics.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/c2/barrierSetC2.hpp"
  36 #include "jfr/support/jfrIntrinsics.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/accessDecorators.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "oops/layoutKind.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "opto/addnode.hpp"
  43 #include "opto/arraycopynode.hpp"
  44 #include "opto/c2compiler.hpp"
  45 #include "opto/castnode.hpp"
  46 #include "opto/cfgnode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/countbitsnode.hpp"
  49 #include "opto/graphKit.hpp"
  50 #include "opto/idealKit.hpp"
  51 #include "opto/library_call.hpp"
  52 #include "opto/inlinetypenode.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/opaquenode.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/runtime.hpp"
  60 #include "opto/rootnode.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "prims/jvmtiThreadState.hpp"
  66 #include "prims/unsafe.hpp"
  67 #include "runtime/jniHandles.inline.hpp"
  68 #include "runtime/objectMonitor.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "utilities/globalDefinitions.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/powerOfTwo.hpp"
  74 
  75 //---------------------------make_vm_intrinsic----------------------------
  76 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  77   vmIntrinsicID id = m->intrinsic_id();
  78   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  79 
  80   if (!m->is_loaded()) {
  81     // Do not attempt to inline unloaded methods.
  82     return nullptr;
  83   }
  84 
  85   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  86   bool is_available = false;
  87 
  88   {
  89     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  90     // the compiler must transition to '_thread_in_vm' state because both
  91     // methods access VM-internal data.
  92     VM_ENTRY_MARK;
  93     methodHandle mh(THREAD, m->get_Method());
  94     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  95     if (is_available && is_virtual) {
  96       is_available = vmIntrinsics::does_virtual_dispatch(id);
  97     }
  98   }
  99 
 100   if (is_available) {
 101     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 102     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 103     return new LibraryIntrinsic(m, is_virtual,
 104                                 vmIntrinsics::predicates_needed(id),
 105                                 vmIntrinsics::does_virtual_dispatch(id),
 106                                 id);
 107   } else {
 108     return nullptr;
 109   }
 110 }
 111 
 112 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 113   LibraryCallKit kit(jvms, this);
 114   Compile* C = kit.C;
 115   int nodes = C->unique();
 116 #ifndef PRODUCT
 117   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 118     char buf[1000];
 119     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 120     tty->print_cr("Intrinsic %s", str);
 121   }
 122 #endif
 123   ciMethod* callee = kit.callee();
 124   const int bci    = kit.bci();
 125 #ifdef ASSERT
 126   Node* ctrl = kit.control();
 127 #endif
 128   // Try to inline the intrinsic.
 129   if (callee->check_intrinsic_candidate() &&
 130       kit.try_to_inline(_last_predicate)) {
 131     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 132                                           : "(intrinsic)";
 133     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 134     C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
 135     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 136     if (C->log()) {
 137       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 138                      vmIntrinsics::name_at(intrinsic_id()),
 139                      (is_virtual() ? " virtual='1'" : ""),
 140                      C->unique() - nodes);
 141     }
 142     // Push the result from the inlined method onto the stack.
 143     kit.push_result();
 144     return kit.transfer_exceptions_into_jvms();
 145   }
 146 
 147   // The intrinsic bailed out
 148   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 149   if (jvms->has_method()) {
 150     // Not a root compile.
 151     const char* msg;
 152     if (callee->intrinsic_candidate()) {
 153       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 154     } else {
 155       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 156                          : "failed to inline (intrinsic), method not annotated";
 157     }
 158     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 159     C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg);
 160   } else {
 161     // Root compile
 162     ResourceMark rm;
 163     stringStream msg_stream;
 164     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 165                      vmIntrinsics::name_at(intrinsic_id()),
 166                      is_virtual() ? " (virtual)" : "", bci);
 167     const char *msg = msg_stream.freeze();
 168     log_debug(jit, inlining)("%s", msg);
 169     if (C->print_intrinsics() || C->print_inlining()) {
 170       tty->print("%s", msg);
 171     }
 172   }
 173   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 174 
 175   return nullptr;
 176 }
 177 
 178 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 179   LibraryCallKit kit(jvms, this);
 180   Compile* C = kit.C;
 181   int nodes = C->unique();
 182   _last_predicate = predicate;
 183 #ifndef PRODUCT
 184   assert(is_predicated() && predicate < predicates_count(), "sanity");
 185   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 186     char buf[1000];
 187     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 188     tty->print_cr("Predicate for intrinsic %s", str);
 189   }
 190 #endif
 191   ciMethod* callee = kit.callee();
 192   const int bci    = kit.bci();
 193 
 194   Node* slow_ctl = kit.try_to_predicate(predicate);
 195   if (!kit.failing()) {
 196     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 197                                           : "(intrinsic, predicate)";
 198     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 199     C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
 200 
 201     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 202     if (C->log()) {
 203       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 204                      vmIntrinsics::name_at(intrinsic_id()),
 205                      (is_virtual() ? " virtual='1'" : ""),
 206                      C->unique() - nodes);
 207     }
 208     return slow_ctl; // Could be null if the check folds.
 209   }
 210 
 211   // The intrinsic bailed out
 212   if (jvms->has_method()) {
 213     // Not a root compile.
 214     const char* msg = "failed to generate predicate for intrinsic";
 215     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 216     C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
 217   } else {
 218     // Root compile
 219     ResourceMark rm;
 220     stringStream msg_stream;
 221     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 222                      vmIntrinsics::name_at(intrinsic_id()),
 223                      is_virtual() ? " (virtual)" : "", bci);
 224     const char *msg = msg_stream.freeze();
 225     log_debug(jit, inlining)("%s", msg);
 226     C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
 227   }
 228   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 229   return nullptr;
 230 }
 231 
 232 bool LibraryCallKit::try_to_inline(int predicate) {
 233   // Handle symbolic names for otherwise undistinguished boolean switches:
 234   const bool is_store       = true;
 235   const bool is_compress    = true;
 236   const bool is_static      = true;
 237   const bool is_volatile    = true;
 238 
 239   if (!jvms()->has_method()) {
 240     // Root JVMState has a null method.
 241     assert(map()->memory()->Opcode() == Op_Parm, "");
 242     // Insert the memory aliasing node
 243     set_all_memory(reset_memory());
 244   }
 245   assert(merged_memory(), "");
 246 
 247   switch (intrinsic_id()) {
 248   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 249   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 250   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 251 
 252   case vmIntrinsics::_ceil:
 253   case vmIntrinsics::_floor:
 254   case vmIntrinsics::_rint:
 255   case vmIntrinsics::_dsin:
 256   case vmIntrinsics::_dcos:
 257   case vmIntrinsics::_dtan:
 258   case vmIntrinsics::_dtanh:
 259   case vmIntrinsics::_dabs:
 260   case vmIntrinsics::_fabs:
 261   case vmIntrinsics::_iabs:
 262   case vmIntrinsics::_labs:
 263   case vmIntrinsics::_datan2:
 264   case vmIntrinsics::_dsqrt:
 265   case vmIntrinsics::_dsqrt_strict:
 266   case vmIntrinsics::_dexp:
 267   case vmIntrinsics::_dlog:
 268   case vmIntrinsics::_dlog10:
 269   case vmIntrinsics::_dpow:
 270   case vmIntrinsics::_dcopySign:
 271   case vmIntrinsics::_fcopySign:
 272   case vmIntrinsics::_dsignum:
 273   case vmIntrinsics::_roundF:
 274   case vmIntrinsics::_roundD:
 275   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 276 
 277   case vmIntrinsics::_notify:
 278   case vmIntrinsics::_notifyAll:
 279     return inline_notify(intrinsic_id());
 280 
 281   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 282   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 283   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 284   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 285   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 286   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 287   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 288   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 289   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 290   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 291   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 292   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 293   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 294   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 295 
 296   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 297 
 298   case vmIntrinsics::_arraySort:                return inline_array_sort();
 299   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 300 
 301   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 302   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 303   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 304   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 305 
 306   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 307   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 308   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 309   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 310   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 311   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 312   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 313   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 314 
 315   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 316 
 317   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 318 
 319   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 320   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 321   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 322   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 323 
 324   case vmIntrinsics::_compressStringC:
 325   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 326   case vmIntrinsics::_inflateStringC:
 327   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 328 
 329   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 330   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 331   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 332   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 333   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 334   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 335   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 336   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 337   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 338   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 339   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 340   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 341 
 342   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 343   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 344   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 345   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 346   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 347   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 348   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 349   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 350   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 351   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 352 
 353   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 354   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 355   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 356   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 357   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 358   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 359   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 360   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 361   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 362 
 363   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 364   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 365   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 366   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 367   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 368   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 369   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 370   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 371   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 372 
 373   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 374   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 375   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 376   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 377 
 378   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 379   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 380   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 381   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 382 
 383   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 384   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 385   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 386   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 387   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 388   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 389   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 390   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 391   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 392 
 393   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 394   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 395   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 396   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 397   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 398   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 399   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 400   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 401   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 402 
 403   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 404   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 405   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 406   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 407   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 408   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 409   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 410   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 411   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 412 
 413   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 414   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 415   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 416   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 417   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 418   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 419   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 420   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 421   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 422 
 423   case vmIntrinsics::_getFlatValue:             return inline_unsafe_flat_access(!is_store, Relaxed);
 424   case vmIntrinsics::_putFlatValue:             return inline_unsafe_flat_access( is_store, Relaxed);
 425 
 426   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 427   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 428   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 429   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 430   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 431 
 432   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 433   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 434   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 435   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 436   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 437   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 438   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 439   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 440   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 441   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 442   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 443   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 444   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 445   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 446   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 447   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 448   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 449   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 450   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 451   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 452 
 453   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 454   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 455   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 456   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 457   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 458   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 459   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 460   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 461   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 462   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 463   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 464   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 465   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 466   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 467   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 468 
 469   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 470   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 471   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 472   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 473 
 474   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 475   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 476   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 477   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 478   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 479 
 480   case vmIntrinsics::_loadFence:
 481   case vmIntrinsics::_storeFence:
 482   case vmIntrinsics::_storeStoreFence:
 483   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 484 
 485   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 486 
 487   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 488   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 489   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 490 
 491   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 492   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 493 
 494   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 495   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 496 
 497 #if INCLUDE_JVMTI
 498   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 499                                                                                          "notifyJvmtiStart", true, false);
 500   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 501                                                                                          "notifyJvmtiEnd", false, true);
 502   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 503                                                                                          "notifyJvmtiMount", false, false);
 504   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 505                                                                                          "notifyJvmtiUnmount", false, false);
 506   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 507 #endif
 508 
 509 #ifdef JFR_HAVE_INTRINSICS
 510   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 511   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 512   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 513 #endif
 514   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 515   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 516   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 517   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 518   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 519   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 520   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 521   case vmIntrinsics::_isFlatArray:              return inline_unsafe_isFlatArray();
 522   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 523   case vmIntrinsics::_getLength:                return inline_native_getLength();
 524   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 525   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 526   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 527   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 528   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 529   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 530   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 531 
 532   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 533   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 534   case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false);
 535   case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true);
 536   case vmIntrinsics::_newNullableAtomicArray:     return inline_newArray(/* null_free */ false, /* atomic */ true);
 537 
 538   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 539 
 540   case vmIntrinsics::_isInstance:
 541   case vmIntrinsics::_isHidden:
 542   case vmIntrinsics::_getSuperclass:
 543   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 544 
 545   case vmIntrinsics::_floatToRawIntBits:
 546   case vmIntrinsics::_floatToIntBits:
 547   case vmIntrinsics::_intBitsToFloat:
 548   case vmIntrinsics::_doubleToRawLongBits:
 549   case vmIntrinsics::_doubleToLongBits:
 550   case vmIntrinsics::_longBitsToDouble:
 551   case vmIntrinsics::_floatToFloat16:
 552   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 553   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 554   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 555   case vmIntrinsics::_floatIsFinite:
 556   case vmIntrinsics::_floatIsInfinite:
 557   case vmIntrinsics::_doubleIsFinite:
 558   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 559 
 560   case vmIntrinsics::_numberOfLeadingZeros_i:
 561   case vmIntrinsics::_numberOfLeadingZeros_l:
 562   case vmIntrinsics::_numberOfTrailingZeros_i:
 563   case vmIntrinsics::_numberOfTrailingZeros_l:
 564   case vmIntrinsics::_bitCount_i:
 565   case vmIntrinsics::_bitCount_l:
 566   case vmIntrinsics::_reverse_i:
 567   case vmIntrinsics::_reverse_l:
 568   case vmIntrinsics::_reverseBytes_i:
 569   case vmIntrinsics::_reverseBytes_l:
 570   case vmIntrinsics::_reverseBytes_s:
 571   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 572 
 573   case vmIntrinsics::_compress_i:
 574   case vmIntrinsics::_compress_l:
 575   case vmIntrinsics::_expand_i:
 576   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 577 
 578   case vmIntrinsics::_compareUnsigned_i:
 579   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 580 
 581   case vmIntrinsics::_divideUnsigned_i:
 582   case vmIntrinsics::_divideUnsigned_l:
 583   case vmIntrinsics::_remainderUnsigned_i:
 584   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 585 
 586   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 587 
 588   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 589   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 590   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 591   case vmIntrinsics::_Reference_clear0:         return inline_reference_clear0(false);
 592   case vmIntrinsics::_PhantomReference_clear0:  return inline_reference_clear0(true);
 593 
 594   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 595 
 596   case vmIntrinsics::_aescrypt_encryptBlock:
 597   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 598 
 599   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 600   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 601     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 602 
 603   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 604   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 605     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 606 
 607   case vmIntrinsics::_counterMode_AESCrypt:
 608     return inline_counterMode_AESCrypt(intrinsic_id());
 609 
 610   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 611     return inline_galoisCounterMode_AESCrypt();
 612 
 613   case vmIntrinsics::_md5_implCompress:
 614   case vmIntrinsics::_sha_implCompress:
 615   case vmIntrinsics::_sha2_implCompress:
 616   case vmIntrinsics::_sha5_implCompress:
 617   case vmIntrinsics::_sha3_implCompress:
 618     return inline_digestBase_implCompress(intrinsic_id());
 619   case vmIntrinsics::_double_keccak:
 620     return inline_double_keccak();
 621 
 622   case vmIntrinsics::_digestBase_implCompressMB:
 623     return inline_digestBase_implCompressMB(predicate);
 624 
 625   case vmIntrinsics::_multiplyToLen:
 626     return inline_multiplyToLen();
 627 
 628   case vmIntrinsics::_squareToLen:
 629     return inline_squareToLen();
 630 
 631   case vmIntrinsics::_mulAdd:
 632     return inline_mulAdd();
 633 
 634   case vmIntrinsics::_montgomeryMultiply:
 635     return inline_montgomeryMultiply();
 636   case vmIntrinsics::_montgomerySquare:
 637     return inline_montgomerySquare();
 638 
 639   case vmIntrinsics::_bigIntegerRightShiftWorker:
 640     return inline_bigIntegerShift(true);
 641   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 642     return inline_bigIntegerShift(false);
 643 
 644   case vmIntrinsics::_vectorizedMismatch:
 645     return inline_vectorizedMismatch();
 646 
 647   case vmIntrinsics::_ghash_processBlocks:
 648     return inline_ghash_processBlocks();
 649   case vmIntrinsics::_chacha20Block:
 650     return inline_chacha20Block();
 651   case vmIntrinsics::_kyberNtt:
 652     return inline_kyberNtt();
 653   case vmIntrinsics::_kyberInverseNtt:
 654     return inline_kyberInverseNtt();
 655   case vmIntrinsics::_kyberNttMult:
 656     return inline_kyberNttMult();
 657   case vmIntrinsics::_kyberAddPoly_2:
 658     return inline_kyberAddPoly_2();
 659   case vmIntrinsics::_kyberAddPoly_3:
 660     return inline_kyberAddPoly_3();
 661   case vmIntrinsics::_kyber12To16:
 662     return inline_kyber12To16();
 663   case vmIntrinsics::_kyberBarrettReduce:
 664     return inline_kyberBarrettReduce();
 665   case vmIntrinsics::_dilithiumAlmostNtt:
 666     return inline_dilithiumAlmostNtt();
 667   case vmIntrinsics::_dilithiumAlmostInverseNtt:
 668     return inline_dilithiumAlmostInverseNtt();
 669   case vmIntrinsics::_dilithiumNttMult:
 670     return inline_dilithiumNttMult();
 671   case vmIntrinsics::_dilithiumMontMulByConstant:
 672     return inline_dilithiumMontMulByConstant();
 673   case vmIntrinsics::_dilithiumDecomposePoly:
 674     return inline_dilithiumDecomposePoly();
 675   case vmIntrinsics::_base64_encodeBlock:
 676     return inline_base64_encodeBlock();
 677   case vmIntrinsics::_base64_decodeBlock:
 678     return inline_base64_decodeBlock();
 679   case vmIntrinsics::_poly1305_processBlocks:
 680     return inline_poly1305_processBlocks();
 681   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 682     return inline_intpoly_montgomeryMult_P256();
 683   case vmIntrinsics::_intpoly_assign:
 684     return inline_intpoly_assign();
 685   case vmIntrinsics::_encodeISOArray:
 686   case vmIntrinsics::_encodeByteISOArray:
 687     return inline_encodeISOArray(false);
 688   case vmIntrinsics::_encodeAsciiArray:
 689     return inline_encodeISOArray(true);
 690 
 691   case vmIntrinsics::_updateCRC32:
 692     return inline_updateCRC32();
 693   case vmIntrinsics::_updateBytesCRC32:
 694     return inline_updateBytesCRC32();
 695   case vmIntrinsics::_updateByteBufferCRC32:
 696     return inline_updateByteBufferCRC32();
 697 
 698   case vmIntrinsics::_updateBytesCRC32C:
 699     return inline_updateBytesCRC32C();
 700   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 701     return inline_updateDirectByteBufferCRC32C();
 702 
 703   case vmIntrinsics::_updateBytesAdler32:
 704     return inline_updateBytesAdler32();
 705   case vmIntrinsics::_updateByteBufferAdler32:
 706     return inline_updateByteBufferAdler32();
 707 
 708   case vmIntrinsics::_profileBoolean:
 709     return inline_profileBoolean();
 710   case vmIntrinsics::_isCompileConstant:
 711     return inline_isCompileConstant();
 712 
 713   case vmIntrinsics::_countPositives:
 714     return inline_countPositives();
 715 
 716   case vmIntrinsics::_fmaD:
 717   case vmIntrinsics::_fmaF:
 718     return inline_fma(intrinsic_id());
 719 
 720   case vmIntrinsics::_isDigit:
 721   case vmIntrinsics::_isLowerCase:
 722   case vmIntrinsics::_isUpperCase:
 723   case vmIntrinsics::_isWhitespace:
 724     return inline_character_compare(intrinsic_id());
 725 
 726   case vmIntrinsics::_min:
 727   case vmIntrinsics::_max:
 728   case vmIntrinsics::_min_strict:
 729   case vmIntrinsics::_max_strict:
 730   case vmIntrinsics::_minL:
 731   case vmIntrinsics::_maxL:
 732   case vmIntrinsics::_minF:
 733   case vmIntrinsics::_maxF:
 734   case vmIntrinsics::_minD:
 735   case vmIntrinsics::_maxD:
 736   case vmIntrinsics::_minF_strict:
 737   case vmIntrinsics::_maxF_strict:
 738   case vmIntrinsics::_minD_strict:
 739   case vmIntrinsics::_maxD_strict:
 740     return inline_min_max(intrinsic_id());
 741 
 742   case vmIntrinsics::_VectorUnaryOp:
 743     return inline_vector_nary_operation(1);
 744   case vmIntrinsics::_VectorBinaryOp:
 745     return inline_vector_nary_operation(2);
 746   case vmIntrinsics::_VectorUnaryLibOp:
 747     return inline_vector_call(1);
 748   case vmIntrinsics::_VectorBinaryLibOp:
 749     return inline_vector_call(2);
 750   case vmIntrinsics::_VectorTernaryOp:
 751     return inline_vector_nary_operation(3);
 752   case vmIntrinsics::_VectorFromBitsCoerced:
 753     return inline_vector_frombits_coerced();
 754   case vmIntrinsics::_VectorMaskOp:
 755     return inline_vector_mask_operation();
 756   case vmIntrinsics::_VectorLoadOp:
 757     return inline_vector_mem_operation(/*is_store=*/false);
 758   case vmIntrinsics::_VectorLoadMaskedOp:
 759     return inline_vector_mem_masked_operation(/*is_store*/false);
 760   case vmIntrinsics::_VectorStoreOp:
 761     return inline_vector_mem_operation(/*is_store=*/true);
 762   case vmIntrinsics::_VectorStoreMaskedOp:
 763     return inline_vector_mem_masked_operation(/*is_store=*/true);
 764   case vmIntrinsics::_VectorGatherOp:
 765     return inline_vector_gather_scatter(/*is_scatter*/ false);
 766   case vmIntrinsics::_VectorScatterOp:
 767     return inline_vector_gather_scatter(/*is_scatter*/ true);
 768   case vmIntrinsics::_VectorReductionCoerced:
 769     return inline_vector_reduction();
 770   case vmIntrinsics::_VectorTest:
 771     return inline_vector_test();
 772   case vmIntrinsics::_VectorBlend:
 773     return inline_vector_blend();
 774   case vmIntrinsics::_VectorRearrange:
 775     return inline_vector_rearrange();
 776   case vmIntrinsics::_VectorSelectFrom:
 777     return inline_vector_select_from();
 778   case vmIntrinsics::_VectorCompare:
 779     return inline_vector_compare();
 780   case vmIntrinsics::_VectorBroadcastInt:
 781     return inline_vector_broadcast_int();
 782   case vmIntrinsics::_VectorConvert:
 783     return inline_vector_convert();
 784   case vmIntrinsics::_VectorInsert:
 785     return inline_vector_insert();
 786   case vmIntrinsics::_VectorExtract:
 787     return inline_vector_extract();
 788   case vmIntrinsics::_VectorCompressExpand:
 789     return inline_vector_compress_expand();
 790   case vmIntrinsics::_VectorSelectFromTwoVectorOp:
 791     return inline_vector_select_from_two_vectors();
 792   case vmIntrinsics::_IndexVector:
 793     return inline_index_vector();
 794   case vmIntrinsics::_IndexPartiallyInUpperRange:
 795     return inline_index_partially_in_upper_range();
 796 
 797   case vmIntrinsics::_getObjectSize:
 798     return inline_getObjectSize();
 799 
 800   case vmIntrinsics::_blackhole:
 801     return inline_blackhole();
 802 
 803   default:
 804     // If you get here, it may be that someone has added a new intrinsic
 805     // to the list in vmIntrinsics.hpp without implementing it here.
 806 #ifndef PRODUCT
 807     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 808       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 809                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 810     }
 811 #endif
 812     return false;
 813   }
 814 }
 815 
 816 Node* LibraryCallKit::try_to_predicate(int predicate) {
 817   if (!jvms()->has_method()) {
 818     // Root JVMState has a null method.
 819     assert(map()->memory()->Opcode() == Op_Parm, "");
 820     // Insert the memory aliasing node
 821     set_all_memory(reset_memory());
 822   }
 823   assert(merged_memory(), "");
 824 
 825   switch (intrinsic_id()) {
 826   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 827     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 828   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 829     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 830   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 831     return inline_electronicCodeBook_AESCrypt_predicate(false);
 832   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 833     return inline_electronicCodeBook_AESCrypt_predicate(true);
 834   case vmIntrinsics::_counterMode_AESCrypt:
 835     return inline_counterMode_AESCrypt_predicate();
 836   case vmIntrinsics::_digestBase_implCompressMB:
 837     return inline_digestBase_implCompressMB_predicate(predicate);
 838   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 839     return inline_galoisCounterMode_AESCrypt_predicate();
 840 
 841   default:
 842     // If you get here, it may be that someone has added a new intrinsic
 843     // to the list in vmIntrinsics.hpp without implementing it here.
 844 #ifndef PRODUCT
 845     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 846       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 847                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 848     }
 849 #endif
 850     Node* slow_ctl = control();
 851     set_control(top()); // No fast path intrinsic
 852     return slow_ctl;
 853   }
 854 }
 855 
 856 //------------------------------set_result-------------------------------
 857 // Helper function for finishing intrinsics.
 858 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 859   record_for_igvn(region);
 860   set_control(_gvn.transform(region));
 861   set_result( _gvn.transform(value));
 862   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 863 }
 864 
 865 //------------------------------generate_guard---------------------------
 866 // Helper function for generating guarded fast-slow graph structures.
 867 // The given 'test', if true, guards a slow path.  If the test fails
 868 // then a fast path can be taken.  (We generally hope it fails.)
 869 // In all cases, GraphKit::control() is updated to the fast path.
 870 // The returned value represents the control for the slow path.
 871 // The return value is never 'top'; it is either a valid control
 872 // or null if it is obvious that the slow path can never be taken.
 873 // Also, if region and the slow control are not null, the slow edge
 874 // is appended to the region.
 875 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 876   if (stopped()) {
 877     // Already short circuited.
 878     return nullptr;
 879   }
 880 
 881   // Build an if node and its projections.
 882   // If test is true we take the slow path, which we assume is uncommon.
 883   if (_gvn.type(test) == TypeInt::ZERO) {
 884     // The slow branch is never taken.  No need to build this guard.
 885     return nullptr;
 886   }
 887 
 888   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 889 
 890   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 891   if (if_slow == top()) {
 892     // The slow branch is never taken.  No need to build this guard.
 893     return nullptr;
 894   }
 895 
 896   if (region != nullptr)
 897     region->add_req(if_slow);
 898 
 899   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 900   set_control(if_fast);
 901 
 902   return if_slow;
 903 }
 904 
 905 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 906   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 907 }
 908 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 909   return generate_guard(test, region, PROB_FAIR);
 910 }
 911 
 912 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 913                                                      Node* *pos_index) {
 914   if (stopped())
 915     return nullptr;                // already stopped
 916   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 917     return nullptr;                // index is already adequately typed
 918   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 919   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 920   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 921   if (is_neg != nullptr && pos_index != nullptr) {
 922     // Emulate effect of Parse::adjust_map_after_if.
 923     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 924     (*pos_index) = _gvn.transform(ccast);
 925   }
 926   return is_neg;
 927 }
 928 
 929 // Make sure that 'position' is a valid limit index, in [0..length].
 930 // There are two equivalent plans for checking this:
 931 //   A. (offset + copyLength)  unsigned<=  arrayLength
 932 //   B. offset  <=  (arrayLength - copyLength)
 933 // We require that all of the values above, except for the sum and
 934 // difference, are already known to be non-negative.
 935 // Plan A is robust in the face of overflow, if offset and copyLength
 936 // are both hugely positive.
 937 //
 938 // Plan B is less direct and intuitive, but it does not overflow at
 939 // all, since the difference of two non-negatives is always
 940 // representable.  Whenever Java methods must perform the equivalent
 941 // check they generally use Plan B instead of Plan A.
 942 // For the moment we use Plan A.
 943 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 944                                                   Node* subseq_length,
 945                                                   Node* array_length,
 946                                                   RegionNode* region) {
 947   if (stopped())
 948     return nullptr;                // already stopped
 949   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 950   if (zero_offset && subseq_length->eqv_uncast(array_length))
 951     return nullptr;                // common case of whole-array copy
 952   Node* last = subseq_length;
 953   if (!zero_offset)             // last += offset
 954     last = _gvn.transform(new AddINode(last, offset));
 955   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 956   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 957   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 958   return is_over;
 959 }
 960 
 961 // Emit range checks for the given String.value byte array
 962 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 963   if (stopped()) {
 964     return; // already stopped
 965   }
 966   RegionNode* bailout = new RegionNode(1);
 967   record_for_igvn(bailout);
 968   if (char_count) {
 969     // Convert char count to byte count
 970     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 971   }
 972 
 973   // Offset and count must not be negative
 974   generate_negative_guard(offset, bailout);
 975   generate_negative_guard(count, bailout);
 976   // Offset + count must not exceed length of array
 977   generate_limit_guard(offset, count, load_array_length(array), bailout);
 978 
 979   if (bailout->req() > 1) {
 980     PreserveJVMState pjvms(this);
 981     set_control(_gvn.transform(bailout));
 982     uncommon_trap(Deoptimization::Reason_intrinsic,
 983                   Deoptimization::Action_maybe_recompile);
 984   }
 985 }
 986 
 987 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 988                                             bool is_immutable) {
 989   ciKlass* thread_klass = env()->Thread_klass();
 990   const Type* thread_type
 991     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 992 
 993   Node* thread = _gvn.transform(new ThreadLocalNode());
 994   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 995   tls_output = thread;
 996 
 997   Node* thread_obj_handle
 998     = (is_immutable
 999       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
1000         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
1001       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
1002   thread_obj_handle = _gvn.transform(thread_obj_handle);
1003 
1004   DecoratorSet decorators = IN_NATIVE;
1005   if (is_immutable) {
1006     decorators |= C2_IMMUTABLE_MEMORY;
1007   }
1008   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
1009 }
1010 
1011 //--------------------------generate_current_thread--------------------
1012 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1013   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
1014                                /*is_immutable*/false);
1015 }
1016 
1017 //--------------------------generate_virtual_thread--------------------
1018 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
1019   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
1020                                !C->method()->changes_current_thread());
1021 }
1022 
1023 //------------------------------make_string_method_node------------------------
1024 // Helper method for String intrinsic functions. This version is called with
1025 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1026 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1027 // containing the lengths of str1 and str2.
1028 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1029   Node* result = nullptr;
1030   switch (opcode) {
1031   case Op_StrIndexOf:
1032     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1033                                 str1_start, cnt1, str2_start, cnt2, ae);
1034     break;
1035   case Op_StrComp:
1036     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1037                              str1_start, cnt1, str2_start, cnt2, ae);
1038     break;
1039   case Op_StrEquals:
1040     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1041     // Use the constant length if there is one because optimized match rule may exist.
1042     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1043                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1044     break;
1045   default:
1046     ShouldNotReachHere();
1047     return nullptr;
1048   }
1049 
1050   // All these intrinsics have checks.
1051   C->set_has_split_ifs(true); // Has chance for split-if optimization
1052   clear_upper_avx();
1053 
1054   return _gvn.transform(result);
1055 }
1056 
1057 //------------------------------inline_string_compareTo------------------------
1058 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1059   Node* arg1 = argument(0);
1060   Node* arg2 = argument(1);
1061 
1062   arg1 = must_be_not_null(arg1, true);
1063   arg2 = must_be_not_null(arg2, true);
1064 
1065   // Get start addr and length of first argument
1066   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1067   Node* arg1_cnt    = load_array_length(arg1);
1068 
1069   // Get start addr and length of second argument
1070   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1071   Node* arg2_cnt    = load_array_length(arg2);
1072 
1073   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1074   set_result(result);
1075   return true;
1076 }
1077 
1078 //------------------------------inline_string_equals------------------------
1079 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1080   Node* arg1 = argument(0);
1081   Node* arg2 = argument(1);
1082 
1083   // paths (plus control) merge
1084   RegionNode* region = new RegionNode(3);
1085   Node* phi = new PhiNode(region, TypeInt::BOOL);
1086 
1087   if (!stopped()) {
1088 
1089     arg1 = must_be_not_null(arg1, true);
1090     arg2 = must_be_not_null(arg2, true);
1091 
1092     // Get start addr and length of first argument
1093     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1094     Node* arg1_cnt    = load_array_length(arg1);
1095 
1096     // Get start addr and length of second argument
1097     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1098     Node* arg2_cnt    = load_array_length(arg2);
1099 
1100     // Check for arg1_cnt != arg2_cnt
1101     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1102     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1103     Node* if_ne = generate_slow_guard(bol, nullptr);
1104     if (if_ne != nullptr) {
1105       phi->init_req(2, intcon(0));
1106       region->init_req(2, if_ne);
1107     }
1108 
1109     // Check for count == 0 is done by assembler code for StrEquals.
1110 
1111     if (!stopped()) {
1112       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1113       phi->init_req(1, equals);
1114       region->init_req(1, control());
1115     }
1116   }
1117 
1118   // post merge
1119   set_control(_gvn.transform(region));
1120   record_for_igvn(region);
1121 
1122   set_result(_gvn.transform(phi));
1123   return true;
1124 }
1125 
1126 //------------------------------inline_array_equals----------------------------
1127 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1128   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1129   Node* arg1 = argument(0);
1130   Node* arg2 = argument(1);
1131 
1132   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1133   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1134   clear_upper_avx();
1135 
1136   return true;
1137 }
1138 
1139 
1140 //------------------------------inline_countPositives------------------------------
1141 bool LibraryCallKit::inline_countPositives() {
1142   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1143     return false;
1144   }
1145 
1146   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1147   // no receiver since it is static method
1148   Node* ba         = argument(0);
1149   Node* offset     = argument(1);
1150   Node* len        = argument(2);
1151 
1152   ba = must_be_not_null(ba, true);
1153 
1154   // Range checks
1155   generate_string_range_check(ba, offset, len, false);
1156   if (stopped()) {
1157     return true;
1158   }
1159   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1160   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1161   set_result(_gvn.transform(result));
1162   clear_upper_avx();
1163   return true;
1164 }
1165 
1166 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1167   Node* index = argument(0);
1168   Node* length = bt == T_INT ? argument(1) : argument(2);
1169   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1170     return false;
1171   }
1172 
1173   // check that length is positive
1174   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1175   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1176 
1177   {
1178     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1179     uncommon_trap(Deoptimization::Reason_intrinsic,
1180                   Deoptimization::Action_make_not_entrant);
1181   }
1182 
1183   if (stopped()) {
1184     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1185     return true;
1186   }
1187 
1188   // length is now known positive, add a cast node to make this explicit
1189   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1190   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1191       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1192       ConstraintCastNode::RegularDependency, bt);
1193   casted_length = _gvn.transform(casted_length);
1194   replace_in_map(length, casted_length);
1195   length = casted_length;
1196 
1197   // Use an unsigned comparison for the range check itself
1198   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1199   BoolTest::mask btest = BoolTest::lt;
1200   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1201   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1202   _gvn.set_type(rc, rc->Value(&_gvn));
1203   if (!rc_bool->is_Con()) {
1204     record_for_igvn(rc);
1205   }
1206   set_control(_gvn.transform(new IfTrueNode(rc)));
1207   {
1208     PreserveJVMState pjvms(this);
1209     set_control(_gvn.transform(new IfFalseNode(rc)));
1210     uncommon_trap(Deoptimization::Reason_range_check,
1211                   Deoptimization::Action_make_not_entrant);
1212   }
1213 
1214   if (stopped()) {
1215     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1216     return true;
1217   }
1218 
1219   // index is now known to be >= 0 and < length, cast it
1220   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1221       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1222       ConstraintCastNode::RegularDependency, bt);
1223   result = _gvn.transform(result);
1224   set_result(result);
1225   replace_in_map(index, result);
1226   return true;
1227 }
1228 
1229 //------------------------------inline_string_indexOf------------------------
1230 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1231   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1232     return false;
1233   }
1234   Node* src = argument(0);
1235   Node* tgt = argument(1);
1236 
1237   // Make the merge point
1238   RegionNode* result_rgn = new RegionNode(4);
1239   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1240 
1241   src = must_be_not_null(src, true);
1242   tgt = must_be_not_null(tgt, true);
1243 
1244   // Get start addr and length of source string
1245   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1246   Node* src_count = load_array_length(src);
1247 
1248   // Get start addr and length of substring
1249   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1250   Node* tgt_count = load_array_length(tgt);
1251 
1252   Node* result = nullptr;
1253   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1254 
1255   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1256     // Divide src size by 2 if String is UTF16 encoded
1257     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1258   }
1259   if (ae == StrIntrinsicNode::UU) {
1260     // Divide substring size by 2 if String is UTF16 encoded
1261     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1262   }
1263 
1264   if (call_opt_stub) {
1265     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1266                                    StubRoutines::_string_indexof_array[ae],
1267                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1268                                    src_count, tgt_start, tgt_count);
1269     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1270   } else {
1271     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1272                                result_rgn, result_phi, ae);
1273   }
1274   if (result != nullptr) {
1275     result_phi->init_req(3, result);
1276     result_rgn->init_req(3, control());
1277   }
1278   set_control(_gvn.transform(result_rgn));
1279   record_for_igvn(result_rgn);
1280   set_result(_gvn.transform(result_phi));
1281 
1282   return true;
1283 }
1284 
1285 //-----------------------------inline_string_indexOfI-----------------------
1286 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1287   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1288     return false;
1289   }
1290   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1291     return false;
1292   }
1293 
1294   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1295   Node* src         = argument(0); // byte[]
1296   Node* src_count   = argument(1); // char count
1297   Node* tgt         = argument(2); // byte[]
1298   Node* tgt_count   = argument(3); // char count
1299   Node* from_index  = argument(4); // char index
1300 
1301   src = must_be_not_null(src, true);
1302   tgt = must_be_not_null(tgt, true);
1303 
1304   // Multiply byte array index by 2 if String is UTF16 encoded
1305   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1306   src_count = _gvn.transform(new SubINode(src_count, from_index));
1307   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1308   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1309 
1310   // Range checks
1311   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1312   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1313   if (stopped()) {
1314     return true;
1315   }
1316 
1317   RegionNode* region = new RegionNode(5);
1318   Node* phi = new PhiNode(region, TypeInt::INT);
1319   Node* result = nullptr;
1320 
1321   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1322 
1323   if (call_opt_stub) {
1324     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1325                                    StubRoutines::_string_indexof_array[ae],
1326                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1327                                    src_count, tgt_start, tgt_count);
1328     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1329   } else {
1330     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1331                                region, phi, ae);
1332   }
1333   if (result != nullptr) {
1334     // The result is index relative to from_index if substring was found, -1 otherwise.
