1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciFlatArrayKlass.hpp" 28 #include "ci/ciUtilities.inline.hpp" 29 #include "classfile/vmIntrinsics.hpp" 30 #include "compiler/compileBroker.hpp" 31 #include "compiler/compileLog.hpp" 32 #include "gc/shared/barrierSet.hpp" 33 #include "jfr/support/jfrIntrinsics.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/klass.inline.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "opto/addnode.hpp" 38 #include "opto/arraycopynode.hpp" 39 #include "opto/c2compiler.hpp" 40 #include "opto/castnode.hpp" 41 #include "opto/cfgnode.hpp" 42 #include "opto/convertnode.hpp" 43 #include "opto/countbitsnode.hpp" 44 #include "opto/idealKit.hpp" 45 #include "opto/library_call.hpp" 46 #include "opto/mathexactnode.hpp" 47 #include "opto/mulnode.hpp" 48 #include "opto/narrowptrnode.hpp" 49 #include "opto/opaquenode.hpp" 50 #include "opto/parse.hpp" 51 #include "opto/runtime.hpp" 52 #include "opto/rootnode.hpp" 53 #include "opto/subnode.hpp" 54 #include "prims/jvmtiThreadState.hpp" 55 #include "prims/unsafe.hpp" 56 #include "runtime/jniHandles.inline.hpp" 57 #include "runtime/objectMonitor.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/stubRoutines.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 63 //---------------------------make_vm_intrinsic---------------------------- 64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 65 vmIntrinsicID id = m->intrinsic_id(); 66 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 67 68 if (!m->is_loaded()) { 69 // Do not attempt to inline unloaded methods. 70 return nullptr; 71 } 72 73 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 74 bool is_available = false; 75 76 { 77 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 78 // the compiler must transition to '_thread_in_vm' state because both 79 // methods access VM-internal data. 80 VM_ENTRY_MARK; 81 methodHandle mh(THREAD, m->get_Method()); 82 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 83 if (is_available && is_virtual) { 84 is_available = vmIntrinsics::does_virtual_dispatch(id); 85 } 86 } 87 88 if (is_available) { 89 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 90 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 91 return new LibraryIntrinsic(m, is_virtual, 92 vmIntrinsics::predicates_needed(id), 93 vmIntrinsics::does_virtual_dispatch(id), 94 id); 95 } else { 96 return nullptr; 97 } 98 } 99 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 101 LibraryCallKit kit(jvms, this); 102 Compile* C = kit.C; 103 int nodes = C->unique(); 104 #ifndef PRODUCT 105 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 106 char buf[1000]; 107 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 108 tty->print_cr("Intrinsic %s", str); 109 } 110 #endif 111 ciMethod* callee = kit.callee(); 112 const int bci = kit.bci(); 113 #ifdef ASSERT 114 Node* ctrl = kit.control(); 115 #endif 116 // Try to inline the intrinsic. 117 if (callee->check_intrinsic_candidate() && 118 kit.try_to_inline(_last_predicate)) { 119 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 120 : "(intrinsic)"; 121 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 122 if (C->print_intrinsics() || C->print_inlining()) { 123 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 124 } 125 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 126 if (C->log()) { 127 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 128 vmIntrinsics::name_at(intrinsic_id()), 129 (is_virtual() ? " virtual='1'" : ""), 130 C->unique() - nodes); 131 } 132 // Push the result from the inlined method onto the stack. 133 kit.push_result(); 134 C->print_inlining_update(this); 135 return kit.transfer_exceptions_into_jvms(); 136 } 137 138 // The intrinsic bailed out 139 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 140 if (jvms->has_method()) { 141 // Not a root compile. 142 const char* msg; 143 if (callee->intrinsic_candidate()) { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 145 } else { 146 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 147 : "failed to inline (intrinsic), method not annotated"; 148 } 149 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 150 if (C->print_intrinsics() || C->print_inlining()) { 151 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 152 } 153 } else { 154 // Root compile 155 ResourceMark rm; 156 stringStream msg_stream; 157 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 158 vmIntrinsics::name_at(intrinsic_id()), 159 is_virtual() ? " (virtual)" : "", bci); 160 const char *msg = msg_stream.freeze(); 161 log_debug(jit, inlining)("%s", msg); 162 if (C->print_intrinsics() || C->print_inlining()) { 163 tty->print("%s", msg); 164 } 165 } 166 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 167 C->print_inlining_update(this); 168 169 return nullptr; 170 } 171 172 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 173 LibraryCallKit kit(jvms, this); 174 Compile* C = kit.C; 175 int nodes = C->unique(); 176 _last_predicate = predicate; 177 #ifndef PRODUCT 178 assert(is_predicated() && predicate < predicates_count(), "sanity"); 179 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 180 char buf[1000]; 181 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 182 tty->print_cr("Predicate for intrinsic %s", str); 183 } 184 #endif 185 ciMethod* callee = kit.callee(); 186 const int bci = kit.bci(); 187 188 Node* slow_ctl = kit.try_to_predicate(predicate); 189 if (!kit.failing()) { 190 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 191 : "(intrinsic, predicate)"; 192 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 193 if (C->print_intrinsics() || C->print_inlining()) { 194 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 195 } 196 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 197 if (C->log()) { 198 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 199 vmIntrinsics::name_at(intrinsic_id()), 200 (is_virtual() ? " virtual='1'" : ""), 201 C->unique() - nodes); 202 } 203 return slow_ctl; // Could be null if the check folds. 204 } 205 206 // The intrinsic bailed out 207 if (jvms->has_method()) { 208 // Not a root compile. 209 const char* msg = "failed to generate predicate for intrinsic"; 210 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 211 if (C->print_intrinsics() || C->print_inlining()) { 212 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 213 } 214 } else { 215 // Root compile 216 ResourceMark rm; 217 stringStream msg_stream; 218 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 219 vmIntrinsics::name_at(intrinsic_id()), 220 is_virtual() ? " (virtual)" : "", bci); 221 const char *msg = msg_stream.freeze(); 222 log_debug(jit, inlining)("%s", msg); 223 if (C->print_intrinsics() || C->print_inlining()) { 224 C->print_inlining_stream()->print("%s", msg); 225 } 226 } 227 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 228 return nullptr; 229 } 230 231 bool LibraryCallKit::try_to_inline(int predicate) { 232 // Handle symbolic names for otherwise undistinguished boolean switches: 233 const bool is_store = true; 234 const bool is_compress = true; 235 const bool is_static = true; 236 const bool is_volatile = true; 237 238 if (!jvms()->has_method()) { 239 // Root JVMState has a null method. 240 assert(map()->memory()->Opcode() == Op_Parm, ""); 241 // Insert the memory aliasing node 242 set_all_memory(reset_memory()); 243 } 244 assert(merged_memory(), ""); 245 246 switch (intrinsic_id()) { 247 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 248 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 249 case vmIntrinsics::_getClass: return inline_native_getClass(); 250 251 case vmIntrinsics::_ceil: 252 case vmIntrinsics::_floor: 253 case vmIntrinsics::_rint: 254 case vmIntrinsics::_dsin: 255 case vmIntrinsics::_dcos: 256 case vmIntrinsics::_dtan: 257 case vmIntrinsics::_dabs: 258 case vmIntrinsics::_fabs: 259 case vmIntrinsics::_iabs: 260 case vmIntrinsics::_labs: 261 case vmIntrinsics::_datan2: 262 case vmIntrinsics::_dsqrt: 263 case vmIntrinsics::_dsqrt_strict: 264 case vmIntrinsics::_dexp: 265 case vmIntrinsics::_dlog: 266 case vmIntrinsics::_dlog10: 267 case vmIntrinsics::_dpow: 268 case vmIntrinsics::_dcopySign: 269 case vmIntrinsics::_fcopySign: 270 case vmIntrinsics::_dsignum: 271 case vmIntrinsics::_roundF: 272 case vmIntrinsics::_roundD: 273 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 274 275 case vmIntrinsics::_notify: 276 case vmIntrinsics::_notifyAll: 277 return inline_notify(intrinsic_id()); 278 279 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 280 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 281 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 282 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 283 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 284 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 285 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 286 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 287 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 288 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 289 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 290 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 291 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 292 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 293 294 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 295 296 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 297 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 298 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 299 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 300 301 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 302 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 303 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 304 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 305 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 306 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 307 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 308 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 309 310 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 311 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 312 313 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 314 315 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 316 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 317 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 318 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 319 320 case vmIntrinsics::_compressStringC: 321 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 322 case vmIntrinsics::_inflateStringC: 323 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 324 325 case vmIntrinsics::_makePrivateBuffer: return inline_unsafe_make_private_buffer(); 326 case vmIntrinsics::_finishPrivateBuffer: return inline_unsafe_finish_private_buffer(); 327 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 328 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 329 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 330 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 331 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 332 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 333 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 334 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 335 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 336 case vmIntrinsics::_getValue: return inline_unsafe_access(!is_store, T_PRIMITIVE_OBJECT,Relaxed, false); 337 338 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 339 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 340 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 341 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 342 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 343 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 344 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 345 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 346 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 347 case vmIntrinsics::_putValue: return inline_unsafe_access( is_store, T_PRIMITIVE_OBJECT,Relaxed, false); 348 349 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 350 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 351 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 352 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 353 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 354 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 355 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 356 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 357 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 358 359 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 360 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 361 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 362 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 363 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 364 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 365 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 366 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 367 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 368 369 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 370 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 371 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 372 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 373 374 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 375 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 376 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 377 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 378 379 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 380 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 381 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 382 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 383 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 384 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 385 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 386 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 387 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 388 389 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 390 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 391 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 392 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 393 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 394 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 395 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 396 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 397 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 398 399 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 400 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 401 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 402 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 403 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 404 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 405 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 406 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 407 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 408 409 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 410 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 411 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 412 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 413 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 414 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 415 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 416 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 417 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 418 419 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 420 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 421 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 422 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 423 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 424 425 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 426 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 427 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 428 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 429 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 430 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 431 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 432 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 433 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 434 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 435 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 436 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 437 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 438 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 439 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 440 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 441 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 442 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 443 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 444 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 445 446 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 447 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 448 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 449 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 450 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 451 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 452 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 453 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 454 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 455 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 456 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 457 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 458 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 459 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 460 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 461 462 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 463 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 464 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 465 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 466 467 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 468 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 469 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 470 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 471 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 472 473 case vmIntrinsics::_loadFence: 474 case vmIntrinsics::_storeFence: 475 case vmIntrinsics::_storeStoreFence: 476 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 477 478 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 479 480 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 481 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 482 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 483 484 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 485 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 486 487 #if INCLUDE_JVMTI 488 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 489 "notifyJvmtiStart", true, false); 490 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 491 "notifyJvmtiEnd", false, true); 492 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 493 "notifyJvmtiMount", false, false); 494 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 495 "notifyJvmtiUnmount", false, false); 496 case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide(); 497 #endif 498 499 #ifdef JFR_HAVE_INTRINSICS 500 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 501 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 502 #endif 503 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 504 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 505 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 506 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 507 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 508 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 509 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 510 case vmIntrinsics::_getLength: return inline_native_getLength(); 511 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 512 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 513 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 514 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 515 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 516 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 517 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 518 519 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 520 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 521 522 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 523 524 case vmIntrinsics::_isInstance: 525 case vmIntrinsics::_getModifiers: 526 case vmIntrinsics::_isInterface: 527 case vmIntrinsics::_isArray: 528 case vmIntrinsics::_isPrimitive: 529 case vmIntrinsics::_isHidden: 530 case vmIntrinsics::_getSuperclass: 531 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 532 533 case vmIntrinsics::_asPrimaryType: 534 case vmIntrinsics::_asPrimaryTypeArg: 535 case vmIntrinsics::_asValueType: 536 case vmIntrinsics::_asValueTypeArg: return inline_primitive_Class_conversion(intrinsic_id()); 537 538 case vmIntrinsics::_floatToRawIntBits: 539 case vmIntrinsics::_floatToIntBits: 540 case vmIntrinsics::_intBitsToFloat: 541 case vmIntrinsics::_doubleToRawLongBits: 542 case vmIntrinsics::_doubleToLongBits: 543 case vmIntrinsics::_longBitsToDouble: 544 case vmIntrinsics::_floatToFloat16: 545 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 546 547 case vmIntrinsics::_floatIsFinite: 548 case vmIntrinsics::_floatIsInfinite: 549 case vmIntrinsics::_doubleIsFinite: 550 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 551 552 case vmIntrinsics::_numberOfLeadingZeros_i: 553 case vmIntrinsics::_numberOfLeadingZeros_l: 554 case vmIntrinsics::_numberOfTrailingZeros_i: 555 case vmIntrinsics::_numberOfTrailingZeros_l: 556 case vmIntrinsics::_bitCount_i: 557 case vmIntrinsics::_bitCount_l: 558 case vmIntrinsics::_reverse_i: 559 case vmIntrinsics::_reverse_l: 560 case vmIntrinsics::_reverseBytes_i: 561 case vmIntrinsics::_reverseBytes_l: 562 case vmIntrinsics::_reverseBytes_s: 563 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 564 565 case vmIntrinsics::_compress_i: 566 case vmIntrinsics::_compress_l: 567 case vmIntrinsics::_expand_i: 568 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 569 570 case vmIntrinsics::_compareUnsigned_i: 571 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 572 573 case vmIntrinsics::_divideUnsigned_i: 574 case vmIntrinsics::_divideUnsigned_l: 575 case vmIntrinsics::_remainderUnsigned_i: 576 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 577 578 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 579 580 case vmIntrinsics::_Reference_get: return inline_reference_get(); 581 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 582 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 583 584 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 585 586 case vmIntrinsics::_aescrypt_encryptBlock: 587 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 588 589 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 590 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 591 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 592 593 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 594 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 595 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 596 597 case vmIntrinsics::_counterMode_AESCrypt: 598 return inline_counterMode_AESCrypt(intrinsic_id()); 599 600 case vmIntrinsics::_galoisCounterMode_AESCrypt: 601 return inline_galoisCounterMode_AESCrypt(); 602 603 case vmIntrinsics::_md5_implCompress: 604 case vmIntrinsics::_sha_implCompress: 605 case vmIntrinsics::_sha2_implCompress: 606 case vmIntrinsics::_sha5_implCompress: 607 case vmIntrinsics::_sha3_implCompress: 608 return inline_digestBase_implCompress(intrinsic_id()); 609 610 case vmIntrinsics::_digestBase_implCompressMB: 611 return inline_digestBase_implCompressMB(predicate); 612 613 case vmIntrinsics::_multiplyToLen: 614 return inline_multiplyToLen(); 615 616 case vmIntrinsics::_squareToLen: 617 return inline_squareToLen(); 618 619 case vmIntrinsics::_mulAdd: 620 return inline_mulAdd(); 621 622 case vmIntrinsics::_montgomeryMultiply: 623 return inline_montgomeryMultiply(); 624 case vmIntrinsics::_montgomerySquare: 625 return inline_montgomerySquare(); 626 627 case vmIntrinsics::_bigIntegerRightShiftWorker: 628 return inline_bigIntegerShift(true); 629 case vmIntrinsics::_bigIntegerLeftShiftWorker: 630 return inline_bigIntegerShift(false); 631 632 case vmIntrinsics::_vectorizedMismatch: 633 return inline_vectorizedMismatch(); 634 635 case vmIntrinsics::_ghash_processBlocks: 636 return inline_ghash_processBlocks(); 637 case vmIntrinsics::_chacha20Block: 638 return inline_chacha20Block(); 639 case vmIntrinsics::_base64_encodeBlock: 640 return inline_base64_encodeBlock(); 641 case vmIntrinsics::_base64_decodeBlock: 642 return inline_base64_decodeBlock(); 643 case vmIntrinsics::_poly1305_processBlocks: 644 return inline_poly1305_processBlocks(); 645 646 case vmIntrinsics::_encodeISOArray: 647 case vmIntrinsics::_encodeByteISOArray: 648 return inline_encodeISOArray(false); 649 case vmIntrinsics::_encodeAsciiArray: 650 return inline_encodeISOArray(true); 651 652 case vmIntrinsics::_updateCRC32: 653 return inline_updateCRC32(); 654 case vmIntrinsics::_updateBytesCRC32: 655 return inline_updateBytesCRC32(); 656 case vmIntrinsics::_updateByteBufferCRC32: 657 return inline_updateByteBufferCRC32(); 658 659 case vmIntrinsics::_updateBytesCRC32C: 660 return inline_updateBytesCRC32C(); 661 case vmIntrinsics::_updateDirectByteBufferCRC32C: 662 return inline_updateDirectByteBufferCRC32C(); 663 664 case vmIntrinsics::_updateBytesAdler32: 665 return inline_updateBytesAdler32(); 666 case vmIntrinsics::_updateByteBufferAdler32: 667 return inline_updateByteBufferAdler32(); 668 669 case vmIntrinsics::_profileBoolean: 670 return inline_profileBoolean(); 671 case vmIntrinsics::_isCompileConstant: 672 return inline_isCompileConstant(); 673 674 case vmIntrinsics::_countPositives: 675 return inline_countPositives(); 676 677 case vmIntrinsics::_fmaD: 678 case vmIntrinsics::_fmaF: 679 return inline_fma(intrinsic_id()); 680 681 case vmIntrinsics::_isDigit: 682 case vmIntrinsics::_isLowerCase: 683 case vmIntrinsics::_isUpperCase: 684 case vmIntrinsics::_isWhitespace: 685 return inline_character_compare(intrinsic_id()); 686 687 case vmIntrinsics::_min: 688 case vmIntrinsics::_max: 689 case vmIntrinsics::_min_strict: 690 case vmIntrinsics::_max_strict: 691 return inline_min_max(intrinsic_id()); 692 693 case vmIntrinsics::_maxF: 694 case vmIntrinsics::_minF: 695 case vmIntrinsics::_maxD: 696 case vmIntrinsics::_minD: 697 case vmIntrinsics::_maxF_strict: 698 case vmIntrinsics::_minF_strict: 699 case vmIntrinsics::_maxD_strict: 700 case vmIntrinsics::_minD_strict: 701 return inline_fp_min_max(intrinsic_id()); 702 703 case vmIntrinsics::_VectorUnaryOp: 704 return inline_vector_nary_operation(1); 705 case vmIntrinsics::_VectorBinaryOp: 706 return inline_vector_nary_operation(2); 707 case vmIntrinsics::_VectorTernaryOp: 708 return inline_vector_nary_operation(3); 709 case vmIntrinsics::_VectorFromBitsCoerced: 710 return inline_vector_frombits_coerced(); 711 case vmIntrinsics::_VectorMaskOp: 712 return inline_vector_mask_operation(); 713 case vmIntrinsics::_VectorLoadOp: 714 return inline_vector_mem_operation(/*is_store=*/false); 715 case vmIntrinsics::_VectorLoadMaskedOp: 716 return inline_vector_mem_masked_operation(/*is_store*/false); 717 case vmIntrinsics::_VectorStoreOp: 718 return inline_vector_mem_operation(/*is_store=*/true); 719 case vmIntrinsics::_VectorStoreMaskedOp: 720 return inline_vector_mem_masked_operation(/*is_store=*/true); 721 case vmIntrinsics::_VectorGatherOp: 722 return inline_vector_gather_scatter(/*is_scatter*/ false); 723 case vmIntrinsics::_VectorScatterOp: 724 return inline_vector_gather_scatter(/*is_scatter*/ true); 725 case vmIntrinsics::_VectorReductionCoerced: 726 return inline_vector_reduction(); 727 case vmIntrinsics::_VectorTest: 728 return inline_vector_test(); 729 case vmIntrinsics::_VectorBlend: 730 return inline_vector_blend(); 731 case vmIntrinsics::_VectorRearrange: 732 return inline_vector_rearrange(); 733 case vmIntrinsics::_VectorCompare: 734 return inline_vector_compare(); 735 case vmIntrinsics::_VectorBroadcastInt: 736 return inline_vector_broadcast_int(); 737 case vmIntrinsics::_VectorConvert: 738 return inline_vector_convert(); 739 case vmIntrinsics::_VectorInsert: 740 return inline_vector_insert(); 741 case vmIntrinsics::_VectorExtract: 742 return inline_vector_extract(); 743 case vmIntrinsics::_VectorCompressExpand: 744 return inline_vector_compress_expand(); 745 case vmIntrinsics::_IndexVector: 746 return inline_index_vector(); 747 case vmIntrinsics::_IndexPartiallyInUpperRange: 748 return inline_index_partially_in_upper_range(); 749 750 case vmIntrinsics::_getObjectSize: 751 return inline_getObjectSize(); 752 753 case vmIntrinsics::_blackhole: 754 return inline_blackhole(); 755 756 default: 757 // If you get here, it may be that someone has added a new intrinsic 758 // to the list in vmIntrinsics.hpp without implementing it here. 759 #ifndef PRODUCT 760 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 761 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 762 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 763 } 764 #endif 765 return false; 766 } 767 } 768 769 Node* LibraryCallKit::try_to_predicate(int predicate) { 770 if (!jvms()->has_method()) { 771 // Root JVMState has a null method. 772 assert(map()->memory()->Opcode() == Op_Parm, ""); 773 // Insert the memory aliasing node 774 set_all_memory(reset_memory()); 775 } 776 assert(merged_memory(), ""); 777 778 switch (intrinsic_id()) { 779 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 780 return inline_cipherBlockChaining_AESCrypt_predicate(false); 781 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 782 return inline_cipherBlockChaining_AESCrypt_predicate(true); 783 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 784 return inline_electronicCodeBook_AESCrypt_predicate(false); 785 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 786 return inline_electronicCodeBook_AESCrypt_predicate(true); 787 case vmIntrinsics::_counterMode_AESCrypt: 788 return inline_counterMode_AESCrypt_predicate(); 789 case vmIntrinsics::_digestBase_implCompressMB: 790 return inline_digestBase_implCompressMB_predicate(predicate); 791 case vmIntrinsics::_galoisCounterMode_AESCrypt: 792 return inline_galoisCounterMode_AESCrypt_predicate(); 793 794 default: 795 // If you get here, it may be that someone has added a new intrinsic 796 // to the list in vmIntrinsics.hpp without implementing it here. 797 #ifndef PRODUCT 798 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 799 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 800 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 801 } 802 #endif 803 Node* slow_ctl = control(); 804 set_control(top()); // No fast path intrinsic 805 return slow_ctl; 806 } 807 } 808 809 //------------------------------set_result------------------------------- 810 // Helper function for finishing intrinsics. 811 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 812 record_for_igvn(region); 813 set_control(_gvn.transform(region)); 814 set_result( _gvn.transform(value)); 815 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 816 } 817 818 //------------------------------generate_guard--------------------------- 819 // Helper function for generating guarded fast-slow graph structures. 820 // The given 'test', if true, guards a slow path. If the test fails 821 // then a fast path can be taken. (We generally hope it fails.) 822 // In all cases, GraphKit::control() is updated to the fast path. 823 // The returned value represents the control for the slow path. 824 // The return value is never 'top'; it is either a valid control 825 // or null if it is obvious that the slow path can never be taken. 826 // Also, if region and the slow control are not null, the slow edge 827 // is appended to the region. 828 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 829 if (stopped()) { 830 // Already short circuited. 831 return nullptr; 832 } 833 834 // Build an if node and its projections. 835 // If test is true we take the slow path, which we assume is uncommon. 836 if (_gvn.type(test) == TypeInt::ZERO) { 837 // The slow branch is never taken. No need to build this guard. 838 return nullptr; 839 } 840 841 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 842 843 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 844 if (if_slow == top()) { 845 // The slow branch is never taken. No need to build this guard. 846 return nullptr; 847 } 848 849 if (region != nullptr) 850 region->add_req(if_slow); 851 852 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 853 set_control(if_fast); 854 855 return if_slow; 856 } 857 858 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 859 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 860 } 861 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 862 return generate_guard(test, region, PROB_FAIR); 863 } 864 865 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 866 Node* *pos_index) { 867 if (stopped()) 868 return nullptr; // already stopped 869 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 870 return nullptr; // index is already adequately typed 871 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 872 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 873 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 874 if (is_neg != nullptr && pos_index != nullptr) { 875 // Emulate effect of Parse::adjust_map_after_if. 876 Node* ccast = new CastIINode(index, TypeInt::POS); 877 ccast->set_req(0, control()); 878 (*pos_index) = _gvn.transform(ccast); 879 } 880 return is_neg; 881 } 882 883 // Make sure that 'position' is a valid limit index, in [0..length]. 884 // There are two equivalent plans for checking this: 885 // A. (offset + copyLength) unsigned<= arrayLength 886 // B. offset <= (arrayLength - copyLength) 887 // We require that all of the values above, except for the sum and 888 // difference, are already known to be non-negative. 889 // Plan A is robust in the face of overflow, if offset and copyLength 890 // are both hugely positive. 891 // 892 // Plan B is less direct and intuitive, but it does not overflow at 893 // all, since the difference of two non-negatives is always 894 // representable. Whenever Java methods must perform the equivalent 895 // check they generally use Plan B instead of Plan A. 896 // For the moment we use Plan A. 897 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 898 Node* subseq_length, 899 Node* array_length, 900 RegionNode* region) { 901 if (stopped()) 902 return nullptr; // already stopped 903 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 904 if (zero_offset && subseq_length->eqv_uncast(array_length)) 905 return nullptr; // common case of whole-array copy 906 Node* last = subseq_length; 907 if (!zero_offset) // last += offset 908 last = _gvn.transform(new AddINode(last, offset)); 909 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 910 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 911 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 912 return is_over; 913 } 914 915 // Emit range checks for the given String.value byte array 916 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 917 if (stopped()) { 918 return; // already stopped 919 } 920 RegionNode* bailout = new RegionNode(1); 921 record_for_igvn(bailout); 922 if (char_count) { 923 // Convert char count to byte count 924 count = _gvn.transform(new LShiftINode(count, intcon(1))); 925 } 926 927 // Offset and count must not be negative 928 generate_negative_guard(offset, bailout); 929 generate_negative_guard(count, bailout); 930 // Offset + count must not exceed length of array 931 generate_limit_guard(offset, count, load_array_length(array), bailout); 932 933 if (bailout->req() > 1) { 934 PreserveJVMState pjvms(this); 935 set_control(_gvn.transform(bailout)); 936 uncommon_trap(Deoptimization::Reason_intrinsic, 937 Deoptimization::Action_maybe_recompile); 938 } 939 } 940 941 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 942 bool is_immutable) { 943 ciKlass* thread_klass = env()->Thread_klass(); 944 const Type* thread_type 945 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 946 947 Node* thread = _gvn.transform(new ThreadLocalNode()); 948 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 949 tls_output = thread; 950 951 Node* thread_obj_handle 952 = (is_immutable 953 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 954 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 955 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 956 thread_obj_handle = _gvn.transform(thread_obj_handle); 957 958 DecoratorSet decorators = IN_NATIVE; 959 if (is_immutable) { 960 decorators |= C2_IMMUTABLE_MEMORY; 961 } 962 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 963 } 964 965 //--------------------------generate_current_thread-------------------- 966 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 967 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 968 /*is_immutable*/false); 969 } 970 971 //--------------------------generate_virtual_thread-------------------- 972 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 973 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 974 !C->method()->changes_current_thread()); 975 } 976 977 //------------------------------make_string_method_node------------------------ 978 // Helper method for String intrinsic functions. This version is called with 979 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 980 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 981 // containing the lengths of str1 and str2. 982 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 983 Node* result = nullptr; 984 switch (opcode) { 985 case Op_StrIndexOf: 986 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 987 str1_start, cnt1, str2_start, cnt2, ae); 988 break; 989 case Op_StrComp: 990 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 991 str1_start, cnt1, str2_start, cnt2, ae); 992 break; 993 case Op_StrEquals: 994 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 995 // Use the constant length if there is one because optimized match rule may exist. 996 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 997 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 998 break; 999 default: 1000 ShouldNotReachHere(); 1001 return nullptr; 1002 } 1003 1004 // All these intrinsics have checks. 