1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciArrayKlass.hpp" 27 #include "ci/ciFlatArrayKlass.hpp" 28 #include "ci/ciInstanceKlass.hpp" 29 #include "ci/ciSymbols.hpp" 30 #include "ci/ciUtilities.inline.hpp" 31 #include "classfile/vmIntrinsics.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "gc/shared/barrierSet.hpp" 35 #include "gc/shared/c2/barrierSetC2.hpp" 36 #include "jfr/support/jfrIntrinsics.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/accessDecorators.hpp" 39 #include "oops/klass.inline.hpp" 40 #include "oops/layoutKind.hpp" 41 #include "oops/objArrayKlass.hpp" 42 #include "opto/addnode.hpp" 43 #include "opto/arraycopynode.hpp" 44 #include "opto/c2compiler.hpp" 45 #include "opto/castnode.hpp" 46 #include "opto/cfgnode.hpp" 47 #include "opto/convertnode.hpp" 48 #include "opto/countbitsnode.hpp" 49 #include "opto/graphKit.hpp" 50 #include "opto/idealKit.hpp" 51 #include "opto/inlinetypenode.hpp" 52 #include "opto/library_call.hpp" 53 #include "opto/mathexactnode.hpp" 54 #include "opto/mulnode.hpp" 55 #include "opto/narrowptrnode.hpp" 56 #include "opto/opaquenode.hpp" 57 #include "opto/opcodes.hpp" 58 #include "opto/parse.hpp" 59 #include "opto/rootnode.hpp" 60 #include "opto/runtime.hpp" 61 #include "opto/subnode.hpp" 62 #include "opto/type.hpp" 63 #include "opto/vectornode.hpp" 64 #include "prims/jvmtiExport.hpp" 65 #include "prims/jvmtiThreadState.hpp" 66 #include "prims/unsafe.hpp" 67 #include "runtime/jniHandles.inline.hpp" 68 #include "runtime/objectMonitor.hpp" 69 #include "runtime/sharedRuntime.hpp" 70 #include "runtime/stubRoutines.hpp" 71 #include "utilities/globalDefinitions.hpp" 72 #include "utilities/macros.hpp" 73 #include "utilities/powerOfTwo.hpp" 74 75 //---------------------------make_vm_intrinsic---------------------------- 76 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 77 vmIntrinsicID id = m->intrinsic_id(); 78 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 79 80 if (!m->is_loaded()) { 81 // Do not attempt to inline unloaded methods. 82 return nullptr; 83 } 84 85 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 86 bool is_available = false; 87 88 { 89 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 90 // the compiler must transition to '_thread_in_vm' state because both 91 // methods access VM-internal data. 92 VM_ENTRY_MARK; 93 methodHandle mh(THREAD, m->get_Method()); 94 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 95 if (is_available && is_virtual) { 96 is_available = vmIntrinsics::does_virtual_dispatch(id); 97 } 98 } 99 100 if (is_available) { 101 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 102 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 103 return new LibraryIntrinsic(m, is_virtual, 104 vmIntrinsics::predicates_needed(id), 105 vmIntrinsics::does_virtual_dispatch(id), 106 id); 107 } else { 108 return nullptr; 109 } 110 } 111 112 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 113 LibraryCallKit kit(jvms, this); 114 Compile* C = kit.C; 115 int nodes = C->unique(); 116 #ifndef PRODUCT 117 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 118 char buf[1000]; 119 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 120 tty->print_cr("Intrinsic %s", str); 121 } 122 #endif 123 ciMethod* callee = kit.callee(); 124 const int bci = kit.bci(); 125 #ifdef ASSERT 126 Node* ctrl = kit.control(); 127 #endif 128 // Try to inline the intrinsic. 129 if (callee->check_intrinsic_candidate() && 130 kit.try_to_inline(_last_predicate)) { 131 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 132 : "(intrinsic)"; 133 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 134 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 135 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 136 if (C->log()) { 137 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 138 vmIntrinsics::name_at(intrinsic_id()), 139 (is_virtual() ? " virtual='1'" : ""), 140 C->unique() - nodes); 141 } 142 // Push the result from the inlined method onto the stack. 143 kit.push_result(); 144 return kit.transfer_exceptions_into_jvms(); 145 } 146 147 // The intrinsic bailed out 148 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 149 if (jvms->has_method()) { 150 // Not a root compile. 151 const char* msg; 152 if (callee->intrinsic_candidate()) { 153 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 154 } else { 155 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 156 : "failed to inline (intrinsic), method not annotated"; 157 } 158 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 159 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 160 } else { 161 // Root compile 162 ResourceMark rm; 163 stringStream msg_stream; 164 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 165 vmIntrinsics::name_at(intrinsic_id()), 166 is_virtual() ? " (virtual)" : "", bci); 167 const char *msg = msg_stream.freeze(); 168 log_debug(jit, inlining)("%s", msg); 169 if (C->print_intrinsics() || C->print_inlining()) { 170 tty->print("%s", msg); 171 } 172 } 173 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 174 175 return nullptr; 176 } 177 178 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 179 LibraryCallKit kit(jvms, this); 180 Compile* C = kit.C; 181 int nodes = C->unique(); 182 _last_predicate = predicate; 183 #ifndef PRODUCT 184 assert(is_predicated() && predicate < predicates_count(), "sanity"); 185 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 186 char buf[1000]; 187 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 188 tty->print_cr("Predicate for intrinsic %s", str); 189 } 190 #endif 191 ciMethod* callee = kit.callee(); 192 const int bci = kit.bci(); 193 194 Node* slow_ctl = kit.try_to_predicate(predicate); 195 if (!kit.failing()) { 196 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 197 : "(intrinsic, predicate)"; 198 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 199 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 200 201 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 202 if (C->log()) { 203 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 204 vmIntrinsics::name_at(intrinsic_id()), 205 (is_virtual() ? " virtual='1'" : ""), 206 C->unique() - nodes); 207 } 208 return slow_ctl; // Could be null if the check folds. 209 } 210 211 // The intrinsic bailed out 212 if (jvms->has_method()) { 213 // Not a root compile. 214 const char* msg = "failed to generate predicate for intrinsic"; 215 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 216 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 217 } else { 218 // Root compile 219 ResourceMark rm; 220 stringStream msg_stream; 221 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 222 vmIntrinsics::name_at(intrinsic_id()), 223 is_virtual() ? " (virtual)" : "", bci); 224 const char *msg = msg_stream.freeze(); 225 log_debug(jit, inlining)("%s", msg); 226 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 227 } 228 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 229 return nullptr; 230 } 231 232 bool LibraryCallKit::try_to_inline(int predicate) { 233 // Handle symbolic names for otherwise undistinguished boolean switches: 234 const bool is_store = true; 235 const bool is_compress = true; 236 const bool is_static = true; 237 const bool is_volatile = true; 238 239 if (!jvms()->has_method()) { 240 // Root JVMState has a null method. 241 assert(map()->memory()->Opcode() == Op_Parm, ""); 242 // Insert the memory aliasing node 243 set_all_memory(reset_memory()); 244 } 245 assert(merged_memory(), ""); 246 247 switch (intrinsic_id()) { 248 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 249 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 250 case vmIntrinsics::_getClass: return inline_native_getClass(); 251 252 case vmIntrinsics::_ceil: 253 case vmIntrinsics::_floor: 254 case vmIntrinsics::_rint: 255 case vmIntrinsics::_dsin: 256 case vmIntrinsics::_dcos: 257 case vmIntrinsics::_dtan: 258 case vmIntrinsics::_dtanh: 259 case vmIntrinsics::_dcbrt: 260 case vmIntrinsics::_dabs: 261 case vmIntrinsics::_fabs: 262 case vmIntrinsics::_iabs: 263 case vmIntrinsics::_labs: 264 case vmIntrinsics::_datan2: 265 case vmIntrinsics::_dsqrt: 266 case vmIntrinsics::_dsqrt_strict: 267 case vmIntrinsics::_dexp: 268 case vmIntrinsics::_dlog: 269 case vmIntrinsics::_dlog10: 270 case vmIntrinsics::_dpow: 271 case vmIntrinsics::_dcopySign: 272 case vmIntrinsics::_fcopySign: 273 case vmIntrinsics::_dsignum: 274 case vmIntrinsics::_roundF: 275 case vmIntrinsics::_roundD: 276 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 277 278 case vmIntrinsics::_notify: 279 case vmIntrinsics::_notifyAll: 280 return inline_notify(intrinsic_id()); 281 282 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 283 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 284 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 285 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 286 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 287 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 288 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 289 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 290 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 291 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 292 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 293 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 294 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 295 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 296 297 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 298 299 case vmIntrinsics::_arraySort: return inline_array_sort(); 300 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 301 302 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 303 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 304 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 305 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 306 307 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 308 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 309 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 310 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 311 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 312 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 313 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 314 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 315 316 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 317 318 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 319 320 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 321 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 322 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 323 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 324 325 case vmIntrinsics::_compressStringC: 326 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 327 case vmIntrinsics::_inflateStringC: 328 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 329 330 case vmIntrinsics::_makePrivateBuffer: return inline_unsafe_make_private_buffer(); 331 case vmIntrinsics::_finishPrivateBuffer: return inline_unsafe_finish_private_buffer(); 332 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 333 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 334 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 335 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 336 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 337 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 338 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 339 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 340 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 341 case vmIntrinsics::_getValue: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false, true); 342 343 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 344 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 345 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 346 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 347 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 348 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 349 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 350 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 351 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 352 case vmIntrinsics::_putValue: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false, true); 353 354 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 355 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 356 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 357 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 358 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 359 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 360 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 361 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 362 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 363 364 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 365 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 366 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 367 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 368 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 369 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 370 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 371 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 372 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 373 374 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 375 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 376 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 377 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 378 379 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 380 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 381 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 382 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 383 384 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 385 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 386 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 387 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 388 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 389 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 390 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 391 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 392 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 393 394 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 395 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 396 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 397 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 398 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 399 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 400 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 401 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 402 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 403 404 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 405 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 406 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 407 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 408 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 409 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 410 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 411 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 412 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 413 414 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 415 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 416 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 417 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 418 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 419 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 420 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 421 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 422 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 423 424 case vmIntrinsics::_getFlatValue: return inline_unsafe_flat_access(!is_store, Relaxed); 425 case vmIntrinsics::_putFlatValue: return inline_unsafe_flat_access( is_store, Relaxed); 426 427 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 428 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 429 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 430 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 431 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 432 433 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 434 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 435 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 436 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 437 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 438 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 439 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 440 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 441 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 442 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 443 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 444 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 445 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 446 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 447 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 448 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 449 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 450 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 451 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 452 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 453 454 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 455 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 456 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 457 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 458 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 459 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 460 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 461 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 462 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 463 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 464 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 465 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 466 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 467 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 468 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 469 470 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 471 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 472 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 473 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 474 475 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 476 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 477 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 478 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 479 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 480 481 case vmIntrinsics::_loadFence: 482 case vmIntrinsics::_storeFence: 483 case vmIntrinsics::_storeStoreFence: 484 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 485 486 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 487 488 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 489 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 490 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 491 492 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 493 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 494 495 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 496 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 497 498 #if INCLUDE_JVMTI 499 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 500 "notifyJvmtiStart", true, false); 501 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 502 "notifyJvmtiEnd", false, true); 503 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 504 "notifyJvmtiMount", false, false); 505 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 506 "notifyJvmtiUnmount", false, false); 507 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 508 #endif 509 510 #ifdef JFR_HAVE_INTRINSICS 511 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 512 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 513 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 514 #endif 515 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 516 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 517 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 518 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 519 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 520 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 521 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 522 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 523 case vmIntrinsics::_getLength: return inline_native_getLength(); 524 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 525 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 526 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 527 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 528 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 529 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 530 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 531 532 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 533 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 534 case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false); 535 case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true); 536 case vmIntrinsics::_newNullableAtomicArray: return inline_newArray(/* null_free */ false, /* atomic */ true); 537 538 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 539 540 case vmIntrinsics::_isInstance: 541 case vmIntrinsics::_isHidden: 542 case vmIntrinsics::_getSuperclass: 543 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 544 545 case vmIntrinsics::_floatToRawIntBits: 546 case vmIntrinsics::_floatToIntBits: 547 case vmIntrinsics::_intBitsToFloat: 548 case vmIntrinsics::_doubleToRawLongBits: 549 case vmIntrinsics::_doubleToLongBits: 550 case vmIntrinsics::_longBitsToDouble: 551 case vmIntrinsics::_floatToFloat16: 552 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 553 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 554 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 555 case vmIntrinsics::_floatIsFinite: 556 case vmIntrinsics::_floatIsInfinite: 557 case vmIntrinsics::_doubleIsFinite: 558 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 559 560 case vmIntrinsics::_numberOfLeadingZeros_i: 561 case vmIntrinsics::_numberOfLeadingZeros_l: 562 case vmIntrinsics::_numberOfTrailingZeros_i: 563 case vmIntrinsics::_numberOfTrailingZeros_l: 564 case vmIntrinsics::_bitCount_i: 565 case vmIntrinsics::_bitCount_l: 566 case vmIntrinsics::_reverse_i: 567 case vmIntrinsics::_reverse_l: 568 case vmIntrinsics::_reverseBytes_i: 569 case vmIntrinsics::_reverseBytes_l: 570 case vmIntrinsics::_reverseBytes_s: 571 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 572 573 case vmIntrinsics::_compress_i: 574 case vmIntrinsics::_compress_l: 575 case vmIntrinsics::_expand_i: 576 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 577 578 case vmIntrinsics::_compareUnsigned_i: 579 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 580 581 case vmIntrinsics::_divideUnsigned_i: 582 case vmIntrinsics::_divideUnsigned_l: 583 case vmIntrinsics::_remainderUnsigned_i: 584 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 585 586 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 587 588 case vmIntrinsics::_Reference_get0: return inline_reference_get0(); 589 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 590 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 591 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 592 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 593 594 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 595 596 case vmIntrinsics::_aescrypt_encryptBlock: 597 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 598 599 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 600 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 601 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 602 603 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 604 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 605 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 606 607 case vmIntrinsics::_counterMode_AESCrypt: 608 return inline_counterMode_AESCrypt(intrinsic_id()); 609 610 case vmIntrinsics::_galoisCounterMode_AESCrypt: 611 return inline_galoisCounterMode_AESCrypt(); 612 613 case vmIntrinsics::_md5_implCompress: 614 case vmIntrinsics::_sha_implCompress: 615 case vmIntrinsics::_sha2_implCompress: 616 case vmIntrinsics::_sha5_implCompress: 617 case vmIntrinsics::_sha3_implCompress: 618 return inline_digestBase_implCompress(intrinsic_id()); 619 case vmIntrinsics::_double_keccak: 620 return inline_double_keccak(); 621 622 case vmIntrinsics::_digestBase_implCompressMB: 623 return inline_digestBase_implCompressMB(predicate); 624 625 case vmIntrinsics::_multiplyToLen: 626 return inline_multiplyToLen(); 627 628 case vmIntrinsics::_squareToLen: 629 return inline_squareToLen(); 630 631 case vmIntrinsics::_mulAdd: 632 return inline_mulAdd(); 633 634 case vmIntrinsics::_montgomeryMultiply: 635 return inline_montgomeryMultiply(); 636 case vmIntrinsics::_montgomerySquare: 637 return inline_montgomerySquare(); 638 639 case vmIntrinsics::_bigIntegerRightShiftWorker: 640 return inline_bigIntegerShift(true); 641 case vmIntrinsics::_bigIntegerLeftShiftWorker: 642 return inline_bigIntegerShift(false); 643 644 case vmIntrinsics::_vectorizedMismatch: 645 return inline_vectorizedMismatch(); 646 647 case vmIntrinsics::_ghash_processBlocks: 648 return inline_ghash_processBlocks(); 649 case vmIntrinsics::_chacha20Block: 650 return inline_chacha20Block(); 651 case vmIntrinsics::_kyberNtt: 652 return inline_kyberNtt(); 653 case vmIntrinsics::_kyberInverseNtt: 654 return inline_kyberInverseNtt(); 655 case vmIntrinsics::_kyberNttMult: 656 return inline_kyberNttMult(); 657 case vmIntrinsics::_kyberAddPoly_2: 658 return inline_kyberAddPoly_2(); 659 case vmIntrinsics::_kyberAddPoly_3: 660 return inline_kyberAddPoly_3(); 661 case vmIntrinsics::_kyber12To16: 662 return inline_kyber12To16(); 663 case vmIntrinsics::_kyberBarrettReduce: 664 return inline_kyberBarrettReduce(); 665 case vmIntrinsics::_dilithiumAlmostNtt: 666 return inline_dilithiumAlmostNtt(); 667 case vmIntrinsics::_dilithiumAlmostInverseNtt: 668 return inline_dilithiumAlmostInverseNtt(); 669 case vmIntrinsics::_dilithiumNttMult: 670 return inline_dilithiumNttMult(); 671 case vmIntrinsics::_dilithiumMontMulByConstant: 672 return inline_dilithiumMontMulByConstant(); 673 case vmIntrinsics::_dilithiumDecomposePoly: 674 return inline_dilithiumDecomposePoly(); 675 case vmIntrinsics::_base64_encodeBlock: 676 return inline_base64_encodeBlock(); 677 case vmIntrinsics::_base64_decodeBlock: 678 return inline_base64_decodeBlock(); 679 case vmIntrinsics::_poly1305_processBlocks: 680 return inline_poly1305_processBlocks(); 681 case vmIntrinsics::_intpoly_montgomeryMult_P256: 682 return inline_intpoly_montgomeryMult_P256(); 683 case vmIntrinsics::_intpoly_assign: 684 return inline_intpoly_assign(); 685 case vmIntrinsics::_encodeISOArray: 686 case vmIntrinsics::_encodeByteISOArray: 687 return inline_encodeISOArray(false); 688 case vmIntrinsics::_encodeAsciiArray: 689 return inline_encodeISOArray(true); 690 691 case vmIntrinsics::_updateCRC32: 692 return inline_updateCRC32(); 693 case vmIntrinsics::_updateBytesCRC32: 694 return inline_updateBytesCRC32(); 695 case vmIntrinsics::_updateByteBufferCRC32: 696 return inline_updateByteBufferCRC32(); 697 698 case vmIntrinsics::_updateBytesCRC32C: 699 return inline_updateBytesCRC32C(); 700 case vmIntrinsics::_updateDirectByteBufferCRC32C: 701 return inline_updateDirectByteBufferCRC32C(); 702 703 case vmIntrinsics::_updateBytesAdler32: 704 return inline_updateBytesAdler32(); 705 case vmIntrinsics::_updateByteBufferAdler32: 706 return inline_updateByteBufferAdler32(); 707 708 case vmIntrinsics::_profileBoolean: 709 return inline_profileBoolean(); 710 case vmIntrinsics::_isCompileConstant: 711 return inline_isCompileConstant(); 712 713 case vmIntrinsics::_countPositives: 714 return inline_countPositives(); 715 716 case vmIntrinsics::_fmaD: 717 case vmIntrinsics::_fmaF: 718 return inline_fma(intrinsic_id()); 719 720 case vmIntrinsics::_isDigit: 721 case vmIntrinsics::_isLowerCase: 722 case vmIntrinsics::_isUpperCase: 723 case vmIntrinsics::_isWhitespace: 724 return inline_character_compare(intrinsic_id()); 725 726 case vmIntrinsics::_min: 727 case vmIntrinsics::_max: 728 case vmIntrinsics::_min_strict: 729 case vmIntrinsics::_max_strict: 730 case vmIntrinsics::_minL: 731 case vmIntrinsics::_maxL: 732 case vmIntrinsics::_minF: 733 case vmIntrinsics::_maxF: 734 case vmIntrinsics::_minD: 735 case vmIntrinsics::_maxD: 736 case vmIntrinsics::_minF_strict: 737 case vmIntrinsics::_maxF_strict: 738 case vmIntrinsics::_minD_strict: 739 case vmIntrinsics::_maxD_strict: 740 return inline_min_max(intrinsic_id()); 741 742 case vmIntrinsics::_VectorUnaryOp: 743 return inline_vector_nary_operation(1); 744 case vmIntrinsics::_VectorBinaryOp: 745 return inline_vector_nary_operation(2); 746 case vmIntrinsics::_VectorUnaryLibOp: 747 return inline_vector_call(1); 748 case vmIntrinsics::_VectorBinaryLibOp: 749 return inline_vector_call(2); 750 case vmIntrinsics::_VectorTernaryOp: 751 return inline_vector_nary_operation(3); 752 case vmIntrinsics::_VectorFromBitsCoerced: 753 return inline_vector_frombits_coerced(); 754 case vmIntrinsics::_VectorMaskOp: 755 return inline_vector_mask_operation(); 756 case vmIntrinsics::_VectorLoadOp: 757 return inline_vector_mem_operation(/*is_store=*/false); 758 case vmIntrinsics::_VectorLoadMaskedOp: 759 return inline_vector_mem_masked_operation(/*is_store*/false); 760 case vmIntrinsics::_VectorStoreOp: 761 return inline_vector_mem_operation(/*is_store=*/true); 762 case vmIntrinsics::_VectorStoreMaskedOp: 763 return inline_vector_mem_masked_operation(/*is_store=*/true); 764 case vmIntrinsics::_VectorGatherOp: 765 return inline_vector_gather_scatter(/*is_scatter*/ false); 766 case vmIntrinsics::_VectorScatterOp: 767 return inline_vector_gather_scatter(/*is_scatter*/ true); 768 case vmIntrinsics::_VectorReductionCoerced: 769 return inline_vector_reduction(); 770 case vmIntrinsics::_VectorTest: 771 return inline_vector_test(); 772 case vmIntrinsics::_VectorBlend: 773 return inline_vector_blend(); 774 case vmIntrinsics::_VectorRearrange: 775 return inline_vector_rearrange(); 776 case vmIntrinsics::_VectorSelectFrom: 777 return inline_vector_select_from(); 778 case vmIntrinsics::_VectorCompare: 779 return inline_vector_compare(); 780 case vmIntrinsics::_VectorBroadcastInt: 781 return inline_vector_broadcast_int(); 782 case vmIntrinsics::_VectorConvert: 783 return inline_vector_convert(); 784 case vmIntrinsics::_VectorInsert: 785 return inline_vector_insert(); 786 case vmIntrinsics::_VectorExtract: 787 return inline_vector_extract(); 788 case vmIntrinsics::_VectorCompressExpand: 789 return inline_vector_compress_expand(); 790 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 791 return inline_vector_select_from_two_vectors(); 792 case vmIntrinsics::_IndexVector: 793 return inline_index_vector(); 794 case vmIntrinsics::_IndexPartiallyInUpperRange: 795 return inline_index_partially_in_upper_range(); 796 797 case vmIntrinsics::_getObjectSize: 798 return inline_getObjectSize(); 799 800 case vmIntrinsics::_blackhole: 801 return inline_blackhole(); 802 803 default: 804 // If you get here, it may be that someone has added a new intrinsic 805 // to the list in vmIntrinsics.hpp without implementing it here. 806 #ifndef PRODUCT 807 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 808 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 809 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 810 } 811 #endif 812 return false; 813 } 814 } 815 816 Node* LibraryCallKit::try_to_predicate(int predicate) { 817 if (!jvms()->has_method()) { 818 // Root JVMState has a null method. 819 assert(map()->memory()->Opcode() == Op_Parm, ""); 820 // Insert the memory aliasing node 821 set_all_memory(reset_memory()); 822 } 823 assert(merged_memory(), ""); 824 825 switch (intrinsic_id()) { 826 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 827 return inline_cipherBlockChaining_AESCrypt_predicate(false); 828 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 829 return inline_cipherBlockChaining_AESCrypt_predicate(true); 830 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 831 return inline_electronicCodeBook_AESCrypt_predicate(false); 832 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 833 return inline_electronicCodeBook_AESCrypt_predicate(true); 834 case vmIntrinsics::_counterMode_AESCrypt: 835 return inline_counterMode_AESCrypt_predicate(); 836 case vmIntrinsics::_digestBase_implCompressMB: 837 return inline_digestBase_implCompressMB_predicate(predicate); 838 case vmIntrinsics::_galoisCounterMode_AESCrypt: 839 return inline_galoisCounterMode_AESCrypt_predicate(); 840 841 default: 842 // If you get here, it may be that someone has added a new intrinsic 843 // to the list in vmIntrinsics.hpp without implementing it here. 844 #ifndef PRODUCT 845 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 846 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 847 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 848 } 849 #endif 850 Node* slow_ctl = control(); 851 set_control(top()); // No fast path intrinsic 852 return slow_ctl; 853 } 854 } 855 856 //------------------------------set_result------------------------------- 857 // Helper function for finishing intrinsics. 858 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 859 record_for_igvn(region); 860 set_control(_gvn.transform(region)); 861 set_result( _gvn.transform(value)); 862 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 863 } 864 865 //------------------------------generate_guard--------------------------- 866 // Helper function for generating guarded fast-slow graph structures. 