1335     // Generate code which will fold into cmove.
1336     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1337     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1338 
1339     Node* if_lt = generate_slow_guard(bol, nullptr);
1340     if (if_lt != nullptr) {
1341       // result == -1
1342       phi->init_req(3, result);
1343       region->init_req(3, if_lt);
1344     }
1345     if (!stopped()) {
1346       result = _gvn.transform(new AddINode(result, from_index));
1347       phi->init_req(4, result);
1348       region->init_req(4, control());
1349     }
1350   }
1351 
1352   set_control(_gvn.transform(region));
1353   record_for_igvn(region);
1354   set_result(_gvn.transform(phi));
1355   clear_upper_avx();
1356 
1357   return true;
1358 }
1359 
1360 // Create StrIndexOfNode with fast path checks
1361 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1362                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1363   // Check for substr count > string count
1364   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1365   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1366   Node* if_gt = generate_slow_guard(bol, nullptr);
1367   if (if_gt != nullptr) {
1368     phi->init_req(1, intcon(-1));
1369     region->init_req(1, if_gt);
1370   }
1371   if (!stopped()) {
1372     // Check for substr count == 0
1373     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1374     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1375     Node* if_zero = generate_slow_guard(bol, nullptr);
1376     if (if_zero != nullptr) {
1377       phi->init_req(2, intcon(0));
1378       region->init_req(2, if_zero);
1379     }
1380   }
1381   if (!stopped()) {
1382     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1383   }
1384   return nullptr;
1385 }
1386 
1387 //-----------------------------inline_string_indexOfChar-----------------------
1388 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1389   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1390     return false;
1391   }
1392   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1393     return false;
1394   }
1395   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1396   Node* src         = argument(0); // byte[]
1397   Node* int_ch      = argument(1);
1398   Node* from_index  = argument(2);
1399   Node* max         = argument(3);
1400 
1401   src = must_be_not_null(src, true);
1402 
1403   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1404   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1405   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1406 
1407   // Range checks
1408   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1409 
1410   // Check for int_ch >= 0
1411   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1412   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1413   {
1414     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1415     uncommon_trap(Deoptimization::Reason_intrinsic,
1416                   Deoptimization::Action_maybe_recompile);
1417   }
1418   if (stopped()) {
1419     return true;
1420   }
1421 
1422   RegionNode* region = new RegionNode(3);
1423   Node* phi = new PhiNode(region, TypeInt::INT);
1424 
1425   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1426   C->set_has_split_ifs(true); // Has chance for split-if optimization
1427   _gvn.transform(result);
1428 
1429   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1430   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1431 
1432   Node* if_lt = generate_slow_guard(bol, nullptr);
1433   if (if_lt != nullptr) {
1434     // result == -1
1435     phi->init_req(2, result);
1436     region->init_req(2, if_lt);
1437   }
1438   if (!stopped()) {
1439     result = _gvn.transform(new AddINode(result, from_index));
1440     phi->init_req(1, result);
1441     region->init_req(1, control());
1442   }
1443   set_control(_gvn.transform(region));
1444   record_for_igvn(region);
1445   set_result(_gvn.transform(phi));
1446   clear_upper_avx();
1447 
1448   return true;
1449 }
1450 //---------------------------inline_string_copy---------------------
1451 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1452 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1453 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1454 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1455 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1456 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1457 bool LibraryCallKit::inline_string_copy(bool compress) {
1458   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1459     return false;
1460   }
1461   int nargs = 5;  // 2 oops, 3 ints
1462   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1463 
1464   Node* src         = argument(0);
1465   Node* src_offset  = argument(1);
1466   Node* dst         = argument(2);
1467   Node* dst_offset  = argument(3);
1468   Node* length      = argument(4);
1469 
1470   // Check for allocation before we add nodes that would confuse
1471   // tightly_coupled_allocation()
1472   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1473 
1474   // Figure out the size and type of the elements we will be copying.
1475   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1476   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1477   if (src_type == nullptr || dst_type == nullptr) {
1478     return false;
1479   }
1480   BasicType src_elem = src_type->elem()->array_element_basic_type();
1481   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1482   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1483          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1484          "Unsupported array types for inline_string_copy");
1485 
1486   src = must_be_not_null(src, true);
1487   dst = must_be_not_null(dst, true);
1488 
1489   // Convert char[] offsets to byte[] offsets
1490   bool convert_src = (compress && src_elem == T_BYTE);
1491   bool convert_dst = (!compress && dst_elem == T_BYTE);
1492   if (convert_src) {
1493     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1494   } else if (convert_dst) {
1495     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1496   }
1497 
1498   // Range checks
1499   generate_string_range_check(src, src_offset, length, convert_src);
1500   generate_string_range_check(dst, dst_offset, length, convert_dst);
1501   if (stopped()) {
1502     return true;
1503   }
1504 
1505   Node* src_start = array_element_address(src, src_offset, src_elem);
1506   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1507   // 'src_start' points to src array + scaled offset
1508   // 'dst_start' points to dst array + scaled offset
1509   Node* count = nullptr;
1510   if (compress) {
1511     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1512   } else {
1513     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1514   }
1515 
1516   if (alloc != nullptr) {
1517     if (alloc->maybe_set_complete(&_gvn)) {
1518       // "You break it, you buy it."
1519       InitializeNode* init = alloc->initialization();
1520       assert(init->is_complete(), "we just did this");
1521       init->set_complete_with_arraycopy();
1522       assert(dst->is_CheckCastPP(), "sanity");
1523       assert(dst->in(0)->in(0) == init, "dest pinned");
1524     }
1525     // Do not let stores that initialize this object be reordered with
1526     // a subsequent store that would make this object accessible by
1527     // other threads.
1528     // Record what AllocateNode this StoreStore protects so that
1529     // escape analysis can go from the MemBarStoreStoreNode to the
1530     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1531     // based on the escape status of the AllocateNode.
1532     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1533   }
1534   if (compress) {
1535     set_result(_gvn.transform(count));
1536   }
1537   clear_upper_avx();
1538 
1539   return true;
1540 }
1541 
1542 #ifdef _LP64
1543 #define XTOP ,top() /*additional argument*/
1544 #else  //_LP64
1545 #define XTOP        /*no additional argument*/
1546 #endif //_LP64
1547 
1548 //------------------------inline_string_toBytesU--------------------------
1549 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1550 bool LibraryCallKit::inline_string_toBytesU() {
1551   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1552     return false;
1553   }
1554   // Get the arguments.
1555   Node* value     = argument(0);
1556   Node* offset    = argument(1);
1557   Node* length    = argument(2);
1558 
1559   Node* newcopy = nullptr;
1560 
1561   // Set the original stack and the reexecute bit for the interpreter to reexecute
1562   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1563   { PreserveReexecuteState preexecs(this);
1564     jvms()->set_should_reexecute(true);
1565 
1566     // Check if a null path was taken unconditionally.
1567     value = null_check(value);
1568 
1569     RegionNode* bailout = new RegionNode(1);
1570     record_for_igvn(bailout);
1571 
1572     // Range checks
1573     generate_negative_guard(offset, bailout);
1574     generate_negative_guard(length, bailout);
1575     generate_limit_guard(offset, length, load_array_length(value), bailout);
1576     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1577     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1578 
1579     if (bailout->req() > 1) {
1580       PreserveJVMState pjvms(this);
1581       set_control(_gvn.transform(bailout));
1582       uncommon_trap(Deoptimization::Reason_intrinsic,
1583                     Deoptimization::Action_maybe_recompile);
1584     }
1585     if (stopped()) {
1586       return true;
1587     }
1588 
1589     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1590     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1591     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1592     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1593     guarantee(alloc != nullptr, "created above");
1594 
1595     // Calculate starting addresses.
1596     Node* src_start = array_element_address(value, offset, T_CHAR);
1597     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1598 
1599     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1600     const TypeInt* toffset = gvn().type(offset)->is_int();
1601     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1602 
1603     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1604     const char* copyfunc_name = "arraycopy";
1605     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1606     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1607                       OptoRuntime::fast_arraycopy_Type(),
1608                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1609                       src_start, dst_start, ConvI2X(length) XTOP);
1610     // Do not let reads from the cloned object float above the arraycopy.
1611     if (alloc->maybe_set_complete(&_gvn)) {
1612       // "You break it, you buy it."
1613       InitializeNode* init = alloc->initialization();
1614       assert(init->is_complete(), "we just did this");
1615       init->set_complete_with_arraycopy();
1616       assert(newcopy->is_CheckCastPP(), "sanity");
1617       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1618     }
1619     // Do not let stores that initialize this object be reordered with
1620     // a subsequent store that would make this object accessible by
1621     // other threads.
1622     // Record what AllocateNode this StoreStore protects so that
1623     // escape analysis can go from the MemBarStoreStoreNode to the
1624     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1625     // based on the escape status of the AllocateNode.
1626     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1627   } // original reexecute is set back here
1628 
1629   C->set_has_split_ifs(true); // Has chance for split-if optimization
1630   if (!stopped()) {
1631     set_result(newcopy);
1632   }
1633   clear_upper_avx();
1634 
1635   return true;
1636 }
1637 
1638 //------------------------inline_string_getCharsU--------------------------
1639 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1640 bool LibraryCallKit::inline_string_getCharsU() {
1641   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1642     return false;
1643   }
1644 
1645   // Get the arguments.
1646   Node* src       = argument(0);
1647   Node* src_begin = argument(1);
1648   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1649   Node* dst       = argument(3);
1650   Node* dst_begin = argument(4);
1651 
1652   // Check for allocation before we add nodes that would confuse
1653   // tightly_coupled_allocation()
1654   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1655 
1656   // Check if a null path was taken unconditionally.
1657   src = null_check(src);
1658   dst = null_check(dst);
1659   if (stopped()) {
1660     return true;
1661   }
1662 
1663   // Get length and convert char[] offset to byte[] offset
1664   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1665   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1666 
1667   // Range checks
1668   generate_string_range_check(src, src_begin, length, true);
1669   generate_string_range_check(dst, dst_begin, length, false);
1670   if (stopped()) {
1671     return true;
1672   }
1673 
1674   if (!stopped()) {
1675     // Calculate starting addresses.
1676     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1677     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1678 
1679     // Check if array addresses are aligned to HeapWordSize
1680     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1681     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1682     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1683                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1684 
1685     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1686     const char* copyfunc_name = "arraycopy";
1687     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1688     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1689                       OptoRuntime::fast_arraycopy_Type(),
1690                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1691                       src_start, dst_start, ConvI2X(length) XTOP);
1692     // Do not let reads from the cloned object float above the arraycopy.
1693     if (alloc != nullptr) {
1694       if (alloc->maybe_set_complete(&_gvn)) {
1695         // "You break it, you buy it."
1696         InitializeNode* init = alloc->initialization();
1697         assert(init->is_complete(), "we just did this");
1698         init->set_complete_with_arraycopy();
1699         assert(dst->is_CheckCastPP(), "sanity");
1700         assert(dst->in(0)->in(0) == init, "dest pinned");
1701       }
1702       // Do not let stores that initialize this object be reordered with
1703       // a subsequent store that would make this object accessible by
1704       // other threads.
1705       // Record what AllocateNode this StoreStore protects so that
1706       // escape analysis can go from the MemBarStoreStoreNode to the
1707       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1708       // based on the escape status of the AllocateNode.
1709       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1710     } else {
1711       insert_mem_bar(Op_MemBarCPUOrder);
1712     }
1713   }
1714 
1715   C->set_has_split_ifs(true); // Has chance for split-if optimization
1716   return true;
1717 }
1718 
1719 //----------------------inline_string_char_access----------------------------
1720 // Store/Load char to/from byte[] array.
1721 // static void StringUTF16.putChar(byte[] val, int index, int c)
1722 // static char StringUTF16.getChar(byte[] val, int index)
1723 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1724   Node* value  = argument(0);
1725   Node* index  = argument(1);
1726   Node* ch = is_store ? argument(2) : nullptr;
1727 
1728   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1729   // correctly requires matched array shapes.
1730   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1731           "sanity: byte[] and char[] bases agree");
1732   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1733           "sanity: byte[] and char[] scales agree");
1734 
1735   // Bail when getChar over constants is requested: constant folding would
1736   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1737   // Java method would constant fold nicely instead.
1738   if (!is_store && value->is_Con() && index->is_Con()) {
1739     return false;
1740   }
1741 
1742   // Save state and restore on bailout
1743   uint old_sp = sp();
1744   SafePointNode* old_map = clone_map();
1745 
1746   value = must_be_not_null(value, true);
1747 
1748   Node* adr = array_element_address(value, index, T_CHAR);
1749   if (adr->is_top()) {
1750     set_map(old_map);
1751     set_sp(old_sp);
1752     return false;
1753   }
1754   destruct_map_clone(old_map);
1755   if (is_store) {
1756     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1757   } else {
1758     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1759     set_result(ch);
1760   }
1761   return true;
1762 }
1763 
1764 
1765 //------------------------------inline_math-----------------------------------
1766 // public static double Math.abs(double)
1767 // public static double Math.sqrt(double)
1768 // public static double Math.log(double)
1769 // public static double Math.log10(double)
1770 // public static double Math.round(double)
1771 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1772   Node* arg = argument(0);
1773   Node* n = nullptr;
1774   switch (id) {
1775   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1776   case vmIntrinsics::_dsqrt:
1777   case vmIntrinsics::_dsqrt_strict:
1778                               n = new SqrtDNode(C, control(),  arg);  break;
1779   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1780   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1781   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1782   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1783   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break;
1784   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1785   default:  fatal_unexpected_iid(id);  break;
1786   }
1787   set_result(_gvn.transform(n));
1788   return true;
1789 }
1790 
1791 //------------------------------inline_math-----------------------------------
1792 // public static float Math.abs(float)
1793 // public static int Math.abs(int)
1794 // public static long Math.abs(long)
1795 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1796   Node* arg = argument(0);
1797   Node* n = nullptr;
1798   switch (id) {
1799   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1800   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1801   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1802   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1803   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1804   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1805   default:  fatal_unexpected_iid(id);  break;
1806   }
1807   set_result(_gvn.transform(n));
1808   return true;
1809 }
1810 
1811 //------------------------------runtime_math-----------------------------
1812 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1813   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1814          "must be (DD)D or (D)D type");
1815 
1816   // Inputs
1817   Node* a = argument(0);
1818   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr;
1819 
1820   const TypePtr* no_memory_effects = nullptr;
1821   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1822                                  no_memory_effects,
1823                                  a, top(), b, b ? top() : nullptr);
1824   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1825 #ifdef ASSERT
1826   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1827   assert(value_top == top(), "second value must be top");
1828 #endif
1829 
1830   set_result(value);
1831   return true;
1832 }
1833 
1834 //------------------------------inline_math_pow-----------------------------
1835 bool LibraryCallKit::inline_math_pow() {
1836   Node* exp = argument(2);
1837   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1838   if (d != nullptr) {
1839     if (d->getd() == 2.0) {
1840       // Special case: pow(x, 2.0) => x * x
1841       Node* base = argument(0);
1842       set_result(_gvn.transform(new MulDNode(base, base)));
1843       return true;
1844     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1845       // Special case: pow(x, 0.5) => sqrt(x)
1846       Node* base = argument(0);
1847       Node* zero = _gvn.zerocon(T_DOUBLE);
1848 
1849       RegionNode* region = new RegionNode(3);
1850       Node* phi = new PhiNode(region, Type::DOUBLE);
1851 
1852       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1853       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1854       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1855       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1856       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1857 
1858       Node* if_pow = generate_slow_guard(test, nullptr);
1859       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1860       phi->init_req(1, value_sqrt);
1861       region->init_req(1, control());
1862 
1863       if (if_pow != nullptr) {
1864         set_control(if_pow);
1865         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1866                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1867         const TypePtr* no_memory_effects = nullptr;
1868         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1869                                        no_memory_effects, base, top(), exp, top());
1870         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1871 #ifdef ASSERT
1872         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1873         assert(value_top == top(), "second value must be top");
1874 #endif
1875         phi->init_req(2, value_pow);
1876         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1877       }
1878 
1879       C->set_has_split_ifs(true); // Has chance for split-if optimization
1880       set_control(_gvn.transform(region));
1881       record_for_igvn(region);
1882       set_result(_gvn.transform(phi));
1883 
1884       return true;
1885     }
1886   }
1887 
1888   return StubRoutines::dpow() != nullptr ?
1889     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1890     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1891 }
1892 
1893 //------------------------------inline_math_native-----------------------------
1894 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1895   switch (id) {
1896   case vmIntrinsics::_dsin:
1897     return StubRoutines::dsin() != nullptr ?
1898       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1899       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1900   case vmIntrinsics::_dcos:
1901     return StubRoutines::dcos() != nullptr ?
1902       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1903       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1904   case vmIntrinsics::_dtan:
1905     return StubRoutines::dtan() != nullptr ?
1906       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1907       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1908   case vmIntrinsics::_dtanh:
1909     return StubRoutines::dtanh() != nullptr ?
1910       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false;
1911   case vmIntrinsics::_dexp:
1912     return StubRoutines::dexp() != nullptr ?
1913       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1914       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1915   case vmIntrinsics::_dlog:
1916     return StubRoutines::dlog() != nullptr ?
1917       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1918       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1919   case vmIntrinsics::_dlog10:
1920     return StubRoutines::dlog10() != nullptr ?
1921       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1922       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1923 
1924   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1925   case vmIntrinsics::_ceil:
1926   case vmIntrinsics::_floor:
1927   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1928 
1929   case vmIntrinsics::_dsqrt:
1930   case vmIntrinsics::_dsqrt_strict:
1931                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1932   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1933   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1934   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1935   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1936 
1937   case vmIntrinsics::_dpow:      return inline_math_pow();
1938   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1939   case vmIntrinsics::_fcopySign: return inline_math(id);
1940   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1941   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1942   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1943 
1944    // These intrinsics are not yet correctly implemented
1945   case vmIntrinsics::_datan2:
1946     return false;
1947 
1948   default:
1949     fatal_unexpected_iid(id);
1950     return false;
1951   }
1952 }
1953 
1954 //----------------------------inline_notify-----------------------------------*
1955 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1956   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1957   address func;
1958   if (id == vmIntrinsics::_notify) {
1959     func = OptoRuntime::monitor_notify_Java();
1960   } else {
1961     func = OptoRuntime::monitor_notifyAll_Java();
1962   }
1963   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1964   make_slow_call_ex(call, env()->Throwable_klass(), false);
1965   return true;
1966 }
1967 
1968 
1969 //----------------------------inline_min_max-----------------------------------
1970 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1971   Node* a = nullptr;
1972   Node* b = nullptr;
1973   Node* n = nullptr;
1974   switch (id) {
1975     case vmIntrinsics::_min:
1976     case vmIntrinsics::_max:
1977     case vmIntrinsics::_minF:
1978     case vmIntrinsics::_maxF:
1979     case vmIntrinsics::_minF_strict:
1980     case vmIntrinsics::_maxF_strict:
1981     case vmIntrinsics::_min_strict:
1982     case vmIntrinsics::_max_strict:
1983       assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
1984       a = argument(0);
1985       b = argument(1);
1986       break;
1987     case vmIntrinsics::_minD:
1988     case vmIntrinsics::_maxD:
1989     case vmIntrinsics::_minD_strict:
1990     case vmIntrinsics::_maxD_strict:
1991       assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
1992       a = argument(0);
1993       b = argument(2);
1994       break;
1995     case vmIntrinsics::_minL:
1996     case vmIntrinsics::_maxL:
1997       assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each.");
1998       a = argument(0);
1999       b = argument(2);
2000       break;
2001     default:
2002       fatal_unexpected_iid(id);
2003       break;
2004   }
2005 
2006   switch (id) {
2007     case vmIntrinsics::_min:
2008     case vmIntrinsics::_min_strict:
2009       n = new MinINode(a, b);
2010       break;
2011     case vmIntrinsics::_max:
2012     case vmIntrinsics::_max_strict:
2013       n = new MaxINode(a, b);
2014       break;
2015     case vmIntrinsics::_minF:
2016     case vmIntrinsics::_minF_strict:
2017       n = new MinFNode(a, b);
2018       break;
2019     case vmIntrinsics::_maxF:
2020     case vmIntrinsics::_maxF_strict:
2021       n = new MaxFNode(a, b);
2022       break;
2023     case vmIntrinsics::_minD:
2024     case vmIntrinsics::_minD_strict:
2025       n = new MinDNode(a, b);
2026       break;
2027     case vmIntrinsics::_maxD:
2028     case vmIntrinsics::_maxD_strict:
2029       n = new MaxDNode(a, b);
2030       break;
2031     case vmIntrinsics::_minL:
2032       n = new MinLNode(_gvn.C, a, b);
2033       break;
2034     case vmIntrinsics::_maxL:
2035       n = new MaxLNode(_gvn.C, a, b);
2036       break;
2037     default:
2038       fatal_unexpected_iid(id);
2039       break;
2040   }
2041 
2042   set_result(_gvn.transform(n));
2043   return true;
2044 }
2045 
2046 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) {
2047   if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic,
2048                                    env()->ArithmeticException_instance())) {
2049     // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces),
2050     // so let's bail out intrinsic rather than risking deopting again.
2051     return false;
2052   }
2053 
2054   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2055   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2056   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2057   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2058 
2059   {
2060     PreserveJVMState pjvms(this);
2061     PreserveReexecuteState preexecs(this);
2062     jvms()->set_should_reexecute(true);
2063 
2064     set_control(slow_path);
2065     set_i_o(i_o());
2066 
2067     builtin_throw(Deoptimization::Reason_intrinsic,
2068                   env()->ArithmeticException_instance(),
2069                   /*allow_too_many_traps*/ false);
2070   }
2071 
2072   set_control(fast_path);
2073   set_result(math);
2074   return true;
2075 }
2076 
2077 template <typename OverflowOp>
2078 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2079   typedef typename OverflowOp::MathOp MathOp;
2080 
2081   MathOp* mathOp = new MathOp(arg1, arg2);
2082   Node* operation = _gvn.transform( mathOp );
2083   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2084   return inline_math_mathExact(operation, ofcheck);
2085 }
2086 
2087 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2088   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2089 }
2090 
2091 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2092   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2093 }
2094 
2095 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2096   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2097 }
2098 
2099 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2100   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2101 }
2102 
2103 bool LibraryCallKit::inline_math_negateExactI() {
2104   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2105 }
2106 
2107 bool LibraryCallKit::inline_math_negateExactL() {
2108   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2109 }
2110 
2111 bool LibraryCallKit::inline_math_multiplyExactI() {
2112   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2113 }
2114 
2115 bool LibraryCallKit::inline_math_multiplyExactL() {
2116   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2117 }
2118 
2119 bool LibraryCallKit::inline_math_multiplyHigh() {
2120   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2121   return true;
2122 }
2123 
2124 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2125   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2126   return true;
2127 }
2128 
2129 inline int
2130 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2131   const TypePtr* base_type = TypePtr::NULL_PTR;
2132   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2133   if (base_type == nullptr) {
2134     // Unknown type.
2135     return Type::AnyPtr;
2136   } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) {
2137     // Since this is a null+long form, we have to switch to a rawptr.
2138     base   = _gvn.transform(new CastX2PNode(offset));
2139     offset = MakeConX(0);
2140     return Type::RawPtr;
2141   } else if (base_type->base() == Type::RawPtr) {
2142     return Type::RawPtr;
2143   } else if (base_type->isa_oopptr()) {
2144     // Base is never null => always a heap address.
2145     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2146       return Type::OopPtr;
2147     }
2148     // Offset is small => always a heap address.
2149     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2150     if (offset_type != nullptr &&
2151         base_type->offset() == 0 &&     // (should always be?)
2152         offset_type->_lo >= 0 &&
2153         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2154       return Type::OopPtr;
2155     } else if (type == T_OBJECT) {
2156       // off heap access to an oop doesn't make any sense. Has to be on
2157       // heap.
2158       return Type::OopPtr;
2159     }
2160     // Otherwise, it might either be oop+off or null+addr.
2161     return Type::AnyPtr;
2162   } else {
2163     // No information:
2164     return Type::AnyPtr;
2165   }
2166 }
2167 
2168 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2169   Node* uncasted_base = base;
2170   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2171   if (kind == Type::RawPtr) {
2172     return basic_plus_adr(top(), uncasted_base, offset);
2173   } else if (kind == Type::AnyPtr) {
2174     assert(base == uncasted_base, "unexpected base change");
2175     if (can_cast) {
2176       if (!_gvn.type(base)->speculative_maybe_null() &&
2177           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2178         // According to profiling, this access is always on
2179         // heap. Casting the base to not null and thus avoiding membars
2180         // around the access should allow better optimizations
2181         Node* null_ctl = top();
2182         base = null_check_oop(base, &null_ctl, true, true, true);
2183         assert(null_ctl->is_top(), "no null control here");
2184         return basic_plus_adr(base, offset);
2185       } else if (_gvn.type(base)->speculative_always_null() &&
2186                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2187         // According to profiling, this access is always off
2188         // heap.
2189         base = null_assert(base);
2190         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2191         offset = MakeConX(0);
2192         return basic_plus_adr(top(), raw_base, offset);
2193       }
2194     }
2195     // We don't know if it's an on heap or off heap access. Fall back
2196     // to raw memory access.
2197     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2198     return basic_plus_adr(top(), raw, offset);
2199   } else {
2200     assert(base == uncasted_base, "unexpected base change");
2201     // We know it's an on heap access so base can't be null
2202     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2203       base = must_be_not_null(base, true);
2204     }
2205     return basic_plus_adr(base, offset);
2206   }
2207 }
2208 
2209 //--------------------------inline_number_methods-----------------------------
2210 // inline int     Integer.numberOfLeadingZeros(int)
2211 // inline int        Long.numberOfLeadingZeros(long)
2212 //
2213 // inline int     Integer.numberOfTrailingZeros(int)
2214 // inline int        Long.numberOfTrailingZeros(long)
2215 //
2216 // inline int     Integer.bitCount(int)
2217 // inline int        Long.bitCount(long)
2218 //
2219 // inline char  Character.reverseBytes(char)
2220 // inline short     Short.reverseBytes(short)
2221 // inline int     Integer.reverseBytes(int)
2222 // inline long       Long.reverseBytes(long)
2223 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2224   Node* arg = argument(0);
2225   Node* n = nullptr;
2226   switch (id) {
2227   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg); break;
2228   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg); break;
2229   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg); break;
2230   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg); break;
2231   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg); break;
2232   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg); break;
2233   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(     arg); break;
2234   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode(      arg); break;
2235   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode(      arg); break;
2236   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode(      arg); break;
2237   case vmIntrinsics::_reverse_i:                n = new ReverseINode(           arg); break;
2238   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(           arg); break;
2239   default:  fatal_unexpected_iid(id);  break;
2240   }
2241   set_result(_gvn.transform(n));
2242   return true;
2243 }
2244 
2245 //--------------------------inline_bitshuffle_methods-----------------------------
2246 // inline int Integer.compress(int, int)
2247 // inline int Integer.expand(int, int)
2248 // inline long Long.compress(long, long)
2249 // inline long Long.expand(long, long)
2250 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2251   Node* n = nullptr;
2252   switch (id) {
2253     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2254     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2255     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2256     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2257     default:  fatal_unexpected_iid(id);  break;
2258   }
2259   set_result(_gvn.transform(n));
2260   return true;
2261 }
2262 
2263 //--------------------------inline_number_methods-----------------------------
2264 // inline int Integer.compareUnsigned(int, int)
2265 // inline int    Long.compareUnsigned(long, long)
2266 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2267   Node* arg1 = argument(0);
2268   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2269   Node* n = nullptr;
2270   switch (id) {
2271     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2272     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2273     default:  fatal_unexpected_iid(id);  break;
2274   }
2275   set_result(_gvn.transform(n));
2276   return true;
2277 }
2278 
2279 //--------------------------inline_unsigned_divmod_methods-----------------------------
2280 // inline int Integer.divideUnsigned(int, int)
2281 // inline int Integer.remainderUnsigned(int, int)
2282 // inline long Long.divideUnsigned(long, long)
2283 // inline long Long.remainderUnsigned(long, long)
2284 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2285   Node* n = nullptr;
2286   switch (id) {
2287     case vmIntrinsics::_divideUnsigned_i: {
2288       zero_check_int(argument(1));
2289       // Compile-time detect of null-exception
2290       if (stopped()) {
2291         return true; // keep the graph constructed so far
2292       }
2293       n = new UDivINode(control(), argument(0), argument(1));
2294       break;
2295     }
2296     case vmIntrinsics::_divideUnsigned_l: {
2297       zero_check_long(argument(2));
2298       // Compile-time detect of null-exception
2299       if (stopped()) {
2300         return true; // keep the graph constructed so far
2301       }
2302       n = new UDivLNode(control(), argument(0), argument(2));
2303       break;
2304     }
2305     case vmIntrinsics::_remainderUnsigned_i: {
2306       zero_check_int(argument(1));
2307       // Compile-time detect of null-exception
2308       if (stopped()) {
2309         return true; // keep the graph constructed so far
2310       }
2311       n = new UModINode(control(), argument(0), argument(1));
2312       break;
2313     }
2314     case vmIntrinsics::_remainderUnsigned_l: {
2315       zero_check_long(argument(2));
2316       // Compile-time detect of null-exception
2317       if (stopped()) {
2318         return true; // keep the graph constructed so far
2319       }
2320       n = new UModLNode(control(), argument(0), argument(2));
2321       break;
2322     }
2323     default:  fatal_unexpected_iid(id);  break;
2324   }
2325   set_result(_gvn.transform(n));
2326   return true;
2327 }
2328 
2329 //----------------------------inline_unsafe_access----------------------------
2330 
2331 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2332   // Attempt to infer a sharper value type from the offset and base type.
2333   ciKlass* sharpened_klass = nullptr;
2334   bool null_free = false;
2335 
2336   // See if it is an instance field, with an object type.
2337   if (alias_type->field() != nullptr) {
2338     if (alias_type->field()->type()->is_klass()) {
2339       sharpened_klass = alias_type->field()->type()->as_klass();
2340       null_free = alias_type->field()->is_null_free();
2341     }
2342   }
2343 
2344   const TypeOopPtr* result = nullptr;
2345   // See if it is a narrow oop array.
2346   if (adr_type->isa_aryptr()) {
2347     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2348       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2349       null_free = adr_type->is_aryptr()->is_null_free();
2350       if (elem_type != nullptr && elem_type->is_loaded()) {
2351         // Sharpen the value type.
2352         result = elem_type;
2353       }
2354     }
2355   }
2356 
2357   // The sharpened class might be unloaded if there is no class loader
2358   // contraint in place.
2359   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2360     // Sharpen the value type.
2361     result = TypeOopPtr::make_from_klass(sharpened_klass);
2362     if (null_free) {
2363       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2364     }
2365   }
2366   if (result != nullptr) {
2367 #ifndef PRODUCT
2368     if (C->print_intrinsics() || C->print_inlining()) {
2369       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2370       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2371     }
2372 #endif
2373   }
2374   return result;
2375 }
2376 
2377 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2378   switch (kind) {
2379       case Relaxed:
2380         return MO_UNORDERED;
2381       case Opaque:
2382         return MO_RELAXED;
2383       case Acquire:
2384         return MO_ACQUIRE;
2385       case Release:
2386         return MO_RELEASE;
2387       case Volatile:
2388         return MO_SEQ_CST;
2389       default:
2390         ShouldNotReachHere();
2391         return 0;
2392   }
2393 }
2394 
2395 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2396   if (callee()->is_static())  return false;  // caller must have the capability!
2397   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2398   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2399   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2400   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2401 
2402   if (is_reference_type(type)) {
2403     decorators |= ON_UNKNOWN_OOP_REF;
2404   }
2405 
2406   if (unaligned) {
2407     decorators |= C2_UNALIGNED;
2408   }
2409 
2410 #ifndef PRODUCT
2411   {
2412     ResourceMark rm;
2413     // Check the signatures.
2414     ciSignature* sig = callee()->signature();
2415 #ifdef ASSERT
2416     if (!is_store) {
2417       // Object getReference(Object base, int/long offset), etc.
2418       BasicType rtype = sig->return_type()->basic_type();
2419       assert(rtype == type, "getter must return the expected value");
2420       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2421       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2422       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2423     } else {
2424       // void putReference(Object base, int/long offset, Object x), etc.
2425       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2426       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2427       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2428       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2429       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2430       assert(vtype == type, "putter must accept the expected value");
2431     }
2432 #endif // ASSERT
2433  }
2434 #endif //PRODUCT
2435 
2436   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2437 
2438   Node* receiver = argument(0);  // type: oop
2439 
2440   // Build address expression.
2441   Node* heap_base_oop = top();
2442 
2443   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2444   Node* base = argument(1);  // type: oop
2445   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2446   Node* offset = argument(2);  // type: long
2447   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2448   // to be plain byte offsets, which are also the same as those accepted
2449   // by oopDesc::field_addr.
2450   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2451          "fieldOffset must be byte-scaled");
2452 
2453   ciInlineKlass* inline_klass = nullptr;
2454   if (is_flat) {
2455     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2456     if (cls == nullptr || cls->const_oop() == nullptr) {
2457       return false;
2458     }
2459     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2460     if (!mirror_type->is_inlinetype()) {
2461       return false;
2462     }
2463     inline_klass = mirror_type->as_inline_klass();
2464   }
2465 
2466   if (base->is_InlineType()) {
2467     assert(!is_store, "InlineTypeNodes are non-larval value objects");
2468     InlineTypeNode* vt = base->as_InlineType();
2469     if (offset->is_Con()) {
2470       long off = find_long_con(offset, 0);
2471       ciInlineKlass* vk = vt->type()->inline_klass();
2472       if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2473         return false;
2474       }
2475 
2476       ciField* field = vk->get_non_flat_field_by_offset(off);
2477       if (field != nullptr) {
2478         BasicType bt = type2field[field->type()->basic_type()];
2479         if (bt == T_ARRAY || bt == T_NARROWOOP) {
2480           bt = T_OBJECT;
2481         }
2482         if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2483           Node* value = vt->field_value_by_offset(off, false);
2484           if (value->is_InlineType()) {
2485             value = value->as_InlineType()->adjust_scalarization_depth(this);
2486           }
2487           set_result(value);
2488           return true;
2489         }
2490       }
2491     }
2492     {
2493       // Re-execute the unsafe access if allocation triggers deoptimization.
2494       PreserveReexecuteState preexecs(this);
2495       jvms()->set_should_reexecute(true);
2496       vt = vt->buffer(this);
2497     }
2498     base = vt->get_oop();
2499   }
2500 
2501   // 32-bit machines ignore the high half!
2502   offset = ConvL2X(offset);
2503 
2504   // Save state and restore on bailout
2505   uint old_sp = sp();
2506   SafePointNode* old_map = clone_map();
2507 
2508   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2509   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2510 
2511   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2512     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2513       decorators |= IN_NATIVE; // off-heap primitive access
2514     } else {
2515       set_map(old_map);
2516       set_sp(old_sp);
2517       return false; // off-heap oop accesses are not supported
2518     }
2519   } else {
2520     heap_base_oop = base; // on-heap or mixed access
2521   }
2522 
2523   // Can base be null? Otherwise, always on-heap access.
2524   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2525 
2526   if (!can_access_non_heap) {
2527     decorators |= IN_HEAP;
2528   }
2529 
2530   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2531 
2532   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2533   if (adr_type == TypePtr::NULL_PTR) {
2534     set_map(old_map);
2535     set_sp(old_sp);
2536     return false; // off-heap access with zero address
2537   }
2538 
2539   // Try to categorize the address.
2540   Compile::AliasType* alias_type = C->alias_type(adr_type);
2541   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2542 
2543   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2544       alias_type->adr_type() == TypeAryPtr::RANGE) {
2545     set_map(old_map);
2546     set_sp(old_sp);
2547     return false; // not supported
2548   }
2549 
2550   bool mismatched = false;
2551   BasicType bt = T_ILLEGAL;
2552   ciField* field = nullptr;
2553   if (adr_type->isa_instptr()) {
2554     const TypeInstPtr* instptr = adr_type->is_instptr();
2555     ciInstanceKlass* k = instptr->instance_klass();
2556     int off = instptr->offset();
2557     if (instptr->const_oop() != nullptr &&
2558         k == ciEnv::current()->Class_klass() &&
2559         instptr->offset() >= (k->size_helper() * wordSize)) {
2560       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2561       field = k->get_field_by_offset(off, true);
2562     } else {
2563       field = k->get_non_flat_field_by_offset(off);
2564     }
2565     if (field != nullptr) {
2566       bt = type2field[field->type()->basic_type()];
2567     }
2568     if (bt != alias_type->basic_type()) {
2569       // Type mismatch. Is it an access to a nested flat field?
2570       field = k->get_field_by_offset(off, false);
2571       if (field != nullptr) {
2572         bt = type2field[field->type()->basic_type()];
2573       }
2574     }
2575     assert(bt == alias_type->basic_type() || is_flat, "should match");
2576   } else {
2577     bt = alias_type->basic_type();
2578   }
2579 
2580   if (bt != T_ILLEGAL) {
2581     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2582     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2583       // Alias type doesn't differentiate between byte[] and boolean[]).
2584       // Use address type to get the element type.