1005 C->set_has_split_ifs(true); // Has chance for split-if optimization 1006 clear_upper_avx(); 1007 1008 return _gvn.transform(result); 1009 } 1010 1011 //------------------------------inline_string_compareTo------------------------ 1012 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1013 Node* arg1 = argument(0); 1014 Node* arg2 = argument(1); 1015 1016 arg1 = must_be_not_null(arg1, true); 1017 arg2 = must_be_not_null(arg2, true); 1018 1019 // Get start addr and length of first argument 1020 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1021 Node* arg1_cnt = load_array_length(arg1); 1022 1023 // Get start addr and length of second argument 1024 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1025 Node* arg2_cnt = load_array_length(arg2); 1026 1027 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1028 set_result(result); 1029 return true; 1030 } 1031 1032 //------------------------------inline_string_equals------------------------ 1033 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1034 Node* arg1 = argument(0); 1035 Node* arg2 = argument(1); 1036 1037 // paths (plus control) merge 1038 RegionNode* region = new RegionNode(3); 1039 Node* phi = new PhiNode(region, TypeInt::BOOL); 1040 1041 if (!stopped()) { 1042 1043 arg1 = must_be_not_null(arg1, true); 1044 arg2 = must_be_not_null(arg2, true); 1045 1046 // Get start addr and length of first argument 1047 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1048 Node* arg1_cnt = load_array_length(arg1); 1049 1050 // Get start addr and length of second argument 1051 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1052 Node* arg2_cnt = load_array_length(arg2); 1053 1054 // Check for arg1_cnt != arg2_cnt 1055 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1056 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1057 Node* if_ne = generate_slow_guard(bol, nullptr); 1058 if (if_ne != nullptr) { 1059 phi->init_req(2, intcon(0)); 1060 region->init_req(2, if_ne); 1061 } 1062 1063 // Check for count == 0 is done by assembler code for StrEquals. 1064 1065 if (!stopped()) { 1066 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1067 phi->init_req(1, equals); 1068 region->init_req(1, control()); 1069 } 1070 } 1071 1072 // post merge 1073 set_control(_gvn.transform(region)); 1074 record_for_igvn(region); 1075 1076 set_result(_gvn.transform(phi)); 1077 return true; 1078 } 1079 1080 //------------------------------inline_array_equals---------------------------- 1081 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1082 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1083 Node* arg1 = argument(0); 1084 Node* arg2 = argument(1); 1085 1086 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1087 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1088 clear_upper_avx(); 1089 1090 return true; 1091 } 1092 1093 1094 //------------------------------inline_countPositives------------------------------ 1095 bool LibraryCallKit::inline_countPositives() { 1096 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1097 return false; 1098 } 1099 1100 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1101 // no receiver since it is static method 1102 Node* ba = argument(0); 1103 Node* offset = argument(1); 1104 Node* len = argument(2); 1105 1106 ba = must_be_not_null(ba, true); 1107 1108 // Range checks 1109 generate_string_range_check(ba, offset, len, false); 1110 if (stopped()) { 1111 return true; 1112 } 1113 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1114 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1115 set_result(_gvn.transform(result)); 1116 return true; 1117 } 1118 1119 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1120 Node* index = argument(0); 1121 Node* length = bt == T_INT ? argument(1) : argument(2); 1122 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1123 return false; 1124 } 1125 1126 // check that length is positive 1127 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1128 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1129 1130 { 1131 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1132 uncommon_trap(Deoptimization::Reason_intrinsic, 1133 Deoptimization::Action_make_not_entrant); 1134 } 1135 1136 if (stopped()) { 1137 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1138 return true; 1139 } 1140 1141 // length is now known positive, add a cast node to make this explicit 1142 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1143 Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1144 casted_length = _gvn.transform(casted_length); 1145 replace_in_map(length, casted_length); 1146 length = casted_length; 1147 1148 // Use an unsigned comparison for the range check itself 1149 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1150 BoolTest::mask btest = BoolTest::lt; 1151 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1152 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1153 _gvn.set_type(rc, rc->Value(&_gvn)); 1154 if (!rc_bool->is_Con()) { 1155 record_for_igvn(rc); 1156 } 1157 set_control(_gvn.transform(new IfTrueNode(rc))); 1158 { 1159 PreserveJVMState pjvms(this); 1160 set_control(_gvn.transform(new IfFalseNode(rc))); 1161 uncommon_trap(Deoptimization::Reason_range_check, 1162 Deoptimization::Action_make_not_entrant); 1163 } 1164 1165 if (stopped()) { 1166 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1167 return true; 1168 } 1169 1170 // index is now known to be >= 0 and < length, cast it 1171 Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1172 result = _gvn.transform(result); 1173 set_result(result); 1174 replace_in_map(index, result); 1175 return true; 1176 } 1177 1178 //------------------------------inline_string_indexOf------------------------ 1179 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1180 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1181 return false; 1182 } 1183 Node* src = argument(0); 1184 Node* tgt = argument(1); 1185 1186 // Make the merge point 1187 RegionNode* result_rgn = new RegionNode(4); 1188 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1189 1190 src = must_be_not_null(src, true); 1191 tgt = must_be_not_null(tgt, true); 1192 1193 // Get start addr and length of source string 1194 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1195 Node* src_count = load_array_length(src); 1196 1197 // Get start addr and length of substring 1198 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1199 Node* tgt_count = load_array_length(tgt); 1200 1201 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1202 // Divide src size by 2 if String is UTF16 encoded 1203 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1204 } 1205 if (ae == StrIntrinsicNode::UU) { 1206 // Divide substring size by 2 if String is UTF16 encoded 1207 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1208 } 1209 1210 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1211 if (result != nullptr) { 1212 result_phi->init_req(3, result); 1213 result_rgn->init_req(3, control()); 1214 } 1215 set_control(_gvn.transform(result_rgn)); 1216 record_for_igvn(result_rgn); 1217 set_result(_gvn.transform(result_phi)); 1218 1219 return true; 1220 } 1221 1222 //-----------------------------inline_string_indexOf----------------------- 1223 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1224 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1225 return false; 1226 } 1227 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1228 return false; 1229 } 1230 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1231 Node* src = argument(0); // byte[] 1232 Node* src_count = argument(1); // char count 1233 Node* tgt = argument(2); // byte[] 1234 Node* tgt_count = argument(3); // char count 1235 Node* from_index = argument(4); // char index 1236 1237 src = must_be_not_null(src, true); 1238 tgt = must_be_not_null(tgt, true); 1239 1240 // Multiply byte array index by 2 if String is UTF16 encoded 1241 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1242 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1243 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1244 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1245 1246 // Range checks 1247 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1248 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1249 if (stopped()) { 1250 return true; 1251 } 1252 1253 RegionNode* region = new RegionNode(5); 1254 Node* phi = new PhiNode(region, TypeInt::INT); 1255 1256 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1257 if (result != nullptr) { 1258 // The result is index relative to from_index if substring was found, -1 otherwise. 1259 // Generate code which will fold into cmove. 1260 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1261 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1262 1263 Node* if_lt = generate_slow_guard(bol, nullptr); 1264 if (if_lt != nullptr) { 1265 // result == -1 1266 phi->init_req(3, result); 1267 region->init_req(3, if_lt); 1268 } 1269 if (!stopped()) { 1270 result = _gvn.transform(new AddINode(result, from_index)); 1271 phi->init_req(4, result); 1272 region->init_req(4, control()); 1273 } 1274 } 1275 1276 set_control(_gvn.transform(region)); 1277 record_for_igvn(region); 1278 set_result(_gvn.transform(phi)); 1279 clear_upper_avx(); 1280 1281 return true; 1282 } 1283 1284 // Create StrIndexOfNode with fast path checks 1285 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1286 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1287 // Check for substr count > string count 1288 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1289 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1290 Node* if_gt = generate_slow_guard(bol, nullptr); 1291 if (if_gt != nullptr) { 1292 phi->init_req(1, intcon(-1)); 1293 region->init_req(1, if_gt); 1294 } 1295 if (!stopped()) { 1296 // Check for substr count == 0 1297 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1298 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1299 Node* if_zero = generate_slow_guard(bol, nullptr); 1300 if (if_zero != nullptr) { 1301 phi->init_req(2, intcon(0)); 1302 region->init_req(2, if_zero); 1303 } 1304 } 1305 if (!stopped()) { 1306 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1307 } 1308 return nullptr; 1309 } 1310 1311 //-----------------------------inline_string_indexOfChar----------------------- 1312 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1313 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1314 return false; 1315 } 1316 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1317 return false; 1318 } 1319 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1320 Node* src = argument(0); // byte[] 1321 Node* int_ch = argument(1); 1322 Node* from_index = argument(2); 1323 Node* max = argument(3); 1324 1325 src = must_be_not_null(src, true); 1326 1327 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1328 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1329 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1330 1331 // Range checks 1332 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1333 1334 // Check for int_ch >= 0 1335 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1336 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1337 { 1338 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1339 uncommon_trap(Deoptimization::Reason_intrinsic, 1340 Deoptimization::Action_maybe_recompile); 1341 } 1342 if (stopped()) { 1343 return true; 1344 } 1345 1346 RegionNode* region = new RegionNode(3); 1347 Node* phi = new PhiNode(region, TypeInt::INT); 1348 1349 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1350 C->set_has_split_ifs(true); // Has chance for split-if optimization 1351 _gvn.transform(result); 1352 1353 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1354 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1355 1356 Node* if_lt = generate_slow_guard(bol, nullptr); 1357 if (if_lt != nullptr) { 1358 // result == -1 1359 phi->init_req(2, result); 1360 region->init_req(2, if_lt); 1361 } 1362 if (!stopped()) { 1363 result = _gvn.transform(new AddINode(result, from_index)); 1364 phi->init_req(1, result); 1365 region->init_req(1, control()); 1366 } 1367 set_control(_gvn.transform(region)); 1368 record_for_igvn(region); 1369 set_result(_gvn.transform(phi)); 1370 1371 return true; 1372 } 1373 //---------------------------inline_string_copy--------------------- 1374 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1375 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1376 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1377 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1378 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1379 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1380 bool LibraryCallKit::inline_string_copy(bool compress) { 1381 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1382 return false; 1383 } 1384 int nargs = 5; // 2 oops, 3 ints 1385 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1386 1387 Node* src = argument(0); 1388 Node* src_offset = argument(1); 1389 Node* dst = argument(2); 1390 Node* dst_offset = argument(3); 1391 Node* length = argument(4); 1392 1393 // Check for allocation before we add nodes that would confuse 1394 // tightly_coupled_allocation() 1395 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1396 1397 // Figure out the size and type of the elements we will be copying. 1398 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1399 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1400 if (src_type == nullptr || dst_type == nullptr) { 1401 return false; 1402 } 1403 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1404 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1405 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1406 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1407 "Unsupported array types for inline_string_copy"); 1408 1409 src = must_be_not_null(src, true); 1410 dst = must_be_not_null(dst, true); 1411 1412 // Convert char[] offsets to byte[] offsets 1413 bool convert_src = (compress && src_elem == T_BYTE); 1414 bool convert_dst = (!compress && dst_elem == T_BYTE); 1415 if (convert_src) { 1416 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1417 } else if (convert_dst) { 1418 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1419 } 1420 1421 // Range checks 1422 generate_string_range_check(src, src_offset, length, convert_src); 1423 generate_string_range_check(dst, dst_offset, length, convert_dst); 1424 if (stopped()) { 1425 return true; 1426 } 1427 1428 Node* src_start = array_element_address(src, src_offset, src_elem); 1429 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1430 // 'src_start' points to src array + scaled offset 1431 // 'dst_start' points to dst array + scaled offset 1432 Node* count = nullptr; 1433 if (compress) { 1434 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1435 } else { 1436 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1437 } 1438 1439 if (alloc != nullptr) { 1440 if (alloc->maybe_set_complete(&_gvn)) { 1441 // "You break it, you buy it." 1442 InitializeNode* init = alloc->initialization(); 1443 assert(init->is_complete(), "we just did this"); 1444 init->set_complete_with_arraycopy(); 1445 assert(dst->is_CheckCastPP(), "sanity"); 1446 assert(dst->in(0)->in(0) == init, "dest pinned"); 1447 } 1448 // Do not let stores that initialize this object be reordered with 1449 // a subsequent store that would make this object accessible by 1450 // other threads. 1451 // Record what AllocateNode this StoreStore protects so that 1452 // escape analysis can go from the MemBarStoreStoreNode to the 1453 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1454 // based on the escape status of the AllocateNode. 1455 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1456 } 1457 if (compress) { 1458 set_result(_gvn.transform(count)); 1459 } 1460 clear_upper_avx(); 1461 1462 return true; 1463 } 1464 1465 #ifdef _LP64 1466 #define XTOP ,top() /*additional argument*/ 1467 #else //_LP64 1468 #define XTOP /*no additional argument*/ 1469 #endif //_LP64 1470 1471 //------------------------inline_string_toBytesU-------------------------- 1472 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1473 bool LibraryCallKit::inline_string_toBytesU() { 1474 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1475 return false; 1476 } 1477 // Get the arguments. 1478 Node* value = argument(0); 1479 Node* offset = argument(1); 1480 Node* length = argument(2); 1481 1482 Node* newcopy = nullptr; 1483 1484 // Set the original stack and the reexecute bit for the interpreter to reexecute 1485 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1486 { PreserveReexecuteState preexecs(this); 1487 jvms()->set_should_reexecute(true); 1488 1489 // Check if a null path was taken unconditionally. 1490 value = null_check(value); 1491 1492 RegionNode* bailout = new RegionNode(1); 1493 record_for_igvn(bailout); 1494 1495 // Range checks 1496 generate_negative_guard(offset, bailout); 1497 generate_negative_guard(length, bailout); 1498 generate_limit_guard(offset, length, load_array_length(value), bailout); 1499 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1500 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1501 1502 if (bailout->req() > 1) { 1503 PreserveJVMState pjvms(this); 1504 set_control(_gvn.transform(bailout)); 1505 uncommon_trap(Deoptimization::Reason_intrinsic, 1506 Deoptimization::Action_maybe_recompile); 1507 } 1508 if (stopped()) { 1509 return true; 1510 } 1511 1512 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1513 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1514 newcopy = new_array(klass_node, size, 0); // no arguments to push 1515 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1516 guarantee(alloc != nullptr, "created above"); 1517 1518 // Calculate starting addresses. 1519 Node* src_start = array_element_address(value, offset, T_CHAR); 1520 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1521 1522 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1523 const TypeInt* toffset = gvn().type(offset)->is_int(); 1524 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1525 1526 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1527 const char* copyfunc_name = "arraycopy"; 1528 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1529 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1530 OptoRuntime::fast_arraycopy_Type(), 1531 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1532 src_start, dst_start, ConvI2X(length) XTOP); 1533 // Do not let reads from the cloned object float above the arraycopy. 1534 if (alloc->maybe_set_complete(&_gvn)) { 1535 // "You break it, you buy it." 1536 InitializeNode* init = alloc->initialization(); 1537 assert(init->is_complete(), "we just did this"); 1538 init->set_complete_with_arraycopy(); 1539 assert(newcopy->is_CheckCastPP(), "sanity"); 1540 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1541 } 1542 // Do not let stores that initialize this object be reordered with 1543 // a subsequent store that would make this object accessible by 1544 // other threads. 1545 // Record what AllocateNode this StoreStore protects so that 1546 // escape analysis can go from the MemBarStoreStoreNode to the 1547 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1548 // based on the escape status of the AllocateNode. 1549 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1550 } // original reexecute is set back here 1551 1552 C->set_has_split_ifs(true); // Has chance for split-if optimization 1553 if (!stopped()) { 1554 set_result(newcopy); 1555 } 1556 clear_upper_avx(); 1557 1558 return true; 1559 } 1560 1561 //------------------------inline_string_getCharsU-------------------------- 1562 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1563 bool LibraryCallKit::inline_string_getCharsU() { 1564 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1565 return false; 1566 } 1567 1568 // Get the arguments. 1569 Node* src = argument(0); 1570 Node* src_begin = argument(1); 1571 Node* src_end = argument(2); // exclusive offset (i < src_end) 1572 Node* dst = argument(3); 1573 Node* dst_begin = argument(4); 1574 1575 // Check for allocation before we add nodes that would confuse 1576 // tightly_coupled_allocation() 1577 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1578 1579 // Check if a null path was taken unconditionally. 1580 src = null_check(src); 1581 dst = null_check(dst); 1582 if (stopped()) { 1583 return true; 1584 } 1585 1586 // Get length and convert char[] offset to byte[] offset 1587 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1588 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1589 1590 // Range checks 1591 generate_string_range_check(src, src_begin, length, true); 1592 generate_string_range_check(dst, dst_begin, length, false); 1593 if (stopped()) { 1594 return true; 1595 } 1596 1597 if (!stopped()) { 1598 // Calculate starting addresses. 1599 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1600 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1601 1602 // Check if array addresses are aligned to HeapWordSize 1603 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1604 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1605 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1606 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1607 1608 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1609 const char* copyfunc_name = "arraycopy"; 1610 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1611 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1612 OptoRuntime::fast_arraycopy_Type(), 1613 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1614 src_start, dst_start, ConvI2X(length) XTOP); 1615 // Do not let reads from the cloned object float above the arraycopy. 1616 if (alloc != nullptr) { 1617 if (alloc->maybe_set_complete(&_gvn)) { 1618 // "You break it, you buy it." 1619 InitializeNode* init = alloc->initialization(); 1620 assert(init->is_complete(), "we just did this"); 1621 init->set_complete_with_arraycopy(); 1622 assert(dst->is_CheckCastPP(), "sanity"); 1623 assert(dst->in(0)->in(0) == init, "dest pinned"); 1624 } 1625 // Do not let stores that initialize this object be reordered with 1626 // a subsequent store that would make this object accessible by 1627 // other threads. 1628 // Record what AllocateNode this StoreStore protects so that 1629 // escape analysis can go from the MemBarStoreStoreNode to the 1630 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1631 // based on the escape status of the AllocateNode. 1632 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1633 } else { 1634 insert_mem_bar(Op_MemBarCPUOrder); 1635 } 1636 } 1637 1638 C->set_has_split_ifs(true); // Has chance for split-if optimization 1639 return true; 1640 } 1641 1642 //----------------------inline_string_char_access---------------------------- 1643 // Store/Load char to/from byte[] array. 1644 // static void StringUTF16.putChar(byte[] val, int index, int c) 1645 // static char StringUTF16.getChar(byte[] val, int index) 1646 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1647 Node* value = argument(0); 1648 Node* index = argument(1); 1649 Node* ch = is_store ? argument(2) : nullptr; 1650 1651 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1652 // correctly requires matched array shapes. 1653 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1654 "sanity: byte[] and char[] bases agree"); 1655 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1656 "sanity: byte[] and char[] scales agree"); 1657 1658 // Bail when getChar over constants is requested: constant folding would 1659 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1660 // Java method would constant fold nicely instead. 1661 if (!is_store && value->is_Con() && index->is_Con()) { 1662 return false; 1663 } 1664 1665 // Save state and restore on bailout 1666 uint old_sp = sp(); 1667 SafePointNode* old_map = clone_map(); 1668 1669 value = must_be_not_null(value, true); 1670 1671 Node* adr = array_element_address(value, index, T_CHAR); 1672 if (adr->is_top()) { 1673 set_map(old_map); 1674 set_sp(old_sp); 1675 return false; 1676 } 1677 destruct_map_clone(old_map); 1678 if (is_store) { 1679 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1680 } else { 1681 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1682 set_result(ch); 1683 } 1684 return true; 1685 } 1686 1687 //--------------------------round_double_node-------------------------------- 1688 // Round a double node if necessary. 1689 Node* LibraryCallKit::round_double_node(Node* n) { 1690 if (Matcher::strict_fp_requires_explicit_rounding) { 1691 #ifdef IA32 1692 if (UseSSE < 2) { 1693 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1694 } 1695 #else 1696 Unimplemented(); 1697 #endif // IA32 1698 } 1699 return n; 1700 } 1701 1702 //------------------------------inline_math----------------------------------- 1703 // public static double Math.abs(double) 1704 // public static double Math.sqrt(double) 1705 // public static double Math.log(double) 1706 // public static double Math.log10(double) 1707 // public static double Math.round(double) 1708 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1709 Node* arg = round_double_node(argument(0)); 1710 Node* n = nullptr; 1711 switch (id) { 1712 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1713 case vmIntrinsics::_dsqrt: 1714 case vmIntrinsics::_dsqrt_strict: 1715 n = new SqrtDNode(C, control(), arg); break; 1716 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1717 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1718 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1719 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1720 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1721 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1722 default: fatal_unexpected_iid(id); break; 1723 } 1724 set_result(_gvn.transform(n)); 1725 return true; 1726 } 1727 1728 //------------------------------inline_math----------------------------------- 1729 // public static float Math.abs(float) 1730 // public static int Math.abs(int) 1731 // public static long Math.abs(long) 1732 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1733 Node* arg = argument(0); 1734 Node* n = nullptr; 1735 switch (id) { 1736 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1737 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1738 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1739 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1740 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1741 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1742 default: fatal_unexpected_iid(id); break; 1743 } 1744 set_result(_gvn.transform(n)); 1745 return true; 1746 } 1747 1748 //------------------------------runtime_math----------------------------- 1749 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1750 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1751 "must be (DD)D or (D)D type"); 1752 1753 // Inputs 1754 Node* a = round_double_node(argument(0)); 1755 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1756 1757 const TypePtr* no_memory_effects = nullptr; 1758 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1759 no_memory_effects, 1760 a, top(), b, b ? top() : nullptr); 1761 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1762 #ifdef ASSERT 1763 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1764 assert(value_top == top(), "second value must be top"); 1765 #endif 1766 1767 set_result(value); 1768 return true; 1769 } 1770 1771 //------------------------------inline_math_pow----------------------------- 1772 bool LibraryCallKit::inline_math_pow() { 1773 Node* exp = round_double_node(argument(2)); 1774 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1775 if (d != nullptr) { 1776 if (d->getd() == 2.0) { 1777 // Special case: pow(x, 2.0) => x * x 1778 Node* base = round_double_node(argument(0)); 1779 set_result(_gvn.transform(new MulDNode(base, base))); 1780 return true; 1781 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1782 // Special case: pow(x, 0.5) => sqrt(x) 1783 Node* base = round_double_node(argument(0)); 1784 Node* zero = _gvn.zerocon(T_DOUBLE); 1785 1786 RegionNode* region = new RegionNode(3); 1787 Node* phi = new PhiNode(region, Type::DOUBLE); 1788 1789 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1790 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1791 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1792 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1793 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1794 1795 Node* if_pow = generate_slow_guard(test, nullptr); 1796 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1797 phi->init_req(1, value_sqrt); 1798 region->init_req(1, control()); 1799 1800 if (if_pow != nullptr) { 1801 set_control(if_pow); 1802 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1803 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1804 const TypePtr* no_memory_effects = nullptr; 1805 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1806 no_memory_effects, base, top(), exp, top()); 1807 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1808 #ifdef ASSERT 1809 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1810 assert(value_top == top(), "second value must be top"); 1811 #endif 1812 phi->init_req(2, value_pow); 1813 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1814 } 1815 1816 C->set_has_split_ifs(true); // Has chance for split-if optimization 1817 set_control(_gvn.transform(region)); 1818 record_for_igvn(region); 1819 set_result(_gvn.transform(phi)); 1820 1821 return true; 1822 } 1823 } 1824 1825 return StubRoutines::dpow() != nullptr ? 1826 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1827 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1828 } 1829 1830 //------------------------------inline_math_native----------------------------- 1831 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1832 switch (id) { 1833 case vmIntrinsics::_dsin: 1834 return StubRoutines::dsin() != nullptr ? 1835 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1836 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1837 case vmIntrinsics::_dcos: 1838 return StubRoutines::dcos() != nullptr ? 1839 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1840 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1841 case vmIntrinsics::_dtan: 1842 return StubRoutines::dtan() != nullptr ? 1843 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1844 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1845 case vmIntrinsics::_dexp: 1846 return StubRoutines::dexp() != nullptr ? 1847 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1848 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1849 case vmIntrinsics::_dlog: 1850 return StubRoutines::dlog() != nullptr ? 1851 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1852 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1853 case vmIntrinsics::_dlog10: 1854 return StubRoutines::dlog10() != nullptr ? 1855 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1856 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1857 1858 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1859 case vmIntrinsics::_ceil: 1860 case vmIntrinsics::_floor: 1861 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1862 1863 case vmIntrinsics::_dsqrt: 1864 case vmIntrinsics::_dsqrt_strict: 1865 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1866 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1867 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1868 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1869 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1870 1871 case vmIntrinsics::_dpow: return inline_math_pow(); 1872 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1873 case vmIntrinsics::_fcopySign: return inline_math(id); 1874 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1875 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1876 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1877 1878 // These intrinsics are not yet correctly implemented 1879 case vmIntrinsics::_datan2: 1880 return false; 1881 1882 default: 1883 fatal_unexpected_iid(id); 1884 return false; 1885 } 1886 } 1887 1888 //----------------------------inline_notify-----------------------------------* 1889 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1890 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1891 address func; 1892 if (id == vmIntrinsics::_notify) { 1893 func = OptoRuntime::monitor_notify_Java(); 1894 } else { 1895 func = OptoRuntime::monitor_notifyAll_Java(); 1896 } 1897 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1898 make_slow_call_ex(call, env()->Throwable_klass(), false); 1899 return true; 1900 } 1901 1902 1903 //----------------------------inline_min_max----------------------------------- 1904 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1905 set_result(generate_min_max(id, argument(0), argument(1))); 1906 return true; 1907 } 1908 1909 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1910 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1911 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1912 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1913 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1914 1915 { 1916 PreserveJVMState pjvms(this); 1917 PreserveReexecuteState preexecs(this); 1918 jvms()->set_should_reexecute(true); 1919 1920 set_control(slow_path); 1921 set_i_o(i_o()); 1922 1923 uncommon_trap(Deoptimization::Reason_intrinsic, 1924 Deoptimization::Action_none); 1925 } 1926 1927 set_control(fast_path); 1928 set_result(math); 1929 } 1930 1931 template <typename OverflowOp> 1932 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1933 typedef typename OverflowOp::MathOp MathOp; 1934 1935 MathOp* mathOp = new MathOp(arg1, arg2); 1936 Node* operation = _gvn.transform( mathOp ); 1937 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1938 inline_math_mathExact(operation, ofcheck); 1939 return true; 1940 } 1941 1942 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1943 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1944 } 1945 1946 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1947 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1948 } 1949 1950 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1951 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1952 } 1953 1954 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1955 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1956 } 1957 1958 bool LibraryCallKit::inline_math_negateExactI() { 1959 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1960 } 1961 1962 bool LibraryCallKit::inline_math_negateExactL() { 1963 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1964 } 1965 1966 bool LibraryCallKit::inline_math_multiplyExactI() { 1967 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1968 } 1969 1970 bool LibraryCallKit::inline_math_multiplyExactL() { 1971 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1972 } 1973 1974 bool LibraryCallKit::inline_math_multiplyHigh() { 1975 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1976 return true; 1977 } 1978 1979 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 1980 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 1981 return true; 1982 } 1983 1984 Node* 1985 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1986 Node* result_val = nullptr; 1987 switch (id) { 1988 case vmIntrinsics::_min: 1989 case vmIntrinsics::_min_strict: 1990 result_val = _gvn.transform(new MinINode(x0, y0)); 1991 break; 1992 case vmIntrinsics::_max: 1993 case vmIntrinsics::_max_strict: 1994 result_val = _gvn.transform(new MaxINode(x0, y0)); 1995 break; 1996 default: 1997 fatal_unexpected_iid(id); 1998 break; 1999 } 2000 return result_val; 2001 } 2002 2003 inline int 2004 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2005 const TypePtr* base_type = TypePtr::NULL_PTR; 2006 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2007 if (base_type == nullptr) { 2008 // Unknown type. 2009 return Type::AnyPtr; 2010 } else if (base_type == TypePtr::NULL_PTR) { 2011 // Since this is a null+long form, we have to switch to a rawptr. 2012 base = _gvn.transform(new CastX2PNode(offset)); 2013 offset = MakeConX(0); 2014 return Type::RawPtr; 2015 } else if (base_type->base() == Type::RawPtr) { 2016 return Type::RawPtr; 2017 } else if (base_type->isa_oopptr()) { 2018 // Base is never null => always a heap address. 2019 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2020 return Type::OopPtr; 2021 } 2022 // Offset is small => always a heap address. 2023 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2024 if (offset_type != nullptr && 2025 base_type->offset() == 0 && // (should always be?) 2026 offset_type->_lo >= 0 && 2027 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2028 return Type::OopPtr; 2029 } else if (type == T_OBJECT || type == T_PRIMITIVE_OBJECT) { 2030 // off heap access to an oop doesn't make any sense. Has to be on 2031 // heap. 2032 return Type::OopPtr; 2033 } 2034 // Otherwise, it might either be oop+off or null+addr. 2035 return Type::AnyPtr; 2036 } else { 2037 // No information: 2038 return Type::AnyPtr; 2039 } 2040 } 2041 2042 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2043 Node* uncasted_base = base; 2044 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2045 if (kind == Type::RawPtr) { 2046 return basic_plus_adr(top(), uncasted_base, offset); 2047 } else if (kind == Type::AnyPtr) { 2048 assert(base == uncasted_base, "unexpected base change"); 2049 if (can_cast) { 2050 if (!_gvn.type(base)->speculative_maybe_null() && 2051 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2052 // According to profiling, this access is always on 2053 // heap. Casting the base to not null and thus avoiding membars 2054 // around the access should allow better optimizations 2055 Node* null_ctl = top(); 2056 base = null_check_oop(base, &null_ctl, true, true, true); 2057 assert(null_ctl->is_top(), "no null control here"); 2058 return basic_plus_adr(base, offset); 2059 } else if (_gvn.type(base)->speculative_always_null() && 2060 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2061 // According to profiling, this access is always off 2062 // heap. 2063 base = null_assert(base); 2064 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2065 offset = MakeConX(0); 2066 return basic_plus_adr(top(), raw_base, offset); 2067 } 2068 } 2069 // We don't know if it's an on heap or off heap access. Fall back 2070 // to raw memory access. 