867 // The given 'test', if true, guards a slow path. If the test fails 868 // then a fast path can be taken. (We generally hope it fails.) 869 // In all cases, GraphKit::control() is updated to the fast path. 870 // The returned value represents the control for the slow path. 871 // The return value is never 'top'; it is either a valid control 872 // or null if it is obvious that the slow path can never be taken. 873 // Also, if region and the slow control are not null, the slow edge 874 // is appended to the region. 875 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 876 if (stopped()) { 877 // Already short circuited. 878 return nullptr; 879 } 880 881 // Build an if node and its projections. 882 // If test is true we take the slow path, which we assume is uncommon. 883 if (_gvn.type(test) == TypeInt::ZERO) { 884 // The slow branch is never taken. No need to build this guard. 885 return nullptr; 886 } 887 888 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 889 890 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 891 if (if_slow == top()) { 892 // The slow branch is never taken. No need to build this guard. 893 return nullptr; 894 } 895 896 if (region != nullptr) 897 region->add_req(if_slow); 898 899 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 900 set_control(if_fast); 901 902 return if_slow; 903 } 904 905 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 906 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 907 } 908 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 909 return generate_guard(test, region, PROB_FAIR); 910 } 911 912 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 913 Node* *pos_index) { 914 if (stopped()) 915 return nullptr; // already stopped 916 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 917 return nullptr; // index is already adequately typed 918 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 919 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 920 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 921 if (is_neg != nullptr && pos_index != nullptr) { 922 // Emulate effect of Parse::adjust_map_after_if. 923 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 924 (*pos_index) = _gvn.transform(ccast); 925 } 926 return is_neg; 927 } 928 929 // Make sure that 'position' is a valid limit index, in [0..length]. 930 // There are two equivalent plans for checking this: 931 // A. (offset + copyLength) unsigned<= arrayLength 932 // B. offset <= (arrayLength - copyLength) 933 // We require that all of the values above, except for the sum and 934 // difference, are already known to be non-negative. 935 // Plan A is robust in the face of overflow, if offset and copyLength 936 // are both hugely positive. 937 // 938 // Plan B is less direct and intuitive, but it does not overflow at 939 // all, since the difference of two non-negatives is always 940 // representable. Whenever Java methods must perform the equivalent 941 // check they generally use Plan B instead of Plan A. 942 // For the moment we use Plan A. 943 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 944 Node* subseq_length, 945 Node* array_length, 946 RegionNode* region) { 947 if (stopped()) 948 return nullptr; // already stopped 949 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 950 if (zero_offset && subseq_length->eqv_uncast(array_length)) 951 return nullptr; // common case of whole-array copy 952 Node* last = subseq_length; 953 if (!zero_offset) // last += offset 954 last = _gvn.transform(new AddINode(last, offset)); 955 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 956 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 957 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 958 return is_over; 959 } 960 961 // Emit range checks for the given String.value byte array 962 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 963 if (stopped()) { 964 return; // already stopped 965 } 966 RegionNode* bailout = new RegionNode(1); 967 record_for_igvn(bailout); 968 if (char_count) { 969 // Convert char count to byte count 970 count = _gvn.transform(new LShiftINode(count, intcon(1))); 971 } 972 973 // Offset and count must not be negative 974 generate_negative_guard(offset, bailout); 975 generate_negative_guard(count, bailout); 976 // Offset + count must not exceed length of array 977 generate_limit_guard(offset, count, load_array_length(array), bailout); 978 979 if (bailout->req() > 1) { 980 PreserveJVMState pjvms(this); 981 set_control(_gvn.transform(bailout)); 982 uncommon_trap(Deoptimization::Reason_intrinsic, 983 Deoptimization::Action_maybe_recompile); 984 } 985 } 986 987 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 988 bool is_immutable) { 989 ciKlass* thread_klass = env()->Thread_klass(); 990 const Type* thread_type 991 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 992 993 Node* thread = _gvn.transform(new ThreadLocalNode()); 994 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 995 tls_output = thread; 996 997 Node* thread_obj_handle 998 = (is_immutable 999 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 1000 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 1001 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 1002 thread_obj_handle = _gvn.transform(thread_obj_handle); 1003 1004 DecoratorSet decorators = IN_NATIVE; 1005 if (is_immutable) { 1006 decorators |= C2_IMMUTABLE_MEMORY; 1007 } 1008 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 1009 } 1010 1011 //--------------------------generate_current_thread-------------------- 1012 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 1013 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 1014 /*is_immutable*/false); 1015 } 1016 1017 //--------------------------generate_virtual_thread-------------------- 1018 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 1019 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 1020 !C->method()->changes_current_thread()); 1021 } 1022 1023 //------------------------------make_string_method_node------------------------ 1024 // Helper method for String intrinsic functions. This version is called with 1025 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1026 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1027 // containing the lengths of str1 and str2. 1028 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1029 Node* result = nullptr; 1030 switch (opcode) { 1031 case Op_StrIndexOf: 1032 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1033 str1_start, cnt1, str2_start, cnt2, ae); 1034 break; 1035 case Op_StrComp: 1036 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1037 str1_start, cnt1, str2_start, cnt2, ae); 1038 break; 1039 case Op_StrEquals: 1040 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1041 // Use the constant length if there is one because optimized match rule may exist. 1042 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1043 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1044 break; 1045 default: 1046 ShouldNotReachHere(); 1047 return nullptr; 1048 } 1049 1050 // All these intrinsics have checks. 1051 C->set_has_split_ifs(true); // Has chance for split-if optimization 1052 clear_upper_avx(); 1053 1054 return _gvn.transform(result); 1055 } 1056 1057 //------------------------------inline_string_compareTo------------------------ 1058 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1059 Node* arg1 = argument(0); 1060 Node* arg2 = argument(1); 1061 1062 arg1 = must_be_not_null(arg1, true); 1063 arg2 = must_be_not_null(arg2, true); 1064 1065 // Get start addr and length of first argument 1066 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1067 Node* arg1_cnt = load_array_length(arg1); 1068 1069 // Get start addr and length of second argument 1070 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1071 Node* arg2_cnt = load_array_length(arg2); 1072 1073 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1074 set_result(result); 1075 return true; 1076 } 1077 1078 //------------------------------inline_string_equals------------------------ 1079 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1080 Node* arg1 = argument(0); 1081 Node* arg2 = argument(1); 1082 1083 // paths (plus control) merge 1084 RegionNode* region = new RegionNode(3); 1085 Node* phi = new PhiNode(region, TypeInt::BOOL); 1086 1087 if (!stopped()) { 1088 1089 arg1 = must_be_not_null(arg1, true); 1090 arg2 = must_be_not_null(arg2, true); 1091 1092 // Get start addr and length of first argument 1093 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1094 Node* arg1_cnt = load_array_length(arg1); 1095 1096 // Get start addr and length of second argument 1097 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1098 Node* arg2_cnt = load_array_length(arg2); 1099 1100 // Check for arg1_cnt != arg2_cnt 1101 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1102 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1103 Node* if_ne = generate_slow_guard(bol, nullptr); 1104 if (if_ne != nullptr) { 1105 phi->init_req(2, intcon(0)); 1106 region->init_req(2, if_ne); 1107 } 1108 1109 // Check for count == 0 is done by assembler code for StrEquals. 1110 1111 if (!stopped()) { 1112 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1113 phi->init_req(1, equals); 1114 region->init_req(1, control()); 1115 } 1116 } 1117 1118 // post merge 1119 set_control(_gvn.transform(region)); 1120 record_for_igvn(region); 1121 1122 set_result(_gvn.transform(phi)); 1123 return true; 1124 } 1125 1126 //------------------------------inline_array_equals---------------------------- 1127 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1128 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1129 Node* arg1 = argument(0); 1130 Node* arg2 = argument(1); 1131 1132 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1133 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1134 clear_upper_avx(); 1135 1136 return true; 1137 } 1138 1139 1140 //------------------------------inline_countPositives------------------------------ 1141 bool LibraryCallKit::inline_countPositives() { 1142 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1143 return false; 1144 } 1145 1146 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1147 // no receiver since it is static method 1148 Node* ba = argument(0); 1149 Node* offset = argument(1); 1150 Node* len = argument(2); 1151 1152 ba = must_be_not_null(ba, true); 1153 1154 // Range checks 1155 generate_string_range_check(ba, offset, len, false); 1156 if (stopped()) { 1157 return true; 1158 } 1159 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1160 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1161 set_result(_gvn.transform(result)); 1162 clear_upper_avx(); 1163 return true; 1164 } 1165 1166 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1167 Node* index = argument(0); 1168 Node* length = bt == T_INT ? argument(1) : argument(2); 1169 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1170 return false; 1171 } 1172 1173 // check that length is positive 1174 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1175 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1176 1177 { 1178 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1179 uncommon_trap(Deoptimization::Reason_intrinsic, 1180 Deoptimization::Action_make_not_entrant); 1181 } 1182 1183 if (stopped()) { 1184 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1185 return true; 1186 } 1187 1188 // length is now known positive, add a cast node to make this explicit 1189 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1190 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1191 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1192 ConstraintCastNode::RegularDependency, bt); 1193 casted_length = _gvn.transform(casted_length); 1194 replace_in_map(length, casted_length); 1195 length = casted_length; 1196 1197 // Use an unsigned comparison for the range check itself 1198 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1199 BoolTest::mask btest = BoolTest::lt; 1200 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1201 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1202 _gvn.set_type(rc, rc->Value(&_gvn)); 1203 if (!rc_bool->is_Con()) { 1204 record_for_igvn(rc); 1205 } 1206 set_control(_gvn.transform(new IfTrueNode(rc))); 1207 { 1208 PreserveJVMState pjvms(this); 1209 set_control(_gvn.transform(new IfFalseNode(rc))); 1210 uncommon_trap(Deoptimization::Reason_range_check, 1211 Deoptimization::Action_make_not_entrant); 1212 } 1213 1214 if (stopped()) { 1215 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1216 return true; 1217 } 1218 1219 // index is now known to be >= 0 and < length, cast it 1220 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1221 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1222 ConstraintCastNode::RegularDependency, bt); 1223 result = _gvn.transform(result); 1224 set_result(result); 1225 replace_in_map(index, result); 1226 return true; 1227 } 1228 1229 //------------------------------inline_string_indexOf------------------------ 1230 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1231 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1232 return false; 1233 } 1234 Node* src = argument(0); 1235 Node* tgt = argument(1); 1236 1237 // Make the merge point 1238 RegionNode* result_rgn = new RegionNode(4); 1239 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1240 1241 src = must_be_not_null(src, true); 1242 tgt = must_be_not_null(tgt, true); 1243 1244 // Get start addr and length of source string 1245 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1246 Node* src_count = load_array_length(src); 1247 1248 // Get start addr and length of substring 1249 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1250 Node* tgt_count = load_array_length(tgt); 1251 1252 Node* result = nullptr; 1253 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1254 1255 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1256 // Divide src size by 2 if String is UTF16 encoded 1257 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1258 } 1259 if (ae == StrIntrinsicNode::UU) { 1260 // Divide substring size by 2 if String is UTF16 encoded 1261 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1262 } 1263 1264 if (call_opt_stub) { 1265 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1266 StubRoutines::_string_indexof_array[ae], 1267 "stringIndexOf", TypePtr::BOTTOM, src_start, 1268 src_count, tgt_start, tgt_count); 1269 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1270 } else { 1271 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1272 result_rgn, result_phi, ae); 1273 } 1274 if (result != nullptr) { 1275 result_phi->init_req(3, result); 1276 result_rgn->init_req(3, control()); 1277 } 1278 set_control(_gvn.transform(result_rgn)); 1279 record_for_igvn(result_rgn); 1280 set_result(_gvn.transform(result_phi)); 1281 1282 return true; 1283 } 1284 1285 //-----------------------------inline_string_indexOfI----------------------- 1286 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1287 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1288 return false; 1289 } 1290 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1291 return false; 1292 } 1293 1294 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1295 Node* src = argument(0); // byte[] 1296 Node* src_count = argument(1); // char count 1297 Node* tgt = argument(2); // byte[] 1298 Node* tgt_count = argument(3); // char count 1299 Node* from_index = argument(4); // char index 1300 1301 src = must_be_not_null(src, true); 1302 tgt = must_be_not_null(tgt, true); 1303 1304 // Multiply byte array index by 2 if String is UTF16 encoded 1305 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1306 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1307 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1308 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1309 1310 // Range checks 1311 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1312 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1313 if (stopped()) { 1314 return true; 1315 } 1316 1317 RegionNode* region = new RegionNode(5); 1318 Node* phi = new PhiNode(region, TypeInt::INT); 1319 Node* result = nullptr; 1320 1321 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1322 1323 if (call_opt_stub) { 1324 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1325 StubRoutines::_string_indexof_array[ae], 1326 "stringIndexOf", TypePtr::BOTTOM, src_start, 1327 src_count, tgt_start, tgt_count); 1328 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1329 } else { 1330 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1331 region, phi, ae); 1332 } 1333 if (result != nullptr) { 1334 // The result is index relative to from_index if substring was found, -1 otherwise. 1335 // Generate code which will fold into cmove. 1336 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1337 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1338 1339 Node* if_lt = generate_slow_guard(bol, nullptr); 1340 if (if_lt != nullptr) { 1341 // result == -1 1342 phi->init_req(3, result); 1343 region->init_req(3, if_lt); 1344 } 1345 if (!stopped()) { 1346 result = _gvn.transform(new AddINode(result, from_index)); 1347 phi->init_req(4, result); 1348 region->init_req(4, control()); 1349 } 1350 } 1351 1352 set_control(_gvn.transform(region)); 1353 record_for_igvn(region); 1354 set_result(_gvn.transform(phi)); 1355 clear_upper_avx(); 1356 1357 return true; 1358 } 1359 1360 // Create StrIndexOfNode with fast path checks 1361 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1362 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1363 // Check for substr count > string count 1364 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1365 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1366 Node* if_gt = generate_slow_guard(bol, nullptr); 1367 if (if_gt != nullptr) { 1368 phi->init_req(1, intcon(-1)); 1369 region->init_req(1, if_gt); 1370 } 1371 if (!stopped()) { 1372 // Check for substr count == 0 1373 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1374 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1375 Node* if_zero = generate_slow_guard(bol, nullptr); 1376 if (if_zero != nullptr) { 1377 phi->init_req(2, intcon(0)); 1378 region->init_req(2, if_zero); 1379 } 1380 } 1381 if (!stopped()) { 1382 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1383 } 1384 return nullptr; 1385 } 1386 1387 //-----------------------------inline_string_indexOfChar----------------------- 1388 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1389 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1390 return false; 1391 } 1392 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1393 return false; 1394 } 1395 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1396 Node* src = argument(0); // byte[] 1397 Node* int_ch = argument(1); 1398 Node* from_index = argument(2); 1399 Node* max = argument(3); 1400 1401 src = must_be_not_null(src, true); 1402 1403 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1404 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1405 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1406 1407 // Range checks 1408 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1409 1410 // Check for int_ch >= 0 1411 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1412 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1413 { 1414 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1415 uncommon_trap(Deoptimization::Reason_intrinsic, 1416 Deoptimization::Action_maybe_recompile); 1417 } 1418 if (stopped()) { 1419 return true; 1420 } 1421 1422 RegionNode* region = new RegionNode(3); 1423 Node* phi = new PhiNode(region, TypeInt::INT); 1424 1425 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1426 C->set_has_split_ifs(true); // Has chance for split-if optimization 1427 _gvn.transform(result); 1428 1429 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1430 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1431 1432 Node* if_lt = generate_slow_guard(bol, nullptr); 1433 if (if_lt != nullptr) { 1434 // result == -1 1435 phi->init_req(2, result); 1436 region->init_req(2, if_lt); 1437 } 1438 if (!stopped()) { 1439 result = _gvn.transform(new AddINode(result, from_index)); 1440 phi->init_req(1, result); 1441 region->init_req(1, control()); 1442 } 1443 set_control(_gvn.transform(region)); 1444 record_for_igvn(region); 1445 set_result(_gvn.transform(phi)); 1446 clear_upper_avx(); 1447 1448 return true; 1449 } 1450 //---------------------------inline_string_copy--------------------- 1451 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1452 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1453 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1454 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1455 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1456 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1457 bool LibraryCallKit::inline_string_copy(bool compress) { 1458 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1459 return false; 1460 } 1461 int nargs = 5; // 2 oops, 3 ints 1462 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1463 1464 Node* src = argument(0); 1465 Node* src_offset = argument(1); 1466 Node* dst = argument(2); 1467 Node* dst_offset = argument(3); 1468 Node* length = argument(4); 1469 1470 // Check for allocation before we add nodes that would confuse 1471 // tightly_coupled_allocation() 1472 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1473 1474 // Figure out the size and type of the elements we will be copying. 1475 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1476 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1477 if (src_type == nullptr || dst_type == nullptr) { 1478 return false; 1479 } 1480 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1481 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1482 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1483 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1484 "Unsupported array types for inline_string_copy"); 1485 1486 src = must_be_not_null(src, true); 1487 dst = must_be_not_null(dst, true); 1488 1489 // Convert char[] offsets to byte[] offsets 1490 bool convert_src = (compress && src_elem == T_BYTE); 1491 bool convert_dst = (!compress && dst_elem == T_BYTE); 1492 if (convert_src) { 1493 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1494 } else if (convert_dst) { 1495 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1496 } 1497 1498 // Range checks 1499 generate_string_range_check(src, src_offset, length, convert_src); 1500 generate_string_range_check(dst, dst_offset, length, convert_dst); 1501 if (stopped()) { 1502 return true; 1503 } 1504 1505 Node* src_start = array_element_address(src, src_offset, src_elem); 1506 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1507 // 'src_start' points to src array + scaled offset 1508 // 'dst_start' points to dst array + scaled offset 1509 Node* count = nullptr; 1510 if (compress) { 1511 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1512 } else { 1513 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1514 } 1515 1516 if (alloc != nullptr) { 1517 if (alloc->maybe_set_complete(&_gvn)) { 1518 // "You break it, you buy it." 1519 InitializeNode* init = alloc->initialization(); 1520 assert(init->is_complete(), "we just did this"); 1521 init->set_complete_with_arraycopy(); 1522 assert(dst->is_CheckCastPP(), "sanity"); 1523 assert(dst->in(0)->in(0) == init, "dest pinned"); 1524 } 1525 // Do not let stores that initialize this object be reordered with 1526 // a subsequent store that would make this object accessible by 1527 // other threads. 1528 // Record what AllocateNode this StoreStore protects so that 1529 // escape analysis can go from the MemBarStoreStoreNode to the 1530 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1531 // based on the escape status of the AllocateNode. 1532 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1533 } 1534 if (compress) { 1535 set_result(_gvn.transform(count)); 1536 } 1537 clear_upper_avx(); 1538 1539 return true; 1540 } 1541 1542 #ifdef _LP64 1543 #define XTOP ,top() /*additional argument*/ 1544 #else //_LP64 1545 #define XTOP /*no additional argument*/ 1546 #endif //_LP64 1547 1548 //------------------------inline_string_toBytesU-------------------------- 1549 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1550 bool LibraryCallKit::inline_string_toBytesU() { 1551 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1552 return false; 1553 } 1554 // Get the arguments. 1555 Node* value = argument(0); 1556 Node* offset = argument(1); 1557 Node* length = argument(2); 1558 1559 Node* newcopy = nullptr; 1560 1561 // Set the original stack and the reexecute bit for the interpreter to reexecute 1562 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1563 { PreserveReexecuteState preexecs(this); 1564 jvms()->set_should_reexecute(true); 1565 1566 // Check if a null path was taken unconditionally. 1567 value = null_check(value); 1568 1569 RegionNode* bailout = new RegionNode(1); 1570 record_for_igvn(bailout); 1571 1572 // Range checks 1573 generate_negative_guard(offset, bailout); 1574 generate_negative_guard(length, bailout); 1575 generate_limit_guard(offset, length, load_array_length(value), bailout); 1576 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1577 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1578 1579 if (bailout->req() > 1) { 1580 PreserveJVMState pjvms(this); 1581 set_control(_gvn.transform(bailout)); 1582 uncommon_trap(Deoptimization::Reason_intrinsic, 1583 Deoptimization::Action_maybe_recompile); 1584 } 1585 if (stopped()) { 1586 return true; 1587 } 1588 1589 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1590 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1591 newcopy = new_array(klass_node, size, 0); // no arguments to push 1592 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1593 guarantee(alloc != nullptr, "created above"); 1594 1595 // Calculate starting addresses. 1596 Node* src_start = array_element_address(value, offset, T_CHAR); 1597 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1598 1599 // Check if dst array address is aligned to HeapWordSize 1600 bool aligned = (arrayOopDesc::base_offset_in_bytes(T_BYTE) % HeapWordSize == 0); 1601 // If true, then check if src array address is aligned to HeapWordSize 1602 if (aligned) { 1603 const TypeInt* toffset = gvn().type(offset)->is_int(); 1604 aligned = toffset->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_CHAR) + 1605 toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1606 } 1607 1608 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1609 const char* copyfunc_name = "arraycopy"; 1610 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1611 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1612 OptoRuntime::fast_arraycopy_Type(), 1613 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1614 src_start, dst_start, ConvI2X(length) XTOP); 1615 // Do not let reads from the cloned object float above the arraycopy. 1616 if (alloc->maybe_set_complete(&_gvn)) { 1617 // "You break it, you buy it." 1618 InitializeNode* init = alloc->initialization(); 1619 assert(init->is_complete(), "we just did this"); 1620 init->set_complete_with_arraycopy(); 1621 assert(newcopy->is_CheckCastPP(), "sanity"); 1622 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1623 } 1624 // Do not let stores that initialize this object be reordered with 1625 // a subsequent store that would make this object accessible by 1626 // other threads. 1627 // Record what AllocateNode this StoreStore protects so that 1628 // escape analysis can go from the MemBarStoreStoreNode to the 1629 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1630 // based on the escape status of the AllocateNode. 1631 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1632 } // original reexecute is set back here 1633 1634 C->set_has_split_ifs(true); // Has chance for split-if optimization 1635 if (!stopped()) { 1636 set_result(newcopy); 1637 } 1638 clear_upper_avx(); 1639 1640 return true; 1641 } 1642 1643 //------------------------inline_string_getCharsU-------------------------- 1644 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1645 bool LibraryCallKit::inline_string_getCharsU() { 1646 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1647 return false; 1648 } 1649 1650 // Get the arguments. 1651 Node* src = argument(0); 1652 Node* src_begin = argument(1); 1653 Node* src_end = argument(2); // exclusive offset (i < src_end) 1654 Node* dst = argument(3); 1655 Node* dst_begin = argument(4); 1656 1657 // Check for allocation before we add nodes that would confuse 1658 // tightly_coupled_allocation() 1659 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1660 1661 // Check if a null path was taken unconditionally. 1662 src = null_check(src); 1663 dst = null_check(dst); 1664 if (stopped()) { 1665 return true; 1666 } 1667 1668 // Get length and convert char[] offset to byte[] offset 1669 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1670 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1671 1672 // Range checks 1673 generate_string_range_check(src, src_begin, length, true); 1674 generate_string_range_check(dst, dst_begin, length, false); 1675 if (stopped()) { 1676 return true; 1677 } 1678 1679 if (!stopped()) { 1680 // Calculate starting addresses. 1681 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1682 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1683 1684 // Check if array addresses are aligned to HeapWordSize 1685 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1686 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1687 bool aligned = tsrc->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_BYTE) + tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1688 tdst->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_CHAR) + tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1689 1690 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1691 const char* copyfunc_name = "arraycopy"; 1692 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1693 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1694 OptoRuntime::fast_arraycopy_Type(), 1695 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1696 src_start, dst_start, ConvI2X(length) XTOP); 1697 // Do not let reads from the cloned object float above the arraycopy. 1698 if (alloc != nullptr) { 1699 if (alloc->maybe_set_complete(&_gvn)) { 1700 // "You break it, you buy it." 1701 InitializeNode* init = alloc->initialization(); 1702 assert(init->is_complete(), "we just did this"); 1703 init->set_complete_with_arraycopy(); 1704 assert(dst->is_CheckCastPP(), "sanity"); 1705 assert(dst->in(0)->in(0) == init, "dest pinned"); 1706 } 1707 // Do not let stores that initialize this object be reordered with 1708 // a subsequent store that would make this object accessible by 1709 // other threads. 1710 // Record what AllocateNode this StoreStore protects so that 1711 // escape analysis can go from the MemBarStoreStoreNode to the 1712 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1713 // based on the escape status of the AllocateNode. 1714 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1715 } else { 1716 insert_mem_bar(Op_MemBarCPUOrder); 1717 } 1718 } 1719 1720 C->set_has_split_ifs(true); // Has chance for split-if optimization 1721 return true; 1722 } 1723 1724 //----------------------inline_string_char_access---------------------------- 1725 // Store/Load char to/from byte[] array. 1726 // static void StringUTF16.putChar(byte[] val, int index, int c) 1727 // static char StringUTF16.getChar(byte[] val, int index) 1728 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1729 Node* value = argument(0); 1730 Node* index = argument(1); 1731 Node* ch = is_store ? argument(2) : nullptr; 1732 1733 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1734 // correctly requires matched array shapes. 1735 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1736 "sanity: byte[] and char[] bases agree"); 1737 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1738 "sanity: byte[] and char[] scales agree"); 1739 1740 // Bail when getChar over constants is requested: constant folding would 1741 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1742 // Java method would constant fold nicely instead. 