2585       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2586     }
2587     if (is_reference_type(bt, true)) {
2588       // accessing an array field with getReference is not a mismatch
2589       bt = T_OBJECT;
2590     }
2591     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2592       // Don't intrinsify mismatched object accesses
2593       set_map(old_map);
2594       set_sp(old_sp);
2595       return false;
2596     }
2597     mismatched = (bt != type);
2598   } else if (alias_type->adr_type()->isa_oopptr()) {
2599     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2600   }
2601 
2602   if (is_flat) {
2603     if (adr_type->isa_instptr()) {
2604       if (field == nullptr || field->type() != inline_klass) {
2605         mismatched = true;
2606       }
2607     } else if (adr_type->isa_aryptr()) {
2608       const Type* elem = adr_type->is_aryptr()->elem();
2609       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2610         mismatched = true;
2611       }
2612     } else {
2613       mismatched = true;
2614     }
2615     if (is_store) {
2616       const Type* val_t = _gvn.type(val);
2617       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2618         set_map(old_map);
2619         set_sp(old_sp);
2620         return false;
2621       }
2622     }
2623   }
2624 
2625   destruct_map_clone(old_map);
2626   assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2627 
2628   if (mismatched) {
2629     decorators |= C2_MISMATCHED;
2630   }
2631 
2632   // First guess at the value type.
2633   const Type *value_type = Type::get_const_basic_type(type);
2634 
2635   // Figure out the memory ordering.
2636   decorators |= mo_decorator_for_access_kind(kind);
2637 
2638   if (!is_store) {
2639     if (type == T_OBJECT && !is_flat) {
2640       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2641       if (tjp != nullptr) {
2642         value_type = tjp;
2643       }
2644     }
2645   }
2646 
2647   receiver = null_check(receiver);
2648   if (stopped()) {
2649     return true;
2650   }
2651   // Heap pointers get a null-check from the interpreter,
2652   // as a courtesy.  However, this is not guaranteed by Unsafe,
2653   // and it is not possible to fully distinguish unintended nulls
2654   // from intended ones in this API.
2655 
2656   if (!is_store) {
2657     Node* p = nullptr;
2658     // Try to constant fold a load from a constant field
2659 
2660     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2661       // final or stable field
2662       p = make_constant_from_field(field, heap_base_oop);
2663     }
2664 
2665     if (p == nullptr) { // Could not constant fold the load
2666       if (is_flat) {
2667         p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, adr_type, false, false, true);
2668       } else {
2669         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2670         const TypeOopPtr* ptr = value_type->make_oopptr();
2671         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2672           // Load a non-flattened inline type from memory
2673           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass());
2674         }
2675       }
2676       // Normalize the value returned by getBoolean in the following cases
2677       if (type == T_BOOLEAN &&
2678           (mismatched ||
2679            heap_base_oop == top() ||                  // - heap_base_oop is null or
2680            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2681                                                       //   and the unsafe access is made to large offset
2682                                                       //   (i.e., larger than the maximum offset necessary for any
2683                                                       //   field access)
2684             ) {
2685           IdealKit ideal = IdealKit(this);
2686 #define __ ideal.
2687           IdealVariable normalized_result(ideal);
2688           __ declarations_done();
2689           __ set(normalized_result, p);
2690           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2691           __ set(normalized_result, ideal.ConI(1));
2692           ideal.end_if();
2693           final_sync(ideal);
2694           p = __ value(normalized_result);
2695 #undef __
2696       }
2697     }
2698     if (type == T_ADDRESS) {
2699       p = gvn().transform(new CastP2XNode(nullptr, p));
2700       p = ConvX2UL(p);
2701     }
2702     // The load node has the control of the preceding MemBarCPUOrder.  All
2703     // following nodes will have the control of the MemBarCPUOrder inserted at
2704     // the end of this method.  So, pushing the load onto the stack at a later
2705     // point is fine.
2706     set_result(p);
2707   } else {
2708     if (bt == T_ADDRESS) {
2709       // Repackage the long as a pointer.
2710       val = ConvL2X(val);
2711       val = gvn().transform(new CastX2PNode(val));
2712     }
2713     if (is_flat) {
2714       val->as_InlineType()->store_flat(this, base, adr, false, false, true, decorators);
2715     } else {
2716       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2717     }
2718   }
2719 
2720   return true;
2721 }
2722 
2723 bool LibraryCallKit::inline_unsafe_flat_access(bool is_store, AccessKind kind) {
2724 #ifdef ASSERT
2725   {
2726     ResourceMark rm;
2727     // Check the signatures.
2728     ciSignature* sig = callee()->signature();
2729     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base should be object, but is %s", type2name(sig->type_at(0)->basic_type()));
2730     assert(sig->type_at(1)->basic_type() == T_LONG, "offset should be long, but is %s", type2name(sig->type_at(1)->basic_type()));
2731     assert(sig->type_at(2)->basic_type() == T_INT, "layout kind should be int, but is %s", type2name(sig->type_at(3)->basic_type()));
2732     assert(sig->type_at(3)->basic_type() == T_OBJECT, "value klass should be object, but is %s", type2name(sig->type_at(4)->basic_type()));
2733     if (is_store) {
2734       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value, but returns %s", type2name(sig->return_type()->basic_type()));
2735       assert(sig->count() == 5, "flat putter should have 5 arguments, but has %d", sig->count());
2736       assert(sig->type_at(4)->basic_type() == T_OBJECT, "put value should be object, but is %s", type2name(sig->type_at(5)->basic_type()));
2737     } else {
2738       assert(sig->return_type()->basic_type() == T_OBJECT, "getter must return an object, but returns %s", type2name(sig->return_type()->basic_type()));
2739       assert(sig->count() == 4, "flat getter should have 4 arguments, but has %d", sig->count());
2740     }
2741  }
2742 #endif // ASSERT
2743 
2744   assert(kind == Relaxed, "Only plain accesses for now");
2745   if (callee()->is_static()) {
2746     // caller must have the capability!
2747     return false;
2748   }
2749   C->set_has_unsafe_access(true);
2750 
2751   const TypeInstPtr* value_klass_node = _gvn.type(argument(5))->isa_instptr();
2752   if (value_klass_node == nullptr || value_klass_node->const_oop() == nullptr) {
2753     // parameter valueType is not a constant
2754     return false;
2755   }
2756   ciInlineKlass* value_klass = value_klass_node->const_oop()->as_instance()->java_mirror_type()->as_inline_klass();
2757 
2758   const TypeInt* layout_type = _gvn.type(argument(4))->isa_int();
2759   if (layout_type == nullptr || !layout_type->is_con()) {
2760     // parameter layoutKind is not a constant
2761     return false;
2762   }
2763   assert(layout_type->get_con() >= static_cast<int>(LayoutKind::REFERENCE) &&
2764          layout_type->get_con() <= static_cast<int>(LayoutKind::UNKNOWN),
2765          "invalid layoutKind %d", layout_type->get_con());
2766   LayoutKind layout = static_cast<LayoutKind>(layout_type->get_con());
2767   assert(layout == LayoutKind::REFERENCE || layout == LayoutKind::NON_ATOMIC_FLAT ||
2768          layout == LayoutKind::ATOMIC_FLAT || layout == LayoutKind::NULLABLE_ATOMIC_FLAT,
2769          "unexpected layoutKind %d", layout_type->get_con());
2770 
2771   null_check(argument(0));
2772   if (stopped()) {
2773     return true;
2774   }
2775 
2776   Node* base = must_be_not_null(argument(1), true);
2777   Node* offset = argument(2);
2778   const Type* base_type = _gvn.type(base);
2779 
2780   Node* ptr;
2781   bool immutable_memory = false;
2782   DecoratorSet decorators = C2_UNSAFE_ACCESS | IN_HEAP | MO_UNORDERED;
2783   if (base_type->isa_instptr()) {
2784     const TypeLong* offset_type = _gvn.type(offset)->isa_long();
2785     if (offset_type == nullptr || !offset_type->is_con()) {
2786       // Offset into a non-array should be a constant
2787       decorators |= C2_MISMATCHED;
2788     } else {
2789       int offset_con = checked_cast<int>(offset_type->get_con());
2790       ciInstanceKlass* base_klass = base_type->is_instptr()->instance_klass();
2791       ciField* field = base_klass->get_non_flat_field_by_offset(offset_con);
2792       if (field == nullptr) {
2793         assert(!base_klass->is_final(), "non-existence field at offset %d of class %s", offset_con, base_klass->name()->as_utf8());
2794         decorators |= C2_MISMATCHED;
2795       } else {
2796         assert(field->type() == value_klass, "field at offset %d of %s is of type %s, but valueType is %s",
2797                offset_con, base_klass->name()->as_utf8(), field->type()->name(), value_klass->name()->as_utf8());
2798         immutable_memory = field->is_strict() && field->is_final();
2799 
2800         if (base->is_InlineType()) {
2801           assert(!is_store, "Cannot store into a non-larval value object");
2802           set_result(base->as_InlineType()->field_value_by_offset(offset_con, false));
2803           return true;
2804         }
2805       }
2806     }
2807 
2808     if (base->is_InlineType()) {
2809       assert(!is_store, "Cannot store into a non-larval value object");
2810       base = base->as_InlineType()->buffer(this, true);
2811     }
2812     ptr = basic_plus_adr(base, ConvL2X(offset));
2813   } else if (base_type->isa_aryptr()) {
2814     decorators |= IS_ARRAY;
2815     if (layout == LayoutKind::REFERENCE) {
2816       if (!base_type->is_aryptr()->is_not_flat()) {
2817         const TypeAryPtr* array_type = base_type->is_aryptr()->cast_to_not_flat();
2818         Node* new_base = _gvn.transform(new CastPPNode(control(), base, array_type, ConstraintCastNode::StrongDependency));
2819         replace_in_map(base, new_base);
2820         base = new_base;
2821       }
2822       ptr = basic_plus_adr(base, ConvL2X(offset));
2823     } else {
2824       // Flat array must have an exact type
2825       bool is_null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2826       bool is_atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2827       Node* new_base = cast_to_flat_array(base, value_klass, is_null_free, !is_null_free, is_atomic);
2828       replace_in_map(base, new_base);
2829       base = new_base;
2830       ptr = basic_plus_adr(base, ConvL2X(offset));
2831       const TypeAryPtr* ptr_type = _gvn.type(ptr)->is_aryptr();
2832       if (ptr_type->field_offset().get() != 0) {
2833         ptr = _gvn.transform(new CastPPNode(control(), ptr, ptr_type->with_field_offset(0), ConstraintCastNode::StrongDependency));
2834       }
2835     }
2836   } else {
2837     decorators |= C2_MISMATCHED;
2838     ptr = basic_plus_adr(base, ConvL2X(offset));
2839   }
2840 
2841   if (is_store) {
2842     Node* value = argument(6);
2843     const Type* value_type = _gvn.type(value);
2844     if (!value_type->is_inlinetypeptr()) {
2845       value_type = Type::get_const_type(value_klass)->filter_speculative(value_type);
2846       Node* new_value = _gvn.transform(new CastPPNode(control(), value, value_type, ConstraintCastNode::StrongDependency));
2847       new_value = InlineTypeNode::make_from_oop(this, new_value, value_klass);
2848       replace_in_map(value, new_value);
2849       value = new_value;
2850     }
2851 
2852     assert(value_type->inline_klass() == value_klass, "value is of type %s while valueType is %s", value_type->inline_klass()->name()->as_utf8(), value_klass->name()->as_utf8());
2853     if (layout == LayoutKind::REFERENCE) {
2854       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2855       access_store_at(base, ptr, ptr_type, value, value_type, T_OBJECT, decorators);
2856     } else {
2857       bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2858       bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2859       value->as_InlineType()->store_flat(this, base, ptr, atomic, immutable_memory, null_free, decorators);
2860     }
2861 
2862     return true;
2863   } else {
2864     decorators |= (C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
2865     InlineTypeNode* result;
2866     if (layout == LayoutKind::REFERENCE) {
2867       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2868       Node* oop = access_load_at(base, ptr, ptr_type, Type::get_const_type(value_klass), T_OBJECT, decorators);
2869       result = InlineTypeNode::make_from_oop(this, oop, value_klass);
2870     } else {
2871       bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2872       bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2873       result = InlineTypeNode::make_from_flat(this, value_klass, base, ptr, atomic, immutable_memory, null_free, decorators);
2874     }
2875 
2876     set_result(result);
2877     return true;
2878   }
2879 }
2880 
2881 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2882   Node* receiver = argument(0);
2883   Node* value = argument(1);
2884 
2885   const Type* type = gvn().type(value);
2886   if (!type->is_inlinetypeptr()) {
2887     C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type");
2888     return false;
2889   }
2890 
2891   null_check(receiver);
2892   if (stopped()) {
2893     return true;
2894   }
2895 
2896   value = null_check(value);
2897   if (stopped()) {
2898     return true;
2899   }
2900 
2901   ciInlineKlass* vk = type->inline_klass();
2902   Node* klass = makecon(TypeKlassPtr::make(vk));
2903   Node* obj = new_instance(klass);
2904   AllocateNode::Ideal_allocation(obj)->_larval = true;
2905 
2906   assert(value->is_InlineType(), "must be an InlineTypeNode");
2907   Node* payload_ptr = basic_plus_adr(obj, vk->payload_offset());
2908   value->as_InlineType()->store_flat(this, obj, payload_ptr, false, true, true, IN_HEAP | MO_UNORDERED);
2909 
2910   set_result(obj);
2911   return true;
2912 }
2913 
2914 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2915   Node* receiver = argument(0);
2916   Node* buffer = argument(1);
2917 
2918   const Type* type = gvn().type(buffer);
2919   if (!type->is_inlinetypeptr()) {
2920     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type");
2921     return false;
2922   }
2923 
2924   AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer);
2925   if (alloc == nullptr) {
2926     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer");
2927     return false;
2928   }
2929 
2930   null_check(receiver);
2931   if (stopped()) {
2932     return true;
2933   }
2934 
2935   // Unset the larval bit in the object header
2936   Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned);
2937   Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place)));
2938   access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP);
2939 
2940   // We must ensure that the buffer is properly published
2941   insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
2942   assert(!type->maybe_null(), "result of an allocation should not be null");
2943   set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass()));
2944   return true;
2945 }
2946 
2947 //----------------------------inline_unsafe_load_store----------------------------
2948 // This method serves a couple of different customers (depending on LoadStoreKind):
2949 //
2950 // LS_cmp_swap:
2951 //
2952 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2953 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2954 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2955 //
2956 // LS_cmp_swap_weak:
2957 //
2958 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2959 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2960 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2961 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2962 //
2963 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2964 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2965 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2966 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2967 //
2968 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2969 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2970 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2971 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2972 //
2973 // LS_cmp_exchange:
2974 //
2975 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2976 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2977 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2978 //
2979 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2980 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2981 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2982 //
2983 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2984 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2985 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2986 //
2987 // LS_get_add:
2988 //
2989 //   int  getAndAddInt( Object o, long offset, int  delta)
2990 //   long getAndAddLong(Object o, long offset, long delta)
2991 //
2992 // LS_get_set:
2993 //
2994 //   int    getAndSet(Object o, long offset, int    newValue)
2995 //   long   getAndSet(Object o, long offset, long   newValue)
2996 //   Object getAndSet(Object o, long offset, Object newValue)
2997 //
2998 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2999   // This basic scheme here is the same as inline_unsafe_access, but
3000   // differs in enough details that combining them would make the code
3001   // overly confusing.  (This is a true fact! I originally combined
3002   // them, but even I was confused by it!) As much code/comments as
3003   // possible are retained from inline_unsafe_access though to make
3004   // the correspondences clearer. - dl
3005 
3006   if (callee()->is_static())  return false;  // caller must have the capability!
3007 
3008   DecoratorSet decorators = C2_UNSAFE_ACCESS;
3009   decorators |= mo_decorator_for_access_kind(access_kind);
3010 
3011 #ifndef PRODUCT
3012   BasicType rtype;
3013   {
3014     ResourceMark rm;
3015     // Check the signatures.
3016     ciSignature* sig = callee()->signature();
3017     rtype = sig->return_type()->basic_type();
3018     switch(kind) {
3019       case LS_get_add:
3020       case LS_get_set: {
3021       // Check the signatures.
3022 #ifdef ASSERT
3023       assert(rtype == type, "get and set must return the expected type");
3024       assert(sig->count() == 3, "get and set has 3 arguments");
3025       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
3026       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
3027       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
3028       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
3029 #endif // ASSERT
3030         break;
3031       }
3032       case LS_cmp_swap:
3033       case LS_cmp_swap_weak: {
3034       // Check the signatures.
3035 #ifdef ASSERT
3036       assert(rtype == T_BOOLEAN, "CAS must return boolean");
3037       assert(sig->count() == 4, "CAS has 4 arguments");
3038       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
3039       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
3040 #endif // ASSERT
3041         break;
3042       }
3043       case LS_cmp_exchange: {
3044       // Check the signatures.
3045 #ifdef ASSERT
3046       assert(rtype == type, "CAS must return the expected type");
3047       assert(sig->count() == 4, "CAS has 4 arguments");
3048       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
3049       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
3050 #endif // ASSERT
3051         break;
3052       }
3053       default:
3054         ShouldNotReachHere();
3055     }
3056   }
3057 #endif //PRODUCT
3058 
3059   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3060 
3061   // Get arguments:
3062   Node* receiver = nullptr;
3063   Node* base     = nullptr;
3064   Node* offset   = nullptr;
3065   Node* oldval   = nullptr;
3066   Node* newval   = nullptr;
3067   switch(kind) {
3068     case LS_cmp_swap:
3069     case LS_cmp_swap_weak:
3070     case LS_cmp_exchange: {
3071       const bool two_slot_type = type2size[type] == 2;
3072       receiver = argument(0);  // type: oop
3073       base     = argument(1);  // type: oop
3074       offset   = argument(2);  // type: long
3075       oldval   = argument(4);  // type: oop, int, or long
3076       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
3077       break;
3078     }
3079     case LS_get_add:
3080     case LS_get_set: {
3081       receiver = argument(0);  // type: oop
3082       base     = argument(1);  // type: oop
3083       offset   = argument(2);  // type: long
3084       oldval   = nullptr;
3085       newval   = argument(4);  // type: oop, int, or long
3086       break;
3087     }
3088     default:
3089       ShouldNotReachHere();
3090   }
3091 
3092   // Build field offset expression.
3093   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
3094   // to be plain byte offsets, which are also the same as those accepted
3095   // by oopDesc::field_addr.
3096   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3097   // 32-bit machines ignore the high half of long offsets
3098   offset = ConvL2X(offset);
3099   // Save state and restore on bailout
3100   uint old_sp = sp();
3101   SafePointNode* old_map = clone_map();
3102   Node* adr = make_unsafe_address(base, offset,type, false);
3103   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3104 
3105   Compile::AliasType* alias_type = C->alias_type(adr_type);
3106   BasicType bt = alias_type->basic_type();
3107   if (bt != T_ILLEGAL &&
3108       (is_reference_type(bt) != (type == T_OBJECT))) {
3109     // Don't intrinsify mismatched object accesses.
3110     set_map(old_map);
3111     set_sp(old_sp);
3112     return false;
3113   }
3114 
3115   destruct_map_clone(old_map);
3116 
3117   // For CAS, unlike inline_unsafe_access, there seems no point in
3118   // trying to refine types. Just use the coarse types here.
3119   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
3120   const Type *value_type = Type::get_const_basic_type(type);
3121 
3122   switch (kind) {
3123     case LS_get_set:
3124     case LS_cmp_exchange: {
3125       if (type == T_OBJECT) {
3126         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
3127         if (tjp != nullptr) {
3128           value_type = tjp;
3129         }
3130       }
3131       break;
3132     }
3133     case LS_cmp_swap:
3134     case LS_cmp_swap_weak:
3135     case LS_get_add:
3136       break;
3137     default:
3138       ShouldNotReachHere();
3139   }
3140 
3141   // Null check receiver.
3142   receiver = null_check(receiver);
3143   if (stopped()) {
3144     return true;
3145   }
3146 
3147   int alias_idx = C->get_alias_index(adr_type);
3148 
3149   if (is_reference_type(type)) {
3150     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
3151 
3152     if (oldval != nullptr && oldval->is_InlineType()) {
3153       // Re-execute the unsafe access if allocation triggers deoptimization.
3154       PreserveReexecuteState preexecs(this);
3155       jvms()->set_should_reexecute(true);
3156       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
3157     }
3158     if (newval != nullptr && newval->is_InlineType()) {
3159       // Re-execute the unsafe access if allocation triggers deoptimization.
3160       PreserveReexecuteState preexecs(this);
3161       jvms()->set_should_reexecute(true);
3162       newval = newval->as_InlineType()->buffer(this)->get_oop();
3163     }
3164 
3165     // Transformation of a value which could be null pointer (CastPP #null)
3166     // could be delayed during Parse (for example, in adjust_map_after_if()).
3167     // Execute transformation here to avoid barrier generation in such case.
3168     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3169       newval = _gvn.makecon(TypePtr::NULL_PTR);
3170 
3171     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
3172       // Refine the value to a null constant, when it is known to be null
3173       oldval = _gvn.makecon(TypePtr::NULL_PTR);
3174     }
3175   }
3176 
3177   Node* result = nullptr;
3178   switch (kind) {
3179     case LS_cmp_exchange: {
3180       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
3181                                             oldval, newval, value_type, type, decorators);
3182       break;
3183     }
3184     case LS_cmp_swap_weak:
3185       decorators |= C2_WEAK_CMPXCHG;
3186     case LS_cmp_swap: {
3187       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
3188                                              oldval, newval, value_type, type, decorators);
3189       break;
3190     }
3191     case LS_get_set: {
3192       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
3193                                      newval, value_type, type, decorators);
3194       break;
3195     }
3196     case LS_get_add: {
3197       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
3198                                     newval, value_type, type, decorators);
3199       break;
3200     }
3201     default:
3202       ShouldNotReachHere();
3203   }
3204 
3205   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3206   set_result(result);
3207   return true;
3208 }
3209 
3210 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3211   // Regardless of form, don't allow previous ld/st to move down,
3212   // then issue acquire, release, or volatile mem_bar.
3213   insert_mem_bar(Op_MemBarCPUOrder);
3214   switch(id) {
3215     case vmIntrinsics::_loadFence:
3216       insert_mem_bar(Op_LoadFence);
3217       return true;
3218     case vmIntrinsics::_storeFence:
3219       insert_mem_bar(Op_StoreFence);
3220       return true;
3221     case vmIntrinsics::_storeStoreFence:
3222       insert_mem_bar(Op_StoreStoreFence);
3223       return true;
3224     case vmIntrinsics::_fullFence:
3225       insert_mem_bar(Op_MemBarVolatile);
3226       return true;
3227     default:
3228       fatal_unexpected_iid(id);
3229       return false;
3230   }
3231 }
3232 
3233 bool LibraryCallKit::inline_onspinwait() {
3234   insert_mem_bar(Op_OnSpinWait);
3235   return true;
3236 }
3237 
3238 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3239   if (!kls->is_Con()) {
3240     return true;
3241   }
3242   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
3243   if (klsptr == nullptr) {
3244     return true;
3245   }
3246   ciInstanceKlass* ik = klsptr->instance_klass();
3247   // don't need a guard for a klass that is already initialized
3248   return !ik->is_initialized();
3249 }
3250 
3251 //----------------------------inline_unsafe_writeback0-------------------------
3252 // public native void Unsafe.writeback0(long address)
3253 bool LibraryCallKit::inline_unsafe_writeback0() {
3254   if (!Matcher::has_match_rule(Op_CacheWB)) {
3255     return false;
3256   }
3257 #ifndef PRODUCT
3258   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
3259   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
3260   ciSignature* sig = callee()->signature();
3261   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
3262 #endif
3263   null_check_receiver();  // null-check, then ignore
3264   Node *addr = argument(1);
3265   addr = new CastX2PNode(addr);
3266   addr = _gvn.transform(addr);
3267   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
3268   flush = _gvn.transform(flush);
3269   set_memory(flush, TypeRawPtr::BOTTOM);
3270   return true;
3271 }
3272 
3273 //----------------------------inline_unsafe_writeback0-------------------------
3274 // public native void Unsafe.writeback0(long address)
3275 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
3276   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
3277     return false;
3278   }
3279   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
3280     return false;
3281   }
3282 #ifndef PRODUCT
3283   assert(Matcher::has_match_rule(Op_CacheWB),
3284          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
3285                 : "found match rule for CacheWBPostSync but not CacheWB"));
3286 
3287 #endif
3288   null_check_receiver();  // null-check, then ignore
3289   Node *sync;
3290   if (is_pre) {
3291     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
3292   } else {
3293     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
3294   }
3295   sync = _gvn.transform(sync);
3296   set_memory(sync, TypeRawPtr::BOTTOM);
3297   return true;
3298 }
3299 
3300 //----------------------------inline_unsafe_allocate---------------------------
3301 // public native Object Unsafe.allocateInstance(Class<?> cls);
3302 bool LibraryCallKit::inline_unsafe_allocate() {
3303 
3304 #if INCLUDE_JVMTI
3305   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3306     return false;
3307   }
3308 #endif //INCLUDE_JVMTI
3309 
3310   if (callee()->is_static())  return false;  // caller must have the capability!
3311 
3312   null_check_receiver();  // null-check, then ignore
3313   Node* cls = null_check(argument(1));
3314   if (stopped())  return true;
3315 
3316   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
3317   kls = null_check(kls);
3318   if (stopped())  return true;  // argument was like int.class
3319 
3320 #if INCLUDE_JVMTI
3321     // Don't try to access new allocated obj in the intrinsic.
3322     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
3323     // Deoptimize and allocate in interpreter instead.
3324     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
3325     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
3326     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
3327     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3328     {
3329       BuildCutout unless(this, tst, PROB_MAX);
3330       uncommon_trap(Deoptimization::Reason_intrinsic,
3331                     Deoptimization::Action_make_not_entrant);
3332     }
3333     if (stopped()) {
3334       return true;
3335     }
3336 #endif //INCLUDE_JVMTI
3337 
3338   Node* test = nullptr;
3339   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3340     // Note:  The argument might still be an illegal value like
3341     // Serializable.class or Object[].class.   The runtime will handle it.
3342     // But we must make an explicit check for initialization.
3343     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3344     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3345     // can generate code to load it as unsigned byte.
3346     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3347     Node* bits = intcon(InstanceKlass::fully_initialized);
3348     test = _gvn.transform(new SubINode(inst, bits));
3349     // The 'test' is non-zero if we need to take a slow path.
3350   }
3351   Node* obj = nullptr;
3352   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3353   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3354     obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3355   } else {
3356     obj = new_instance(kls, test);
3357   }
3358   set_result(obj);
3359   return true;
3360 }
3361 
3362 //------------------------inline_native_time_funcs--------------
3363 // inline code for System.currentTimeMillis() and System.nanoTime()
3364 // these have the same type and signature
3365 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3366   const TypeFunc* tf = OptoRuntime::void_long_Type();
3367   const TypePtr* no_memory_effects = nullptr;
3368   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3369   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3370 #ifdef ASSERT
3371   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3372   assert(value_top == top(), "second value must be top");
3373 #endif
3374   set_result(value);
3375   return true;
3376 }
3377 
3378 
3379 #if INCLUDE_JVMTI
3380 
3381 // When notifications are disabled then just update the VTMS transition bit and return.
3382 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
3383 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
3384   if (!DoJVMTIVirtualThreadTransitions) {
3385     return true;
3386   }
3387   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
3388   IdealKit ideal(this);
3389 
3390   Node* ONE = ideal.ConI(1);
3391   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
3392   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
3393   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3394 
3395   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
3396     sync_kit(ideal);
3397     // if notifyJvmti enabled then make a call to the given SharedRuntime function
3398     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
3399     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
3400     ideal.sync_kit(this);
3401   } ideal.else_(); {
3402     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
3403     Node* thread = ideal.thread();
3404     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
3405     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
3406 
3407     sync_kit(ideal);
3408     access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3409     access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3410 
3411     ideal.sync_kit(this);
3412   } ideal.end_if();
3413   final_sync(ideal);
3414 
3415   return true;
3416 }
3417 
3418 // Always update the is_disable_suspend bit.
3419 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
3420   if (!DoJVMTIVirtualThreadTransitions) {
3421     return true;
3422   }
3423   IdealKit ideal(this);
3424 
3425   {
3426     // unconditionally update the is_disable_suspend bit in current JavaThread
3427     Node* thread = ideal.thread();
3428     Node* arg = _gvn.transform(argument(0)); // argument for notification
3429     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
3430     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3431 
3432     sync_kit(ideal);
3433     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3434     ideal.sync_kit(this);
3435   }
3436   final_sync(ideal);
3437 
3438   return true;
3439 }
3440 
3441 #endif // INCLUDE_JVMTI
3442 
3443 #ifdef JFR_HAVE_INTRINSICS
3444 
3445 /**
3446  * if oop->klass != null
3447  *   // normal class
3448  *   epoch = _epoch_state ? 2 : 1
3449  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3450  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3451  *   }
3452  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3453  * else
3454  *   // primitive class
3455  *   if oop->array_klass != null
3456  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3457  *   else
3458  *     id = LAST_TYPE_ID + 1 // void class path
3459  *   if (!signaled)
3460  *     signaled = true
3461  */
3462 bool LibraryCallKit::inline_native_classID() {
3463   Node* cls = argument(0);
3464 
3465   IdealKit ideal(this);
3466 #define __ ideal.
3467   IdealVariable result(ideal); __ declarations_done();
3468   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3469                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3470                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3471 
3472 
3473   __ if_then(kls, BoolTest::ne, null()); {
3474     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3475     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3476 
3477     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3478     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3479     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3480     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3481     mask = _gvn.transform(new OrLNode(mask, epoch));
3482     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3483 
3484     float unlikely  = PROB_UNLIKELY(0.999);
3485     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3486       sync_kit(ideal);
3487       make_runtime_call(RC_LEAF,
3488                         OptoRuntime::class_id_load_barrier_Type(),
3489                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3490                         "class id load barrier",
3491                         TypePtr::BOTTOM,
3492                         kls);
3493       ideal.sync_kit(this);
3494     } __ end_if();
3495 
3496     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3497   } __ else_(); {
3498     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3499                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3500                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3501     __ if_then(array_kls, BoolTest::ne, null()); {
3502       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3503       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3504       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3505       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3506     } __ else_(); {
3507       // void class case
3508       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3509     } __ end_if();
3510 
3511     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3512     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3513     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3514       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3515     } __ end_if();
3516   } __ end_if();
3517 
3518   final_sync(ideal);
3519   set_result(ideal.value(result));
3520 #undef __
3521   return true;
3522 }
3523 
3524 //------------------------inline_native_jvm_commit------------------
3525 bool LibraryCallKit::inline_native_jvm_commit() {
3526   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3527 
3528   // Save input memory and i_o state.
3529   Node* input_memory_state = reset_memory();
3530   set_all_memory(input_memory_state);
3531   Node* input_io_state = i_o();
3532 
3533   // TLS.
3534   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3535   // Jfr java buffer.
3536   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3537   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3538   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3539 
3540   // Load the current value of the notified field in the JfrThreadLocal.
3541   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3542   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3543 
3544   // Test for notification.
3545   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3546   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3547   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3548 
3549   // True branch, is notified.
3550   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3551   set_control(is_notified);
3552 
3553   // Reset notified state.
3554   store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered);
3555   Node* notified_reset_memory = reset_memory();
3556 
3557   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3558   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3559   // Convert the machine-word to a long.
3560   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3561 
3562   // False branch, not notified.
3563   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3564   set_control(not_notified);
3565   set_all_memory(input_memory_state);
3566 
3567   // Arg is the next position as a long.
3568   Node* arg = argument(0);
3569   // Convert long to machine-word.
3570   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3571 
3572   // Store the next_position to the underlying jfr java buffer.
3573   store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release);
3574 
3575   Node* commit_memory = reset_memory();
3576   set_all_memory(commit_memory);
3577 
3578   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3579   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3580   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3581   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3582 
3583   // And flags with lease constant.
3584   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3585 
3586   // Branch on lease to conditionalize returning the leased java buffer.
3587   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3588   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3589   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3590 
3591   // False branch, not a lease.
3592   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3593 
3594   // True branch, is lease.
3595   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3596   set_control(is_lease);
3597 
3598   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3599   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3600                                               OptoRuntime::void_void_Type(),
3601                                               SharedRuntime::jfr_return_lease(),
3602                                               "return_lease", TypePtr::BOTTOM);
3603   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3604 
3605   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3606   record_for_igvn(lease_compare_rgn);
3607   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3608   record_for_igvn(lease_compare_mem);
3609   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3610   record_for_igvn(lease_compare_io);
3611   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3612   record_for_igvn(lease_result_value);
3613 
3614   // Update control and phi nodes.
3615   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3616   lease_compare_rgn->init_req(_false_path, not_lease);
3617 
3618   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3619   lease_compare_mem->init_req(_false_path, commit_memory);
3620 
3621   lease_compare_io->init_req(_true_path, i_o());
3622   lease_compare_io->init_req(_false_path, input_io_state);
3623 
3624   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3625   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3626 
3627   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3628   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3629   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3630   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3631 
3632   // Update control and phi nodes.
3633   result_rgn->init_req(_true_path, is_notified);
3634   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3635 
3636   result_mem->init_req(_true_path, notified_reset_memory);
3637   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3638 
3639   result_io->init_req(_true_path, input_io_state);
3640   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3641 
3642   result_value->init_req(_true_path, current_pos);
3643   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3644 
3645   // Set output state.
3646   set_control(_gvn.transform(result_rgn));
3647   set_all_memory(_gvn.transform(result_mem));
3648   set_i_o(_gvn.transform(result_io));
3649   set_result(result_rgn, result_value);
3650   return true;
3651 }
3652 
3653 /*
3654  * The intrinsic is a model of this pseudo-code:
3655  *
3656  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3657  * jobject h_event_writer = tl->java_event_writer();
3658  * if (h_event_writer == nullptr) {
3659  *   return nullptr;
3660  * }
3661  * oop threadObj = Thread::threadObj();
3662  * oop vthread = java_lang_Thread::vthread(threadObj);
3663  * traceid tid;
3664  * bool pinVirtualThread;
3665  * bool excluded;
3666  * if (vthread != threadObj) {  // i.e. current thread is virtual
3667  *   tid = java_lang_Thread::tid(vthread);
3668  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3669  *   pinVirtualThread = VMContinuations;
3670  *   excluded = vthread_epoch_raw & excluded_mask;
3671  *   if (!excluded) {
3672  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3673  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3674  *     if (vthread_epoch != current_epoch) {
3675  *       write_checkpoint();
3676  *     }
3677  *   }
3678  * } else {
3679  *   tid = java_lang_Thread::tid(threadObj);
3680  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3681  *   pinVirtualThread = false;
3682  *   excluded = thread_epoch_raw & excluded_mask;
3683  * }
3684  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3685  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3686  * if (tid_in_event_writer != tid) {
3687  *   setField(event_writer, "pinVirtualThread", pinVirtualThread);
3688  *   setField(event_writer, "excluded", excluded);
3689  *   setField(event_writer, "threadID", tid);
3690  * }
3691  * return event_writer
3692  */
3693 bool LibraryCallKit::inline_native_getEventWriter() {
3694   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3695 
3696   // Save input memory and i_o state.
3697   Node* input_memory_state = reset_memory();
3698   set_all_memory(input_memory_state);
3699   Node* input_io_state = i_o();
3700 
3701   // The most significant bit of the u2 is used to denote thread exclusion
3702   Node* excluded_shift = _gvn.intcon(15);
3703   Node* excluded_mask = _gvn.intcon(1 << 15);
3704   // The epoch generation is the range [1-32767]
3705   Node* epoch_mask = _gvn.intcon(32767);
3706 
3707   // TLS
3708   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3709 
3710   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3711   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3712 
3713   // Load the eventwriter jobject handle.
3714   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3715 
3716   // Null check the jobject handle.
3717   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3718   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3719   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3720 
3721   // False path, jobj is null.
3722   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3723 
3724   // True path, jobj is not null.
3725   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3726 
3727   set_control(jobj_is_not_null);
3728 
3729   // Load the threadObj for the CarrierThread.
3730   Node* threadObj = generate_current_thread(tls_ptr);
3731 
3732   // Load the vthread.
3733   Node* vthread = generate_virtual_thread(tls_ptr);
3734 
3735   // If vthread != threadObj, this is a virtual thread.
3736   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3737   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3738   IfNode* iff_vthread_not_equal_threadObj =
3739     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3740 
3741   // False branch, fallback to threadObj.
3742   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3743   set_control(vthread_equal_threadObj);
3744 
3745   // Load the tid field from the vthread object.
3746   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3747 
3748   // Load the raw epoch value from the threadObj.
3749   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3750   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset,
3751                                              _gvn.type(threadObj_epoch_offset)->isa_ptr(),
3752                                              TypeInt::CHAR, T_CHAR,
3753                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3754 
3755   // Mask off the excluded information from the epoch.
3756   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3757 
3758   // True branch, this is a virtual thread.
3759   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3760   set_control(vthread_not_equal_threadObj);
3761 
3762   // Load the tid field from the vthread object.
3763   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3764 
3765   // Continuation support determines if a virtual thread should be pinned.
3766   Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations));
3767   Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3768 
3769   // Load the raw epoch value from the vthread.
3770   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3771   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(),
3772                                            TypeInt::CHAR, T_CHAR,
3773                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3774 
3775   // Mask off the excluded information from the epoch.
3776   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3777 
3778   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3779   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3780   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3781   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3782 
3783   // False branch, vthread is excluded, no need to write epoch info.
3784   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3785 
3786   // True branch, vthread is included, update epoch info.
3787   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3788   set_control(included);
3789 
3790   // Get epoch value.
3791   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3792 
3793   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3794   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3795   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3796 
3797   // Compare the epoch in the vthread to the current epoch generation.
3798   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3799   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3800   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3801 
3802   // False path, epoch is equal, checkpoint information is valid.
3803   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3804 
3805   // True path, epoch is not equal, write a checkpoint for the vthread.