2071 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2072 return basic_plus_adr(top(), raw, offset); 2073 } else { 2074 assert(base == uncasted_base, "unexpected base change"); 2075 // We know it's an on heap access so base can't be null 2076 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2077 base = must_be_not_null(base, true); 2078 } 2079 return basic_plus_adr(base, offset); 2080 } 2081 } 2082 2083 //--------------------------inline_number_methods----------------------------- 2084 // inline int Integer.numberOfLeadingZeros(int) 2085 // inline int Long.numberOfLeadingZeros(long) 2086 // 2087 // inline int Integer.numberOfTrailingZeros(int) 2088 // inline int Long.numberOfTrailingZeros(long) 2089 // 2090 // inline int Integer.bitCount(int) 2091 // inline int Long.bitCount(long) 2092 // 2093 // inline char Character.reverseBytes(char) 2094 // inline short Short.reverseBytes(short) 2095 // inline int Integer.reverseBytes(int) 2096 // inline long Long.reverseBytes(long) 2097 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2098 Node* arg = argument(0); 2099 Node* n = nullptr; 2100 switch (id) { 2101 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2102 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2103 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2104 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2105 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2106 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2107 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2108 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2109 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2110 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2111 case vmIntrinsics::_reverse_i: n = new ReverseINode(0, arg); break; 2112 case vmIntrinsics::_reverse_l: n = new ReverseLNode(0, arg); break; 2113 default: fatal_unexpected_iid(id); break; 2114 } 2115 set_result(_gvn.transform(n)); 2116 return true; 2117 } 2118 2119 //--------------------------inline_bitshuffle_methods----------------------------- 2120 // inline int Integer.compress(int, int) 2121 // inline int Integer.expand(int, int) 2122 // inline long Long.compress(long, long) 2123 // inline long Long.expand(long, long) 2124 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2125 Node* n = nullptr; 2126 switch (id) { 2127 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2128 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2129 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2130 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2131 default: fatal_unexpected_iid(id); break; 2132 } 2133 set_result(_gvn.transform(n)); 2134 return true; 2135 } 2136 2137 //--------------------------inline_number_methods----------------------------- 2138 // inline int Integer.compareUnsigned(int, int) 2139 // inline int Long.compareUnsigned(long, long) 2140 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2141 Node* arg1 = argument(0); 2142 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2143 Node* n = nullptr; 2144 switch (id) { 2145 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2146 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2147 default: fatal_unexpected_iid(id); break; 2148 } 2149 set_result(_gvn.transform(n)); 2150 return true; 2151 } 2152 2153 //--------------------------inline_unsigned_divmod_methods----------------------------- 2154 // inline int Integer.divideUnsigned(int, int) 2155 // inline int Integer.remainderUnsigned(int, int) 2156 // inline long Long.divideUnsigned(long, long) 2157 // inline long Long.remainderUnsigned(long, long) 2158 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2159 Node* n = nullptr; 2160 switch (id) { 2161 case vmIntrinsics::_divideUnsigned_i: { 2162 zero_check_int(argument(1)); 2163 // Compile-time detect of null-exception 2164 if (stopped()) { 2165 return true; // keep the graph constructed so far 2166 } 2167 n = new UDivINode(control(), argument(0), argument(1)); 2168 break; 2169 } 2170 case vmIntrinsics::_divideUnsigned_l: { 2171 zero_check_long(argument(2)); 2172 // Compile-time detect of null-exception 2173 if (stopped()) { 2174 return true; // keep the graph constructed so far 2175 } 2176 n = new UDivLNode(control(), argument(0), argument(2)); 2177 break; 2178 } 2179 case vmIntrinsics::_remainderUnsigned_i: { 2180 zero_check_int(argument(1)); 2181 // Compile-time detect of null-exception 2182 if (stopped()) { 2183 return true; // keep the graph constructed so far 2184 } 2185 n = new UModINode(control(), argument(0), argument(1)); 2186 break; 2187 } 2188 case vmIntrinsics::_remainderUnsigned_l: { 2189 zero_check_long(argument(2)); 2190 // Compile-time detect of null-exception 2191 if (stopped()) { 2192 return true; // keep the graph constructed so far 2193 } 2194 n = new UModLNode(control(), argument(0), argument(2)); 2195 break; 2196 } 2197 default: fatal_unexpected_iid(id); break; 2198 } 2199 set_result(_gvn.transform(n)); 2200 return true; 2201 } 2202 2203 //----------------------------inline_unsafe_access---------------------------- 2204 2205 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2206 // Attempt to infer a sharper value type from the offset and base type. 2207 ciKlass* sharpened_klass = nullptr; 2208 bool null_free = false; 2209 2210 // See if it is an instance field, with an object type. 2211 if (alias_type->field() != nullptr) { 2212 if (alias_type->field()->type()->is_klass()) { 2213 sharpened_klass = alias_type->field()->type()->as_klass(); 2214 null_free = alias_type->field()->is_null_free(); 2215 } 2216 } 2217 2218 const TypeOopPtr* result = nullptr; 2219 // See if it is a narrow oop array. 2220 if (adr_type->isa_aryptr()) { 2221 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2222 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2223 null_free = adr_type->is_aryptr()->is_null_free(); 2224 if (elem_type != nullptr && elem_type->is_loaded()) { 2225 // Sharpen the value type. 2226 result = elem_type; 2227 } 2228 } 2229 } 2230 2231 // The sharpened class might be unloaded if there is no class loader 2232 // contraint in place. 2233 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2234 // Sharpen the value type. 2235 result = TypeOopPtr::make_from_klass(sharpened_klass); 2236 if (null_free) { 2237 result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 2238 } 2239 } 2240 if (result != nullptr) { 2241 #ifndef PRODUCT 2242 if (C->print_intrinsics() || C->print_inlining()) { 2243 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2244 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2245 } 2246 #endif 2247 } 2248 return result; 2249 } 2250 2251 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2252 switch (kind) { 2253 case Relaxed: 2254 return MO_UNORDERED; 2255 case Opaque: 2256 return MO_RELAXED; 2257 case Acquire: 2258 return MO_ACQUIRE; 2259 case Release: 2260 return MO_RELEASE; 2261 case Volatile: 2262 return MO_SEQ_CST; 2263 default: 2264 ShouldNotReachHere(); 2265 return 0; 2266 } 2267 } 2268 2269 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2270 if (callee()->is_static()) return false; // caller must have the capability! 2271 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2272 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2273 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2274 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2275 2276 if (is_reference_type(type)) { 2277 decorators |= ON_UNKNOWN_OOP_REF; 2278 } 2279 2280 if (unaligned) { 2281 decorators |= C2_UNALIGNED; 2282 } 2283 2284 #ifndef PRODUCT 2285 { 2286 ResourceMark rm; 2287 // Check the signatures. 2288 ciSignature* sig = callee()->signature(); 2289 #ifdef ASSERT 2290 if (!is_store) { 2291 // Object getReference(Object base, int/long offset), etc. 2292 BasicType rtype = sig->return_type()->basic_type(); 2293 assert(rtype == type || (rtype == T_OBJECT && type == T_PRIMITIVE_OBJECT), "getter must return the expected value"); 2294 assert(sig->count() == 2 || (type == T_PRIMITIVE_OBJECT && sig->count() == 3), "oop getter has 2 or 3 arguments"); 2295 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2296 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2297 } else { 2298 // void putReference(Object base, int/long offset, Object x), etc. 2299 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2300 assert(sig->count() == 3 || (type == T_PRIMITIVE_OBJECT && sig->count() == 4), "oop putter has 3 arguments"); 2301 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2302 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2303 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2304 assert(vtype == type || (type == T_PRIMITIVE_OBJECT && vtype == T_OBJECT), "putter must accept the expected value"); 2305 } 2306 #endif // ASSERT 2307 } 2308 #endif //PRODUCT 2309 2310 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2311 2312 Node* receiver = argument(0); // type: oop 2313 2314 // Build address expression. 2315 Node* heap_base_oop = top(); 2316 2317 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2318 Node* base = argument(1); // type: oop 2319 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2320 Node* offset = argument(2); // type: long 2321 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2322 // to be plain byte offsets, which are also the same as those accepted 2323 // by oopDesc::field_addr. 2324 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2325 "fieldOffset must be byte-scaled"); 2326 2327 ciInlineKlass* inline_klass = nullptr; 2328 if (type == T_PRIMITIVE_OBJECT) { 2329 const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr(); 2330 if (cls == nullptr || cls->const_oop() == nullptr) { 2331 return false; 2332 } 2333 ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type(); 2334 if (!mirror_type->is_inlinetype()) { 2335 return false; 2336 } 2337 inline_klass = mirror_type->as_inline_klass(); 2338 } 2339 2340 if (base->is_InlineType()) { 2341 InlineTypeNode* vt = base->as_InlineType(); 2342 if (is_store) { 2343 if (!vt->is_allocated(&_gvn)) { 2344 return false; 2345 } 2346 base = vt->get_oop(); 2347 } else { 2348 if (offset->is_Con()) { 2349 long off = find_long_con(offset, 0); 2350 ciInlineKlass* vk = vt->type()->inline_klass(); 2351 if ((long)(int)off != off || !vk->contains_field_offset(off)) { 2352 return false; 2353 } 2354 2355 ciField* field = vk->get_non_flattened_field_by_offset(off); 2356 if (field != nullptr) { 2357 BasicType bt = type2field[field->type()->basic_type()]; 2358 if (bt == T_ARRAY || bt == T_NARROWOOP || (bt == T_PRIMITIVE_OBJECT && !field->is_flattened())) { 2359 bt = T_OBJECT; 2360 } 2361 if (bt == type && (bt != T_PRIMITIVE_OBJECT || field->type() == inline_klass)) { 2362 Node* value = vt->field_value_by_offset(off, false); 2363 if (value->is_InlineType()) { 2364 value = value->as_InlineType()->adjust_scalarization_depth(this); 2365 } 2366 set_result(value); 2367 return true; 2368 } 2369 } 2370 } 2371 { 2372 // Re-execute the unsafe access if allocation triggers deoptimization. 2373 PreserveReexecuteState preexecs(this); 2374 jvms()->set_should_reexecute(true); 2375 vt = vt->buffer(this); 2376 } 2377 base = vt->get_oop(); 2378 } 2379 } 2380 2381 // 32-bit machines ignore the high half! 2382 offset = ConvL2X(offset); 2383 2384 // Save state and restore on bailout 2385 uint old_sp = sp(); 2386 SafePointNode* old_map = clone_map(); 2387 2388 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2389 2390 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2391 if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) { 2392 decorators |= IN_NATIVE; // off-heap primitive access 2393 } else { 2394 set_map(old_map); 2395 set_sp(old_sp); 2396 return false; // off-heap oop accesses are not supported 2397 } 2398 } else { 2399 heap_base_oop = base; // on-heap or mixed access 2400 } 2401 2402 // Can base be null? Otherwise, always on-heap access. 2403 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2404 2405 if (!can_access_non_heap) { 2406 decorators |= IN_HEAP; 2407 } 2408 2409 Node* val = is_store ? argument(4 + (type == T_PRIMITIVE_OBJECT ? 1 : 0)) : nullptr; 2410 2411 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2412 if (adr_type == TypePtr::NULL_PTR) { 2413 set_map(old_map); 2414 set_sp(old_sp); 2415 return false; // off-heap access with zero address 2416 } 2417 2418 // Try to categorize the address. 2419 Compile::AliasType* alias_type = C->alias_type(adr_type); 2420 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2421 2422 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2423 alias_type->adr_type() == TypeAryPtr::RANGE) { 2424 set_map(old_map); 2425 set_sp(old_sp); 2426 return false; // not supported 2427 } 2428 2429 bool mismatched = false; 2430 BasicType bt = T_ILLEGAL; 2431 ciField* field = nullptr; 2432 if (adr_type->isa_instptr()) { 2433 const TypeInstPtr* instptr = adr_type->is_instptr(); 2434 ciInstanceKlass* k = instptr->instance_klass(); 2435 int off = instptr->offset(); 2436 if (instptr->const_oop() != nullptr && 2437 k == ciEnv::current()->Class_klass() && 2438 instptr->offset() >= (k->size_helper() * wordSize)) { 2439 k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 2440 field = k->get_field_by_offset(off, true); 2441 } else { 2442 field = k->get_non_flattened_field_by_offset(off); 2443 } 2444 if (field != nullptr) { 2445 bt = type2field[field->type()->basic_type()]; 2446 } 2447 assert(bt == alias_type->basic_type() || bt == T_PRIMITIVE_OBJECT, "should match"); 2448 if (field != nullptr && bt == T_PRIMITIVE_OBJECT && !field->is_flattened()) { 2449 bt = T_OBJECT; 2450 } 2451 } else { 2452 bt = alias_type->basic_type(); 2453 } 2454 2455 if (bt != T_ILLEGAL) { 2456 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2457 if (adr_type->is_flat()) { 2458 bt = T_PRIMITIVE_OBJECT; 2459 } 2460 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2461 // Alias type doesn't differentiate between byte[] and boolean[]). 2462 // Use address type to get the element type. 2463 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2464 } 2465 if (bt != T_PRIMITIVE_OBJECT && is_reference_type(bt, true)) { 2466 // accessing an array field with getReference is not a mismatch 2467 bt = T_OBJECT; 2468 } 2469 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2470 // Don't intrinsify mismatched object accesses 2471 set_map(old_map); 2472 set_sp(old_sp); 2473 return false; 2474 } 2475 mismatched = (bt != type); 2476 } else if (alias_type->adr_type()->isa_oopptr()) { 2477 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2478 } 2479 2480 if (type == T_PRIMITIVE_OBJECT) { 2481 if (adr_type->isa_instptr()) { 2482 if (field == nullptr || field->type() != inline_klass) { 2483 mismatched = true; 2484 } 2485 } else if (adr_type->isa_aryptr()) { 2486 const Type* elem = adr_type->is_aryptr()->elem(); 2487 if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) { 2488 mismatched = true; 2489 } 2490 } else { 2491 mismatched = true; 2492 } 2493 if (is_store) { 2494 const Type* val_t = _gvn.type(val); 2495 if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) { 2496 set_map(old_map); 2497 set_sp(old_sp); 2498 return false; 2499 } 2500 } 2501 } 2502 2503 destruct_map_clone(old_map); 2504 assert(!mismatched || type == T_PRIMITIVE_OBJECT || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2505 2506 if (mismatched) { 2507 decorators |= C2_MISMATCHED; 2508 } 2509 2510 // First guess at the value type. 2511 const Type *value_type = Type::get_const_basic_type(type); 2512 2513 // Figure out the memory ordering. 2514 decorators |= mo_decorator_for_access_kind(kind); 2515 2516 if (!is_store) { 2517 if (type == T_OBJECT) { 2518 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2519 if (tjp != nullptr) { 2520 value_type = tjp; 2521 } 2522 } else if (type == T_PRIMITIVE_OBJECT) { 2523 value_type = nullptr; 2524 } 2525 } 2526 2527 receiver = null_check(receiver); 2528 if (stopped()) { 2529 return true; 2530 } 2531 // Heap pointers get a null-check from the interpreter, 2532 // as a courtesy. However, this is not guaranteed by Unsafe, 2533 // and it is not possible to fully distinguish unintended nulls 2534 // from intended ones in this API. 2535 2536 if (!is_store) { 2537 Node* p = nullptr; 2538 // Try to constant fold a load from a constant field 2539 2540 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flattened() && !mismatched) { 2541 // final or stable field 2542 p = make_constant_from_field(field, heap_base_oop); 2543 } 2544 2545 if (p == nullptr) { // Could not constant fold the load 2546 if (type == T_PRIMITIVE_OBJECT) { 2547 if (adr_type->isa_instptr() && !mismatched) { 2548 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2549 int offset = adr_type->is_instptr()->offset(); 2550 p = InlineTypeNode::make_from_flattened(this, inline_klass, base, base, holder, offset, decorators); 2551 } else { 2552 p = InlineTypeNode::make_from_flattened(this, inline_klass, base, adr, nullptr, 0, decorators); 2553 } 2554 } else { 2555 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2556 const TypeOopPtr* ptr = value_type->make_oopptr(); 2557 if (ptr != nullptr && ptr->is_inlinetypeptr()) { 2558 // Load a non-flattened inline type from memory 2559 p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass(), !ptr->maybe_null()); 2560 } 2561 } 2562 // Normalize the value returned by getBoolean in the following cases 2563 if (type == T_BOOLEAN && 2564 (mismatched || 2565 heap_base_oop == top() || // - heap_base_oop is null or 2566 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2567 // and the unsafe access is made to large offset 2568 // (i.e., larger than the maximum offset necessary for any 2569 // field access) 2570 ) { 2571 IdealKit ideal = IdealKit(this); 2572 #define __ ideal. 2573 IdealVariable normalized_result(ideal); 2574 __ declarations_done(); 2575 __ set(normalized_result, p); 2576 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2577 __ set(normalized_result, ideal.ConI(1)); 2578 ideal.end_if(); 2579 final_sync(ideal); 2580 p = __ value(normalized_result); 2581 #undef __ 2582 } 2583 } 2584 if (type == T_ADDRESS) { 2585 p = gvn().transform(new CastP2XNode(nullptr, p)); 2586 p = ConvX2UL(p); 2587 } 2588 // The load node has the control of the preceding MemBarCPUOrder. All 2589 // following nodes will have the control of the MemBarCPUOrder inserted at 2590 // the end of this method. So, pushing the load onto the stack at a later 2591 // point is fine. 2592 set_result(p); 2593 } else { 2594 if (bt == T_ADDRESS) { 2595 // Repackage the long as a pointer. 2596 val = ConvL2X(val); 2597 val = gvn().transform(new CastX2PNode(val)); 2598 } 2599 if (type == T_PRIMITIVE_OBJECT) { 2600 if (adr_type->isa_instptr() && !mismatched) { 2601 ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass(); 2602 int offset = adr_type->is_instptr()->offset(); 2603 val->as_InlineType()->store_flattened(this, base, base, holder, offset, decorators); 2604 } else { 2605 val->as_InlineType()->store_flattened(this, base, adr, nullptr, 0, decorators); 2606 } 2607 } else { 2608 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2609 } 2610 } 2611 2612 if (argument(1)->is_InlineType() && is_store) { 2613 InlineTypeNode* value = InlineTypeNode::make_from_oop(this, base, _gvn.type(argument(1))->inline_klass()); 2614 value = value->make_larval(this, false); 2615 replace_in_map(argument(1), value); 2616 } 2617 2618 return true; 2619 } 2620 2621 bool LibraryCallKit::inline_unsafe_make_private_buffer() { 2622 Node* receiver = argument(0); 2623 Node* value = argument(1); 2624 if (!value->is_InlineType()) { 2625 return false; 2626 } 2627 2628 receiver = null_check(receiver); 2629 if (stopped()) { 2630 return true; 2631 } 2632 2633 set_result(value->as_InlineType()->make_larval(this, true)); 2634 return true; 2635 } 2636 2637 bool LibraryCallKit::inline_unsafe_finish_private_buffer() { 2638 Node* receiver = argument(0); 2639 Node* buffer = argument(1); 2640 if (!buffer->is_InlineType()) { 2641 return false; 2642 } 2643 InlineTypeNode* vt = buffer->as_InlineType(); 2644 if (!vt->is_allocated(&_gvn)) { 2645 return false; 2646 } 2647 // TODO 8239003 Why is this needed? 2648 if (AllocateNode::Ideal_allocation(vt->get_oop(), &_gvn) == nullptr) { 2649 return false; 2650 } 2651 2652 receiver = null_check(receiver); 2653 if (stopped()) { 2654 return true; 2655 } 2656 2657 set_result(vt->finish_larval(this)); 2658 return true; 2659 } 2660 2661 //----------------------------inline_unsafe_load_store---------------------------- 2662 // This method serves a couple of different customers (depending on LoadStoreKind): 2663 // 2664 // LS_cmp_swap: 2665 // 2666 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2667 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2668 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2669 // 2670 // LS_cmp_swap_weak: 2671 // 2672 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2673 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2674 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2675 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2676 // 2677 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2678 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2679 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2680 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2681 // 2682 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2683 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2684 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2685 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2686 // 2687 // LS_cmp_exchange: 2688 // 2689 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2690 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2691 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2692 // 2693 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2694 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2695 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2696 // 2697 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2698 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2699 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2700 // 2701 // LS_get_add: 2702 // 2703 // int getAndAddInt( Object o, long offset, int delta) 2704 // long getAndAddLong(Object o, long offset, long delta) 2705 // 2706 // LS_get_set: 2707 // 2708 // int getAndSet(Object o, long offset, int newValue) 2709 // long getAndSet(Object o, long offset, long newValue) 2710 // Object getAndSet(Object o, long offset, Object newValue) 2711 // 2712 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2713 // This basic scheme here is the same as inline_unsafe_access, but 2714 // differs in enough details that combining them would make the code 2715 // overly confusing. (This is a true fact! I originally combined 2716 // them, but even I was confused by it!) As much code/comments as 2717 // possible are retained from inline_unsafe_access though to make 2718 // the correspondences clearer. - dl 2719 2720 if (callee()->is_static()) return false; // caller must have the capability! 2721 2722 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2723 decorators |= mo_decorator_for_access_kind(access_kind); 2724 2725 #ifndef PRODUCT 2726 BasicType rtype; 2727 { 2728 ResourceMark rm; 2729 // Check the signatures. 2730 ciSignature* sig = callee()->signature(); 2731 rtype = sig->return_type()->basic_type(); 2732 switch(kind) { 2733 case LS_get_add: 2734 case LS_get_set: { 2735 // Check the signatures. 2736 #ifdef ASSERT 2737 assert(rtype == type, "get and set must return the expected type"); 2738 assert(sig->count() == 3, "get and set has 3 arguments"); 2739 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2740 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2741 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2742 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2743 #endif // ASSERT 2744 break; 2745 } 2746 case LS_cmp_swap: 2747 case LS_cmp_swap_weak: { 2748 // Check the signatures. 2749 #ifdef ASSERT 2750 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2751 assert(sig->count() == 4, "CAS has 4 arguments"); 2752 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2753 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2754 #endif // ASSERT 2755 break; 2756 } 2757 case LS_cmp_exchange: { 2758 // Check the signatures. 2759 #ifdef ASSERT 2760 assert(rtype == type, "CAS must return the expected type"); 2761 assert(sig->count() == 4, "CAS has 4 arguments"); 2762 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2763 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2764 #endif // ASSERT 2765 break; 2766 } 2767 default: 2768 ShouldNotReachHere(); 2769 } 2770 } 2771 #endif //PRODUCT 2772 2773 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2774 2775 // Get arguments: 2776 Node* receiver = nullptr; 2777 Node* base = nullptr; 2778 Node* offset = nullptr; 2779 Node* oldval = nullptr; 2780 Node* newval = nullptr; 2781 switch(kind) { 2782 case LS_cmp_swap: 2783 case LS_cmp_swap_weak: 2784 case LS_cmp_exchange: { 2785 const bool two_slot_type = type2size[type] == 2; 2786 receiver = argument(0); // type: oop 2787 base = argument(1); // type: oop 2788 offset = argument(2); // type: long 2789 oldval = argument(4); // type: oop, int, or long 2790 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2791 break; 2792 } 2793 case LS_get_add: 2794 case LS_get_set: { 2795 receiver = argument(0); // type: oop 2796 base = argument(1); // type: oop 2797 offset = argument(2); // type: long 2798 oldval = nullptr; 2799 newval = argument(4); // type: oop, int, or long 2800 break; 2801 } 2802 default: 2803 ShouldNotReachHere(); 2804 } 2805 2806 // Build field offset expression. 2807 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2808 // to be plain byte offsets, which are also the same as those accepted 2809 // by oopDesc::field_addr. 2810 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2811 // 32-bit machines ignore the high half of long offsets 2812 offset = ConvL2X(offset); 2813 // Save state and restore on bailout 2814 uint old_sp = sp(); 2815 SafePointNode* old_map = clone_map(); 2816 Node* adr = make_unsafe_address(base, offset,type, false); 2817 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2818 2819 Compile::AliasType* alias_type = C->alias_type(adr_type); 2820 BasicType bt = alias_type->basic_type(); 2821 if (bt != T_ILLEGAL && 2822 (is_reference_type(bt) != (type == T_OBJECT))) { 2823 // Don't intrinsify mismatched object accesses. 2824 set_map(old_map); 2825 set_sp(old_sp); 2826 return false; 2827 } 2828 2829 destruct_map_clone(old_map); 2830 2831 // For CAS, unlike inline_unsafe_access, there seems no point in 2832 // trying to refine types. Just use the coarse types here. 2833 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2834 const Type *value_type = Type::get_const_basic_type(type); 2835 2836 switch (kind) { 2837 case LS_get_set: 2838 case LS_cmp_exchange: { 2839 if (type == T_OBJECT) { 2840 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2841 if (tjp != nullptr) { 2842 value_type = tjp; 2843 } 2844 } 2845 break; 2846 } 2847 case LS_cmp_swap: 2848 case LS_cmp_swap_weak: 2849 case LS_get_add: 2850 break; 2851 default: 2852 ShouldNotReachHere(); 2853 } 2854 2855 // Null check receiver. 2856 receiver = null_check(receiver); 2857 if (stopped()) { 2858 return true; 2859 } 2860 2861 int alias_idx = C->get_alias_index(adr_type); 2862 2863 if (is_reference_type(type)) { 2864 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2865 2866 if (oldval != nullptr && oldval->is_InlineType()) { 2867 // Re-execute the unsafe access if allocation triggers deoptimization. 2868 PreserveReexecuteState preexecs(this); 2869 jvms()->set_should_reexecute(true); 2870 oldval = oldval->as_InlineType()->buffer(this)->get_oop(); 2871 } 2872 if (newval != nullptr && newval->is_InlineType()) { 2873 // Re-execute the unsafe access if allocation triggers deoptimization. 2874 PreserveReexecuteState preexecs(this); 2875 jvms()->set_should_reexecute(true); 2876 newval = newval->as_InlineType()->buffer(this)->get_oop(); 2877 } 2878 2879 // Transformation of a value which could be null pointer (CastPP #null) 2880 // could be delayed during Parse (for example, in adjust_map_after_if()). 2881 // Execute transformation here to avoid barrier generation in such case. 2882 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2883 newval = _gvn.makecon(TypePtr::NULL_PTR); 2884 2885 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2886 // Refine the value to a null constant, when it is known to be null 2887 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2888 } 2889 } 2890 2891 Node* result = nullptr; 2892 switch (kind) { 2893 case LS_cmp_exchange: { 2894 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2895 oldval, newval, value_type, type, decorators); 2896 break; 2897 } 2898 case LS_cmp_swap_weak: 2899 decorators |= C2_WEAK_CMPXCHG; 2900 case LS_cmp_swap: { 2901 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2902 oldval, newval, value_type, type, decorators); 2903 break; 2904 } 2905 case LS_get_set: { 2906 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2907 newval, value_type, type, decorators); 2908 break; 2909 } 2910 case LS_get_add: { 2911 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2912 newval, value_type, type, decorators); 2913 break; 2914 } 2915 default: 2916 ShouldNotReachHere(); 2917 } 2918 2919 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2920 set_result(result); 2921 return true; 2922 } 2923 2924 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2925 // Regardless of form, don't allow previous ld/st to move down, 2926 // then issue acquire, release, or volatile mem_bar. 2927 insert_mem_bar(Op_MemBarCPUOrder); 2928 switch(id) { 2929 case vmIntrinsics::_loadFence: 2930 insert_mem_bar(Op_LoadFence); 2931 return true; 2932 case vmIntrinsics::_storeFence: 2933 insert_mem_bar(Op_StoreFence); 2934 return true; 2935 case vmIntrinsics::_storeStoreFence: 2936 insert_mem_bar(Op_StoreStoreFence); 2937 return true; 2938 case vmIntrinsics::_fullFence: 2939 insert_mem_bar(Op_MemBarVolatile); 2940 return true; 2941 default: 2942 fatal_unexpected_iid(id); 2943 return false; 2944 } 2945 } 2946 2947 bool LibraryCallKit::inline_onspinwait() { 2948 insert_mem_bar(Op_OnSpinWait); 2949 return true; 2950 } 2951 2952 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2953 if (!kls->is_Con()) { 2954 return true; 2955 } 2956 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2957 if (klsptr == nullptr) { 2958 return true; 2959 } 2960 ciInstanceKlass* ik = klsptr->instance_klass(); 2961 // don't need a guard for a klass that is already initialized 2962 return !ik->is_initialized(); 2963 } 2964 2965 //----------------------------inline_unsafe_writeback0------------------------- 2966 // public native void Unsafe.writeback0(long address) 2967 bool LibraryCallKit::inline_unsafe_writeback0() { 2968 if (!Matcher::has_match_rule(Op_CacheWB)) { 2969 return false; 2970 } 2971 #ifndef PRODUCT 2972 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2973 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2974 ciSignature* sig = callee()->signature(); 2975 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2976 #endif 2977 null_check_receiver(); // null-check, then ignore 2978 Node *addr = argument(1); 2979 addr = new CastX2PNode(addr); 2980 addr = _gvn.transform(addr); 2981 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2982 flush = _gvn.transform(flush); 2983 set_memory(flush, TypeRawPtr::BOTTOM); 2984 return true; 2985 } 2986 2987 //----------------------------inline_unsafe_writeback0------------------------- 2988 // public native void Unsafe.writeback0(long address) 2989 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2990 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2991 return false; 2992 } 2993 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2994 return false; 2995 } 2996 #ifndef PRODUCT 2997 assert(Matcher::has_match_rule(Op_CacheWB), 2998 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2999 : "found match rule for CacheWBPostSync but not CacheWB")); 3000 3001 #endif 3002 null_check_receiver(); // null-check, then ignore 3003 Node *sync; 3004 if (is_pre) { 3005 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3006 } else { 3007 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3008 } 3009 sync = _gvn.transform(sync); 3010 set_memory(sync, TypeRawPtr::BOTTOM); 3011 return true; 3012 } 3013 3014 //----------------------------inline_unsafe_allocate--------------------------- 3015 // public native Object Unsafe.allocateInstance(Class<?> cls); 3016 bool LibraryCallKit::inline_unsafe_allocate() { 3017 if (callee()->is_static()) return false; // caller must have the capability! 3018 3019 null_check_receiver(); // null-check, then ignore 3020 Node* cls = null_check(argument(1)); 3021 if (stopped()) return true; 3022 3023 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 3024 kls = null_check(kls); 3025 if (stopped()) return true; // argument was like int.class 3026 3027 Node* test = nullptr; 3028 if (LibraryCallKit::klass_needs_init_guard(kls)) { 3029 // Note: The argument might still be an illegal value like 3030 // Serializable.class or Object[].class. The runtime will handle it. 3031 // But we must make an explicit check for initialization. 3032 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 3033 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 3034 // can generate code to load it as unsigned byte. 3035 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 3036 Node* bits = intcon(InstanceKlass::fully_initialized); 3037 test = _gvn.transform(new SubINode(inst, bits)); 3038 // The 'test' is non-zero if we need to take a slow path. 3039 } 3040 Node* obj = nullptr; 3041 const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr(); 3042 if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) { 3043 obj = InlineTypeNode::make_default(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this); 3044 } else { 3045 obj = new_instance(kls, test); 3046 } 3047 set_result(obj); 3048 return true; 3049 } 3050 3051 //------------------------inline_native_time_funcs-------------- 3052 // inline code for System.currentTimeMillis() and System.nanoTime() 3053 // these have the same type and signature 3054 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 3055 const TypeFunc* tf = OptoRuntime::void_long_Type(); 3056 const TypePtr* no_memory_effects = nullptr; 3057 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 3058 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 3059 #ifdef ASSERT 3060 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 3061 assert(value_top == top(), "second value must be top"); 3062 #endif 3063 set_result(value); 3064 return true; 3065 } 3066 3067 3068 #if INCLUDE_JVMTI 3069 3070 // When notifications are disabled then just update the VTMS transition bit and return. 3071 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3072 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3073 if (!DoJVMTIVirtualThreadTransitions) { 3074 return true; 3075 } 3076 IdealKit ideal(this); 3077 3078 Node* ONE = ideal.ConI(1); 3079 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3080 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3081 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3082 3083 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3084 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3085 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3086 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3087 3088 sync_kit(ideal); 3089 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3090 ideal.sync_kit(this); 3091 } ideal.else_(); { 3092 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3093 Node* vt_oop = _gvn.transform(argument(0)); // this argument - VirtualThread oop 3094 Node* thread = ideal.thread(); 3095 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3096 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3097 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3098 3099 sync_kit(ideal); 3100 access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3101 access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3102 3103 ideal.sync_kit(this); 3104 } ideal.end_if(); 3105 final_sync(ideal); 3106 3107 return true; 3108 } 3109 3110 // Always update the temporary VTMS transition bit. 3111 bool LibraryCallKit::inline_native_notify_jvmti_hide() { 3112 if (!DoJVMTIVirtualThreadTransitions) { 3113 return true; 3114 } 3115 IdealKit ideal(this); 3116 3117 { 3118 // unconditionally update the temporary VTMS transition bit in current JavaThread 3119 Node* thread = ideal.thread(); 3120 Node* hide = _gvn.transform(argument(1)); // hide argument for temporary VTMS transition notification 3121 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset())); 3122 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3123 3124 sync_kit(ideal); 3125 access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3126 ideal.sync_kit(this); 3127 } 3128 final_sync(ideal); 3129 3130 return true; 3131 } 3132 3133 #endif // INCLUDE_JVMTI 3134 3135 #ifdef JFR_HAVE_INTRINSICS 3136 3137 /** 3138 * if oop->klass != null 3139 * // normal class 3140 * epoch = _epoch_state ? 2 : 1 3141 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3142 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3143 * } 3144 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3145 * else 3146 * // primitive class 3147 * if oop->array_klass != null 3148 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3149 * else 3150 * id = LAST_TYPE_ID + 1 // void class path 3151 * if (!signaled) 3152 * signaled = true 3153 */ 3154 bool LibraryCallKit::inline_native_classID() { 3155 Node* cls = argument(0); 3156 3157 IdealKit ideal(this); 3158 #define __ ideal. 3159 IdealVariable result(ideal); __ declarations_done(); 3160 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3161 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3162 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3163 3164 3165 __ if_then(kls, BoolTest::ne, null()); { 3166 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3167 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3168 3169 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3170 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3171 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3172 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3173 mask = _gvn.transform(new OrLNode(mask, epoch)); 3174 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3175 3176 float unlikely = PROB_UNLIKELY(0.999); 3177 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3178 sync_kit(ideal); 3179 make_runtime_call(RC_LEAF, 3180 OptoRuntime::class_id_load_barrier_Type(), 3181 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3182 "class id load barrier", 3183 TypePtr::BOTTOM, 3184 kls); 3185 ideal.sync_kit(this); 3186 } __ end_if(); 3187 3188 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3189 } __ else_(); { 3190 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3191 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3192 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3193 __ if_then(array_kls, BoolTest::ne, null()); { 3194 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3195 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3196 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3197 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3198 } __ else_(); { 3199 // void class case 3200 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3201 } __ end_if(); 3202 3203 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3204 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3205 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3206 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3207 } __ end_if(); 3208 } __ end_if(); 3209 3210 final_sync(ideal); 3211 set_result(ideal.value(result)); 3212 #undef __ 3213 return true; 3214 } 3215 3216 /* 3217 * The intrinsic is a model of this pseudo-code: 3218 * 3219 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3220 * jobject h_event_writer = tl->java_event_writer(); 3221 * if (h_event_writer == nullptr) { 3222 * return nullptr; 3223 * } 3224 * oop threadObj = Thread::threadObj(); 3225 * oop vthread = java_lang_Thread::vthread(threadObj); 3226 * traceid tid; 3227 * bool excluded; 3228 * if (vthread != threadObj) { // i.e. current thread is virtual 3229 * tid = java_lang_Thread::tid(vthread); 3230 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3231 * excluded = vthread_epoch_raw & excluded_mask; 3232 * if (!excluded) { 3233 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3234 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3235 * if (vthread_epoch != current_epoch) { 3236 * write_checkpoint(); 3237 * } 3238 * } 3239 * } else { 3240 * tid = java_lang_Thread::tid(threadObj); 3241 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3242 * excluded = thread_epoch_raw & excluded_mask; 3243 * } 3244 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3245 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3246 * if (tid_in_event_writer != tid) { 3247 * setField(event_writer, "threadID", tid); 3248 * setField(event_writer, "excluded", excluded); 3249 * } 3250 * return event_writer 3251 */ 3252 bool LibraryCallKit::inline_native_getEventWriter() { 3253 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3254 3255 // Save input memory and i_o state. 