1743 if (!is_store && value->is_Con() && index->is_Con()) { 1744 return false; 1745 } 1746 1747 // Save state and restore on bailout 1748 uint old_sp = sp(); 1749 SafePointNode* old_map = clone_map(); 1750 1751 value = must_be_not_null(value, true); 1752 1753 Node* adr = array_element_address(value, index, T_CHAR); 1754 if (adr->is_top()) { 1755 set_map(old_map); 1756 set_sp(old_sp); 1757 return false; 1758 } 1759 destruct_map_clone(old_map); 1760 if (is_store) { 1761 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1762 } else { 1763 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1764 set_result(ch); 1765 } 1766 return true; 1767 } 1768 1769 1770 //------------------------------inline_math----------------------------------- 1771 // public static double Math.abs(double) 1772 // public static double Math.sqrt(double) 1773 // public static double Math.log(double) 1774 // public static double Math.log10(double) 1775 // public static double Math.round(double) 1776 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1777 Node* arg = argument(0); 1778 Node* n = nullptr; 1779 switch (id) { 1780 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1781 case vmIntrinsics::_dsqrt: 1782 case vmIntrinsics::_dsqrt_strict: 1783 n = new SqrtDNode(C, control(), arg); break; 1784 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1785 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1786 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1787 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1788 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1789 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1790 default: fatal_unexpected_iid(id); break; 1791 } 1792 set_result(_gvn.transform(n)); 1793 return true; 1794 } 1795 1796 //------------------------------inline_math----------------------------------- 1797 // public static float Math.abs(float) 1798 // public static int Math.abs(int) 1799 // public static long Math.abs(long) 1800 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1801 Node* arg = argument(0); 1802 Node* n = nullptr; 1803 switch (id) { 1804 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1805 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1806 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1807 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1808 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1809 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1810 default: fatal_unexpected_iid(id); break; 1811 } 1812 set_result(_gvn.transform(n)); 1813 return true; 1814 } 1815 1816 //------------------------------runtime_math----------------------------- 1817 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1818 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1819 "must be (DD)D or (D)D type"); 1820 1821 // Inputs 1822 Node* a = argument(0); 1823 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1824 1825 const TypePtr* no_memory_effects = nullptr; 1826 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1827 no_memory_effects, 1828 a, top(), b, b ? top() : nullptr); 1829 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1830 #ifdef ASSERT 1831 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1832 assert(value_top == top(), "second value must be top"); 1833 #endif 1834 1835 set_result(value); 1836 return true; 1837 } 1838 1839 //------------------------------inline_math_pow----------------------------- 1840 bool LibraryCallKit::inline_math_pow() { 1841 Node* exp = argument(2); 1842 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1843 if (d != nullptr) { 1844 if (d->getd() == 2.0) { 1845 // Special case: pow(x, 2.0) => x * x 1846 Node* base = argument(0); 1847 set_result(_gvn.transform(new MulDNode(base, base))); 1848 return true; 1849 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1850 // Special case: pow(x, 0.5) => sqrt(x) 1851 Node* base = argument(0); 1852 Node* zero = _gvn.zerocon(T_DOUBLE); 1853 1854 RegionNode* region = new RegionNode(3); 1855 Node* phi = new PhiNode(region, Type::DOUBLE); 1856 1857 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1858 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1859 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1860 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1861 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1862 1863 Node* if_pow = generate_slow_guard(test, nullptr); 1864 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1865 phi->init_req(1, value_sqrt); 1866 region->init_req(1, control()); 1867 1868 if (if_pow != nullptr) { 1869 set_control(if_pow); 1870 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1871 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1872 const TypePtr* no_memory_effects = nullptr; 1873 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1874 no_memory_effects, base, top(), exp, top()); 1875 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1876 #ifdef ASSERT 1877 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1878 assert(value_top == top(), "second value must be top"); 1879 #endif 1880 phi->init_req(2, value_pow); 1881 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1882 } 1883 1884 C->set_has_split_ifs(true); // Has chance for split-if optimization 1885 set_control(_gvn.transform(region)); 1886 record_for_igvn(region); 1887 set_result(_gvn.transform(phi)); 1888 1889 return true; 1890 } 1891 } 1892 1893 return StubRoutines::dpow() != nullptr ? 1894 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1895 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1896 } 1897 1898 //------------------------------inline_math_native----------------------------- 1899 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1900 switch (id) { 1901 case vmIntrinsics::_dsin: 1902 return StubRoutines::dsin() != nullptr ? 1903 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1904 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1905 case vmIntrinsics::_dcos: 1906 return StubRoutines::dcos() != nullptr ? 1907 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1908 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1909 case vmIntrinsics::_dtan: 1910 return StubRoutines::dtan() != nullptr ? 1911 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1912 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1913 case vmIntrinsics::_dtanh: 1914 return StubRoutines::dtanh() != nullptr ? 1915 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1916 case vmIntrinsics::_dcbrt: 1917 return StubRoutines::dcbrt() != nullptr ? 1918 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcbrt(), "dcbrt") : false; 1919 case vmIntrinsics::_dexp: 1920 return StubRoutines::dexp() != nullptr ? 1921 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1922 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1923 case vmIntrinsics::_dlog: 1924 return StubRoutines::dlog() != nullptr ? 1925 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1926 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1927 case vmIntrinsics::_dlog10: 1928 return StubRoutines::dlog10() != nullptr ? 1929 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1930 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1931 1932 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1933 case vmIntrinsics::_ceil: 1934 case vmIntrinsics::_floor: 1935 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1936 1937 case vmIntrinsics::_dsqrt: 1938 case vmIntrinsics::_dsqrt_strict: 1939 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1940 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1941 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1942 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1943 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1944 1945 case vmIntrinsics::_dpow: return inline_math_pow(); 1946 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1947 case vmIntrinsics::_fcopySign: return inline_math(id); 1948 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1949 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1950 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1951 1952 // These intrinsics are not yet correctly implemented 1953 case vmIntrinsics::_datan2: 1954 return false; 1955 1956 default: 1957 fatal_unexpected_iid(id); 1958 return false; 1959 } 1960 } 1961 1962 //----------------------------inline_notify-----------------------------------* 1963 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1964 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1965 address func; 1966 if (id == vmIntrinsics::_notify) { 1967 func = OptoRuntime::monitor_notify_Java(); 1968 } else { 1969 func = OptoRuntime::monitor_notifyAll_Java(); 1970 } 1971 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1972 make_slow_call_ex(call, env()->Throwable_klass(), false); 1973 return true; 1974 } 1975 1976 1977 //----------------------------inline_min_max----------------------------------- 1978 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1979 Node* a = nullptr; 1980 Node* b = nullptr; 1981 Node* n = nullptr; 1982 switch (id) { 1983 case vmIntrinsics::_min: 1984 case vmIntrinsics::_max: 1985 case vmIntrinsics::_minF: 1986 case vmIntrinsics::_maxF: 1987 case vmIntrinsics::_minF_strict: 1988 case vmIntrinsics::_maxF_strict: 1989 case vmIntrinsics::_min_strict: 1990 case vmIntrinsics::_max_strict: 1991 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1992 a = argument(0); 1993 b = argument(1); 1994 break; 1995 case vmIntrinsics::_minD: 1996 case vmIntrinsics::_maxD: 1997 case vmIntrinsics::_minD_strict: 1998 case vmIntrinsics::_maxD_strict: 1999 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 2000 a = argument(0); 2001 b = argument(2); 2002 break; 2003 case vmIntrinsics::_minL: 2004 case vmIntrinsics::_maxL: 2005 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 2006 a = argument(0); 2007 b = argument(2); 2008 break; 2009 default: 2010 fatal_unexpected_iid(id); 2011 break; 2012 } 2013 2014 switch (id) { 2015 case vmIntrinsics::_min: 2016 case vmIntrinsics::_min_strict: 2017 n = new MinINode(a, b); 2018 break; 2019 case vmIntrinsics::_max: 2020 case vmIntrinsics::_max_strict: 2021 n = new MaxINode(a, b); 2022 break; 2023 case vmIntrinsics::_minF: 2024 case vmIntrinsics::_minF_strict: 2025 n = new MinFNode(a, b); 2026 break; 2027 case vmIntrinsics::_maxF: 2028 case vmIntrinsics::_maxF_strict: 2029 n = new MaxFNode(a, b); 2030 break; 2031 case vmIntrinsics::_minD: 2032 case vmIntrinsics::_minD_strict: 2033 n = new MinDNode(a, b); 2034 break; 2035 case vmIntrinsics::_maxD: 2036 case vmIntrinsics::_maxD_strict: 2037 n = new MaxDNode(a, b); 2038 break; 2039 case vmIntrinsics::_minL: 2040 n = new MinLNode(_gvn.C, a, b); 2041 break; 2042 case vmIntrinsics::_maxL: 2043 n = new MaxLNode(_gvn.C, a, b); 2044 break; 2045 default: 2046 fatal_unexpected_iid(id); 2047 break; 2048 } 2049 2050 set_result(_gvn.transform(n)); 2051 return true; 2052 } 2053 2054 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) { 2055 if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic, 2056 env()->ArithmeticException_instance())) { 2057 // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces), 2058 // so let's bail out intrinsic rather than risking deopting again. 2059 return false; 2060 } 2061 2062 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2063 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2064 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2065 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2066 2067 { 2068 PreserveJVMState pjvms(this); 2069 PreserveReexecuteState preexecs(this); 2070 jvms()->set_should_reexecute(true); 2071 2072 set_control(slow_path); 2073 set_i_o(i_o()); 2074 2075 builtin_throw(Deoptimization::Reason_intrinsic, 2076 env()->ArithmeticException_instance(), 2077 /*allow_too_many_traps*/ false); 2078 } 2079 2080 set_control(fast_path); 2081 set_result(math); 2082 return true; 2083 } 2084 2085 template <typename OverflowOp> 2086 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2087 typedef typename OverflowOp::MathOp MathOp; 2088 2089 MathOp* mathOp = new MathOp(arg1, arg2); 2090 Node* operation = _gvn.transform( mathOp ); 2091 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2092 return inline_math_mathExact(operation, ofcheck); 2093 } 2094 2095 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2096 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2097 } 2098 2099 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2100 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2101 } 2102 2103 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2104 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2105 } 2106 2107 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2108 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2109 } 2110 2111 bool LibraryCallKit::inline_math_negateExactI() { 2112 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2113 } 2114 2115 bool LibraryCallKit::inline_math_negateExactL() { 2116 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2117 } 2118 2119 bool LibraryCallKit::inline_math_multiplyExactI() { 2120 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2121 } 2122 2123 bool LibraryCallKit::inline_math_multiplyExactL() { 2124 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2125 } 2126 2127 bool LibraryCallKit::inline_math_multiplyHigh() { 2128 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2129 return true; 2130 } 2131 2132 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2133 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2134 return true; 2135 } 2136 2137 inline int 2138 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2139 const TypePtr* base_type = TypePtr::NULL_PTR; 2140 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2141 if (base_type == nullptr) { 2142 // Unknown type. 2143 return Type::AnyPtr; 2144 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2145 // Since this is a null+long form, we have to switch to a rawptr. 2146 base = _gvn.transform(new CastX2PNode(offset)); 2147 offset = MakeConX(0); 2148 return Type::RawPtr; 2149 } else if (base_type->base() == Type::RawPtr) { 2150 return Type::RawPtr; 2151 } else if (base_type->isa_oopptr()) { 2152 // Base is never null => always a heap address. 2153 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2154 return Type::OopPtr; 2155 } 2156 // Offset is small => always a heap address. 2157 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2158 if (offset_type != nullptr && 2159 base_type->offset() == 0 && // (should always be?) 2160 offset_type->_lo >= 0 && 2161 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2162 return Type::OopPtr; 2163 } else if (type == T_OBJECT) { 2164 // off heap access to an oop doesn't make any sense. Has to be on 2165 // heap. 2166 return Type::OopPtr; 2167 } 2168 // Otherwise, it might either be oop+off or null+addr. 2169 return Type::AnyPtr; 2170 } else { 2171 // No information: 2172 return Type::AnyPtr; 2173 } 2174 } 2175 2176 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2177 Node* uncasted_base = base; 2178 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2179 if (kind == Type::RawPtr) { 2180 return basic_plus_adr(top(), uncasted_base, offset); 2181 } else if (kind == Type::AnyPtr) { 2182 assert(base == uncasted_base, "unexpected base change"); 2183 if (can_cast) { 2184 if (!_gvn.type(base)->speculative_maybe_null() && 2185 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2186 // According to profiling, this access is always on 2187 // heap. Casting the base to not null and thus avoiding membars 2188 // around the access should allow better optimizations 2189 Node* null_ctl = top(); 2190 base = null_check_oop(base, &null_ctl, true, true, true); 2191 assert(null_ctl->is_top(), "no null control here"); 2192 return basic_plus_adr(base, offset); 2193 } else if (_gvn.type(base)->speculative_always_null() && 2194 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2195 // According to profiling, this access is always off 2196 // heap. 2197 base = null_assert(base); 2198 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2199 offset = MakeConX(0); 2200 return basic_plus_adr(top(), raw_base, offset); 2201 } 2202 } 2203 // We don't know if it's an on heap or off heap access. Fall back 2204 // to raw memory access. 2205 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2206 return basic_plus_adr(top(), raw, offset); 2207 } else { 2208 assert(base == uncasted_base, "unexpected base change"); 2209 // We know it's an on heap access so base can't be null 2210 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2211 base = must_be_not_null(base, true); 2212 } 2213 return basic_plus_adr(base, offset); 2214 } 2215 } 2216 2217 //--------------------------inline_number_methods----------------------------- 2218 // inline int Integer.numberOfLeadingZeros(int) 2219 // inline int Long.numberOfLeadingZeros(long) 2220 // 2221 // inline int Integer.numberOfTrailingZeros(int) 2222 // inline int Long.numberOfTrailingZeros(long) 2223 // 2224 // inline int Integer.bitCount(int) 2225 // inline int Long.bitCount(long) 2226 // 2227 // inline char Character.reverseBytes(char) 2228 // inline short Short.reverseBytes(short) 2229 // inline int Integer.reverseBytes(int) 2230 // inline long Long.reverseBytes(long) 2231 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2232 Node* arg = argument(0); 2233 Node* n = nullptr; 2234 switch (id) { 2235 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2236 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2237 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2238 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2239 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2240 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2241 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2242 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2243 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2244 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2245 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2246 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2247 default: fatal_unexpected_iid(id); break; 2248 } 2249 set_result(_gvn.transform(n)); 2250 return true; 2251 } 2252 2253 //--------------------------inline_bitshuffle_methods----------------------------- 2254 // inline int Integer.compress(int, int) 2255 // inline int Integer.expand(int, int) 2256 // inline long Long.compress(long, long) 2257 // inline long Long.expand(long, long) 2258 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2259 Node* n = nullptr; 2260 switch (id) { 2261 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2262 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2263 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2264 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2265 default: fatal_unexpected_iid(id); break; 2266 } 2267 set_result(_gvn.transform(n)); 2268 return true; 2269 } 2270 2271 //--------------------------inline_number_methods----------------------------- 2272 // inline int Integer.compareUnsigned(int, int) 2273 // inline int Long.compareUnsigned(long, long) 2274 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2275 Node* arg1 = argument(0); 2276 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2277 Node* n = nullptr; 2278 switch (id) { 2279 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2280 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2281 default: fatal_unexpected_iid(id); break; 2282 } 2283 set_result(_gvn.transform(n)); 2284 return true; 2285 } 2286 2287 //--------------------------inline_unsigned_divmod_methods----------------------------- 2288 // inline int Integer.divideUnsigned(int, int) 2289 // inline int Integer.remainderUnsigned(int, int) 2290 // inline long Long.divideUnsigned(long, long) 2291 // inline long Long.remainderUnsigned(long, long) 2292 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2293 Node* n = nullptr; 2294 switch (id) { 2295 case vmIntrinsics::_divideUnsigned_i: { 2296 zero_check_int(argument(1)); 2297 // Compile-time detect of null-exception 2298 if (stopped()) { 2299 return true; // keep the graph constructed so far 2300 } 2301 n = new UDivINode(control(), argument(0), argument(1)); 2302 break; 2303 } 2304 case vmIntrinsics::_divideUnsigned_l: { 2305 zero_check_long(argument(2)); 2306 // Compile-time detect of null-exception 2307 if (stopped()) { 2308 return true; // keep the graph constructed so far 2309 } 2310 n = new UDivLNode(control(), argument(0), argument(2)); 2311 break; 2312 } 2313 case vmIntrinsics::_remainderUnsigned_i: { 2314 zero_check_int(argument(1)); 2315 // Compile-time detect of null-exception 2316 if (stopped()) { 2317 return true; // keep the graph constructed so far 2318 } 2319 n = new UModINode(control(), argument(0), argument(1)); 2320 break; 2321 } 2322 case vmIntrinsics::_remainderUnsigned_l: { 2323 zero_check_long(argument(2)); 2324 // Compile-time detect of null-exception 2325 if (stopped()) { 2326 return true; // keep the graph constructed so far 2327 } 2328 n = new UModLNode(control(), argument(0), argument(2)); 2329 break; 2330 } 2331 default: fatal_unexpected_iid(id); break; 2332 } 2333 set_result(_gvn.transform(n)); 2334 return true; 2335 } 2336 2337 //----------------------------inline_unsafe_access---------------------------- 2338 2339 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2340 // Attempt to infer a sharper value type from the offset and base type. 2341 ciKlass* sharpened_klass = nullptr; 2342 bool null_free = false; 2343 2344 // See if it is an instance field, with an object type. 2345 if (alias_type->field() != nullptr) { 2346 if (alias_type->field()->type()->is_klass()) { 2347 sharpened_klass = alias_type->field()->type()->as_klass(); 2348 null_free = alias_type->field()->is_null_free(); 2349 } 2350 } 2351 2352 const TypeOopPtr* result = nullptr; 2353 // See if it is a narrow oop array. 2354 if (adr_type->isa_aryptr()) { 2355 if (adr_type->offset() >= refArrayOopDesc::base_offset_in_bytes()) { 2356 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2357 null_free = adr_type->is_aryptr()->is_null_free(); 2358 if (elem_type != nullptr && elem_type->is_loaded()) { 2359 // Sharpen the value type. 2360 result = elem_type; 2361 } 2362 } 2363 } 2364 2365 // The sharpened class might be unloaded if there is no class loader 2366 // contraint in place. 2367 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2368 // Sharpen the value type. 2369 result = TypeOopPtr::make_from_klass(sharpened_klass); 2370 if (null_free) { 2371 result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr(); 2372 } 2373 } 2374 if (result != nullptr) { 2375 #ifndef PRODUCT 2376 if (C->print_intrinsics() || C->print_inlining()) { 2377 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2378 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2379 } 2380 #endif 2381 } 2382 return result; 2383 } 2384 2385 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2386 switch (kind) { 2387 case Relaxed: 2388 return MO_UNORDERED; 2389 case Opaque: 2390 return MO_RELAXED; 2391 case Acquire: 2392 return MO_ACQUIRE; 2393 case Release: 2394 return MO_RELEASE; 2395 case Volatile: 2396 return MO_SEQ_CST; 2397 default: 2398 ShouldNotReachHere(); 2399 return 0; 2400 } 2401 } 2402 2403 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) { 2404 if (callee()->is_static()) return false; // caller must have the capability! 2405 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2406 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2407 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2408 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2409 2410 if (is_reference_type(type)) { 2411 decorators |= ON_UNKNOWN_OOP_REF; 2412 } 2413 2414 if (unaligned) { 2415 decorators |= C2_UNALIGNED; 2416 } 2417 2418 #ifndef PRODUCT 2419 { 2420 ResourceMark rm; 2421 // Check the signatures. 2422 ciSignature* sig = callee()->signature(); 2423 #ifdef ASSERT 2424 if (!is_store) { 2425 // Object getReference(Object base, int/long offset), etc. 2426 BasicType rtype = sig->return_type()->basic_type(); 2427 assert(rtype == type, "getter must return the expected value"); 2428 assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments"); 2429 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2430 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2431 } else { 2432 // void putReference(Object base, int/long offset, Object x), etc. 2433 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2434 assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments"); 2435 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2436 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2437 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2438 assert(vtype == type, "putter must accept the expected value"); 2439 } 2440 #endif // ASSERT 2441 } 2442 #endif //PRODUCT 2443 2444 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2445 2446 Node* receiver = argument(0); // type: oop 2447 2448 // Build address expression. 2449 Node* heap_base_oop = top(); 2450 2451 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2452 Node* base = argument(1); // type: oop 2453 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2454 Node* offset = argument(2); // type: long 2455 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2456 // to be plain byte offsets, which are also the same as those accepted 2457 // by oopDesc::field_addr. 2458 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2459 "fieldOffset must be byte-scaled"); 2460 2461 ciInlineKlass* inline_klass = nullptr; 2462 if (is_flat) { 2463 const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr(); 2464 if (cls == nullptr || cls->const_oop() == nullptr) { 2465 return false; 2466 } 2467 ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type(); 2468 if (!mirror_type->is_inlinetype()) { 2469 return false; 2470 } 2471 inline_klass = mirror_type->as_inline_klass(); 2472 } 2473 2474 if (base->is_InlineType()) { 2475 assert(!is_store, "InlineTypeNodes are non-larval value objects"); 2476 InlineTypeNode* vt = base->as_InlineType(); 2477 if (offset->is_Con()) { 2478 long off = find_long_con(offset, 0); 2479 ciInlineKlass* vk = vt->type()->inline_klass(); 2480 if ((long)(int)off != off || !vk->contains_field_offset(off)) { 2481 return false; 2482 } 2483 2484 ciField* field = vk->get_non_flat_field_by_offset(off); 2485 if (field != nullptr) { 2486 BasicType bt = type2field[field->type()->basic_type()]; 2487 if (bt == T_ARRAY || bt == T_NARROWOOP) { 2488 bt = T_OBJECT; 2489 } 2490 if (bt == type && (!field->is_flat() || field->type() == inline_klass)) { 2491 Node* value = vt->field_value_by_offset(off, false); 2492 if (value->is_InlineType()) { 2493 value = value->as_InlineType()->adjust_scalarization_depth(this); 2494 } 2495 set_result(value); 2496 return true; 2497 } 2498 } 2499 } 2500 { 2501 // Re-execute the unsafe access if allocation triggers deoptimization. 2502 PreserveReexecuteState preexecs(this); 2503 jvms()->set_should_reexecute(true); 2504 vt = vt->buffer(this); 2505 } 2506 base = vt->get_oop(); 2507 } 2508 2509 // 32-bit machines ignore the high half! 2510 offset = ConvL2X(offset); 2511 2512 // Save state and restore on bailout 2513 uint old_sp = sp(); 2514 SafePointNode* old_map = clone_map(); 2515 2516 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2517 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2518 2519 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2520 if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) { 2521 decorators |= IN_NATIVE; // off-heap primitive access 2522 } else { 2523 set_map(old_map); 2524 set_sp(old_sp); 2525 return false; // off-heap oop accesses are not supported 2526 } 2527 } else { 2528 heap_base_oop = base; // on-heap or mixed access 2529 } 2530 2531 // Can base be null? Otherwise, always on-heap access. 2532 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2533 2534 if (!can_access_non_heap) { 2535 decorators |= IN_HEAP; 2536 } 2537 2538 Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr; 2539 2540 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2541 if (adr_type == TypePtr::NULL_PTR) { 2542 set_map(old_map); 2543 set_sp(old_sp); 2544 return false; // off-heap access with zero address 2545 } 2546 2547 // Try to categorize the address. 2548 Compile::AliasType* alias_type = C->alias_type(adr_type); 2549 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2550 2551 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2552 alias_type->adr_type() == TypeAryPtr::RANGE) { 2553 set_map(old_map); 2554 set_sp(old_sp); 2555 return false; // not supported 2556 } 2557 2558 bool mismatched = false; 2559 BasicType bt = T_ILLEGAL; 2560 ciField* field = nullptr; 2561 if (adr_type->isa_instptr()) { 2562 const TypeInstPtr* instptr = adr_type->is_instptr(); 2563 ciInstanceKlass* k = instptr->instance_klass(); 2564 int off = instptr->offset(); 2565 if (instptr->const_oop() != nullptr && 2566 k == ciEnv::current()->Class_klass() && 2567 instptr->offset() >= (k->size_helper() * wordSize)) { 2568 k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 2569 field = k->get_field_by_offset(off, true); 2570 } else { 2571 field = k->get_non_flat_field_by_offset(off); 2572 } 2573 if (field != nullptr) { 2574 bt = type2field[field->type()->basic_type()]; 2575 } 2576 if (bt != alias_type->basic_type()) { 2577 // Type mismatch. Is it an access to a nested flat field? 2578 field = k->get_field_by_offset(off, false); 2579 if (field != nullptr) { 2580 bt = type2field[field->type()->basic_type()]; 2581 } 2582 } 2583 assert(bt == alias_type->basic_type() || is_flat, "should match"); 2584 } else { 2585 bt = alias_type->basic_type(); 2586 } 2587 2588 if (bt != T_ILLEGAL) { 2589 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2590 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2591 // Alias type doesn't differentiate between byte[] and boolean[]). 2592 // Use address type to get the element type. 2593 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2594 } 2595 if (is_reference_type(bt, true)) { 2596 // accessing an array field with getReference is not a mismatch 2597 bt = T_OBJECT; 2598 } 2599 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2600 // Don't intrinsify mismatched object accesses 2601 set_map(old_map); 2602 set_sp(old_sp); 2603 return false; 2604 } 2605 mismatched = (bt != type); 2606 } else if (alias_type->adr_type()->isa_oopptr()) { 2607 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2608 } 2609 2610 if (is_flat) { 2611 if (adr_type->isa_instptr()) { 2612 if (field == nullptr || field->type() != inline_klass) { 2613 mismatched = true; 2614 } 2615 } else if (adr_type->isa_aryptr()) { 2616 const Type* elem = adr_type->is_aryptr()->elem(); 2617 if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) { 2618 mismatched = true; 2619 } 2620 } else { 2621 mismatched = true; 2622 } 2623 if (is_store) { 2624 const Type* val_t = _gvn.type(val); 2625 if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) { 2626 set_map(old_map); 2627 set_sp(old_sp); 2628 return false; 2629 } 2630 } 2631 } 2632 2633 destruct_map_clone(old_map); 2634 assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2635 2636 if (mismatched) { 2637 decorators |= C2_MISMATCHED; 2638 } 2639 2640 // First guess at the value type. 2641 const Type *value_type = Type::get_const_basic_type(type); 2642 2643 // Figure out the memory ordering. 2644 decorators |= mo_decorator_for_access_kind(kind); 2645 2646 if (!is_store) { 2647 if (type == T_OBJECT && !is_flat) { 2648 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2649 if (tjp != nullptr) { 2650 value_type = tjp; 2651 } 2652 } 2653 } 2654 2655 receiver = null_check(receiver); 2656 if (stopped()) { 2657 return true; 2658 } 2659 // Heap pointers get a null-check from the interpreter, 2660 // as a courtesy. However, this is not guaranteed by Unsafe, 2661 // and it is not possible to fully distinguish unintended nulls 2662 // from intended ones in this API. 2663 2664 if (!is_store) { 2665 Node* p = nullptr; 2666 // Try to constant fold a load from a constant field 2667 2668 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) { 2669 // final or stable field 2670 p = make_constant_from_field(field, heap_base_oop); 2671 } 2672 2673 if (p == nullptr) { // Could not constant fold the load 2674 if (is_flat) { 2675 p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, adr_type, false, false, true); 2676 } else { 2677 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2678 const TypeOopPtr* ptr = value_type->make_oopptr(); 2679 if (ptr != nullptr && ptr->is_inlinetypeptr()) { 2680 // Load a non-flattened inline type from memory 2681 p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass()); 2682 } 2683 } 2684 // Normalize the value returned by getBoolean in the following cases 2685 if (type == T_BOOLEAN && 2686 (mismatched || 2687 heap_base_oop == top() || // - heap_base_oop is null or 2688 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2689 // and the unsafe access is made to large offset 2690 // (i.e., larger than the maximum offset necessary for any 2691 // field access) 2692 ) { 2693 IdealKit ideal = IdealKit(this); 2694 #define __ ideal. 2695 IdealVariable normalized_result(ideal); 2696 __ declarations_done(); 2697 __ set(normalized_result, p); 2698 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2699 __ set(normalized_result, ideal.ConI(1)); 2700 ideal.end_if(); 2701 final_sync(ideal); 2702 p = __ value(normalized_result); 2703 #undef __ 2704 } 2705 } 2706 if (type == T_ADDRESS) { 2707 p = gvn().transform(new CastP2XNode(nullptr, p)); 2708 p = ConvX2UL(p); 2709 } 2710 // The load node has the control of the preceding MemBarCPUOrder. All 2711 // following nodes will have the control of the MemBarCPUOrder inserted at 2712 // the end of this method. So, pushing the load onto the stack at a later 2713 // point is fine. 2714 set_result(p); 2715 } else { 2716 if (bt == T_ADDRESS) { 2717 // Repackage the long as a pointer. 2718 val = ConvL2X(val); 2719 val = gvn().transform(new CastX2PNode(val)); 2720 } 2721 if (is_flat) { 2722 val->as_InlineType()->store_flat(this, base, adr, false, false, true, decorators); 2723 } else { 2724 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2725 } 2726 } 2727 2728 return true; 2729 } 2730 2731 bool LibraryCallKit::inline_unsafe_flat_access(bool is_store, AccessKind kind) { 2732 #ifdef ASSERT 2733 { 2734 ResourceMark rm; 2735 // Check the signatures. 2736 ciSignature* sig = callee()->signature(); 2737 assert(sig->type_at(0)->basic_type() == T_OBJECT, "base should be object, but is %s", type2name(sig->type_at(0)->basic_type())); 2738 assert(sig->type_at(1)->basic_type() == T_LONG, "offset should be long, but is %s", type2name(sig->type_at(1)->basic_type())); 2739 assert(sig->type_at(2)->basic_type() == T_INT, "layout kind should be int, but is %s", type2name(sig->type_at(3)->basic_type())); 2740 assert(sig->type_at(3)->basic_type() == T_OBJECT, "value klass should be object, but is %s", type2name(sig->type_at(4)->basic_type())); 2741 if (is_store) { 2742 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value, but returns %s", type2name(sig->return_type()->basic_type())); 2743 assert(sig->count() == 5, "flat putter should have 5 arguments, but has %d", sig->count()); 2744 assert(sig->type_at(4)->basic_type() == T_OBJECT, "put value should be object, but is %s", type2name(sig->type_at(5)->basic_type())); 2745 } else { 2746 assert(sig->return_type()->basic_type() == T_OBJECT, "getter must return an object, but returns %s", type2name(sig->return_type()->basic_type())); 2747 assert(sig->count() == 4, "flat getter should have 4 arguments, but has %d", sig->count()); 2748 } 2749 } 2750 #endif // ASSERT 2751 2752 assert(kind == Relaxed, "Only plain accesses for now"); 2753 if (callee()->is_static()) { 2754 // caller must have the capability! 