3806   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3807 
3808   set_control(epoch_is_not_equal);
3809 
3810   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3811   // The call also updates the native thread local thread id and the vthread with the current epoch.
3812   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3813                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3814                                                   SharedRuntime::jfr_write_checkpoint(),
3815                                                   "write_checkpoint", TypePtr::BOTTOM);
3816   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3817 
3818   // vthread epoch != current epoch
3819   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3820   record_for_igvn(epoch_compare_rgn);
3821   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3822   record_for_igvn(epoch_compare_mem);
3823   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3824   record_for_igvn(epoch_compare_io);
3825 
3826   // Update control and phi nodes.
3827   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3828   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3829   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3830   epoch_compare_mem->init_req(_false_path, input_memory_state);
3831   epoch_compare_io->init_req(_true_path, i_o());
3832   epoch_compare_io->init_req(_false_path, input_io_state);
3833 
3834   // excluded != true
3835   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3836   record_for_igvn(exclude_compare_rgn);
3837   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3838   record_for_igvn(exclude_compare_mem);
3839   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3840   record_for_igvn(exclude_compare_io);
3841 
3842   // Update control and phi nodes.
3843   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3844   exclude_compare_rgn->init_req(_false_path, excluded);
3845   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3846   exclude_compare_mem->init_req(_false_path, input_memory_state);
3847   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3848   exclude_compare_io->init_req(_false_path, input_io_state);
3849 
3850   // vthread != threadObj
3851   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3852   record_for_igvn(vthread_compare_rgn);
3853   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3854   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3855   record_for_igvn(vthread_compare_io);
3856   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3857   record_for_igvn(tid);
3858   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR);
3859   record_for_igvn(exclusion);
3860   PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3861   record_for_igvn(pinVirtualThread);
3862 
3863   // Update control and phi nodes.
3864   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3865   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3866   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3867   vthread_compare_mem->init_req(_false_path, input_memory_state);
3868   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3869   vthread_compare_io->init_req(_false_path, input_io_state);
3870   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3871   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3872   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3873   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3874   pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support));
3875   pinVirtualThread->init_req(_false_path, _gvn.intcon(0));
3876 
3877   // Update branch state.
3878   set_control(_gvn.transform(vthread_compare_rgn));
3879   set_all_memory(_gvn.transform(vthread_compare_mem));
3880   set_i_o(_gvn.transform(vthread_compare_io));
3881 
3882   // Load the event writer oop by dereferencing the jobject handle.
3883   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3884   assert(klass_EventWriter->is_loaded(), "invariant");
3885   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3886   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3887   const TypeOopPtr* const xtype = aklass->as_instance_type();
3888   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3889   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3890 
3891   // Load the current thread id from the event writer object.
3892   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3893   // Get the field offset to, conditionally, store an updated tid value later.
3894   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3895   // Get the field offset to, conditionally, store an updated exclusion value later.
3896   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3897   // Get the field offset to, conditionally, store an updated pinVirtualThread value later.
3898   Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false);
3899 
3900   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3901   record_for_igvn(event_writer_tid_compare_rgn);
3902   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3903   record_for_igvn(event_writer_tid_compare_mem);
3904   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3905   record_for_igvn(event_writer_tid_compare_io);
3906 
3907   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3908   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3909   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3910   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3911 
3912   // False path, tids are the same.
3913   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3914 
3915   // True path, tid is not equal, need to update the tid in the event writer.
3916   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3917   record_for_igvn(tid_is_not_equal);
3918 
3919   // Store the pin state to the event writer.
3920   store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered);
3921 
3922   // Store the exclusion state to the event writer.
3923   Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift));
3924   store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered);
3925 
3926   // Store the tid to the event writer.
3927   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered);
3928 
3929   // Update control and phi nodes.
3930   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3931   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3932   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3933   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3934   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3935   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3936 
3937   // Result of top level CFG, Memory, IO and Value.
3938   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3939   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3940   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3941   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3942 
3943   // Result control.
3944   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3945   result_rgn->init_req(_false_path, jobj_is_null);
3946 
3947   // Result memory.
3948   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3949   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3950 
3951   // Result IO.
3952   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3953   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3954 
3955   // Result value.
3956   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3957   result_value->init_req(_false_path, null()); // return null
3958 
3959   // Set output state.
3960   set_control(_gvn.transform(result_rgn));
3961   set_all_memory(_gvn.transform(result_mem));
3962   set_i_o(_gvn.transform(result_io));
3963   set_result(result_rgn, result_value);
3964   return true;
3965 }
3966 
3967 /*
3968  * The intrinsic is a model of this pseudo-code:
3969  *
3970  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3971  * if (carrierThread != thread) { // is virtual thread
3972  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3973  *   bool excluded = vthread_epoch_raw & excluded_mask;
3974  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3975  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3976  *   if (!excluded) {
3977  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3978  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3979  *   }
3980  *   Atomic::release_store(&tl->_vthread, true);
3981  *   return;
3982  * }
3983  * Atomic::release_store(&tl->_vthread, false);
3984  */
3985 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3986   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3987 
3988   Node* input_memory_state = reset_memory();
3989   set_all_memory(input_memory_state);
3990 
3991   // The most significant bit of the u2 is used to denote thread exclusion
3992   Node* excluded_mask = _gvn.intcon(1 << 15);
3993   // The epoch generation is the range [1-32767]
3994   Node* epoch_mask = _gvn.intcon(32767);
3995 
3996   Node* const carrierThread = generate_current_thread(jt);
3997   // If thread != carrierThread, this is a virtual thread.
3998   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3999   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
4000   IfNode* iff_thread_not_equal_carrierThread =
4001     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
4002 
4003   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
4004 
4005   // False branch, is carrierThread.
4006   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
4007   // Store release
4008   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true);
4009 
4010   set_all_memory(input_memory_state);
4011 
4012   // True branch, is virtual thread.
4013   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
4014   set_control(thread_not_equal_carrierThread);
4015 
4016   // Load the raw epoch value from the vthread.
4017   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
4018   Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR,
4019                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
4020 
4021   // Mask off the excluded information from the epoch.
4022   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
4023 
4024   // Load the tid field from the thread.
4025   Node* tid = load_field_from_object(thread, "tid", "J");
4026 
4027   // Store the vthread tid to the jfr thread local.
4028   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
4029   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true);
4030 
4031   // Branch is_excluded to conditionalize updating the epoch .
4032   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
4033   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
4034   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
4035 
4036   // True branch, vthread is excluded, no need to write epoch info.
4037   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
4038   set_control(excluded);
4039   Node* vthread_is_excluded = _gvn.intcon(1);
4040 
4041   // False branch, vthread is included, update epoch info.
4042   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
4043   set_control(included);
4044   Node* vthread_is_included = _gvn.intcon(0);
4045 
4046   // Get epoch value.
4047   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
4048 
4049   // Store the vthread epoch to the jfr thread local.
4050   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
4051   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true);
4052 
4053   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
4054   record_for_igvn(excluded_rgn);
4055   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
4056   record_for_igvn(excluded_mem);
4057   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
4058   record_for_igvn(exclusion);
4059 
4060   // Merge the excluded control and memory.
4061   excluded_rgn->init_req(_true_path, excluded);
4062   excluded_rgn->init_req(_false_path, included);
4063   excluded_mem->init_req(_true_path, tid_memory);
4064   excluded_mem->init_req(_false_path, included_memory);
4065   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
4066   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
4067 
4068   // Set intermediate state.
4069   set_control(_gvn.transform(excluded_rgn));
4070   set_all_memory(excluded_mem);
4071 
4072   // Store the vthread exclusion state to the jfr thread local.
4073   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
4074   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true);
4075 
4076   // Store release
4077   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true);
4078 
4079   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
4080   record_for_igvn(thread_compare_rgn);
4081   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
4082   record_for_igvn(thread_compare_mem);
4083   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
4084   record_for_igvn(vthread);
4085 
4086   // Merge the thread_compare control and memory.
4087   thread_compare_rgn->init_req(_true_path, control());
4088   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
4089   thread_compare_mem->init_req(_true_path, vthread_true_memory);
4090   thread_compare_mem->init_req(_false_path, vthread_false_memory);
4091 
4092   // Set output state.
4093   set_control(_gvn.transform(thread_compare_rgn));
4094   set_all_memory(_gvn.transform(thread_compare_mem));
4095 }
4096 
4097 #endif // JFR_HAVE_INTRINSICS
4098 
4099 //------------------------inline_native_currentCarrierThread------------------
4100 bool LibraryCallKit::inline_native_currentCarrierThread() {
4101   Node* junk = nullptr;
4102   set_result(generate_current_thread(junk));
4103   return true;
4104 }
4105 
4106 //------------------------inline_native_currentThread------------------
4107 bool LibraryCallKit::inline_native_currentThread() {
4108   Node* junk = nullptr;
4109   set_result(generate_virtual_thread(junk));
4110   return true;
4111 }
4112 
4113 //------------------------inline_native_setVthread------------------
4114 bool LibraryCallKit::inline_native_setCurrentThread() {
4115   assert(C->method()->changes_current_thread(),
4116          "method changes current Thread but is not annotated ChangesCurrentThread");
4117   Node* arr = argument(1);
4118   Node* thread = _gvn.transform(new ThreadLocalNode());
4119   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
4120   Node* thread_obj_handle
4121     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
4122   thread_obj_handle = _gvn.transform(thread_obj_handle);
4123   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
4124   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
4125 
4126   // Change the _monitor_owner_id of the JavaThread
4127   Node* tid = load_field_from_object(arr, "tid", "J");
4128   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
4129   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
4130 
4131   JFR_ONLY(extend_setCurrentThread(thread, arr);)
4132   return true;
4133 }
4134 
4135 const Type* LibraryCallKit::scopedValueCache_type() {
4136   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
4137   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
4138   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
4139 
4140   // Because we create the scopedValue cache lazily we have to make the
4141   // type of the result BotPTR.
4142   bool xk = etype->klass_is_exact();
4143   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
4144   return objects_type;
4145 }
4146 
4147 Node* LibraryCallKit::scopedValueCache_helper() {
4148   Node* thread = _gvn.transform(new ThreadLocalNode());
4149   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
4150   // We cannot use immutable_memory() because we might flip onto a
4151   // different carrier thread, at which point we'll need to use that
4152   // carrier thread's cache.
4153   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
4154   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
4155   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
4156 }
4157 
4158 //------------------------inline_native_scopedValueCache------------------
4159 bool LibraryCallKit::inline_native_scopedValueCache() {
4160   Node* cache_obj_handle = scopedValueCache_helper();
4161   const Type* objects_type = scopedValueCache_type();
4162   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
4163 
4164   return true;
4165 }
4166 
4167 //------------------------inline_native_setScopedValueCache------------------
4168 bool LibraryCallKit::inline_native_setScopedValueCache() {
4169   Node* arr = argument(0);
4170   Node* cache_obj_handle = scopedValueCache_helper();
4171   const Type* objects_type = scopedValueCache_type();
4172 
4173   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
4174   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
4175 
4176   return true;
4177 }
4178 
4179 //------------------------inline_native_Continuation_pin and unpin-----------
4180 
4181 // Shared implementation routine for both pin and unpin.
4182 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) {
4183   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
4184 
4185   // Save input memory.
4186   Node* input_memory_state = reset_memory();
4187   set_all_memory(input_memory_state);
4188 
4189   // TLS
4190   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
4191   Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset()));
4192   Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered);
4193 
4194   // Null check the last continuation object.
4195   Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null()));
4196   Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne));
4197   IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
4198 
4199   // False path, last continuation is null.
4200   Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null));
4201 
4202   // True path, last continuation is not null.
4203   Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null));
4204 
4205   set_control(continuation_is_not_null);
4206 
4207   // Load the pin count from the last continuation.
4208   Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset()));
4209   Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered);
4210 
4211   // The loaded pin count is compared against a context specific rhs for over/underflow detection.
4212   Node* pin_count_rhs;
4213   if (unpin) {
4214     pin_count_rhs = _gvn.intcon(0);
4215   } else {
4216     pin_count_rhs = _gvn.intcon(UINT32_MAX);
4217   }
4218   Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs));
4219   Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq));
4220   IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN);
4221 
4222   // True branch, pin count over/underflow.
4223   Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow));
4224   {
4225     // Trap (but not deoptimize (Action_none)) and continue in the interpreter
4226     // which will throw IllegalStateException for pin count over/underflow.
4227     // No memory changed so far - we can use memory create by reset_memory()
4228     // at the beginning of this intrinsic. No need to call reset_memory() again.
4229     PreserveJVMState pjvms(this);
4230     set_control(pin_count_over_underflow);
4231     uncommon_trap(Deoptimization::Reason_intrinsic,
4232                   Deoptimization::Action_none);
4233     assert(stopped(), "invariant");
4234   }
4235 
4236   // False branch, no pin count over/underflow. Increment or decrement pin count and store back.
4237   Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow));
4238   set_control(valid_pin_count);
4239 
4240   Node* next_pin_count;
4241   if (unpin) {
4242     next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1)));
4243   } else {
4244     next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1)));
4245   }
4246 
4247   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
4248 
4249   // Result of top level CFG and Memory.
4250   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4251   record_for_igvn(result_rgn);
4252   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4253   record_for_igvn(result_mem);
4254 
4255   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
4256   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
4257   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
4258   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4259 
4260   // Set output state.
4261   set_control(_gvn.transform(result_rgn));
4262   set_all_memory(_gvn.transform(result_mem));
4263 
4264   return true;
4265 }
4266 
4267 //-----------------------load_klass_from_mirror_common-------------------------
4268 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
4269 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
4270 // and branch to the given path on the region.
4271 // If never_see_null, take an uncommon trap on null, so we can optimistically
4272 // compile for the non-null case.
4273 // If the region is null, force never_see_null = true.
4274 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
4275                                                     bool never_see_null,
4276                                                     RegionNode* region,
4277                                                     int null_path,
4278                                                     int offset) {
4279   if (region == nullptr)  never_see_null = true;
4280   Node* p = basic_plus_adr(mirror, offset);
4281   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4282   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
4283   Node* null_ctl = top();
4284   kls = null_check_oop(kls, &null_ctl, never_see_null);
4285   if (region != nullptr) {
4286     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
4287     region->init_req(null_path, null_ctl);
4288   } else {
4289     assert(null_ctl == top(), "no loose ends");
4290   }
4291   return kls;
4292 }
4293 
4294 //--------------------(inline_native_Class_query helpers)---------------------
4295 // Use this for JVM_ACC_INTERFACE.
4296 // Fall through if (mods & mask) == bits, take the guard otherwise.
4297 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4298                                                  ByteSize offset, const Type* type, BasicType bt) {
4299   // Branch around if the given klass has the given modifier bit set.
4300   // Like generate_guard, adds a new path onto the region.
4301   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4302   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4303   Node* mask = intcon(modifier_mask);
4304   Node* bits = intcon(modifier_bits);
4305   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4306   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4307   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4308   return generate_fair_guard(bol, region);
4309 }
4310 
4311 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4312   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4313                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4314 }
4315 
4316 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4317 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4318   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4319                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4320 }
4321 
4322 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4323   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4324 }
4325 
4326 //-------------------------inline_native_Class_query-------------------
4327 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4328   const Type* return_type = TypeInt::BOOL;
4329   Node* prim_return_value = top();  // what happens if it's a primitive class?
4330   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4331   bool expect_prim = false;     // most of these guys expect to work on refs
4332 
4333   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
4334 
4335   Node* mirror = argument(0);
4336   Node* obj    = top();
4337 
4338   switch (id) {
4339   case vmIntrinsics::_isInstance:
4340     // nothing is an instance of a primitive type
4341     prim_return_value = intcon(0);
4342     obj = argument(1);
4343     break;
4344   case vmIntrinsics::_isHidden:
4345     prim_return_value = intcon(0);
4346     break;
4347   case vmIntrinsics::_getSuperclass:
4348     prim_return_value = null();
4349     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
4350     break;
4351   case vmIntrinsics::_getClassAccessFlags:
4352     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
4353     return_type = TypeInt::CHAR;
4354     break;
4355   default:
4356     fatal_unexpected_iid(id);
4357     break;
4358   }
4359 
4360   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4361   if (mirror_con == nullptr)  return false;  // cannot happen?
4362 
4363 #ifndef PRODUCT
4364   if (C->print_intrinsics() || C->print_inlining()) {
4365     ciType* k = mirror_con->java_mirror_type();
4366     if (k) {
4367       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
4368       k->print_name();
4369       tty->cr();
4370     }
4371   }
4372 #endif
4373 
4374   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
4375   RegionNode* region = new RegionNode(PATH_LIMIT);
4376   record_for_igvn(region);
4377   PhiNode* phi = new PhiNode(region, return_type);
4378 
4379   // The mirror will never be null of Reflection.getClassAccessFlags, however
4380   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
4381   // if it is. See bug 4774291.
4382 
4383   // For Reflection.getClassAccessFlags(), the null check occurs in
4384   // the wrong place; see inline_unsafe_access(), above, for a similar
4385   // situation.
4386   mirror = null_check(mirror);
4387   // If mirror or obj is dead, only null-path is taken.
4388   if (stopped())  return true;
4389 
4390   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
4391 
4392   // Now load the mirror's klass metaobject, and null-check it.
4393   // Side-effects region with the control path if the klass is null.
4394   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
4395   // If kls is null, we have a primitive mirror.
4396   phi->init_req(_prim_path, prim_return_value);
4397   if (stopped()) { set_result(region, phi); return true; }
4398   bool safe_for_replace = (region->in(_prim_path) == top());
4399 
4400   Node* p;  // handy temp
4401   Node* null_ctl;
4402 
4403   // Now that we have the non-null klass, we can perform the real query.
4404   // For constant classes, the query will constant-fold in LoadNode::Value.
4405   Node* query_value = top();
4406   switch (id) {
4407   case vmIntrinsics::_isInstance:
4408     // nothing is an instance of a primitive type
4409     query_value = gen_instanceof(obj, kls, safe_for_replace);
4410     break;
4411 
4412   case vmIntrinsics::_isHidden:
4413     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
4414     if (generate_hidden_class_guard(kls, region) != nullptr)
4415       // A guard was added.  If the guard is taken, it was an hidden class.
4416       phi->add_req(intcon(1));
4417     // If we fall through, it's a plain class.
4418     query_value = intcon(0);
4419     break;
4420 
4421 
4422   case vmIntrinsics::_getSuperclass:
4423     // The rules here are somewhat unfortunate, but we can still do better
4424     // with random logic than with a JNI call.
4425     // Interfaces store null or Object as _super, but must report null.
4426     // Arrays store an intermediate super as _super, but must report Object.
4427     // Other types can report the actual _super.
4428     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4429     if (generate_interface_guard(kls, region) != nullptr)
4430       // A guard was added.  If the guard is taken, it was an interface.
4431       phi->add_req(null());
4432     if (generate_array_guard(kls, region) != nullptr)
4433       // A guard was added.  If the guard is taken, it was an array.
4434       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4435     // If we fall through, it's a plain class.  Get its _super.
4436     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4437     kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4438     null_ctl = top();
4439     kls = null_check_oop(kls, &null_ctl);
4440     if (null_ctl != top()) {
4441       // If the guard is taken, Object.superClass is null (both klass and mirror).
4442       region->add_req(null_ctl);
4443       phi   ->add_req(null());
4444     }
4445     if (!stopped()) {
4446       query_value = load_mirror_from_klass(kls);
4447     }
4448     break;
4449 
4450   case vmIntrinsics::_getClassAccessFlags:
4451     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4452     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4453     break;
4454 
4455   default:
4456     fatal_unexpected_iid(id);
4457     break;
4458   }
4459 
4460   // Fall-through is the normal case of a query to a real class.
4461   phi->init_req(1, query_value);
4462   region->init_req(1, control());
4463 
4464   C->set_has_split_ifs(true); // Has chance for split-if optimization
4465   set_result(region, phi);
4466   return true;
4467 }
4468 
4469 
4470 //-------------------------inline_Class_cast-------------------
4471 bool LibraryCallKit::inline_Class_cast() {
4472   Node* mirror = argument(0); // Class
4473   Node* obj    = argument(1);
4474   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4475   if (mirror_con == nullptr) {
4476     return false;  // dead path (mirror->is_top()).
4477   }
4478   if (obj == nullptr || obj->is_top()) {
4479     return false;  // dead path
4480   }
4481   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4482 
4483   // First, see if Class.cast() can be folded statically.
4484   // java_mirror_type() returns non-null for compile-time Class constants.
4485   bool is_null_free_array = false;
4486   ciType* tm = mirror_con->java_mirror_type(&is_null_free_array);
4487   if (tm != nullptr && tm->is_klass() &&
4488       tp != nullptr) {
4489     if (!tp->is_loaded()) {
4490       // Don't use intrinsic when class is not loaded.
4491       return false;
4492     } else {
4493       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4494       if (is_null_free_array) {
4495         tklass = tklass->is_aryklassptr()->cast_to_null_free();
4496       }
4497       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4498       if (static_res == Compile::SSC_always_true) {
4499         // isInstance() is true - fold the code.
4500         set_result(obj);
4501         return true;
4502       } else if (static_res == Compile::SSC_always_false) {
4503         // Don't use intrinsic, have to throw ClassCastException.
4504         // If the reference is null, the non-intrinsic bytecode will
4505         // be optimized appropriately.
4506         return false;
4507       }
4508     }
4509   }
4510 
4511   // Bailout intrinsic and do normal inlining if exception path is frequent.
4512   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4513     return false;
4514   }
4515 
4516   // Generate dynamic checks.
4517   // Class.cast() is java implementation of _checkcast bytecode.
4518   // Do checkcast (Parse::do_checkcast()) optimizations here.
4519 
4520   mirror = null_check(mirror);
4521   // If mirror is dead, only null-path is taken.
4522   if (stopped()) {
4523     return true;
4524   }
4525 
4526   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4527   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4528   RegionNode* region = new RegionNode(PATH_LIMIT);
4529   record_for_igvn(region);
4530 
4531   // Now load the mirror's klass metaobject, and null-check it.
4532   // If kls is null, we have a primitive mirror and
4533   // nothing is an instance of a primitive type.
4534   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4535 
4536   Node* res = top();
4537   Node* io = i_o();
4538   Node* mem = merged_memory();
4539   if (!stopped()) {
4540 
4541     Node* bad_type_ctrl = top();
4542     // Do checkcast optimizations.
4543     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4544     region->init_req(_bad_type_path, bad_type_ctrl);
4545   }
4546   if (region->in(_prim_path) != top() ||
4547       region->in(_bad_type_path) != top() ||
4548       region->in(_npe_path) != top()) {
4549     // Let Interpreter throw ClassCastException.
4550     PreserveJVMState pjvms(this);
4551     set_control(_gvn.transform(region));
4552     // Set IO and memory because gen_checkcast may override them when buffering inline types
4553     set_i_o(io);
4554     set_all_memory(mem);
4555     uncommon_trap(Deoptimization::Reason_intrinsic,
4556                   Deoptimization::Action_maybe_recompile);
4557   }
4558   if (!stopped()) {
4559     set_result(res);
4560   }
4561   return true;
4562 }
4563 
4564 
4565 //--------------------------inline_native_subtype_check------------------------
4566 // This intrinsic takes the JNI calls out of the heart of
4567 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4568 bool LibraryCallKit::inline_native_subtype_check() {
4569   // Pull both arguments off the stack.
4570   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4571   args[0] = argument(0);
4572   args[1] = argument(1);
4573   Node* klasses[2];             // corresponding Klasses: superk, subk
4574   klasses[0] = klasses[1] = top();
4575 
4576   enum {
4577     // A full decision tree on {superc is prim, subc is prim}:
4578     _prim_0_path = 1,           // {P,N} => false
4579                                 // {P,P} & superc!=subc => false
4580     _prim_same_path,            // {P,P} & superc==subc => true
4581     _prim_1_path,               // {N,P} => false
4582     _ref_subtype_path,          // {N,N} & subtype check wins => true
4583     _both_ref_path,             // {N,N} & subtype check loses => false
4584     PATH_LIMIT
4585   };
4586 
4587   RegionNode* region = new RegionNode(PATH_LIMIT);
4588   RegionNode* prim_region = new RegionNode(2);
4589   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4590   record_for_igvn(region);
4591   record_for_igvn(prim_region);
4592 
4593   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4594   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4595   int class_klass_offset = java_lang_Class::klass_offset();
4596 
4597   // First null-check both mirrors and load each mirror's klass metaobject.
4598   int which_arg;
4599   for (which_arg = 0; which_arg <= 1; which_arg++) {
4600     Node* arg = args[which_arg];
4601     arg = null_check(arg);
4602     if (stopped())  break;
4603     args[which_arg] = arg;
4604 
4605     Node* p = basic_plus_adr(arg, class_klass_offset);
4606     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4607     klasses[which_arg] = _gvn.transform(kls);
4608   }
4609 
4610   // Having loaded both klasses, test each for null.
4611   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4612   for (which_arg = 0; which_arg <= 1; which_arg++) {
4613     Node* kls = klasses[which_arg];
4614     Node* null_ctl = top();
4615     kls = null_check_oop(kls, &null_ctl, never_see_null);
4616     if (which_arg == 0) {
4617       prim_region->init_req(1, null_ctl);
4618     } else {
4619       region->init_req(_prim_1_path, null_ctl);
4620     }
4621     if (stopped())  break;
4622     klasses[which_arg] = kls;
4623   }
4624 
4625   if (!stopped()) {
4626     // now we have two reference types, in klasses[0..1]
4627     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4628     Node* superk = klasses[0];  // the receiver
4629     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4630     region->set_req(_ref_subtype_path, control());
4631   }
4632 
4633   // If both operands are primitive (both klasses null), then
4634   // we must return true when they are identical primitives.
4635   // It is convenient to test this after the first null klass check.
4636   // This path is also used if superc is a value mirror.
4637   set_control(_gvn.transform(prim_region));
4638   if (!stopped()) {
4639     // Since superc is primitive, make a guard for the superc==subc case.
4640     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4641     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4642     generate_fair_guard(bol_eq, region);
4643     if (region->req() == PATH_LIMIT+1) {
4644       // A guard was added.  If the added guard is taken, superc==subc.
4645       region->swap_edges(PATH_LIMIT, _prim_same_path);
4646       region->del_req(PATH_LIMIT);
4647     }
4648     region->set_req(_prim_0_path, control()); // Not equal after all.
4649   }
4650 
4651   // these are the only paths that produce 'true':
4652   phi->set_req(_prim_same_path,   intcon(1));
4653   phi->set_req(_ref_subtype_path, intcon(1));
4654 
4655   // pull together the cases:
4656   assert(region->req() == PATH_LIMIT, "sane region");
4657   for (uint i = 1; i < region->req(); i++) {
4658     Node* ctl = region->in(i);
4659     if (ctl == nullptr || ctl == top()) {
4660       region->set_req(i, top());
4661       phi   ->set_req(i, top());
4662     } else if (phi->in(i) == nullptr) {
4663       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4664     }
4665   }
4666 
4667   set_control(_gvn.transform(region));
4668   set_result(_gvn.transform(phi));
4669   return true;
4670 }
4671 
4672 //---------------------generate_array_guard_common------------------------
4673 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) {
4674 
4675   if (stopped()) {
4676     return nullptr;
4677   }
4678 
4679   // Like generate_guard, adds a new path onto the region.
4680   jint  layout_con = 0;
4681   Node* layout_val = get_layout_helper(kls, layout_con);
4682   if (layout_val == nullptr) {
4683     bool query = 0;
4684     switch(kind) {
4685       case ObjectArray:    query = Klass::layout_helper_is_objArray(layout_con); break;
4686       case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break;
4687       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4688       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4689       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4690       default:
4691         ShouldNotReachHere();
4692     }
4693     if (!query) {
4694       return nullptr;                       // never a branch
4695     } else {                             // always a branch
4696       Node* always_branch = control();
4697       if (region != nullptr)
4698         region->add_req(always_branch);
4699       set_control(top());
4700       return always_branch;
4701     }
4702   }
4703   unsigned int value = 0;
4704   BoolTest::mask btest = BoolTest::illegal;
4705   switch(kind) {
4706     case ObjectArray:
4707     case NonObjectArray: {
4708       value = Klass::_lh_array_tag_obj_value;
4709       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4710       btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne;
4711       break;
4712     }
4713     case TypeArray: {
4714       value = Klass::_lh_array_tag_type_value;
4715       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4716       btest = BoolTest::eq;
4717       break;
4718     }
4719     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4720     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4721     default:
4722       ShouldNotReachHere();
4723   }
4724   // Now test the correct condition.
4725   jint nval = (jint)value;
4726   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4727   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4728   Node* ctrl = generate_fair_guard(bol, region);
4729   Node* is_array_ctrl = kind == NonArray ? control() : ctrl;
4730   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4731     // Keep track of the fact that 'obj' is an array to prevent
4732     // array specific accesses from floating above the guard.
4733     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4734   }
4735   return ctrl;
4736 }
4737 
4738 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal);
4739 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal);
4740 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length);
4741 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) {
4742   assert(null_free || atomic, "nullable implies atomic");
4743   Node* componentType = argument(0);
4744   Node* length = argument(1);
4745   Node* init_val = null_free ? argument(2) : nullptr;
4746 
4747   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4748   if (tp != nullptr) {
4749     ciInstanceKlass* ik = tp->instance_klass();
4750     if (ik == C->env()->Class_klass()) {
4751       ciType* t = tp->java_mirror_type();
4752       if (t != nullptr && t->is_inlinetype()) {
4753         ciInlineKlass* vk = t->as_inline_klass();
4754         bool flat = vk->maybe_flat_in_array();
4755         if (flat && atomic) {
4756           // Only flat if we have a corresponding atomic layout
4757           flat = null_free ? vk->has_atomic_layout() : vk->has_nullable_atomic_layout();
4758         }
4759         // TODO 8350865 refactor
4760         if (flat && !atomic) {
4761           flat = vk->has_non_atomic_layout();
4762         }
4763 
4764         // TOOD 8350865 ZGC needs card marks on initializing oop stores
4765         if (UseZGC && null_free && !flat) {
4766           return false;
4767         }
4768 
4769         ciArrayKlass* array_klass = ciArrayKlass::make(t, flat, null_free, atomic);
4770         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4771           const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces);
4772           if (null_free) {
4773             if (init_val->is_InlineType()) {
4774               if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) {
4775                 // Zeroing is enough because the init value is the all-zero value
4776                 init_val = nullptr;
4777               } else {
4778                 init_val = init_val->as_InlineType()->buffer(this);
4779               }
4780             }
4781             // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)?
4782           }
4783           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val);
4784           const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr();
4785           assert(arytype->is_null_free() == null_free, "inconsistency");
4786           assert(arytype->is_not_null_free() == !null_free, "inconsistency");
4787           assert(arytype->is_flat() == flat, "inconsistency");
4788           assert(arytype->is_aryptr()->is_not_flat() == !flat, "inconsistency");
4789           set_result(obj);
4790           return true;
4791         }
4792       }
4793     }
4794   }
4795   return false;
4796 }
4797 
4798 //-----------------------inline_native_newArray--------------------------
4799 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4800 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4801 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4802   Node* mirror;
4803   Node* count_val;
4804   if (uninitialized) {
4805     null_check_receiver();
4806     mirror    = argument(1);
4807     count_val = argument(2);
4808   } else {
4809     mirror    = argument(0);
4810     count_val = argument(1);
4811   }
4812 
4813   mirror = null_check(mirror);
4814   // If mirror or obj is dead, only null-path is taken.
4815   if (stopped())  return true;
4816 
4817   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4818   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4819   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4820   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4821   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4822 
4823   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4824   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4825                                                   result_reg, _slow_path);
4826   Node* normal_ctl   = control();
4827   Node* no_array_ctl = result_reg->in(_slow_path);
4828 
4829   // Generate code for the slow case.  We make a call to newArray().
4830   set_control(no_array_ctl);
4831   if (!stopped()) {
4832     // Either the input type is void.class, or else the
4833     // array klass has not yet been cached.  Either the
4834     // ensuing call will throw an exception, or else it
4835     // will cache the array klass for next time.
4836     PreserveJVMState pjvms(this);
4837     CallJavaNode* slow_call = nullptr;
4838     if (uninitialized) {
4839       // Generate optimized virtual call (holder class 'Unsafe' is final)
4840       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4841     } else {
4842       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4843     }
4844     Node* slow_result = set_results_for_java_call(slow_call);
4845     // this->control() comes from set_results_for_java_call
4846     result_reg->set_req(_slow_path, control());
4847     result_val->set_req(_slow_path, slow_result);
4848     result_io ->set_req(_slow_path, i_o());
4849     result_mem->set_req(_slow_path, reset_memory());
4850   }
4851 
4852   set_control(normal_ctl);
4853   if (!stopped()) {
4854     // Normal case:  The array type has been cached in the java.lang.Class.
4855     // The following call works fine even if the array type is polymorphic.
4856     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4857     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4858     result_reg->init_req(_normal_path, control());
4859     result_val->init_req(_normal_path, obj);
4860     result_io ->init_req(_normal_path, i_o());
4861     result_mem->init_req(_normal_path, reset_memory());
4862 
4863     if (uninitialized) {
4864       // Mark the allocation so that zeroing is skipped
4865       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4866       alloc->maybe_set_complete(&_gvn);
4867     }
4868   }
4869 
4870   // Return the combined state.
4871   set_i_o(        _gvn.transform(result_io)  );
4872   set_all_memory( _gvn.transform(result_mem));
4873 
4874   C->set_has_split_ifs(true); // Has chance for split-if optimization
4875   set_result(result_reg, result_val);
4876   return true;
4877 }
4878 
4879 //----------------------inline_native_getLength--------------------------
4880 // public static native int java.lang.reflect.Array.getLength(Object array);
4881 bool LibraryCallKit::inline_native_getLength() {
4882   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4883 
4884   Node* array = null_check(argument(0));
4885   // If array is dead, only null-path is taken.
4886   if (stopped())  return true;
4887 
4888   // Deoptimize if it is a non-array.
4889   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array);
4890 
4891   if (non_array != nullptr) {
4892     PreserveJVMState pjvms(this);
4893     set_control(non_array);
4894     uncommon_trap(Deoptimization::Reason_intrinsic,
4895                   Deoptimization::Action_maybe_recompile);
4896   }
4897 
4898   // If control is dead, only non-array-path is taken.
4899   if (stopped())  return true;
4900 
4901   // The works fine even if the array type is polymorphic.
4902   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4903   Node* result = load_array_length(array);
4904 
4905   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4906   set_result(result);
4907   return true;
4908 }
4909 
4910 //------------------------inline_array_copyOf----------------------------
4911 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4912 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4913 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4914   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4915 
4916   // Get the arguments.
4917   Node* original          = argument(0);
4918   Node* start             = is_copyOfRange? argument(1): intcon(0);
4919   Node* end               = is_copyOfRange? argument(2): argument(1);
4920   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4921 
4922   Node* newcopy = nullptr;
4923 
4924   // Set the original stack and the reexecute bit for the interpreter to reexecute
4925   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4926   { PreserveReexecuteState preexecs(this);
4927     jvms()->set_should_reexecute(true);
4928 
4929     array_type_mirror = null_check(array_type_mirror);
4930     original          = null_check(original);
4931 
4932     // Check if a null path was taken unconditionally.
4933     if (stopped())  return true;
4934 
4935     Node* orig_length = load_array_length(original);
4936 
4937     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4938     klass_node = null_check(klass_node);
4939 
4940     RegionNode* bailout = new RegionNode(1);
4941     record_for_igvn(bailout);
4942 
4943     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4944     // Bail out if that is so.
4945     // Inline type array may have object field that would require a
4946     // write barrier. Conservatively, go to slow path.
4947     // TODO 8251971: Optimize for the case when flat src/dst are later found
4948     // to not contain oops (i.e., move this check to the macro expansion phase).
4949     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4950     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
4951     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
4952     bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
4953                         // Can src array be flat and contain oops?
4954                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
4955                         // Can dest array be flat and contain oops?
4956                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
4957     Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
4958     if (not_objArray != nullptr) {
4959       // Improve the klass node's type from the new optimistic assumption:
4960       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4961       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
4962       Node* cast = new CastPPNode(control(), klass_node, akls);
4963       klass_node = _gvn.transform(cast);
4964     }
4965 
4966     // Bail out if either start or end is negative.
4967     generate_negative_guard(start, bailout, &start);
4968     generate_negative_guard(end,   bailout, &end);
4969 
4970     Node* length = end;
4971     if (_gvn.type(start) != TypeInt::ZERO) {
4972       length = _gvn.transform(new SubINode(end, start));
4973     }
4974 
4975     // Bail out if length is negative (i.e., if start > end).
4976     // Without this the new_array would throw
4977     // NegativeArraySizeException but IllegalArgumentException is what
4978     // should be thrown
4979     generate_negative_guard(length, bailout, &length);
4980 
4981     // Handle inline type arrays
4982     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
4983     if (!stopped()) {
4984       // TODO JDK-8329224
4985       if (!orig_t->is_null_free()) {
4986         // Not statically known to be null free, add a check
4987         generate_fair_guard(null_free_array_test(original), bailout);
4988       }
4989       orig_t = _gvn.type(original)->isa_aryptr();
4990       if (orig_t != nullptr && orig_t->is_flat()) {
4991         // Src is flat, check that dest is flat as well
4992         if (exclude_flat) {
4993           // Dest can't be flat, bail out
4994           bailout->add_req(control());
4995           set_control(top());
4996         } else {
4997           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
4998         }
4999         // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy.