3256 Node* input_memory_state = reset_memory(); 3257 set_all_memory(input_memory_state); 3258 Node* input_io_state = i_o(); 3259 3260 Node* excluded_mask = _gvn.intcon(32768); 3261 Node* epoch_mask = _gvn.intcon(32767); 3262 3263 // TLS 3264 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3265 3266 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3267 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3268 3269 // Load the eventwriter jobject handle. 3270 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3271 3272 // Null check the jobject handle. 3273 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3274 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3275 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3276 3277 // False path, jobj is null. 3278 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3279 3280 // True path, jobj is not null. 3281 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3282 3283 set_control(jobj_is_not_null); 3284 3285 // Load the threadObj for the CarrierThread. 3286 Node* threadObj = generate_current_thread(tls_ptr); 3287 3288 // Load the vthread. 3289 Node* vthread = generate_virtual_thread(tls_ptr); 3290 3291 // If vthread != threadObj, this is a virtual thread. 3292 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3293 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3294 IfNode* iff_vthread_not_equal_threadObj = 3295 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3296 3297 // False branch, fallback to threadObj. 3298 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3299 set_control(vthread_equal_threadObj); 3300 3301 // Load the tid field from the vthread object. 3302 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3303 3304 // Load the raw epoch value from the threadObj. 3305 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3306 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3307 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3308 3309 // Mask off the excluded information from the epoch. 3310 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3311 3312 // True branch, this is a virtual thread. 3313 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3314 set_control(vthread_not_equal_threadObj); 3315 3316 // Load the tid field from the vthread object. 3317 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3318 3319 // Load the raw epoch value from the vthread. 3320 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3321 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3322 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3323 3324 // Mask off the excluded information from the epoch. 3325 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3326 3327 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3328 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3329 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3330 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3331 3332 // False branch, vthread is excluded, no need to write epoch info. 3333 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3334 3335 // True branch, vthread is included, update epoch info. 3336 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3337 set_control(included); 3338 3339 // Get epoch value. 3340 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3341 3342 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3343 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3344 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3345 3346 // Compare the epoch in the vthread to the current epoch generation. 3347 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3348 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3349 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3350 3351 // False path, epoch is equal, checkpoint information is valid. 3352 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3353 3354 // True path, epoch is not equal, write a checkpoint for the vthread. 3355 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3356 3357 set_control(epoch_is_not_equal); 3358 3359 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3360 // The call also updates the native thread local thread id and the vthread with the current epoch. 3361 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3362 OptoRuntime::jfr_write_checkpoint_Type(), 3363 StubRoutines::jfr_write_checkpoint(), 3364 "write_checkpoint", TypePtr::BOTTOM); 3365 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3366 3367 // vthread epoch != current epoch 3368 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3369 record_for_igvn(epoch_compare_rgn); 3370 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3371 record_for_igvn(epoch_compare_mem); 3372 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3373 record_for_igvn(epoch_compare_io); 3374 3375 // Update control and phi nodes. 3376 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3377 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3378 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3379 epoch_compare_mem->init_req(_false_path, input_memory_state); 3380 epoch_compare_io->init_req(_true_path, i_o()); 3381 epoch_compare_io->init_req(_false_path, input_io_state); 3382 3383 // excluded != true 3384 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3385 record_for_igvn(exclude_compare_rgn); 3386 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3387 record_for_igvn(exclude_compare_mem); 3388 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3389 record_for_igvn(exclude_compare_io); 3390 3391 // Update control and phi nodes. 3392 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3393 exclude_compare_rgn->init_req(_false_path, excluded); 3394 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3395 exclude_compare_mem->init_req(_false_path, input_memory_state); 3396 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3397 exclude_compare_io->init_req(_false_path, input_io_state); 3398 3399 // vthread != threadObj 3400 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3401 record_for_igvn(vthread_compare_rgn); 3402 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3403 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3404 record_for_igvn(vthread_compare_io); 3405 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3406 record_for_igvn(tid); 3407 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3408 record_for_igvn(exclusion); 3409 3410 // Update control and phi nodes. 3411 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3412 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3413 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3414 vthread_compare_mem->init_req(_false_path, input_memory_state); 3415 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3416 vthread_compare_io->init_req(_false_path, input_io_state); 3417 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3418 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3419 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3420 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3421 3422 // Update branch state. 3423 set_control(_gvn.transform(vthread_compare_rgn)); 3424 set_all_memory(_gvn.transform(vthread_compare_mem)); 3425 set_i_o(_gvn.transform(vthread_compare_io)); 3426 3427 // Load the event writer oop by dereferencing the jobject handle. 3428 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3429 assert(klass_EventWriter->is_loaded(), "invariant"); 3430 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3431 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3432 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3433 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3434 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3435 3436 // Load the current thread id from the event writer object. 3437 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3438 // Get the field offset to, conditionally, store an updated tid value later. 3439 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3440 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3441 // Get the field offset to, conditionally, store an updated exclusion value later. 3442 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3443 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3444 3445 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3446 record_for_igvn(event_writer_tid_compare_rgn); 3447 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3448 record_for_igvn(event_writer_tid_compare_mem); 3449 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3450 record_for_igvn(event_writer_tid_compare_io); 3451 3452 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3453 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3454 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3455 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3456 3457 // False path, tids are the same. 3458 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3459 3460 // True path, tid is not equal, need to update the tid in the event writer. 3461 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3462 record_for_igvn(tid_is_not_equal); 3463 3464 // Store the exclusion state to the event writer. 3465 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3466 3467 // Store the tid to the event writer. 3468 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3469 3470 // Update control and phi nodes. 3471 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3472 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3473 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3474 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3475 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3476 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3477 3478 // Result of top level CFG, Memory, IO and Value. 3479 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3480 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3481 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3482 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3483 3484 // Result control. 3485 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3486 result_rgn->init_req(_false_path, jobj_is_null); 3487 3488 // Result memory. 3489 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3490 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3491 3492 // Result IO. 3493 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3494 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3495 3496 // Result value. 3497 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3498 result_value->init_req(_false_path, null()); // return null 3499 3500 // Set output state. 3501 set_control(_gvn.transform(result_rgn)); 3502 set_all_memory(_gvn.transform(result_mem)); 3503 set_i_o(_gvn.transform(result_io)); 3504 set_result(result_rgn, result_value); 3505 return true; 3506 } 3507 3508 /* 3509 * The intrinsic is a model of this pseudo-code: 3510 * 3511 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3512 * if (carrierThread != thread) { // is virtual thread 3513 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3514 * bool excluded = vthread_epoch_raw & excluded_mask; 3515 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3516 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3517 * if (!excluded) { 3518 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3519 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3520 * } 3521 * Atomic::release_store(&tl->_vthread, true); 3522 * return; 3523 * } 3524 * Atomic::release_store(&tl->_vthread, false); 3525 */ 3526 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3527 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3528 3529 Node* input_memory_state = reset_memory(); 3530 set_all_memory(input_memory_state); 3531 3532 Node* excluded_mask = _gvn.intcon(32768); 3533 Node* epoch_mask = _gvn.intcon(32767); 3534 3535 Node* const carrierThread = generate_current_thread(jt); 3536 // If thread != carrierThread, this is a virtual thread. 3537 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3538 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3539 IfNode* iff_thread_not_equal_carrierThread = 3540 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3541 3542 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3543 3544 // False branch, is carrierThread. 3545 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3546 // Store release 3547 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3548 3549 set_all_memory(input_memory_state); 3550 3551 // True branch, is virtual thread. 3552 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3553 set_control(thread_not_equal_carrierThread); 3554 3555 // Load the raw epoch value from the vthread. 3556 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3557 Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3558 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3559 3560 // Mask off the excluded information from the epoch. 3561 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3562 3563 // Load the tid field from the thread. 3564 Node* tid = load_field_from_object(thread, "tid", "J"); 3565 3566 // Store the vthread tid to the jfr thread local. 3567 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3568 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3569 3570 // Branch is_excluded to conditionalize updating the epoch . 3571 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3572 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3573 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3574 3575 // True branch, vthread is excluded, no need to write epoch info. 3576 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3577 set_control(excluded); 3578 Node* vthread_is_excluded = _gvn.intcon(1); 3579 3580 // False branch, vthread is included, update epoch info. 3581 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3582 set_control(included); 3583 Node* vthread_is_included = _gvn.intcon(0); 3584 3585 // Get epoch value. 3586 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3587 3588 // Store the vthread epoch to the jfr thread local. 3589 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3590 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3591 3592 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3593 record_for_igvn(excluded_rgn); 3594 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3595 record_for_igvn(excluded_mem); 3596 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3597 record_for_igvn(exclusion); 3598 3599 // Merge the excluded control and memory. 3600 excluded_rgn->init_req(_true_path, excluded); 3601 excluded_rgn->init_req(_false_path, included); 3602 excluded_mem->init_req(_true_path, tid_memory); 3603 excluded_mem->init_req(_false_path, included_memory); 3604 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3605 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3606 3607 // Set intermediate state. 3608 set_control(_gvn.transform(excluded_rgn)); 3609 set_all_memory(excluded_mem); 3610 3611 // Store the vthread exclusion state to the jfr thread local. 3612 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3613 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3614 3615 // Store release 3616 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3617 3618 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3619 record_for_igvn(thread_compare_rgn); 3620 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3621 record_for_igvn(thread_compare_mem); 3622 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3623 record_for_igvn(vthread); 3624 3625 // Merge the thread_compare control and memory. 3626 thread_compare_rgn->init_req(_true_path, control()); 3627 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3628 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3629 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3630 3631 // Set output state. 3632 set_control(_gvn.transform(thread_compare_rgn)); 3633 set_all_memory(_gvn.transform(thread_compare_mem)); 3634 } 3635 3636 #endif // JFR_HAVE_INTRINSICS 3637 3638 //------------------------inline_native_currentCarrierThread------------------ 3639 bool LibraryCallKit::inline_native_currentCarrierThread() { 3640 Node* junk = nullptr; 3641 set_result(generate_current_thread(junk)); 3642 return true; 3643 } 3644 3645 //------------------------inline_native_currentThread------------------ 3646 bool LibraryCallKit::inline_native_currentThread() { 3647 Node* junk = nullptr; 3648 set_result(generate_virtual_thread(junk)); 3649 return true; 3650 } 3651 3652 //------------------------inline_native_setVthread------------------ 3653 bool LibraryCallKit::inline_native_setCurrentThread() { 3654 assert(C->method()->changes_current_thread(), 3655 "method changes current Thread but is not annotated ChangesCurrentThread"); 3656 Node* arr = argument(1); 3657 Node* thread = _gvn.transform(new ThreadLocalNode()); 3658 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3659 Node* thread_obj_handle 3660 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3661 thread_obj_handle = _gvn.transform(thread_obj_handle); 3662 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3663 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3664 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3665 return true; 3666 } 3667 3668 Node* LibraryCallKit::scopedValueCache_helper() { 3669 ciKlass *objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3670 const TypeOopPtr *etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3671 3672 bool xk = etype->klass_is_exact(); 3673 3674 Node* thread = _gvn.transform(new ThreadLocalNode()); 3675 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3676 // We cannot use immutable_memory() because we might flip onto a 3677 // different carrier thread, at which point we'll need to use that 3678 // carrier thread's cache. 3679 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3680 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3681 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3682 } 3683 3684 //------------------------inline_native_scopedValueCache------------------ 3685 bool LibraryCallKit::inline_native_scopedValueCache() { 3686 ciKlass *objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3687 const TypeOopPtr *etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3688 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3689 3690 // Because we create the scopedValue cache lazily we have to make the 3691 // type of the result BotPTR. 3692 bool xk = etype->klass_is_exact(); 3693 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0)); 3694 Node* cache_obj_handle = scopedValueCache_helper(); 3695 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3696 3697 return true; 3698 } 3699 3700 //------------------------inline_native_setScopedValueCache------------------ 3701 bool LibraryCallKit::inline_native_setScopedValueCache() { 3702 Node* arr = argument(0); 3703 Node* cache_obj_handle = scopedValueCache_helper(); 3704 3705 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3706 access_store_at(nullptr, cache_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3707 3708 return true; 3709 } 3710 3711 //-----------------------load_klass_from_mirror_common------------------------- 3712 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3713 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3714 // and branch to the given path on the region. 3715 // If never_see_null, take an uncommon trap on null, so we can optimistically 3716 // compile for the non-null case. 3717 // If the region is null, force never_see_null = true. 3718 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3719 bool never_see_null, 3720 RegionNode* region, 3721 int null_path, 3722 int offset) { 3723 if (region == nullptr) never_see_null = true; 3724 Node* p = basic_plus_adr(mirror, offset); 3725 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3726 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3727 Node* null_ctl = top(); 3728 kls = null_check_oop(kls, &null_ctl, never_see_null); 3729 if (region != nullptr) { 3730 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3731 region->init_req(null_path, null_ctl); 3732 } else { 3733 assert(null_ctl == top(), "no loose ends"); 3734 } 3735 return kls; 3736 } 3737 3738 //--------------------(inline_native_Class_query helpers)--------------------- 3739 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3740 // Fall through if (mods & mask) == bits, take the guard otherwise. 3741 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3742 // Branch around if the given klass has the given modifier bit set. 3743 // Like generate_guard, adds a new path onto the region. 3744 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3745 Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered); 3746 Node* mask = intcon(modifier_mask); 3747 Node* bits = intcon(modifier_bits); 3748 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3749 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3750 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3751 return generate_fair_guard(bol, region); 3752 } 3753 3754 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3755 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3756 } 3757 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3758 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3759 } 3760 3761 //-------------------------inline_native_Class_query------------------- 3762 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3763 const Type* return_type = TypeInt::BOOL; 3764 Node* prim_return_value = top(); // what happens if it's a primitive class? 3765 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3766 bool expect_prim = false; // most of these guys expect to work on refs 3767 3768 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3769 3770 Node* mirror = argument(0); 3771 Node* obj = top(); 3772 3773 switch (id) { 3774 case vmIntrinsics::_isInstance: 3775 // nothing is an instance of a primitive type 3776 prim_return_value = intcon(0); 3777 obj = argument(1); 3778 break; 3779 case vmIntrinsics::_getModifiers: 3780 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3781 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3782 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3783 break; 3784 case vmIntrinsics::_isInterface: 3785 prim_return_value = intcon(0); 3786 break; 3787 case vmIntrinsics::_isArray: 3788 prim_return_value = intcon(0); 3789 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3790 break; 3791 case vmIntrinsics::_isPrimitive: 3792 prim_return_value = intcon(1); 3793 expect_prim = true; // obviously 3794 break; 3795 case vmIntrinsics::_isHidden: 3796 prim_return_value = intcon(0); 3797 break; 3798 case vmIntrinsics::_getSuperclass: 3799 prim_return_value = null(); 3800 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3801 break; 3802 case vmIntrinsics::_getClassAccessFlags: 3803 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3804 return_type = TypeInt::INT; // not bool! 6297094 3805 break; 3806 default: 3807 fatal_unexpected_iid(id); 3808 break; 3809 } 3810 3811 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3812 if (mirror_con == nullptr) return false; // cannot happen? 3813 3814 #ifndef PRODUCT 3815 if (C->print_intrinsics() || C->print_inlining()) { 3816 ciType* k = mirror_con->java_mirror_type(); 3817 if (k) { 3818 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3819 k->print_name(); 3820 tty->cr(); 3821 } 3822 } 3823 #endif 3824 3825 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3826 RegionNode* region = new RegionNode(PATH_LIMIT); 3827 record_for_igvn(region); 3828 PhiNode* phi = new PhiNode(region, return_type); 3829 3830 // The mirror will never be null of Reflection.getClassAccessFlags, however 3831 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3832 // if it is. See bug 4774291. 3833 3834 // For Reflection.getClassAccessFlags(), the null check occurs in 3835 // the wrong place; see inline_unsafe_access(), above, for a similar 3836 // situation. 3837 mirror = null_check(mirror); 3838 // If mirror or obj is dead, only null-path is taken. 3839 if (stopped()) return true; 3840 3841 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3842 3843 // Now load the mirror's klass metaobject, and null-check it. 3844 // Side-effects region with the control path if the klass is null. 3845 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3846 // If kls is null, we have a primitive mirror. 3847 phi->init_req(_prim_path, prim_return_value); 3848 if (stopped()) { set_result(region, phi); return true; } 3849 bool safe_for_replace = (region->in(_prim_path) == top()); 3850 3851 Node* p; // handy temp 3852 Node* null_ctl; 3853 3854 // Now that we have the non-null klass, we can perform the real query. 3855 // For constant classes, the query will constant-fold in LoadNode::Value. 3856 Node* query_value = top(); 3857 switch (id) { 3858 case vmIntrinsics::_isInstance: 3859 // nothing is an instance of a primitive type 3860 query_value = gen_instanceof(obj, kls, safe_for_replace); 3861 break; 3862 3863 case vmIntrinsics::_getModifiers: 3864 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3865 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3866 break; 3867 3868 case vmIntrinsics::_isInterface: 3869 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3870 if (generate_interface_guard(kls, region) != nullptr) 3871 // A guard was added. If the guard is taken, it was an interface. 3872 phi->add_req(intcon(1)); 3873 // If we fall through, it's a plain class. 3874 query_value = intcon(0); 3875 break; 3876 3877 case vmIntrinsics::_isArray: 3878 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3879 if (generate_array_guard(kls, region) != nullptr) 3880 // A guard was added. If the guard is taken, it was an array. 3881 phi->add_req(intcon(1)); 3882 // If we fall through, it's a plain class. 3883 query_value = intcon(0); 3884 break; 3885 3886 case vmIntrinsics::_isPrimitive: 3887 query_value = intcon(0); // "normal" path produces false 3888 break; 3889 3890 case vmIntrinsics::_isHidden: 3891 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3892 if (generate_hidden_class_guard(kls, region) != nullptr) 3893 // A guard was added. If the guard is taken, it was an hidden class. 3894 phi->add_req(intcon(1)); 3895 // If we fall through, it's a plain class. 3896 query_value = intcon(0); 3897 break; 3898 3899 3900 case vmIntrinsics::_getSuperclass: 3901 // The rules here are somewhat unfortunate, but we can still do better 3902 // with random logic than with a JNI call. 3903 // Interfaces store null or Object as _super, but must report null. 3904 // Arrays store an intermediate super as _super, but must report Object. 3905 // Other types can report the actual _super. 3906 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3907 if (generate_interface_guard(kls, region) != nullptr) 3908 // A guard was added. If the guard is taken, it was an interface. 3909 phi->add_req(null()); 3910 if (generate_array_guard(kls, region) != nullptr) 3911 // A guard was added. If the guard is taken, it was an array. 3912 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3913 // If we fall through, it's a plain class. Get its _super. 3914 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3915 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3916 null_ctl = top(); 3917 kls = null_check_oop(kls, &null_ctl); 3918 if (null_ctl != top()) { 3919 // If the guard is taken, Object.superClass is null (both klass and mirror). 3920 region->add_req(null_ctl); 3921 phi ->add_req(null()); 3922 } 3923 if (!stopped()) { 3924 query_value = load_mirror_from_klass(kls); 3925 } 3926 break; 3927 3928 case vmIntrinsics::_getClassAccessFlags: 3929 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3930 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3931 break; 3932 3933 default: 3934 fatal_unexpected_iid(id); 3935 break; 3936 } 3937 3938 // Fall-through is the normal case of a query to a real class. 3939 phi->init_req(1, query_value); 3940 region->init_req(1, control()); 3941 3942 C->set_has_split_ifs(true); // Has chance for split-if optimization 3943 set_result(region, phi); 3944 return true; 3945 } 3946 3947 //-------------------------inline_primitive_Class_conversion------------------- 3948 // Class<T> java.lang.Class .asPrimaryType() 3949 // public static Class<T> jdk.internal.value.PrimitiveClass.asPrimaryType(Class<T>) 3950 // Class<T> java.lang.Class .asValueType() 3951 // public static Class<T> jdk.internal.value.PrimitiveClass.asValueType(Class<T>) 3952 bool LibraryCallKit::inline_primitive_Class_conversion(vmIntrinsics::ID id) { 3953 Node* mirror = argument(0); // Receiver/argument Class 3954 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3955 if (mirror_con == nullptr) { 3956 return false; 3957 } 3958 3959 bool is_val_mirror = true; 3960 ciType* tm = mirror_con->java_mirror_type(&is_val_mirror); 3961 if (tm != nullptr) { 3962 Node* result = mirror; 3963 if ((id == vmIntrinsics::_asPrimaryType || id == vmIntrinsics::_asPrimaryTypeArg) && is_val_mirror) { 3964 result = _gvn.makecon(TypeInstPtr::make(tm->as_inline_klass()->ref_mirror())); 3965 } else if (id == vmIntrinsics::_asValueType || id == vmIntrinsics::_asValueTypeArg) { 3966 if (!tm->is_inlinetype()) { 3967 return false; // Throw UnsupportedOperationException 3968 } else if (!is_val_mirror) { 3969 result = _gvn.makecon(TypeInstPtr::make(tm->as_inline_klass()->val_mirror())); 3970 } 3971 } 3972 set_result(result); 3973 return true; 3974 } 3975 return false; 3976 } 3977 3978 //-------------------------inline_Class_cast------------------- 3979 bool LibraryCallKit::inline_Class_cast() { 3980 Node* mirror = argument(0); // Class 3981 Node* obj = argument(1); 3982 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3983 if (mirror_con == nullptr) { 3984 return false; // dead path (mirror->is_top()). 3985 } 3986 if (obj == nullptr || obj->is_top()) { 3987 return false; // dead path 3988 } 3989 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3990 3991 // First, see if Class.cast() can be folded statically. 3992 // java_mirror_type() returns non-null for compile-time Class constants. 3993 bool requires_null_check = false; 3994 ciType* tm = mirror_con->java_mirror_type(&requires_null_check); 3995 if (tm != nullptr && tm->is_klass() && 3996 tp != nullptr) { 3997 if (!tp->is_loaded()) { 3998 // Don't use intrinsic when class is not loaded. 3999 return false; 4000 } else { 4001 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4002 if (static_res == Compile::SSC_always_true) { 4003 // isInstance() is true - fold the code. 4004 if (requires_null_check) { 4005 obj = null_check(obj); 4006 } 4007 set_result(obj); 4008 return true; 4009 } else if (static_res == Compile::SSC_always_false) { 4010 // Don't use intrinsic, have to throw ClassCastException. 4011 // If the reference is null, the non-intrinsic bytecode will 4012 // be optimized appropriately. 4013 return false; 4014 } 4015 } 4016 } 4017 4018 // Bailout intrinsic and do normal inlining if exception path is frequent. 4019 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4020 return false; 4021 } 4022 4023 // Generate dynamic checks. 4024 // Class.cast() is java implementation of _checkcast bytecode. 4025 // Do checkcast (Parse::do_checkcast()) optimizations here. 4026 4027 if (requires_null_check) { 4028 obj = null_check(obj); 4029 } 4030 mirror = null_check(mirror); 4031 // If mirror is dead, only null-path is taken. 4032 if (stopped()) { 4033 return true; 4034 } 4035 4036 // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive). 4037 enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT }; 4038 RegionNode* region = new RegionNode(PATH_LIMIT); 4039 record_for_igvn(region); 4040 4041 // Now load the mirror's klass metaobject, and null-check it. 4042 // If kls is null, we have a primitive mirror and 4043 // nothing is an instance of a primitive type. 4044 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4045 4046 Node* res = top(); 4047 Node* io = i_o(); 4048 Node* mem = merged_memory(); 4049 if (!stopped()) { 4050 if (EnableValhalla && !requires_null_check) { 4051 // Check if we are casting to QMyValue 4052 Node* ctrl_val_mirror = generate_fair_guard(is_val_mirror(mirror), nullptr); 4053 if (ctrl_val_mirror != nullptr) { 4054 RegionNode* r = new RegionNode(3); 4055 record_for_igvn(r); 4056 r->init_req(1, control()); 4057 4058 // Casting to QMyValue, check for null 4059 set_control(ctrl_val_mirror); 4060 { // PreserveJVMState because null check replaces obj in map 4061 PreserveJVMState pjvms(this); 4062 Node* null_ctr = top(); 4063 null_check_oop(obj, &null_ctr); 4064 region->init_req(_npe_path, null_ctr); 4065 r->init_req(2, control()); 4066 } 4067 set_control(_gvn.transform(r)); 4068 } 4069 } 4070 4071 Node* bad_type_ctrl = top(); 4072 // Do checkcast optimizations. 4073 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4074 region->init_req(_bad_type_path, bad_type_ctrl); 4075 } 4076 if (region->in(_prim_path) != top() || 4077 region->in(_bad_type_path) != top() || 4078 region->in(_npe_path) != top()) { 4079 // Let Interpreter throw ClassCastException. 4080 PreserveJVMState pjvms(this); 4081 set_control(_gvn.transform(region)); 4082 // Set IO and memory because gen_checkcast may override them when buffering inline types 4083 set_i_o(io); 4084 set_all_memory(mem); 4085 uncommon_trap(Deoptimization::Reason_intrinsic, 4086 Deoptimization::Action_maybe_recompile); 4087 } 4088 if (!stopped()) { 4089 set_result(res); 4090 } 4091 return true; 4092 } 4093 4094 4095 //--------------------------inline_native_subtype_check------------------------ 4096 // This intrinsic takes the JNI calls out of the heart of 4097 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4098 bool LibraryCallKit::inline_native_subtype_check() { 4099 // Pull both arguments off the stack. 4100 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4101 args[0] = argument(0); 4102 args[1] = argument(1); 4103 Node* klasses[2]; // corresponding Klasses: superk, subk 4104 klasses[0] = klasses[1] = top(); 4105 4106 enum { 4107 // A full decision tree on {superc is prim, subc is prim}: 4108 _prim_0_path = 1, // {P,N} => false 4109 // {P,P} & superc!=subc => false 4110 _prim_same_path, // {P,P} & superc==subc => true 4111 _prim_1_path, // {N,P} => false 4112 _ref_subtype_path, // {N,N} & subtype check wins => true 4113 _both_ref_path, // {N,N} & subtype check loses => false 4114 PATH_LIMIT 4115 }; 4116 4117 RegionNode* region = new RegionNode(PATH_LIMIT); 4118 RegionNode* prim_region = new RegionNode(2); 4119 Node* phi = new PhiNode(region, TypeInt::BOOL); 4120 record_for_igvn(region); 4121 record_for_igvn(prim_region); 4122 4123 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4124 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4125 int class_klass_offset = java_lang_Class::klass_offset(); 4126 4127 // First null-check both mirrors and load each mirror's klass metaobject. 4128 int which_arg; 4129 for (which_arg = 0; which_arg <= 1; which_arg++) { 4130 Node* arg = args[which_arg]; 4131 arg = null_check(arg); 4132 if (stopped()) break; 4133 args[which_arg] = arg; 4134 4135 Node* p = basic_plus_adr(arg, class_klass_offset); 4136 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4137 klasses[which_arg] = _gvn.transform(kls); 4138 } 4139 4140 // Having loaded both klasses, test each for null. 4141 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4142 for (which_arg = 0; which_arg <= 1; which_arg++) { 4143 Node* kls = klasses[which_arg]; 4144 Node* null_ctl = top(); 4145 kls = null_check_oop(kls, &null_ctl, never_see_null); 4146 if (which_arg == 0) { 4147 prim_region->init_req(1, null_ctl); 4148 } else { 4149 region->init_req(_prim_1_path, null_ctl); 4150 } 4151 if (stopped()) break; 4152 klasses[which_arg] = kls; 4153 } 4154 4155 if (!stopped()) { 4156 // now we have two reference types, in klasses[0..1] 4157 Node* subk = klasses[1]; // the argument to isAssignableFrom 4158 Node* superk = klasses[0]; // the receiver 4159 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4160 // If superc is an inline mirror, we also need to check if superc == subc because LMyValue 4161 // is not a subtype of QMyValue but due to subk == superk the subtype check will pass. 4162 generate_fair_guard(is_val_mirror(args[0]), prim_region); 4163 // now we have a successful reference subtype check 4164 region->set_req(_ref_subtype_path, control()); 4165 } 4166 4167 // If both operands are primitive (both klasses null), then 4168 // we must return true when they are identical primitives. 4169 // It is convenient to test this after the first null klass check. 4170 // This path is also used if superc is a value mirror. 4171 set_control(_gvn.transform(prim_region)); 4172 if (!stopped()) { 4173 // Since superc is primitive, make a guard for the superc==subc case. 4174 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4175 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4176 generate_fair_guard(bol_eq, region); 4177 if (region->req() == PATH_LIMIT+1) { 4178 // A guard was added. If the added guard is taken, superc==subc. 4179 region->swap_edges(PATH_LIMIT, _prim_same_path); 4180 region->del_req(PATH_LIMIT); 4181 } 4182 region->set_req(_prim_0_path, control()); // Not equal after all. 4183 } 4184 4185 // these are the only paths that produce 'true': 4186 phi->set_req(_prim_same_path, intcon(1)); 4187 phi->set_req(_ref_subtype_path, intcon(1)); 4188 4189 // pull together the cases: 4190 assert(region->req() == PATH_LIMIT, "sane region"); 4191 for (uint i = 1; i < region->req(); i++) { 4192 Node* ctl = region->in(i); 4193 if (ctl == nullptr || ctl == top()) { 4194 region->set_req(i, top()); 4195 phi ->set_req(i, top()); 4196 } else if (phi->in(i) == nullptr) { 4197 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4198 } 4199 } 4200 4201 set_control(_gvn.transform(region)); 4202 set_result(_gvn.transform(phi)); 4203 return true; 4204 } 4205 4206 //---------------------generate_array_guard_common------------------------ 4207 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind) { 4208 4209 if (stopped()) { 4210 return nullptr; 4211 } 4212 4213 // Like generate_guard, adds a new path onto the region. 