2755 return false; 2756 } 2757 C->set_has_unsafe_access(true); 2758 2759 const TypeInstPtr* value_klass_node = _gvn.type(argument(5))->isa_instptr(); 2760 if (value_klass_node == nullptr || value_klass_node->const_oop() == nullptr) { 2761 // parameter valueType is not a constant 2762 return false; 2763 } 2764 ciType* mirror_type = value_klass_node->const_oop()->as_instance()->java_mirror_type(); 2765 if (!mirror_type->is_inlinetype()) { 2766 // Dead code 2767 return false; 2768 } 2769 ciInlineKlass* value_klass = mirror_type->as_inline_klass(); 2770 2771 const TypeInt* layout_type = _gvn.type(argument(4))->isa_int(); 2772 if (layout_type == nullptr || !layout_type->is_con()) { 2773 // parameter layoutKind is not a constant 2774 return false; 2775 } 2776 assert(layout_type->get_con() >= static_cast<int>(LayoutKind::REFERENCE) && 2777 layout_type->get_con() <= static_cast<int>(LayoutKind::UNKNOWN), 2778 "invalid layoutKind %d", layout_type->get_con()); 2779 LayoutKind layout = static_cast<LayoutKind>(layout_type->get_con()); 2780 assert(layout == LayoutKind::REFERENCE || layout == LayoutKind::NON_ATOMIC_FLAT || 2781 layout == LayoutKind::ATOMIC_FLAT || layout == LayoutKind::NULLABLE_ATOMIC_FLAT, 2782 "unexpected layoutKind %d", layout_type->get_con()); 2783 2784 null_check(argument(0)); 2785 if (stopped()) { 2786 return true; 2787 } 2788 2789 Node* base = must_be_not_null(argument(1), true); 2790 Node* offset = argument(2); 2791 const Type* base_type = _gvn.type(base); 2792 2793 Node* ptr; 2794 bool immutable_memory = false; 2795 DecoratorSet decorators = C2_UNSAFE_ACCESS | IN_HEAP | MO_UNORDERED; 2796 if (base_type->isa_instptr()) { 2797 const TypeLong* offset_type = _gvn.type(offset)->isa_long(); 2798 if (offset_type == nullptr || !offset_type->is_con()) { 2799 // Offset into a non-array should be a constant 2800 decorators |= C2_MISMATCHED; 2801 } else { 2802 int offset_con = checked_cast<int>(offset_type->get_con()); 2803 ciInstanceKlass* base_klass = base_type->is_instptr()->instance_klass(); 2804 ciField* field = base_klass->get_non_flat_field_by_offset(offset_con); 2805 if (field == nullptr) { 2806 assert(!base_klass->is_final(), "non-existence field at offset %d of class %s", offset_con, base_klass->name()->as_utf8()); 2807 decorators |= C2_MISMATCHED; 2808 } else { 2809 assert(field->type() == value_klass, "field at offset %d of %s is of type %s, but valueType is %s", 2810 offset_con, base_klass->name()->as_utf8(), field->type()->name(), value_klass->name()->as_utf8()); 2811 immutable_memory = field->is_strict() && field->is_final(); 2812 2813 if (base->is_InlineType()) { 2814 assert(!is_store, "Cannot store into a non-larval value object"); 2815 set_result(base->as_InlineType()->field_value_by_offset(offset_con, false)); 2816 return true; 2817 } 2818 } 2819 } 2820 2821 if (base->is_InlineType()) { 2822 assert(!is_store, "Cannot store into a non-larval value object"); 2823 base = base->as_InlineType()->buffer(this, true); 2824 } 2825 ptr = basic_plus_adr(base, ConvL2X(offset)); 2826 } else if (base_type->isa_aryptr()) { 2827 decorators |= IS_ARRAY; 2828 if (layout == LayoutKind::REFERENCE) { 2829 if (!base_type->is_aryptr()->is_not_flat()) { 2830 const TypeAryPtr* array_type = base_type->is_aryptr()->cast_to_not_flat(); 2831 Node* new_base = _gvn.transform(new CastPPNode(control(), base, array_type, ConstraintCastNode::StrongDependency)); 2832 replace_in_map(base, new_base); 2833 base = new_base; 2834 } 2835 ptr = basic_plus_adr(base, ConvL2X(offset)); 2836 } else { 2837 if (UseArrayFlattening) { 2838 // Flat array must have an exact type 2839 bool is_null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT; 2840 bool is_atomic = layout != LayoutKind::NON_ATOMIC_FLAT; 2841 Node* new_base = cast_to_flat_array(base, value_klass, is_null_free, !is_null_free, is_atomic); 2842 replace_in_map(base, new_base); 2843 base = new_base; 2844 ptr = basic_plus_adr(base, ConvL2X(offset)); 2845 const TypeAryPtr* ptr_type = _gvn.type(ptr)->is_aryptr(); 2846 if (ptr_type->field_offset().get() != 0) { 2847 ptr = _gvn.transform(new CastPPNode(control(), ptr, ptr_type->with_field_offset(0), ConstraintCastNode::StrongDependency)); 2848 } 2849 } else { 2850 uncommon_trap(Deoptimization::Reason_intrinsic, 2851 Deoptimization::Action_none); 2852 return true; 2853 } 2854 } 2855 } else { 2856 decorators |= C2_MISMATCHED; 2857 ptr = basic_plus_adr(base, ConvL2X(offset)); 2858 } 2859 2860 if (is_store) { 2861 Node* value = argument(6); 2862 const Type* value_type = _gvn.type(value); 2863 if (!value_type->is_inlinetypeptr()) { 2864 value_type = Type::get_const_type(value_klass)->filter_speculative(value_type); 2865 Node* new_value = _gvn.transform(new CastPPNode(control(), value, value_type, ConstraintCastNode::StrongDependency)); 2866 new_value = InlineTypeNode::make_from_oop(this, new_value, value_klass); 2867 replace_in_map(value, new_value); 2868 value = new_value; 2869 } 2870 2871 assert(value_type->inline_klass() == value_klass, "value is of type %s while valueType is %s", value_type->inline_klass()->name()->as_utf8(), value_klass->name()->as_utf8()); 2872 if (layout == LayoutKind::REFERENCE) { 2873 const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr(); 2874 access_store_at(base, ptr, ptr_type, value, value_type, T_OBJECT, decorators); 2875 } else { 2876 bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT; 2877 bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT; 2878 value->as_InlineType()->store_flat(this, base, ptr, atomic, immutable_memory, null_free, decorators); 2879 } 2880 2881 return true; 2882 } else { 2883 decorators |= (C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 2884 InlineTypeNode* result; 2885 if (layout == LayoutKind::REFERENCE) { 2886 const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr(); 2887 Node* oop = access_load_at(base, ptr, ptr_type, Type::get_const_type(value_klass), T_OBJECT, decorators); 2888 result = InlineTypeNode::make_from_oop(this, oop, value_klass); 2889 } else { 2890 bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT; 2891 bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT; 2892 result = InlineTypeNode::make_from_flat(this, value_klass, base, ptr, atomic, immutable_memory, null_free, decorators); 2893 } 2894 2895 set_result(result); 2896 return true; 2897 } 2898 } 2899 2900 bool LibraryCallKit::inline_unsafe_make_private_buffer() { 2901 Node* receiver = argument(0); 2902 Node* value = argument(1); 2903 2904 const Type* type = gvn().type(value); 2905 if (!type->is_inlinetypeptr()) { 2906 C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type"); 2907 return false; 2908 } 2909 2910 null_check(receiver); 2911 if (stopped()) { 2912 return true; 2913 } 2914 2915 value = null_check(value); 2916 if (stopped()) { 2917 return true; 2918 } 2919 2920 ciInlineKlass* vk = type->inline_klass(); 2921 Node* klass = makecon(TypeKlassPtr::make(vk)); 2922 Node* obj = new_instance(klass); 2923 AllocateNode::Ideal_allocation(obj)->_larval = true; 2924 2925 assert(value->is_InlineType(), "must be an InlineTypeNode"); 2926 Node* payload_ptr = basic_plus_adr(obj, vk->payload_offset()); 2927 value->as_InlineType()->store_flat(this, obj, payload_ptr, false, true, true, IN_HEAP | MO_UNORDERED); 2928 2929 set_result(obj); 2930 return true; 2931 } 2932 2933 bool LibraryCallKit::inline_unsafe_finish_private_buffer() { 2934 Node* receiver = argument(0); 2935 Node* buffer = argument(1); 2936 2937 const Type* type = gvn().type(buffer); 2938 if (!type->is_inlinetypeptr()) { 2939 C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type"); 2940 return false; 2941 } 2942 2943 AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer); 2944 if (alloc == nullptr) { 2945 C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer"); 2946 return false; 2947 } 2948 2949 null_check(receiver); 2950 if (stopped()) { 2951 return true; 2952 } 2953 2954 // Unset the larval bit in the object header 2955 Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned); 2956 Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place))); 2957 access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP); 2958 2959 // We must ensure that the buffer is properly published 2960 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress)); 2961 assert(!type->maybe_null(), "result of an allocation should not be null"); 2962 set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass())); 2963 return true; 2964 } 2965 2966 //----------------------------inline_unsafe_load_store---------------------------- 2967 // This method serves a couple of different customers (depending on LoadStoreKind): 2968 // 2969 // LS_cmp_swap: 2970 // 2971 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2972 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2973 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2974 // 2975 // LS_cmp_swap_weak: 2976 // 2977 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2978 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2979 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2980 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2981 // 2982 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2983 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2984 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2985 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2986 // 2987 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2988 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2989 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2990 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2991 // 2992 // LS_cmp_exchange: 2993 // 2994 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2995 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2996 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2997 // 2998 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2999 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 3000 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 3001 // 3002 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 3003 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 3004 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 3005 // 3006 // LS_get_add: 3007 // 3008 // int getAndAddInt( Object o, long offset, int delta) 3009 // long getAndAddLong(Object o, long offset, long delta) 3010 // 3011 // LS_get_set: 3012 // 3013 // int getAndSet(Object o, long offset, int newValue) 3014 // long getAndSet(Object o, long offset, long newValue) 3015 // Object getAndSet(Object o, long offset, Object newValue) 3016 // 3017 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 3018 // This basic scheme here is the same as inline_unsafe_access, but 3019 // differs in enough details that combining them would make the code 3020 // overly confusing. (This is a true fact! I originally combined 3021 // them, but even I was confused by it!) As much code/comments as 3022 // possible are retained from inline_unsafe_access though to make 3023 // the correspondences clearer. - dl 3024 3025 if (callee()->is_static()) return false; // caller must have the capability! 3026 3027 DecoratorSet decorators = C2_UNSAFE_ACCESS; 3028 decorators |= mo_decorator_for_access_kind(access_kind); 3029 3030 #ifndef PRODUCT 3031 BasicType rtype; 3032 { 3033 ResourceMark rm; 3034 // Check the signatures. 3035 ciSignature* sig = callee()->signature(); 3036 rtype = sig->return_type()->basic_type(); 3037 switch(kind) { 3038 case LS_get_add: 3039 case LS_get_set: { 3040 // Check the signatures. 3041 #ifdef ASSERT 3042 assert(rtype == type, "get and set must return the expected type"); 3043 assert(sig->count() == 3, "get and set has 3 arguments"); 3044 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 3045 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 3046 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 3047 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 3048 #endif // ASSERT 3049 break; 3050 } 3051 case LS_cmp_swap: 3052 case LS_cmp_swap_weak: { 3053 // Check the signatures. 3054 #ifdef ASSERT 3055 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 3056 assert(sig->count() == 4, "CAS has 4 arguments"); 3057 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 3058 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 3059 #endif // ASSERT 3060 break; 3061 } 3062 case LS_cmp_exchange: { 3063 // Check the signatures. 3064 #ifdef ASSERT 3065 assert(rtype == type, "CAS must return the expected type"); 3066 assert(sig->count() == 4, "CAS has 4 arguments"); 3067 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 3068 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 3069 #endif // ASSERT 3070 break; 3071 } 3072 default: 3073 ShouldNotReachHere(); 3074 } 3075 } 3076 #endif //PRODUCT 3077 3078 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 3079 3080 // Get arguments: 3081 Node* receiver = nullptr; 3082 Node* base = nullptr; 3083 Node* offset = nullptr; 3084 Node* oldval = nullptr; 3085 Node* newval = nullptr; 3086 switch(kind) { 3087 case LS_cmp_swap: 3088 case LS_cmp_swap_weak: 3089 case LS_cmp_exchange: { 3090 const bool two_slot_type = type2size[type] == 2; 3091 receiver = argument(0); // type: oop 3092 base = argument(1); // type: oop 3093 offset = argument(2); // type: long 3094 oldval = argument(4); // type: oop, int, or long 3095 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 3096 break; 3097 } 3098 case LS_get_add: 3099 case LS_get_set: { 3100 receiver = argument(0); // type: oop 3101 base = argument(1); // type: oop 3102 offset = argument(2); // type: long 3103 oldval = nullptr; 3104 newval = argument(4); // type: oop, int, or long 3105 break; 3106 } 3107 default: 3108 ShouldNotReachHere(); 3109 } 3110 3111 // Build field offset expression. 3112 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 3113 // to be plain byte offsets, which are also the same as those accepted 3114 // by oopDesc::field_addr. 3115 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 3116 // 32-bit machines ignore the high half of long offsets 3117 offset = ConvL2X(offset); 3118 // Save state and restore on bailout 3119 uint old_sp = sp(); 3120 SafePointNode* old_map = clone_map(); 3121 Node* adr = make_unsafe_address(base, offset,type, false); 3122 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 3123 3124 Compile::AliasType* alias_type = C->alias_type(adr_type); 3125 BasicType bt = alias_type->basic_type(); 3126 if (bt != T_ILLEGAL && 3127 (is_reference_type(bt) != (type == T_OBJECT))) { 3128 // Don't intrinsify mismatched object accesses. 3129 set_map(old_map); 3130 set_sp(old_sp); 3131 return false; 3132 } 3133 3134 destruct_map_clone(old_map); 3135 3136 // For CAS, unlike inline_unsafe_access, there seems no point in 3137 // trying to refine types. Just use the coarse types here. 3138 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 3139 const Type *value_type = Type::get_const_basic_type(type); 3140 3141 switch (kind) { 3142 case LS_get_set: 3143 case LS_cmp_exchange: { 3144 if (type == T_OBJECT) { 3145 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 3146 if (tjp != nullptr) { 3147 value_type = tjp; 3148 } 3149 } 3150 break; 3151 } 3152 case LS_cmp_swap: 3153 case LS_cmp_swap_weak: 3154 case LS_get_add: 3155 break; 3156 default: 3157 ShouldNotReachHere(); 3158 } 3159 3160 // Null check receiver. 3161 receiver = null_check(receiver); 3162 if (stopped()) { 3163 return true; 3164 } 3165 3166 int alias_idx = C->get_alias_index(adr_type); 3167 3168 if (is_reference_type(type)) { 3169 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 3170 3171 if (oldval != nullptr && oldval->is_InlineType()) { 3172 // Re-execute the unsafe access if allocation triggers deoptimization. 3173 PreserveReexecuteState preexecs(this); 3174 jvms()->set_should_reexecute(true); 3175 oldval = oldval->as_InlineType()->buffer(this)->get_oop(); 3176 } 3177 if (newval != nullptr && newval->is_InlineType()) { 3178 // Re-execute the unsafe access if allocation triggers deoptimization. 3179 PreserveReexecuteState preexecs(this); 3180 jvms()->set_should_reexecute(true); 3181 newval = newval->as_InlineType()->buffer(this)->get_oop(); 3182 } 3183 3184 // Transformation of a value which could be null pointer (CastPP #null) 3185 // could be delayed during Parse (for example, in adjust_map_after_if()). 3186 // Execute transformation here to avoid barrier generation in such case. 3187 if (_gvn.type(newval) == TypePtr::NULL_PTR) 3188 newval = _gvn.makecon(TypePtr::NULL_PTR); 3189 3190 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 3191 // Refine the value to a null constant, when it is known to be null 3192 oldval = _gvn.makecon(TypePtr::NULL_PTR); 3193 } 3194 } 3195 3196 Node* result = nullptr; 3197 switch (kind) { 3198 case LS_cmp_exchange: { 3199 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 3200 oldval, newval, value_type, type, decorators); 3201 break; 3202 } 3203 case LS_cmp_swap_weak: 3204 decorators |= C2_WEAK_CMPXCHG; 3205 case LS_cmp_swap: { 3206 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 3207 oldval, newval, value_type, type, decorators); 3208 break; 3209 } 3210 case LS_get_set: { 3211 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 3212 newval, value_type, type, decorators); 3213 break; 3214 } 3215 case LS_get_add: { 3216 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 3217 newval, value_type, type, decorators); 3218 break; 3219 } 3220 default: 3221 ShouldNotReachHere(); 3222 } 3223 3224 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 3225 set_result(result); 3226 return true; 3227 } 3228 3229 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 3230 // Regardless of form, don't allow previous ld/st to move down, 3231 // then issue acquire, release, or volatile mem_bar. 3232 insert_mem_bar(Op_MemBarCPUOrder); 3233 switch(id) { 3234 case vmIntrinsics::_loadFence: 3235 insert_mem_bar(Op_LoadFence); 3236 return true; 3237 case vmIntrinsics::_storeFence: 3238 insert_mem_bar(Op_StoreFence); 3239 return true; 3240 case vmIntrinsics::_storeStoreFence: 3241 insert_mem_bar(Op_StoreStoreFence); 3242 return true; 3243 case vmIntrinsics::_fullFence: 3244 insert_mem_bar(Op_MemBarVolatile); 3245 return true; 3246 default: 3247 fatal_unexpected_iid(id); 3248 return false; 3249 } 3250 } 3251 3252 bool LibraryCallKit::inline_onspinwait() { 3253 insert_mem_bar(Op_OnSpinWait); 3254 return true; 3255 } 3256 3257 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 3258 if (!kls->is_Con()) { 3259 return true; 3260 } 3261 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 3262 if (klsptr == nullptr) { 3263 return true; 3264 } 3265 ciInstanceKlass* ik = klsptr->instance_klass(); 3266 // don't need a guard for a klass that is already initialized 3267 return !ik->is_initialized(); 3268 } 3269 3270 //----------------------------inline_unsafe_writeback0------------------------- 3271 // public native void Unsafe.writeback0(long address) 3272 bool LibraryCallKit::inline_unsafe_writeback0() { 3273 if (!Matcher::has_match_rule(Op_CacheWB)) { 3274 return false; 3275 } 3276 #ifndef PRODUCT 3277 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 3278 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 3279 ciSignature* sig = callee()->signature(); 3280 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 3281 #endif 3282 null_check_receiver(); // null-check, then ignore 3283 Node *addr = argument(1); 3284 addr = new CastX2PNode(addr); 3285 addr = _gvn.transform(addr); 3286 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 3287 flush = _gvn.transform(flush); 3288 set_memory(flush, TypeRawPtr::BOTTOM); 3289 return true; 3290 } 3291 3292 //----------------------------inline_unsafe_writeback0------------------------- 3293 // public native void Unsafe.writeback0(long address) 3294 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 3295 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 3296 return false; 3297 } 3298 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 3299 return false; 3300 } 3301 #ifndef PRODUCT 3302 assert(Matcher::has_match_rule(Op_CacheWB), 3303 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 3304 : "found match rule for CacheWBPostSync but not CacheWB")); 3305 3306 #endif 3307 null_check_receiver(); // null-check, then ignore 3308 Node *sync; 3309 if (is_pre) { 3310 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3311 } else { 3312 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 3313 } 3314 sync = _gvn.transform(sync); 3315 set_memory(sync, TypeRawPtr::BOTTOM); 3316 return true; 3317 } 3318 3319 //----------------------------inline_unsafe_allocate--------------------------- 3320 // public native Object Unsafe.allocateInstance(Class<?> cls); 3321 bool LibraryCallKit::inline_unsafe_allocate() { 3322 3323 #if INCLUDE_JVMTI 3324 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3325 return false; 3326 } 3327 #endif //INCLUDE_JVMTI 3328 3329 if (callee()->is_static()) return false; // caller must have the capability! 3330 3331 null_check_receiver(); // null-check, then ignore 3332 Node* cls = null_check(argument(1)); 3333 if (stopped()) return true; 3334 3335 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 3336 kls = null_check(kls); 3337 if (stopped()) return true; // argument was like int.class 3338 3339 #if INCLUDE_JVMTI 3340 // Don't try to access new allocated obj in the intrinsic. 3341 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 3342 // Deoptimize and allocate in interpreter instead. 3343 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 3344 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 3345 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 3346 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 3347 { 3348 BuildCutout unless(this, tst, PROB_MAX); 3349 uncommon_trap(Deoptimization::Reason_intrinsic, 3350 Deoptimization::Action_make_not_entrant); 3351 } 3352 if (stopped()) { 3353 return true; 3354 } 3355 #endif //INCLUDE_JVMTI 3356 3357 Node* test = nullptr; 3358 if (LibraryCallKit::klass_needs_init_guard(kls)) { 3359 // Note: The argument might still be an illegal value like 3360 // Serializable.class or Object[].class. The runtime will handle it. 3361 // But we must make an explicit check for initialization. 3362 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 3363 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 3364 // can generate code to load it as unsigned byte. 3365 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 3366 Node* bits = intcon(InstanceKlass::fully_initialized); 3367 test = _gvn.transform(new SubINode(inst, bits)); 3368 // The 'test' is non-zero if we need to take a slow path. 3369 } 3370 Node* obj = nullptr; 3371 const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr(); 3372 if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) { 3373 obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this); 3374 } else { 3375 obj = new_instance(kls, test); 3376 } 3377 set_result(obj); 3378 return true; 3379 } 3380 3381 //------------------------inline_native_time_funcs-------------- 3382 // inline code for System.currentTimeMillis() and System.nanoTime() 3383 // these have the same type and signature 3384 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 3385 const TypeFunc* tf = OptoRuntime::void_long_Type(); 3386 const TypePtr* no_memory_effects = nullptr; 3387 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 3388 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 3389 #ifdef ASSERT 3390 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 3391 assert(value_top == top(), "second value must be top"); 3392 #endif 3393 set_result(value); 3394 return true; 3395 } 3396 3397 3398 #if INCLUDE_JVMTI 3399 3400 // When notifications are disabled then just update the VTMS transition bit and return. 3401 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 3402 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 3403 if (!DoJVMTIVirtualThreadTransitions) { 3404 return true; 3405 } 3406 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3407 IdealKit ideal(this); 3408 3409 Node* ONE = ideal.ConI(1); 3410 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3411 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3412 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3413 3414 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3415 sync_kit(ideal); 3416 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3417 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3418 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3419 ideal.sync_kit(this); 3420 } ideal.else_(); { 3421 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3422 Node* thread = ideal.thread(); 3423 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3424 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3425 3426 sync_kit(ideal); 3427 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3428 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3429 3430 ideal.sync_kit(this); 3431 } ideal.end_if(); 3432 final_sync(ideal); 3433 3434 return true; 3435 } 3436 3437 // Always update the is_disable_suspend bit. 3438 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3439 if (!DoJVMTIVirtualThreadTransitions) { 3440 return true; 3441 } 3442 IdealKit ideal(this); 3443 3444 { 3445 // unconditionally update the is_disable_suspend bit in current JavaThread 3446 Node* thread = ideal.thread(); 3447 Node* arg = _gvn.transform(argument(0)); // argument for notification 3448 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3449 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3450 3451 sync_kit(ideal); 3452 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3453 ideal.sync_kit(this); 3454 } 3455 final_sync(ideal); 3456 3457 return true; 3458 } 3459 3460 #endif // INCLUDE_JVMTI 3461 3462 #ifdef JFR_HAVE_INTRINSICS 3463 3464 /** 3465 * if oop->klass != null 3466 * // normal class 3467 * epoch = _epoch_state ? 2 : 1 3468 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3469 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3470 * } 3471 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3472 * else 3473 * // primitive class 3474 * if oop->array_klass != null 3475 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3476 * else 3477 * id = LAST_TYPE_ID + 1 // void class path 3478 * if (!signaled) 3479 * signaled = true 3480 */ 3481 bool LibraryCallKit::inline_native_classID() { 3482 Node* cls = argument(0); 3483 3484 IdealKit ideal(this); 3485 #define __ ideal. 3486 IdealVariable result(ideal); __ declarations_done(); 3487 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3488 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3489 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3490 3491 3492 __ if_then(kls, BoolTest::ne, null()); { 3493 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3494 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3495 3496 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3497 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3498 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3499 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3500 mask = _gvn.transform(new OrLNode(mask, epoch)); 3501 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3502 3503 float unlikely = PROB_UNLIKELY(0.999); 3504 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3505 sync_kit(ideal); 3506 make_runtime_call(RC_LEAF, 3507 OptoRuntime::class_id_load_barrier_Type(), 3508 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3509 "class id load barrier", 3510 TypePtr::BOTTOM, 3511 kls); 3512 ideal.sync_kit(this); 3513 } __ end_if(); 3514 3515 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3516 } __ else_(); { 3517 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3518 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3519 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3520 __ if_then(array_kls, BoolTest::ne, null()); { 3521 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3522 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3523 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3524 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3525 } __ else_(); { 3526 // void class case 3527 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3528 } __ end_if(); 3529 3530 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3531 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3532 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3533 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3534 } __ end_if(); 3535 } __ end_if(); 3536 3537 final_sync(ideal); 3538 set_result(ideal.value(result)); 3539 #undef __ 3540 return true; 3541 } 3542 3543 //------------------------inline_native_jvm_commit------------------ 3544 bool LibraryCallKit::inline_native_jvm_commit() { 3545 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3546 3547 // Save input memory and i_o state. 3548 Node* input_memory_state = reset_memory(); 3549 set_all_memory(input_memory_state); 3550 Node* input_io_state = i_o(); 3551 3552 // TLS. 3553 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3554 // Jfr java buffer. 3555 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3556 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3557 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3558 3559 // Load the current value of the notified field in the JfrThreadLocal. 3560 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3561 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3562 3563 // Test for notification. 3564 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3565 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3566 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3567 3568 // True branch, is notified. 3569 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3570 set_control(is_notified); 3571 3572 // Reset notified state. 3573 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3574 Node* notified_reset_memory = reset_memory(); 3575 3576 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3577 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3578 // Convert the machine-word to a long. 3579 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3580 3581 // False branch, not notified. 3582 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3583 set_control(not_notified); 3584 set_all_memory(input_memory_state); 3585 3586 // Arg is the next position as a long. 3587 Node* arg = argument(0); 3588 // Convert long to machine-word. 3589 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3590 3591 // Store the next_position to the underlying jfr java buffer. 3592 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3593 3594 Node* commit_memory = reset_memory(); 3595 set_all_memory(commit_memory); 3596 3597 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3598 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3599 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3600 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3601 3602 // And flags with lease constant. 3603 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3604 3605 // Branch on lease to conditionalize returning the leased java buffer. 3606 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3607 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3608 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3609 3610 // False branch, not a lease. 3611 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3612 3613 // True branch, is lease. 3614 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3615 set_control(is_lease); 3616 3617 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3618 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3619 OptoRuntime::void_void_Type(), 3620 SharedRuntime::jfr_return_lease(), 3621 "return_lease", TypePtr::BOTTOM); 3622 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3623 3624 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3625 record_for_igvn(lease_compare_rgn); 3626 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3627 record_for_igvn(lease_compare_mem); 3628 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3629 record_for_igvn(lease_compare_io); 3630 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3631 record_for_igvn(lease_result_value); 3632 3633 // Update control and phi nodes. 3634 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3635 lease_compare_rgn->init_req(_false_path, not_lease); 3636 3637 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3638 lease_compare_mem->init_req(_false_path, commit_memory); 3639 3640 lease_compare_io->init_req(_true_path, i_o()); 3641 lease_compare_io->init_req(_false_path, input_io_state); 3642 3643 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3644 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3645 3646 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3647 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3648 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3649 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3650 3651 // Update control and phi nodes. 3652 result_rgn->init_req(_true_path, is_notified); 3653 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3654 3655 result_mem->init_req(_true_path, notified_reset_memory); 3656 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3657 3658 result_io->init_req(_true_path, input_io_state); 3659 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3660 3661 result_value->init_req(_true_path, current_pos); 3662 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3663 3664 // Set output state. 