5000       } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) &&
5001                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
5002                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
5003         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
5004         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
5005         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
5006         if (orig_t != nullptr) {
5007           orig_t = orig_t->cast_to_not_flat();
5008           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
5009         }
5010       }
5011       if (!can_validate) {
5012         // No validation. The subtype check emitted at macro expansion time will not go to the slow
5013         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
5014         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
5015         generate_fair_guard(flat_array_test(klass_node), bailout);
5016         generate_fair_guard(null_free_array_test(original), bailout);
5017       }
5018     }
5019 
5020     // Bail out if start is larger than the original length
5021     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
5022     generate_negative_guard(orig_tail, bailout, &orig_tail);
5023 
5024     if (bailout->req() > 1) {
5025       PreserveJVMState pjvms(this);
5026       set_control(_gvn.transform(bailout));
5027       uncommon_trap(Deoptimization::Reason_intrinsic,
5028                     Deoptimization::Action_maybe_recompile);
5029     }
5030 
5031     if (!stopped()) {
5032       // How many elements will we copy from the original?
5033       // The answer is MinI(orig_tail, length).
5034       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
5035 
5036       // Generate a direct call to the right arraycopy function(s).
5037       // We know the copy is disjoint but we might not know if the
5038       // oop stores need checking.
5039       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
5040       // This will fail a store-check if x contains any non-nulls.
5041 
5042       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
5043       // loads/stores but it is legal only if we're sure the
5044       // Arrays.copyOf would succeed. So we need all input arguments
5045       // to the copyOf to be validated, including that the copy to the
5046       // new array won't trigger an ArrayStoreException. That subtype
5047       // check can be optimized if we know something on the type of
5048       // the input array from type speculation.
5049       if (_gvn.type(klass_node)->singleton()) {
5050         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
5051         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
5052 
5053         int test = C->static_subtype_check(superk, subk);
5054         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
5055           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
5056           if (t_original->speculative_type() != nullptr) {
5057             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
5058           }
5059         }
5060       }
5061 
5062       bool validated = false;
5063       // Reason_class_check rather than Reason_intrinsic because we
5064       // want to intrinsify even if this traps.
5065       if (can_validate) {
5066         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
5067 
5068         if (not_subtype_ctrl != top()) {
5069           PreserveJVMState pjvms(this);
5070           set_control(not_subtype_ctrl);
5071           uncommon_trap(Deoptimization::Reason_class_check,
5072                         Deoptimization::Action_make_not_entrant);
5073           assert(stopped(), "Should be stopped");
5074         }
5075         validated = true;
5076       }
5077 
5078       if (!stopped()) {
5079         newcopy = new_array(klass_node, length, 0);  // no arguments to push
5080 
5081         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
5082                                                 load_object_klass(original), klass_node);
5083         if (!is_copyOfRange) {
5084           ac->set_copyof(validated);
5085         } else {
5086           ac->set_copyofrange(validated);
5087         }
5088         Node* n = _gvn.transform(ac);
5089         if (n == ac) {
5090           ac->connect_outputs(this);
5091         } else {
5092           assert(validated, "shouldn't transform if all arguments not validated");
5093           set_all_memory(n);
5094         }
5095       }
5096     }
5097   } // original reexecute is set back here
5098 
5099   C->set_has_split_ifs(true); // Has chance for split-if optimization
5100   if (!stopped()) {
5101     set_result(newcopy);
5102   }
5103   return true;
5104 }
5105 
5106 
5107 //----------------------generate_virtual_guard---------------------------
5108 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
5109 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
5110                                              RegionNode* slow_region) {
5111   ciMethod* method = callee();
5112   int vtable_index = method->vtable_index();
5113   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5114          "bad index %d", vtable_index);
5115   // Get the Method* out of the appropriate vtable entry.
5116   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
5117                      vtable_index*vtableEntry::size_in_bytes() +
5118                      in_bytes(vtableEntry::method_offset());
5119   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
5120   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
5121 
5122   // Compare the target method with the expected method (e.g., Object.hashCode).
5123   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
5124 
5125   Node* native_call = makecon(native_call_addr);
5126   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
5127   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
5128 
5129   return generate_slow_guard(test_native, slow_region);
5130 }
5131 
5132 //-----------------------generate_method_call----------------------------
5133 // Use generate_method_call to make a slow-call to the real
5134 // method if the fast path fails.  An alternative would be to
5135 // use a stub like OptoRuntime::slow_arraycopy_Java.
5136 // This only works for expanding the current library call,
5137 // not another intrinsic.  (E.g., don't use this for making an
5138 // arraycopy call inside of the copyOf intrinsic.)
5139 CallJavaNode*
5140 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
5141   // When compiling the intrinsic method itself, do not use this technique.
5142   guarantee(callee() != C->method(), "cannot make slow-call to self");
5143 
5144   ciMethod* method = callee();
5145   // ensure the JVMS we have will be correct for this call
5146   guarantee(method_id == method->intrinsic_id(), "must match");
5147 
5148   const TypeFunc* tf = TypeFunc::make(method);
5149   if (res_not_null) {
5150     assert(tf->return_type() == T_OBJECT, "");
5151     const TypeTuple* range = tf->range_cc();
5152     const Type** fields = TypeTuple::fields(range->cnt());
5153     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
5154     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
5155     tf = TypeFunc::make(tf->domain_cc(), new_range);
5156   }
5157   CallJavaNode* slow_call;
5158   if (is_static) {
5159     assert(!is_virtual, "");
5160     slow_call = new CallStaticJavaNode(C, tf,
5161                            SharedRuntime::get_resolve_static_call_stub(), method);
5162   } else if (is_virtual) {
5163     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
5164     int vtable_index = Method::invalid_vtable_index;
5165     if (UseInlineCaches) {
5166       // Suppress the vtable call
5167     } else {
5168       // hashCode and clone are not a miranda methods,
5169       // so the vtable index is fixed.
5170       // No need to use the linkResolver to get it.
5171        vtable_index = method->vtable_index();
5172        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5173               "bad index %d", vtable_index);
5174     }
5175     slow_call = new CallDynamicJavaNode(tf,
5176                           SharedRuntime::get_resolve_virtual_call_stub(),
5177                           method, vtable_index);
5178   } else {  // neither virtual nor static:  opt_virtual
5179     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
5180     slow_call = new CallStaticJavaNode(C, tf,
5181                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
5182     slow_call->set_optimized_virtual(true);
5183   }
5184   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
5185     // To be able to issue a direct call (optimized virtual or virtual)
5186     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
5187     // about the method being invoked should be attached to the call site to
5188     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
5189     slow_call->set_override_symbolic_info(true);
5190   }
5191   set_arguments_for_java_call(slow_call);
5192   set_edges_for_java_call(slow_call);
5193   return slow_call;
5194 }
5195 
5196 
5197 /**
5198  * Build special case code for calls to hashCode on an object. This call may
5199  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
5200  * slightly different code.
5201  */
5202 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
5203   assert(is_static == callee()->is_static(), "correct intrinsic selection");
5204   assert(!(is_virtual && is_static), "either virtual, special, or static");
5205 
5206   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
5207 
5208   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5209   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
5210   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
5211   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5212   Node* obj = argument(0);
5213 
5214   // Don't intrinsify hashcode on inline types for now.
5215   // The "is locked" runtime check below also serves as inline type check and goes to the slow path.
5216   if (gvn().type(obj)->is_inlinetypeptr()) {
5217     return false;
5218   }
5219 
5220   if (!is_static) {
5221     // Check for hashing null object
5222     obj = null_check_receiver();
5223     if (stopped())  return true;        // unconditionally null
5224     result_reg->init_req(_null_path, top());
5225     result_val->init_req(_null_path, top());
5226   } else {
5227     // Do a null check, and return zero if null.
5228     // System.identityHashCode(null) == 0
5229     Node* null_ctl = top();
5230     obj = null_check_oop(obj, &null_ctl);
5231     result_reg->init_req(_null_path, null_ctl);
5232     result_val->init_req(_null_path, _gvn.intcon(0));
5233   }
5234 
5235   // Unconditionally null?  Then return right away.
5236   if (stopped()) {
5237     set_control( result_reg->in(_null_path));
5238     if (!stopped())
5239       set_result(result_val->in(_null_path));
5240     return true;
5241   }
5242 
5243   // We only go to the fast case code if we pass a number of guards.  The
5244   // paths which do not pass are accumulated in the slow_region.
5245   RegionNode* slow_region = new RegionNode(1);
5246   record_for_igvn(slow_region);
5247 
5248   // If this is a virtual call, we generate a funny guard.  We pull out
5249   // the vtable entry corresponding to hashCode() from the target object.
5250   // If the target method which we are calling happens to be the native
5251   // Object hashCode() method, we pass the guard.  We do not need this
5252   // guard for non-virtual calls -- the caller is known to be the native
5253   // Object hashCode().
5254   if (is_virtual) {
5255     // After null check, get the object's klass.
5256     Node* obj_klass = load_object_klass(obj);
5257     generate_virtual_guard(obj_klass, slow_region);
5258   }
5259 
5260   // Get the header out of the object, use LoadMarkNode when available
5261   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5262   // The control of the load must be null. Otherwise, the load can move before
5263   // the null check after castPP removal.
5264   Node* no_ctrl = nullptr;
5265   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5266 
5267   if (!UseObjectMonitorTable) {
5268     // Test the header to see if it is safe to read w.r.t. locking.
5269   // This also serves as guard against inline types
5270     Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
5271     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5272     if (LockingMode == LM_LIGHTWEIGHT) {
5273       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5274       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5275       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5276 
5277       generate_slow_guard(test_monitor, slow_region);
5278     } else {
5279       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
5280       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
5281       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
5282 
5283       generate_slow_guard(test_not_unlocked, slow_region);
5284     }
5285   }
5286 
5287   // Get the hash value and check to see that it has been properly assigned.
5288   // We depend on hash_mask being at most 32 bits and avoid the use of
5289   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5290   // vm: see markWord.hpp.
5291   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
5292   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
5293   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
5294   // This hack lets the hash bits live anywhere in the mark object now, as long
5295   // as the shift drops the relevant bits into the low 32 bits.  Note that
5296   // Java spec says that HashCode is an int so there's no point in capturing
5297   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
5298   hshifted_header      = ConvX2I(hshifted_header);
5299   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
5300 
5301   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
5302   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
5303   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
5304 
5305   generate_slow_guard(test_assigned, slow_region);
5306 
5307   Node* init_mem = reset_memory();
5308   // fill in the rest of the null path:
5309   result_io ->init_req(_null_path, i_o());
5310   result_mem->init_req(_null_path, init_mem);
5311 
5312   result_val->init_req(_fast_path, hash_val);
5313   result_reg->init_req(_fast_path, control());
5314   result_io ->init_req(_fast_path, i_o());
5315   result_mem->init_req(_fast_path, init_mem);
5316 
5317   // Generate code for the slow case.  We make a call to hashCode().
5318   set_control(_gvn.transform(slow_region));
5319   if (!stopped()) {
5320     // No need for PreserveJVMState, because we're using up the present state.
5321     set_all_memory(init_mem);
5322     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
5323     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
5324     Node* slow_result = set_results_for_java_call(slow_call);
5325     // this->control() comes from set_results_for_java_call
5326     result_reg->init_req(_slow_path, control());
5327     result_val->init_req(_slow_path, slow_result);
5328     result_io  ->set_req(_slow_path, i_o());
5329     result_mem ->set_req(_slow_path, reset_memory());
5330   }
5331 
5332   // Return the combined state.
5333   set_i_o(        _gvn.transform(result_io)  );
5334   set_all_memory( _gvn.transform(result_mem));
5335 
5336   set_result(result_reg, result_val);
5337   return true;
5338 }
5339 
5340 //---------------------------inline_native_getClass----------------------------
5341 // public final native Class<?> java.lang.Object.getClass();
5342 //
5343 // Build special case code for calls to getClass on an object.
5344 bool LibraryCallKit::inline_native_getClass() {
5345   Node* obj = argument(0);
5346   if (obj->is_InlineType()) {
5347     const Type* t = _gvn.type(obj);
5348     if (t->maybe_null()) {
5349       null_check(obj);
5350     }
5351     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5352     return true;
5353   }
5354   obj = null_check_receiver();
5355   if (stopped())  return true;
5356   set_result(load_mirror_from_klass(load_object_klass(obj)));
5357   return true;
5358 }
5359 
5360 //-----------------inline_native_Reflection_getCallerClass---------------------
5361 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5362 //
5363 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5364 //
5365 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5366 // in that it must skip particular security frames and checks for
5367 // caller sensitive methods.
5368 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5369 #ifndef PRODUCT
5370   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5371     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5372   }
5373 #endif
5374 
5375   if (!jvms()->has_method()) {
5376 #ifndef PRODUCT
5377     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5378       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
5379     }
5380 #endif
5381     return false;
5382   }
5383 
5384   // Walk back up the JVM state to find the caller at the required
5385   // depth.
5386   JVMState* caller_jvms = jvms();
5387 
5388   // Cf. JVM_GetCallerClass
5389   // NOTE: Start the loop at depth 1 because the current JVM state does
5390   // not include the Reflection.getCallerClass() frame.
5391   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
5392     ciMethod* m = caller_jvms->method();
5393     switch (n) {
5394     case 0:
5395       fatal("current JVM state does not include the Reflection.getCallerClass frame");
5396       break;
5397     case 1:
5398       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
5399       if (!m->caller_sensitive()) {
5400 #ifndef PRODUCT
5401         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5402           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
5403         }
5404 #endif
5405         return false;  // bail-out; let JVM_GetCallerClass do the work
5406       }
5407       break;
5408     default:
5409       if (!m->is_ignored_by_security_stack_walk()) {
5410         // We have reached the desired frame; return the holder class.
5411         // Acquire method holder as java.lang.Class and push as constant.
5412         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
5413         ciInstance* caller_mirror = caller_klass->java_mirror();
5414         set_result(makecon(TypeInstPtr::make(caller_mirror)));
5415 
5416 #ifndef PRODUCT
5417         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5418           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
5419           tty->print_cr("  JVM state at this point:");
5420           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
5421             ciMethod* m = jvms()->of_depth(i)->method();
5422             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
5423           }
5424         }
5425 #endif
5426         return true;
5427       }
5428       break;
5429     }
5430   }
5431 
5432 #ifndef PRODUCT
5433   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5434     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
5435     tty->print_cr("  JVM state at this point:");
5436     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
5437       ciMethod* m = jvms()->of_depth(i)->method();
5438       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
5439     }
5440   }
5441 #endif
5442 
5443   return false;  // bail-out; let JVM_GetCallerClass do the work
5444 }
5445 
5446 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
5447   Node* arg = argument(0);
5448   Node* result = nullptr;
5449 
5450   switch (id) {
5451   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
5452   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
5453   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
5454   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
5455   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
5456   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
5457 
5458   case vmIntrinsics::_doubleToLongBits: {
5459     // two paths (plus control) merge in a wood
5460     RegionNode *r = new RegionNode(3);
5461     Node *phi = new PhiNode(r, TypeLong::LONG);
5462 
5463     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
5464     // Build the boolean node
5465     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5466 
5467     // Branch either way.
5468     // NaN case is less traveled, which makes all the difference.
5469     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5470     Node *opt_isnan = _gvn.transform(ifisnan);
5471     assert( opt_isnan->is_If(), "Expect an IfNode");
5472     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5473     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5474 
5475     set_control(iftrue);
5476 
5477     static const jlong nan_bits = CONST64(0x7ff8000000000000);
5478     Node *slow_result = longcon(nan_bits); // return NaN
5479     phi->init_req(1, _gvn.transform( slow_result ));
5480     r->init_req(1, iftrue);
5481 
5482     // Else fall through
5483     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5484     set_control(iffalse);
5485 
5486     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
5487     r->init_req(2, iffalse);
5488 
5489     // Post merge
5490     set_control(_gvn.transform(r));
5491     record_for_igvn(r);
5492 
5493     C->set_has_split_ifs(true); // Has chance for split-if optimization
5494     result = phi;
5495     assert(result->bottom_type()->isa_long(), "must be");
5496     break;
5497   }
5498 
5499   case vmIntrinsics::_floatToIntBits: {
5500     // two paths (plus control) merge in a wood
5501     RegionNode *r = new RegionNode(3);
5502     Node *phi = new PhiNode(r, TypeInt::INT);
5503 
5504     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
5505     // Build the boolean node
5506     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5507 
5508     // Branch either way.
5509     // NaN case is less traveled, which makes all the difference.
5510     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5511     Node *opt_isnan = _gvn.transform(ifisnan);
5512     assert( opt_isnan->is_If(), "Expect an IfNode");
5513     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5514     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5515 
5516     set_control(iftrue);
5517 
5518     static const jint nan_bits = 0x7fc00000;
5519     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
5520     phi->init_req(1, _gvn.transform( slow_result ));
5521     r->init_req(1, iftrue);
5522 
5523     // Else fall through
5524     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5525     set_control(iffalse);
5526 
5527     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
5528     r->init_req(2, iffalse);
5529 
5530     // Post merge
5531     set_control(_gvn.transform(r));
5532     record_for_igvn(r);
5533 
5534     C->set_has_split_ifs(true); // Has chance for split-if optimization
5535     result = phi;
5536     assert(result->bottom_type()->isa_int(), "must be");
5537     break;
5538   }
5539 
5540   default:
5541     fatal_unexpected_iid(id);
5542     break;
5543   }
5544   set_result(_gvn.transform(result));
5545   return true;
5546 }
5547 
5548 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
5549   Node* arg = argument(0);
5550   Node* result = nullptr;
5551 
5552   switch (id) {
5553   case vmIntrinsics::_floatIsInfinite:
5554     result = new IsInfiniteFNode(arg);
5555     break;
5556   case vmIntrinsics::_floatIsFinite:
5557     result = new IsFiniteFNode(arg);
5558     break;
5559   case vmIntrinsics::_doubleIsInfinite:
5560     result = new IsInfiniteDNode(arg);
5561     break;
5562   case vmIntrinsics::_doubleIsFinite:
5563     result = new IsFiniteDNode(arg);
5564     break;
5565   default:
5566     fatal_unexpected_iid(id);
5567     break;
5568   }
5569   set_result(_gvn.transform(result));
5570   return true;
5571 }
5572 
5573 //----------------------inline_unsafe_copyMemory-------------------------
5574 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
5575 
5576 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
5577   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
5578   const Type*       base_t = gvn.type(base);
5579 
5580   bool in_native = (base_t == TypePtr::NULL_PTR);
5581   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
5582   bool is_mixed  = !in_heap && !in_native;
5583 
5584   if (is_mixed) {
5585     return true; // mixed accesses can touch both on-heap and off-heap memory
5586   }
5587   if (in_heap) {
5588     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
5589     if (!is_prim_array) {
5590       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
5591       // there's not enough type information available to determine proper memory slice for it.
5592       return true;
5593     }
5594   }
5595   return false;
5596 }
5597 
5598 bool LibraryCallKit::inline_unsafe_copyMemory() {
5599   if (callee()->is_static())  return false;  // caller must have the capability!
5600   null_check_receiver();  // null-check receiver
5601   if (stopped())  return true;
5602 
5603   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5604 
5605   Node* src_base =         argument(1);  // type: oop
5606   Node* src_off  = ConvL2X(argument(2)); // type: long
5607   Node* dst_base =         argument(4);  // type: oop
5608   Node* dst_off  = ConvL2X(argument(5)); // type: long
5609   Node* size     = ConvL2X(argument(7)); // type: long
5610 
5611   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5612          "fieldOffset must be byte-scaled");
5613 
5614   Node* src_addr = make_unsafe_address(src_base, src_off);
5615   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5616 
5617   Node* thread = _gvn.transform(new ThreadLocalNode());
5618   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5619   BasicType doing_unsafe_access_bt = T_BYTE;
5620   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5621 
5622   // update volatile field
5623   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5624 
5625   int flags = RC_LEAF | RC_NO_FP;
5626 
5627   const TypePtr* dst_type = TypePtr::BOTTOM;
5628 
5629   // Adjust memory effects of the runtime call based on input values.
5630   if (!has_wide_mem(_gvn, src_addr, src_base) &&
5631       !has_wide_mem(_gvn, dst_addr, dst_base)) {
5632     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5633 
5634     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5635     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5636       flags |= RC_NARROW_MEM; // narrow in memory
5637     }
5638   }
5639 
5640   // Call it.  Note that the length argument is not scaled.
5641   make_runtime_call(flags,
5642                     OptoRuntime::fast_arraycopy_Type(),
5643                     StubRoutines::unsafe_arraycopy(),
5644                     "unsafe_arraycopy",
5645                     dst_type,
5646                     src_addr, dst_addr, size XTOP);
5647 
5648   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5649 
5650   return true;
5651 }
5652 
5653 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5654 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5655 bool LibraryCallKit::inline_unsafe_setMemory() {
5656   if (callee()->is_static())  return false;  // caller must have the capability!
5657   null_check_receiver();  // null-check receiver
5658   if (stopped())  return true;
5659 
5660   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5661 
5662   Node* dst_base =         argument(1);  // type: oop
5663   Node* dst_off  = ConvL2X(argument(2)); // type: long
5664   Node* size     = ConvL2X(argument(4)); // type: long
5665   Node* byte     =         argument(6);  // type: byte
5666 
5667   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5668          "fieldOffset must be byte-scaled");
5669 
5670   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5671 
5672   Node* thread = _gvn.transform(new ThreadLocalNode());
5673   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5674   BasicType doing_unsafe_access_bt = T_BYTE;
5675   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5676 
5677   // update volatile field
5678   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5679 
5680   int flags = RC_LEAF | RC_NO_FP;
5681 
5682   const TypePtr* dst_type = TypePtr::BOTTOM;
5683 
5684   // Adjust memory effects of the runtime call based on input values.
5685   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5686     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5687 
5688     flags |= RC_NARROW_MEM; // narrow in memory
5689   }
5690 
5691   // Call it.  Note that the length argument is not scaled.
5692   make_runtime_call(flags,
5693                     OptoRuntime::unsafe_setmemory_Type(),
5694                     StubRoutines::unsafe_setmemory(),
5695                     "unsafe_setmemory",
5696                     dst_type,
5697                     dst_addr, size XTOP, byte);
5698 
5699   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5700 
5701   return true;
5702 }
5703 
5704 #undef XTOP
5705 
5706 //----------------------inline_unsafe_isFlatArray------------------------
5707 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass);
5708 // This intrinsic exploits assumptions made by the native implementation
5709 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks.
5710 bool LibraryCallKit::inline_unsafe_isFlatArray() {
5711   Node* cls = argument(1);
5712   Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset());
5713   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p,
5714                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
5715   Node* result = flat_array_test(kls);
5716   set_result(result);
5717   return true;
5718 }
5719 
5720 //------------------------clone_coping-----------------------------------
5721 // Helper function for inline_native_clone.
5722 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5723   assert(obj_size != nullptr, "");
5724   Node* raw_obj = alloc_obj->in(1);
5725   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5726 
5727   AllocateNode* alloc = nullptr;
5728   if (ReduceBulkZeroing &&
5729       // If we are implementing an array clone without knowing its source type
5730       // (can happen when compiling the array-guarded branch of a reflective
5731       // Object.clone() invocation), initialize the array within the allocation.
5732       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5733       // to a runtime clone call that assumes fully initialized source arrays.
5734       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5735     // We will be completely responsible for initializing this object -
5736     // mark Initialize node as complete.
5737     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5738     // The object was just allocated - there should be no any stores!
5739     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5740     // Mark as complete_with_arraycopy so that on AllocateNode
5741     // expansion, we know this AllocateNode is initialized by an array
5742     // copy and a StoreStore barrier exists after the array copy.
5743     alloc->initialization()->set_complete_with_arraycopy();
5744   }
5745 
5746   Node* size = _gvn.transform(obj_size);
5747   access_clone(obj, alloc_obj, size, is_array);
5748 
5749   // Do not let reads from the cloned object float above the arraycopy.
5750   if (alloc != nullptr) {
5751     // Do not let stores that initialize this object be reordered with
5752     // a subsequent store that would make this object accessible by
5753     // other threads.
5754     // Record what AllocateNode this StoreStore protects so that
5755     // escape analysis can go from the MemBarStoreStoreNode to the
5756     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5757     // based on the escape status of the AllocateNode.
5758     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5759   } else {
5760     insert_mem_bar(Op_MemBarCPUOrder);
5761   }
5762 }
5763 
5764 //------------------------inline_native_clone----------------------------
5765 // protected native Object java.lang.Object.clone();
5766 //
5767 // Here are the simple edge cases:
5768 //  null receiver => normal trap
5769 //  virtual and clone was overridden => slow path to out-of-line clone
5770 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5771 //
5772 // The general case has two steps, allocation and copying.
5773 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5774 //
5775 // Copying also has two cases, oop arrays and everything else.
5776 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5777 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5778 //
5779 // These steps fold up nicely if and when the cloned object's klass
5780 // can be sharply typed as an object array, a type array, or an instance.
5781 //
5782 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5783   PhiNode* result_val;
5784 
5785   // Set the reexecute bit for the interpreter to reexecute
5786   // the bytecode that invokes Object.clone if deoptimization happens.
5787   { PreserveReexecuteState preexecs(this);
5788     jvms()->set_should_reexecute(true);
5789 
5790     Node* obj = argument(0);
5791     obj = null_check_receiver();
5792     if (stopped())  return true;
5793 
5794     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5795     if (obj_type->is_inlinetypeptr()) {
5796       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5797       // no identity.
5798       set_result(obj);
5799       return true;
5800     }
5801 
5802     // If we are going to clone an instance, we need its exact type to
5803     // know the number and types of fields to convert the clone to
5804     // loads/stores. Maybe a speculative type can help us.
5805     if (!obj_type->klass_is_exact() &&
5806         obj_type->speculative_type() != nullptr &&
5807         obj_type->speculative_type()->is_instance_klass() &&
5808         !obj_type->speculative_type()->is_inlinetype()) {
5809       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5810       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5811           !spec_ik->has_injected_fields()) {
5812         if (!obj_type->isa_instptr() ||
5813             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5814           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5815         }
5816       }
5817     }
5818 
5819     // Conservatively insert a memory barrier on all memory slices.
5820     // Do not let writes into the original float below the clone.
5821     insert_mem_bar(Op_MemBarCPUOrder);
5822 
5823     // paths into result_reg:
5824     enum {
5825       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5826       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5827       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5828       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5829       PATH_LIMIT
5830     };
5831     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5832     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5833     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5834     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5835     record_for_igvn(result_reg);
5836 
5837     // TODO 8350865 For arrays, this might be folded and then not account for atomic arrays
5838     Node* obj_klass = load_object_klass(obj);
5839     // We only go to the fast case code if we pass a number of guards.
5840     // The paths which do not pass are accumulated in the slow_region.
5841     RegionNode* slow_region = new RegionNode(1);
5842     record_for_igvn(slow_region);
5843 
5844     Node* array_obj = obj;
5845     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5846     if (array_ctl != nullptr) {
5847       // It's an array.
5848       PreserveJVMState pjvms(this);
5849       set_control(array_ctl);
5850 
5851       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5852       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5853       if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5854           obj_type->can_be_inline_array() &&
5855           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5856         // Flat inline type array may have object field that would require a
5857         // write barrier. Conservatively, go to slow path.
5858         generate_fair_guard(flat_array_test(obj_klass), slow_region);
5859       }
5860 
5861       if (!stopped()) {
5862         Node* obj_length = load_array_length(array_obj);
5863         Node* array_size = nullptr; // Size of the array without object alignment padding.
5864         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5865 
5866         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5867         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5868           // If it is an oop array, it requires very special treatment,
5869           // because gc barriers are required when accessing the array.
5870           Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5871           if (is_obja != nullptr) {
5872             PreserveJVMState pjvms2(this);
5873             set_control(is_obja);
5874             // Generate a direct call to the right arraycopy function(s).
5875             // Clones are always tightly coupled.
5876             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5877             ac->set_clone_oop_array();
5878             Node* n = _gvn.transform(ac);
5879             assert(n == ac, "cannot disappear");
5880             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5881 
5882             result_reg->init_req(_objArray_path, control());
5883             result_val->init_req(_objArray_path, alloc_obj);
5884             result_i_o ->set_req(_objArray_path, i_o());
5885             result_mem ->set_req(_objArray_path, reset_memory());
5886           }
5887         }
5888         // Otherwise, there are no barriers to worry about.
5889         // (We can dispense with card marks if we know the allocation
5890         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5891         //  causes the non-eden paths to take compensating steps to
5892         //  simulate a fresh allocation, so that no further
5893         //  card marks are required in compiled code to initialize
5894         //  the object.)
5895 
5896         if (!stopped()) {
5897           copy_to_clone(obj, alloc_obj, array_size, true);
5898 
5899           // Present the results of the copy.
5900           result_reg->init_req(_array_path, control());
5901           result_val->init_req(_array_path, alloc_obj);
5902           result_i_o ->set_req(_array_path, i_o());
5903           result_mem ->set_req(_array_path, reset_memory());
5904         }
5905       }
5906     }
5907 
5908     if (!stopped()) {
5909       // It's an instance (we did array above).  Make the slow-path tests.
5910       // If this is a virtual call, we generate a funny guard.  We grab
5911       // the vtable entry corresponding to clone() from the target object.
5912       // If the target method which we are calling happens to be the
5913       // Object clone() method, we pass the guard.  We do not need this
5914       // guard for non-virtual calls; the caller is known to be the native
5915       // Object clone().
5916       if (is_virtual) {
5917         generate_virtual_guard(obj_klass, slow_region);
5918       }
5919 
5920       // The object must be easily cloneable and must not have a finalizer.
5921       // Both of these conditions may be checked in a single test.
5922       // We could optimize the test further, but we don't care.
5923       generate_misc_flags_guard(obj_klass,
5924                                 // Test both conditions:
5925                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5926                                 // Must be cloneable but not finalizer:
5927                                 KlassFlags::_misc_is_cloneable_fast,
5928                                 slow_region);
5929     }
5930 
5931     if (!stopped()) {
5932       // It's an instance, and it passed the slow-path tests.
5933       PreserveJVMState pjvms(this);
5934       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5935       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5936       // is reexecuted if deoptimization occurs and there could be problems when merging
5937       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5938       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5939 
5940       copy_to_clone(obj, alloc_obj, obj_size, false);
5941 
5942       // Present the results of the slow call.
5943       result_reg->init_req(_instance_path, control());
5944       result_val->init_req(_instance_path, alloc_obj);
5945       result_i_o ->set_req(_instance_path, i_o());
5946       result_mem ->set_req(_instance_path, reset_memory());
5947     }
5948 
5949     // Generate code for the slow case.  We make a call to clone().
5950     set_control(_gvn.transform(slow_region));
5951     if (!stopped()) {
5952       PreserveJVMState pjvms(this);
5953       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5954       // We need to deoptimize on exception (see comment above)
5955       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5956       // this->control() comes from set_results_for_java_call
5957       result_reg->init_req(_slow_path, control());
5958       result_val->init_req(_slow_path, slow_result);
5959       result_i_o ->set_req(_slow_path, i_o());
5960       result_mem ->set_req(_slow_path, reset_memory());
5961     }
5962 
5963     // Return the combined state.
5964     set_control(    _gvn.transform(result_reg));
5965     set_i_o(        _gvn.transform(result_i_o));
5966     set_all_memory( _gvn.transform(result_mem));
5967   } // original reexecute is set back here
5968 
5969   set_result(_gvn.transform(result_val));
5970   return true;
5971 }
5972 
5973 // If we have a tightly coupled allocation, the arraycopy may take care
5974 // of the array initialization. If one of the guards we insert between
5975 // the allocation and the arraycopy causes a deoptimization, an
5976 // uninitialized array will escape the compiled method. To prevent that
5977 // we set the JVM state for uncommon traps between the allocation and
5978 // the arraycopy to the state before the allocation so, in case of
5979 // deoptimization, we'll reexecute the allocation and the
5980 // initialization.
5981 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5982   if (alloc != nullptr) {
5983     ciMethod* trap_method = alloc->jvms()->method();
5984     int trap_bci = alloc->jvms()->bci();
5985 
5986     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5987         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5988       // Make sure there's no store between the allocation and the
5989       // arraycopy otherwise visible side effects could be rexecuted
5990       // in case of deoptimization and cause incorrect execution.
5991       bool no_interfering_store = true;
5992       Node* mem = alloc->in(TypeFunc::Memory);
5993       if (mem->is_MergeMem()) {
5994         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5995           Node* n = mms.memory();
5996           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5997             assert(n->is_Store(), "what else?");
5998             no_interfering_store = false;
5999             break;
6000           }
6001         }
6002       } else {
6003         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
6004           Node* n = mms.memory();
6005           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
6006             assert(n->is_Store(), "what else?");
6007             no_interfering_store = false;
6008             break;
6009           }
6010         }
6011       }
6012 
6013       if (no_interfering_store) {
6014         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
6015 
6016         JVMState* saved_jvms = jvms();
6017         saved_reexecute_sp = _reexecute_sp;
6018 
6019         set_jvms(sfpt->jvms());
6020         _reexecute_sp = jvms()->sp();
6021 
6022         return saved_jvms;
6023       }
6024     }
6025   }
6026   return nullptr;
6027 }
6028 
6029 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
6030 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
6031 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
6032   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
6033   uint size = alloc->req();
6034   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
6035   old_jvms->set_map(sfpt);
6036   for (uint i = 0; i < size; i++) {
6037     sfpt->init_req(i, alloc->in(i));
6038   }
6039   int adjustment = 1;
6040   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
6041   if (ary_klass_ptr->is_null_free()) {
6042     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which
6043     // also requires the componentType and initVal on stack for re-execution.
6044     // Re-create and push the componentType.
6045     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
6046     ciInstance* instance = klass->component_mirror_instance();
6047     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
6048     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
6049     adjustment++;
6050   }
6051   // re-push array length for deoptimization
6052   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
6053   if (ary_klass_ptr->is_null_free()) {
6054     // Re-create and push the initVal.
6055     Node* init_val = alloc->in(AllocateNode::InitValue);
6056     if (init_val == nullptr) {
6057       init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass());
6058     } else if (UseCompressedOops) {
6059       init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr()));
6060     }
6061     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val);
6062     adjustment++;
6063   }
6064   old_jvms->set_sp(old_jvms->sp() + adjustment);
6065   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
6066   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
6067   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
6068   old_jvms->set_should_reexecute(true);
6069 
6070   sfpt->set_i_o(map()->i_o());
6071   sfpt->set_memory(map()->memory());
6072   sfpt->set_control(map()->control());
6073   return sfpt;
6074 }
6075 
6076 // In case of a deoptimization, we restart execution at the
6077 // allocation, allocating a new array. We would leave an uninitialized
6078 // array in the heap that GCs wouldn't expect. Move the allocation
6079 // after the traps so we don't allocate the array if we
6080 // deoptimize. This is possible because tightly_coupled_allocation()
6081 // guarantees there's no observer of the allocated array at this point
6082 // and the control flow is simple enough.
6083 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
6084                                                     int saved_reexecute_sp, uint new_idx) {
6085   if (saved_jvms_before_guards != nullptr && !stopped()) {
6086     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
6087 
6088     assert(alloc != nullptr, "only with a tightly coupled allocation");
6089     // restore JVM state to the state at the arraycopy
6090     saved_jvms_before_guards->map()->set_control(map()->control());
6091     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
6092     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
6093     // If we've improved the types of some nodes (null check) while
6094     // emitting the guards, propagate them to the current state
6095     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
6096     set_jvms(saved_jvms_before_guards);
6097     _reexecute_sp = saved_reexecute_sp;
6098 
6099     // Remove the allocation from above the guards
6100     CallProjections* callprojs = alloc->extract_projections(true);
6101     InitializeNode* init = alloc->initialization();
6102     Node* alloc_mem = alloc->in(TypeFunc::Memory);
6103     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
6104     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
6105 
6106     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
6107     // the allocation (i.e. is only valid if the allocation succeeds):
6108     // 1) replace CastIINode with AllocateArrayNode's length here
6109     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
6110     //
6111     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
6112     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
6113     Node* init_control = init->proj_out(TypeFunc::Control);
6114     Node* alloc_length = alloc->Ideal_length();
6115 #ifdef ASSERT
6116     Node* prev_cast = nullptr;
6117 #endif
6118     for (uint i = 0; i < init_control->outcnt(); i++) {
6119       Node* init_out = init_control->raw_out(i);
6120       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
6121 #ifdef ASSERT
6122         if (prev_cast == nullptr) {
6123           prev_cast = init_out;
6124         } else {
6125           if (prev_cast->cmp(*init_out) == false) {
6126             prev_cast->dump();
6127             init_out->dump();
6128             assert(false, "not equal CastIINode");
6129           }
6130         }
6131 #endif
6132         C->gvn_replace_by(init_out, alloc_length);
6133       }
6134     }
6135     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
6136 
6137     // move the allocation here (after the guards)
6138     _gvn.hash_delete(alloc);
6139     alloc->set_req(TypeFunc::Control, control());
6140     alloc->set_req(TypeFunc::I_O, i_o());
6141     Node *mem = reset_memory();
6142     set_all_memory(mem);
6143     alloc->set_req(TypeFunc::Memory, mem);
6144     set_control(init->proj_out_or_null(TypeFunc::Control));
6145     set_i_o(callprojs->fallthrough_ioproj);
6146 
6147     // Update memory as done in GraphKit::set_output_for_allocation()
6148     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
6149     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
6150     if (ary_type->isa_aryptr() && length_type != nullptr) {
6151       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
6152     }
6153     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
6154     int            elemidx  = C->get_alias_index(telemref);
6155     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
6156     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
6157 
6158     Node* allocx = _gvn.transform(alloc);
6159     assert(allocx == alloc, "where has the allocation gone?");
6160     assert(dest->is_CheckCastPP(), "not an allocation result?");
6161 
6162     _gvn.hash_delete(dest);
6163     dest->set_req(0, control());
6164     Node* destx = _gvn.transform(dest);
6165     assert(destx == dest, "where has the allocation result gone?");
6166 
6167     array_ideal_length(alloc, ary_type, true);
6168   }
6169 }
6170 
6171 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
6172 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
6173 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
6174 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
6175 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
6176 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
6177 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
6178                                                                        JVMState* saved_jvms_before_guards) {
6179   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
6180     // There is at least one unrelated uncommon trap which needs to be replaced.