4214 jint layout_con = 0; 4215 Node* layout_val = get_layout_helper(kls, layout_con); 4216 if (layout_val == nullptr) { 4217 bool query = 0; 4218 switch(kind) { 4219 case ObjectArray: query = Klass::layout_helper_is_objArray(layout_con); break; 4220 case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break; 4221 case TypeArray: query = Klass::layout_helper_is_typeArray(layout_con); break; 4222 case AnyArray: query = Klass::layout_helper_is_array(layout_con); break; 4223 case NonArray: query = !Klass::layout_helper_is_array(layout_con); break; 4224 default: 4225 ShouldNotReachHere(); 4226 } 4227 if (!query) { 4228 return nullptr; // never a branch 4229 } else { // always a branch 4230 Node* always_branch = control(); 4231 if (region != nullptr) 4232 region->add_req(always_branch); 4233 set_control(top()); 4234 return always_branch; 4235 } 4236 } 4237 unsigned int value = 0; 4238 BoolTest::mask btest = BoolTest::illegal; 4239 switch(kind) { 4240 case ObjectArray: 4241 case NonObjectArray: { 4242 value = Klass::_lh_array_tag_obj_value; 4243 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4244 btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne; 4245 break; 4246 } 4247 case TypeArray: { 4248 value = Klass::_lh_array_tag_type_value; 4249 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4250 btest = BoolTest::eq; 4251 break; 4252 } 4253 case AnyArray: value = Klass::_lh_neutral_value; btest = BoolTest::lt; break; 4254 case NonArray: value = Klass::_lh_neutral_value; btest = BoolTest::gt; break; 4255 default: 4256 ShouldNotReachHere(); 4257 } 4258 // Now test the correct condition. 4259 jint nval = (jint)value; 4260 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4261 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4262 return generate_fair_guard(bol, region); 4263 } 4264 4265 4266 //-----------------------inline_native_newArray-------------------------- 4267 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length); 4268 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4269 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4270 Node* mirror; 4271 Node* count_val; 4272 if (uninitialized) { 4273 mirror = argument(1); 4274 count_val = argument(2); 4275 } else { 4276 mirror = argument(0); 4277 count_val = argument(1); 4278 } 4279 4280 mirror = null_check(mirror); 4281 // If mirror or obj is dead, only null-path is taken. 4282 if (stopped()) return true; 4283 4284 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4285 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4286 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4287 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4288 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4289 4290 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4291 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4292 result_reg, _slow_path); 4293 Node* normal_ctl = control(); 4294 Node* no_array_ctl = result_reg->in(_slow_path); 4295 4296 // Generate code for the slow case. We make a call to newArray(). 4297 set_control(no_array_ctl); 4298 if (!stopped()) { 4299 // Either the input type is void.class, or else the 4300 // array klass has not yet been cached. Either the 4301 // ensuing call will throw an exception, or else it 4302 // will cache the array klass for next time. 4303 PreserveJVMState pjvms(this); 4304 CallJavaNode* slow_call = nullptr; 4305 if (uninitialized) { 4306 // Generate optimized virtual call (holder class 'Unsafe' is final) 4307 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false); 4308 } else { 4309 slow_call = generate_method_call_static(vmIntrinsics::_newArray); 4310 } 4311 Node* slow_result = set_results_for_java_call(slow_call); 4312 // this->control() comes from set_results_for_java_call 4313 result_reg->set_req(_slow_path, control()); 4314 result_val->set_req(_slow_path, slow_result); 4315 result_io ->set_req(_slow_path, i_o()); 4316 result_mem->set_req(_slow_path, reset_memory()); 4317 } 4318 4319 set_control(normal_ctl); 4320 if (!stopped()) { 4321 // Normal case: The array type has been cached in the java.lang.Class. 4322 // The following call works fine even if the array type is polymorphic. 4323 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4324 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4325 result_reg->init_req(_normal_path, control()); 4326 result_val->init_req(_normal_path, obj); 4327 result_io ->init_req(_normal_path, i_o()); 4328 result_mem->init_req(_normal_path, reset_memory()); 4329 4330 if (uninitialized) { 4331 // Mark the allocation so that zeroing is skipped 4332 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 4333 alloc->maybe_set_complete(&_gvn); 4334 } 4335 } 4336 4337 // Return the combined state. 4338 set_i_o( _gvn.transform(result_io) ); 4339 set_all_memory( _gvn.transform(result_mem)); 4340 4341 C->set_has_split_ifs(true); // Has chance for split-if optimization 4342 set_result(result_reg, result_val); 4343 return true; 4344 } 4345 4346 //----------------------inline_native_getLength-------------------------- 4347 // public static native int java.lang.reflect.Array.getLength(Object array); 4348 bool LibraryCallKit::inline_native_getLength() { 4349 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4350 4351 Node* array = null_check(argument(0)); 4352 // If array is dead, only null-path is taken. 4353 if (stopped()) return true; 4354 4355 // Deoptimize if it is a non-array. 4356 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 4357 4358 if (non_array != nullptr) { 4359 PreserveJVMState pjvms(this); 4360 set_control(non_array); 4361 uncommon_trap(Deoptimization::Reason_intrinsic, 4362 Deoptimization::Action_maybe_recompile); 4363 } 4364 4365 // If control is dead, only non-array-path is taken. 4366 if (stopped()) return true; 4367 4368 // The works fine even if the array type is polymorphic. 4369 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4370 Node* result = load_array_length(array); 4371 4372 C->set_has_split_ifs(true); // Has chance for split-if optimization 4373 set_result(result); 4374 return true; 4375 } 4376 4377 //------------------------inline_array_copyOf---------------------------- 4378 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4379 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4380 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4381 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4382 4383 // Get the arguments. 4384 Node* original = argument(0); 4385 Node* start = is_copyOfRange? argument(1): intcon(0); 4386 Node* end = is_copyOfRange? argument(2): argument(1); 4387 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4388 4389 Node* newcopy = nullptr; 4390 4391 // Set the original stack and the reexecute bit for the interpreter to reexecute 4392 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4393 { PreserveReexecuteState preexecs(this); 4394 jvms()->set_should_reexecute(true); 4395 4396 array_type_mirror = null_check(array_type_mirror); 4397 original = null_check(original); 4398 4399 // Check if a null path was taken unconditionally. 4400 if (stopped()) return true; 4401 4402 Node* orig_length = load_array_length(original); 4403 4404 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4405 klass_node = null_check(klass_node); 4406 4407 RegionNode* bailout = new RegionNode(1); 4408 record_for_igvn(bailout); 4409 4410 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4411 // Bail out if that is so. 4412 // Inline type array may have object field that would require a 4413 // write barrier. Conservatively, go to slow path. 4414 // TODO 8251971: Optimize for the case when flat src/dst are later found 4415 // to not contain oops (i.e., move this check to the macro expansion phase). 4416 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4417 const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr(); 4418 const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr(); 4419 bool exclude_flat = UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) && 4420 // Can src array be flat and contain oops? 4421 (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) && 4422 // Can dest array be flat and contain oops? 4423 tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops()); 4424 Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout); 4425 if (not_objArray != nullptr) { 4426 // Improve the klass node's type from the new optimistic assumption: 4427 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4428 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0)); 4429 Node* cast = new CastPPNode(klass_node, akls); 4430 cast->init_req(0, control()); 4431 klass_node = _gvn.transform(cast); 4432 } 4433 4434 // Bail out if either start or end is negative. 4435 generate_negative_guard(start, bailout, &start); 4436 generate_negative_guard(end, bailout, &end); 4437 4438 Node* length = end; 4439 if (_gvn.type(start) != TypeInt::ZERO) { 4440 length = _gvn.transform(new SubINode(end, start)); 4441 } 4442 4443 // Bail out if length is negative. 4444 // Without this the new_array would throw 4445 // NegativeArraySizeException but IllegalArgumentException is what 4446 // should be thrown 4447 generate_negative_guard(length, bailout, &length); 4448 4449 // Handle inline type arrays 4450 bool can_validate = !too_many_traps(Deoptimization::Reason_class_check); 4451 if (!stopped()) { 4452 orig_t = _gvn.type(original)->isa_aryptr(); 4453 if (orig_t != nullptr && orig_t->is_flat()) { 4454 // Src is flat, check that dest is flat as well 4455 if (exclude_flat) { 4456 // Dest can't be flat, bail out 4457 bailout->add_req(control()); 4458 set_control(top()); 4459 } else { 4460 generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout); 4461 } 4462 } else if (UseFlatArray && (orig_t == nullptr || !orig_t->is_not_flat()) && 4463 // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated). 4464 ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) { 4465 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 4466 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 4467 generate_fair_guard(flat_array_test(load_object_klass(original)), bailout); 4468 if (orig_t != nullptr) { 4469 orig_t = orig_t->cast_to_not_flat(); 4470 original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t)); 4471 } 4472 } 4473 if (!can_validate) { 4474 // No validation. The subtype check emitted at macro expansion time will not go to the slow 4475 // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays. 4476 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free. 4477 generate_fair_guard(null_free_array_test(klass_node), bailout); 4478 } 4479 } 4480 4481 if (bailout->req() > 1) { 4482 PreserveJVMState pjvms(this); 4483 set_control(_gvn.transform(bailout)); 4484 uncommon_trap(Deoptimization::Reason_intrinsic, 4485 Deoptimization::Action_maybe_recompile); 4486 } 4487 4488 if (!stopped()) { 4489 // How many elements will we copy from the original? 4490 // The answer is MinI(orig_length - start, length). 4491 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4492 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4493 4494 // Generate a direct call to the right arraycopy function(s). 4495 // We know the copy is disjoint but we might not know if the 4496 // oop stores need checking. 4497 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4498 // This will fail a store-check if x contains any non-nulls. 4499 4500 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4501 // loads/stores but it is legal only if we're sure the 4502 // Arrays.copyOf would succeed. So we need all input arguments 4503 // to the copyOf to be validated, including that the copy to the 4504 // new array won't trigger an ArrayStoreException. That subtype 4505 // check can be optimized if we know something on the type of 4506 // the input array from type speculation. 4507 if (_gvn.type(klass_node)->singleton()) { 4508 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4509 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4510 4511 int test = C->static_subtype_check(superk, subk); 4512 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4513 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4514 if (t_original->speculative_type() != nullptr) { 4515 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4516 } 4517 } 4518 } 4519 4520 bool validated = false; 4521 // Reason_class_check rather than Reason_intrinsic because we 4522 // want to intrinsify even if this traps. 4523 if (can_validate) { 4524 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4525 4526 if (not_subtype_ctrl != top()) { 4527 PreserveJVMState pjvms(this); 4528 set_control(not_subtype_ctrl); 4529 uncommon_trap(Deoptimization::Reason_class_check, 4530 Deoptimization::Action_make_not_entrant); 4531 assert(stopped(), "Should be stopped"); 4532 } 4533 validated = true; 4534 } 4535 4536 if (!stopped()) { 4537 newcopy = new_array(klass_node, length, 0); // no arguments to push 4538 4539 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 4540 load_object_klass(original), klass_node); 4541 if (!is_copyOfRange) { 4542 ac->set_copyof(validated); 4543 } else { 4544 ac->set_copyofrange(validated); 4545 } 4546 Node* n = _gvn.transform(ac); 4547 if (n == ac) { 4548 ac->connect_outputs(this); 4549 } else { 4550 assert(validated, "shouldn't transform if all arguments not validated"); 4551 set_all_memory(n); 4552 } 4553 } 4554 } 4555 } // original reexecute is set back here 4556 4557 C->set_has_split_ifs(true); // Has chance for split-if optimization 4558 if (!stopped()) { 4559 set_result(newcopy); 4560 } 4561 return true; 4562 } 4563 4564 4565 //----------------------generate_virtual_guard--------------------------- 4566 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4567 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4568 RegionNode* slow_region) { 4569 ciMethod* method = callee(); 4570 int vtable_index = method->vtable_index(); 4571 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4572 "bad index %d", vtable_index); 4573 // Get the Method* out of the appropriate vtable entry. 4574 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4575 vtable_index*vtableEntry::size_in_bytes() + 4576 in_bytes(vtableEntry::method_offset()); 4577 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4578 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4579 4580 // Compare the target method with the expected method (e.g., Object.hashCode). 4581 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4582 4583 Node* native_call = makecon(native_call_addr); 4584 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4585 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4586 4587 return generate_slow_guard(test_native, slow_region); 4588 } 4589 4590 //-----------------------generate_method_call---------------------------- 4591 // Use generate_method_call to make a slow-call to the real 4592 // method if the fast path fails. An alternative would be to 4593 // use a stub like OptoRuntime::slow_arraycopy_Java. 4594 // This only works for expanding the current library call, 4595 // not another intrinsic. (E.g., don't use this for making an 4596 // arraycopy call inside of the copyOf intrinsic.) 4597 CallJavaNode* 4598 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { 4599 // When compiling the intrinsic method itself, do not use this technique. 4600 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4601 4602 ciMethod* method = callee(); 4603 // ensure the JVMS we have will be correct for this call 4604 guarantee(method_id == method->intrinsic_id(), "must match"); 4605 4606 const TypeFunc* tf = TypeFunc::make(method); 4607 CallJavaNode* slow_call; 4608 if (is_static) { 4609 assert(!is_virtual, ""); 4610 slow_call = new CallStaticJavaNode(C, tf, 4611 SharedRuntime::get_resolve_static_call_stub(), method); 4612 } else if (is_virtual) { 4613 null_check_receiver(); 4614 int vtable_index = Method::invalid_vtable_index; 4615 if (UseInlineCaches) { 4616 // Suppress the vtable call 4617 } else { 4618 // hashCode and clone are not a miranda methods, 4619 // so the vtable index is fixed. 4620 // No need to use the linkResolver to get it. 4621 vtable_index = method->vtable_index(); 4622 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4623 "bad index %d", vtable_index); 4624 } 4625 slow_call = new CallDynamicJavaNode(tf, 4626 SharedRuntime::get_resolve_virtual_call_stub(), 4627 method, vtable_index); 4628 } else { // neither virtual nor static: opt_virtual 4629 null_check_receiver(); 4630 slow_call = new CallStaticJavaNode(C, tf, 4631 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4632 slow_call->set_optimized_virtual(true); 4633 } 4634 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4635 // To be able to issue a direct call (optimized virtual or virtual) 4636 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4637 // about the method being invoked should be attached to the call site to 4638 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4639 slow_call->set_override_symbolic_info(true); 4640 } 4641 set_arguments_for_java_call(slow_call); 4642 set_edges_for_java_call(slow_call); 4643 return slow_call; 4644 } 4645 4646 4647 /** 4648 * Build special case code for calls to hashCode on an object. This call may 4649 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4650 * slightly different code. 4651 */ 4652 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4653 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4654 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4655 4656 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4657 4658 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4659 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4660 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4661 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4662 Node* obj = argument(0); 4663 4664 if (gvn().type(obj)->is_inlinetypeptr()) { 4665 return false; 4666 } 4667 4668 if (!is_static) { 4669 // Check for hashing null object 4670 obj = null_check_receiver(); 4671 if (stopped()) return true; // unconditionally null 4672 result_reg->init_req(_null_path, top()); 4673 result_val->init_req(_null_path, top()); 4674 } else { 4675 // Do a null check, and return zero if null. 4676 // System.identityHashCode(null) == 0 4677 Node* null_ctl = top(); 4678 obj = null_check_oop(obj, &null_ctl); 4679 result_reg->init_req(_null_path, null_ctl); 4680 result_val->init_req(_null_path, _gvn.intcon(0)); 4681 } 4682 4683 // Unconditionally null? Then return right away. 4684 if (stopped()) { 4685 set_control( result_reg->in(_null_path)); 4686 if (!stopped()) 4687 set_result(result_val->in(_null_path)); 4688 return true; 4689 } 4690 4691 // We only go to the fast case code if we pass a number of guards. The 4692 // paths which do not pass are accumulated in the slow_region. 4693 RegionNode* slow_region = new RegionNode(1); 4694 record_for_igvn(slow_region); 4695 4696 // If this is a virtual call, we generate a funny guard. We pull out 4697 // the vtable entry corresponding to hashCode() from the target object. 4698 // If the target method which we are calling happens to be the native 4699 // Object hashCode() method, we pass the guard. We do not need this 4700 // guard for non-virtual calls -- the caller is known to be the native 4701 // Object hashCode(). 4702 if (is_virtual) { 4703 // After null check, get the object's klass. 4704 Node* obj_klass = load_object_klass(obj); 4705 generate_virtual_guard(obj_klass, slow_region); 4706 } 4707 4708 // Get the header out of the object, use LoadMarkNode when available 4709 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4710 // The control of the load must be null. Otherwise, the load can move before 4711 // the null check after castPP removal. 4712 Node* no_ctrl = nullptr; 4713 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4714 4715 // Test the header to see if it is unlocked. 4716 // This also serves as guard against inline types 4717 Node *lock_mask = _gvn.MakeConX(markWord::inline_type_mask_in_place); 4718 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4719 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4720 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 4721 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 4722 4723 generate_slow_guard(test_unlocked, slow_region); 4724 4725 // Get the hash value and check to see that it has been properly assigned. 4726 // We depend on hash_mask being at most 32 bits and avoid the use of 4727 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4728 // vm: see markWord.hpp. 4729 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4730 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4731 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4732 // This hack lets the hash bits live anywhere in the mark object now, as long 4733 // as the shift drops the relevant bits into the low 32 bits. Note that 4734 // Java spec says that HashCode is an int so there's no point in capturing 4735 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4736 hshifted_header = ConvX2I(hshifted_header); 4737 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4738 4739 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4740 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4741 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4742 4743 generate_slow_guard(test_assigned, slow_region); 4744 4745 Node* init_mem = reset_memory(); 4746 // fill in the rest of the null path: 4747 result_io ->init_req(_null_path, i_o()); 4748 result_mem->init_req(_null_path, init_mem); 4749 4750 result_val->init_req(_fast_path, hash_val); 4751 result_reg->init_req(_fast_path, control()); 4752 result_io ->init_req(_fast_path, i_o()); 4753 result_mem->init_req(_fast_path, init_mem); 4754 4755 // Generate code for the slow case. We make a call to hashCode(). 4756 set_control(_gvn.transform(slow_region)); 4757 if (!stopped()) { 4758 // No need for PreserveJVMState, because we're using up the present state. 4759 set_all_memory(init_mem); 4760 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4761 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); 4762 Node* slow_result = set_results_for_java_call(slow_call); 4763 // this->control() comes from set_results_for_java_call 4764 result_reg->init_req(_slow_path, control()); 4765 result_val->init_req(_slow_path, slow_result); 4766 result_io ->set_req(_slow_path, i_o()); 4767 result_mem ->set_req(_slow_path, reset_memory()); 4768 } 4769 4770 // Return the combined state. 4771 set_i_o( _gvn.transform(result_io) ); 4772 set_all_memory( _gvn.transform(result_mem)); 4773 4774 set_result(result_reg, result_val); 4775 return true; 4776 } 4777 4778 //---------------------------inline_native_getClass---------------------------- 4779 // public final native Class<?> java.lang.Object.getClass(); 4780 // 4781 // Build special case code for calls to getClass on an object. 4782 bool LibraryCallKit::inline_native_getClass() { 4783 Node* obj = argument(0); 4784 if (obj->is_InlineType()) { 4785 const Type* t = _gvn.type(obj); 4786 if (t->maybe_null()) { 4787 null_check(obj); 4788 } 4789 set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror()))); 4790 return true; 4791 } 4792 obj = null_check_receiver(); 4793 if (stopped()) return true; 4794 set_result(load_mirror_from_klass(load_object_klass(obj))); 4795 return true; 4796 } 4797 4798 //-----------------inline_native_Reflection_getCallerClass--------------------- 4799 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4800 // 4801 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4802 // 4803 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4804 // in that it must skip particular security frames and checks for 4805 // caller sensitive methods. 4806 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4807 #ifndef PRODUCT 4808 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4809 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4810 } 4811 #endif 4812 4813 if (!jvms()->has_method()) { 4814 #ifndef PRODUCT 4815 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4816 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4817 } 4818 #endif 4819 return false; 4820 } 4821 4822 // Walk back up the JVM state to find the caller at the required 4823 // depth. 4824 JVMState* caller_jvms = jvms(); 4825 4826 // Cf. JVM_GetCallerClass 4827 // NOTE: Start the loop at depth 1 because the current JVM state does 4828 // not include the Reflection.getCallerClass() frame. 4829 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4830 ciMethod* m = caller_jvms->method(); 4831 switch (n) { 4832 case 0: 4833 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4834 break; 4835 case 1: 4836 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4837 if (!m->caller_sensitive()) { 4838 #ifndef PRODUCT 4839 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4840 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4841 } 4842 #endif 4843 return false; // bail-out; let JVM_GetCallerClass do the work 4844 } 4845 break; 4846 default: 4847 if (!m->is_ignored_by_security_stack_walk()) { 4848 // We have reached the desired frame; return the holder class. 4849 // Acquire method holder as java.lang.Class and push as constant. 4850 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4851 ciInstance* caller_mirror = caller_klass->java_mirror(); 4852 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4853 4854 #ifndef PRODUCT 4855 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4856 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4857 tty->print_cr(" JVM state at this point:"); 4858 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4859 ciMethod* m = jvms()->of_depth(i)->method(); 4860 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4861 } 4862 } 4863 #endif 4864 return true; 4865 } 4866 break; 4867 } 4868 } 4869 4870 #ifndef PRODUCT 4871 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4872 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4873 tty->print_cr(" JVM state at this point:"); 4874 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4875 ciMethod* m = jvms()->of_depth(i)->method(); 4876 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4877 } 4878 } 4879 #endif 4880 4881 return false; // bail-out; let JVM_GetCallerClass do the work 4882 } 4883 4884 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4885 Node* arg = argument(0); 4886 Node* result = nullptr; 4887 4888 switch (id) { 4889 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4890 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4891 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4892 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4893 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4894 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4895 4896 case vmIntrinsics::_doubleToLongBits: { 4897 // two paths (plus control) merge in a wood 4898 RegionNode *r = new RegionNode(3); 4899 Node *phi = new PhiNode(r, TypeLong::LONG); 4900 4901 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4902 // Build the boolean node 4903 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4904 4905 // Branch either way. 4906 // NaN case is less traveled, which makes all the difference. 4907 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4908 Node *opt_isnan = _gvn.transform(ifisnan); 4909 assert( opt_isnan->is_If(), "Expect an IfNode"); 4910 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4911 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4912 4913 set_control(iftrue); 4914 4915 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4916 Node *slow_result = longcon(nan_bits); // return NaN 4917 phi->init_req(1, _gvn.transform( slow_result )); 4918 r->init_req(1, iftrue); 4919 4920 // Else fall through 4921 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4922 set_control(iffalse); 4923 4924 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4925 r->init_req(2, iffalse); 4926 4927 // Post merge 4928 set_control(_gvn.transform(r)); 4929 record_for_igvn(r); 4930 4931 C->set_has_split_ifs(true); // Has chance for split-if optimization 4932 result = phi; 4933 assert(result->bottom_type()->isa_long(), "must be"); 4934 break; 4935 } 4936 4937 case vmIntrinsics::_floatToIntBits: { 4938 // two paths (plus control) merge in a wood 4939 RegionNode *r = new RegionNode(3); 4940 Node *phi = new PhiNode(r, TypeInt::INT); 4941 4942 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4943 // Build the boolean node 4944 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4945 4946 // Branch either way. 4947 // NaN case is less traveled, which makes all the difference. 4948 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4949 Node *opt_isnan = _gvn.transform(ifisnan); 4950 assert( opt_isnan->is_If(), "Expect an IfNode"); 4951 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4952 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4953 4954 set_control(iftrue); 4955 4956 static const jint nan_bits = 0x7fc00000; 4957 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4958 phi->init_req(1, _gvn.transform( slow_result )); 4959 r->init_req(1, iftrue); 4960 4961 // Else fall through 4962 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4963 set_control(iffalse); 4964 4965 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4966 r->init_req(2, iffalse); 4967 4968 // Post merge 4969 set_control(_gvn.transform(r)); 4970 record_for_igvn(r); 4971 4972 C->set_has_split_ifs(true); // Has chance for split-if optimization 4973 result = phi; 4974 assert(result->bottom_type()->isa_int(), "must be"); 4975 break; 4976 } 4977 4978 default: 4979 fatal_unexpected_iid(id); 4980 break; 4981 } 4982 set_result(_gvn.transform(result)); 4983 return true; 4984 } 4985 4986 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4987 Node* arg = argument(0); 4988 Node* result = nullptr; 4989 4990 switch (id) { 4991 case vmIntrinsics::_floatIsInfinite: 4992 result = new IsInfiniteFNode(arg); 4993 break; 4994 case vmIntrinsics::_floatIsFinite: 4995 result = new IsFiniteFNode(arg); 4996 break; 4997 case vmIntrinsics::_doubleIsInfinite: 4998 result = new IsInfiniteDNode(arg); 4999 break; 5000 case vmIntrinsics::_doubleIsFinite: 5001 result = new IsFiniteDNode(arg); 5002 break; 5003 default: 5004 fatal_unexpected_iid(id); 5005 break; 5006 } 5007 set_result(_gvn.transform(result)); 5008 return true; 5009 } 5010 5011 //----------------------inline_unsafe_copyMemory------------------------- 5012 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5013 5014 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5015 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5016 const Type* base_t = gvn.type(base); 5017 5018 bool in_native = (base_t == TypePtr::NULL_PTR); 5019 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5020 bool is_mixed = !in_heap && !in_native; 5021 5022 if (is_mixed) { 5023 return true; // mixed accesses can touch both on-heap and off-heap memory 5024 } 5025 if (in_heap) { 5026 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5027 if (!is_prim_array) { 5028 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5029 // there's not enough type information available to determine proper memory slice for it. 5030 return true; 5031 } 5032 } 5033 return false; 5034 } 5035 5036 bool LibraryCallKit::inline_unsafe_copyMemory() { 5037 if (callee()->is_static()) return false; // caller must have the capability! 5038 null_check_receiver(); // null-check receiver 5039 if (stopped()) return true; 5040 5041 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5042 5043 Node* src_base = argument(1); // type: oop 5044 Node* src_off = ConvL2X(argument(2)); // type: long 5045 Node* dst_base = argument(4); // type: oop 5046 Node* dst_off = ConvL2X(argument(5)); // type: long 5047 Node* size = ConvL2X(argument(7)); // type: long 5048 5049 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5050 "fieldOffset must be byte-scaled"); 5051 5052 Node* src_addr = make_unsafe_address(src_base, src_off); 5053 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5054 5055 Node* thread = _gvn.transform(new ThreadLocalNode()); 5056 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5057 BasicType doing_unsafe_access_bt = T_BYTE; 5058 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5059 5060 // update volatile field 5061 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5062 5063 int flags = RC_LEAF | RC_NO_FP; 5064 5065 const TypePtr* dst_type = TypePtr::BOTTOM; 5066 5067 // Adjust memory effects of the runtime call based on input values. 5068 if (!has_wide_mem(_gvn, src_addr, src_base) && 5069 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5070 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5071 5072 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5073 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5074 flags |= RC_NARROW_MEM; // narrow in memory 5075 } 5076 } 5077 5078 // Call it. Note that the length argument is not scaled. 5079 make_runtime_call(flags, 5080 OptoRuntime::fast_arraycopy_Type(), 5081 StubRoutines::unsafe_arraycopy(), 5082 "unsafe_arraycopy", 5083 dst_type, 5084 src_addr, dst_addr, size XTOP); 5085 5086 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 5087 5088 return true; 5089 } 5090 5091 #undef XTOP 5092 5093 //------------------------clone_coping----------------------------------- 5094 // Helper function for inline_native_clone. 5095 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5096 assert(obj_size != nullptr, ""); 5097 Node* raw_obj = alloc_obj->in(1); 5098 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5099 5100 AllocateNode* alloc = nullptr; 5101 if (ReduceBulkZeroing) { 5102 // We will be completely responsible for initializing this object - 5103 // mark Initialize node as complete. 5104 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 5105 // The object was just allocated - there should be no any stores! 5106 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5107 // Mark as complete_with_arraycopy so that on AllocateNode 5108 // expansion, we know this AllocateNode is initialized by an array 5109 // copy and a StoreStore barrier exists after the array copy. 5110 alloc->initialization()->set_complete_with_arraycopy(); 5111 } 5112 5113 Node* size = _gvn.transform(obj_size); 5114 access_clone(obj, alloc_obj, size, is_array); 5115 5116 // Do not let reads from the cloned object float above the arraycopy. 5117 if (alloc != nullptr) { 5118 // Do not let stores that initialize this object be reordered with 5119 // a subsequent store that would make this object accessible by 5120 // other threads. 5121 // Record what AllocateNode this StoreStore protects so that 5122 // escape analysis can go from the MemBarStoreStoreNode to the 5123 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5124 // based on the escape status of the AllocateNode. 5125 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5126 } else { 5127 insert_mem_bar(Op_MemBarCPUOrder); 5128 } 5129 } 5130 5131 //------------------------inline_native_clone---------------------------- 5132 // protected native Object java.lang.Object.clone(); 5133 // 5134 // Here are the simple edge cases: 5135 // null receiver => normal trap 5136 // virtual and clone was overridden => slow path to out-of-line clone 5137 // not cloneable or finalizer => slow path to out-of-line Object.clone 5138 // 5139 // The general case has two steps, allocation and copying. 5140 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5141 // 5142 // Copying also has two cases, oop arrays and everything else. 5143 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5144 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5145 // 5146 // These steps fold up nicely if and when the cloned object's klass 5147 // can be sharply typed as an object array, a type array, or an instance. 5148 // 5149 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5150 PhiNode* result_val; 5151 5152 // Set the reexecute bit for the interpreter to reexecute 5153 // the bytecode that invokes Object.clone if deoptimization happens. 5154 { PreserveReexecuteState preexecs(this); 5155 jvms()->set_should_reexecute(true); 5156 5157 Node* obj = argument(0); 5158 obj = null_check_receiver(); 5159 if (stopped()) return true; 5160 5161 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5162 5163 // If we are going to clone an instance, we need its exact type to 5164 // know the number and types of fields to convert the clone to 5165 // loads/stores. Maybe a speculative type can help us. 5166 if (!obj_type->klass_is_exact() && 5167 obj_type->speculative_type() != nullptr && 5168 obj_type->speculative_type()->is_instance_klass() && 5169 !obj_type->speculative_type()->is_inlinetype()) { 5170 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5171 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5172 !spec_ik->has_injected_fields()) { 5173 if (!obj_type->isa_instptr() || 5174 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5175 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5176 } 5177 } 5178 } 5179 5180 // Conservatively insert a memory barrier on all memory slices. 5181 // Do not let writes into the original float below the clone. 5182 insert_mem_bar(Op_MemBarCPUOrder); 5183 5184 // paths into result_reg: 5185 enum { 5186 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5187 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5188 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5189 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5190 PATH_LIMIT 5191 }; 5192 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5193 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5194 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5195 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5196 record_for_igvn(result_reg); 5197 5198 Node* obj_klass = load_object_klass(obj); 5199 // We only go to the fast case code if we pass a number of guards. 5200 // The paths which do not pass are accumulated in the slow_region. 5201 RegionNode* slow_region = new RegionNode(1); 5202 record_for_igvn(slow_region); 5203 5204 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 5205 if (array_ctl != nullptr) { 5206 // It's an array. 5207 PreserveJVMState pjvms(this); 5208 set_control(array_ctl); 5209 5210 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5211 const TypeAryPtr* ary_ptr = obj_type->isa_aryptr(); 5212 if (UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) && 5213 obj_type->can_be_inline_array() && 5214 (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) { 5215 // Flattened inline type array may have object field that would require a 5216 // write barrier. Conservatively, go to slow path. 5217 generate_fair_guard(flat_array_test(obj_klass), slow_region); 5218 } 5219 5220 if (!stopped()) { 5221 Node* obj_length = load_array_length(obj); 5222 Node* obj_size = nullptr; 5223 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true); 5224 5225 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5226 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5227 // If it is an oop array, it requires very special treatment, 5228 // because gc barriers are required when accessing the array. 5229 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5230 if (is_obja != nullptr) { 5231 PreserveJVMState pjvms2(this); 5232 set_control(is_obja); 5233 // Generate a direct call to the right arraycopy function(s). 