3665 set_control(_gvn.transform(result_rgn)); 3666 set_all_memory(_gvn.transform(result_mem)); 3667 set_i_o(_gvn.transform(result_io)); 3668 set_result(result_rgn, result_value); 3669 return true; 3670 } 3671 3672 /* 3673 * The intrinsic is a model of this pseudo-code: 3674 * 3675 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3676 * jobject h_event_writer = tl->java_event_writer(); 3677 * if (h_event_writer == nullptr) { 3678 * return nullptr; 3679 * } 3680 * oop threadObj = Thread::threadObj(); 3681 * oop vthread = java_lang_Thread::vthread(threadObj); 3682 * traceid tid; 3683 * bool pinVirtualThread; 3684 * bool excluded; 3685 * if (vthread != threadObj) { // i.e. current thread is virtual 3686 * tid = java_lang_Thread::tid(vthread); 3687 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3688 * pinVirtualThread = VMContinuations; 3689 * excluded = vthread_epoch_raw & excluded_mask; 3690 * if (!excluded) { 3691 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3692 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3693 * if (vthread_epoch != current_epoch) { 3694 * write_checkpoint(); 3695 * } 3696 * } 3697 * } else { 3698 * tid = java_lang_Thread::tid(threadObj); 3699 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3700 * pinVirtualThread = false; 3701 * excluded = thread_epoch_raw & excluded_mask; 3702 * } 3703 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3704 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3705 * if (tid_in_event_writer != tid) { 3706 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3707 * setField(event_writer, "excluded", excluded); 3708 * setField(event_writer, "threadID", tid); 3709 * } 3710 * return event_writer 3711 */ 3712 bool LibraryCallKit::inline_native_getEventWriter() { 3713 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3714 3715 // Save input memory and i_o state. 3716 Node* input_memory_state = reset_memory(); 3717 set_all_memory(input_memory_state); 3718 Node* input_io_state = i_o(); 3719 3720 // The most significant bit of the u2 is used to denote thread exclusion 3721 Node* excluded_shift = _gvn.intcon(15); 3722 Node* excluded_mask = _gvn.intcon(1 << 15); 3723 // The epoch generation is the range [1-32767] 3724 Node* epoch_mask = _gvn.intcon(32767); 3725 3726 // TLS 3727 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3728 3729 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3730 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3731 3732 // Load the eventwriter jobject handle. 3733 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3734 3735 // Null check the jobject handle. 3736 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3737 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3738 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3739 3740 // False path, jobj is null. 3741 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3742 3743 // True path, jobj is not null. 3744 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3745 3746 set_control(jobj_is_not_null); 3747 3748 // Load the threadObj for the CarrierThread. 3749 Node* threadObj = generate_current_thread(tls_ptr); 3750 3751 // Load the vthread. 3752 Node* vthread = generate_virtual_thread(tls_ptr); 3753 3754 // If vthread != threadObj, this is a virtual thread. 3755 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3756 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3757 IfNode* iff_vthread_not_equal_threadObj = 3758 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3759 3760 // False branch, fallback to threadObj. 3761 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3762 set_control(vthread_equal_threadObj); 3763 3764 // Load the tid field from the vthread object. 3765 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3766 3767 // Load the raw epoch value from the threadObj. 3768 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3769 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3770 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3771 TypeInt::CHAR, T_CHAR, 3772 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3773 3774 // Mask off the excluded information from the epoch. 3775 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3776 3777 // True branch, this is a virtual thread. 3778 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3779 set_control(vthread_not_equal_threadObj); 3780 3781 // Load the tid field from the vthread object. 3782 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3783 3784 // Continuation support determines if a virtual thread should be pinned. 3785 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3786 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3787 3788 // Load the raw epoch value from the vthread. 3789 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3790 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3791 TypeInt::CHAR, T_CHAR, 3792 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3793 3794 // Mask off the excluded information from the epoch. 3795 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3796 3797 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3798 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3799 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3800 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3801 3802 // False branch, vthread is excluded, no need to write epoch info. 3803 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3804 3805 // True branch, vthread is included, update epoch info. 3806 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3807 set_control(included); 3808 3809 // Get epoch value. 3810 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3811 3812 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3813 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3814 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3815 3816 // Compare the epoch in the vthread to the current epoch generation. 3817 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3818 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3819 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3820 3821 // False path, epoch is equal, checkpoint information is valid. 3822 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3823 3824 // True path, epoch is not equal, write a checkpoint for the vthread. 3825 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3826 3827 set_control(epoch_is_not_equal); 3828 3829 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3830 // The call also updates the native thread local thread id and the vthread with the current epoch. 3831 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3832 OptoRuntime::jfr_write_checkpoint_Type(), 3833 SharedRuntime::jfr_write_checkpoint(), 3834 "write_checkpoint", TypePtr::BOTTOM); 3835 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3836 3837 // vthread epoch != current epoch 3838 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3839 record_for_igvn(epoch_compare_rgn); 3840 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3841 record_for_igvn(epoch_compare_mem); 3842 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3843 record_for_igvn(epoch_compare_io); 3844 3845 // Update control and phi nodes. 3846 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3847 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3848 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3849 epoch_compare_mem->init_req(_false_path, input_memory_state); 3850 epoch_compare_io->init_req(_true_path, i_o()); 3851 epoch_compare_io->init_req(_false_path, input_io_state); 3852 3853 // excluded != true 3854 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3855 record_for_igvn(exclude_compare_rgn); 3856 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3857 record_for_igvn(exclude_compare_mem); 3858 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3859 record_for_igvn(exclude_compare_io); 3860 3861 // Update control and phi nodes. 3862 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3863 exclude_compare_rgn->init_req(_false_path, excluded); 3864 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3865 exclude_compare_mem->init_req(_false_path, input_memory_state); 3866 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3867 exclude_compare_io->init_req(_false_path, input_io_state); 3868 3869 // vthread != threadObj 3870 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3871 record_for_igvn(vthread_compare_rgn); 3872 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3873 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3874 record_for_igvn(vthread_compare_io); 3875 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3876 record_for_igvn(tid); 3877 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3878 record_for_igvn(exclusion); 3879 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3880 record_for_igvn(pinVirtualThread); 3881 3882 // Update control and phi nodes. 3883 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3884 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3885 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3886 vthread_compare_mem->init_req(_false_path, input_memory_state); 3887 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3888 vthread_compare_io->init_req(_false_path, input_io_state); 3889 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3890 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3891 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3892 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3893 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3894 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3895 3896 // Update branch state. 3897 set_control(_gvn.transform(vthread_compare_rgn)); 3898 set_all_memory(_gvn.transform(vthread_compare_mem)); 3899 set_i_o(_gvn.transform(vthread_compare_io)); 3900 3901 // Load the event writer oop by dereferencing the jobject handle. 3902 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3903 assert(klass_EventWriter->is_loaded(), "invariant"); 3904 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3905 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3906 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3907 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3908 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3909 3910 // Load the current thread id from the event writer object. 3911 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3912 // Get the field offset to, conditionally, store an updated tid value later. 3913 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3914 // Get the field offset to, conditionally, store an updated exclusion value later. 3915 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3916 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3917 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3918 3919 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3920 record_for_igvn(event_writer_tid_compare_rgn); 3921 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3922 record_for_igvn(event_writer_tid_compare_mem); 3923 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3924 record_for_igvn(event_writer_tid_compare_io); 3925 3926 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3927 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3928 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3929 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3930 3931 // False path, tids are the same. 3932 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3933 3934 // True path, tid is not equal, need to update the tid in the event writer. 3935 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3936 record_for_igvn(tid_is_not_equal); 3937 3938 // Store the pin state to the event writer. 3939 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3940 3941 // Store the exclusion state to the event writer. 3942 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3943 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3944 3945 // Store the tid to the event writer. 3946 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3947 3948 // Update control and phi nodes. 3949 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3950 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3951 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3952 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3953 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3954 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3955 3956 // Result of top level CFG, Memory, IO and Value. 3957 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3958 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3959 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3960 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3961 3962 // Result control. 3963 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3964 result_rgn->init_req(_false_path, jobj_is_null); 3965 3966 // Result memory. 3967 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3968 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3969 3970 // Result IO. 3971 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3972 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3973 3974 // Result value. 3975 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3976 result_value->init_req(_false_path, null()); // return null 3977 3978 // Set output state. 3979 set_control(_gvn.transform(result_rgn)); 3980 set_all_memory(_gvn.transform(result_mem)); 3981 set_i_o(_gvn.transform(result_io)); 3982 set_result(result_rgn, result_value); 3983 return true; 3984 } 3985 3986 /* 3987 * The intrinsic is a model of this pseudo-code: 3988 * 3989 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3990 * if (carrierThread != thread) { // is virtual thread 3991 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3992 * bool excluded = vthread_epoch_raw & excluded_mask; 3993 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3994 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3995 * if (!excluded) { 3996 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3997 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3998 * } 3999 * Atomic::release_store(&tl->_vthread, true); 4000 * return; 4001 * } 4002 * Atomic::release_store(&tl->_vthread, false); 4003 */ 4004 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 4005 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 4006 4007 Node* input_memory_state = reset_memory(); 4008 set_all_memory(input_memory_state); 4009 4010 // The most significant bit of the u2 is used to denote thread exclusion 4011 Node* excluded_mask = _gvn.intcon(1 << 15); 4012 // The epoch generation is the range [1-32767] 4013 Node* epoch_mask = _gvn.intcon(32767); 4014 4015 Node* const carrierThread = generate_current_thread(jt); 4016 // If thread != carrierThread, this is a virtual thread. 4017 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 4018 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 4019 IfNode* iff_thread_not_equal_carrierThread = 4020 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 4021 4022 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 4023 4024 // False branch, is carrierThread. 4025 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 4026 // Store release 4027 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 4028 4029 set_all_memory(input_memory_state); 4030 4031 // True branch, is virtual thread. 4032 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 4033 set_control(thread_not_equal_carrierThread); 4034 4035 // Load the raw epoch value from the vthread. 4036 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 4037 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 4038 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 4039 4040 // Mask off the excluded information from the epoch. 4041 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 4042 4043 // Load the tid field from the thread. 4044 Node* tid = load_field_from_object(thread, "tid", "J"); 4045 4046 // Store the vthread tid to the jfr thread local. 4047 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 4048 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 4049 4050 // Branch is_excluded to conditionalize updating the epoch . 4051 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 4052 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 4053 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 4054 4055 // True branch, vthread is excluded, no need to write epoch info. 4056 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 4057 set_control(excluded); 4058 Node* vthread_is_excluded = _gvn.intcon(1); 4059 4060 // False branch, vthread is included, update epoch info. 4061 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 4062 set_control(included); 4063 Node* vthread_is_included = _gvn.intcon(0); 4064 4065 // Get epoch value. 4066 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 4067 4068 // Store the vthread epoch to the jfr thread local. 4069 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 4070 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 4071 4072 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 4073 record_for_igvn(excluded_rgn); 4074 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 4075 record_for_igvn(excluded_mem); 4076 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 4077 record_for_igvn(exclusion); 4078 4079 // Merge the excluded control and memory. 4080 excluded_rgn->init_req(_true_path, excluded); 4081 excluded_rgn->init_req(_false_path, included); 4082 excluded_mem->init_req(_true_path, tid_memory); 4083 excluded_mem->init_req(_false_path, included_memory); 4084 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 4085 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 4086 4087 // Set intermediate state. 4088 set_control(_gvn.transform(excluded_rgn)); 4089 set_all_memory(excluded_mem); 4090 4091 // Store the vthread exclusion state to the jfr thread local. 4092 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 4093 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 4094 4095 // Store release 4096 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 4097 4098 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 4099 record_for_igvn(thread_compare_rgn); 4100 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 4101 record_for_igvn(thread_compare_mem); 4102 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 4103 record_for_igvn(vthread); 4104 4105 // Merge the thread_compare control and memory. 4106 thread_compare_rgn->init_req(_true_path, control()); 4107 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 4108 thread_compare_mem->init_req(_true_path, vthread_true_memory); 4109 thread_compare_mem->init_req(_false_path, vthread_false_memory); 4110 4111 // Set output state. 4112 set_control(_gvn.transform(thread_compare_rgn)); 4113 set_all_memory(_gvn.transform(thread_compare_mem)); 4114 } 4115 4116 #endif // JFR_HAVE_INTRINSICS 4117 4118 //------------------------inline_native_currentCarrierThread------------------ 4119 bool LibraryCallKit::inline_native_currentCarrierThread() { 4120 Node* junk = nullptr; 4121 set_result(generate_current_thread(junk)); 4122 return true; 4123 } 4124 4125 //------------------------inline_native_currentThread------------------ 4126 bool LibraryCallKit::inline_native_currentThread() { 4127 Node* junk = nullptr; 4128 set_result(generate_virtual_thread(junk)); 4129 return true; 4130 } 4131 4132 //------------------------inline_native_setVthread------------------ 4133 bool LibraryCallKit::inline_native_setCurrentThread() { 4134 assert(C->method()->changes_current_thread(), 4135 "method changes current Thread but is not annotated ChangesCurrentThread"); 4136 Node* arr = argument(1); 4137 Node* thread = _gvn.transform(new ThreadLocalNode()); 4138 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 4139 Node* thread_obj_handle 4140 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 4141 thread_obj_handle = _gvn.transform(thread_obj_handle); 4142 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 4143 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 4144 4145 // Change the _monitor_owner_id of the JavaThread 4146 Node* tid = load_field_from_object(arr, "tid", "J"); 4147 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 4148 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 4149 4150 JFR_ONLY(extend_setCurrentThread(thread, arr);) 4151 return true; 4152 } 4153 4154 const Type* LibraryCallKit::scopedValueCache_type() { 4155 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 4156 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 4157 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true); 4158 4159 // Because we create the scopedValue cache lazily we have to make the 4160 // type of the result BotPTR. 4161 bool xk = etype->klass_is_exact(); 4162 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0)); 4163 return objects_type; 4164 } 4165 4166 Node* LibraryCallKit::scopedValueCache_helper() { 4167 Node* thread = _gvn.transform(new ThreadLocalNode()); 4168 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 4169 // We cannot use immutable_memory() because we might flip onto a 4170 // different carrier thread, at which point we'll need to use that 4171 // carrier thread's cache. 4172 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 4173 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 4174 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 4175 } 4176 4177 //------------------------inline_native_scopedValueCache------------------ 4178 bool LibraryCallKit::inline_native_scopedValueCache() { 4179 Node* cache_obj_handle = scopedValueCache_helper(); 4180 const Type* objects_type = scopedValueCache_type(); 4181 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 4182 4183 return true; 4184 } 4185 4186 //------------------------inline_native_setScopedValueCache------------------ 4187 bool LibraryCallKit::inline_native_setScopedValueCache() { 4188 Node* arr = argument(0); 4189 Node* cache_obj_handle = scopedValueCache_helper(); 4190 const Type* objects_type = scopedValueCache_type(); 4191 4192 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 4193 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 4194 4195 return true; 4196 } 4197 4198 //------------------------inline_native_Continuation_pin and unpin----------- 4199 4200 // Shared implementation routine for both pin and unpin. 4201 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 4202 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 4203 4204 // Save input memory. 4205 Node* input_memory_state = reset_memory(); 4206 set_all_memory(input_memory_state); 4207 4208 // TLS 4209 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 4210 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 4211 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 4212 4213 // Null check the last continuation object. 4214 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 4215 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 4216 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 4217 4218 // False path, last continuation is null. 4219 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 4220 4221 // True path, last continuation is not null. 4222 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 4223 4224 set_control(continuation_is_not_null); 4225 4226 // Load the pin count from the last continuation. 4227 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 4228 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 4229 4230 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 4231 Node* pin_count_rhs; 4232 if (unpin) { 4233 pin_count_rhs = _gvn.intcon(0); 4234 } else { 4235 pin_count_rhs = _gvn.intcon(UINT32_MAX); 4236 } 4237 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 4238 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 4239 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 4240 4241 // True branch, pin count over/underflow. 4242 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 4243 { 4244 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 4245 // which will throw IllegalStateException for pin count over/underflow. 4246 // No memory changed so far - we can use memory create by reset_memory() 4247 // at the beginning of this intrinsic. No need to call reset_memory() again. 4248 PreserveJVMState pjvms(this); 4249 set_control(pin_count_over_underflow); 4250 uncommon_trap(Deoptimization::Reason_intrinsic, 4251 Deoptimization::Action_none); 4252 assert(stopped(), "invariant"); 4253 } 4254 4255 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 4256 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 4257 set_control(valid_pin_count); 4258 4259 Node* next_pin_count; 4260 if (unpin) { 4261 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 4262 } else { 4263 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 4264 } 4265 4266 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 4267 4268 // Result of top level CFG and Memory. 4269 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 4270 record_for_igvn(result_rgn); 4271 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 4272 record_for_igvn(result_mem); 4273 4274 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 4275 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 4276 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 4277 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 4278 4279 // Set output state. 4280 set_control(_gvn.transform(result_rgn)); 4281 set_all_memory(_gvn.transform(result_mem)); 4282 4283 return true; 4284 } 4285 4286 //-----------------------load_klass_from_mirror_common------------------------- 4287 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 4288 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 4289 // and branch to the given path on the region. 4290 // If never_see_null, take an uncommon trap on null, so we can optimistically 4291 // compile for the non-null case. 4292 // If the region is null, force never_see_null = true. 4293 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 4294 bool never_see_null, 4295 RegionNode* region, 4296 int null_path, 4297 int offset) { 4298 if (region == nullptr) never_see_null = true; 4299 Node* p = basic_plus_adr(mirror, offset); 4300 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4301 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 4302 Node* null_ctl = top(); 4303 kls = null_check_oop(kls, &null_ctl, never_see_null); 4304 if (region != nullptr) { 4305 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 4306 region->init_req(null_path, null_ctl); 4307 } else { 4308 assert(null_ctl == top(), "no loose ends"); 4309 } 4310 return kls; 4311 } 4312 4313 //--------------------(inline_native_Class_query helpers)--------------------- 4314 // Use this for JVM_ACC_INTERFACE. 4315 // Fall through if (mods & mask) == bits, take the guard otherwise. 4316 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 4317 ByteSize offset, const Type* type, BasicType bt) { 4318 // Branch around if the given klass has the given modifier bit set. 4319 // Like generate_guard, adds a new path onto the region. 4320 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 4321 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 4322 Node* mask = intcon(modifier_mask); 4323 Node* bits = intcon(modifier_bits); 4324 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 4325 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 4326 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 4327 return generate_fair_guard(bol, region); 4328 } 4329 4330 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 4331 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 4332 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 4333 } 4334 4335 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 4336 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 4337 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 4338 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 4339 } 4340 4341 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 4342 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 4343 } 4344 4345 //-------------------------inline_native_Class_query------------------- 4346 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 4347 const Type* return_type = TypeInt::BOOL; 4348 Node* prim_return_value = top(); // what happens if it's a primitive class? 4349 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4350 bool expect_prim = false; // most of these guys expect to work on refs 4351 4352 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 4353 4354 Node* mirror = argument(0); 4355 Node* obj = top(); 4356 4357 switch (id) { 4358 case vmIntrinsics::_isInstance: 4359 // nothing is an instance of a primitive type 4360 prim_return_value = intcon(0); 4361 obj = argument(1); 4362 break; 4363 case vmIntrinsics::_isHidden: 4364 prim_return_value = intcon(0); 4365 break; 4366 case vmIntrinsics::_getSuperclass: 4367 prim_return_value = null(); 4368 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 4369 break; 4370 case vmIntrinsics::_getClassAccessFlags: 4371 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 4372 return_type = TypeInt::CHAR; 4373 break; 4374 default: 4375 fatal_unexpected_iid(id); 4376 break; 4377 } 4378 4379 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4380 if (mirror_con == nullptr) return false; // cannot happen? 4381 4382 #ifndef PRODUCT 4383 if (C->print_intrinsics() || C->print_inlining()) { 4384 ciType* k = mirror_con->java_mirror_type(); 4385 if (k) { 4386 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 4387 k->print_name(); 4388 tty->cr(); 4389 } 4390 } 4391 #endif 4392 4393 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 4394 RegionNode* region = new RegionNode(PATH_LIMIT); 4395 record_for_igvn(region); 4396 PhiNode* phi = new PhiNode(region, return_type); 4397 4398 // The mirror will never be null of Reflection.getClassAccessFlags, however 4399 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4400 // if it is. See bug 4774291. 4401 4402 // For Reflection.getClassAccessFlags(), the null check occurs in 4403 // the wrong place; see inline_unsafe_access(), above, for a similar 4404 // situation. 4405 mirror = null_check(mirror); 4406 // If mirror or obj is dead, only null-path is taken. 4407 if (stopped()) return true; 4408 4409 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4410 4411 // Now load the mirror's klass metaobject, and null-check it. 4412 // Side-effects region with the control path if the klass is null. 4413 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4414 // If kls is null, we have a primitive mirror. 4415 phi->init_req(_prim_path, prim_return_value); 4416 if (stopped()) { set_result(region, phi); return true; } 4417 bool safe_for_replace = (region->in(_prim_path) == top()); 4418 4419 Node* p; // handy temp 4420 Node* null_ctl; 4421 4422 // Now that we have the non-null klass, we can perform the real query. 4423 // For constant classes, the query will constant-fold in LoadNode::Value. 4424 Node* query_value = top(); 4425 switch (id) { 4426 case vmIntrinsics::_isInstance: 4427 // nothing is an instance of a primitive type 4428 query_value = gen_instanceof(obj, kls, safe_for_replace); 4429 break; 4430 4431 case vmIntrinsics::_isHidden: 4432 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4433 if (generate_hidden_class_guard(kls, region) != nullptr) 4434 // A guard was added. If the guard is taken, it was an hidden class. 4435 phi->add_req(intcon(1)); 4436 // If we fall through, it's a plain class. 4437 query_value = intcon(0); 4438 break; 4439 4440 4441 case vmIntrinsics::_getSuperclass: 4442 // The rules here are somewhat unfortunate, but we can still do better 4443 // with random logic than with a JNI call. 4444 // Interfaces store null or Object as _super, but must report null. 4445 // Arrays store an intermediate super as _super, but must report Object. 4446 // Other types can report the actual _super. 4447 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4448 if (generate_interface_guard(kls, region) != nullptr) 4449 // A guard was added. If the guard is taken, it was an interface. 4450 phi->add_req(null()); 4451 if (generate_array_guard(kls, region) != nullptr) 4452 // A guard was added. If the guard is taken, it was an array. 4453 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4454 // If we fall through, it's a plain class. Get its _super. 4455 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4456 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4457 null_ctl = top(); 4458 kls = null_check_oop(kls, &null_ctl); 4459 if (null_ctl != top()) { 4460 // If the guard is taken, Object.superClass is null (both klass and mirror). 4461 region->add_req(null_ctl); 4462 phi ->add_req(null()); 4463 } 4464 if (!stopped()) { 4465 query_value = load_mirror_from_klass(kls); 4466 } 4467 break; 4468 4469 case vmIntrinsics::_getClassAccessFlags: 4470 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4471 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4472 break; 4473 4474 default: 4475 fatal_unexpected_iid(id); 4476 break; 4477 } 4478 4479 // Fall-through is the normal case of a query to a real class. 4480 phi->init_req(1, query_value); 4481 region->init_req(1, control()); 4482 4483 C->set_has_split_ifs(true); // Has chance for split-if optimization 4484 set_result(region, phi); 4485 return true; 4486 } 4487 4488 4489 //-------------------------inline_Class_cast------------------- 4490 bool LibraryCallKit::inline_Class_cast() { 4491 Node* mirror = argument(0); // Class 4492 Node* obj = argument(1); 4493 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4494 if (mirror_con == nullptr) { 4495 return false; // dead path (mirror->is_top()). 4496 } 4497 if (obj == nullptr || obj->is_top()) { 4498 return false; // dead path 4499 } 4500 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4501 4502 // First, see if Class.cast() can be folded statically. 4503 // java_mirror_type() returns non-null for compile-time Class constants. 4504 ciType* tm = mirror_con->java_mirror_type(); 4505 if (tm != nullptr && tm->is_klass() && 4506 tp != nullptr) { 4507 if (!tp->is_loaded()) { 4508 // Don't use intrinsic when class is not loaded. 4509 return false; 4510 } else { 4511 const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces); 4512 int static_res = C->static_subtype_check(tklass, tp->as_klass_type()); 4513 if (static_res == Compile::SSC_always_true) { 4514 // isInstance() is true - fold the code. 4515 set_result(obj); 4516 return true; 4517 } else if (static_res == Compile::SSC_always_false) { 4518 // Don't use intrinsic, have to throw ClassCastException. 