6181     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
6182 
6183     JVMState* saved_jvms = jvms();
6184     const int saved_reexecute_sp = _reexecute_sp;
6185     set_jvms(sfpt->jvms());
6186     _reexecute_sp = jvms()->sp();
6187 
6188     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
6189 
6190     // Restore state
6191     set_jvms(saved_jvms);
6192     _reexecute_sp = saved_reexecute_sp;
6193   }
6194 }
6195 
6196 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
6197 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
6198 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
6199   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
6200   while (if_proj->is_IfProj()) {
6201     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
6202     if (uncommon_trap != nullptr) {
6203       create_new_uncommon_trap(uncommon_trap);
6204     }
6205     assert(if_proj->in(0)->is_If(), "must be If");
6206     if_proj = if_proj->in(0)->in(0);
6207   }
6208   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
6209          "must have reached control projection of init node");
6210 }
6211 
6212 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
6213   const int trap_request = uncommon_trap_call->uncommon_trap_request();
6214   assert(trap_request != 0, "no valid UCT trap request");
6215   PreserveJVMState pjvms(this);
6216   set_control(uncommon_trap_call->in(0));
6217   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
6218                 Deoptimization::trap_request_action(trap_request));
6219   assert(stopped(), "Should be stopped");
6220   _gvn.hash_delete(uncommon_trap_call);
6221   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
6222 }
6223 
6224 // Common checks for array sorting intrinsics arguments.
6225 // Returns `true` if checks passed.
6226 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
6227   // check address of the class
6228   if (elementType == nullptr || elementType->is_top()) {
6229     return false;  // dead path
6230   }
6231   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
6232   if (elem_klass == nullptr) {
6233     return false;  // dead path
6234   }
6235   // java_mirror_type() returns non-null for compile-time Class constants only
6236   ciType* elem_type = elem_klass->java_mirror_type();
6237   if (elem_type == nullptr) {
6238     return false;
6239   }
6240   bt = elem_type->basic_type();
6241   // Disable the intrinsic if the CPU does not support SIMD sort
6242   if (!Matcher::supports_simd_sort(bt)) {
6243     return false;
6244   }
6245   // check address of the array
6246   if (obj == nullptr || obj->is_top()) {
6247     return false;  // dead path
6248   }
6249   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
6250   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
6251     return false; // failed input validation
6252   }
6253   return true;
6254 }
6255 
6256 //------------------------------inline_array_partition-----------------------
6257 bool LibraryCallKit::inline_array_partition() {
6258   address stubAddr = StubRoutines::select_array_partition_function();
6259   if (stubAddr == nullptr) {
6260     return false; // Intrinsic's stub is not implemented on this platform
6261   }
6262   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
6263 
6264   // no receiver because it is a static method
6265   Node* elementType     = argument(0);
6266   Node* obj             = argument(1);
6267   Node* offset          = argument(2); // long
6268   Node* fromIndex       = argument(4);
6269   Node* toIndex         = argument(5);
6270   Node* indexPivot1     = argument(6);
6271   Node* indexPivot2     = argument(7);
6272   // PartitionOperation:  argument(8) is ignored
6273 
6274   Node* pivotIndices = nullptr;
6275   BasicType bt = T_ILLEGAL;
6276 
6277   if (!check_array_sort_arguments(elementType, obj, bt)) {
6278     return false;
6279   }
6280   null_check(obj);
6281   // If obj is dead, only null-path is taken.
6282   if (stopped()) {
6283     return true;
6284   }
6285   // Set the original stack and the reexecute bit for the interpreter to reexecute
6286   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
6287   { PreserveReexecuteState preexecs(this);
6288     jvms()->set_should_reexecute(true);
6289 
6290     Node* obj_adr = make_unsafe_address(obj, offset);
6291 
6292     // create the pivotIndices array of type int and size = 2
6293     Node* size = intcon(2);
6294     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
6295     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
6296     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
6297     guarantee(alloc != nullptr, "created above");
6298     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
6299 
6300     // pass the basic type enum to the stub
6301     Node* elemType = intcon(bt);
6302 
6303     // Call the stub
6304     const char *stubName = "array_partition_stub";
6305     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
6306                       stubAddr, stubName, TypePtr::BOTTOM,
6307                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
6308                       indexPivot1, indexPivot2);
6309 
6310   } // original reexecute is set back here
6311 
6312   if (!stopped()) {
6313     set_result(pivotIndices);
6314   }
6315 
6316   return true;
6317 }
6318 
6319 
6320 //------------------------------inline_array_sort-----------------------
6321 bool LibraryCallKit::inline_array_sort() {
6322   address stubAddr = StubRoutines::select_arraysort_function();
6323   if (stubAddr == nullptr) {
6324     return false; // Intrinsic's stub is not implemented on this platform
6325   }
6326   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
6327 
6328   // no receiver because it is a static method
6329   Node* elementType     = argument(0);
6330   Node* obj             = argument(1);
6331   Node* offset          = argument(2); // long
6332   Node* fromIndex       = argument(4);
6333   Node* toIndex         = argument(5);
6334   // SortOperation:       argument(6) is ignored
6335 
6336   BasicType bt = T_ILLEGAL;
6337 
6338   if (!check_array_sort_arguments(elementType, obj, bt)) {
6339     return false;
6340   }
6341   null_check(obj);
6342   // If obj is dead, only null-path is taken.
6343   if (stopped()) {
6344     return true;
6345   }
6346   Node* obj_adr = make_unsafe_address(obj, offset);
6347 
6348   // pass the basic type enum to the stub
6349   Node* elemType = intcon(bt);
6350 
6351   // Call the stub.
6352   const char *stubName = "arraysort_stub";
6353   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
6354                     stubAddr, stubName, TypePtr::BOTTOM,
6355                     obj_adr, elemType, fromIndex, toIndex);
6356 
6357   return true;
6358 }
6359 
6360 
6361 //------------------------------inline_arraycopy-----------------------
6362 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
6363 //                                                      Object dest, int destPos,
6364 //                                                      int length);
6365 bool LibraryCallKit::inline_arraycopy() {
6366   // Get the arguments.
6367   Node* src         = argument(0);  // type: oop
6368   Node* src_offset  = argument(1);  // type: int
6369   Node* dest        = argument(2);  // type: oop
6370   Node* dest_offset = argument(3);  // type: int
6371   Node* length      = argument(4);  // type: int
6372 
6373   uint new_idx = C->unique();
6374 
6375   // Check for allocation before we add nodes that would confuse
6376   // tightly_coupled_allocation()
6377   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
6378 
6379   int saved_reexecute_sp = -1;
6380   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
6381   // See arraycopy_restore_alloc_state() comment
6382   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
6383   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
6384   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
6385   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
6386 
6387   // The following tests must be performed
6388   // (1) src and dest are arrays.
6389   // (2) src and dest arrays must have elements of the same BasicType
6390   // (3) src and dest must not be null.
6391   // (4) src_offset must not be negative.
6392   // (5) dest_offset must not be negative.
6393   // (6) length must not be negative.
6394   // (7) src_offset + length must not exceed length of src.
6395   // (8) dest_offset + length must not exceed length of dest.
6396   // (9) each element of an oop array must be assignable
6397 
6398   // (3) src and dest must not be null.
6399   // always do this here because we need the JVM state for uncommon traps
6400   Node* null_ctl = top();
6401   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
6402   assert(null_ctl->is_top(), "no null control here");
6403   dest = null_check(dest, T_ARRAY);
6404 
6405   if (!can_emit_guards) {
6406     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
6407     // guards but the arraycopy node could still take advantage of a
6408     // tightly allocated allocation. tightly_coupled_allocation() is
6409     // called again to make sure it takes the null check above into
6410     // account: the null check is mandatory and if it caused an
6411     // uncommon trap to be emitted then the allocation can't be
6412     // considered tightly coupled in this context.
6413     alloc = tightly_coupled_allocation(dest);
6414   }
6415 
6416   bool validated = false;
6417 
6418   const Type* src_type  = _gvn.type(src);
6419   const Type* dest_type = _gvn.type(dest);
6420   const TypeAryPtr* top_src  = src_type->isa_aryptr();
6421   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6422 
6423   // Do we have the type of src?
6424   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6425   // Do we have the type of dest?
6426   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6427   // Is the type for src from speculation?
6428   bool src_spec = false;
6429   // Is the type for dest from speculation?
6430   bool dest_spec = false;
6431 
6432   if ((!has_src || !has_dest) && can_emit_guards) {
6433     // We don't have sufficient type information, let's see if
6434     // speculative types can help. We need to have types for both src
6435     // and dest so that it pays off.
6436 
6437     // Do we already have or could we have type information for src
6438     bool could_have_src = has_src;
6439     // Do we already have or could we have type information for dest
6440     bool could_have_dest = has_dest;
6441 
6442     ciKlass* src_k = nullptr;
6443     if (!has_src) {
6444       src_k = src_type->speculative_type_not_null();
6445       if (src_k != nullptr && src_k->is_array_klass()) {
6446         could_have_src = true;
6447       }
6448     }
6449 
6450     ciKlass* dest_k = nullptr;
6451     if (!has_dest) {
6452       dest_k = dest_type->speculative_type_not_null();
6453       if (dest_k != nullptr && dest_k->is_array_klass()) {
6454         could_have_dest = true;
6455       }
6456     }
6457 
6458     if (could_have_src && could_have_dest) {
6459       // This is going to pay off so emit the required guards
6460       if (!has_src) {
6461         src = maybe_cast_profiled_obj(src, src_k, true);
6462         src_type  = _gvn.type(src);
6463         top_src  = src_type->isa_aryptr();
6464         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6465         src_spec = true;
6466       }
6467       if (!has_dest) {
6468         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6469         dest_type  = _gvn.type(dest);
6470         top_dest  = dest_type->isa_aryptr();
6471         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6472         dest_spec = true;
6473       }
6474     }
6475   }
6476 
6477   if (has_src && has_dest && can_emit_guards) {
6478     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6479     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6480     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6481     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6482 
6483     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6484       // If both arrays are object arrays then having the exact types
6485       // for both will remove the need for a subtype check at runtime
6486       // before the call and may make it possible to pick a faster copy
6487       // routine (without a subtype check on every element)
6488       // Do we have the exact type of src?
6489       bool could_have_src = src_spec;
6490       // Do we have the exact type of dest?
6491       bool could_have_dest = dest_spec;
6492       ciKlass* src_k = nullptr;
6493       ciKlass* dest_k = nullptr;
6494       if (!src_spec) {
6495         src_k = src_type->speculative_type_not_null();
6496         if (src_k != nullptr && src_k->is_array_klass()) {
6497           could_have_src = true;
6498         }
6499       }
6500       if (!dest_spec) {
6501         dest_k = dest_type->speculative_type_not_null();
6502         if (dest_k != nullptr && dest_k->is_array_klass()) {
6503           could_have_dest = true;
6504         }
6505       }
6506       if (could_have_src && could_have_dest) {
6507         // If we can have both exact types, emit the missing guards
6508         if (could_have_src && !src_spec) {
6509           src = maybe_cast_profiled_obj(src, src_k, true);
6510           src_type = _gvn.type(src);
6511           top_src = src_type->isa_aryptr();
6512         }
6513         if (could_have_dest && !dest_spec) {
6514           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6515           dest_type = _gvn.type(dest);
6516           top_dest = dest_type->isa_aryptr();
6517         }
6518       }
6519     }
6520   }
6521 
6522   ciMethod* trap_method = method();
6523   int trap_bci = bci();
6524   if (saved_jvms_before_guards != nullptr) {
6525     trap_method = alloc->jvms()->method();
6526     trap_bci = alloc->jvms()->bci();
6527   }
6528 
6529   bool negative_length_guard_generated = false;
6530 
6531   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6532       can_emit_guards && !src->is_top() && !dest->is_top()) {
6533     // validate arguments: enables transformation the ArrayCopyNode
6534     validated = true;
6535 
6536     RegionNode* slow_region = new RegionNode(1);
6537     record_for_igvn(slow_region);
6538 
6539     // (1) src and dest are arrays.
6540     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6541     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6542 
6543     // (2) src and dest arrays must have elements of the same BasicType
6544     // done at macro expansion or at Ideal transformation time
6545 
6546     // (4) src_offset must not be negative.
6547     generate_negative_guard(src_offset, slow_region);
6548 
6549     // (5) dest_offset must not be negative.
6550     generate_negative_guard(dest_offset, slow_region);
6551 
6552     // (7) src_offset + length must not exceed length of src.
6553     generate_limit_guard(src_offset, length,
6554                          load_array_length(src),
6555                          slow_region);
6556 
6557     // (8) dest_offset + length must not exceed length of dest.
6558     generate_limit_guard(dest_offset, length,
6559                          load_array_length(dest),
6560                          slow_region);
6561 
6562     // (6) length must not be negative.
6563     // This is also checked in generate_arraycopy() during macro expansion, but
6564     // we also have to check it here for the case where the ArrayCopyNode will
6565     // be eliminated by Escape Analysis.
6566     if (EliminateAllocations) {
6567       generate_negative_guard(length, slow_region);
6568       negative_length_guard_generated = true;
6569     }
6570 
6571     // (9) each element of an oop array must be assignable
6572     Node* dest_klass = load_object_klass(dest);
6573     if (src != dest) {
6574       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6575       slow_region->add_req(not_subtype_ctrl);
6576     }
6577 
6578     // TODO 8350865 Fix below logic. Also handle atomicity.
6579     generate_fair_guard(flat_array_test(src), slow_region);
6580     generate_fair_guard(flat_array_test(dest), slow_region);
6581 
6582     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6583     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6584     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6585     src_type = _gvn.type(src);
6586     top_src  = src_type->isa_aryptr();
6587 
6588     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6589     if (!stopped() && UseArrayFlattening) {
6590       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6591       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6592       if (top_src != nullptr && top_src->is_flat()) {
6593         // Src is flat, check that dest is flat as well
6594         if (top_dest != nullptr && !top_dest->is_flat()) {
6595           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6596           // Since dest is flat and src <: dest, dest must have the same type as src.
6597           top_dest = top_src->cast_to_exactness(false);
6598           assert(top_dest->is_flat(), "dest must be flat");
6599           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6600         }
6601       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6602         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6603         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6604         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6605         generate_fair_guard(flat_array_test(src), slow_region);
6606         if (top_src != nullptr) {
6607           top_src = top_src->cast_to_not_flat();
6608           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6609         }
6610       }
6611     }
6612 
6613     {
6614       PreserveJVMState pjvms(this);
6615       set_control(_gvn.transform(slow_region));
6616       uncommon_trap(Deoptimization::Reason_intrinsic,
6617                     Deoptimization::Action_make_not_entrant);
6618       assert(stopped(), "Should be stopped");
6619     }
6620     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6621   }
6622 
6623   if (stopped()) {
6624     return true;
6625   }
6626 
6627   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6628                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6629                                           // so the compiler has a chance to eliminate them: during macro expansion,
6630                                           // we have to set their control (CastPP nodes are eliminated).
6631                                           load_object_klass(src), load_object_klass(dest),
6632                                           load_array_length(src), load_array_length(dest));
6633 
6634   ac->set_arraycopy(validated);
6635 
6636   Node* n = _gvn.transform(ac);
6637   if (n == ac) {
6638     ac->connect_outputs(this);
6639   } else {
6640     assert(validated, "shouldn't transform if all arguments not validated");
6641     set_all_memory(n);
6642   }
6643   clear_upper_avx();
6644 
6645 
6646   return true;
6647 }
6648 
6649 
6650 // Helper function which determines if an arraycopy immediately follows
6651 // an allocation, with no intervening tests or other escapes for the object.
6652 AllocateArrayNode*
6653 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
6654   if (stopped())             return nullptr;  // no fast path
6655   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
6656 
6657   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
6658   if (alloc == nullptr)  return nullptr;
6659 
6660   Node* rawmem = memory(Compile::AliasIdxRaw);
6661   // Is the allocation's memory state untouched?
6662   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
6663     // Bail out if there have been raw-memory effects since the allocation.
6664     // (Example:  There might have been a call or safepoint.)
6665     return nullptr;
6666   }
6667   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
6668   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
6669     return nullptr;
6670   }
6671 
6672   // There must be no unexpected observers of this allocation.
6673   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
6674     Node* obs = ptr->fast_out(i);
6675     if (obs != this->map()) {
6676       return nullptr;
6677     }
6678   }
6679 
6680   // This arraycopy must unconditionally follow the allocation of the ptr.
6681   Node* alloc_ctl = ptr->in(0);
6682   Node* ctl = control();
6683   while (ctl != alloc_ctl) {
6684     // There may be guards which feed into the slow_region.
6685     // Any other control flow means that we might not get a chance
6686     // to finish initializing the allocated object.
6687     // Various low-level checks bottom out in uncommon traps. These
6688     // are considered safe since we've already checked above that
6689     // there is no unexpected observer of this allocation.
6690     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6691       assert(ctl->in(0)->is_If(), "must be If");
6692       ctl = ctl->in(0)->in(0);
6693     } else {
6694       return nullptr;
6695     }
6696   }
6697 
6698   // If we get this far, we have an allocation which immediately
6699   // precedes the arraycopy, and we can take over zeroing the new object.
6700   // The arraycopy will finish the initialization, and provide
6701   // a new control state to which we will anchor the destination pointer.
6702 
6703   return alloc;
6704 }
6705 
6706 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6707   if (node->is_IfProj()) {
6708     Node* other_proj = node->as_IfProj()->other_if_proj();
6709     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6710       Node* obs = other_proj->fast_out(j);
6711       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6712           (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) {
6713         return obs->as_CallStaticJava();
6714       }
6715     }
6716   }
6717   return nullptr;
6718 }
6719 
6720 //-------------inline_encodeISOArray-----------------------------------
6721 // encode char[] to byte[] in ISO_8859_1 or ASCII
6722 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6723   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6724   // no receiver since it is static method
6725   Node *src         = argument(0);
6726   Node *src_offset  = argument(1);
6727   Node *dst         = argument(2);
6728   Node *dst_offset  = argument(3);
6729   Node *length      = argument(4);
6730 
6731   src = must_be_not_null(src, true);
6732   dst = must_be_not_null(dst, true);
6733 
6734   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6735   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6736   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6737       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6738     // failed array check
6739     return false;
6740   }
6741 
6742   // Figure out the size and type of the elements we will be copying.
6743   BasicType src_elem = src_type->elem()->array_element_basic_type();
6744   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6745   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6746     return false;
6747   }
6748 
6749   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6750   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6751   // 'src_start' points to src array + scaled offset
6752   // 'dst_start' points to dst array + scaled offset
6753 
6754   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6755   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6756   enc = _gvn.transform(enc);
6757   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6758   set_memory(res_mem, mtype);
6759   set_result(enc);
6760   clear_upper_avx();
6761 
6762   return true;
6763 }
6764 
6765 //-------------inline_multiplyToLen-----------------------------------
6766 bool LibraryCallKit::inline_multiplyToLen() {
6767   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6768 
6769   address stubAddr = StubRoutines::multiplyToLen();
6770   if (stubAddr == nullptr) {
6771     return false; // Intrinsic's stub is not implemented on this platform
6772   }
6773   const char* stubName = "multiplyToLen";
6774 
6775   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6776 
6777   // no receiver because it is a static method
6778   Node* x    = argument(0);
6779   Node* xlen = argument(1);
6780   Node* y    = argument(2);
6781   Node* ylen = argument(3);
6782   Node* z    = argument(4);
6783 
6784   x = must_be_not_null(x, true);
6785   y = must_be_not_null(y, true);
6786 
6787   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6788   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6789   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6790       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6791     // failed array check
6792     return false;
6793   }
6794 
6795   BasicType x_elem = x_type->elem()->array_element_basic_type();
6796   BasicType y_elem = y_type->elem()->array_element_basic_type();
6797   if (x_elem != T_INT || y_elem != T_INT) {
6798     return false;
6799   }
6800 
6801   Node* x_start = array_element_address(x, intcon(0), x_elem);
6802   Node* y_start = array_element_address(y, intcon(0), y_elem);
6803   // 'x_start' points to x array + scaled xlen
6804   // 'y_start' points to y array + scaled ylen
6805 
6806   Node* z_start = array_element_address(z, intcon(0), T_INT);
6807 
6808   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6809                                  OptoRuntime::multiplyToLen_Type(),
6810                                  stubAddr, stubName, TypePtr::BOTTOM,
6811                                  x_start, xlen, y_start, ylen, z_start);
6812 
6813   C->set_has_split_ifs(true); // Has chance for split-if optimization
6814   set_result(z);
6815   return true;
6816 }
6817 
6818 //-------------inline_squareToLen------------------------------------
6819 bool LibraryCallKit::inline_squareToLen() {
6820   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6821 
6822   address stubAddr = StubRoutines::squareToLen();
6823   if (stubAddr == nullptr) {
6824     return false; // Intrinsic's stub is not implemented on this platform
6825   }
6826   const char* stubName = "squareToLen";
6827 
6828   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6829 
6830   Node* x    = argument(0);
6831   Node* len  = argument(1);
6832   Node* z    = argument(2);
6833   Node* zlen = argument(3);
6834 
6835   x = must_be_not_null(x, true);
6836   z = must_be_not_null(z, true);
6837 
6838   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6839   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6840   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6841       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6842     // failed array check
6843     return false;
6844   }
6845 
6846   BasicType x_elem = x_type->elem()->array_element_basic_type();
6847   BasicType z_elem = z_type->elem()->array_element_basic_type();
6848   if (x_elem != T_INT || z_elem != T_INT) {
6849     return false;
6850   }
6851 
6852 
6853   Node* x_start = array_element_address(x, intcon(0), x_elem);
6854   Node* z_start = array_element_address(z, intcon(0), z_elem);
6855 
6856   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6857                                   OptoRuntime::squareToLen_Type(),
6858                                   stubAddr, stubName, TypePtr::BOTTOM,
6859                                   x_start, len, z_start, zlen);
6860 
6861   set_result(z);
6862   return true;
6863 }
6864 
6865 //-------------inline_mulAdd------------------------------------------
6866 bool LibraryCallKit::inline_mulAdd() {
6867   assert(UseMulAddIntrinsic, "not implemented on this platform");
6868 
6869   address stubAddr = StubRoutines::mulAdd();
6870   if (stubAddr == nullptr) {
6871     return false; // Intrinsic's stub is not implemented on this platform
6872   }
6873   const char* stubName = "mulAdd";
6874 
6875   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6876 
6877   Node* out      = argument(0);
6878   Node* in       = argument(1);
6879   Node* offset   = argument(2);
6880   Node* len      = argument(3);
6881   Node* k        = argument(4);
6882 
6883   in = must_be_not_null(in, true);
6884   out = must_be_not_null(out, true);
6885 
6886   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6887   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6888   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6889        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6890     // failed array check
6891     return false;
6892   }
6893 
6894   BasicType out_elem = out_type->elem()->array_element_basic_type();
6895   BasicType in_elem = in_type->elem()->array_element_basic_type();
6896   if (out_elem != T_INT || in_elem != T_INT) {
6897     return false;
6898   }
6899 
6900   Node* outlen = load_array_length(out);
6901   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6902   Node* out_start = array_element_address(out, intcon(0), out_elem);
6903   Node* in_start = array_element_address(in, intcon(0), in_elem);
6904 
6905   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6906                                   OptoRuntime::mulAdd_Type(),
6907                                   stubAddr, stubName, TypePtr::BOTTOM,
6908                                   out_start,in_start, new_offset, len, k);
6909   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6910   set_result(result);
6911   return true;
6912 }
6913 
6914 //-------------inline_montgomeryMultiply-----------------------------------
6915 bool LibraryCallKit::inline_montgomeryMultiply() {
6916   address stubAddr = StubRoutines::montgomeryMultiply();
6917   if (stubAddr == nullptr) {
6918     return false; // Intrinsic's stub is not implemented on this platform
6919   }
6920 
6921   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6922   const char* stubName = "montgomery_multiply";
6923 
6924   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6925 
6926   Node* a    = argument(0);
6927   Node* b    = argument(1);
6928   Node* n    = argument(2);
6929   Node* len  = argument(3);
6930   Node* inv  = argument(4);
6931   Node* m    = argument(6);
6932 
6933   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6934   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6935   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6936   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6937   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6938       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6939       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6940       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6941     // failed array check
6942     return false;
6943   }
6944 
6945   BasicType a_elem = a_type->elem()->array_element_basic_type();
6946   BasicType b_elem = b_type->elem()->array_element_basic_type();
6947   BasicType n_elem = n_type->elem()->array_element_basic_type();
6948   BasicType m_elem = m_type->elem()->array_element_basic_type();
6949   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6950     return false;
6951   }
6952 
6953   // Make the call
6954   {
6955     Node* a_start = array_element_address(a, intcon(0), a_elem);
6956     Node* b_start = array_element_address(b, intcon(0), b_elem);
6957     Node* n_start = array_element_address(n, intcon(0), n_elem);
6958     Node* m_start = array_element_address(m, intcon(0), m_elem);
6959 
6960     Node* call = make_runtime_call(RC_LEAF,
6961                                    OptoRuntime::montgomeryMultiply_Type(),
6962                                    stubAddr, stubName, TypePtr::BOTTOM,
6963                                    a_start, b_start, n_start, len, inv, top(),
6964                                    m_start);
6965     set_result(m);
6966   }
6967 
6968   return true;
6969 }
6970 
6971 bool LibraryCallKit::inline_montgomerySquare() {
6972   address stubAddr = StubRoutines::montgomerySquare();
6973   if (stubAddr == nullptr) {
6974     return false; // Intrinsic's stub is not implemented on this platform
6975   }
6976 
6977   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6978   const char* stubName = "montgomery_square";
6979 
6980   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6981 
6982   Node* a    = argument(0);
6983   Node* n    = argument(1);
6984   Node* len  = argument(2);
6985   Node* inv  = argument(3);
6986   Node* m    = argument(5);
6987 
6988   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6989   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6990   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6991   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6992       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6993       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6994     // failed array check
6995     return false;
6996   }
6997 
6998   BasicType a_elem = a_type->elem()->array_element_basic_type();
6999   BasicType n_elem = n_type->elem()->array_element_basic_type();
7000   BasicType m_elem = m_type->elem()->array_element_basic_type();
7001   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
7002     return false;
7003   }
7004 
7005   // Make the call
7006   {
7007     Node* a_start = array_element_address(a, intcon(0), a_elem);
7008     Node* n_start = array_element_address(n, intcon(0), n_elem);
7009     Node* m_start = array_element_address(m, intcon(0), m_elem);
7010 
7011     Node* call = make_runtime_call(RC_LEAF,
7012                                    OptoRuntime::montgomerySquare_Type(),
7013                                    stubAddr, stubName, TypePtr::BOTTOM,
7014                                    a_start, n_start, len, inv, top(),
7015                                    m_start);
7016     set_result(m);
7017   }
7018 
7019   return true;
7020 }
7021 
7022 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
7023   address stubAddr = nullptr;
7024   const char* stubName = nullptr;
7025 
7026   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
7027   if (stubAddr == nullptr) {
7028     return false; // Intrinsic's stub is not implemented on this platform
7029   }
7030 
7031   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
7032 
7033   assert(callee()->signature()->size() == 5, "expected 5 arguments");
7034 
7035   Node* newArr = argument(0);
7036   Node* oldArr = argument(1);
7037   Node* newIdx = argument(2);
7038   Node* shiftCount = argument(3);
7039   Node* numIter = argument(4);
7040 
7041   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
7042   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
7043   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
7044       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
7045     return false;
7046   }
7047 
7048   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
7049   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
7050   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
7051     return false;
7052   }
7053 
7054   // Make the call
7055   {
7056     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
7057     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
7058 
7059     Node* call = make_runtime_call(RC_LEAF,
7060                                    OptoRuntime::bigIntegerShift_Type(),
7061                                    stubAddr,
7062                                    stubName,
7063                                    TypePtr::BOTTOM,
7064                                    newArr_start,
7065                                    oldArr_start,
7066                                    newIdx,
7067                                    shiftCount,
7068                                    numIter);
7069   }
7070 
7071   return true;
7072 }
7073 
7074 //-------------inline_vectorizedMismatch------------------------------
7075 bool LibraryCallKit::inline_vectorizedMismatch() {
7076   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
7077 
7078   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
7079   Node* obja    = argument(0); // Object
7080   Node* aoffset = argument(1); // long
7081   Node* objb    = argument(3); // Object
7082   Node* boffset = argument(4); // long
7083   Node* length  = argument(6); // int
7084   Node* scale   = argument(7); // int
7085 
7086   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
7087   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
7088   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
7089       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
7090       scale == top()) {
7091     return false; // failed input validation
7092   }
7093 
7094   Node* obja_adr = make_unsafe_address(obja, aoffset);
7095   Node* objb_adr = make_unsafe_address(objb, boffset);
7096 
7097   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
7098   //
7099   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
7100   //    if (length <= inline_limit) {
7101   //      inline_path:
7102   //        vmask   = VectorMaskGen length
7103   //        vload1  = LoadVectorMasked obja, vmask
7104   //        vload2  = LoadVectorMasked objb, vmask
7105   //        result1 = VectorCmpMasked vload1, vload2, vmask
7106   //    } else {
7107   //      call_stub_path:
7108   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
7109   //    }
7110   //    exit_block:
7111   //      return Phi(result1, result2);
7112   //
7113   enum { inline_path = 1,  // input is small enough to process it all at once
7114          stub_path   = 2,  // input is too large; call into the VM
7115          PATH_LIMIT  = 3
7116   };
7117 
7118   Node* exit_block = new RegionNode(PATH_LIMIT);
7119   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
7120   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
7121 
7122   Node* call_stub_path = control();
7123 
7124   BasicType elem_bt = T_ILLEGAL;
7125 
7126   const TypeInt* scale_t = _gvn.type(scale)->is_int();
7127   if (scale_t->is_con()) {
7128     switch (scale_t->get_con()) {
7129       case 0: elem_bt = T_BYTE;  break;
7130       case 1: elem_bt = T_SHORT; break;
7131       case 2: elem_bt = T_INT;   break;
7132       case 3: elem_bt = T_LONG;  break;
7133 
7134       default: elem_bt = T_ILLEGAL; break; // not supported
7135     }
7136   }
7137 
7138   int inline_limit = 0;
7139   bool do_partial_inline = false;
7140 
7141   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
7142     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
7143     do_partial_inline = inline_limit >= 16;
7144   }
7145 
7146   if (do_partial_inline) {
7147     assert(elem_bt != T_ILLEGAL, "sanity");
7148 
7149     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
7150         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
7151         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
7152 
7153       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
7154       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
7155       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
7156 
7157       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
7158 
7159       if (!stopped()) {
7160         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
7161 
7162         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
7163         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
7164         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
7165         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
7166 
7167         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
7168         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
7169         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
7170         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
7171 
7172         exit_block->init_req(inline_path, control());
7173         memory_phi->init_req(inline_path, map()->memory());
7174         result_phi->init_req(inline_path, result);
7175 
7176         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
7177         clear_upper_avx();
7178       }
7179     }
7180   }
7181 
7182   if (call_stub_path != nullptr) {
7183     set_control(call_stub_path);
7184 
7185     Node* call = make_runtime_call(RC_LEAF,
7186                                    OptoRuntime::vectorizedMismatch_Type(),
7187                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
7188                                    obja_adr, objb_adr, length, scale);
7189 
7190     exit_block->init_req(stub_path, control());
7191     memory_phi->init_req(stub_path, map()->memory());
7192     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
7193   }
7194 
7195   exit_block = _gvn.transform(exit_block);
7196   memory_phi = _gvn.transform(memory_phi);
7197   result_phi = _gvn.transform(result_phi);
7198 
7199   set_control(exit_block);
7200   set_all_memory(memory_phi);
7201   set_result(result_phi);
7202 
7203   return true;
7204 }
7205 
7206 //------------------------------inline_vectorizedHashcode----------------------------
7207 bool LibraryCallKit::inline_vectorizedHashCode() {
7208   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
7209 
7210   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
7211   Node* array          = argument(0);
7212   Node* offset         = argument(1);
7213   Node* length         = argument(2);
7214   Node* initialValue   = argument(3);
7215   Node* basic_type     = argument(4);
7216 
7217   if (basic_type == top()) {
7218     return false; // failed input validation
7219   }
7220 
7221   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
7222   if (!basic_type_t->is_con()) {
7223     return false; // Only intrinsify if mode argument is constant
7224   }
7225 
7226   array = must_be_not_null(array, true);
7227 
7228   BasicType bt = (BasicType)basic_type_t->get_con();
7229 
7230   // Resolve address of first element
7231   Node* array_start = array_element_address(array, offset, bt);
7232 
7233   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
7234     array_start, length, initialValue, basic_type)));
7235   clear_upper_avx();
7236 
7237   return true;
7238 }
7239 
7240 /**
7241  * Calculate CRC32 for byte.
7242  * int java.util.zip.CRC32.update(int crc, int b)
7243  */
7244 bool LibraryCallKit::inline_updateCRC32() {
7245   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
7246   assert(callee()->signature()->size() == 2, "update has 2 parameters");
7247   // no receiver since it is static method
7248   Node* crc  = argument(0); // type: int
7249   Node* b    = argument(1); // type: int
7250 
7251   /*
7252    *    int c = ~ crc;
7253    *    b = timesXtoThe32[(b ^ c) & 0xFF];
7254    *    b = b ^ (c >>> 8);
7255    *    crc = ~b;
7256    */
7257 
7258   Node* M1 = intcon(-1);
7259   crc = _gvn.transform(new XorINode(crc, M1));
7260   Node* result = _gvn.transform(new XorINode(crc, b));
7261   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
7262 
7263   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
7264   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
7265   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
7266   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
7267 
7268   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
7269   result = _gvn.transform(new XorINode(crc, result));
7270   result = _gvn.transform(new XorINode(result, M1));
7271   set_result(result);
7272   return true;
7273 }
7274 
7275 /**
7276  * Calculate CRC32 for byte[] array.
7277  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
7278  */
7279 bool LibraryCallKit::inline_updateBytesCRC32() {
7280   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
7281   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
7282   // no receiver since it is static method
7283   Node* crc     = argument(0); // type: int
7284   Node* src     = argument(1); // type: oop
7285   Node* offset  = argument(2); // type: int
7286   Node* length  = argument(3); // type: int
7287 
7288   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7289   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7290     // failed array check
7291     return false;
7292   }
7293 
7294   // Figure out the size and type of the elements we will be copying.
7295   BasicType src_elem = src_type->elem()->array_element_basic_type();
7296   if (src_elem != T_BYTE) {
7297     return false;
7298   }
7299 
7300   // 'src_start' points to src array + scaled offset
7301   src = must_be_not_null(src, true);
7302   Node* src_start = array_element_address(src, offset, src_elem);
7303 
7304   // We assume that range check is done by caller.
7305   // TODO: generate range check (offset+length < src.length) in debug VM.
7306 
7307   // Call the stub.
7308   address stubAddr = StubRoutines::updateBytesCRC32();
7309   const char *stubName = "updateBytesCRC32";
7310 
7311   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
7312                                  stubAddr, stubName, TypePtr::BOTTOM,
7313                                  crc, src_start, length);
7314   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7315   set_result(result);
7316   return true;
7317 }
7318 
7319 /**
7320  * Calculate CRC32 for ByteBuffer.
7321  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
7322  */
7323 bool LibraryCallKit::inline_updateByteBufferCRC32() {
7324   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
7325   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
7326   // no receiver since it is static method
7327   Node* crc     = argument(0); // type: int
7328   Node* src     = argument(1); // type: long
7329   Node* offset  = argument(3); // type: int
7330   Node* length  = argument(4); // type: int
7331 
7332   src = ConvL2X(src);  // adjust Java long to machine word
7333   Node* base = _gvn.transform(new CastX2PNode(src));
7334   offset = ConvI2X(offset);
7335 
7336   // 'src_start' points to src array + scaled offset
7337   Node* src_start = basic_plus_adr(top(), base, offset);
7338 
7339   // Call the stub.
7340   address stubAddr = StubRoutines::updateBytesCRC32();
7341   const char *stubName = "updateBytesCRC32";
7342 
7343   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
7344                                  stubAddr, stubName, TypePtr::BOTTOM,
7345                                  crc, src_start, length);
7346   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7347   set_result(result);
7348   return true;
7349 }
7350 
7351 //------------------------------get_table_from_crc32c_class-----------------------
7352 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
7353   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
7354   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
7355 
7356   return table;
7357 }
7358 
7359 //------------------------------inline_updateBytesCRC32C-----------------------
7360 //
7361 // Calculate CRC32C for byte[] array.
7362 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
7363 //
7364 bool LibraryCallKit::inline_updateBytesCRC32C() {
7365   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
7366   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
7367   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
7368   // no receiver since it is a static method
7369   Node* crc     = argument(0); // type: int
7370   Node* src     = argument(1); // type: oop
7371   Node* offset  = argument(2); // type: int
7372   Node* end     = argument(3); // type: int
7373 
7374   Node* length = _gvn.transform(new SubINode(end, offset));
7375 
7376   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7377   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7378     // failed array check
7379     return false;
7380   }
7381 
7382   // Figure out the size and type of the elements we will be copying.