5234 // Clones are always tightly coupled. 5235 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5236 ac->set_clone_oop_array(); 5237 Node* n = _gvn.transform(ac); 5238 assert(n == ac, "cannot disappear"); 5239 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5240 5241 result_reg->init_req(_objArray_path, control()); 5242 result_val->init_req(_objArray_path, alloc_obj); 5243 result_i_o ->set_req(_objArray_path, i_o()); 5244 result_mem ->set_req(_objArray_path, reset_memory()); 5245 } 5246 } 5247 // Otherwise, there are no barriers to worry about. 5248 // (We can dispense with card marks if we know the allocation 5249 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5250 // causes the non-eden paths to take compensating steps to 5251 // simulate a fresh allocation, so that no further 5252 // card marks are required in compiled code to initialize 5253 // the object.) 5254 5255 if (!stopped()) { 5256 copy_to_clone(obj, alloc_obj, obj_size, true); 5257 5258 // Present the results of the copy. 5259 result_reg->init_req(_array_path, control()); 5260 result_val->init_req(_array_path, alloc_obj); 5261 result_i_o ->set_req(_array_path, i_o()); 5262 result_mem ->set_req(_array_path, reset_memory()); 5263 } 5264 } 5265 } 5266 5267 if (!stopped()) { 5268 // It's an instance (we did array above). Make the slow-path tests. 5269 // If this is a virtual call, we generate a funny guard. We grab 5270 // the vtable entry corresponding to clone() from the target object. 5271 // If the target method which we are calling happens to be the 5272 // Object clone() method, we pass the guard. We do not need this 5273 // guard for non-virtual calls; the caller is known to be the native 5274 // Object clone(). 5275 if (is_virtual) { 5276 generate_virtual_guard(obj_klass, slow_region); 5277 } 5278 5279 // The object must be easily cloneable and must not have a finalizer. 5280 // Both of these conditions may be checked in a single test. 5281 // We could optimize the test further, but we don't care. 5282 generate_access_flags_guard(obj_klass, 5283 // Test both conditions: 5284 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 5285 // Must be cloneable but not finalizer: 5286 JVM_ACC_IS_CLONEABLE_FAST, 5287 slow_region); 5288 } 5289 5290 if (!stopped()) { 5291 // It's an instance, and it passed the slow-path tests. 5292 PreserveJVMState pjvms(this); 5293 Node* obj_size = nullptr; 5294 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5295 // is reexecuted if deoptimization occurs and there could be problems when merging 5296 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5297 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5298 5299 copy_to_clone(obj, alloc_obj, obj_size, false); 5300 5301 // Present the results of the slow call. 5302 result_reg->init_req(_instance_path, control()); 5303 result_val->init_req(_instance_path, alloc_obj); 5304 result_i_o ->set_req(_instance_path, i_o()); 5305 result_mem ->set_req(_instance_path, reset_memory()); 5306 } 5307 5308 // Generate code for the slow case. We make a call to clone(). 5309 set_control(_gvn.transform(slow_region)); 5310 if (!stopped()) { 5311 PreserveJVMState pjvms(this); 5312 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); 5313 // We need to deoptimize on exception (see comment above) 5314 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5315 // this->control() comes from set_results_for_java_call 5316 result_reg->init_req(_slow_path, control()); 5317 result_val->init_req(_slow_path, slow_result); 5318 result_i_o ->set_req(_slow_path, i_o()); 5319 result_mem ->set_req(_slow_path, reset_memory()); 5320 } 5321 5322 // Return the combined state. 5323 set_control( _gvn.transform(result_reg)); 5324 set_i_o( _gvn.transform(result_i_o)); 5325 set_all_memory( _gvn.transform(result_mem)); 5326 } // original reexecute is set back here 5327 5328 set_result(_gvn.transform(result_val)); 5329 return true; 5330 } 5331 5332 // If we have a tightly coupled allocation, the arraycopy may take care 5333 // of the array initialization. If one of the guards we insert between 5334 // the allocation and the arraycopy causes a deoptimization, an 5335 // uninitialized array will escape the compiled method. To prevent that 5336 // we set the JVM state for uncommon traps between the allocation and 5337 // the arraycopy to the state before the allocation so, in case of 5338 // deoptimization, we'll reexecute the allocation and the 5339 // initialization. 5340 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5341 if (alloc != nullptr) { 5342 ciMethod* trap_method = alloc->jvms()->method(); 5343 int trap_bci = alloc->jvms()->bci(); 5344 5345 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5346 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5347 // Make sure there's no store between the allocation and the 5348 // arraycopy otherwise visible side effects could be rexecuted 5349 // in case of deoptimization and cause incorrect execution. 5350 bool no_interfering_store = true; 5351 Node* mem = alloc->in(TypeFunc::Memory); 5352 if (mem->is_MergeMem()) { 5353 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5354 Node* n = mms.memory(); 5355 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5356 assert(n->is_Store(), "what else?"); 5357 no_interfering_store = false; 5358 break; 5359 } 5360 } 5361 } else { 5362 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5363 Node* n = mms.memory(); 5364 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5365 assert(n->is_Store(), "what else?"); 5366 no_interfering_store = false; 5367 break; 5368 } 5369 } 5370 } 5371 5372 if (no_interfering_store) { 5373 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5374 5375 JVMState* saved_jvms = jvms(); 5376 saved_reexecute_sp = _reexecute_sp; 5377 5378 set_jvms(sfpt->jvms()); 5379 _reexecute_sp = jvms()->sp(); 5380 5381 return saved_jvms; 5382 } 5383 } 5384 } 5385 return nullptr; 5386 } 5387 5388 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5389 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5390 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5391 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5392 uint size = alloc->req(); 5393 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5394 old_jvms->set_map(sfpt); 5395 for (uint i = 0; i < size; i++) { 5396 sfpt->init_req(i, alloc->in(i)); 5397 } 5398 // re-push array length for deoptimization 5399 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5400 old_jvms->set_sp(old_jvms->sp()+1); 5401 old_jvms->set_monoff(old_jvms->monoff()+1); 5402 old_jvms->set_scloff(old_jvms->scloff()+1); 5403 old_jvms->set_endoff(old_jvms->endoff()+1); 5404 old_jvms->set_should_reexecute(true); 5405 5406 sfpt->set_i_o(map()->i_o()); 5407 sfpt->set_memory(map()->memory()); 5408 sfpt->set_control(map()->control()); 5409 return sfpt; 5410 } 5411 5412 // In case of a deoptimization, we restart execution at the 5413 // allocation, allocating a new array. We would leave an uninitialized 5414 // array in the heap that GCs wouldn't expect. Move the allocation 5415 // after the traps so we don't allocate the array if we 5416 // deoptimize. This is possible because tightly_coupled_allocation() 5417 // guarantees there's no observer of the allocated array at this point 5418 // and the control flow is simple enough. 5419 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5420 int saved_reexecute_sp, uint new_idx) { 5421 if (saved_jvms_before_guards != nullptr && !stopped()) { 5422 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5423 5424 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5425 // restore JVM state to the state at the arraycopy 5426 saved_jvms_before_guards->map()->set_control(map()->control()); 5427 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5428 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5429 // If we've improved the types of some nodes (null check) while 5430 // emitting the guards, propagate them to the current state 5431 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5432 set_jvms(saved_jvms_before_guards); 5433 _reexecute_sp = saved_reexecute_sp; 5434 5435 // Remove the allocation from above the guards 5436 CallProjections* callprojs = alloc->extract_projections(true); 5437 InitializeNode* init = alloc->initialization(); 5438 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5439 C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5440 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5441 5442 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5443 // the allocation (i.e. is only valid if the allocation succeeds): 5444 // 1) replace CastIINode with AllocateArrayNode's length here 5445 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5446 // 5447 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5448 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5449 Node* init_control = init->proj_out(TypeFunc::Control); 5450 Node* alloc_length = alloc->Ideal_length(); 5451 #ifdef ASSERT 5452 Node* prev_cast = nullptr; 5453 #endif 5454 for (uint i = 0; i < init_control->outcnt(); i++) { 5455 Node* init_out = init_control->raw_out(i); 5456 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5457 #ifdef ASSERT 5458 if (prev_cast == nullptr) { 5459 prev_cast = init_out; 5460 } else { 5461 if (prev_cast->cmp(*init_out) == false) { 5462 prev_cast->dump(); 5463 init_out->dump(); 5464 assert(false, "not equal CastIINode"); 5465 } 5466 } 5467 #endif 5468 C->gvn_replace_by(init_out, alloc_length); 5469 } 5470 } 5471 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5472 5473 // move the allocation here (after the guards) 5474 _gvn.hash_delete(alloc); 5475 alloc->set_req(TypeFunc::Control, control()); 5476 alloc->set_req(TypeFunc::I_O, i_o()); 5477 Node *mem = reset_memory(); 5478 set_all_memory(mem); 5479 alloc->set_req(TypeFunc::Memory, mem); 5480 set_control(init->proj_out_or_null(TypeFunc::Control)); 5481 set_i_o(callprojs->fallthrough_ioproj); 5482 5483 // Update memory as done in GraphKit::set_output_for_allocation() 5484 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5485 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5486 if (ary_type->isa_aryptr() && length_type != nullptr) { 5487 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5488 } 5489 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5490 int elemidx = C->get_alias_index(telemref); 5491 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5492 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5493 5494 Node* allocx = _gvn.transform(alloc); 5495 assert(allocx == alloc, "where has the allocation gone?"); 5496 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5497 5498 _gvn.hash_delete(dest); 5499 dest->set_req(0, control()); 5500 Node* destx = _gvn.transform(dest); 5501 assert(destx == dest, "where has the allocation result gone?"); 5502 5503 array_ideal_length(alloc, ary_type, true); 5504 } 5505 } 5506 5507 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5508 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5509 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5510 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5511 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5512 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5513 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5514 JVMState* saved_jvms_before_guards) { 5515 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5516 // There is at least one unrelated uncommon trap which needs to be replaced. 5517 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5518 5519 JVMState* saved_jvms = jvms(); 5520 const int saved_reexecute_sp = _reexecute_sp; 5521 set_jvms(sfpt->jvms()); 5522 _reexecute_sp = jvms()->sp(); 5523 5524 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5525 5526 // Restore state 5527 set_jvms(saved_jvms); 5528 _reexecute_sp = saved_reexecute_sp; 5529 } 5530 } 5531 5532 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5533 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5534 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5535 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5536 while (if_proj->is_IfProj()) { 5537 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5538 if (uncommon_trap != nullptr) { 5539 create_new_uncommon_trap(uncommon_trap); 5540 } 5541 assert(if_proj->in(0)->is_If(), "must be If"); 5542 if_proj = if_proj->in(0)->in(0); 5543 } 5544 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5545 "must have reached control projection of init node"); 5546 } 5547 5548 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5549 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5550 assert(trap_request != 0, "no valid UCT trap request"); 5551 PreserveJVMState pjvms(this); 5552 set_control(uncommon_trap_call->in(0)); 5553 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5554 Deoptimization::trap_request_action(trap_request)); 5555 assert(stopped(), "Should be stopped"); 5556 _gvn.hash_delete(uncommon_trap_call); 5557 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5558 } 5559 5560 //------------------------------inline_arraycopy----------------------- 5561 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5562 // Object dest, int destPos, 5563 // int length); 5564 bool LibraryCallKit::inline_arraycopy() { 5565 // Get the arguments. 5566 Node* src = argument(0); // type: oop 5567 Node* src_offset = argument(1); // type: int 5568 Node* dest = argument(2); // type: oop 5569 Node* dest_offset = argument(3); // type: int 5570 Node* length = argument(4); // type: int 5571 5572 uint new_idx = C->unique(); 5573 5574 // Check for allocation before we add nodes that would confuse 5575 // tightly_coupled_allocation() 5576 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5577 5578 int saved_reexecute_sp = -1; 5579 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5580 // See arraycopy_restore_alloc_state() comment 5581 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5582 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5583 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5584 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5585 5586 // The following tests must be performed 5587 // (1) src and dest are arrays. 5588 // (2) src and dest arrays must have elements of the same BasicType 5589 // (3) src and dest must not be null. 5590 // (4) src_offset must not be negative. 5591 // (5) dest_offset must not be negative. 5592 // (6) length must not be negative. 5593 // (7) src_offset + length must not exceed length of src. 5594 // (8) dest_offset + length must not exceed length of dest. 5595 // (9) each element of an oop array must be assignable 5596 5597 // (3) src and dest must not be null. 5598 // always do this here because we need the JVM state for uncommon traps 5599 Node* null_ctl = top(); 5600 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5601 assert(null_ctl->is_top(), "no null control here"); 5602 dest = null_check(dest, T_ARRAY); 5603 5604 if (!can_emit_guards) { 5605 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5606 // guards but the arraycopy node could still take advantage of a 5607 // tightly allocated allocation. tightly_coupled_allocation() is 5608 // called again to make sure it takes the null check above into 5609 // account: the null check is mandatory and if it caused an 5610 // uncommon trap to be emitted then the allocation can't be 5611 // considered tightly coupled in this context. 5612 alloc = tightly_coupled_allocation(dest); 5613 } 5614 5615 bool validated = false; 5616 5617 const Type* src_type = _gvn.type(src); 5618 const Type* dest_type = _gvn.type(dest); 5619 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5620 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5621 5622 // Do we have the type of src? 5623 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5624 // Do we have the type of dest? 5625 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5626 // Is the type for src from speculation? 5627 bool src_spec = false; 5628 // Is the type for dest from speculation? 5629 bool dest_spec = false; 5630 5631 if ((!has_src || !has_dest) && can_emit_guards) { 5632 // We don't have sufficient type information, let's see if 5633 // speculative types can help. We need to have types for both src 5634 // and dest so that it pays off. 5635 5636 // Do we already have or could we have type information for src 5637 bool could_have_src = has_src; 5638 // Do we already have or could we have type information for dest 5639 bool could_have_dest = has_dest; 5640 5641 ciKlass* src_k = nullptr; 5642 if (!has_src) { 5643 src_k = src_type->speculative_type_not_null(); 5644 if (src_k != nullptr && src_k->is_array_klass()) { 5645 could_have_src = true; 5646 } 5647 } 5648 5649 ciKlass* dest_k = nullptr; 5650 if (!has_dest) { 5651 dest_k = dest_type->speculative_type_not_null(); 5652 if (dest_k != nullptr && dest_k->is_array_klass()) { 5653 could_have_dest = true; 5654 } 5655 } 5656 5657 if (could_have_src && could_have_dest) { 5658 // This is going to pay off so emit the required guards 5659 if (!has_src) { 5660 src = maybe_cast_profiled_obj(src, src_k, true); 5661 src_type = _gvn.type(src); 5662 top_src = src_type->isa_aryptr(); 5663 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5664 src_spec = true; 5665 } 5666 if (!has_dest) { 5667 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5668 dest_type = _gvn.type(dest); 5669 top_dest = dest_type->isa_aryptr(); 5670 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5671 dest_spec = true; 5672 } 5673 } 5674 } 5675 5676 if (has_src && has_dest && can_emit_guards) { 5677 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5678 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5679 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5680 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5681 5682 if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) { 5683 // If both arrays are object arrays then having the exact types 5684 // for both will remove the need for a subtype check at runtime 5685 // before the call and may make it possible to pick a faster copy 5686 // routine (without a subtype check on every element) 5687 // Do we have the exact type of src? 5688 bool could_have_src = src_spec; 5689 // Do we have the exact type of dest? 5690 bool could_have_dest = dest_spec; 5691 ciKlass* src_k = nullptr; 5692 ciKlass* dest_k = nullptr; 5693 if (!src_spec) { 5694 src_k = src_type->speculative_type_not_null(); 5695 if (src_k != nullptr && src_k->is_array_klass()) { 5696 could_have_src = true; 5697 } 5698 } 5699 if (!dest_spec) { 5700 dest_k = dest_type->speculative_type_not_null(); 5701 if (dest_k != nullptr && dest_k->is_array_klass()) { 5702 could_have_dest = true; 5703 } 5704 } 5705 if (could_have_src && could_have_dest) { 5706 // If we can have both exact types, emit the missing guards 5707 if (could_have_src && !src_spec) { 5708 src = maybe_cast_profiled_obj(src, src_k, true); 5709 src_type = _gvn.type(src); 5710 top_src = src_type->isa_aryptr(); 5711 } 5712 if (could_have_dest && !dest_spec) { 5713 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5714 dest_type = _gvn.type(dest); 5715 top_dest = dest_type->isa_aryptr(); 5716 } 5717 } 5718 } 5719 } 5720 5721 ciMethod* trap_method = method(); 5722 int trap_bci = bci(); 5723 if (saved_jvms_before_guards != nullptr) { 5724 trap_method = alloc->jvms()->method(); 5725 trap_bci = alloc->jvms()->bci(); 5726 } 5727 5728 bool negative_length_guard_generated = false; 5729 5730 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5731 can_emit_guards && !src->is_top() && !dest->is_top()) { 5732 // validate arguments: enables transformation the ArrayCopyNode 5733 validated = true; 5734 5735 RegionNode* slow_region = new RegionNode(1); 5736 record_for_igvn(slow_region); 5737 5738 // (1) src and dest are arrays. 5739 generate_non_array_guard(load_object_klass(src), slow_region); 5740 generate_non_array_guard(load_object_klass(dest), slow_region); 5741 5742 // (2) src and dest arrays must have elements of the same BasicType 5743 // done at macro expansion or at Ideal transformation time 5744 5745 // (4) src_offset must not be negative. 5746 generate_negative_guard(src_offset, slow_region); 5747 5748 // (5) dest_offset must not be negative. 5749 generate_negative_guard(dest_offset, slow_region); 5750 5751 // (7) src_offset + length must not exceed length of src. 5752 generate_limit_guard(src_offset, length, 5753 load_array_length(src), 5754 slow_region); 5755 5756 // (8) dest_offset + length must not exceed length of dest. 5757 generate_limit_guard(dest_offset, length, 5758 load_array_length(dest), 5759 slow_region); 5760 5761 // (6) length must not be negative. 5762 // This is also checked in generate_arraycopy() during macro expansion, but 5763 // we also have to check it here for the case where the ArrayCopyNode will 5764 // be eliminated by Escape Analysis. 5765 if (EliminateAllocations) { 5766 generate_negative_guard(length, slow_region); 5767 negative_length_guard_generated = true; 5768 } 5769 5770 // (9) each element of an oop array must be assignable 5771 Node* dest_klass = load_object_klass(dest); 5772 if (src != dest) { 5773 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5774 slow_region->add_req(not_subtype_ctrl); 5775 } 5776 5777 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5778 const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5779 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5780 src_type = _gvn.type(src); 5781 top_src = src_type->isa_aryptr(); 5782 5783 // Handle flat inline type arrays (null-free arrays are handled by the subtype check above) 5784 if (!stopped() && UseFlatArray) { 5785 // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here. 5786 assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat"); 5787 if (top_src != nullptr && top_src->is_flat()) { 5788 // Src is flat, check that dest is flat as well 5789 if (top_dest != nullptr && !top_dest->is_flat()) { 5790 generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region); 5791 // Since dest is flat and src <: dest, dest must have the same type as src. 5792 top_dest = top_src->cast_to_exactness(false); 5793 assert(top_dest->is_flat(), "dest must be flat"); 5794 dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest)); 5795 } 5796 } else if (top_src == nullptr || !top_src->is_not_flat()) { 5797 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 5798 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 5799 assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat"); 5800 generate_fair_guard(flat_array_test(src), slow_region); 5801 if (top_src != nullptr) { 5802 top_src = top_src->cast_to_not_flat(); 5803 src = _gvn.transform(new CheckCastPPNode(control(), src, top_src)); 5804 } 5805 } 5806 } 5807 5808 { 5809 PreserveJVMState pjvms(this); 5810 set_control(_gvn.transform(slow_region)); 5811 uncommon_trap(Deoptimization::Reason_intrinsic, 5812 Deoptimization::Action_make_not_entrant); 5813 assert(stopped(), "Should be stopped"); 5814 } 5815 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5816 } 5817 5818 if (stopped()) { 5819 return true; 5820 } 5821 5822 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 5823 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5824 // so the compiler has a chance to eliminate them: during macro expansion, 5825 // we have to set their control (CastPP nodes are eliminated). 5826 load_object_klass(src), load_object_klass(dest), 5827 load_array_length(src), load_array_length(dest)); 5828 5829 ac->set_arraycopy(validated); 5830 5831 Node* n = _gvn.transform(ac); 5832 if (n == ac) { 5833 ac->connect_outputs(this); 5834 } else { 5835 assert(validated, "shouldn't transform if all arguments not validated"); 5836 set_all_memory(n); 5837 } 5838 clear_upper_avx(); 5839 5840 5841 return true; 5842 } 5843 5844 5845 // Helper function which determines if an arraycopy immediately follows 5846 // an allocation, with no intervening tests or other escapes for the object. 5847 AllocateArrayNode* 5848 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 5849 if (stopped()) return nullptr; // no fast path 5850 if (!C->do_aliasing()) return nullptr; // no MergeMems around 5851 5852 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 5853 if (alloc == nullptr) return nullptr; 5854 5855 Node* rawmem = memory(Compile::AliasIdxRaw); 5856 // Is the allocation's memory state untouched? 5857 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 5858 // Bail out if there have been raw-memory effects since the allocation. 5859 // (Example: There might have been a call or safepoint.) 5860 return nullptr; 5861 } 5862 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 5863 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 5864 return nullptr; 5865 } 5866 5867 // There must be no unexpected observers of this allocation. 5868 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 5869 Node* obs = ptr->fast_out(i); 5870 if (obs != this->map()) { 5871 return nullptr; 5872 } 5873 } 5874 5875 // This arraycopy must unconditionally follow the allocation of the ptr. 5876 Node* alloc_ctl = ptr->in(0); 5877 Node* ctl = control(); 5878 while (ctl != alloc_ctl) { 5879 // There may be guards which feed into the slow_region. 5880 // Any other control flow means that we might not get a chance 5881 // to finish initializing the allocated object. 5882 // Various low-level checks bottom out in uncommon traps. These 5883 // are considered safe since we've already checked above that 5884 // there is no unexpected observer of this allocation. 5885 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 5886 assert(ctl->in(0)->is_If(), "must be If"); 5887 ctl = ctl->in(0)->in(0); 5888 } else { 5889 return nullptr; 5890 } 5891 } 5892 5893 // If we get this far, we have an allocation which immediately 5894 // precedes the arraycopy, and we can take over zeroing the new object. 5895 // The arraycopy will finish the initialization, and provide 5896 // a new control state to which we will anchor the destination pointer. 5897 5898 return alloc; 5899 } 5900 5901 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 5902 if (node->is_IfProj()) { 5903 Node* other_proj = node->as_IfProj()->other_if_proj(); 5904 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 5905 Node* obs = other_proj->fast_out(j); 5906 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 5907 (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 5908 return obs->as_CallStaticJava(); 5909 } 5910 } 5911 } 5912 return nullptr; 5913 } 5914 5915 //-------------inline_encodeISOArray----------------------------------- 5916 // encode char[] to byte[] in ISO_8859_1 or ASCII 5917 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 5918 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 5919 // no receiver since it is static method 5920 Node *src = argument(0); 5921 Node *src_offset = argument(1); 5922 Node *dst = argument(2); 5923 Node *dst_offset = argument(3); 5924 Node *length = argument(4); 5925 5926 src = must_be_not_null(src, true); 5927 dst = must_be_not_null(dst, true); 5928 5929 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 5930 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 5931 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 5932 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 5933 // failed array check 5934 return false; 5935 } 5936 5937 // Figure out the size and type of the elements we will be copying. 5938 BasicType src_elem = src_type->elem()->array_element_basic_type(); 5939 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 5940 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 5941 return false; 5942 } 5943 5944 Node* src_start = array_element_address(src, src_offset, T_CHAR); 5945 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 5946 // 'src_start' points to src array + scaled offset 5947 // 'dst_start' points to dst array + scaled offset 5948 5949 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 5950 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 5951 enc = _gvn.transform(enc); 5952 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 5953 set_memory(res_mem, mtype); 5954 set_result(enc); 5955 clear_upper_avx(); 5956 5957 return true; 5958 } 5959 5960 //-------------inline_multiplyToLen----------------------------------- 5961 bool LibraryCallKit::inline_multiplyToLen() { 5962 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 5963 5964 address stubAddr = StubRoutines::multiplyToLen(); 5965 if (stubAddr == nullptr) { 5966 return false; // Intrinsic's stub is not implemented on this platform 5967 } 5968 const char* stubName = "multiplyToLen"; 5969 5970 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 5971 5972 // no receiver because it is a static method 5973 Node* x = argument(0); 5974 Node* xlen = argument(1); 5975 Node* y = argument(2); 5976 Node* ylen = argument(3); 5977 Node* z = argument(4); 5978 5979 x = must_be_not_null(x, true); 5980 y = must_be_not_null(y, true); 5981 5982 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5983 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 5984 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5985 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 5986 // failed array check 5987 return false; 5988 } 5989 5990 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5991 BasicType y_elem = y_type->elem()->array_element_basic_type(); 5992 if (x_elem != T_INT || y_elem != T_INT) { 5993 return false; 5994 } 5995 5996 // Set the original stack and the reexecute bit for the interpreter to reexecute 5997 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5998 // on the return from z array allocation in runtime. 5999 { PreserveReexecuteState preexecs(this); 6000 jvms()->set_should_reexecute(true); 6001 6002 Node* x_start = array_element_address(x, intcon(0), x_elem); 6003 Node* y_start = array_element_address(y, intcon(0), y_elem); 6004 // 'x_start' points to x array + scaled xlen 6005 // 'y_start' points to y array + scaled ylen 6006 6007 // Allocate the result array 6008 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 6009 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 6010 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 6011 6012 IdealKit ideal(this); 6013 6014 #define __ ideal. 6015 Node* one = __ ConI(1); 6016 Node* zero = __ ConI(0); 6017 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 6018 __ set(need_alloc, zero); 6019 __ set(z_alloc, z); 6020 __ if_then(z, BoolTest::eq, null()); { 6021 __ increment (need_alloc, one); 6022 } __ else_(); { 6023 // Update graphKit memory and control from IdealKit. 6024 sync_kit(ideal); 6025 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 6026 cast->init_req(0, control()); 6027 _gvn.set_type(cast, cast->bottom_type()); 6028 C->record_for_igvn(cast); 6029 6030 Node* zlen_arg = load_array_length(cast); 6031 // Update IdealKit memory and control from graphKit. 6032 __ sync_kit(this); 6033 __ if_then(zlen_arg, BoolTest::lt, zlen); { 6034 __ increment (need_alloc, one); 6035 } __ end_if(); 6036 } __ end_if(); 6037 6038 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 6039 // Update graphKit memory and control from IdealKit. 6040 sync_kit(ideal); 6041 Node * narr = new_array(klass_node, zlen, 1); 6042 // Update IdealKit memory and control from graphKit. 6043 __ sync_kit(this); 6044 __ set(z_alloc, narr); 6045 } __ end_if(); 6046 6047 sync_kit(ideal); 6048 z = __ value(z_alloc); 6049 // Can't use TypeAryPtr::INTS which uses Bottom offset. 6050 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 6051 // Final sync IdealKit and GraphKit. 6052 final_sync(ideal); 6053 #undef __ 6054 6055 Node* z_start = array_element_address(z, intcon(0), T_INT); 6056 6057 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6058 OptoRuntime::multiplyToLen_Type(), 6059 stubAddr, stubName, TypePtr::BOTTOM, 6060 x_start, xlen, y_start, ylen, z_start, zlen); 6061 } // original reexecute is set back here 6062 6063 C->set_has_split_ifs(true); // Has chance for split-if optimization 6064 set_result(z); 6065 return true; 6066 } 6067 6068 //-------------inline_squareToLen------------------------------------ 6069 bool LibraryCallKit::inline_squareToLen() { 6070 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6071 6072 address stubAddr = StubRoutines::squareToLen(); 6073 if (stubAddr == nullptr) { 6074 return false; // Intrinsic's stub is not implemented on this platform 6075 } 6076 const char* stubName = "squareToLen"; 6077 6078 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6079 6080 Node* x = argument(0); 6081 Node* len = argument(1); 6082 Node* z = argument(2); 6083 Node* zlen = argument(3); 6084 6085 x = must_be_not_null(x, true); 6086 z = must_be_not_null(z, true); 6087 6088 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6089 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6090 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6091 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6092 // failed array check 6093 return false; 6094 } 6095 6096 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6097 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6098 if (x_elem != T_INT || z_elem != T_INT) { 6099 return false; 6100 } 6101 6102 6103 Node* x_start = array_element_address(x, intcon(0), x_elem); 6104 Node* z_start = array_element_address(z, intcon(0), z_elem); 6105 6106 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6107 OptoRuntime::squareToLen_Type(), 6108 stubAddr, stubName, TypePtr::BOTTOM, 6109 x_start, len, z_start, zlen); 6110 6111 set_result(z); 6112 return true; 6113 } 6114 6115 //-------------inline_mulAdd------------------------------------------ 6116 bool LibraryCallKit::inline_mulAdd() { 6117 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6118 6119 address stubAddr = StubRoutines::mulAdd(); 6120 if (stubAddr == nullptr) { 6121 return false; // Intrinsic's stub is not implemented on this platform 6122 } 6123 const char* stubName = "mulAdd"; 6124 6125 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6126 6127 Node* out = argument(0); 6128 Node* in = argument(1); 6129 Node* offset = argument(2); 6130 Node* len = argument(3); 6131 Node* k = argument(4); 6132 6133 in = must_be_not_null(in, true); 6134 out = must_be_not_null(out, true); 6135 6136 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6137 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6138 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6139 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6140 // failed array check 6141 return false; 6142 } 6143 6144 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6145 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6146 if (out_elem != T_INT || in_elem != T_INT) { 6147 return false; 6148 } 6149 6150 Node* outlen = load_array_length(out); 6151 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6152 Node* out_start = array_element_address(out, intcon(0), out_elem); 6153 Node* in_start = array_element_address(in, intcon(0), in_elem); 6154 6155 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6156 OptoRuntime::mulAdd_Type(), 6157 stubAddr, stubName, TypePtr::BOTTOM, 6158 out_start,in_start, new_offset, len, k); 6159 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6160 set_result(result); 6161 return true; 6162 } 6163 6164 //-------------inline_montgomeryMultiply----------------------------------- 6165 bool LibraryCallKit::inline_montgomeryMultiply() { 6166 address stubAddr = StubRoutines::montgomeryMultiply(); 6167 if (stubAddr == nullptr) { 6168 return false; // Intrinsic's stub is not implemented on this platform 6169 } 6170 6171 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6172 const char* stubName = "montgomery_multiply"; 6173 6174 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6175 6176 Node* a = argument(0); 6177 Node* b = argument(1); 6178 Node* n = argument(2); 6179 Node* len = argument(3); 6180 Node* inv = argument(4); 6181 Node* m = argument(6); 6182 6183 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6184 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6185 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6186 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6187 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6188 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6189 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6190 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6191 // failed array check 6192 return false; 6193 } 6194 6195 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6196 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6197 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6198 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6199 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6200 return false; 6201 } 6202 6203 // Make the call 6204 { 6205 Node* a_start = array_element_address(a, intcon(0), a_elem); 6206 Node* b_start = array_element_address(b, intcon(0), b_elem); 6207 Node* n_start = array_element_address(n, intcon(0), n_elem); 6208 Node* m_start = array_element_address(m, intcon(0), m_elem); 6209 6210 Node* call = make_runtime_call(RC_LEAF, 6211 OptoRuntime::montgomeryMultiply_Type(), 6212 stubAddr, stubName, TypePtr::BOTTOM, 6213 a_start, b_start, n_start, len, inv, top(), 6214 m_start); 6215 set_result(m); 6216 } 6217 6218 return true; 6219 } 6220 6221 bool LibraryCallKit::inline_montgomerySquare() { 6222 address stubAddr = StubRoutines::montgomerySquare(); 6223 if (stubAddr == nullptr) { 6224 return false; // Intrinsic's stub is not implemented on this platform 6225 } 6226 6227 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6228 const char* stubName = "montgomery_square"; 6229 6230 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6231 6232 Node* a = argument(0); 6233 Node* n = argument(1); 6234 Node* len = argument(2); 6235 Node* inv = argument(3); 6236 Node* m = argument(5); 6237 6238 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6239 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6240 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6241 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6242 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6243 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6244 // failed array check 6245 return false; 6246 } 6247 6248 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6249 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6250 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6251 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6252 return false; 6253 } 6254 6255 // Make the call 6256 { 6257 Node* a_start = array_element_address(a, intcon(0), a_elem); 6258 Node* n_start = array_element_address(n, intcon(0), n_elem); 6259 Node* m_start = array_element_address(m, intcon(0), m_elem); 6260 6261 Node* call = make_runtime_call(RC_LEAF, 6262 OptoRuntime::montgomerySquare_Type(), 6263 stubAddr, stubName, TypePtr::BOTTOM, 6264 a_start, n_start, len, inv, top(), 6265 m_start); 6266 set_result(m); 6267 } 6268 6269 return true; 6270 } 6271 6272 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6273 address stubAddr = nullptr; 6274 const char* stubName = nullptr; 6275 6276 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6277 if (stubAddr == nullptr) { 6278 return false; // Intrinsic's stub is not implemented on this platform 6279 } 6280 6281 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6282 6283 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6284 6285 Node* newArr = argument(0); 6286 Node* oldArr = argument(1); 6287 Node* newIdx = argument(2); 6288 Node* shiftCount = argument(3); 6289 Node* numIter = argument(4); 6290 6291 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6292 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6293 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6294 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6295 return false; 6296 } 6297 6298 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6299 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6300 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6301 return false; 6302 } 6303 6304 // Make the call 6305 { 6306 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6307 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6308 6309 Node* call = make_runtime_call(RC_LEAF, 6310 OptoRuntime::bigIntegerShift_Type(), 6311 stubAddr, 6312 stubName, 6313 TypePtr::BOTTOM, 6314 newArr_start, 6315 oldArr_start, 6316 newIdx, 6317 shiftCount, 6318 numIter); 6319 } 6320 6321 return true; 6322 } 6323 6324 //-------------inline_vectorizedMismatch------------------------------ 6325 bool LibraryCallKit::inline_vectorizedMismatch() { 6326 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6327 6328 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6329 Node* obja = argument(0); // Object 6330 Node* aoffset = argument(1); // long 6331 Node* objb = argument(3); // Object 6332 Node* boffset = argument(4); // long 6333 Node* length = argument(6); // int 6334 Node* scale = argument(7); // int 6335 6336 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6337 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6338 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6339 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6340 scale == top()) { 6341 return false; // failed input validation 6342 } 6343 6344 Node* obja_adr = make_unsafe_address(obja, aoffset); 6345 Node* objb_adr = make_unsafe_address(objb, boffset); 6346 6347 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6348 // 6349 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6350 // if (length <= inline_limit) { 6351 // inline_path: 6352 // vmask = VectorMaskGen length 6353 // vload1 = LoadVectorMasked obja, vmask 6354 // vload2 = LoadVectorMasked objb, vmask 6355 // result1 = VectorCmpMasked vload1, vload2, vmask 6356 // } else { 6357 // call_stub_path: 6358 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6359 // } 6360 // exit_block: 6361 // return Phi(result1, result2); 6362 // 6363 enum { inline_path = 1, // input is small enough to process it all at once 6364 stub_path = 2, // input is too large; call into the VM 6365 PATH_LIMIT = 3 6366 }; 6367 6368 Node* exit_block = new RegionNode(PATH_LIMIT); 6369 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6370 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6371 6372 Node* call_stub_path = control(); 6373 6374 BasicType elem_bt = T_ILLEGAL; 6375 6376 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6377 if (scale_t->is_con()) { 6378 switch (scale_t->get_con()) { 6379 case 0: elem_bt = T_BYTE; break; 6380 case 1: elem_bt = T_SHORT; break; 6381 case 2: elem_bt = T_INT; break; 6382 case 3: elem_bt = T_LONG; break; 6383 6384 default: elem_bt = T_ILLEGAL; break; // not supported 6385 } 6386 } 6387 6388 int inline_limit = 0; 6389 bool do_partial_inline = false; 6390 6391 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6392 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6393 do_partial_inline = inline_limit >= 16; 6394 } 6395 6396 if (do_partial_inline) { 6397 assert(elem_bt != T_ILLEGAL, "sanity"); 6398 6399 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6400 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6401 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6402 6403 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6404 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6405 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6406 6407 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6408 6409 if (!stopped()) { 6410 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6411 6412 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6413 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6414 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6415 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6416 6417 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6418 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6419 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6420 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6421 6422 exit_block->init_req(inline_path, control()); 6423 memory_phi->init_req(inline_path, map()->memory()); 6424 result_phi->init_req(inline_path, result); 6425 6426 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6427 clear_upper_avx(); 6428 } 6429 } 6430 } 6431 6432 if (call_stub_path != nullptr) { 6433 set_control(call_stub_path); 6434 6435 Node* call = make_runtime_call(RC_LEAF, 6436 OptoRuntime::vectorizedMismatch_Type(), 6437 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6438 obja_adr, objb_adr, length, scale); 6439 6440 exit_block->init_req(stub_path, control()); 6441 memory_phi->init_req(stub_path, map()->memory()); 6442 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6443 } 6444 6445 exit_block = _gvn.transform(exit_block); 6446 memory_phi = _gvn.transform(memory_phi); 6447 result_phi = _gvn.transform(result_phi); 6448 6449 set_control(exit_block); 6450 set_all_memory(memory_phi); 6451 set_result(result_phi); 6452 6453 return true; 6454 } 6455 6456 //------------------------------inline_vectorizedHashcode---------------------------- 6457 bool LibraryCallKit::inline_vectorizedHashCode() { 6458 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6459 6460 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6461 Node* array = argument(0); 6462 Node* offset = argument(1); 6463 Node* length = argument(2); 6464 Node* initialValue = argument(3); 6465 Node* basic_type = argument(4); 6466 6467 if (basic_type == top()) { 6468 return false; // failed input validation 6469 } 6470 6471 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6472 if (!basic_type_t->is_con()) { 6473 return false; // Only intrinsify if mode argument is constant 6474 } 6475 6476 array = must_be_not_null(array, true); 6477 6478 BasicType bt = (BasicType)basic_type_t->get_con(); 6479 6480 // Resolve address of first element 6481 Node* array_start = array_element_address(array, offset, bt); 6482 6483 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6484 array_start, length, initialValue, basic_type))); 6485 clear_upper_avx(); 6486 6487 return true; 6488 } 6489 6490 /** 6491 * Calculate CRC32 for byte. 6492 * int java.util.zip.CRC32.update(int crc, int b) 6493 */ 6494 bool LibraryCallKit::inline_updateCRC32() { 6495 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6496 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6497 // no receiver since it is static method 6498 Node* crc = argument(0); // type: int 6499 Node* b = argument(1); // type: int 6500 6501 /* 6502 * int c = ~ crc; 6503 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6504 * b = b ^ (c >>> 8); 6505 * crc = ~b; 6506 */ 6507 6508 Node* M1 = intcon(-1); 6509 crc = _gvn.transform(new XorINode(crc, M1)); 6510 Node* result = _gvn.transform(new XorINode(crc, b)); 6511 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6512 6513 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6514 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6515 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6516 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6517 6518 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6519 result = _gvn.transform(new XorINode(crc, result)); 6520 result = _gvn.transform(new XorINode(result, M1)); 6521 set_result(result); 6522 return true; 6523 } 6524 6525 /** 6526 * Calculate CRC32 for byte[] array. 6527 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6528 */ 6529 bool LibraryCallKit::inline_updateBytesCRC32() { 6530 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6531 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6532 // no receiver since it is static method 6533 Node* crc = argument(0); // type: int 6534 Node* src = argument(1); // type: oop 6535 Node* offset = argument(2); // type: int 6536 Node* length = argument(3); // type: int 6537 6538 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6539 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6540 // failed array check 6541 return false; 6542 } 6543 6544 // Figure out the size and type of the elements we will be copying. 6545 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6546 if (src_elem != T_BYTE) { 6547 return false; 6548 } 6549 6550 // 'src_start' points to src array + scaled offset 6551 src = must_be_not_null(src, true); 6552 Node* src_start = array_element_address(src, offset, src_elem); 6553 6554 // We assume that range check is done by caller. 6555 // TODO: generate range check (offset+length < src.length) in debug VM. 6556 6557 // Call the stub. 6558 address stubAddr = StubRoutines::updateBytesCRC32(); 6559 const char *stubName = "updateBytesCRC32"; 6560 6561 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6562 stubAddr, stubName, TypePtr::BOTTOM, 6563 crc, src_start, length); 6564 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6565 set_result(result); 6566 return true; 6567 } 6568 6569 /** 6570 * Calculate CRC32 for ByteBuffer. 6571 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6572 */ 6573 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6574 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6575 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6576 // no receiver since it is static method 6577 Node* crc = argument(0); // type: int 6578 Node* src = argument(1); // type: long 6579 Node* offset = argument(3); // type: int 6580 Node* length = argument(4); // type: int 6581 6582 src = ConvL2X(src); // adjust Java long to machine word 6583 Node* base = _gvn.transform(new CastX2PNode(src)); 6584 offset = ConvI2X(offset); 6585 6586 // 'src_start' points to src array + scaled offset 6587 Node* src_start = basic_plus_adr(top(), base, offset); 6588 6589 // Call the stub. 6590 address stubAddr = StubRoutines::updateBytesCRC32(); 6591 const char *stubName = "updateBytesCRC32"; 6592 6593 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6594 stubAddr, stubName, TypePtr::BOTTOM, 6595 crc, src_start, length); 6596 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6597 set_result(result); 6598 return true; 6599 } 6600 6601 //------------------------------get_table_from_crc32c_class----------------------- 6602 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6603 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6604 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6605 6606 return table; 6607 } 6608 6609 //------------------------------inline_updateBytesCRC32C----------------------- 6610 // 6611 // Calculate CRC32C for byte[] array. 6612 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6613 // 6614 bool LibraryCallKit::inline_updateBytesCRC32C() { 6615 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6616 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6617 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6618 // no receiver since it is a static method 6619 Node* crc = argument(0); // type: int 6620 Node* src = argument(1); // type: oop 6621 Node* offset = argument(2); // type: int 6622 Node* end = argument(3); // type: int 6623 6624 Node* length = _gvn.transform(new SubINode(end, offset)); 6625 6626 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6627 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6628 // failed array check 6629 return false; 6630 } 6631 6632 // Figure out the size and type of the elements we will be copying. 6633 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6634 if (src_elem != T_BYTE) { 6635 return false; 6636 } 6637 6638 // 'src_start' points to src array + scaled offset 6639 src = must_be_not_null(src, true); 6640 Node* src_start = array_element_address(src, offset, src_elem); 6641 6642 // static final int[] byteTable in class CRC32C 6643 Node* table = get_table_from_crc32c_class(callee()->holder()); 6644 table = must_be_not_null(table, true); 6645 Node* table_start = array_element_address(table, intcon(0), T_INT); 6646 6647 // We assume that range check is done by caller. 6648 // TODO: generate range check (offset+length < src.length) in debug VM. 6649 6650 // Call the stub. 6651 address stubAddr = StubRoutines::updateBytesCRC32C(); 6652 const char *stubName = "updateBytesCRC32C"; 6653 6654 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6655 stubAddr, stubName, TypePtr::BOTTOM, 6656 crc, src_start, length, table_start); 6657 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6658 set_result(result); 6659 return true; 6660 } 6661 6662 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6663 // 6664 // Calculate CRC32C for DirectByteBuffer. 6665 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6666 // 6667 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6668 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6669 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6670 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6671 // no receiver since it is a static method 6672 Node* crc = argument(0); // type: int 6673 Node* src = argument(1); // type: long 6674 Node* offset = argument(3); // type: int 6675 Node* end = argument(4); // type: int 6676 6677 Node* length = _gvn.transform(new SubINode(end, offset)); 6678 6679 src = ConvL2X(src); // adjust Java long to machine word 6680 Node* base = _gvn.transform(new CastX2PNode(src)); 6681 offset = ConvI2X(offset); 6682 6683 // 'src_start' points to src array + scaled offset 6684 Node* src_start = basic_plus_adr(top(), base, offset); 6685 6686 // static final int[] byteTable in class CRC32C 6687 Node* table = get_table_from_crc32c_class(callee()->holder()); 6688 table = must_be_not_null(table, true); 6689 Node* table_start = array_element_address(table, intcon(0), T_INT); 6690 6691 // Call the stub. 6692 address stubAddr = StubRoutines::updateBytesCRC32C(); 6693 const char *stubName = "updateBytesCRC32C"; 6694 6695 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6696 stubAddr, stubName, TypePtr::BOTTOM, 6697 crc, src_start, length, table_start); 6698 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6699 set_result(result); 6700 return true; 6701 } 6702 6703 //------------------------------inline_updateBytesAdler32---------------------- 6704 // 6705 // Calculate Adler32 checksum for byte[] array. 6706 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6707 // 6708 bool LibraryCallKit::inline_updateBytesAdler32() { 6709 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6710 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6711 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6712 // no receiver since it is static method 6713 Node* crc = argument(0); // type: int 6714 Node* src = argument(1); // type: oop 6715 Node* offset = argument(2); // type: int 6716 Node* length = argument(3); // type: int 6717 6718 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6719 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6720 // failed array check 6721 return false; 6722 } 6723 6724 // Figure out the size and type of the elements we will be copying. 6725 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6726 if (src_elem != T_BYTE) { 6727 return false; 6728 } 6729 6730 // 'src_start' points to src array + scaled offset 6731 Node* src_start = array_element_address(src, offset, src_elem); 6732 6733 // We assume that range check is done by caller. 6734 // TODO: generate range check (offset+length < src.length) in debug VM. 6735 6736 // Call the stub. 6737 address stubAddr = StubRoutines::updateBytesAdler32(); 6738 const char *stubName = "updateBytesAdler32"; 6739 6740 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6741 stubAddr, stubName, TypePtr::BOTTOM, 6742 crc, src_start, length); 6743 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6744 set_result(result); 6745 return true; 6746 } 6747 6748 //------------------------------inline_updateByteBufferAdler32--------------- 6749 // 6750 // Calculate Adler32 checksum for DirectByteBuffer. 6751 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6752 // 6753 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6754 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6755 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6756 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6757 // no receiver since it is static method 6758 Node* crc = argument(0); // type: int 6759 Node* src = argument(1); // type: long 6760 Node* offset = argument(3); // type: int 6761 Node* length = argument(4); // type: int 6762 6763 src = ConvL2X(src); // adjust Java long to machine word 6764 Node* base = _gvn.transform(new CastX2PNode(src)); 6765 offset = ConvI2X(offset); 6766 6767 // 'src_start' points to src array + scaled offset 6768 Node* src_start = basic_plus_adr(top(), base, offset); 6769 6770 // Call the stub. 6771 address stubAddr = StubRoutines::updateBytesAdler32(); 6772 const char *stubName = "updateBytesAdler32"; 6773 6774 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6775 stubAddr, stubName, TypePtr::BOTTOM, 6776 crc, src_start, length); 6777 6778 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6779 set_result(result); 6780 return true; 6781 } 6782 6783 //----------------------------inline_reference_get---------------------------- 6784 // public T java.lang.ref.Reference.get(); 6785 bool LibraryCallKit::inline_reference_get() { 6786 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6787 6788 // Get the argument: 6789 Node* reference_obj = null_check_receiver(); 6790 if (stopped()) return true; 6791 6792 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6793 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6794 decorators, /*is_static*/ false, nullptr); 6795 if (result == nullptr) return false; 6796 6797 // Add memory barrier to prevent commoning reads from this field 6798 // across safepoint since GC can change its value. 6799 insert_mem_bar(Op_MemBarCPUOrder); 6800 6801 set_result(result); 6802 return true; 6803 } 6804 6805 //----------------------------inline_reference_refersTo0---------------------------- 6806 // bool java.lang.ref.Reference.refersTo0(); 6807 // bool java.lang.ref.PhantomReference.refersTo0(); 6808 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6809 // Get arguments: 6810 Node* reference_obj = null_check_receiver(); 6811 Node* other_obj = argument(1); 6812 if (stopped()) return true; 6813 6814 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6815 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6816 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6817 decorators, /*is_static*/ false, nullptr); 6818 if (referent == nullptr) return false; 6819 6820 // Add memory barrier to prevent commoning reads from this field 6821 // across safepoint since GC can change its value. 6822 insert_mem_bar(Op_MemBarCPUOrder); 6823 6824 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6825 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6826 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6827 6828 RegionNode* region = new RegionNode(3); 6829 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6830 6831 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6832 region->init_req(1, if_true); 6833 phi->init_req(1, intcon(1)); 6834 6835 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6836 region->init_req(2, if_false); 6837 phi->init_req(2, intcon(0)); 6838 6839 set_control(_gvn.transform(region)); 6840 record_for_igvn(region); 6841 set_result(_gvn.transform(phi)); 6842 return true; 6843 } 6844 6845 6846 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6847 DecoratorSet decorators, bool is_static, 6848 ciInstanceKlass* fromKls) { 6849 if (fromKls == nullptr) { 6850 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6851 assert(tinst != nullptr, "obj is null"); 6852 assert(tinst->is_loaded(), "obj is not loaded"); 6853 fromKls = tinst->instance_klass(); 6854 } else { 6855 assert(is_static, "only for static field access"); 6856 } 6857 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6858 ciSymbol::make(fieldTypeString), 6859 is_static); 6860 6861 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 6862 if (field == nullptr) return (Node *) nullptr; 6863 6864 if (is_static) { 6865 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6866 fromObj = makecon(tip); 6867 } 6868 6869 // Next code copied from Parse::do_get_xxx(): 6870 6871 // Compute address and memory type. 6872 int offset = field->offset_in_bytes(); 6873 bool is_vol = field->is_volatile(); 6874 ciType* field_klass = field->type(); 6875 assert(field_klass->is_loaded(), "should be loaded"); 6876 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 6877 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6878 BasicType bt = field->layout_type(); 6879 6880 // Build the resultant type of the load 6881 const Type *type; 6882 if (bt == T_OBJECT) { 6883 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 6884 } else { 6885 type = Type::get_const_basic_type(bt); 6886 } 6887 6888 if (is_vol) { 6889 decorators |= MO_SEQ_CST; 6890 } 6891 6892 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 6893 } 6894 6895 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 6896 bool is_exact /* true */, bool is_static /* false */, 6897 ciInstanceKlass * fromKls /* nullptr */) { 6898 if (fromKls == nullptr) { 6899 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6900 assert(tinst != nullptr, "obj is null"); 6901 assert(tinst->is_loaded(), "obj is not loaded"); 6902 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 6903 fromKls = tinst->instance_klass(); 6904 } 6905 else { 6906 assert(is_static, "only for static field access"); 6907 } 6908 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6909 ciSymbol::make(fieldTypeString), 6910 is_static); 6911 6912 assert(field != nullptr, "undefined field"); 6913 assert(!field->is_volatile(), "not defined for volatile fields"); 6914 6915 if (is_static) { 6916 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6917 fromObj = makecon(tip); 6918 } 6919 6920 // Next code copied from Parse::do_get_xxx(): 6921 6922 // Compute address and memory type. 6923 int offset = field->offset_in_bytes(); 6924 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6925 6926 return adr; 6927 } 6928 6929 //------------------------------inline_aescrypt_Block----------------------- 6930 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 6931 address stubAddr = nullptr; 6932 const char *stubName; 6933 assert(UseAES, "need AES instruction support"); 6934 6935 switch(id) { 6936 case vmIntrinsics::_aescrypt_encryptBlock: 6937 stubAddr = StubRoutines::aescrypt_encryptBlock(); 6938 stubName = "aescrypt_encryptBlock"; 6939 break; 6940 case vmIntrinsics::_aescrypt_decryptBlock: 6941 stubAddr = StubRoutines::aescrypt_decryptBlock(); 6942 stubName = "aescrypt_decryptBlock"; 6943 break; 6944 default: 6945 break; 6946 } 6947 if (stubAddr == nullptr) return false; 6948 6949 Node* aescrypt_object = argument(0); 6950 Node* src = argument(1); 6951 Node* src_offset = argument(2); 6952 Node* dest = argument(3); 6953 Node* dest_offset = argument(4); 6954 6955 src = must_be_not_null(src, true); 6956 dest = must_be_not_null(dest, true); 6957 6958 // (1) src and dest are arrays. 6959 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6960 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6961 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6962 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6963 6964 // for the quick and dirty code we will skip all the checks. 6965 // we are just trying to get the call to be generated. 6966 Node* src_start = src; 6967 Node* dest_start = dest; 6968 if (src_offset != nullptr || dest_offset != nullptr) { 6969 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6970 src_start = array_element_address(src, src_offset, T_BYTE); 6971 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6972 } 6973 6974 // now need to get the start of its expanded key array 6975 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6976 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6977 if (k_start == nullptr) return false; 6978 6979 // Call the stub. 6980 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 6981 stubAddr, stubName, TypePtr::BOTTOM, 6982 src_start, dest_start, k_start); 6983 6984 return true; 6985 } 6986 6987 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 6988 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 6989 address stubAddr = nullptr; 6990 const char *stubName = nullptr; 6991 6992 assert(UseAES, "need AES instruction support"); 6993 6994 switch(id) { 6995 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 6996 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 6997 stubName = "cipherBlockChaining_encryptAESCrypt"; 6998 break; 6999 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7000 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7001 stubName = "cipherBlockChaining_decryptAESCrypt"; 7002 break; 7003 default: 7004 break; 7005 } 7006 if (stubAddr == nullptr) return false; 7007 7008 Node* cipherBlockChaining_object = argument(0); 7009 Node* src = argument(1); 7010 Node* src_offset = argument(2); 7011 Node* len = argument(3); 7012 Node* dest = argument(4); 7013 Node* dest_offset = argument(5); 7014 7015 src = must_be_not_null(src, false); 7016 dest = must_be_not_null(dest, false); 7017 7018 // (1) src and dest are arrays. 7019 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7020 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7021 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7022 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7023 7024 // checks are the responsibility of the caller 7025 Node* src_start = src; 7026 Node* dest_start = dest; 7027 if (src_offset != nullptr || dest_offset != nullptr) { 7028 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7029 src_start = array_element_address(src, src_offset, T_BYTE); 7030 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7031 } 7032 7033 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7034 // (because of the predicated logic executed earlier). 7035 // so we cast it here safely. 7036 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7037 7038 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7039 if (embeddedCipherObj == nullptr) return false; 7040 7041 // cast it to what we know it will be at runtime 7042 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7043 assert(tinst != nullptr, "CBC obj is null"); 7044 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7045 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7046 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7047 7048 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7049 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7050 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7051 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7052 aescrypt_object = _gvn.transform(aescrypt_object); 7053 7054 // we need to get the start of the aescrypt_object's expanded key array 7055 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7056 if (k_start == nullptr) return false; 7057 7058 // similarly, get the start address of the r vector 7059 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7060 if (objRvec == nullptr) return false; 7061 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7062 7063 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7064 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7065 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7066 stubAddr, stubName, TypePtr::BOTTOM, 7067 src_start, dest_start, k_start, r_start, len); 7068 7069 // return cipher length (int) 7070 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7071 set_result(retvalue); 7072 return true; 7073 } 7074 7075 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7076 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7077 address stubAddr = nullptr; 7078 const char *stubName = nullptr; 7079 7080 assert(UseAES, "need AES instruction support"); 7081 7082 switch (id) { 7083 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7084 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7085 stubName = "electronicCodeBook_encryptAESCrypt"; 7086 break; 7087 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7088 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7089 stubName = "electronicCodeBook_decryptAESCrypt"; 7090 break; 7091 default: 7092 break; 7093 } 7094 7095 if (stubAddr == nullptr) return false; 7096 7097 Node* electronicCodeBook_object = argument(0); 7098 Node* src = argument(1); 7099 Node* src_offset = argument(2); 7100 Node* len = argument(3); 7101 Node* dest = argument(4); 7102 Node* dest_offset = argument(5); 7103 7104 // (1) src and dest are arrays. 7105 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7106 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7107 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7108 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7109 7110 // checks are the responsibility of the caller 7111 Node* src_start = src; 7112 Node* dest_start = dest; 7113 if (src_offset != nullptr || dest_offset != nullptr) { 7114 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7115 src_start = array_element_address(src, src_offset, T_BYTE); 7116 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7117 } 7118 7119 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7120 // (because of the predicated logic executed earlier). 7121 // so we cast it here safely. 7122 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7123 7124 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7125 if (embeddedCipherObj == nullptr) return false; 7126 7127 // cast it to what we know it will be at runtime 7128 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7129 assert(tinst != nullptr, "ECB obj is null"); 7130 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7131 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7132 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7133 7134 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7135 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7136 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7137 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7138 aescrypt_object = _gvn.transform(aescrypt_object); 7139 7140 // we need to get the start of the aescrypt_object's expanded key array 7141 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7142 if (k_start == nullptr) return false; 7143 7144 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7145 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7146 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7147 stubAddr, stubName, TypePtr::BOTTOM, 7148 src_start, dest_start, k_start, len); 7149 7150 // return cipher length (int) 7151 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7152 set_result(retvalue); 7153 return true; 7154 } 7155 7156 //------------------------------inline_counterMode_AESCrypt----------------------- 7157 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7158 assert(UseAES, "need AES instruction support"); 7159 if (!UseAESCTRIntrinsics) return false; 7160 7161 address stubAddr = nullptr; 7162 const char *stubName = nullptr; 7163 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7164 stubAddr = StubRoutines::counterMode_AESCrypt(); 7165 stubName = "counterMode_AESCrypt"; 7166 } 7167 if (stubAddr == nullptr) return false; 7168 7169 Node* counterMode_object = argument(0); 7170 Node* src = argument(1); 7171 Node* src_offset = argument(2); 7172 Node* len = argument(3); 7173 Node* dest = argument(4); 7174 Node* dest_offset = argument(5); 7175 7176 // (1) src and dest are arrays. 7177 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7178 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7179 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7180 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7181 7182 // checks are the responsibility of the caller 7183 Node* src_start = src; 7184 Node* dest_start = dest; 7185 if (src_offset != nullptr || dest_offset != nullptr) { 7186 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7187 src_start = array_element_address(src, src_offset, T_BYTE); 7188 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7189 } 7190 7191 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7192 // (because of the predicated logic executed earlier). 7193 // so we cast it here safely. 7194 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7195 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7196 if (embeddedCipherObj == nullptr) return false; 7197 // cast it to what we know it will be at runtime 7198 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7199 assert(tinst != nullptr, "CTR obj is null"); 7200 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7201 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7202 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7203 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7204 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7205 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7206 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7207 aescrypt_object = _gvn.transform(aescrypt_object); 7208 // we need to get the start of the aescrypt_object's expanded key array 7209 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7210 if (k_start == nullptr) return false; 7211 // similarly, get the start address of the r vector 7212 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7213 if (obj_counter == nullptr) return false; 7214 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7215 7216 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7217 if (saved_encCounter == nullptr) return false; 7218 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7219 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7220 7221 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7222 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7223 OptoRuntime::counterMode_aescrypt_Type(), 7224 stubAddr, stubName, TypePtr::BOTTOM, 7225 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7226 7227 // return cipher length (int) 7228 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7229 set_result(retvalue); 7230 return true; 7231 } 7232 7233 //------------------------------get_key_start_from_aescrypt_object----------------------- 7234 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7235 #if defined(PPC64) || defined(S390) 7236 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7237 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7238 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7239 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7240 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7241 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7242 if (objSessionK == nullptr) { 7243 return (Node *) nullptr; 7244 } 7245 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7246 #else 7247 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7248 #endif // PPC64 7249 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7250 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7251 7252 // now have the array, need to get the start address of the K array 7253 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7254 return k_start; 7255 } 7256 7257 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7258 // Return node representing slow path of predicate check. 7259 // the pseudo code we want to emulate with this predicate is: 7260 // for encryption: 7261 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7262 // for decryption: 7263 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7264 // note cipher==plain is more conservative than the original java code but that's OK 7265 // 7266 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7267 // The receiver was checked for null already. 7268 Node* objCBC = argument(0); 7269 7270 Node* src = argument(1); 7271 Node* dest = argument(4); 7272 7273 // Load embeddedCipher field of CipherBlockChaining object. 7274 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7275 7276 // get AESCrypt klass for instanceOf check 7277 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7278 // will have same classloader as CipherBlockChaining object 7279 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7280 assert(tinst != nullptr, "CBCobj is null"); 7281 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7282 7283 // we want to do an instanceof comparison against the AESCrypt class 7284 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7285 if (!klass_AESCrypt->is_loaded()) { 7286 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7287 Node* ctrl = control(); 7288 set_control(top()); // no regular fast path 7289 return ctrl; 7290 } 7291 7292 src = must_be_not_null(src, true); 7293 dest = must_be_not_null(dest, true); 7294 7295 // Resolve oops to stable for CmpP below. 7296 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7297 7298 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7299 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7300 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7301 7302 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7303 7304 // for encryption, we are done 7305 if (!decrypting) 7306 return instof_false; // even if it is null 7307 7308 // for decryption, we need to add a further check to avoid 7309 // taking the intrinsic path when cipher and plain are the same 7310 // see the original java code for why. 7311 RegionNode* region = new RegionNode(3); 7312 region->init_req(1, instof_false); 7313 7314 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7315 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7316 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7317 region->init_req(2, src_dest_conjoint); 7318 7319 record_for_igvn(region); 7320 return _gvn.transform(region); 7321 } 7322 7323 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7324 // Return node representing slow path of predicate check. 7325 // the pseudo code we want to emulate with this predicate is: 7326 // for encryption: 7327 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7328 // for decryption: 7329 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7330 // note cipher==plain is more conservative than the original java code but that's OK 7331 // 7332 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7333 // The receiver was checked for null already. 7334 Node* objECB = argument(0); 7335 7336 // Load embeddedCipher field of ElectronicCodeBook object. 