4519 // If the reference is null, the non-intrinsic bytecode will 4520 // be optimized appropriately. 4521 return false; 4522 } 4523 } 4524 } 4525 4526 // Bailout intrinsic and do normal inlining if exception path is frequent. 4527 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4528 return false; 4529 } 4530 4531 // Generate dynamic checks. 4532 // Class.cast() is java implementation of _checkcast bytecode. 4533 // Do checkcast (Parse::do_checkcast()) optimizations here. 4534 4535 mirror = null_check(mirror); 4536 // If mirror is dead, only null-path is taken. 4537 if (stopped()) { 4538 return true; 4539 } 4540 4541 // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive). 4542 enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT }; 4543 RegionNode* region = new RegionNode(PATH_LIMIT); 4544 record_for_igvn(region); 4545 4546 // Now load the mirror's klass metaobject, and null-check it. 4547 // If kls is null, we have a primitive mirror and 4548 // nothing is an instance of a primitive type. 4549 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4550 4551 Node* res = top(); 4552 Node* io = i_o(); 4553 Node* mem = merged_memory(); 4554 if (!stopped()) { 4555 4556 Node* bad_type_ctrl = top(); 4557 // Do checkcast optimizations. 4558 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4559 region->init_req(_bad_type_path, bad_type_ctrl); 4560 } 4561 if (region->in(_prim_path) != top() || 4562 region->in(_bad_type_path) != top() || 4563 region->in(_npe_path) != top()) { 4564 // Let Interpreter throw ClassCastException. 4565 PreserveJVMState pjvms(this); 4566 set_control(_gvn.transform(region)); 4567 // Set IO and memory because gen_checkcast may override them when buffering inline types 4568 set_i_o(io); 4569 set_all_memory(mem); 4570 uncommon_trap(Deoptimization::Reason_intrinsic, 4571 Deoptimization::Action_maybe_recompile); 4572 } 4573 if (!stopped()) { 4574 set_result(res); 4575 } 4576 return true; 4577 } 4578 4579 4580 //--------------------------inline_native_subtype_check------------------------ 4581 // This intrinsic takes the JNI calls out of the heart of 4582 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4583 bool LibraryCallKit::inline_native_subtype_check() { 4584 // Pull both arguments off the stack. 4585 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4586 args[0] = argument(0); 4587 args[1] = argument(1); 4588 Node* klasses[2]; // corresponding Klasses: superk, subk 4589 klasses[0] = klasses[1] = top(); 4590 4591 enum { 4592 // A full decision tree on {superc is prim, subc is prim}: 4593 _prim_0_path = 1, // {P,N} => false 4594 // {P,P} & superc!=subc => false 4595 _prim_same_path, // {P,P} & superc==subc => true 4596 _prim_1_path, // {N,P} => false 4597 _ref_subtype_path, // {N,N} & subtype check wins => true 4598 _both_ref_path, // {N,N} & subtype check loses => false 4599 PATH_LIMIT 4600 }; 4601 4602 RegionNode* region = new RegionNode(PATH_LIMIT); 4603 RegionNode* prim_region = new RegionNode(2); 4604 Node* phi = new PhiNode(region, TypeInt::BOOL); 4605 record_for_igvn(region); 4606 record_for_igvn(prim_region); 4607 4608 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4609 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4610 int class_klass_offset = java_lang_Class::klass_offset(); 4611 4612 // First null-check both mirrors and load each mirror's klass metaobject. 4613 int which_arg; 4614 for (which_arg = 0; which_arg <= 1; which_arg++) { 4615 Node* arg = args[which_arg]; 4616 arg = null_check(arg); 4617 if (stopped()) break; 4618 args[which_arg] = arg; 4619 4620 Node* p = basic_plus_adr(arg, class_klass_offset); 4621 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4622 klasses[which_arg] = _gvn.transform(kls); 4623 } 4624 4625 // Having loaded both klasses, test each for null. 4626 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4627 for (which_arg = 0; which_arg <= 1; which_arg++) { 4628 Node* kls = klasses[which_arg]; 4629 Node* null_ctl = top(); 4630 kls = null_check_oop(kls, &null_ctl, never_see_null); 4631 if (which_arg == 0) { 4632 prim_region->init_req(1, null_ctl); 4633 } else { 4634 region->init_req(_prim_1_path, null_ctl); 4635 } 4636 if (stopped()) break; 4637 klasses[which_arg] = kls; 4638 } 4639 4640 if (!stopped()) { 4641 // now we have two reference types, in klasses[0..1] 4642 Node* subk = klasses[1]; // the argument to isAssignableFrom 4643 Node* superk = klasses[0]; // the receiver 4644 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4645 region->set_req(_ref_subtype_path, control()); 4646 } 4647 4648 // If both operands are primitive (both klasses null), then 4649 // we must return true when they are identical primitives. 4650 // It is convenient to test this after the first null klass check. 4651 // This path is also used if superc is a value mirror. 4652 set_control(_gvn.transform(prim_region)); 4653 if (!stopped()) { 4654 // Since superc is primitive, make a guard for the superc==subc case. 4655 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4656 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4657 generate_fair_guard(bol_eq, region); 4658 if (region->req() == PATH_LIMIT+1) { 4659 // A guard was added. If the added guard is taken, superc==subc. 4660 region->swap_edges(PATH_LIMIT, _prim_same_path); 4661 region->del_req(PATH_LIMIT); 4662 } 4663 region->set_req(_prim_0_path, control()); // Not equal after all. 4664 } 4665 4666 // these are the only paths that produce 'true': 4667 phi->set_req(_prim_same_path, intcon(1)); 4668 phi->set_req(_ref_subtype_path, intcon(1)); 4669 4670 // pull together the cases: 4671 assert(region->req() == PATH_LIMIT, "sane region"); 4672 for (uint i = 1; i < region->req(); i++) { 4673 Node* ctl = region->in(i); 4674 if (ctl == nullptr || ctl == top()) { 4675 region->set_req(i, top()); 4676 phi ->set_req(i, top()); 4677 } else if (phi->in(i) == nullptr) { 4678 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4679 } 4680 } 4681 4682 set_control(_gvn.transform(region)); 4683 set_result(_gvn.transform(phi)); 4684 return true; 4685 } 4686 4687 //---------------------generate_array_guard_common------------------------ 4688 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) { 4689 4690 if (stopped()) { 4691 return nullptr; 4692 } 4693 4694 // Like generate_guard, adds a new path onto the region. 4695 jint layout_con = 0; 4696 Node* layout_val = get_layout_helper(kls, layout_con); 4697 if (layout_val == nullptr) { 4698 bool query = 0; 4699 switch(kind) { 4700 case RefArray: query = Klass::layout_helper_is_refArray(layout_con); break; 4701 case NonRefArray: query = !Klass::layout_helper_is_refArray(layout_con); break; 4702 case TypeArray: query = Klass::layout_helper_is_typeArray(layout_con); break; 4703 case AnyArray: query = Klass::layout_helper_is_array(layout_con); break; 4704 case NonArray: query = !Klass::layout_helper_is_array(layout_con); break; 4705 default: 4706 ShouldNotReachHere(); 4707 } 4708 if (!query) { 4709 return nullptr; // never a branch 4710 } else { // always a branch 4711 Node* always_branch = control(); 4712 if (region != nullptr) 4713 region->add_req(always_branch); 4714 set_control(top()); 4715 return always_branch; 4716 } 4717 } 4718 unsigned int value = 0; 4719 BoolTest::mask btest = BoolTest::illegal; 4720 switch(kind) { 4721 case RefArray: 4722 case NonRefArray: { 4723 value = Klass::_lh_array_tag_ref_value; 4724 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4725 btest = (kind == RefArray) ? BoolTest::eq : BoolTest::ne; 4726 break; 4727 } 4728 case TypeArray: { 4729 value = Klass::_lh_array_tag_type_value; 4730 layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift))); 4731 btest = BoolTest::eq; 4732 break; 4733 } 4734 case AnyArray: value = Klass::_lh_neutral_value; btest = BoolTest::lt; break; 4735 case NonArray: value = Klass::_lh_neutral_value; btest = BoolTest::gt; break; 4736 default: 4737 ShouldNotReachHere(); 4738 } 4739 // Now test the correct condition. 4740 jint nval = (jint)value; 4741 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4742 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4743 Node* ctrl = generate_fair_guard(bol, region); 4744 Node* is_array_ctrl = kind == NonArray ? control() : ctrl; 4745 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4746 // Keep track of the fact that 'obj' is an array to prevent 4747 // array specific accesses from floating above the guard. 4748 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4749 } 4750 return ctrl; 4751 } 4752 4753 // public static native Object[] newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal); 4754 // public static native Object[] newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal); 4755 // public static native Object[] newNullableAtomicArray(Class<?> componentType, int length); 4756 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) { 4757 assert(null_free || atomic, "nullable implies atomic"); 4758 Node* componentType = argument(0); 4759 Node* length = argument(1); 4760 Node* init_val = null_free ? argument(2) : nullptr; 4761 4762 const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr(); 4763 if (tp != nullptr) { 4764 ciInstanceKlass* ik = tp->instance_klass(); 4765 if (ik == C->env()->Class_klass()) { 4766 ciType* t = tp->java_mirror_type(); 4767 if (t != nullptr && t->is_inlinetype()) { 4768 4769 ciArrayKlass* array_klass = ciArrayKlass::make(t, null_free, atomic, true); 4770 assert(array_klass->is_elem_null_free() == null_free, "inconsistency"); 4771 assert(array_klass->is_elem_atomic() == atomic, "inconsistency"); 4772 4773 // TOOD 8350865 ZGC needs card marks on initializing oop stores 4774 if (UseZGC && null_free && !array_klass->is_flat_array_klass()) { 4775 return false; 4776 } 4777 4778 if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) { 4779 const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces, true); 4780 if (null_free) { 4781 if (init_val->is_InlineType()) { 4782 if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) { 4783 // Zeroing is enough because the init value is the all-zero value 4784 init_val = nullptr; 4785 } else { 4786 init_val = init_val->as_InlineType()->buffer(this); 4787 } 4788 } 4789 // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)? 4790 } 4791 Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val); 4792 const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr(); 4793 assert(arytype->is_null_free() == null_free, "inconsistency"); 4794 assert(arytype->is_not_null_free() == !null_free, "inconsistency"); 4795 assert(arytype->is_atomic() == atomic, "inconsistency"); 4796 set_result(obj); 4797 return true; 4798 } 4799 } 4800 } 4801 } 4802 return false; 4803 } 4804 4805 Node* LibraryCallKit::load_default_array_klass(Node* klass_node) { 4806 // TODO 8366668 4807 // - Fred suggested that we could just have the first entry in the refined list point to the array with ArrayKlass::ArrayProperties::DEFAULT property 4808 // For now, we just load from ObjArrayKlass::_next_refined_array_klass, which would always be the refKlass for non-values, and deopt if it's not 4809 // - Convert this to an IGVN optimization, so it's also folded after parsing 4810 // - The generate_typeArray_guard is not needed by all callers, double-check that it's folded 4811 4812 const Type* klass_t = _gvn.type(klass_node); 4813 const TypeAryKlassPtr* ary_klass_t = klass_t->isa_aryklassptr(); 4814 if (ary_klass_t && ary_klass_t->klass_is_exact()) { 4815 if (ary_klass_t->exact_klass()->is_obj_array_klass()) { 4816 ary_klass_t = ary_klass_t->get_vm_type(false); 4817 return makecon(ary_klass_t); 4818 } else { 4819 return klass_node; 4820 } 4821 } 4822 4823 // Load next refined array klass if klass is an ObjArrayKlass 4824 RegionNode* refined_region = new RegionNode(2); 4825 Node* refined_phi = new PhiNode(refined_region, klass_t); 4826 4827 generate_typeArray_guard(klass_node, refined_region); 4828 if (refined_region->req() == 3) { 4829 refined_phi->add_req(klass_node); 4830 } 4831 4832 Node* adr_refined_klass = basic_plus_adr(klass_node, in_bytes(ObjArrayKlass::next_refined_array_klass_offset())); 4833 Node* refined_klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), adr_refined_klass, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4834 4835 RegionNode* refined_region2 = new RegionNode(3); 4836 Node* refined_phi2 = new PhiNode(refined_region2, klass_t); 4837 4838 Node* null_ctl = top(); 4839 Node* null_free_klass = null_check_common(refined_klass, T_OBJECT, false, &null_ctl); 4840 refined_region2->init_req(1, null_ctl); 4841 refined_phi2->init_req(1, klass_node); 4842 4843 refined_region2->init_req(2, control()); 4844 refined_phi2->init_req(2, null_free_klass); 4845 4846 set_control(_gvn.transform(refined_region2)); 4847 refined_klass = _gvn.transform(refined_phi2); 4848 4849 Node* adr_properties = basic_plus_adr(refined_klass, in_bytes(ObjArrayKlass::properties_offset())); 4850 4851 Node* properties = _gvn.transform(LoadNode::make(_gvn, control(), immutable_memory(), adr_properties, TypeRawPtr::BOTTOM, TypeInt::INT, T_INT, MemNode::unordered)); 4852 Node* default_val = makecon(TypeInt::make(ArrayKlass::ArrayProperties::DEFAULT)); 4853 Node* chk = _gvn.transform(new CmpINode(properties, default_val)); 4854 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 4855 4856 { // Deoptimize if not the default property 4857 BuildCutout unless(this, tst, PROB_MAX); 4858 uncommon_trap_exact(Deoptimization::Reason_class_check, Deoptimization::Action_none); 4859 } 4860 4861 refined_region->init_req(1, control()); 4862 refined_phi->init_req(1, refined_klass); 4863 4864 set_control(_gvn.transform(refined_region)); 4865 klass_node = _gvn.transform(refined_phi); 4866 4867 return klass_node; 4868 } 4869 4870 //-----------------------inline_native_newArray-------------------------- 4871 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length); 4872 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4873 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4874 Node* mirror; 4875 Node* count_val; 4876 if (uninitialized) { 4877 null_check_receiver(); 4878 mirror = argument(1); 4879 count_val = argument(2); 4880 } else { 4881 mirror = argument(0); 4882 count_val = argument(1); 4883 } 4884 4885 mirror = null_check(mirror); 4886 // If mirror or obj is dead, only null-path is taken. 4887 if (stopped()) return true; 4888 4889 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4890 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4891 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4892 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4893 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4894 4895 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4896 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4897 result_reg, _slow_path); 4898 Node* normal_ctl = control(); 4899 Node* no_array_ctl = result_reg->in(_slow_path); 4900 4901 // Generate code for the slow case. We make a call to newArray(). 4902 set_control(no_array_ctl); 4903 if (!stopped()) { 4904 // Either the input type is void.class, or else the 4905 // array klass has not yet been cached. Either the 4906 // ensuing call will throw an exception, or else it 4907 // will cache the array klass for next time. 4908 PreserveJVMState pjvms(this); 4909 CallJavaNode* slow_call = nullptr; 4910 if (uninitialized) { 4911 // Generate optimized virtual call (holder class 'Unsafe' is final) 4912 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4913 } else { 4914 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4915 } 4916 Node* slow_result = set_results_for_java_call(slow_call); 4917 // this->control() comes from set_results_for_java_call 4918 result_reg->set_req(_slow_path, control()); 4919 result_val->set_req(_slow_path, slow_result); 4920 result_io ->set_req(_slow_path, i_o()); 4921 result_mem->set_req(_slow_path, reset_memory()); 4922 } 4923 4924 set_control(normal_ctl); 4925 if (!stopped()) { 4926 // Normal case: The array type has been cached in the java.lang.Class. 4927 // The following call works fine even if the array type is polymorphic. 4928 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4929 4930 klass_node = load_default_array_klass(klass_node); 4931 4932 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4933 result_reg->init_req(_normal_path, control()); 4934 result_val->init_req(_normal_path, obj); 4935 result_io ->init_req(_normal_path, i_o()); 4936 result_mem->init_req(_normal_path, reset_memory()); 4937 4938 if (uninitialized) { 4939 // Mark the allocation so that zeroing is skipped 4940 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4941 alloc->maybe_set_complete(&_gvn); 4942 } 4943 } 4944 4945 // Return the combined state. 4946 set_i_o( _gvn.transform(result_io) ); 4947 set_all_memory( _gvn.transform(result_mem)); 4948 4949 C->set_has_split_ifs(true); // Has chance for split-if optimization 4950 set_result(result_reg, result_val); 4951 return true; 4952 } 4953 4954 //----------------------inline_native_getLength-------------------------- 4955 // public static native int java.lang.reflect.Array.getLength(Object array); 4956 bool LibraryCallKit::inline_native_getLength() { 4957 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4958 4959 Node* array = null_check(argument(0)); 4960 // If array is dead, only null-path is taken. 4961 if (stopped()) return true; 4962 4963 // Deoptimize if it is a non-array. 4964 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4965 4966 if (non_array != nullptr) { 4967 PreserveJVMState pjvms(this); 4968 set_control(non_array); 4969 uncommon_trap(Deoptimization::Reason_intrinsic, 4970 Deoptimization::Action_maybe_recompile); 4971 } 4972 4973 // If control is dead, only non-array-path is taken. 4974 if (stopped()) return true; 4975 4976 // The works fine even if the array type is polymorphic. 4977 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4978 Node* result = load_array_length(array); 4979 4980 C->set_has_split_ifs(true); // Has chance for split-if optimization 4981 set_result(result); 4982 return true; 4983 } 4984 4985 //------------------------inline_array_copyOf---------------------------- 4986 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4987 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4988 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4989 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4990 4991 // Get the arguments. 4992 Node* original = argument(0); 4993 Node* start = is_copyOfRange? argument(1): intcon(0); 4994 Node* end = is_copyOfRange? argument(2): argument(1); 4995 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4996 4997 Node* newcopy = nullptr; 4998 4999 // Set the original stack and the reexecute bit for the interpreter to reexecute 5000 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 5001 { PreserveReexecuteState preexecs(this); 5002 jvms()->set_should_reexecute(true); 5003 5004 array_type_mirror = null_check(array_type_mirror); 5005 original = null_check(original); 5006 5007 // Check if a null path was taken unconditionally. 5008 if (stopped()) return true; 5009 5010 Node* orig_length = load_array_length(original); 5011 5012 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 5013 klass_node = null_check(klass_node); 5014 5015 RegionNode* bailout = new RegionNode(1); 5016 record_for_igvn(bailout); 5017 5018 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 5019 // Bail out if that is so. 5020 // Inline type array may have object field that would require a 5021 // write barrier. Conservatively, go to slow path. 5022 // TODO 8251971: Optimize for the case when flat src/dst are later found 5023 // to not contain oops (i.e., move this check to the macro expansion phase). 5024 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5025 const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr(); 5026 const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr(); 5027 bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) && 5028 // Can src array be flat and contain oops? 5029 (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) && 5030 // Can dest array be flat and contain oops? 5031 tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops()); 5032 // TODO 8366668 generate_non_refArray_guard also passed for ref arrays?? 5033 Node* not_objArray = exclude_flat ? generate_non_refArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout); 5034 5035 klass_node = load_default_array_klass(klass_node); 5036 5037 if (not_objArray != nullptr) { 5038 // Improve the klass node's type from the new optimistic assumption: 5039 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 5040 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0)); 5041 Node* cast = new CastPPNode(control(), klass_node, akls); 5042 klass_node = _gvn.transform(cast); 5043 } 5044 5045 // Bail out if either start or end is negative. 5046 generate_negative_guard(start, bailout, &start); 5047 generate_negative_guard(end, bailout, &end); 5048 5049 Node* length = end; 5050 if (_gvn.type(start) != TypeInt::ZERO) { 5051 length = _gvn.transform(new SubINode(end, start)); 5052 } 5053 5054 // Bail out if length is negative (i.e., if start > end). 5055 // Without this the new_array would throw 5056 // NegativeArraySizeException but IllegalArgumentException is what 5057 // should be thrown 5058 generate_negative_guard(length, bailout, &length); 5059 5060 // Handle inline type arrays 5061 bool can_validate = !too_many_traps(Deoptimization::Reason_class_check); 5062 if (!stopped()) { 5063 // TODO JDK-8329224 5064 if (!orig_t->is_null_free()) { 5065 // Not statically known to be null free, add a check 5066 generate_fair_guard(null_free_array_test(original), bailout); 5067 } 5068 orig_t = _gvn.type(original)->isa_aryptr(); 5069 if (orig_t != nullptr && orig_t->is_flat()) { 5070 // Src is flat, check that dest is flat as well 5071 if (exclude_flat) { 5072 // Dest can't be flat, bail out 5073 bailout->add_req(control()); 5074 set_control(top()); 5075 } else { 5076 generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout); 5077 } 5078 // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy. 5079 } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) && 5080 // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated). 5081 ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) { 5082 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 5083 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 5084 generate_fair_guard(flat_array_test(load_object_klass(original)), bailout); 5085 if (orig_t != nullptr) { 5086 orig_t = orig_t->cast_to_not_flat(); 5087 original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t)); 5088 } 5089 } 5090 if (!can_validate) { 5091 // No validation. The subtype check emitted at macro expansion time will not go to the slow 5092 // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays. 5093 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free. 5094 generate_fair_guard(flat_array_test(klass_node), bailout); 5095 generate_fair_guard(null_free_array_test(original), bailout); 5096 } 5097 } 5098 5099 // Bail out if start is larger than the original length 5100 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 5101 generate_negative_guard(orig_tail, bailout, &orig_tail); 5102 5103 if (bailout->req() > 1) { 5104 PreserveJVMState pjvms(this); 5105 set_control(_gvn.transform(bailout)); 5106 uncommon_trap(Deoptimization::Reason_intrinsic, 5107 Deoptimization::Action_maybe_recompile); 5108 } 5109 5110 if (!stopped()) { 5111 // How many elements will we copy from the original? 5112 // The answer is MinI(orig_tail, length). 5113 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 5114 5115 // Generate a direct call to the right arraycopy function(s). 5116 // We know the copy is disjoint but we might not know if the 5117 // oop stores need checking. 5118 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 5119 // This will fail a store-check if x contains any non-nulls. 5120 5121 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 5122 // loads/stores but it is legal only if we're sure the 5123 // Arrays.copyOf would succeed. So we need all input arguments 5124 // to the copyOf to be validated, including that the copy to the 5125 // new array won't trigger an ArrayStoreException. That subtype 5126 // check can be optimized if we know something on the type of 5127 // the input array from type speculation. 5128 if (_gvn.type(klass_node)->singleton()) { 5129 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 5130 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 5131 5132 int test = C->static_subtype_check(superk, subk); 5133 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 5134 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 5135 if (t_original->speculative_type() != nullptr) { 5136 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 5137 } 5138 } 5139 } 5140 5141 bool validated = false; 5142 // Reason_class_check rather than Reason_intrinsic because we 5143 // want to intrinsify even if this traps. 5144 if (can_validate) { 5145 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 5146 5147 if (not_subtype_ctrl != top()) { 5148 PreserveJVMState pjvms(this); 5149 set_control(not_subtype_ctrl); 5150 uncommon_trap(Deoptimization::Reason_class_check, 5151 Deoptimization::Action_make_not_entrant); 5152 assert(stopped(), "Should be stopped"); 5153 } 5154 validated = true; 5155 } 5156 5157 if (!stopped()) { 5158 newcopy = new_array(klass_node, length, 0); // no arguments to push 5159 5160 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 5161 load_object_klass(original), klass_node); 5162 if (!is_copyOfRange) { 5163 ac->set_copyof(validated); 5164 } else { 5165 ac->set_copyofrange(validated); 5166 } 5167 Node* n = _gvn.transform(ac); 5168 if (n == ac) { 5169 ac->connect_outputs(this); 5170 } else { 5171 assert(validated, "shouldn't transform if all arguments not validated"); 5172 set_all_memory(n); 5173 } 5174 } 5175 } 5176 } // original reexecute is set back here 5177 5178 C->set_has_split_ifs(true); // Has chance for split-if optimization 5179 if (!stopped()) { 5180 set_result(newcopy); 5181 } 5182 return true; 5183 } 5184 5185 5186 //----------------------generate_virtual_guard--------------------------- 5187 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 5188 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 5189 RegionNode* slow_region) { 5190 ciMethod* method = callee(); 5191 int vtable_index = method->vtable_index(); 5192 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 5193 "bad index %d", vtable_index); 5194 // Get the Method* out of the appropriate vtable entry. 5195 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 5196 vtable_index*vtableEntry::size_in_bytes() + 5197 in_bytes(vtableEntry::method_offset()); 5198 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 5199 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 5200 5201 // Compare the target method with the expected method (e.g., Object.hashCode). 5202 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 5203 5204 Node* native_call = makecon(native_call_addr); 5205 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 5206 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 5207 5208 return generate_slow_guard(test_native, slow_region); 5209 } 5210 5211 //-----------------------generate_method_call---------------------------- 5212 // Use generate_method_call to make a slow-call to the real 5213 // method if the fast path fails. An alternative would be to 5214 // use a stub like OptoRuntime::slow_arraycopy_Java. 5215 // This only works for expanding the current library call, 5216 // not another intrinsic. (E.g., don't use this for making an 5217 // arraycopy call inside of the copyOf intrinsic.) 5218 CallJavaNode* 5219 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 5220 // When compiling the intrinsic method itself, do not use this technique. 5221 guarantee(callee() != C->method(), "cannot make slow-call to self"); 5222 5223 ciMethod* method = callee(); 5224 // ensure the JVMS we have will be correct for this call 5225 guarantee(method_id == method->intrinsic_id(), "must match"); 5226 5227 const TypeFunc* tf = TypeFunc::make(method); 5228 if (res_not_null) { 5229 assert(tf->return_type() == T_OBJECT, ""); 5230 const TypeTuple* range = tf->range_cc(); 5231 const Type** fields = TypeTuple::fields(range->cnt()); 5232 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 5233 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 5234 tf = TypeFunc::make(tf->domain_cc(), new_range); 5235 } 5236 CallJavaNode* slow_call; 5237 if (is_static) { 5238 assert(!is_virtual, ""); 5239 slow_call = new CallStaticJavaNode(C, tf, 5240 SharedRuntime::get_resolve_static_call_stub(), method); 5241 } else if (is_virtual) { 5242 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 5243 int vtable_index = Method::invalid_vtable_index; 5244 if (UseInlineCaches) { 5245 // Suppress the vtable call 5246 } else { 5247 // hashCode and clone are not a miranda methods, 5248 // so the vtable index is fixed. 5249 // No need to use the linkResolver to get it. 5250 vtable_index = method->vtable_index(); 5251 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 5252 "bad index %d", vtable_index); 5253 } 5254 slow_call = new CallDynamicJavaNode(tf, 5255 SharedRuntime::get_resolve_virtual_call_stub(), 5256 method, vtable_index); 5257 } else { // neither virtual nor static: opt_virtual 5258 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 5259 slow_call = new CallStaticJavaNode(C, tf, 5260 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 5261 slow_call->set_optimized_virtual(true); 5262 } 5263 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 5264 // To be able to issue a direct call (optimized virtual or virtual) 5265 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 5266 // about the method being invoked should be attached to the call site to 5267 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 5268 slow_call->set_override_symbolic_info(true); 5269 } 5270 set_arguments_for_java_call(slow_call); 5271 set_edges_for_java_call(slow_call); 5272 return slow_call; 5273 } 5274 5275 5276 /** 5277 * Build special case code for calls to hashCode on an object. This call may 5278 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 5279 * slightly different code. 5280 */ 5281 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 5282 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 5283 assert(!(is_virtual && is_static), "either virtual, special, or static"); 5284 5285 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 5286 5287 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5288 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 5289 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 5290 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5291 Node* obj = argument(0); 5292 5293 // Don't intrinsify hashcode on inline types for now. 5294 // The "is locked" runtime check below also serves as inline type check and goes to the slow path. 5295 if (gvn().type(obj)->is_inlinetypeptr()) { 5296 return false; 5297 } 5298 5299 if (!is_static) { 5300 // Check for hashing null object 5301 obj = null_check_receiver(); 5302 if (stopped()) return true; // unconditionally null 5303 result_reg->init_req(_null_path, top()); 5304 result_val->init_req(_null_path, top()); 5305 } else { 5306 // Do a null check, and return zero if null. 5307 // System.identityHashCode(null) == 0 5308 Node* null_ctl = top(); 5309 obj = null_check_oop(obj, &null_ctl); 5310 result_reg->init_req(_null_path, null_ctl); 5311 result_val->init_req(_null_path, _gvn.intcon(0)); 5312 } 5313 5314 // Unconditionally null? Then return right away. 5315 if (stopped()) { 5316 set_control( result_reg->in(_null_path)); 5317 if (!stopped()) 5318 set_result(result_val->in(_null_path)); 5319 return true; 5320 } 5321 5322 // We only go to the fast case code if we pass a number of guards. The 5323 // paths which do not pass are accumulated in the slow_region. 5324 RegionNode* slow_region = new RegionNode(1); 5325 record_for_igvn(slow_region); 5326 5327 // If this is a virtual call, we generate a funny guard. We pull out 5328 // the vtable entry corresponding to hashCode() from the target object. 5329 // If the target method which we are calling happens to be the native 5330 // Object hashCode() method, we pass the guard. We do not need this 5331 // guard for non-virtual calls -- the caller is known to be the native 5332 // Object hashCode(). 5333 if (is_virtual) { 5334 // After null check, get the object's klass. 5335 Node* obj_klass = load_object_klass(obj); 5336 generate_virtual_guard(obj_klass, slow_region); 5337 } 5338 5339 // Get the header out of the object, use LoadMarkNode when available 5340 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 5341 // The control of the load must be null. Otherwise, the load can move before 5342 // the null check after castPP removal. 5343 Node* no_ctrl = nullptr; 5344 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 5345 5346 if (!UseObjectMonitorTable) { 5347 // Test the header to see if it is safe to read w.r.t. locking. 5348 // This also serves as guard against inline types 5349 Node *lock_mask = _gvn.MakeConX(markWord::inline_type_mask_in_place); 5350 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 5351 if (LockingMode == LM_LIGHTWEIGHT) { 5352 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 5353 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 5354 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 5355 5356 generate_slow_guard(test_monitor, slow_region); 5357 } else { 5358 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 5359 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 5360 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 5361 5362 generate_slow_guard(test_not_unlocked, slow_region); 5363 } 5364 } 5365 5366 // Get the hash value and check to see that it has been properly assigned. 