7383   BasicType src_elem = src_type->elem()->array_element_basic_type();
7384   if (src_elem != T_BYTE) {
7385     return false;
7386   }
7387 
7388   // 'src_start' points to src array + scaled offset
7389   src = must_be_not_null(src, true);
7390   Node* src_start = array_element_address(src, offset, src_elem);
7391 
7392   // static final int[] byteTable in class CRC32C
7393   Node* table = get_table_from_crc32c_class(callee()->holder());
7394   table = must_be_not_null(table, true);
7395   Node* table_start = array_element_address(table, intcon(0), T_INT);
7396 
7397   // We assume that range check is done by caller.
7398   // TODO: generate range check (offset+length < src.length) in debug VM.
7399 
7400   // Call the stub.
7401   address stubAddr = StubRoutines::updateBytesCRC32C();
7402   const char *stubName = "updateBytesCRC32C";
7403 
7404   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
7405                                  stubAddr, stubName, TypePtr::BOTTOM,
7406                                  crc, src_start, length, table_start);
7407   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7408   set_result(result);
7409   return true;
7410 }
7411 
7412 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
7413 //
7414 // Calculate CRC32C for DirectByteBuffer.
7415 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
7416 //
7417 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
7418   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
7419   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
7420   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
7421   // no receiver since it is a static method
7422   Node* crc     = argument(0); // type: int
7423   Node* src     = argument(1); // type: long
7424   Node* offset  = argument(3); // type: int
7425   Node* end     = argument(4); // type: int
7426 
7427   Node* length = _gvn.transform(new SubINode(end, offset));
7428 
7429   src = ConvL2X(src);  // adjust Java long to machine word
7430   Node* base = _gvn.transform(new CastX2PNode(src));
7431   offset = ConvI2X(offset);
7432 
7433   // 'src_start' points to src array + scaled offset
7434   Node* src_start = basic_plus_adr(top(), base, offset);
7435 
7436   // static final int[] byteTable in class CRC32C
7437   Node* table = get_table_from_crc32c_class(callee()->holder());
7438   table = must_be_not_null(table, true);
7439   Node* table_start = array_element_address(table, intcon(0), T_INT);
7440 
7441   // Call the stub.
7442   address stubAddr = StubRoutines::updateBytesCRC32C();
7443   const char *stubName = "updateBytesCRC32C";
7444 
7445   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
7446                                  stubAddr, stubName, TypePtr::BOTTOM,
7447                                  crc, src_start, length, table_start);
7448   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7449   set_result(result);
7450   return true;
7451 }
7452 
7453 //------------------------------inline_updateBytesAdler32----------------------
7454 //
7455 // Calculate Adler32 checksum for byte[] array.
7456 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
7457 //
7458 bool LibraryCallKit::inline_updateBytesAdler32() {
7459   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
7460   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
7461   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
7462   // no receiver since it is static method
7463   Node* crc     = argument(0); // type: int
7464   Node* src     = argument(1); // type: oop
7465   Node* offset  = argument(2); // type: int
7466   Node* length  = argument(3); // type: int
7467 
7468   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7469   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7470     // failed array check
7471     return false;
7472   }
7473 
7474   // Figure out the size and type of the elements we will be copying.
7475   BasicType src_elem = src_type->elem()->array_element_basic_type();
7476   if (src_elem != T_BYTE) {
7477     return false;
7478   }
7479 
7480   // 'src_start' points to src array + scaled offset
7481   Node* src_start = array_element_address(src, offset, src_elem);
7482 
7483   // We assume that range check is done by caller.
7484   // TODO: generate range check (offset+length < src.length) in debug VM.
7485 
7486   // Call the stub.
7487   address stubAddr = StubRoutines::updateBytesAdler32();
7488   const char *stubName = "updateBytesAdler32";
7489 
7490   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
7491                                  stubAddr, stubName, TypePtr::BOTTOM,
7492                                  crc, src_start, length);
7493   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7494   set_result(result);
7495   return true;
7496 }
7497 
7498 //------------------------------inline_updateByteBufferAdler32---------------
7499 //
7500 // Calculate Adler32 checksum for DirectByteBuffer.
7501 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
7502 //
7503 bool LibraryCallKit::inline_updateByteBufferAdler32() {
7504   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
7505   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
7506   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
7507   // no receiver since it is static method
7508   Node* crc     = argument(0); // type: int
7509   Node* src     = argument(1); // type: long
7510   Node* offset  = argument(3); // type: int
7511   Node* length  = argument(4); // type: int
7512 
7513   src = ConvL2X(src);  // adjust Java long to machine word
7514   Node* base = _gvn.transform(new CastX2PNode(src));
7515   offset = ConvI2X(offset);
7516 
7517   // 'src_start' points to src array + scaled offset
7518   Node* src_start = basic_plus_adr(top(), base, offset);
7519 
7520   // Call the stub.
7521   address stubAddr = StubRoutines::updateBytesAdler32();
7522   const char *stubName = "updateBytesAdler32";
7523 
7524   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
7525                                  stubAddr, stubName, TypePtr::BOTTOM,
7526                                  crc, src_start, length);
7527 
7528   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7529   set_result(result);
7530   return true;
7531 }
7532 
7533 //----------------------------inline_reference_get----------------------------
7534 // public T java.lang.ref.Reference.get();
7535 bool LibraryCallKit::inline_reference_get() {
7536   const int referent_offset = java_lang_ref_Reference::referent_offset();
7537 
7538   // Get the argument:
7539   Node* reference_obj = null_check_receiver();
7540   if (stopped()) return true;
7541 
7542   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
7543   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7544                                         decorators, /*is_static*/ false, nullptr);
7545   if (result == nullptr) return false;
7546 
7547   // Add memory barrier to prevent commoning reads from this field
7548   // across safepoint since GC can change its value.
7549   insert_mem_bar(Op_MemBarCPUOrder);
7550 
7551   set_result(result);
7552   return true;
7553 }
7554 
7555 //----------------------------inline_reference_refersTo0----------------------------
7556 // bool java.lang.ref.Reference.refersTo0();
7557 // bool java.lang.ref.PhantomReference.refersTo0();
7558 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
7559   // Get arguments:
7560   Node* reference_obj = null_check_receiver();
7561   Node* other_obj = argument(1);
7562   if (stopped()) return true;
7563 
7564   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
7565   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
7566   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7567                                           decorators, /*is_static*/ false, nullptr);
7568   if (referent == nullptr) return false;
7569 
7570   // Add memory barrier to prevent commoning reads from this field
7571   // across safepoint since GC can change its value.
7572   insert_mem_bar(Op_MemBarCPUOrder);
7573 
7574   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
7575   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
7576   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
7577 
7578   RegionNode* region = new RegionNode(3);
7579   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
7580 
7581   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
7582   region->init_req(1, if_true);
7583   phi->init_req(1, intcon(1));
7584 
7585   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
7586   region->init_req(2, if_false);
7587   phi->init_req(2, intcon(0));
7588 
7589   set_control(_gvn.transform(region));
7590   record_for_igvn(region);
7591   set_result(_gvn.transform(phi));
7592   return true;
7593 }
7594 
7595 //----------------------------inline_reference_clear0----------------------------
7596 // void java.lang.ref.Reference.clear0();
7597 // void java.lang.ref.PhantomReference.clear0();
7598 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) {
7599   // This matches the implementation in JVM_ReferenceClear, see the comments there.
7600 
7601   // Get arguments
7602   Node* reference_obj = null_check_receiver();
7603   if (stopped()) return true;
7604 
7605   // Common access parameters
7606   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
7607   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
7608   Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset());
7609   const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr();
7610   const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass());
7611 
7612   Node* referent = access_load_at(reference_obj,
7613                                   referent_field_addr,
7614                                   referent_field_addr_type,
7615                                   val_type,
7616                                   T_OBJECT,
7617                                   decorators);
7618 
7619   IdealKit ideal(this);
7620 #define __ ideal.
7621   __ if_then(referent, BoolTest::ne, null());
7622     sync_kit(ideal);
7623     access_store_at(reference_obj,
7624                     referent_field_addr,
7625                     referent_field_addr_type,
7626                     null(),
7627                     val_type,
7628                     T_OBJECT,
7629                     decorators);
7630     __ sync_kit(this);
7631   __ end_if();
7632   final_sync(ideal);
7633 #undef __
7634 
7635   return true;
7636 }
7637 
7638 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
7639                                              DecoratorSet decorators, bool is_static,
7640                                              ciInstanceKlass* fromKls) {
7641   if (fromKls == nullptr) {
7642     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7643     assert(tinst != nullptr, "obj is null");
7644     assert(tinst->is_loaded(), "obj is not loaded");
7645     fromKls = tinst->instance_klass();
7646   } else {
7647     assert(is_static, "only for static field access");
7648   }
7649   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7650                                               ciSymbol::make(fieldTypeString),
7651                                               is_static);
7652 
7653   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
7654   if (field == nullptr) return (Node *) nullptr;
7655 
7656   if (is_static) {
7657     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7658     fromObj = makecon(tip);
7659   }
7660 
7661   // Next code  copied from Parse::do_get_xxx():
7662 
7663   // Compute address and memory type.
7664   int offset  = field->offset_in_bytes();
7665   bool is_vol = field->is_volatile();
7666   ciType* field_klass = field->type();
7667   assert(field_klass->is_loaded(), "should be loaded");
7668   const TypePtr* adr_type = C->alias_type(field)->adr_type();
7669   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7670   assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
7671     "slice of address and input slice don't match");
7672   BasicType bt = field->layout_type();
7673 
7674   // Build the resultant type of the load
7675   const Type *type;
7676   if (bt == T_OBJECT) {
7677     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
7678   } else {
7679     type = Type::get_const_basic_type(bt);
7680   }
7681 
7682   if (is_vol) {
7683     decorators |= MO_SEQ_CST;
7684   }
7685 
7686   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
7687 }
7688 
7689 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7690                                                  bool is_exact /* true */, bool is_static /* false */,
7691                                                  ciInstanceKlass * fromKls /* nullptr */) {
7692   if (fromKls == nullptr) {
7693     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7694     assert(tinst != nullptr, "obj is null");
7695     assert(tinst->is_loaded(), "obj is not loaded");
7696     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7697     fromKls = tinst->instance_klass();
7698   }
7699   else {
7700     assert(is_static, "only for static field access");
7701   }
7702   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7703     ciSymbol::make(fieldTypeString),
7704     is_static);
7705 
7706   assert(field != nullptr, "undefined field");
7707   assert(!field->is_volatile(), "not defined for volatile fields");
7708 
7709   if (is_static) {
7710     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7711     fromObj = makecon(tip);
7712   }
7713 
7714   // Next code  copied from Parse::do_get_xxx():
7715 
7716   // Compute address and memory type.
7717   int offset = field->offset_in_bytes();
7718   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7719 
7720   return adr;
7721 }
7722 
7723 //------------------------------inline_aescrypt_Block-----------------------
7724 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7725   address stubAddr = nullptr;
7726   const char *stubName;
7727   assert(UseAES, "need AES instruction support");
7728 
7729   switch(id) {
7730   case vmIntrinsics::_aescrypt_encryptBlock:
7731     stubAddr = StubRoutines::aescrypt_encryptBlock();
7732     stubName = "aescrypt_encryptBlock";
7733     break;
7734   case vmIntrinsics::_aescrypt_decryptBlock:
7735     stubAddr = StubRoutines::aescrypt_decryptBlock();
7736     stubName = "aescrypt_decryptBlock";
7737     break;
7738   default:
7739     break;
7740   }
7741   if (stubAddr == nullptr) return false;
7742 
7743   Node* aescrypt_object = argument(0);
7744   Node* src             = argument(1);
7745   Node* src_offset      = argument(2);
7746   Node* dest            = argument(3);
7747   Node* dest_offset     = argument(4);
7748 
7749   src = must_be_not_null(src, true);
7750   dest = must_be_not_null(dest, true);
7751 
7752   // (1) src and dest are arrays.
7753   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7754   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7755   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7756          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7757 
7758   // for the quick and dirty code we will skip all the checks.
7759   // we are just trying to get the call to be generated.
7760   Node* src_start  = src;
7761   Node* dest_start = dest;
7762   if (src_offset != nullptr || dest_offset != nullptr) {
7763     assert(src_offset != nullptr && dest_offset != nullptr, "");
7764     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7765     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7766   }
7767 
7768   // now need to get the start of its expanded key array
7769   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7770   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7771   if (k_start == nullptr) return false;
7772 
7773   // Call the stub.
7774   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7775                     stubAddr, stubName, TypePtr::BOTTOM,
7776                     src_start, dest_start, k_start);
7777 
7778   return true;
7779 }
7780 
7781 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7782 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7783   address stubAddr = nullptr;
7784   const char *stubName = nullptr;
7785 
7786   assert(UseAES, "need AES instruction support");
7787 
7788   switch(id) {
7789   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7790     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7791     stubName = "cipherBlockChaining_encryptAESCrypt";
7792     break;
7793   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7794     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7795     stubName = "cipherBlockChaining_decryptAESCrypt";
7796     break;
7797   default:
7798     break;
7799   }
7800   if (stubAddr == nullptr) return false;
7801 
7802   Node* cipherBlockChaining_object = argument(0);
7803   Node* src                        = argument(1);
7804   Node* src_offset                 = argument(2);
7805   Node* len                        = argument(3);
7806   Node* dest                       = argument(4);
7807   Node* dest_offset                = argument(5);
7808 
7809   src = must_be_not_null(src, false);
7810   dest = must_be_not_null(dest, false);
7811 
7812   // (1) src and dest are arrays.
7813   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7814   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7815   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7816          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7817 
7818   // checks are the responsibility of the caller
7819   Node* src_start  = src;
7820   Node* dest_start = dest;
7821   if (src_offset != nullptr || dest_offset != nullptr) {
7822     assert(src_offset != nullptr && dest_offset != nullptr, "");
7823     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7824     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7825   }
7826 
7827   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7828   // (because of the predicated logic executed earlier).
7829   // so we cast it here safely.
7830   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7831 
7832   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7833   if (embeddedCipherObj == nullptr) return false;
7834 
7835   // cast it to what we know it will be at runtime
7836   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7837   assert(tinst != nullptr, "CBC obj is null");
7838   assert(tinst->is_loaded(), "CBC obj is not loaded");
7839   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7840   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7841 
7842   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7843   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7844   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7845   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7846   aescrypt_object = _gvn.transform(aescrypt_object);
7847 
7848   // we need to get the start of the aescrypt_object's expanded key array
7849   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7850   if (k_start == nullptr) return false;
7851 
7852   // similarly, get the start address of the r vector
7853   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7854   if (objRvec == nullptr) return false;
7855   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7856 
7857   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7858   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7859                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7860                                      stubAddr, stubName, TypePtr::BOTTOM,
7861                                      src_start, dest_start, k_start, r_start, len);
7862 
7863   // return cipher length (int)
7864   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7865   set_result(retvalue);
7866   return true;
7867 }
7868 
7869 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7870 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7871   address stubAddr = nullptr;
7872   const char *stubName = nullptr;
7873 
7874   assert(UseAES, "need AES instruction support");
7875 
7876   switch (id) {
7877   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7878     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7879     stubName = "electronicCodeBook_encryptAESCrypt";
7880     break;
7881   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7882     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7883     stubName = "electronicCodeBook_decryptAESCrypt";
7884     break;
7885   default:
7886     break;
7887   }
7888 
7889   if (stubAddr == nullptr) return false;
7890 
7891   Node* electronicCodeBook_object = argument(0);
7892   Node* src                       = argument(1);
7893   Node* src_offset                = argument(2);
7894   Node* len                       = argument(3);
7895   Node* dest                      = argument(4);
7896   Node* dest_offset               = argument(5);
7897 
7898   // (1) src and dest are arrays.
7899   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7900   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7901   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7902          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7903 
7904   // checks are the responsibility of the caller
7905   Node* src_start = src;
7906   Node* dest_start = dest;
7907   if (src_offset != nullptr || dest_offset != nullptr) {
7908     assert(src_offset != nullptr && dest_offset != nullptr, "");
7909     src_start = array_element_address(src, src_offset, T_BYTE);
7910     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7911   }
7912 
7913   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7914   // (because of the predicated logic executed earlier).
7915   // so we cast it here safely.
7916   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7917 
7918   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7919   if (embeddedCipherObj == nullptr) return false;
7920 
7921   // cast it to what we know it will be at runtime
7922   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7923   assert(tinst != nullptr, "ECB obj is null");
7924   assert(tinst->is_loaded(), "ECB obj is not loaded");
7925   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7926   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7927 
7928   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7929   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7930   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7931   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7932   aescrypt_object = _gvn.transform(aescrypt_object);
7933 
7934   // we need to get the start of the aescrypt_object's expanded key array
7935   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7936   if (k_start == nullptr) return false;
7937 
7938   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7939   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7940                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7941                                      stubAddr, stubName, TypePtr::BOTTOM,
7942                                      src_start, dest_start, k_start, len);
7943 
7944   // return cipher length (int)
7945   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7946   set_result(retvalue);
7947   return true;
7948 }
7949 
7950 //------------------------------inline_counterMode_AESCrypt-----------------------
7951 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7952   assert(UseAES, "need AES instruction support");
7953   if (!UseAESCTRIntrinsics) return false;
7954 
7955   address stubAddr = nullptr;
7956   const char *stubName = nullptr;
7957   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7958     stubAddr = StubRoutines::counterMode_AESCrypt();
7959     stubName = "counterMode_AESCrypt";
7960   }
7961   if (stubAddr == nullptr) return false;
7962 
7963   Node* counterMode_object = argument(0);
7964   Node* src = argument(1);
7965   Node* src_offset = argument(2);
7966   Node* len = argument(3);
7967   Node* dest = argument(4);
7968   Node* dest_offset = argument(5);
7969 
7970   // (1) src and dest are arrays.
7971   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7972   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7973   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7974          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7975 
7976   // checks are the responsibility of the caller
7977   Node* src_start = src;
7978   Node* dest_start = dest;
7979   if (src_offset != nullptr || dest_offset != nullptr) {
7980     assert(src_offset != nullptr && dest_offset != nullptr, "");
7981     src_start = array_element_address(src, src_offset, T_BYTE);
7982     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7983   }
7984 
7985   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7986   // (because of the predicated logic executed earlier).
7987   // so we cast it here safely.
7988   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7989   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7990   if (embeddedCipherObj == nullptr) return false;
7991   // cast it to what we know it will be at runtime
7992   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7993   assert(tinst != nullptr, "CTR obj is null");
7994   assert(tinst->is_loaded(), "CTR obj is not loaded");
7995   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7996   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7997   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7998   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7999   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
8000   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8001   aescrypt_object = _gvn.transform(aescrypt_object);
8002   // we need to get the start of the aescrypt_object's expanded key array
8003   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8004   if (k_start == nullptr) return false;
8005   // similarly, get the start address of the r vector
8006   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
8007   if (obj_counter == nullptr) return false;
8008   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
8009 
8010   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
8011   if (saved_encCounter == nullptr) return false;
8012   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
8013   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
8014 
8015   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
8016   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8017                                      OptoRuntime::counterMode_aescrypt_Type(),
8018                                      stubAddr, stubName, TypePtr::BOTTOM,
8019                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
8020 
8021   // return cipher length (int)
8022   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
8023   set_result(retvalue);
8024   return true;
8025 }
8026 
8027 //------------------------------get_key_start_from_aescrypt_object-----------------------
8028 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
8029 #if defined(PPC64) || defined(S390) || defined(RISCV64)
8030   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
8031   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
8032   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
8033   // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]).
8034   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
8035   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
8036   if (objSessionK == nullptr) {
8037     return (Node *) nullptr;
8038   }
8039   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
8040 #else
8041   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
8042 #endif // PPC64
8043   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
8044   if (objAESCryptKey == nullptr) return (Node *) nullptr;
8045 
8046   // now have the array, need to get the start address of the K array
8047   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
8048   return k_start;
8049 }
8050 
8051 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
8052 // Return node representing slow path of predicate check.
8053 // the pseudo code we want to emulate with this predicate is:
8054 // for encryption:
8055 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8056 // for decryption:
8057 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8058 //    note cipher==plain is more conservative than the original java code but that's OK
8059 //
8060 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
8061   // The receiver was checked for null already.
8062   Node* objCBC = argument(0);
8063 
8064   Node* src = argument(1);
8065   Node* dest = argument(4);
8066 
8067   // Load embeddedCipher field of CipherBlockChaining object.
8068   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8069 
8070   // get AESCrypt klass for instanceOf check
8071   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8072   // will have same classloader as CipherBlockChaining object
8073   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
8074   assert(tinst != nullptr, "CBCobj is null");
8075   assert(tinst->is_loaded(), "CBCobj is not loaded");
8076 
8077   // we want to do an instanceof comparison against the AESCrypt class
8078   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8079   if (!klass_AESCrypt->is_loaded()) {
8080     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8081     Node* ctrl = control();
8082     set_control(top()); // no regular fast path
8083     return ctrl;
8084   }
8085 
8086   src = must_be_not_null(src, true);
8087   dest = must_be_not_null(dest, true);
8088 
8089   // Resolve oops to stable for CmpP below.
8090   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8091 
8092   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8093   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
8094   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8095 
8096   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8097 
8098   // for encryption, we are done
8099   if (!decrypting)
8100     return instof_false;  // even if it is null
8101 
8102   // for decryption, we need to add a further check to avoid
8103   // taking the intrinsic path when cipher and plain are the same
8104   // see the original java code for why.
8105   RegionNode* region = new RegionNode(3);
8106   region->init_req(1, instof_false);
8107 
8108   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
8109   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
8110   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
8111   region->init_req(2, src_dest_conjoint);
8112 
8113   record_for_igvn(region);
8114   return _gvn.transform(region);
8115 }
8116 
8117 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
8118 // Return node representing slow path of predicate check.
8119 // the pseudo code we want to emulate with this predicate is:
8120 // for encryption:
8121 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8122 // for decryption:
8123 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8124 //    note cipher==plain is more conservative than the original java code but that's OK
8125 //
8126 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
8127   // The receiver was checked for null already.
8128   Node* objECB = argument(0);
8129 
8130   // Load embeddedCipher field of ElectronicCodeBook object.
8131   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8132 
8133   // get AESCrypt klass for instanceOf check
8134   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8135   // will have same classloader as ElectronicCodeBook object
8136   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
8137   assert(tinst != nullptr, "ECBobj is null");
8138   assert(tinst->is_loaded(), "ECBobj is not loaded");
8139 
8140   // we want to do an instanceof comparison against the AESCrypt class
8141   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8142   if (!klass_AESCrypt->is_loaded()) {
8143     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8144     Node* ctrl = control();
8145     set_control(top()); // no regular fast path
8146     return ctrl;
8147   }
8148   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8149 
8150   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8151   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8152   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8153 
8154   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8155 
8156   // for encryption, we are done
8157   if (!decrypting)
8158     return instof_false;  // even if it is null
8159 
8160   // for decryption, we need to add a further check to avoid
8161   // taking the intrinsic path when cipher and plain are the same
8162   // see the original java code for why.
8163   RegionNode* region = new RegionNode(3);
8164   region->init_req(1, instof_false);
8165   Node* src = argument(1);
8166   Node* dest = argument(4);
8167   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
8168   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
8169   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
8170   region->init_req(2, src_dest_conjoint);
8171 
8172   record_for_igvn(region);
8173   return _gvn.transform(region);
8174 }
8175 
8176 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
8177 // Return node representing slow path of predicate check.
8178 // the pseudo code we want to emulate with this predicate is:
8179 // for encryption:
8180 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8181 // for decryption:
8182 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8183 //    note cipher==plain is more conservative than the original java code but that's OK
8184 //
8185 
8186 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
8187   // The receiver was checked for null already.
8188   Node* objCTR = argument(0);
8189 
8190   // Load embeddedCipher field of CipherBlockChaining object.
8191   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8192 
8193   // get AESCrypt klass for instanceOf check
8194   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8195   // will have same classloader as CipherBlockChaining object
8196   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
8197   assert(tinst != nullptr, "CTRobj is null");
8198   assert(tinst->is_loaded(), "CTRobj is not loaded");
8199 
8200   // we want to do an instanceof comparison against the AESCrypt class
8201   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8202   if (!klass_AESCrypt->is_loaded()) {
8203     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8204     Node* ctrl = control();
8205     set_control(top()); // no regular fast path
8206     return ctrl;
8207   }
8208 
8209   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8210   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8211   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8212   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8213   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8214 
8215   return instof_false; // even if it is null
8216 }
8217 
8218 //------------------------------inline_ghash_processBlocks
8219 bool LibraryCallKit::inline_ghash_processBlocks() {
8220   address stubAddr;
8221   const char *stubName;
8222   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
8223 
8224   stubAddr = StubRoutines::ghash_processBlocks();
8225   stubName = "ghash_processBlocks";
8226 
8227   Node* data           = argument(0);
8228   Node* offset         = argument(1);
8229   Node* len            = argument(2);
8230   Node* state          = argument(3);
8231   Node* subkeyH        = argument(4);
8232 
8233   state = must_be_not_null(state, true);
8234   subkeyH = must_be_not_null(subkeyH, true);
8235   data = must_be_not_null(data, true);
8236 
8237   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
8238   assert(state_start, "state is null");
8239   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
8240   assert(subkeyH_start, "subkeyH is null");
8241   Node* data_start  = array_element_address(data, offset, T_BYTE);
8242   assert(data_start, "data is null");
8243 
8244   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
8245                                   OptoRuntime::ghash_processBlocks_Type(),
8246                                   stubAddr, stubName, TypePtr::BOTTOM,
8247                                   state_start, subkeyH_start, data_start, len);
8248   return true;
8249 }
8250 
8251 //------------------------------inline_chacha20Block
8252 bool LibraryCallKit::inline_chacha20Block() {
8253   address stubAddr;
8254   const char *stubName;
8255   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
8256 
8257   stubAddr = StubRoutines::chacha20Block();
8258   stubName = "chacha20Block";
8259 
8260   Node* state          = argument(0);
8261   Node* result         = argument(1);
8262 
8263   state = must_be_not_null(state, true);
8264   result = must_be_not_null(result, true);
8265 
8266   Node* state_start  = array_element_address(state, intcon(0), T_INT);
8267   assert(state_start, "state is null");
8268   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
8269   assert(result_start, "result is null");
8270 
8271   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
8272                                   OptoRuntime::chacha20Block_Type(),
8273                                   stubAddr, stubName, TypePtr::BOTTOM,
8274                                   state_start, result_start);
8275   // return key stream length (int)
8276   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
8277   set_result(retvalue);
8278   return true;
8279 }
8280 
8281 //------------------------------inline_kyberNtt
8282 bool LibraryCallKit::inline_kyberNtt() {
8283   address stubAddr;
8284   const char *stubName;
8285   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8286   assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters");
8287 
8288   stubAddr = StubRoutines::kyberNtt();
8289   stubName = "kyberNtt";
8290   if (!stubAddr) return false;
8291 
8292   Node* coeffs          = argument(0);
8293   Node* ntt_zetas        = argument(1);
8294 
8295   coeffs = must_be_not_null(coeffs, true);
8296   ntt_zetas = must_be_not_null(ntt_zetas, true);
8297 
8298   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_SHORT);
8299   assert(coeffs_start, "coeffs is null");
8300   Node* ntt_zetas_start  = array_element_address(ntt_zetas, intcon(0), T_SHORT);
8301   assert(ntt_zetas_start, "ntt_zetas is null");
8302   Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
8303                                   OptoRuntime::kyberNtt_Type(),
8304                                   stubAddr, stubName, TypePtr::BOTTOM,
8305                                   coeffs_start, ntt_zetas_start);
8306   // return an int
8307   Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms));
8308   set_result(retvalue);
8309   return true;
8310 }
8311 
8312 //------------------------------inline_kyberInverseNtt
8313 bool LibraryCallKit::inline_kyberInverseNtt() {
8314   address stubAddr;
8315   const char *stubName;
8316   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8317   assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters");
8318 
8319   stubAddr = StubRoutines::kyberInverseNtt();
8320   stubName = "kyberInverseNtt";
8321   if (!stubAddr) return false;
8322 
8323   Node* coeffs          = argument(0);
8324   Node* zetas           = argument(1);
8325 
8326   coeffs = must_be_not_null(coeffs, true);
8327   zetas = must_be_not_null(zetas, true);
8328 
8329   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_SHORT);
8330   assert(coeffs_start, "coeffs is null");
8331   Node* zetas_start  = array_element_address(zetas, intcon(0), T_SHORT);
8332   assert(zetas_start, "inverseNtt_zetas is null");
8333   Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
8334                                   OptoRuntime::kyberInverseNtt_Type(),
8335                                   stubAddr, stubName, TypePtr::BOTTOM,
8336                                   coeffs_start, zetas_start);
8337 
8338   // return an int
8339   Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms));
8340   set_result(retvalue);
8341   return true;
8342 }
8343 
8344 //------------------------------inline_kyberNttMult
8345 bool LibraryCallKit::inline_kyberNttMult() {
8346   address stubAddr;
8347   const char *stubName;
8348   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8349   assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters");
8350 
8351   stubAddr = StubRoutines::kyberNttMult();
8352   stubName = "kyberNttMult";
8353   if (!stubAddr) return false;
8354 
8355   Node* result          = argument(0);
8356   Node* ntta            = argument(1);
8357   Node* nttb            = argument(2);
8358   Node* zetas           = argument(3);
8359 
8360   result = must_be_not_null(result, true);
8361   ntta = must_be_not_null(ntta, true);
8362   nttb = must_be_not_null(nttb, true);
8363   zetas = must_be_not_null(zetas, true);
8364   Node* result_start  = array_element_address(result, intcon(0), T_SHORT);
8365   assert(result_start, "result is null");
8366   Node* ntta_start  = array_element_address(ntta, intcon(0), T_SHORT);
8367   assert(ntta_start, "ntta is null");
8368   Node* nttb_start  = array_element_address(nttb, intcon(0), T_SHORT);
8369   assert(nttb_start, "nttb is null");
8370   Node* zetas_start  = array_element_address(zetas, intcon(0), T_SHORT);
8371   assert(zetas_start, "nttMult_zetas is null");
8372   Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP,
8373                                   OptoRuntime::kyberNttMult_Type(),
8374                                   stubAddr, stubName, TypePtr::BOTTOM,
8375                                   result_start, ntta_start, nttb_start,
8376                                   zetas_start);
8377 
8378   // return an int
8379   Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms));
8380   set_result(retvalue);
8381 
8382   return true;
8383 }
8384 
8385 //------------------------------inline_kyberAddPoly_2
8386 bool LibraryCallKit::inline_kyberAddPoly_2() {
8387   address stubAddr;
8388   const char *stubName;
8389   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8390   assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters");
8391 
8392   stubAddr = StubRoutines::kyberAddPoly_2();
8393   stubName = "kyberAddPoly_2";
8394   if (!stubAddr) return false;
8395 
8396   Node* result          = argument(0);
8397   Node* a               = argument(1);
8398   Node* b               = argument(2);
8399 
8400   result = must_be_not_null(result, true);
8401   a = must_be_not_null(a, true);
8402   b = must_be_not_null(b, true);
8403 
8404   Node* result_start  = array_element_address(result, intcon(0), T_SHORT);
8405   assert(result_start, "result is null");
8406   Node* a_start  = array_element_address(a, intcon(0), T_SHORT);
8407   assert(a_start, "a is null");
8408   Node* b_start  = array_element_address(b, intcon(0), T_SHORT);
8409   assert(b_start, "b is null");
8410   Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP,
8411                                   OptoRuntime::kyberAddPoly_2_Type(),
8412                                   stubAddr, stubName, TypePtr::BOTTOM,
8413                                   result_start, a_start, b_start);
8414   // return an int
8415   Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms));
8416   set_result(retvalue);
8417   return true;
8418 }
8419 
8420 //------------------------------inline_kyberAddPoly_3
8421 bool LibraryCallKit::inline_kyberAddPoly_3() {
8422   address stubAddr;
8423   const char *stubName;
8424   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8425   assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters");
8426 
8427   stubAddr = StubRoutines::kyberAddPoly_3();
8428   stubName = "kyberAddPoly_3";
8429   if (!stubAddr) return false;
8430 
8431   Node* result          = argument(0);
8432   Node* a               = argument(1);
8433   Node* b               = argument(2);
8434   Node* c               = argument(3);
8435 
8436   result = must_be_not_null(result, true);
8437   a = must_be_not_null(a, true);
8438   b = must_be_not_null(b, true);
8439   c = must_be_not_null(c, true);
8440 
8441   Node* result_start  = array_element_address(result, intcon(0), T_SHORT);
8442   assert(result_start, "result is null");
8443   Node* a_start  = array_element_address(a, intcon(0), T_SHORT);
8444   assert(a_start, "a is null");
8445   Node* b_start  = array_element_address(b, intcon(0), T_SHORT);
8446   assert(b_start, "b is null");
8447   Node* c_start  = array_element_address(c, intcon(0), T_SHORT);
8448   assert(c_start, "c is null");
8449   Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP,
8450                                   OptoRuntime::kyberAddPoly_3_Type(),
8451                                   stubAddr, stubName, TypePtr::BOTTOM,
8452                                   result_start, a_start, b_start, c_start);
8453   // return an int
8454   Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms));
8455   set_result(retvalue);
8456   return true;
8457 }
8458 
8459 //------------------------------inline_kyber12To16
8460 bool LibraryCallKit::inline_kyber12To16() {
8461   address stubAddr;
8462   const char *stubName;
8463   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8464   assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters");
8465 
8466   stubAddr = StubRoutines::kyber12To16();
8467   stubName = "kyber12To16";
8468   if (!stubAddr) return false;
8469 
8470   Node* condensed       = argument(0);
8471   Node* condensedOffs   = argument(1);
8472   Node* parsed          = argument(2);
8473   Node* parsedLength    = argument(3);
8474 
8475   condensed = must_be_not_null(condensed, true);
8476   parsed = must_be_not_null(parsed, true);
8477 
8478   Node* condensed_start  = array_element_address(condensed, intcon(0), T_BYTE);
8479   assert(condensed_start, "condensed is null");
8480   Node* parsed_start  = array_element_address(parsed, intcon(0), T_SHORT);
8481   assert(parsed_start, "parsed is null");
8482   Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP,
8483                                   OptoRuntime::kyber12To16_Type(),
8484                                   stubAddr, stubName, TypePtr::BOTTOM,
8485                                   condensed_start, condensedOffs, parsed_start, parsedLength);
8486   // return an int
8487   Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms));
8488   set_result(retvalue);
8489   return true;
8490 
8491 }
8492 
8493 //------------------------------inline_kyberBarrettReduce
8494 bool LibraryCallKit::inline_kyberBarrettReduce() {
8495   address stubAddr;
8496   const char *stubName;
8497   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8498   assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters");
8499 
8500   stubAddr = StubRoutines::kyberBarrettReduce();
8501   stubName = "kyberBarrettReduce";
8502   if (!stubAddr) return false;
8503 
8504   Node* coeffs          = argument(0);
8505 
8506   coeffs = must_be_not_null(coeffs, true);
8507 
8508   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_SHORT);
8509   assert(coeffs_start, "coeffs is null");
8510   Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP,
8511                                   OptoRuntime::kyberBarrettReduce_Type(),
8512                                   stubAddr, stubName, TypePtr::BOTTOM,
8513                                   coeffs_start);
8514   // return an int
8515   Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms));
8516   set_result(retvalue);
8517   return true;
8518 }
8519 
8520 //------------------------------inline_dilithiumAlmostNtt
8521 bool LibraryCallKit::inline_dilithiumAlmostNtt() {
8522   address stubAddr;
8523   const char *stubName;
8524   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8525   assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters");
8526 
8527   stubAddr = StubRoutines::dilithiumAlmostNtt();
8528   stubName = "dilithiumAlmostNtt";
8529   if (!stubAddr) return false;
8530 
8531   Node* coeffs          = argument(0);
8532   Node* ntt_zetas        = argument(1);
8533 
8534   coeffs = must_be_not_null(coeffs, true);
8535   ntt_zetas = must_be_not_null(ntt_zetas, true);
8536 
8537   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
8538   assert(coeffs_start, "coeffs is null");
8539   Node* ntt_zetas_start  = array_element_address(ntt_zetas, intcon(0), T_INT);
8540   assert(ntt_zetas_start, "ntt_zetas is null");
8541   Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
8542                                   OptoRuntime::dilithiumAlmostNtt_Type(),
8543                                   stubAddr, stubName, TypePtr::BOTTOM,
8544                                   coeffs_start, ntt_zetas_start);
8545   // return an int
8546   Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms));
8547   set_result(retvalue);
8548   return true;
8549 }
8550 
8551 //------------------------------inline_dilithiumAlmostInverseNtt
8552 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() {
8553   address stubAddr;
8554   const char *stubName;
8555   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8556   assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters");
8557 
8558   stubAddr = StubRoutines::dilithiumAlmostInverseNtt();
8559   stubName = "dilithiumAlmostInverseNtt";
8560   if (!stubAddr) return false;
8561 
8562   Node* coeffs          = argument(0);
8563   Node* zetas           = argument(1);
8564 
8565   coeffs = must_be_not_null(coeffs, true);
8566   zetas = must_be_not_null(zetas, true);
8567 
8568   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
8569   assert(coeffs_start, "coeffs is null");
8570   Node* zetas_start  = array_element_address(zetas, intcon(0), T_INT);
8571   assert(zetas_start, "inverseNtt_zetas is null");
8572   Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
8573                                   OptoRuntime::dilithiumAlmostInverseNtt_Type(),
8574                                   stubAddr, stubName, TypePtr::BOTTOM,
8575                                   coeffs_start, zetas_start);
8576   // return an int
8577   Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms));
8578   set_result(retvalue);
8579   return true;
8580 }
8581 
8582 //------------------------------inline_dilithiumNttMult
8583 bool LibraryCallKit::inline_dilithiumNttMult() {
8584   address stubAddr;
8585   const char *stubName;
8586   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8587   assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters");
8588 
8589   stubAddr = StubRoutines::dilithiumNttMult();
8590   stubName = "dilithiumNttMult";
8591   if (!stubAddr) return false;
8592 
8593   Node* result          = argument(0);
8594   Node* ntta            = argument(1);
8595   Node* nttb            = argument(2);
8596   Node* zetas           = argument(3);
8597 
8598   result = must_be_not_null(result, true);
8599   ntta = must_be_not_null(ntta, true);
8600   nttb = must_be_not_null(nttb, true);
8601   zetas = must_be_not_null(zetas, true);
8602 
8603   Node* result_start  = array_element_address(result, intcon(0), T_INT);
8604   assert(result_start, "result is null");
8605   Node* ntta_start  = array_element_address(ntta, intcon(0), T_INT);
8606   assert(ntta_start, "ntta is null");
8607   Node* nttb_start  = array_element_address(nttb, intcon(0), T_INT);
8608   assert(nttb_start, "nttb is null");
8609   Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP,
8610                                   OptoRuntime::dilithiumNttMult_Type(),
8611                                   stubAddr, stubName, TypePtr::BOTTOM,
8612                                   result_start, ntta_start, nttb_start);
8613 
8614   // return an int
8615   Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms));
8616   set_result(retvalue);
8617 
8618   return true;
8619 }
8620 
8621 //------------------------------inline_dilithiumMontMulByConstant
8622 bool LibraryCallKit::inline_dilithiumMontMulByConstant() {
8623   address stubAddr;
8624   const char *stubName;
8625   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8626   assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters");
8627 
8628   stubAddr = StubRoutines::dilithiumMontMulByConstant();
8629   stubName = "dilithiumMontMulByConstant";
8630   if (!stubAddr) return false;
8631 
8632   Node* coeffs          = argument(0);
8633   Node* constant        = argument(1);
8634 
8635   coeffs = must_be_not_null(coeffs, true);
8636 
8637   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
8638   assert(coeffs_start, "coeffs is null");
8639   Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP,
8640                                   OptoRuntime::dilithiumMontMulByConstant_Type(),
8641                                   stubAddr, stubName, TypePtr::BOTTOM,
8642                                   coeffs_start, constant);
8643 
8644   // return an int
8645   Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms));
8646   set_result(retvalue);
8647   return true;
8648 }
8649 
8650 
8651 //------------------------------inline_dilithiumDecomposePoly
8652 bool LibraryCallKit::inline_dilithiumDecomposePoly() {
8653   address stubAddr;
8654   const char *stubName;
8655   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8656   assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters");
8657 
8658   stubAddr = StubRoutines::dilithiumDecomposePoly();
8659   stubName = "dilithiumDecomposePoly";
8660   if (!stubAddr) return false;
8661 
8662   Node* input          = argument(0);
8663   Node* lowPart        = argument(1);
8664   Node* highPart       = argument(2);
8665   Node* twoGamma2      = argument(3);
8666   Node* multiplier     = argument(4);
8667 
8668   input = must_be_not_null(input, true);
8669   lowPart = must_be_not_null(lowPart, true);
8670   highPart = must_be_not_null(highPart, true);
8671 
8672   Node* input_start  = array_element_address(input, intcon(0), T_INT);
8673   assert(input_start, "input is null");
8674   Node* lowPart_start  = array_element_address(lowPart, intcon(0), T_INT);
8675   assert(lowPart_start, "lowPart is null");
8676   Node* highPart_start  = array_element_address(highPart, intcon(0), T_INT);
8677   assert(highPart_start, "highPart is null");
8678 
8679   Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP,
8680                                   OptoRuntime::dilithiumDecomposePoly_Type(),
8681                                   stubAddr, stubName, TypePtr::BOTTOM,
8682                                   input_start, lowPart_start, highPart_start,
8683                                   twoGamma2, multiplier);
8684 
8685   // return an int
8686   Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms));
8687   set_result(retvalue);
8688   return true;
8689 }
8690 
8691 bool LibraryCallKit::inline_base64_encodeBlock() {
8692   address stubAddr;
8693   const char *stubName;
8694   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
8695   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
8696   stubAddr = StubRoutines::base64_encodeBlock();
8697   stubName = "encodeBlock";
8698 
8699   if (!stubAddr) return false;
8700   Node* base64obj = argument(0);
8701   Node* src = argument(1);
8702   Node* offset = argument(2);
8703   Node* len = argument(3);
8704   Node* dest = argument(4);
8705   Node* dp = argument(5);
8706   Node* isURL = argument(6);
8707 
8708   src = must_be_not_null(src, true);
8709   dest = must_be_not_null(dest, true);
8710 
8711   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
8712   assert(src_start, "source array is null");
8713   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
8714   assert(dest_start, "destination array is null");
8715 
8716   Node* base64 = make_runtime_call(RC_LEAF,
8717                                    OptoRuntime::base64_encodeBlock_Type(),
8718                                    stubAddr, stubName, TypePtr::BOTTOM,
8719                                    src_start, offset, len, dest_start, dp, isURL);
8720   return true;
8721 }
8722 
8723 bool LibraryCallKit::inline_base64_decodeBlock() {
8724   address stubAddr;
8725   const char *stubName;
8726   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
8727   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
8728   stubAddr = StubRoutines::base64_decodeBlock();
8729   stubName = "decodeBlock";
8730 
8731   if (!stubAddr) return false;
8732   Node* base64obj = argument(0);
8733   Node* src = argument(1);
8734   Node* src_offset = argument(2);
8735   Node* len = argument(3);
8736   Node* dest = argument(4);
8737   Node* dest_offset = argument(5);
8738   Node* isURL = argument(6);
8739   Node* isMIME = argument(7);
8740 
8741   src = must_be_not_null(src, true);
8742   dest = must_be_not_null(dest, true);
8743 
8744   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
8745   assert(src_start, "source array is null");
8746   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
8747   assert(dest_start, "destination array is null");
8748 
8749   Node* call = make_runtime_call(RC_LEAF,
8750                                  OptoRuntime::base64_decodeBlock_Type(),
8751                                  stubAddr, stubName, TypePtr::BOTTOM,
8752                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
8753   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8754   set_result(result);
8755   return true;
8756 }
8757 
8758 bool LibraryCallKit::inline_poly1305_processBlocks() {
8759   address stubAddr;
8760   const char *stubName;
8761   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
8762   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
8763   stubAddr = StubRoutines::poly1305_processBlocks();
8764   stubName = "poly1305_processBlocks";
8765 
8766   if (!stubAddr) return false;
8767   null_check_receiver();  // null-check receiver
8768   if (stopped())  return true;
8769 
8770   Node* input = argument(1);
8771   Node* input_offset = argument(2);
8772   Node* len = argument(3);
8773   Node* alimbs = argument(4);
8774   Node* rlimbs = argument(5);
8775 
8776   input = must_be_not_null(input, true);
8777   alimbs = must_be_not_null(alimbs, true);
8778   rlimbs = must_be_not_null(rlimbs, true);
8779 
8780   Node* input_start = array_element_address(input, input_offset, T_BYTE);
8781   assert(input_start, "input array is null");
8782   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
8783   assert(acc_start, "acc array is null");
8784   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
8785   assert(r_start, "r array is null");
8786 
8787   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8788                                  OptoRuntime::poly1305_processBlocks_Type(),
8789                                  stubAddr, stubName, TypePtr::BOTTOM,
8790                                  input_start, len, acc_start, r_start);
8791   return true;
8792 }
8793 
8794 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
8795   address stubAddr;
8796   const char *stubName;
8797   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8798   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
8799   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
8800   stubName = "intpoly_montgomeryMult_P256";
8801 
8802   if (!stubAddr) return false;
8803   null_check_receiver();  // null-check receiver
8804   if (stopped())  return true;
8805 
8806   Node* a = argument(1);
8807   Node* b = argument(2);
8808   Node* r = argument(3);
8809 
8810   a = must_be_not_null(a, true);
8811   b = must_be_not_null(b, true);
8812   r = must_be_not_null(r, true);
8813 
8814   Node* a_start = array_element_address(a, intcon(0), T_LONG);
8815   assert(a_start, "a array is null");
8816   Node* b_start = array_element_address(b, intcon(0), T_LONG);
8817   assert(b_start, "b array is null");
8818   Node* r_start = array_element_address(r, intcon(0), T_LONG);
8819   assert(r_start, "r array is null");
8820 
8821   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8822                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
8823                                  stubAddr, stubName, TypePtr::BOTTOM,
8824                                  a_start, b_start, r_start);
8825   return true;
8826 }
8827 
8828 bool LibraryCallKit::inline_intpoly_assign() {
8829   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8830   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
8831   const char *stubName = "intpoly_assign";
8832   address stubAddr = StubRoutines::intpoly_assign();
8833   if (!stubAddr) return false;
8834 
8835   Node* set = argument(0);
8836   Node* a = argument(1);
8837   Node* b = argument(2);
8838   Node* arr_length = load_array_length(a);
8839 
8840   a = must_be_not_null(a, true);
8841   b = must_be_not_null(b, true);
8842 
8843   Node* a_start = array_element_address(a, intcon(0), T_LONG);
8844   assert(a_start, "a array is null");
8845   Node* b_start = array_element_address(b, intcon(0), T_LONG);
8846   assert(b_start, "b array is null");
8847 
8848   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8849                                  OptoRuntime::intpoly_assign_Type(),
8850                                  stubAddr, stubName, TypePtr::BOTTOM,
8851                                  set, a_start, b_start, arr_length);
8852   return true;
8853 }
8854 
8855 //------------------------------inline_digestBase_implCompress-----------------------
8856 //
8857 // Calculate MD5 for single-block byte[] array.