7337 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7338 7339 // get AESCrypt klass for instanceOf check 7340 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7341 // will have same classloader as ElectronicCodeBook object 7342 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7343 assert(tinst != nullptr, "ECBobj is null"); 7344 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7345 7346 // we want to do an instanceof comparison against the AESCrypt class 7347 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7348 if (!klass_AESCrypt->is_loaded()) { 7349 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7350 Node* ctrl = control(); 7351 set_control(top()); // no regular fast path 7352 return ctrl; 7353 } 7354 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7355 7356 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7357 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7358 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7359 7360 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7361 7362 // for encryption, we are done 7363 if (!decrypting) 7364 return instof_false; // even if it is null 7365 7366 // for decryption, we need to add a further check to avoid 7367 // taking the intrinsic path when cipher and plain are the same 7368 // see the original java code for why. 7369 RegionNode* region = new RegionNode(3); 7370 region->init_req(1, instof_false); 7371 Node* src = argument(1); 7372 Node* dest = argument(4); 7373 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7374 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7375 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7376 region->init_req(2, src_dest_conjoint); 7377 7378 record_for_igvn(region); 7379 return _gvn.transform(region); 7380 } 7381 7382 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7383 // Return node representing slow path of predicate check. 7384 // the pseudo code we want to emulate with this predicate is: 7385 // for encryption: 7386 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7387 // for decryption: 7388 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7389 // note cipher==plain is more conservative than the original java code but that's OK 7390 // 7391 7392 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7393 // The receiver was checked for null already. 7394 Node* objCTR = argument(0); 7395 7396 // Load embeddedCipher field of CipherBlockChaining object. 7397 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7398 7399 // get AESCrypt klass for instanceOf check 7400 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7401 // will have same classloader as CipherBlockChaining object 7402 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7403 assert(tinst != nullptr, "CTRobj is null"); 7404 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7405 7406 // we want to do an instanceof comparison against the AESCrypt class 7407 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7408 if (!klass_AESCrypt->is_loaded()) { 7409 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7410 Node* ctrl = control(); 7411 set_control(top()); // no regular fast path 7412 return ctrl; 7413 } 7414 7415 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7416 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7417 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7418 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7419 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7420 7421 return instof_false; // even if it is null 7422 } 7423 7424 //------------------------------inline_ghash_processBlocks 7425 bool LibraryCallKit::inline_ghash_processBlocks() { 7426 address stubAddr; 7427 const char *stubName; 7428 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7429 7430 stubAddr = StubRoutines::ghash_processBlocks(); 7431 stubName = "ghash_processBlocks"; 7432 7433 Node* data = argument(0); 7434 Node* offset = argument(1); 7435 Node* len = argument(2); 7436 Node* state = argument(3); 7437 Node* subkeyH = argument(4); 7438 7439 state = must_be_not_null(state, true); 7440 subkeyH = must_be_not_null(subkeyH, true); 7441 data = must_be_not_null(data, true); 7442 7443 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7444 assert(state_start, "state is null"); 7445 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7446 assert(subkeyH_start, "subkeyH is null"); 7447 Node* data_start = array_element_address(data, offset, T_BYTE); 7448 assert(data_start, "data is null"); 7449 7450 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7451 OptoRuntime::ghash_processBlocks_Type(), 7452 stubAddr, stubName, TypePtr::BOTTOM, 7453 state_start, subkeyH_start, data_start, len); 7454 return true; 7455 } 7456 7457 //------------------------------inline_chacha20Block 7458 bool LibraryCallKit::inline_chacha20Block() { 7459 address stubAddr; 7460 const char *stubName; 7461 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7462 7463 stubAddr = StubRoutines::chacha20Block(); 7464 stubName = "chacha20Block"; 7465 7466 Node* state = argument(0); 7467 Node* result = argument(1); 7468 7469 state = must_be_not_null(state, true); 7470 result = must_be_not_null(result, true); 7471 7472 Node* state_start = array_element_address(state, intcon(0), T_INT); 7473 assert(state_start, "state is null"); 7474 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7475 assert(result_start, "result is null"); 7476 7477 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7478 OptoRuntime::chacha20Block_Type(), 7479 stubAddr, stubName, TypePtr::BOTTOM, 7480 state_start, result_start); 7481 // return key stream length (int) 7482 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7483 set_result(retvalue); 7484 return true; 7485 } 7486 7487 bool LibraryCallKit::inline_base64_encodeBlock() { 7488 address stubAddr; 7489 const char *stubName; 7490 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7491 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7492 stubAddr = StubRoutines::base64_encodeBlock(); 7493 stubName = "encodeBlock"; 7494 7495 if (!stubAddr) return false; 7496 Node* base64obj = argument(0); 7497 Node* src = argument(1); 7498 Node* offset = argument(2); 7499 Node* len = argument(3); 7500 Node* dest = argument(4); 7501 Node* dp = argument(5); 7502 Node* isURL = argument(6); 7503 7504 src = must_be_not_null(src, true); 7505 dest = must_be_not_null(dest, true); 7506 7507 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7508 assert(src_start, "source array is null"); 7509 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7510 assert(dest_start, "destination array is null"); 7511 7512 Node* base64 = make_runtime_call(RC_LEAF, 7513 OptoRuntime::base64_encodeBlock_Type(), 7514 stubAddr, stubName, TypePtr::BOTTOM, 7515 src_start, offset, len, dest_start, dp, isURL); 7516 return true; 7517 } 7518 7519 bool LibraryCallKit::inline_base64_decodeBlock() { 7520 address stubAddr; 7521 const char *stubName; 7522 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7523 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7524 stubAddr = StubRoutines::base64_decodeBlock(); 7525 stubName = "decodeBlock"; 7526 7527 if (!stubAddr) return false; 7528 Node* base64obj = argument(0); 7529 Node* src = argument(1); 7530 Node* src_offset = argument(2); 7531 Node* len = argument(3); 7532 Node* dest = argument(4); 7533 Node* dest_offset = argument(5); 7534 Node* isURL = argument(6); 7535 Node* isMIME = argument(7); 7536 7537 src = must_be_not_null(src, true); 7538 dest = must_be_not_null(dest, true); 7539 7540 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7541 assert(src_start, "source array is null"); 7542 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7543 assert(dest_start, "destination array is null"); 7544 7545 Node* call = make_runtime_call(RC_LEAF, 7546 OptoRuntime::base64_decodeBlock_Type(), 7547 stubAddr, stubName, TypePtr::BOTTOM, 7548 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7549 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7550 set_result(result); 7551 return true; 7552 } 7553 7554 bool LibraryCallKit::inline_poly1305_processBlocks() { 7555 address stubAddr; 7556 const char *stubName; 7557 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7558 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7559 stubAddr = StubRoutines::poly1305_processBlocks(); 7560 stubName = "poly1305_processBlocks"; 7561 7562 if (!stubAddr) return false; 7563 null_check_receiver(); // null-check receiver 7564 if (stopped()) return true; 7565 7566 Node* input = argument(1); 7567 Node* input_offset = argument(2); 7568 Node* len = argument(3); 7569 Node* alimbs = argument(4); 7570 Node* rlimbs = argument(5); 7571 7572 input = must_be_not_null(input, true); 7573 alimbs = must_be_not_null(alimbs, true); 7574 rlimbs = must_be_not_null(rlimbs, true); 7575 7576 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7577 assert(input_start, "input array is null"); 7578 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7579 assert(acc_start, "acc array is null"); 7580 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7581 assert(r_start, "r array is null"); 7582 7583 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7584 OptoRuntime::poly1305_processBlocks_Type(), 7585 stubAddr, stubName, TypePtr::BOTTOM, 7586 input_start, len, acc_start, r_start); 7587 return true; 7588 } 7589 7590 //------------------------------inline_digestBase_implCompress----------------------- 7591 // 7592 // Calculate MD5 for single-block byte[] array. 7593 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7594 // 7595 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7596 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7597 // 7598 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7599 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7600 // 7601 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7602 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7603 // 7604 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7605 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7606 // 7607 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7608 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7609 7610 Node* digestBase_obj = argument(0); 7611 Node* src = argument(1); // type oop 7612 Node* ofs = argument(2); // type int 7613 7614 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7615 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7616 // failed array check 7617 return false; 7618 } 7619 // Figure out the size and type of the elements we will be copying. 7620 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7621 if (src_elem != T_BYTE) { 7622 return false; 7623 } 7624 // 'src_start' points to src array + offset 7625 src = must_be_not_null(src, true); 7626 Node* src_start = array_element_address(src, ofs, src_elem); 7627 Node* state = nullptr; 7628 Node* block_size = nullptr; 7629 address stubAddr; 7630 const char *stubName; 7631 7632 switch(id) { 7633 case vmIntrinsics::_md5_implCompress: 7634 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7635 state = get_state_from_digest_object(digestBase_obj, T_INT); 7636 stubAddr = StubRoutines::md5_implCompress(); 7637 stubName = "md5_implCompress"; 7638 break; 7639 case vmIntrinsics::_sha_implCompress: 7640 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7641 state = get_state_from_digest_object(digestBase_obj, T_INT); 7642 stubAddr = StubRoutines::sha1_implCompress(); 7643 stubName = "sha1_implCompress"; 7644 break; 7645 case vmIntrinsics::_sha2_implCompress: 7646 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7647 state = get_state_from_digest_object(digestBase_obj, T_INT); 7648 stubAddr = StubRoutines::sha256_implCompress(); 7649 stubName = "sha256_implCompress"; 7650 break; 7651 case vmIntrinsics::_sha5_implCompress: 7652 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7653 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7654 stubAddr = StubRoutines::sha512_implCompress(); 7655 stubName = "sha512_implCompress"; 7656 break; 7657 case vmIntrinsics::_sha3_implCompress: 7658 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7659 state = get_state_from_digest_object(digestBase_obj, T_BYTE); 7660 stubAddr = StubRoutines::sha3_implCompress(); 7661 stubName = "sha3_implCompress"; 7662 block_size = get_block_size_from_digest_object(digestBase_obj); 7663 if (block_size == nullptr) return false; 7664 break; 7665 default: 7666 fatal_unexpected_iid(id); 7667 return false; 7668 } 7669 if (state == nullptr) return false; 7670 7671 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 7672 if (stubAddr == nullptr) return false; 7673 7674 // Call the stub. 7675 Node* call; 7676 if (block_size == nullptr) { 7677 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7678 stubAddr, stubName, TypePtr::BOTTOM, 7679 src_start, state); 7680 } else { 7681 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7682 stubAddr, stubName, TypePtr::BOTTOM, 7683 src_start, state, block_size); 7684 } 7685 7686 return true; 7687 } 7688 7689 //------------------------------inline_digestBase_implCompressMB----------------------- 7690 // 7691 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7692 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7693 // 7694 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7695 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7696 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7697 assert((uint)predicate < 5, "sanity"); 7698 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7699 7700 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 7701 Node* src = argument(1); // byte[] array 7702 Node* ofs = argument(2); // type int 7703 Node* limit = argument(3); // type int 7704 7705 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7706 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7707 // failed array check 7708 return false; 7709 } 7710 // Figure out the size and type of the elements we will be copying. 7711 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7712 if (src_elem != T_BYTE) { 7713 return false; 7714 } 7715 // 'src_start' points to src array + offset 7716 src = must_be_not_null(src, false); 7717 Node* src_start = array_element_address(src, ofs, src_elem); 7718 7719 const char* klass_digestBase_name = nullptr; 7720 const char* stub_name = nullptr; 7721 address stub_addr = nullptr; 7722 BasicType elem_type = T_INT; 7723 7724 switch (predicate) { 7725 case 0: 7726 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7727 klass_digestBase_name = "sun/security/provider/MD5"; 7728 stub_name = "md5_implCompressMB"; 7729 stub_addr = StubRoutines::md5_implCompressMB(); 7730 } 7731 break; 7732 case 1: 7733 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7734 klass_digestBase_name = "sun/security/provider/SHA"; 7735 stub_name = "sha1_implCompressMB"; 7736 stub_addr = StubRoutines::sha1_implCompressMB(); 7737 } 7738 break; 7739 case 2: 7740 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7741 klass_digestBase_name = "sun/security/provider/SHA2"; 7742 stub_name = "sha256_implCompressMB"; 7743 stub_addr = StubRoutines::sha256_implCompressMB(); 7744 } 7745 break; 7746 case 3: 7747 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7748 klass_digestBase_name = "sun/security/provider/SHA5"; 7749 stub_name = "sha512_implCompressMB"; 7750 stub_addr = StubRoutines::sha512_implCompressMB(); 7751 elem_type = T_LONG; 7752 } 7753 break; 7754 case 4: 7755 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7756 klass_digestBase_name = "sun/security/provider/SHA3"; 7757 stub_name = "sha3_implCompressMB"; 7758 stub_addr = StubRoutines::sha3_implCompressMB(); 7759 elem_type = T_BYTE; 7760 } 7761 break; 7762 default: 7763 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7764 } 7765 if (klass_digestBase_name != nullptr) { 7766 assert(stub_addr != nullptr, "Stub is generated"); 7767 if (stub_addr == nullptr) return false; 7768 7769 // get DigestBase klass to lookup for SHA klass 7770 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7771 assert(tinst != nullptr, "digestBase_obj is not instance???"); 7772 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7773 7774 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7775 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7776 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7777 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7778 } 7779 return false; 7780 } 7781 7782 //------------------------------inline_digestBase_implCompressMB----------------------- 7783 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7784 BasicType elem_type, address stubAddr, const char *stubName, 7785 Node* src_start, Node* ofs, Node* limit) { 7786 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7787 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7788 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7789 digest_obj = _gvn.transform(digest_obj); 7790 7791 Node* state = get_state_from_digest_object(digest_obj, elem_type); 7792 if (state == nullptr) return false; 7793 7794 Node* block_size = nullptr; 7795 if (strcmp("sha3_implCompressMB", stubName) == 0) { 7796 block_size = get_block_size_from_digest_object(digest_obj); 7797 if (block_size == nullptr) return false; 7798 } 7799 7800 // Call the stub. 7801 Node* call; 7802 if (block_size == nullptr) { 7803 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7804 OptoRuntime::digestBase_implCompressMB_Type(false), 7805 stubAddr, stubName, TypePtr::BOTTOM, 7806 src_start, state, ofs, limit); 7807 } else { 7808 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7809 OptoRuntime::digestBase_implCompressMB_Type(true), 7810 stubAddr, stubName, TypePtr::BOTTOM, 7811 src_start, state, block_size, ofs, limit); 7812 } 7813 7814 // return ofs (int) 7815 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7816 set_result(result); 7817 7818 return true; 7819 } 7820 7821 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 7822 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 7823 assert(UseAES, "need AES instruction support"); 7824 address stubAddr = nullptr; 7825 const char *stubName = nullptr; 7826 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 7827 stubName = "galoisCounterMode_AESCrypt"; 7828 7829 if (stubAddr == nullptr) return false; 7830 7831 Node* in = argument(0); 7832 Node* inOfs = argument(1); 7833 Node* len = argument(2); 7834 Node* ct = argument(3); 7835 Node* ctOfs = argument(4); 7836 Node* out = argument(5); 7837 Node* outOfs = argument(6); 7838 Node* gctr_object = argument(7); 7839 Node* ghash_object = argument(8); 7840 7841 // (1) in, ct and out are arrays. 7842 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 7843 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 7844 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 7845 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 7846 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 7847 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 7848 7849 // checks are the responsibility of the caller 7850 Node* in_start = in; 7851 Node* ct_start = ct; 7852 Node* out_start = out; 7853 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 7854 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 7855 in_start = array_element_address(in, inOfs, T_BYTE); 7856 ct_start = array_element_address(ct, ctOfs, T_BYTE); 7857 out_start = array_element_address(out, outOfs, T_BYTE); 7858 } 7859 7860 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7861 // (because of the predicated logic executed earlier). 7862 // so we cast it here safely. 7863 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7864 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7865 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 7866 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 7867 Node* state = load_field_from_object(ghash_object, "state", "[J"); 7868 7869 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 7870 return false; 7871 } 7872 // cast it to what we know it will be at runtime 7873 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 7874 assert(tinst != nullptr, "GCTR obj is null"); 7875 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7876 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7877 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7878 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7879 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7880 const TypeOopPtr* xtype = aklass->as_instance_type(); 7881 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7882 aescrypt_object = _gvn.transform(aescrypt_object); 7883 // we need to get the start of the aescrypt_object's expanded key array 7884 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7885 if (k_start == nullptr) return false; 7886 // similarly, get the start address of the r vector 7887 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 7888 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7889 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 7890 7891 7892 // Call the stub, passing params 7893 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7894 OptoRuntime::galoisCounterMode_aescrypt_Type(), 7895 stubAddr, stubName, TypePtr::BOTTOM, 7896 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 7897 7898 // return cipher length (int) 7899 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 7900 set_result(retvalue); 7901 7902 return true; 7903 } 7904 7905 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 7906 // Return node representing slow path of predicate check. 7907 // the pseudo code we want to emulate with this predicate is: 7908 // for encryption: 7909 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7910 // for decryption: 7911 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7912 // note cipher==plain is more conservative than the original java code but that's OK 7913 // 7914 7915 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 7916 // The receiver was checked for null already. 7917 Node* objGCTR = argument(7); 7918 // Load embeddedCipher field of GCTR object. 7919 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7920 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 7921 7922 // get AESCrypt klass for instanceOf check 7923 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7924 // will have same classloader as CipherBlockChaining object 7925 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 7926 assert(tinst != nullptr, "GCTR obj is null"); 7927 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7928 7929 // we want to do an instanceof comparison against the AESCrypt class 7930 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7931 if (!klass_AESCrypt->is_loaded()) { 7932 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7933 Node* ctrl = control(); 7934 set_control(top()); // no regular fast path 7935 return ctrl; 7936 } 7937 7938 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7939 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7940 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7941 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7942 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7943 7944 return instof_false; // even if it is null 7945 } 7946 7947 //------------------------------get_state_from_digest_object----------------------- 7948 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 7949 const char* state_type; 7950 switch (elem_type) { 7951 case T_BYTE: state_type = "[B"; break; 7952 case T_INT: state_type = "[I"; break; 7953 case T_LONG: state_type = "[J"; break; 7954 default: ShouldNotReachHere(); 7955 } 7956 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 7957 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 7958 if (digest_state == nullptr) return (Node *) nullptr; 7959 7960 // now have the array, need to get the start address of the state array 7961 Node* state = array_element_address(digest_state, intcon(0), elem_type); 7962 return state; 7963 } 7964 7965 //------------------------------get_block_size_from_sha3_object---------------------------------- 7966 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 7967 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 7968 assert (block_size != nullptr, "sanity"); 7969 return block_size; 7970 } 7971 7972 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 7973 // Return node representing slow path of predicate check. 7974 // the pseudo code we want to emulate with this predicate is: 7975 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 7976 // 7977 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 7978 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7979 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7980 assert((uint)predicate < 5, "sanity"); 7981 7982 // The receiver was checked for null already. 7983 Node* digestBaseObj = argument(0); 7984 7985 // get DigestBase klass for instanceOf check 7986 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 7987 assert(tinst != nullptr, "digestBaseObj is null"); 7988 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7989 7990 const char* klass_name = nullptr; 7991 switch (predicate) { 7992 case 0: 7993 if (UseMD5Intrinsics) { 7994 // we want to do an instanceof comparison against the MD5 class 7995 klass_name = "sun/security/provider/MD5"; 7996 } 7997 break; 7998 case 1: 7999 if (UseSHA1Intrinsics) { 8000 // we want to do an instanceof comparison against the SHA class 8001 klass_name = "sun/security/provider/SHA"; 8002 } 8003 break; 8004 case 2: 8005 if (UseSHA256Intrinsics) { 8006 // we want to do an instanceof comparison against the SHA2 class 8007 klass_name = "sun/security/provider/SHA2"; 8008 } 8009 break; 8010 case 3: 8011 if (UseSHA512Intrinsics) { 8012 // we want to do an instanceof comparison against the SHA5 class 8013 klass_name = "sun/security/provider/SHA5"; 8014 } 8015 break; 8016 case 4: 8017 if (UseSHA3Intrinsics) { 8018 // we want to do an instanceof comparison against the SHA3 class 8019 klass_name = "sun/security/provider/SHA3"; 8020 } 8021 break; 8022 default: 8023 fatal("unknown SHA intrinsic predicate: %d", predicate); 8024 } 8025 8026 ciKlass* klass = nullptr; 8027 if (klass_name != nullptr) { 8028 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8029 } 8030 if ((klass == nullptr) || !klass->is_loaded()) { 8031 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8032 Node* ctrl = control(); 8033 set_control(top()); // no intrinsic path 8034 return ctrl; 8035 } 8036 ciInstanceKlass* instklass = klass->as_instance_klass(); 8037 8038 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8039 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8040 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8041 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8042 8043 return instof_false; // even if it is null 8044 } 8045 8046 //-------------inline_fma----------------------------------- 8047 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8048 Node *a = nullptr; 8049 Node *b = nullptr; 8050 Node *c = nullptr; 8051 Node* result = nullptr; 8052 switch (id) { 8053 case vmIntrinsics::_fmaD: 8054 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8055 // no receiver since it is static method 8056 a = round_double_node(argument(0)); 8057 b = round_double_node(argument(2)); 8058 c = round_double_node(argument(4)); 8059 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 8060 break; 8061 case vmIntrinsics::_fmaF: 8062 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8063 a = argument(0); 8064 b = argument(1); 8065 c = argument(2); 8066 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 8067 break; 8068 default: 8069 fatal_unexpected_iid(id); break; 8070 } 8071 set_result(result); 8072 return true; 8073 } 8074 8075 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8076 // argument(0) is receiver 8077 Node* codePoint = argument(1); 8078 Node* n = nullptr; 8079 8080 switch (id) { 8081 case vmIntrinsics::_isDigit : 8082 n = new DigitNode(control(), codePoint); 8083 break; 8084 case vmIntrinsics::_isLowerCase : 8085 n = new LowerCaseNode(control(), codePoint); 8086 break; 8087 case vmIntrinsics::_isUpperCase : 8088 n = new UpperCaseNode(control(), codePoint); 8089 break; 8090 case vmIntrinsics::_isWhitespace : 8091 n = new WhitespaceNode(control(), codePoint); 8092 break; 8093 default: 8094 fatal_unexpected_iid(id); 8095 } 8096 8097 set_result(_gvn.transform(n)); 8098 return true; 8099 } 8100 8101 //------------------------------inline_fp_min_max------------------------------ 8102 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 8103 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 8104 8105 // The intrinsic should be used only when the API branches aren't predictable, 8106 // the last one performing the most important comparison. The following heuristic 8107 // uses the branch statistics to eventually bail out if necessary. 8108 8109 ciMethodData *md = callee()->method_data(); 8110 8111 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 8112 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 8113 8114 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 8115 // Bail out if the call-site didn't contribute enough to the statistics. 8116 return false; 8117 } 8118 8119 uint taken = 0, not_taken = 0; 8120 8121 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 8122 if (p->is_BranchData()) { 8123 taken = ((ciBranchData*)p)->taken(); 8124 not_taken = ((ciBranchData*)p)->not_taken(); 8125 } 8126 } 8127 8128 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 8129 balance = balance < 0 ? -balance : balance; 8130 if ( balance > 0.2 ) { 8131 // Bail out if the most important branch is predictable enough. 8132 return false; 8133 } 8134 } 8135 */ 8136 8137 Node *a = nullptr; 8138 Node *b = nullptr; 8139 Node *n = nullptr; 8140 switch (id) { 8141 case vmIntrinsics::_maxF: 8142 case vmIntrinsics::_minF: 8143 case vmIntrinsics::_maxF_strict: 8144 case vmIntrinsics::_minF_strict: 8145 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 8146 a = argument(0); 8147 b = argument(1); 8148 break; 8149 case vmIntrinsics::_maxD: 8150 case vmIntrinsics::_minD: 8151 case vmIntrinsics::_maxD_strict: 8152 case vmIntrinsics::_minD_strict: 8153 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 8154 a = round_double_node(argument(0)); 8155 b = round_double_node(argument(2)); 8156 break; 8157 default: 8158 fatal_unexpected_iid(id); 8159 break; 8160 } 8161 switch (id) { 8162 case vmIntrinsics::_maxF: 8163 case vmIntrinsics::_maxF_strict: 8164 n = new MaxFNode(a, b); 8165 break; 8166 case vmIntrinsics::_minF: 8167 case vmIntrinsics::_minF_strict: 8168 n = new MinFNode(a, b); 8169 break; 8170 case vmIntrinsics::_maxD: 8171 case vmIntrinsics::_maxD_strict: 8172 n = new MaxDNode(a, b); 8173 break; 8174 case vmIntrinsics::_minD: 8175 case vmIntrinsics::_minD_strict: 8176 n = new MinDNode(a, b); 8177 break; 8178 default: 8179 fatal_unexpected_iid(id); 8180 break; 8181 } 8182 set_result(_gvn.transform(n)); 8183 return true; 8184 } 8185 8186 bool LibraryCallKit::inline_profileBoolean() { 8187 Node* counts = argument(1); 8188 const TypeAryPtr* ary = nullptr; 8189 ciArray* aobj = nullptr; 8190 if (counts->is_Con() 8191 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8192 && (aobj = ary->const_oop()->as_array()) != nullptr 8193 && (aobj->length() == 2)) { 8194 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8195 jint false_cnt = aobj->element_value(0).as_int(); 8196 jint true_cnt = aobj->element_value(1).as_int(); 8197 8198 if (C->log() != nullptr) { 8199 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8200 false_cnt, true_cnt); 8201 } 8202 8203 if (false_cnt + true_cnt == 0) { 8204 // According to profile, never executed. 8205 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8206 Deoptimization::Action_reinterpret); 8207 return true; 8208 } 8209 8210 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8211 // is a number of each value occurrences. 8212 Node* result = argument(0); 8213 if (false_cnt == 0 || true_cnt == 0) { 8214 // According to profile, one value has been never seen. 8215 int expected_val = (false_cnt == 0) ? 1 : 0; 8216 8217 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8218 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8219 8220 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8221 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8222 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8223 8224 { // Slow path: uncommon trap for never seen value and then reexecute 8225 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8226 // the value has been seen at least once. 8227 PreserveJVMState pjvms(this); 8228 PreserveReexecuteState preexecs(this); 8229 jvms()->set_should_reexecute(true); 8230 8231 set_control(slow_path); 8232 set_i_o(i_o()); 8233 8234 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8235 Deoptimization::Action_reinterpret); 8236 } 8237 // The guard for never seen value enables sharpening of the result and 8238 // returning a constant. It allows to eliminate branches on the same value 8239 // later on. 8240 set_control(fast_path); 8241 result = intcon(expected_val); 8242 } 8243 // Stop profiling. 8244 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8245 // By replacing method body with profile data (represented as ProfileBooleanNode 8246 // on IR level) we effectively disable profiling. 8247 // It enables full speed execution once optimized code is generated. 8248 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8249 C->record_for_igvn(profile); 8250 set_result(profile); 8251 return true; 8252 } else { 8253 // Continue profiling. 8254 // Profile data isn't available at the moment. So, execute method's bytecode version. 8255 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8256 // is compiled and counters aren't available since corresponding MethodHandle 8257 // isn't a compile-time constant. 8258 return false; 8259 } 8260 } 8261 8262 bool LibraryCallKit::inline_isCompileConstant() { 8263 Node* n = argument(0); 8264 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8265 return true; 8266 } 8267 8268 //------------------------------- inline_getObjectSize -------------------------------------- 8269 // 8270 // Calculate the runtime size of the object/array. 8271 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8272 // 8273 bool LibraryCallKit::inline_getObjectSize() { 8274 Node* obj = argument(3); 8275 Node* klass_node = load_object_klass(obj); 8276 8277 jint layout_con = Klass::_lh_neutral_value; 8278 Node* layout_val = get_layout_helper(klass_node, layout_con); 8279 int layout_is_con = (layout_val == nullptr); 8280 8281 if (layout_is_con) { 8282 // Layout helper is constant, can figure out things at compile time. 8283 8284 if (Klass::layout_helper_is_instance(layout_con)) { 8285 // Instance case: layout_con contains the size itself. 8286 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8287 set_result(size); 8288 } else { 8289 // Array case: size is round(header + element_size*arraylength). 8290 // Since arraylength is different for every array instance, we have to 8291 // compute the whole thing at runtime. 8292 8293 Node* arr_length = load_array_length(obj); 8294 8295 int round_mask = MinObjAlignmentInBytes - 1; 8296 int hsize = Klass::layout_helper_header_size(layout_con); 8297 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8298 8299 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8300 round_mask = 0; // strength-reduce it if it goes away completely 8301 } 8302 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8303 Node* header_size = intcon(hsize + round_mask); 8304 8305 Node* lengthx = ConvI2X(arr_length); 8306 Node* headerx = ConvI2X(header_size); 8307 8308 Node* abody = lengthx; 8309 if (eshift != 0) { 8310 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8311 } 8312 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8313 if (round_mask != 0) { 8314 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8315 } 8316 size = ConvX2L(size); 8317 set_result(size); 8318 } 8319 } else { 8320 // Layout helper is not constant, need to test for array-ness at runtime. 8321 8322 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8323 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8324 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8325 record_for_igvn(result_reg); 8326 8327 Node* array_ctl = generate_array_guard(klass_node, nullptr); 8328 if (array_ctl != nullptr) { 8329 // Array case: size is round(header + element_size*arraylength). 8330 // Since arraylength is different for every array instance, we have to 8331 // compute the whole thing at runtime. 8332 8333 PreserveJVMState pjvms(this); 8334 set_control(array_ctl); 8335 Node* arr_length = load_array_length(obj); 8336 8337 int round_mask = MinObjAlignmentInBytes - 1; 8338 Node* mask = intcon(round_mask); 8339 8340 Node* hss = intcon(Klass::_lh_header_size_shift); 8341 Node* hsm = intcon(Klass::_lh_header_size_mask); 8342 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8343 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8344 header_size = _gvn.transform(new AddINode(header_size, mask)); 8345 8346 // There is no need to mask or shift this value. 8347 // The semantics of LShiftINode include an implicit mask to 0x1F. 8348 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8349 Node* elem_shift = layout_val; 8350 8351 Node* lengthx = ConvI2X(arr_length); 8352 Node* headerx = ConvI2X(header_size); 8353 8354 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8355 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8356 if (round_mask != 0) { 8357 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8358 } 8359 size = ConvX2L(size); 8360 8361 result_reg->init_req(_array_path, control()); 8362 result_val->init_req(_array_path, size); 8363 } 8364 8365 if (!stopped()) { 8366 // Instance case: the layout helper gives us instance size almost directly, 8367 // but we need to mask out the _lh_instance_slow_path_bit. 8368 Node* size = ConvI2X(layout_val); 8369 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8370 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8371 size = _gvn.transform(new AndXNode(size, mask)); 8372 size = ConvX2L(size); 8373 8374 result_reg->init_req(_instance_path, control()); 8375 result_val->init_req(_instance_path, size); 8376 } 8377 8378 set_result(result_reg, result_val); 8379 } 8380 8381 return true; 8382 } 8383 8384 //------------------------------- inline_blackhole -------------------------------------- 8385 // 8386 // Make sure all arguments to this node are alive. 8387 // This matches methods that were requested to be blackholed through compile commands. 8388 // 8389 bool LibraryCallKit::inline_blackhole() { 8390 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8391 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8392 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8393 8394 // Blackhole node pinches only the control, not memory. This allows 8395 // the blackhole to be pinned in the loop that computes blackholed 8396 // values, but have no other side effects, like breaking the optimizations 8397 // across the blackhole. 8398 8399 Node* bh = _gvn.transform(new BlackholeNode(control())); 8400 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8401 8402 // Bind call arguments as blackhole arguments to keep them alive 8403 uint nargs = callee()->arg_size(); 8404 for (uint i = 0; i < nargs; i++) { 8405 bh->add_req(argument(i)); 8406 } 8407 8408 return true; 8409 }