5367 // We depend on hash_mask being at most 32 bits and avoid the use of 5368 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 5369 // vm: see markWord.hpp. 5370 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 5371 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 5372 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 5373 // This hack lets the hash bits live anywhere in the mark object now, as long 5374 // as the shift drops the relevant bits into the low 32 bits. Note that 5375 // Java spec says that HashCode is an int so there's no point in capturing 5376 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 5377 hshifted_header = ConvX2I(hshifted_header); 5378 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 5379 5380 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 5381 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 5382 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 5383 5384 generate_slow_guard(test_assigned, slow_region); 5385 5386 Node* init_mem = reset_memory(); 5387 // fill in the rest of the null path: 5388 result_io ->init_req(_null_path, i_o()); 5389 result_mem->init_req(_null_path, init_mem); 5390 5391 result_val->init_req(_fast_path, hash_val); 5392 result_reg->init_req(_fast_path, control()); 5393 result_io ->init_req(_fast_path, i_o()); 5394 result_mem->init_req(_fast_path, init_mem); 5395 5396 // Generate code for the slow case. We make a call to hashCode(). 5397 set_control(_gvn.transform(slow_region)); 5398 if (!stopped()) { 5399 // No need for PreserveJVMState, because we're using up the present state. 5400 set_all_memory(init_mem); 5401 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 5402 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 5403 Node* slow_result = set_results_for_java_call(slow_call); 5404 // this->control() comes from set_results_for_java_call 5405 result_reg->init_req(_slow_path, control()); 5406 result_val->init_req(_slow_path, slow_result); 5407 result_io ->set_req(_slow_path, i_o()); 5408 result_mem ->set_req(_slow_path, reset_memory()); 5409 } 5410 5411 // Return the combined state. 5412 set_i_o( _gvn.transform(result_io) ); 5413 set_all_memory( _gvn.transform(result_mem)); 5414 5415 set_result(result_reg, result_val); 5416 return true; 5417 } 5418 5419 //---------------------------inline_native_getClass---------------------------- 5420 // public final native Class<?> java.lang.Object.getClass(); 5421 // 5422 // Build special case code for calls to getClass on an object. 5423 bool LibraryCallKit::inline_native_getClass() { 5424 Node* obj = argument(0); 5425 if (obj->is_InlineType()) { 5426 const Type* t = _gvn.type(obj); 5427 if (t->maybe_null()) { 5428 null_check(obj); 5429 } 5430 set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror()))); 5431 return true; 5432 } 5433 obj = null_check_receiver(); 5434 if (stopped()) return true; 5435 set_result(load_mirror_from_klass(load_object_klass(obj))); 5436 return true; 5437 } 5438 5439 //-----------------inline_native_Reflection_getCallerClass--------------------- 5440 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 5441 // 5442 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 5443 // 5444 // NOTE: This code must perform the same logic as JVM_GetCallerClass 5445 // in that it must skip particular security frames and checks for 5446 // caller sensitive methods. 5447 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 5448 #ifndef PRODUCT 5449 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5450 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 5451 } 5452 #endif 5453 5454 if (!jvms()->has_method()) { 5455 #ifndef PRODUCT 5456 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5457 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 5458 } 5459 #endif 5460 return false; 5461 } 5462 5463 // Walk back up the JVM state to find the caller at the required 5464 // depth. 5465 JVMState* caller_jvms = jvms(); 5466 5467 // Cf. JVM_GetCallerClass 5468 // NOTE: Start the loop at depth 1 because the current JVM state does 5469 // not include the Reflection.getCallerClass() frame. 5470 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 5471 ciMethod* m = caller_jvms->method(); 5472 switch (n) { 5473 case 0: 5474 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 5475 break; 5476 case 1: 5477 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 5478 if (!m->caller_sensitive()) { 5479 #ifndef PRODUCT 5480 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5481 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 5482 } 5483 #endif 5484 return false; // bail-out; let JVM_GetCallerClass do the work 5485 } 5486 break; 5487 default: 5488 if (!m->is_ignored_by_security_stack_walk()) { 5489 // We have reached the desired frame; return the holder class. 5490 // Acquire method holder as java.lang.Class and push as constant. 5491 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 5492 ciInstance* caller_mirror = caller_klass->java_mirror(); 5493 set_result(makecon(TypeInstPtr::make(caller_mirror))); 5494 5495 #ifndef PRODUCT 5496 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5497 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 5498 tty->print_cr(" JVM state at this point:"); 5499 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5500 ciMethod* m = jvms()->of_depth(i)->method(); 5501 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5502 } 5503 } 5504 #endif 5505 return true; 5506 } 5507 break; 5508 } 5509 } 5510 5511 #ifndef PRODUCT 5512 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 5513 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 5514 tty->print_cr(" JVM state at this point:"); 5515 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 5516 ciMethod* m = jvms()->of_depth(i)->method(); 5517 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 5518 } 5519 } 5520 #endif 5521 5522 return false; // bail-out; let JVM_GetCallerClass do the work 5523 } 5524 5525 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 5526 Node* arg = argument(0); 5527 Node* result = nullptr; 5528 5529 switch (id) { 5530 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 5531 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 5532 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 5533 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 5534 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 5535 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 5536 5537 case vmIntrinsics::_doubleToLongBits: { 5538 // two paths (plus control) merge in a wood 5539 RegionNode *r = new RegionNode(3); 5540 Node *phi = new PhiNode(r, TypeLong::LONG); 5541 5542 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 5543 // Build the boolean node 5544 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5545 5546 // Branch either way. 5547 // NaN case is less traveled, which makes all the difference. 5548 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5549 Node *opt_isnan = _gvn.transform(ifisnan); 5550 assert( opt_isnan->is_If(), "Expect an IfNode"); 5551 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5552 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5553 5554 set_control(iftrue); 5555 5556 static const jlong nan_bits = CONST64(0x7ff8000000000000); 5557 Node *slow_result = longcon(nan_bits); // return NaN 5558 phi->init_req(1, _gvn.transform( slow_result )); 5559 r->init_req(1, iftrue); 5560 5561 // Else fall through 5562 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5563 set_control(iffalse); 5564 5565 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 5566 r->init_req(2, iffalse); 5567 5568 // Post merge 5569 set_control(_gvn.transform(r)); 5570 record_for_igvn(r); 5571 5572 C->set_has_split_ifs(true); // Has chance for split-if optimization 5573 result = phi; 5574 assert(result->bottom_type()->isa_long(), "must be"); 5575 break; 5576 } 5577 5578 case vmIntrinsics::_floatToIntBits: { 5579 // two paths (plus control) merge in a wood 5580 RegionNode *r = new RegionNode(3); 5581 Node *phi = new PhiNode(r, TypeInt::INT); 5582 5583 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 5584 // Build the boolean node 5585 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 5586 5587 // Branch either way. 5588 // NaN case is less traveled, which makes all the difference. 5589 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 5590 Node *opt_isnan = _gvn.transform(ifisnan); 5591 assert( opt_isnan->is_If(), "Expect an IfNode"); 5592 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 5593 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 5594 5595 set_control(iftrue); 5596 5597 static const jint nan_bits = 0x7fc00000; 5598 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 5599 phi->init_req(1, _gvn.transform( slow_result )); 5600 r->init_req(1, iftrue); 5601 5602 // Else fall through 5603 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 5604 set_control(iffalse); 5605 5606 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 5607 r->init_req(2, iffalse); 5608 5609 // Post merge 5610 set_control(_gvn.transform(r)); 5611 record_for_igvn(r); 5612 5613 C->set_has_split_ifs(true); // Has chance for split-if optimization 5614 result = phi; 5615 assert(result->bottom_type()->isa_int(), "must be"); 5616 break; 5617 } 5618 5619 default: 5620 fatal_unexpected_iid(id); 5621 break; 5622 } 5623 set_result(_gvn.transform(result)); 5624 return true; 5625 } 5626 5627 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5628 Node* arg = argument(0); 5629 Node* result = nullptr; 5630 5631 switch (id) { 5632 case vmIntrinsics::_floatIsInfinite: 5633 result = new IsInfiniteFNode(arg); 5634 break; 5635 case vmIntrinsics::_floatIsFinite: 5636 result = new IsFiniteFNode(arg); 5637 break; 5638 case vmIntrinsics::_doubleIsInfinite: 5639 result = new IsInfiniteDNode(arg); 5640 break; 5641 case vmIntrinsics::_doubleIsFinite: 5642 result = new IsFiniteDNode(arg); 5643 break; 5644 default: 5645 fatal_unexpected_iid(id); 5646 break; 5647 } 5648 set_result(_gvn.transform(result)); 5649 return true; 5650 } 5651 5652 //----------------------inline_unsafe_copyMemory------------------------- 5653 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5654 5655 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5656 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5657 const Type* base_t = gvn.type(base); 5658 5659 bool in_native = (base_t == TypePtr::NULL_PTR); 5660 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5661 bool is_mixed = !in_heap && !in_native; 5662 5663 if (is_mixed) { 5664 return true; // mixed accesses can touch both on-heap and off-heap memory 5665 } 5666 if (in_heap) { 5667 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5668 if (!is_prim_array) { 5669 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5670 // there's not enough type information available to determine proper memory slice for it. 5671 return true; 5672 } 5673 } 5674 return false; 5675 } 5676 5677 bool LibraryCallKit::inline_unsafe_copyMemory() { 5678 if (callee()->is_static()) return false; // caller must have the capability! 5679 null_check_receiver(); // null-check receiver 5680 if (stopped()) return true; 5681 5682 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5683 5684 Node* src_base = argument(1); // type: oop 5685 Node* src_off = ConvL2X(argument(2)); // type: long 5686 Node* dst_base = argument(4); // type: oop 5687 Node* dst_off = ConvL2X(argument(5)); // type: long 5688 Node* size = ConvL2X(argument(7)); // type: long 5689 5690 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5691 "fieldOffset must be byte-scaled"); 5692 5693 Node* src_addr = make_unsafe_address(src_base, src_off); 5694 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5695 5696 Node* thread = _gvn.transform(new ThreadLocalNode()); 5697 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5698 BasicType doing_unsafe_access_bt = T_BYTE; 5699 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5700 5701 // update volatile field 5702 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5703 5704 int flags = RC_LEAF | RC_NO_FP; 5705 5706 const TypePtr* dst_type = TypePtr::BOTTOM; 5707 5708 // Adjust memory effects of the runtime call based on input values. 5709 if (!has_wide_mem(_gvn, src_addr, src_base) && 5710 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5711 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5712 5713 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5714 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5715 flags |= RC_NARROW_MEM; // narrow in memory 5716 } 5717 } 5718 5719 // Call it. Note that the length argument is not scaled. 5720 make_runtime_call(flags, 5721 OptoRuntime::fast_arraycopy_Type(), 5722 StubRoutines::unsafe_arraycopy(), 5723 "unsafe_arraycopy", 5724 dst_type, 5725 src_addr, dst_addr, size XTOP); 5726 5727 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5728 5729 return true; 5730 } 5731 5732 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5733 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5734 bool LibraryCallKit::inline_unsafe_setMemory() { 5735 if (callee()->is_static()) return false; // caller must have the capability! 5736 null_check_receiver(); // null-check receiver 5737 if (stopped()) return true; 5738 5739 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5740 5741 Node* dst_base = argument(1); // type: oop 5742 Node* dst_off = ConvL2X(argument(2)); // type: long 5743 Node* size = ConvL2X(argument(4)); // type: long 5744 Node* byte = argument(6); // type: byte 5745 5746 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5747 "fieldOffset must be byte-scaled"); 5748 5749 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5750 5751 Node* thread = _gvn.transform(new ThreadLocalNode()); 5752 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5753 BasicType doing_unsafe_access_bt = T_BYTE; 5754 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5755 5756 // update volatile field 5757 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5758 5759 int flags = RC_LEAF | RC_NO_FP; 5760 5761 const TypePtr* dst_type = TypePtr::BOTTOM; 5762 5763 // Adjust memory effects of the runtime call based on input values. 5764 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5765 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5766 5767 flags |= RC_NARROW_MEM; // narrow in memory 5768 } 5769 5770 // Call it. Note that the length argument is not scaled. 5771 make_runtime_call(flags, 5772 OptoRuntime::unsafe_setmemory_Type(), 5773 StubRoutines::unsafe_setmemory(), 5774 "unsafe_setmemory", 5775 dst_type, 5776 dst_addr, size XTOP, byte); 5777 5778 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5779 5780 return true; 5781 } 5782 5783 #undef XTOP 5784 5785 //------------------------clone_coping----------------------------------- 5786 // Helper function for inline_native_clone. 5787 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5788 assert(obj_size != nullptr, ""); 5789 Node* raw_obj = alloc_obj->in(1); 5790 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5791 5792 AllocateNode* alloc = nullptr; 5793 if (ReduceBulkZeroing && 5794 // If we are implementing an array clone without knowing its source type 5795 // (can happen when compiling the array-guarded branch of a reflective 5796 // Object.clone() invocation), initialize the array within the allocation. 5797 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5798 // to a runtime clone call that assumes fully initialized source arrays. 5799 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5800 // We will be completely responsible for initializing this object - 5801 // mark Initialize node as complete. 5802 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5803 // The object was just allocated - there should be no any stores! 5804 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5805 // Mark as complete_with_arraycopy so that on AllocateNode 5806 // expansion, we know this AllocateNode is initialized by an array 5807 // copy and a StoreStore barrier exists after the array copy. 5808 alloc->initialization()->set_complete_with_arraycopy(); 5809 } 5810 5811 Node* size = _gvn.transform(obj_size); 5812 access_clone(obj, alloc_obj, size, is_array); 5813 5814 // Do not let reads from the cloned object float above the arraycopy. 5815 if (alloc != nullptr) { 5816 // Do not let stores that initialize this object be reordered with 5817 // a subsequent store that would make this object accessible by 5818 // other threads. 5819 // Record what AllocateNode this StoreStore protects so that 5820 // escape analysis can go from the MemBarStoreStoreNode to the 5821 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5822 // based on the escape status of the AllocateNode. 5823 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5824 } else { 5825 insert_mem_bar(Op_MemBarCPUOrder); 5826 } 5827 } 5828 5829 //------------------------inline_native_clone---------------------------- 5830 // protected native Object java.lang.Object.clone(); 5831 // 5832 // Here are the simple edge cases: 5833 // null receiver => normal trap 5834 // virtual and clone was overridden => slow path to out-of-line clone 5835 // not cloneable or finalizer => slow path to out-of-line Object.clone 5836 // 5837 // The general case has two steps, allocation and copying. 5838 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5839 // 5840 // Copying also has two cases, oop arrays and everything else. 5841 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5842 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5843 // 5844 // These steps fold up nicely if and when the cloned object's klass 5845 // can be sharply typed as an object array, a type array, or an instance. 5846 // 5847 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5848 PhiNode* result_val; 5849 5850 // Set the reexecute bit for the interpreter to reexecute 5851 // the bytecode that invokes Object.clone if deoptimization happens. 5852 { PreserveReexecuteState preexecs(this); 5853 jvms()->set_should_reexecute(true); 5854 5855 Node* obj = argument(0); 5856 obj = null_check_receiver(); 5857 if (stopped()) return true; 5858 5859 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5860 if (obj_type->is_inlinetypeptr()) { 5861 // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have 5862 // no identity. 5863 set_result(obj); 5864 return true; 5865 } 5866 5867 // If we are going to clone an instance, we need its exact type to 5868 // know the number and types of fields to convert the clone to 5869 // loads/stores. Maybe a speculative type can help us. 5870 if (!obj_type->klass_is_exact() && 5871 obj_type->speculative_type() != nullptr && 5872 obj_type->speculative_type()->is_instance_klass() && 5873 !obj_type->speculative_type()->is_inlinetype()) { 5874 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5875 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5876 !spec_ik->has_injected_fields()) { 5877 if (!obj_type->isa_instptr() || 5878 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5879 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5880 } 5881 } 5882 } 5883 5884 // Conservatively insert a memory barrier on all memory slices. 5885 // Do not let writes into the original float below the clone. 5886 insert_mem_bar(Op_MemBarCPUOrder); 5887 5888 // paths into result_reg: 5889 enum { 5890 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5891 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5892 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5893 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5894 PATH_LIMIT 5895 }; 5896 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5897 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5898 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5899 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5900 record_for_igvn(result_reg); 5901 5902 Node* obj_klass = load_object_klass(obj); 5903 // We only go to the fast case code if we pass a number of guards. 5904 // The paths which do not pass are accumulated in the slow_region. 5905 RegionNode* slow_region = new RegionNode(1); 5906 record_for_igvn(slow_region); 5907 5908 Node* array_obj = obj; 5909 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5910 if (array_ctl != nullptr) { 5911 // It's an array. 5912 PreserveJVMState pjvms(this); 5913 set_control(array_ctl); 5914 5915 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5916 const TypeAryPtr* ary_ptr = obj_type->isa_aryptr(); 5917 if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) && 5918 obj_type->can_be_inline_array() && 5919 (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) { 5920 // Flat inline type array may have object field that would require a 5921 // write barrier. Conservatively, go to slow path. 5922 generate_fair_guard(flat_array_test(obj_klass), slow_region); 5923 } 5924 5925 if (!stopped()) { 5926 Node* obj_length = load_array_length(array_obj); 5927 Node* array_size = nullptr; // Size of the array without object alignment padding. 5928 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5929 5930 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5931 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5932 // If it is an oop array, it requires very special treatment, 5933 // because gc barriers are required when accessing the array. 5934 Node* is_obja = generate_refArray_guard(obj_klass, (RegionNode*)nullptr); 5935 if (is_obja != nullptr) { 5936 PreserveJVMState pjvms2(this); 5937 set_control(is_obja); 5938 // Generate a direct call to the right arraycopy function(s). 5939 // Clones are always tightly coupled. 5940 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5941 ac->set_clone_oop_array(); 5942 Node* n = _gvn.transform(ac); 5943 assert(n == ac, "cannot disappear"); 5944 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5945 5946 result_reg->init_req(_objArray_path, control()); 5947 result_val->init_req(_objArray_path, alloc_obj); 5948 result_i_o ->set_req(_objArray_path, i_o()); 5949 result_mem ->set_req(_objArray_path, reset_memory()); 5950 } 5951 } 5952 // Otherwise, there are no barriers to worry about. 5953 // (We can dispense with card marks if we know the allocation 5954 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5955 // causes the non-eden paths to take compensating steps to 5956 // simulate a fresh allocation, so that no further 5957 // card marks are required in compiled code to initialize 5958 // the object.) 5959 5960 if (!stopped()) { 5961 copy_to_clone(obj, alloc_obj, array_size, true); 5962 5963 // Present the results of the copy. 5964 result_reg->init_req(_array_path, control()); 5965 result_val->init_req(_array_path, alloc_obj); 5966 result_i_o ->set_req(_array_path, i_o()); 5967 result_mem ->set_req(_array_path, reset_memory()); 5968 } 5969 } 5970 } 5971 5972 if (!stopped()) { 5973 // It's an instance (we did array above). Make the slow-path tests. 5974 // If this is a virtual call, we generate a funny guard. We grab 5975 // the vtable entry corresponding to clone() from the target object. 5976 // If the target method which we are calling happens to be the 5977 // Object clone() method, we pass the guard. We do not need this 5978 // guard for non-virtual calls; the caller is known to be the native 5979 // Object clone(). 5980 if (is_virtual) { 5981 generate_virtual_guard(obj_klass, slow_region); 5982 } 5983 5984 // The object must be easily cloneable and must not have a finalizer. 5985 // Both of these conditions may be checked in a single test. 5986 // We could optimize the test further, but we don't care. 5987 generate_misc_flags_guard(obj_klass, 5988 // Test both conditions: 5989 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5990 // Must be cloneable but not finalizer: 5991 KlassFlags::_misc_is_cloneable_fast, 5992 slow_region); 5993 } 5994 5995 if (!stopped()) { 5996 // It's an instance, and it passed the slow-path tests. 5997 PreserveJVMState pjvms(this); 5998 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5999 // Need to deoptimize on exception from allocation since Object.clone intrinsic 6000 // is reexecuted if deoptimization occurs and there could be problems when merging 6001 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 6002 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 6003 6004 copy_to_clone(obj, alloc_obj, obj_size, false); 6005 6006 // Present the results of the slow call. 6007 result_reg->init_req(_instance_path, control()); 6008 result_val->init_req(_instance_path, alloc_obj); 6009 result_i_o ->set_req(_instance_path, i_o()); 6010 result_mem ->set_req(_instance_path, reset_memory()); 6011 } 6012 6013 // Generate code for the slow case. We make a call to clone(). 6014 set_control(_gvn.transform(slow_region)); 6015 if (!stopped()) { 6016 PreserveJVMState pjvms(this); 6017 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 6018 // We need to deoptimize on exception (see comment above) 6019 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 6020 // this->control() comes from set_results_for_java_call 6021 result_reg->init_req(_slow_path, control()); 6022 result_val->init_req(_slow_path, slow_result); 6023 result_i_o ->set_req(_slow_path, i_o()); 6024 result_mem ->set_req(_slow_path, reset_memory()); 6025 } 6026 6027 // Return the combined state. 6028 set_control( _gvn.transform(result_reg)); 6029 set_i_o( _gvn.transform(result_i_o)); 6030 set_all_memory( _gvn.transform(result_mem)); 6031 } // original reexecute is set back here 6032 6033 set_result(_gvn.transform(result_val)); 6034 return true; 6035 } 6036 6037 // If we have a tightly coupled allocation, the arraycopy may take care 6038 // of the array initialization. If one of the guards we insert between 6039 // the allocation and the arraycopy causes a deoptimization, an 6040 // uninitialized array will escape the compiled method. To prevent that 6041 // we set the JVM state for uncommon traps between the allocation and 6042 // the arraycopy to the state before the allocation so, in case of 6043 // deoptimization, we'll reexecute the allocation and the 6044 // initialization. 6045 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 6046 if (alloc != nullptr) { 6047 ciMethod* trap_method = alloc->jvms()->method(); 6048 int trap_bci = alloc->jvms()->bci(); 6049 6050 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 6051 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 6052 // Make sure there's no store between the allocation and the 6053 // arraycopy otherwise visible side effects could be rexecuted 6054 // in case of deoptimization and cause incorrect execution. 6055 bool no_interfering_store = true; 6056 Node* mem = alloc->in(TypeFunc::Memory); 6057 if (mem->is_MergeMem()) { 6058 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 6059 Node* n = mms.memory(); 6060 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 6061 assert(n->is_Store(), "what else?"); 6062 no_interfering_store = false; 6063 break; 6064 } 6065 } 6066 } else { 6067 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 6068 Node* n = mms.memory(); 6069 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 6070 assert(n->is_Store(), "what else?"); 6071 no_interfering_store = false; 6072 break; 6073 } 6074 } 6075 } 6076 6077 if (no_interfering_store) { 6078 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 6079 6080 JVMState* saved_jvms = jvms(); 6081 saved_reexecute_sp = _reexecute_sp; 6082 6083 set_jvms(sfpt->jvms()); 6084 _reexecute_sp = jvms()->sp(); 6085 6086 return saved_jvms; 6087 } 6088 } 6089 } 6090 return nullptr; 6091 } 6092 6093 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 6094 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 6095 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 6096 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 6097 uint size = alloc->req(); 6098 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 6099 old_jvms->set_map(sfpt); 6100 for (uint i = 0; i < size; i++) { 6101 sfpt->init_req(i, alloc->in(i)); 6102 } 6103 int adjustment = 1; 6104 const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr(); 6105 if (ary_klass_ptr->is_null_free()) { 6106 // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which 6107 // also requires the componentType and initVal on stack for re-execution. 6108 // Re-create and push the componentType. 6109 ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass(); 6110 ciInstance* instance = klass->component_mirror_instance(); 6111 const TypeInstPtr* t_instance = TypeInstPtr::make(instance); 6112 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance)); 6113 adjustment++; 6114 } 6115 // re-push array length for deoptimization 6116 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength)); 6117 if (ary_klass_ptr->is_null_free()) { 6118 // Re-create and push the initVal. 6119 Node* init_val = alloc->in(AllocateNode::InitValue); 6120 if (init_val == nullptr) { 6121 init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass()); 6122 } else if (UseCompressedOops) { 6123 init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr())); 6124 } 6125 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val); 6126 adjustment++; 6127 } 6128 old_jvms->set_sp(old_jvms->sp() + adjustment); 6129 old_jvms->set_monoff(old_jvms->monoff() + adjustment); 6130 old_jvms->set_scloff(old_jvms->scloff() + adjustment); 6131 old_jvms->set_endoff(old_jvms->endoff() + adjustment); 6132 old_jvms->set_should_reexecute(true); 6133 6134 sfpt->set_i_o(map()->i_o()); 6135 sfpt->set_memory(map()->memory()); 6136 sfpt->set_control(map()->control()); 6137 return sfpt; 6138 } 6139 6140 // In case of a deoptimization, we restart execution at the 6141 // allocation, allocating a new array. We would leave an uninitialized 6142 // array in the heap that GCs wouldn't expect. Move the allocation 6143 // after the traps so we don't allocate the array if we 6144 // deoptimize. This is possible because tightly_coupled_allocation() 6145 // guarantees there's no observer of the allocated array at this point 6146 // and the control flow is simple enough. 6147 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 6148 int saved_reexecute_sp, uint new_idx) { 6149 if (saved_jvms_before_guards != nullptr && !stopped()) { 6150 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 6151 6152 assert(alloc != nullptr, "only with a tightly coupled allocation"); 6153 // restore JVM state to the state at the arraycopy 6154 saved_jvms_before_guards->map()->set_control(map()->control()); 6155 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 6156 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 6157 // If we've improved the types of some nodes (null check) while 6158 // emitting the guards, propagate them to the current state 6159 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 6160 set_jvms(saved_jvms_before_guards); 6161 _reexecute_sp = saved_reexecute_sp; 6162 6163 // Remove the allocation from above the guards 6164 CallProjections* callprojs = alloc->extract_projections(true); 6165 InitializeNode* init = alloc->initialization(); 6166 Node* alloc_mem = alloc->in(TypeFunc::Memory); 6167 C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 6168 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 6169 6170 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 6171 // the allocation (i.e. is only valid if the allocation succeeds): 6172 // 1) replace CastIINode with AllocateArrayNode's length here 6173 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 6174 // 6175 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 6176 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 6177 Node* init_control = init->proj_out(TypeFunc::Control); 6178 Node* alloc_length = alloc->Ideal_length(); 6179 #ifdef ASSERT 6180 Node* prev_cast = nullptr; 6181 #endif 6182 for (uint i = 0; i < init_control->outcnt(); i++) { 6183 Node* init_out = init_control->raw_out(i); 6184 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 6185 #ifdef ASSERT 6186 if (prev_cast == nullptr) { 6187 prev_cast = init_out; 6188 } else { 6189 if (prev_cast->cmp(*init_out) == false) { 6190 prev_cast->dump(); 6191 init_out->dump(); 6192 assert(false, "not equal CastIINode"); 6193 } 6194 } 6195 #endif 6196 C->gvn_replace_by(init_out, alloc_length); 6197 } 6198 } 6199 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 6200 6201 // move the allocation here (after the guards) 6202 _gvn.hash_delete(alloc); 6203 alloc->set_req(TypeFunc::Control, control()); 6204 alloc->set_req(TypeFunc::I_O, i_o()); 6205 Node *mem = reset_memory(); 6206 set_all_memory(mem); 6207 alloc->set_req(TypeFunc::Memory, mem); 6208 set_control(init->proj_out_or_null(TypeFunc::Control)); 6209 set_i_o(callprojs->fallthrough_ioproj); 6210 6211 // Update memory as done in GraphKit::set_output_for_allocation() 6212 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 6213 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 6214 if (ary_type->isa_aryptr() && length_type != nullptr) { 6215 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 6216 } 6217 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 6218 int elemidx = C->get_alias_index(telemref); 6219 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 6220 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 6221 6222 Node* allocx = _gvn.transform(alloc); 6223 assert(allocx == alloc, "where has the allocation gone?"); 6224 assert(dest->is_CheckCastPP(), "not an allocation result?"); 6225 6226 _gvn.hash_delete(dest); 6227 dest->set_req(0, control()); 6228 Node* destx = _gvn.transform(dest); 6229 assert(destx == dest, "where has the allocation result gone?"); 6230 6231 array_ideal_length(alloc, ary_type, true); 6232 } 6233 } 6234 6235 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 6236 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 6237 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 6238 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 6239 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 6240 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 6241 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 6242 JVMState* saved_jvms_before_guards) { 6243 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 6244 // There is at least one unrelated uncommon trap which needs to be replaced. 