8858 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
8859 //
8860 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
8861 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
8862 //
8863 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
8864 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
8865 //
8866 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
8867 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
8868 //
8869 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
8870 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
8871 //
8872 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
8873   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
8874 
8875   Node* digestBase_obj = argument(0);
8876   Node* src            = argument(1); // type oop
8877   Node* ofs            = argument(2); // type int
8878 
8879   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8880   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8881     // failed array check
8882     return false;
8883   }
8884   // Figure out the size and type of the elements we will be copying.
8885   BasicType src_elem = src_type->elem()->array_element_basic_type();
8886   if (src_elem != T_BYTE) {
8887     return false;
8888   }
8889   // 'src_start' points to src array + offset
8890   src = must_be_not_null(src, true);
8891   Node* src_start = array_element_address(src, ofs, src_elem);
8892   Node* state = nullptr;
8893   Node* block_size = nullptr;
8894   address stubAddr;
8895   const char *stubName;
8896 
8897   switch(id) {
8898   case vmIntrinsics::_md5_implCompress:
8899     assert(UseMD5Intrinsics, "need MD5 instruction support");
8900     state = get_state_from_digest_object(digestBase_obj, T_INT);
8901     stubAddr = StubRoutines::md5_implCompress();
8902     stubName = "md5_implCompress";
8903     break;
8904   case vmIntrinsics::_sha_implCompress:
8905     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
8906     state = get_state_from_digest_object(digestBase_obj, T_INT);
8907     stubAddr = StubRoutines::sha1_implCompress();
8908     stubName = "sha1_implCompress";
8909     break;
8910   case vmIntrinsics::_sha2_implCompress:
8911     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
8912     state = get_state_from_digest_object(digestBase_obj, T_INT);
8913     stubAddr = StubRoutines::sha256_implCompress();
8914     stubName = "sha256_implCompress";
8915     break;
8916   case vmIntrinsics::_sha5_implCompress:
8917     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
8918     state = get_state_from_digest_object(digestBase_obj, T_LONG);
8919     stubAddr = StubRoutines::sha512_implCompress();
8920     stubName = "sha512_implCompress";
8921     break;
8922   case vmIntrinsics::_sha3_implCompress:
8923     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
8924     state = get_state_from_digest_object(digestBase_obj, T_LONG);
8925     stubAddr = StubRoutines::sha3_implCompress();
8926     stubName = "sha3_implCompress";
8927     block_size = get_block_size_from_digest_object(digestBase_obj);
8928     if (block_size == nullptr) return false;
8929     break;
8930   default:
8931     fatal_unexpected_iid(id);
8932     return false;
8933   }
8934   if (state == nullptr) return false;
8935 
8936   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
8937   if (stubAddr == nullptr) return false;
8938 
8939   // Call the stub.
8940   Node* call;
8941   if (block_size == nullptr) {
8942     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
8943                              stubAddr, stubName, TypePtr::BOTTOM,
8944                              src_start, state);
8945   } else {
8946     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
8947                              stubAddr, stubName, TypePtr::BOTTOM,
8948                              src_start, state, block_size);
8949   }
8950 
8951   return true;
8952 }
8953 
8954 //------------------------------inline_double_keccak
8955 bool LibraryCallKit::inline_double_keccak() {
8956   address stubAddr;
8957   const char *stubName;
8958   assert(UseSHA3Intrinsics, "need SHA3 intrinsics support");
8959   assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters");
8960 
8961   stubAddr = StubRoutines::double_keccak();
8962   stubName = "double_keccak";
8963   if (!stubAddr) return false;
8964 
8965   Node* status0        = argument(0);
8966   Node* status1        = argument(1);
8967 
8968   status0 = must_be_not_null(status0, true);
8969   status1 = must_be_not_null(status1, true);
8970 
8971   Node* status0_start  = array_element_address(status0, intcon(0), T_LONG);
8972   assert(status0_start, "status0 is null");
8973   Node* status1_start  = array_element_address(status1, intcon(0), T_LONG);
8974   assert(status1_start, "status1 is null");
8975   Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP,
8976                                   OptoRuntime::double_keccak_Type(),
8977                                   stubAddr, stubName, TypePtr::BOTTOM,
8978                                   status0_start, status1_start);
8979   // return an int
8980   Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms));
8981   set_result(retvalue);
8982   return true;
8983 }
8984 
8985 
8986 //------------------------------inline_digestBase_implCompressMB-----------------------
8987 //
8988 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
8989 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
8990 //
8991 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
8992   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8993          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8994   assert((uint)predicate < 5, "sanity");
8995   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
8996 
8997   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
8998   Node* src            = argument(1); // byte[] array
8999   Node* ofs            = argument(2); // type int
9000   Node* limit          = argument(3); // type int
9001 
9002   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
9003   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
9004     // failed array check
9005     return false;
9006   }
9007   // Figure out the size and type of the elements we will be copying.
9008   BasicType src_elem = src_type->elem()->array_element_basic_type();
9009   if (src_elem != T_BYTE) {
9010     return false;
9011   }
9012   // 'src_start' points to src array + offset
9013   src = must_be_not_null(src, false);
9014   Node* src_start = array_element_address(src, ofs, src_elem);
9015 
9016   const char* klass_digestBase_name = nullptr;
9017   const char* stub_name = nullptr;
9018   address     stub_addr = nullptr;
9019   BasicType elem_type = T_INT;
9020 
9021   switch (predicate) {
9022   case 0:
9023     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
9024       klass_digestBase_name = "sun/security/provider/MD5";
9025       stub_name = "md5_implCompressMB";
9026       stub_addr = StubRoutines::md5_implCompressMB();
9027     }
9028     break;
9029   case 1:
9030     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
9031       klass_digestBase_name = "sun/security/provider/SHA";
9032       stub_name = "sha1_implCompressMB";
9033       stub_addr = StubRoutines::sha1_implCompressMB();
9034     }
9035     break;
9036   case 2:
9037     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
9038       klass_digestBase_name = "sun/security/provider/SHA2";
9039       stub_name = "sha256_implCompressMB";
9040       stub_addr = StubRoutines::sha256_implCompressMB();
9041     }
9042     break;
9043   case 3:
9044     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
9045       klass_digestBase_name = "sun/security/provider/SHA5";
9046       stub_name = "sha512_implCompressMB";
9047       stub_addr = StubRoutines::sha512_implCompressMB();
9048       elem_type = T_LONG;
9049     }
9050     break;
9051   case 4:
9052     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
9053       klass_digestBase_name = "sun/security/provider/SHA3";
9054       stub_name = "sha3_implCompressMB";
9055       stub_addr = StubRoutines::sha3_implCompressMB();
9056       elem_type = T_LONG;
9057     }
9058     break;
9059   default:
9060     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
9061   }
9062   if (klass_digestBase_name != nullptr) {
9063     assert(stub_addr != nullptr, "Stub is generated");
9064     if (stub_addr == nullptr) return false;
9065 
9066     // get DigestBase klass to lookup for SHA klass
9067     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
9068     assert(tinst != nullptr, "digestBase_obj is not instance???");
9069     assert(tinst->is_loaded(), "DigestBase is not loaded");
9070 
9071     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
9072     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
9073     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
9074     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
9075   }
9076   return false;
9077 }
9078 
9079 //------------------------------inline_digestBase_implCompressMB-----------------------
9080 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
9081                                                       BasicType elem_type, address stubAddr, const char *stubName,
9082                                                       Node* src_start, Node* ofs, Node* limit) {
9083   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
9084   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
9085   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
9086   digest_obj = _gvn.transform(digest_obj);
9087 
9088   Node* state = get_state_from_digest_object(digest_obj, elem_type);
9089   if (state == nullptr) return false;
9090 
9091   Node* block_size = nullptr;
9092   if (strcmp("sha3_implCompressMB", stubName) == 0) {
9093     block_size = get_block_size_from_digest_object(digest_obj);
9094     if (block_size == nullptr) return false;
9095   }
9096 
9097   // Call the stub.
9098   Node* call;
9099   if (block_size == nullptr) {
9100     call = make_runtime_call(RC_LEAF|RC_NO_FP,
9101                              OptoRuntime::digestBase_implCompressMB_Type(false),
9102                              stubAddr, stubName, TypePtr::BOTTOM,
9103                              src_start, state, ofs, limit);
9104   } else {
9105      call = make_runtime_call(RC_LEAF|RC_NO_FP,
9106                              OptoRuntime::digestBase_implCompressMB_Type(true),
9107                              stubAddr, stubName, TypePtr::BOTTOM,
9108                              src_start, state, block_size, ofs, limit);
9109   }
9110 
9111   // return ofs (int)
9112   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
9113   set_result(result);
9114 
9115   return true;
9116 }
9117 
9118 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
9119 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
9120   assert(UseAES, "need AES instruction support");
9121   address stubAddr = nullptr;
9122   const char *stubName = nullptr;
9123   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
9124   stubName = "galoisCounterMode_AESCrypt";
9125 
9126   if (stubAddr == nullptr) return false;
9127 
9128   Node* in      = argument(0);
9129   Node* inOfs   = argument(1);
9130   Node* len     = argument(2);
9131   Node* ct      = argument(3);
9132   Node* ctOfs   = argument(4);
9133   Node* out     = argument(5);
9134   Node* outOfs  = argument(6);
9135   Node* gctr_object = argument(7);
9136   Node* ghash_object = argument(8);
9137 
9138   // (1) in, ct and out are arrays.
9139   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
9140   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
9141   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
9142   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
9143           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
9144          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
9145 
9146   // checks are the responsibility of the caller
9147   Node* in_start = in;
9148   Node* ct_start = ct;
9149   Node* out_start = out;
9150   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
9151     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
9152     in_start = array_element_address(in, inOfs, T_BYTE);
9153     ct_start = array_element_address(ct, ctOfs, T_BYTE);
9154     out_start = array_element_address(out, outOfs, T_BYTE);
9155   }
9156 
9157   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
9158   // (because of the predicated logic executed earlier).
9159   // so we cast it here safely.
9160   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
9161   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
9162   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
9163   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
9164   Node* state = load_field_from_object(ghash_object, "state", "[J");
9165 
9166   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
9167     return false;
9168   }
9169   // cast it to what we know it will be at runtime
9170   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
9171   assert(tinst != nullptr, "GCTR obj is null");
9172   assert(tinst->is_loaded(), "GCTR obj is not loaded");
9173   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
9174   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
9175   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
9176   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
9177   const TypeOopPtr* xtype = aklass->as_instance_type();
9178   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
9179   aescrypt_object = _gvn.transform(aescrypt_object);
9180   // we need to get the start of the aescrypt_object's expanded key array
9181   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
9182   if (k_start == nullptr) return false;
9183   // similarly, get the start address of the r vector
9184   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
9185   Node* state_start = array_element_address(state, intcon(0), T_LONG);
9186   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
9187 
9188 
9189   // Call the stub, passing params
9190   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
9191                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
9192                                stubAddr, stubName, TypePtr::BOTTOM,
9193                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
9194 
9195   // return cipher length (int)
9196   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
9197   set_result(retvalue);
9198 
9199   return true;
9200 }
9201 
9202 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
9203 // Return node representing slow path of predicate check.
9204 // the pseudo code we want to emulate with this predicate is:
9205 // for encryption:
9206 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
9207 // for decryption:
9208 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
9209 //    note cipher==plain is more conservative than the original java code but that's OK
9210 //
9211 
9212 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
9213   // The receiver was checked for null already.
9214   Node* objGCTR = argument(7);
9215   // Load embeddedCipher field of GCTR object.
9216   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
9217   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
9218 
9219   // get AESCrypt klass for instanceOf check
9220   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
9221   // will have same classloader as CipherBlockChaining object
9222   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
9223   assert(tinst != nullptr, "GCTR obj is null");
9224   assert(tinst->is_loaded(), "GCTR obj is not loaded");
9225 
9226   // we want to do an instanceof comparison against the AESCrypt class
9227   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
9228   if (!klass_AESCrypt->is_loaded()) {
9229     // if AESCrypt is not even loaded, we never take the intrinsic fast path
9230     Node* ctrl = control();
9231     set_control(top()); // no regular fast path
9232     return ctrl;
9233   }
9234 
9235   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
9236   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
9237   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
9238   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
9239   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
9240 
9241   return instof_false; // even if it is null
9242 }
9243 
9244 //------------------------------get_state_from_digest_object-----------------------
9245 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
9246   const char* state_type;
9247   switch (elem_type) {
9248     case T_BYTE: state_type = "[B"; break;
9249     case T_INT:  state_type = "[I"; break;
9250     case T_LONG: state_type = "[J"; break;
9251     default: ShouldNotReachHere();
9252   }
9253   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
9254   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
9255   if (digest_state == nullptr) return (Node *) nullptr;
9256 
9257   // now have the array, need to get the start address of the state array
9258   Node* state = array_element_address(digest_state, intcon(0), elem_type);
9259   return state;
9260 }
9261 
9262 //------------------------------get_block_size_from_sha3_object----------------------------------
9263 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
9264   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
9265   assert (block_size != nullptr, "sanity");
9266   return block_size;
9267 }
9268 
9269 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
9270 // Return node representing slow path of predicate check.
9271 // the pseudo code we want to emulate with this predicate is:
9272 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
9273 //
9274 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
9275   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
9276          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
9277   assert((uint)predicate < 5, "sanity");
9278 
9279   // The receiver was checked for null already.
9280   Node* digestBaseObj = argument(0);
9281 
9282   // get DigestBase klass for instanceOf check
9283   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
9284   assert(tinst != nullptr, "digestBaseObj is null");
9285   assert(tinst->is_loaded(), "DigestBase is not loaded");
9286 
9287   const char* klass_name = nullptr;
9288   switch (predicate) {
9289   case 0:
9290     if (UseMD5Intrinsics) {
9291       // we want to do an instanceof comparison against the MD5 class
9292       klass_name = "sun/security/provider/MD5";
9293     }
9294     break;
9295   case 1:
9296     if (UseSHA1Intrinsics) {
9297       // we want to do an instanceof comparison against the SHA class
9298       klass_name = "sun/security/provider/SHA";
9299     }
9300     break;
9301   case 2:
9302     if (UseSHA256Intrinsics) {
9303       // we want to do an instanceof comparison against the SHA2 class
9304       klass_name = "sun/security/provider/SHA2";
9305     }
9306     break;
9307   case 3:
9308     if (UseSHA512Intrinsics) {
9309       // we want to do an instanceof comparison against the SHA5 class
9310       klass_name = "sun/security/provider/SHA5";
9311     }
9312     break;
9313   case 4:
9314     if (UseSHA3Intrinsics) {
9315       // we want to do an instanceof comparison against the SHA3 class
9316       klass_name = "sun/security/provider/SHA3";
9317     }
9318     break;
9319   default:
9320     fatal("unknown SHA intrinsic predicate: %d", predicate);
9321   }
9322 
9323   ciKlass* klass = nullptr;
9324   if (klass_name != nullptr) {
9325     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
9326   }
9327   if ((klass == nullptr) || !klass->is_loaded()) {
9328     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
9329     Node* ctrl = control();
9330     set_control(top()); // no intrinsic path
9331     return ctrl;
9332   }
9333   ciInstanceKlass* instklass = klass->as_instance_klass();
9334 
9335   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
9336   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
9337   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
9338   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
9339 
9340   return instof_false;  // even if it is null
9341 }
9342 
9343 //-------------inline_fma-----------------------------------
9344 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
9345   Node *a = nullptr;
9346   Node *b = nullptr;
9347   Node *c = nullptr;
9348   Node* result = nullptr;
9349   switch (id) {
9350   case vmIntrinsics::_fmaD:
9351     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
9352     // no receiver since it is static method
9353     a = argument(0);
9354     b = argument(2);
9355     c = argument(4);
9356     result = _gvn.transform(new FmaDNode(a, b, c));
9357     break;
9358   case vmIntrinsics::_fmaF:
9359     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
9360     a = argument(0);
9361     b = argument(1);
9362     c = argument(2);
9363     result = _gvn.transform(new FmaFNode(a, b, c));
9364     break;
9365   default:
9366     fatal_unexpected_iid(id);  break;
9367   }
9368   set_result(result);
9369   return true;
9370 }
9371 
9372 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
9373   // argument(0) is receiver
9374   Node* codePoint = argument(1);
9375   Node* n = nullptr;
9376 
9377   switch (id) {
9378     case vmIntrinsics::_isDigit :
9379       n = new DigitNode(control(), codePoint);
9380       break;
9381     case vmIntrinsics::_isLowerCase :
9382       n = new LowerCaseNode(control(), codePoint);
9383       break;
9384     case vmIntrinsics::_isUpperCase :
9385       n = new UpperCaseNode(control(), codePoint);
9386       break;
9387     case vmIntrinsics::_isWhitespace :
9388       n = new WhitespaceNode(control(), codePoint);
9389       break;
9390     default:
9391       fatal_unexpected_iid(id);
9392   }
9393 
9394   set_result(_gvn.transform(n));
9395   return true;
9396 }
9397 
9398 bool LibraryCallKit::inline_profileBoolean() {
9399   Node* counts = argument(1);
9400   const TypeAryPtr* ary = nullptr;
9401   ciArray* aobj = nullptr;
9402   if (counts->is_Con()
9403       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
9404       && (aobj = ary->const_oop()->as_array()) != nullptr
9405       && (aobj->length() == 2)) {
9406     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
9407     jint false_cnt = aobj->element_value(0).as_int();
9408     jint  true_cnt = aobj->element_value(1).as_int();
9409 
9410     if (C->log() != nullptr) {
9411       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
9412                      false_cnt, true_cnt);
9413     }
9414 
9415     if (false_cnt + true_cnt == 0) {
9416       // According to profile, never executed.
9417       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
9418                           Deoptimization::Action_reinterpret);
9419       return true;
9420     }
9421 
9422     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
9423     // is a number of each value occurrences.
9424     Node* result = argument(0);
9425     if (false_cnt == 0 || true_cnt == 0) {
9426       // According to profile, one value has been never seen.
9427       int expected_val = (false_cnt == 0) ? 1 : 0;
9428 
9429       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
9430       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
9431 
9432       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
9433       Node* fast_path = _gvn.transform(new IfTrueNode(check));
9434       Node* slow_path = _gvn.transform(new IfFalseNode(check));
9435 
9436       { // Slow path: uncommon trap for never seen value and then reexecute
9437         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
9438         // the value has been seen at least once.
9439         PreserveJVMState pjvms(this);
9440         PreserveReexecuteState preexecs(this);
9441         jvms()->set_should_reexecute(true);
9442 
9443         set_control(slow_path);
9444         set_i_o(i_o());
9445 
9446         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
9447                             Deoptimization::Action_reinterpret);
9448       }
9449       // The guard for never seen value enables sharpening of the result and
9450       // returning a constant. It allows to eliminate branches on the same value
9451       // later on.
9452       set_control(fast_path);
9453       result = intcon(expected_val);
9454     }
9455     // Stop profiling.
9456     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
9457     // By replacing method body with profile data (represented as ProfileBooleanNode
9458     // on IR level) we effectively disable profiling.
9459     // It enables full speed execution once optimized code is generated.
9460     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
9461     C->record_for_igvn(profile);
9462     set_result(profile);
9463     return true;
9464   } else {
9465     // Continue profiling.
9466     // Profile data isn't available at the moment. So, execute method's bytecode version.
9467     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
9468     // is compiled and counters aren't available since corresponding MethodHandle
9469     // isn't a compile-time constant.
9470     return false;
9471   }
9472 }
9473 
9474 bool LibraryCallKit::inline_isCompileConstant() {
9475   Node* n = argument(0);
9476   set_result(n->is_Con() ? intcon(1) : intcon(0));
9477   return true;
9478 }
9479 
9480 //------------------------------- inline_getObjectSize --------------------------------------
9481 //
9482 // Calculate the runtime size of the object/array.
9483 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
9484 //
9485 bool LibraryCallKit::inline_getObjectSize() {
9486   Node* obj = argument(3);
9487   Node* klass_node = load_object_klass(obj);
9488 
9489   jint  layout_con = Klass::_lh_neutral_value;
9490   Node* layout_val = get_layout_helper(klass_node, layout_con);
9491   int   layout_is_con = (layout_val == nullptr);
9492 
9493   if (layout_is_con) {
9494     // Layout helper is constant, can figure out things at compile time.
9495 
9496     if (Klass::layout_helper_is_instance(layout_con)) {
9497       // Instance case:  layout_con contains the size itself.
9498       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
9499       set_result(size);
9500     } else {
9501       // Array case: size is round(header + element_size*arraylength).
9502       // Since arraylength is different for every array instance, we have to
9503       // compute the whole thing at runtime.
9504 
9505       Node* arr_length = load_array_length(obj);
9506 
9507       int round_mask = MinObjAlignmentInBytes - 1;
9508       int hsize  = Klass::layout_helper_header_size(layout_con);
9509       int eshift = Klass::layout_helper_log2_element_size(layout_con);
9510 
9511       if ((round_mask & ~right_n_bits(eshift)) == 0) {
9512         round_mask = 0;  // strength-reduce it if it goes away completely
9513       }
9514       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
9515       Node* header_size = intcon(hsize + round_mask);
9516 
9517       Node* lengthx = ConvI2X(arr_length);
9518       Node* headerx = ConvI2X(header_size);
9519 
9520       Node* abody = lengthx;
9521       if (eshift != 0) {
9522         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
9523       }
9524       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
9525       if (round_mask != 0) {
9526         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
9527       }
9528       size = ConvX2L(size);
9529       set_result(size);
9530     }
9531   } else {
9532     // Layout helper is not constant, need to test for array-ness at runtime.
9533 
9534     enum { _instance_path = 1, _array_path, PATH_LIMIT };
9535     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
9536     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
9537     record_for_igvn(result_reg);
9538 
9539     Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj);
9540     if (array_ctl != nullptr) {
9541       // Array case: size is round(header + element_size*arraylength).
9542       // Since arraylength is different for every array instance, we have to
9543       // compute the whole thing at runtime.
9544 
9545       PreserveJVMState pjvms(this);
9546       set_control(array_ctl);
9547       Node* arr_length = load_array_length(obj);
9548 
9549       int round_mask = MinObjAlignmentInBytes - 1;
9550       Node* mask = intcon(round_mask);
9551 
9552       Node* hss = intcon(Klass::_lh_header_size_shift);
9553       Node* hsm = intcon(Klass::_lh_header_size_mask);
9554       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
9555       header_size = _gvn.transform(new AndINode(header_size, hsm));
9556       header_size = _gvn.transform(new AddINode(header_size, mask));
9557 
9558       // There is no need to mask or shift this value.
9559       // The semantics of LShiftINode include an implicit mask to 0x1F.
9560       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
9561       Node* elem_shift = layout_val;
9562 
9563       Node* lengthx = ConvI2X(arr_length);
9564       Node* headerx = ConvI2X(header_size);
9565 
9566       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
9567       Node* size = _gvn.transform(new AddXNode(headerx, abody));
9568       if (round_mask != 0) {
9569         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
9570       }
9571       size = ConvX2L(size);
9572 
9573       result_reg->init_req(_array_path, control());
9574       result_val->init_req(_array_path, size);
9575     }
9576 
9577     if (!stopped()) {
9578       // Instance case: the layout helper gives us instance size almost directly,
9579       // but we need to mask out the _lh_instance_slow_path_bit.
9580       Node* size = ConvI2X(layout_val);
9581       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
9582       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
9583       size = _gvn.transform(new AndXNode(size, mask));
9584       size = ConvX2L(size);
9585 
9586       result_reg->init_req(_instance_path, control());
9587       result_val->init_req(_instance_path, size);
9588     }
9589 
9590     set_result(result_reg, result_val);
9591   }
9592 
9593   return true;
9594 }
9595 
9596 //------------------------------- inline_blackhole --------------------------------------
9597 //
9598 // Make sure all arguments to this node are alive.
9599 // This matches methods that were requested to be blackholed through compile commands.
9600 //
9601 bool LibraryCallKit::inline_blackhole() {
9602   assert(callee()->is_static(), "Should have been checked before: only static methods here");
9603   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
9604   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
9605 
9606   // Blackhole node pinches only the control, not memory. This allows
9607   // the blackhole to be pinned in the loop that computes blackholed
9608   // values, but have no other side effects, like breaking the optimizations
9609   // across the blackhole.
9610 
9611   Node* bh = _gvn.transform(new BlackholeNode(control()));
9612   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
9613 
9614   // Bind call arguments as blackhole arguments to keep them alive
9615   uint nargs = callee()->arg_size();
9616   for (uint i = 0; i < nargs; i++) {
9617     bh->add_req(argument(i));
9618   }
9619 
9620   return true;
9621 }
9622 
9623 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) {
9624   const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr();
9625   if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) {
9626     return nullptr; // box klass is not Float16
9627   }
9628 
9629   // Null check; get notnull casted pointer
9630   Node* null_ctl = top();
9631   Node* not_null_box = null_check_oop(box, &null_ctl, true);
9632   // If not_null_box is dead, only null-path is taken
9633   if (stopped()) {
9634     set_control(null_ctl);
9635     return nullptr;
9636   }
9637   assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, "");
9638   const TypePtr* adr_type = C->alias_type(field)->adr_type();
9639   Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes());
9640   return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP);
9641 }
9642 
9643 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) {
9644   PreserveReexecuteState preexecs(this);
9645   jvms()->set_should_reexecute(true);
9646 
9647   const TypeKlassPtr* klass_type = float16_box_type->as_klass_type();
9648   Node* klass_node = makecon(klass_type);
9649   Node* box = new_instance(klass_node);
9650 
9651   Node* value_field = basic_plus_adr(box, field->offset_in_bytes());
9652   const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr();
9653 
9654   Node* field_store = _gvn.transform(access_store_at(box,
9655                                                      value_field,
9656                                                      value_adr_type,
9657                                                      value,
9658                                                      TypeInt::SHORT,
9659                                                      T_SHORT,
9660                                                      IN_HEAP));
9661   set_memory(field_store, value_adr_type);
9662   return box;
9663 }
9664 
9665 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) {
9666   if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) ||
9667       !Matcher::match_rule_supported(Op_ReinterpretHF2S)) {
9668     return false;
9669   }
9670 
9671   const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr();
9672   if (box_type == nullptr || box_type->const_oop() == nullptr) {
9673     return false;
9674   }
9675 
9676   ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
9677   const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass);
9678   ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(),
9679                                                     ciSymbols::short_signature(),
9680                                                     false);
9681   assert(field != nullptr, "");
9682 
9683   // Transformed nodes
9684   Node* fld1 = nullptr;
9685   Node* fld2 = nullptr;
9686   Node* fld3 = nullptr;
9687   switch(num_args) {
9688     case 3:
9689       fld3 = unbox_fp16_value(float16_box_type, field, argument(3));
9690       if (fld3 == nullptr) {
9691         return false;
9692       }
9693       fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3));
9694     // fall-through
9695     case 2:
9696       fld2 = unbox_fp16_value(float16_box_type, field, argument(2));
9697       if (fld2 == nullptr) {
9698         return false;
9699       }
9700       fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2));
9701     // fall-through
9702     case 1:
9703       fld1 = unbox_fp16_value(float16_box_type, field, argument(1));
9704       if (fld1 == nullptr) {
9705         return false;
9706       }
9707       fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1));
9708       break;
9709     default: fatal("Unsupported number of arguments %d", num_args);
9710   }
9711 
9712   Node* result = nullptr;
9713   switch (id) {
9714     // Unary operations
9715     case vmIntrinsics::_sqrt_float16:
9716       result = _gvn.transform(new SqrtHFNode(C, control(), fld1));
9717       break;
9718     // Ternary operations
9719     case vmIntrinsics::_fma_float16:
9720       result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3));
9721       break;
9722     default:
9723       fatal_unexpected_iid(id);
9724       break;
9725   }
9726   result = _gvn.transform(new ReinterpretHF2SNode(result));
9727   set_result(box_fp16_value(float16_box_type, field, result));
9728   return true;
9729 }
9730