6245 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 6246 6247 JVMState* saved_jvms = jvms(); 6248 const int saved_reexecute_sp = _reexecute_sp; 6249 set_jvms(sfpt->jvms()); 6250 _reexecute_sp = jvms()->sp(); 6251 6252 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 6253 6254 // Restore state 6255 set_jvms(saved_jvms); 6256 _reexecute_sp = saved_reexecute_sp; 6257 } 6258 } 6259 6260 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 6261 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 6262 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 6263 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 6264 while (if_proj->is_IfProj()) { 6265 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 6266 if (uncommon_trap != nullptr) { 6267 create_new_uncommon_trap(uncommon_trap); 6268 } 6269 assert(if_proj->in(0)->is_If(), "must be If"); 6270 if_proj = if_proj->in(0)->in(0); 6271 } 6272 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 6273 "must have reached control projection of init node"); 6274 } 6275 6276 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 6277 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 6278 assert(trap_request != 0, "no valid UCT trap request"); 6279 PreserveJVMState pjvms(this); 6280 set_control(uncommon_trap_call->in(0)); 6281 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 6282 Deoptimization::trap_request_action(trap_request)); 6283 assert(stopped(), "Should be stopped"); 6284 _gvn.hash_delete(uncommon_trap_call); 6285 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 6286 } 6287 6288 // Common checks for array sorting intrinsics arguments. 6289 // Returns `true` if checks passed. 6290 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 6291 // check address of the class 6292 if (elementType == nullptr || elementType->is_top()) { 6293 return false; // dead path 6294 } 6295 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 6296 if (elem_klass == nullptr) { 6297 return false; // dead path 6298 } 6299 // java_mirror_type() returns non-null for compile-time Class constants only 6300 ciType* elem_type = elem_klass->java_mirror_type(); 6301 if (elem_type == nullptr) { 6302 return false; 6303 } 6304 bt = elem_type->basic_type(); 6305 // Disable the intrinsic if the CPU does not support SIMD sort 6306 if (!Matcher::supports_simd_sort(bt)) { 6307 return false; 6308 } 6309 // check address of the array 6310 if (obj == nullptr || obj->is_top()) { 6311 return false; // dead path 6312 } 6313 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 6314 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 6315 return false; // failed input validation 6316 } 6317 return true; 6318 } 6319 6320 //------------------------------inline_array_partition----------------------- 6321 bool LibraryCallKit::inline_array_partition() { 6322 address stubAddr = StubRoutines::select_array_partition_function(); 6323 if (stubAddr == nullptr) { 6324 return false; // Intrinsic's stub is not implemented on this platform 6325 } 6326 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 6327 6328 // no receiver because it is a static method 6329 Node* elementType = argument(0); 6330 Node* obj = argument(1); 6331 Node* offset = argument(2); // long 6332 Node* fromIndex = argument(4); 6333 Node* toIndex = argument(5); 6334 Node* indexPivot1 = argument(6); 6335 Node* indexPivot2 = argument(7); 6336 // PartitionOperation: argument(8) is ignored 6337 6338 Node* pivotIndices = nullptr; 6339 BasicType bt = T_ILLEGAL; 6340 6341 if (!check_array_sort_arguments(elementType, obj, bt)) { 6342 return false; 6343 } 6344 null_check(obj); 6345 // If obj is dead, only null-path is taken. 6346 if (stopped()) { 6347 return true; 6348 } 6349 // Set the original stack and the reexecute bit for the interpreter to reexecute 6350 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 6351 { PreserveReexecuteState preexecs(this); 6352 jvms()->set_should_reexecute(true); 6353 6354 Node* obj_adr = make_unsafe_address(obj, offset); 6355 6356 // create the pivotIndices array of type int and size = 2 6357 Node* size = intcon(2); 6358 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 6359 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 6360 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 6361 guarantee(alloc != nullptr, "created above"); 6362 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 6363 6364 // pass the basic type enum to the stub 6365 Node* elemType = intcon(bt); 6366 6367 // Call the stub 6368 const char *stubName = "array_partition_stub"; 6369 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 6370 stubAddr, stubName, TypePtr::BOTTOM, 6371 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 6372 indexPivot1, indexPivot2); 6373 6374 } // original reexecute is set back here 6375 6376 if (!stopped()) { 6377 set_result(pivotIndices); 6378 } 6379 6380 return true; 6381 } 6382 6383 6384 //------------------------------inline_array_sort----------------------- 6385 bool LibraryCallKit::inline_array_sort() { 6386 address stubAddr = StubRoutines::select_arraysort_function(); 6387 if (stubAddr == nullptr) { 6388 return false; // Intrinsic's stub is not implemented on this platform 6389 } 6390 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 6391 6392 // no receiver because it is a static method 6393 Node* elementType = argument(0); 6394 Node* obj = argument(1); 6395 Node* offset = argument(2); // long 6396 Node* fromIndex = argument(4); 6397 Node* toIndex = argument(5); 6398 // SortOperation: argument(6) is ignored 6399 6400 BasicType bt = T_ILLEGAL; 6401 6402 if (!check_array_sort_arguments(elementType, obj, bt)) { 6403 return false; 6404 } 6405 null_check(obj); 6406 // If obj is dead, only null-path is taken. 6407 if (stopped()) { 6408 return true; 6409 } 6410 Node* obj_adr = make_unsafe_address(obj, offset); 6411 6412 // pass the basic type enum to the stub 6413 Node* elemType = intcon(bt); 6414 6415 // Call the stub. 6416 const char *stubName = "arraysort_stub"; 6417 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 6418 stubAddr, stubName, TypePtr::BOTTOM, 6419 obj_adr, elemType, fromIndex, toIndex); 6420 6421 return true; 6422 } 6423 6424 6425 //------------------------------inline_arraycopy----------------------- 6426 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 6427 // Object dest, int destPos, 6428 // int length); 6429 bool LibraryCallKit::inline_arraycopy() { 6430 // Get the arguments. 6431 Node* src = argument(0); // type: oop 6432 Node* src_offset = argument(1); // type: int 6433 Node* dest = argument(2); // type: oop 6434 Node* dest_offset = argument(3); // type: int 6435 Node* length = argument(4); // type: int 6436 6437 uint new_idx = C->unique(); 6438 6439 // Check for allocation before we add nodes that would confuse 6440 // tightly_coupled_allocation() 6441 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 6442 6443 int saved_reexecute_sp = -1; 6444 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 6445 // See arraycopy_restore_alloc_state() comment 6446 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 6447 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 6448 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 6449 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 6450 6451 // The following tests must be performed 6452 // (1) src and dest are arrays. 6453 // (2) src and dest arrays must have elements of the same BasicType 6454 // (3) src and dest must not be null. 6455 // (4) src_offset must not be negative. 6456 // (5) dest_offset must not be negative. 6457 // (6) length must not be negative. 6458 // (7) src_offset + length must not exceed length of src. 6459 // (8) dest_offset + length must not exceed length of dest. 6460 // (9) each element of an oop array must be assignable 6461 6462 // (3) src and dest must not be null. 6463 // always do this here because we need the JVM state for uncommon traps 6464 Node* null_ctl = top(); 6465 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 6466 assert(null_ctl->is_top(), "no null control here"); 6467 dest = null_check(dest, T_ARRAY); 6468 6469 if (!can_emit_guards) { 6470 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 6471 // guards but the arraycopy node could still take advantage of a 6472 // tightly allocated allocation. tightly_coupled_allocation() is 6473 // called again to make sure it takes the null check above into 6474 // account: the null check is mandatory and if it caused an 6475 // uncommon trap to be emitted then the allocation can't be 6476 // considered tightly coupled in this context. 6477 alloc = tightly_coupled_allocation(dest); 6478 } 6479 6480 bool validated = false; 6481 6482 const Type* src_type = _gvn.type(src); 6483 const Type* dest_type = _gvn.type(dest); 6484 const TypeAryPtr* top_src = src_type->isa_aryptr(); 6485 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 6486 6487 // Do we have the type of src? 6488 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6489 // Do we have the type of dest? 6490 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6491 // Is the type for src from speculation? 6492 bool src_spec = false; 6493 // Is the type for dest from speculation? 6494 bool dest_spec = false; 6495 6496 if ((!has_src || !has_dest) && can_emit_guards) { 6497 // We don't have sufficient type information, let's see if 6498 // speculative types can help. We need to have types for both src 6499 // and dest so that it pays off. 6500 6501 // Do we already have or could we have type information for src 6502 bool could_have_src = has_src; 6503 // Do we already have or could we have type information for dest 6504 bool could_have_dest = has_dest; 6505 6506 ciKlass* src_k = nullptr; 6507 if (!has_src) { 6508 src_k = src_type->speculative_type_not_null(); 6509 if (src_k != nullptr && src_k->is_array_klass()) { 6510 could_have_src = true; 6511 } 6512 } 6513 6514 ciKlass* dest_k = nullptr; 6515 if (!has_dest) { 6516 dest_k = dest_type->speculative_type_not_null(); 6517 if (dest_k != nullptr && dest_k->is_array_klass()) { 6518 could_have_dest = true; 6519 } 6520 } 6521 6522 if (could_have_src && could_have_dest) { 6523 // This is going to pay off so emit the required guards 6524 if (!has_src) { 6525 src = maybe_cast_profiled_obj(src, src_k, true); 6526 src_type = _gvn.type(src); 6527 top_src = src_type->isa_aryptr(); 6528 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 6529 src_spec = true; 6530 } 6531 if (!has_dest) { 6532 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6533 dest_type = _gvn.type(dest); 6534 top_dest = dest_type->isa_aryptr(); 6535 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 6536 dest_spec = true; 6537 } 6538 } 6539 } 6540 6541 if (has_src && has_dest && can_emit_guards) { 6542 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 6543 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 6544 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 6545 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 6546 6547 if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) { 6548 // If both arrays are object arrays then having the exact types 6549 // for both will remove the need for a subtype check at runtime 6550 // before the call and may make it possible to pick a faster copy 6551 // routine (without a subtype check on every element) 6552 // Do we have the exact type of src? 6553 bool could_have_src = src_spec; 6554 // Do we have the exact type of dest? 6555 bool could_have_dest = dest_spec; 6556 ciKlass* src_k = nullptr; 6557 ciKlass* dest_k = nullptr; 6558 if (!src_spec) { 6559 src_k = src_type->speculative_type_not_null(); 6560 if (src_k != nullptr && src_k->is_array_klass()) { 6561 could_have_src = true; 6562 } 6563 } 6564 if (!dest_spec) { 6565 dest_k = dest_type->speculative_type_not_null(); 6566 if (dest_k != nullptr && dest_k->is_array_klass()) { 6567 could_have_dest = true; 6568 } 6569 } 6570 if (could_have_src && could_have_dest) { 6571 // If we can have both exact types, emit the missing guards 6572 if (could_have_src && !src_spec) { 6573 src = maybe_cast_profiled_obj(src, src_k, true); 6574 src_type = _gvn.type(src); 6575 top_src = src_type->isa_aryptr(); 6576 } 6577 if (could_have_dest && !dest_spec) { 6578 dest = maybe_cast_profiled_obj(dest, dest_k, true); 6579 dest_type = _gvn.type(dest); 6580 top_dest = dest_type->isa_aryptr(); 6581 } 6582 } 6583 } 6584 } 6585 6586 ciMethod* trap_method = method(); 6587 int trap_bci = bci(); 6588 if (saved_jvms_before_guards != nullptr) { 6589 trap_method = alloc->jvms()->method(); 6590 trap_bci = alloc->jvms()->bci(); 6591 } 6592 6593 bool negative_length_guard_generated = false; 6594 6595 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 6596 can_emit_guards && !src->is_top() && !dest->is_top()) { 6597 // validate arguments: enables transformation the ArrayCopyNode 6598 validated = true; 6599 6600 RegionNode* slow_region = new RegionNode(1); 6601 record_for_igvn(slow_region); 6602 6603 // (1) src and dest are arrays. 6604 generate_non_array_guard(load_object_klass(src), slow_region, &src); 6605 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 6606 6607 // (2) src and dest arrays must have elements of the same BasicType 6608 // done at macro expansion or at Ideal transformation time 6609 6610 // (4) src_offset must not be negative. 6611 generate_negative_guard(src_offset, slow_region); 6612 6613 // (5) dest_offset must not be negative. 6614 generate_negative_guard(dest_offset, slow_region); 6615 6616 // (7) src_offset + length must not exceed length of src. 6617 generate_limit_guard(src_offset, length, 6618 load_array_length(src), 6619 slow_region); 6620 6621 // (8) dest_offset + length must not exceed length of dest. 6622 generate_limit_guard(dest_offset, length, 6623 load_array_length(dest), 6624 slow_region); 6625 6626 // (6) length must not be negative. 6627 // This is also checked in generate_arraycopy() during macro expansion, but 6628 // we also have to check it here for the case where the ArrayCopyNode will 6629 // be eliminated by Escape Analysis. 6630 if (EliminateAllocations) { 6631 generate_negative_guard(length, slow_region); 6632 negative_length_guard_generated = true; 6633 } 6634 6635 // (9) each element of an oop array must be assignable 6636 Node* dest_klass = load_object_klass(dest); 6637 if (src != dest) { 6638 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 6639 slow_region->add_req(not_subtype_ctrl); 6640 } 6641 6642 // TODO 8350865 Fix below logic. Also handle atomicity. 6643 generate_fair_guard(flat_array_test(src), slow_region); 6644 generate_fair_guard(flat_array_test(dest), slow_region); 6645 6646 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 6647 const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 6648 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6649 src_type = _gvn.type(src); 6650 top_src = src_type->isa_aryptr(); 6651 6652 // Handle flat inline type arrays (null-free arrays are handled by the subtype check above) 6653 if (!stopped() && UseArrayFlattening) { 6654 // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here. 6655 assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat"); 6656 if (top_src != nullptr && top_src->is_flat()) { 6657 // Src is flat, check that dest is flat as well 6658 if (top_dest != nullptr && !top_dest->is_flat()) { 6659 generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region); 6660 // Since dest is flat and src <: dest, dest must have the same type as src. 6661 top_dest = top_src->cast_to_exactness(false); 6662 assert(top_dest->is_flat(), "dest must be flat"); 6663 dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest)); 6664 } 6665 } else if (top_src == nullptr || !top_src->is_not_flat()) { 6666 // Src might be flat and dest might not be flat. Go to the slow path if src is flat. 6667 // TODO 8251971: Optimize for the case when src/dest are later found to be both flat. 6668 assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat"); 6669 generate_fair_guard(flat_array_test(src), slow_region); 6670 if (top_src != nullptr) { 6671 top_src = top_src->cast_to_not_flat(); 6672 src = _gvn.transform(new CheckCastPPNode(control(), src, top_src)); 6673 } 6674 } 6675 } 6676 6677 { 6678 PreserveJVMState pjvms(this); 6679 set_control(_gvn.transform(slow_region)); 6680 uncommon_trap(Deoptimization::Reason_intrinsic, 6681 Deoptimization::Action_make_not_entrant); 6682 assert(stopped(), "Should be stopped"); 6683 } 6684 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6685 } 6686 6687 if (stopped()) { 6688 return true; 6689 } 6690 6691 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6692 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6693 // so the compiler has a chance to eliminate them: during macro expansion, 6694 // we have to set their control (CastPP nodes are eliminated). 6695 load_object_klass(src), load_object_klass(dest), 6696 load_array_length(src), load_array_length(dest)); 6697 6698 ac->set_arraycopy(validated); 6699 6700 Node* n = _gvn.transform(ac); 6701 if (n == ac) { 6702 ac->connect_outputs(this); 6703 } else { 6704 assert(validated, "shouldn't transform if all arguments not validated"); 6705 set_all_memory(n); 6706 } 6707 clear_upper_avx(); 6708 6709 6710 return true; 6711 } 6712 6713 6714 // Helper function which determines if an arraycopy immediately follows 6715 // an allocation, with no intervening tests or other escapes for the object. 6716 AllocateArrayNode* 6717 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6718 if (stopped()) return nullptr; // no fast path 6719 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6720 6721 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6722 if (alloc == nullptr) return nullptr; 6723 6724 Node* rawmem = memory(Compile::AliasIdxRaw); 6725 // Is the allocation's memory state untouched? 6726 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6727 // Bail out if there have been raw-memory effects since the allocation. 6728 // (Example: There might have been a call or safepoint.) 6729 return nullptr; 6730 } 6731 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6732 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6733 return nullptr; 6734 } 6735 6736 // There must be no unexpected observers of this allocation. 6737 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6738 Node* obs = ptr->fast_out(i); 6739 if (obs != this->map()) { 6740 return nullptr; 6741 } 6742 } 6743 6744 // This arraycopy must unconditionally follow the allocation of the ptr. 6745 Node* alloc_ctl = ptr->in(0); 6746 Node* ctl = control(); 6747 while (ctl != alloc_ctl) { 6748 // There may be guards which feed into the slow_region. 6749 // Any other control flow means that we might not get a chance 6750 // to finish initializing the allocated object. 6751 // Various low-level checks bottom out in uncommon traps. These 6752 // are considered safe since we've already checked above that 6753 // there is no unexpected observer of this allocation. 6754 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6755 assert(ctl->in(0)->is_If(), "must be If"); 6756 ctl = ctl->in(0)->in(0); 6757 } else { 6758 return nullptr; 6759 } 6760 } 6761 6762 // If we get this far, we have an allocation which immediately 6763 // precedes the arraycopy, and we can take over zeroing the new object. 6764 // The arraycopy will finish the initialization, and provide 6765 // a new control state to which we will anchor the destination pointer. 6766 6767 return alloc; 6768 } 6769 6770 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6771 if (node->is_IfProj()) { 6772 Node* other_proj = node->as_IfProj()->other_if_proj(); 6773 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6774 Node* obs = other_proj->fast_out(j); 6775 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6776 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6777 return obs->as_CallStaticJava(); 6778 } 6779 } 6780 } 6781 return nullptr; 6782 } 6783 6784 //-------------inline_encodeISOArray----------------------------------- 6785 // encode char[] to byte[] in ISO_8859_1 or ASCII 6786 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6787 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6788 // no receiver since it is static method 6789 Node *src = argument(0); 6790 Node *src_offset = argument(1); 6791 Node *dst = argument(2); 6792 Node *dst_offset = argument(3); 6793 Node *length = argument(4); 6794 6795 src = must_be_not_null(src, true); 6796 dst = must_be_not_null(dst, true); 6797 6798 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6799 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6800 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6801 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6802 // failed array check 6803 return false; 6804 } 6805 6806 // Figure out the size and type of the elements we will be copying. 6807 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6808 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6809 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6810 return false; 6811 } 6812 6813 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6814 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6815 // 'src_start' points to src array + scaled offset 6816 // 'dst_start' points to dst array + scaled offset 6817 6818 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6819 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6820 enc = _gvn.transform(enc); 6821 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6822 set_memory(res_mem, mtype); 6823 set_result(enc); 6824 clear_upper_avx(); 6825 6826 return true; 6827 } 6828 6829 //-------------inline_multiplyToLen----------------------------------- 6830 bool LibraryCallKit::inline_multiplyToLen() { 6831 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6832 6833 address stubAddr = StubRoutines::multiplyToLen(); 6834 if (stubAddr == nullptr) { 6835 return false; // Intrinsic's stub is not implemented on this platform 6836 } 6837 const char* stubName = "multiplyToLen"; 6838 6839 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6840 6841 // no receiver because it is a static method 6842 Node* x = argument(0); 6843 Node* xlen = argument(1); 6844 Node* y = argument(2); 6845 Node* ylen = argument(3); 6846 Node* z = argument(4); 6847 6848 x = must_be_not_null(x, true); 6849 y = must_be_not_null(y, true); 6850 6851 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6852 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6853 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6854 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6855 // failed array check 6856 return false; 6857 } 6858 6859 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6860 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6861 if (x_elem != T_INT || y_elem != T_INT) { 6862 return false; 6863 } 6864 6865 Node* x_start = array_element_address(x, intcon(0), x_elem); 6866 Node* y_start = array_element_address(y, intcon(0), y_elem); 6867 // 'x_start' points to x array + scaled xlen 6868 // 'y_start' points to y array + scaled ylen 6869 6870 Node* z_start = array_element_address(z, intcon(0), T_INT); 6871 6872 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6873 OptoRuntime::multiplyToLen_Type(), 6874 stubAddr, stubName, TypePtr::BOTTOM, 6875 x_start, xlen, y_start, ylen, z_start); 6876 6877 C->set_has_split_ifs(true); // Has chance for split-if optimization 6878 set_result(z); 6879 return true; 6880 } 6881 6882 //-------------inline_squareToLen------------------------------------ 6883 bool LibraryCallKit::inline_squareToLen() { 6884 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6885 6886 address stubAddr = StubRoutines::squareToLen(); 6887 if (stubAddr == nullptr) { 6888 return false; // Intrinsic's stub is not implemented on this platform 6889 } 6890 const char* stubName = "squareToLen"; 6891 6892 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6893 6894 Node* x = argument(0); 6895 Node* len = argument(1); 6896 Node* z = argument(2); 6897 Node* zlen = argument(3); 6898 6899 x = must_be_not_null(x, true); 6900 z = must_be_not_null(z, true); 6901 6902 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6903 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6904 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6905 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6906 // failed array check 6907 return false; 6908 } 6909 6910 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6911 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6912 if (x_elem != T_INT || z_elem != T_INT) { 6913 return false; 6914 } 6915 6916 6917 Node* x_start = array_element_address(x, intcon(0), x_elem); 6918 Node* z_start = array_element_address(z, intcon(0), z_elem); 6919 6920 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6921 OptoRuntime::squareToLen_Type(), 6922 stubAddr, stubName, TypePtr::BOTTOM, 6923 x_start, len, z_start, zlen); 6924 6925 set_result(z); 6926 return true; 6927 } 6928 6929 //-------------inline_mulAdd------------------------------------------ 6930 bool LibraryCallKit::inline_mulAdd() { 6931 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6932 6933 address stubAddr = StubRoutines::mulAdd(); 6934 if (stubAddr == nullptr) { 6935 return false; // Intrinsic's stub is not implemented on this platform 6936 } 6937 const char* stubName = "mulAdd"; 6938 6939 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6940 6941 Node* out = argument(0); 6942 Node* in = argument(1); 6943 Node* offset = argument(2); 6944 Node* len = argument(3); 6945 Node* k = argument(4); 6946 6947 in = must_be_not_null(in, true); 6948 out = must_be_not_null(out, true); 6949 6950 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6951 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6952 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6953 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6954 // failed array check 6955 return false; 6956 } 6957 6958 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6959 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6960 if (out_elem != T_INT || in_elem != T_INT) { 6961 return false; 6962 } 6963 6964 Node* outlen = load_array_length(out); 6965 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6966 Node* out_start = array_element_address(out, intcon(0), out_elem); 6967 Node* in_start = array_element_address(in, intcon(0), in_elem); 6968 6969 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6970 OptoRuntime::mulAdd_Type(), 6971 stubAddr, stubName, TypePtr::BOTTOM, 6972 out_start,in_start, new_offset, len, k); 6973 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6974 set_result(result); 6975 return true; 6976 } 6977 6978 //-------------inline_montgomeryMultiply----------------------------------- 6979 bool LibraryCallKit::inline_montgomeryMultiply() { 6980 address stubAddr = StubRoutines::montgomeryMultiply(); 6981 if (stubAddr == nullptr) { 6982 return false; // Intrinsic's stub is not implemented on this platform 6983 } 6984 6985 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6986 const char* stubName = "montgomery_multiply"; 6987 6988 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6989 6990 Node* a = argument(0); 6991 Node* b = argument(1); 6992 Node* n = argument(2); 6993 Node* len = argument(3); 6994 Node* inv = argument(4); 6995 Node* m = argument(6); 6996 6997 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6998 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6999 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 7000 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 7001 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 7002 b_type == nullptr || b_type->elem() == Type::BOTTOM || 7003 n_type == nullptr || n_type->elem() == Type::BOTTOM || 7004 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 7005 // failed array check 7006 return false; 7007 } 7008 7009 BasicType a_elem = a_type->elem()->array_element_basic_type(); 7010 BasicType b_elem = b_type->elem()->array_element_basic_type(); 7011 BasicType n_elem = n_type->elem()->array_element_basic_type(); 7012 BasicType m_elem = m_type->elem()->array_element_basic_type(); 7013 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 7014 return false; 7015 } 7016 7017 // Make the call 7018 { 7019 Node* a_start = array_element_address(a, intcon(0), a_elem); 7020 Node* b_start = array_element_address(b, intcon(0), b_elem); 7021 Node* n_start = array_element_address(n, intcon(0), n_elem); 7022 Node* m_start = array_element_address(m, intcon(0), m_elem); 7023 7024 Node* call = make_runtime_call(RC_LEAF, 7025 OptoRuntime::montgomeryMultiply_Type(), 7026 stubAddr, stubName, TypePtr::BOTTOM, 7027 a_start, b_start, n_start, len, inv, top(), 7028 m_start); 7029 set_result(m); 7030 } 7031 7032 return true; 7033 } 7034 7035 bool LibraryCallKit::inline_montgomerySquare() { 7036 address stubAddr = StubRoutines::montgomerySquare(); 7037 if (stubAddr == nullptr) { 7038 return false; // Intrinsic's stub is not implemented on this platform 7039 } 7040 7041 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 7042 const char* stubName = "montgomery_square"; 7043 7044 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 7045 7046 Node* a = argument(0); 7047 Node* n = argument(1); 7048 Node* len = argument(2); 7049 Node* inv = argument(3); 7050 Node* m = argument(5); 7051 7052 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 7053 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 7054 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 7055 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 7056 n_type == nullptr || n_type->elem() == Type::BOTTOM || 7057 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 7058 // failed array check 7059 return false; 7060 } 7061 7062 BasicType a_elem = a_type->elem()->array_element_basic_type(); 7063 BasicType n_elem = n_type->elem()->array_element_basic_type(); 7064 BasicType m_elem = m_type->elem()->array_element_basic_type(); 7065 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 7066 return false; 7067 } 7068 7069 // Make the call 7070 { 7071 Node* a_start = array_element_address(a, intcon(0), a_elem); 7072 Node* n_start = array_element_address(n, intcon(0), n_elem); 7073 Node* m_start = array_element_address(m, intcon(0), m_elem); 7074 7075 Node* call = make_runtime_call(RC_LEAF, 7076 OptoRuntime::montgomerySquare_Type(), 7077 stubAddr, stubName, TypePtr::BOTTOM, 7078 a_start, n_start, len, inv, top(), 7079 m_start); 7080 set_result(m); 7081 } 7082 7083 return true; 7084 } 7085 7086 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 7087 address stubAddr = nullptr; 7088 const char* stubName = nullptr; 7089 7090 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 7091 if (stubAddr == nullptr) { 7092 return false; // Intrinsic's stub is not implemented on this platform 7093 } 7094 7095 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 7096 7097 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 7098 7099 Node* newArr = argument(0); 7100 Node* oldArr = argument(1); 7101 Node* newIdx = argument(2); 7102 Node* shiftCount = argument(3); 7103 Node* numIter = argument(4); 7104 7105 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 7106 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 7107 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 7108 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 7109 return false; 7110 } 7111 7112 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 7113 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 7114 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 7115 return false; 7116 } 7117 7118 // Make the call 7119 { 7120 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 7121 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 7122 7123 Node* call = make_runtime_call(RC_LEAF, 7124 OptoRuntime::bigIntegerShift_Type(), 7125 stubAddr, 7126 stubName, 7127 TypePtr::BOTTOM, 7128 newArr_start, 7129 oldArr_start, 7130 newIdx, 7131 shiftCount, 7132 numIter); 7133 } 7134 7135 return true; 7136 } 7137 7138 //-------------inline_vectorizedMismatch------------------------------ 7139 bool LibraryCallKit::inline_vectorizedMismatch() { 7140 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 7141 7142 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 7143 Node* obja = argument(0); // Object 7144 Node* aoffset = argument(1); // long 7145 Node* objb = argument(3); // Object 7146 Node* boffset = argument(4); // long 7147 Node* length = argument(6); // int 7148 Node* scale = argument(7); // int 7149 7150 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 7151 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 7152 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 7153 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 7154 scale == top()) { 7155 return false; // failed input validation 7156 } 7157 7158 Node* obja_adr = make_unsafe_address(obja, aoffset); 7159 Node* objb_adr = make_unsafe_address(objb, boffset); 7160 7161 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 7162 // 7163 // inline_limit = ArrayOperationPartialInlineSize / element_size; 7164 // if (length <= inline_limit) { 7165 // inline_path: 7166 // vmask = VectorMaskGen length 7167 // vload1 = LoadVectorMasked obja, vmask 7168 // vload2 = LoadVectorMasked objb, vmask 7169 // result1 = VectorCmpMasked vload1, vload2, vmask 7170 // } else { 7171 // call_stub_path: 7172 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 7173 // } 7174 // exit_block: 7175 // return Phi(result1, result2); 7176 // 7177 enum { inline_path = 1, // input is small enough to process it all at once 7178 stub_path = 2, // input is too large; call into the VM 7179 PATH_LIMIT = 3 7180 }; 7181 7182 Node* exit_block = new RegionNode(PATH_LIMIT); 7183 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 7184 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 7185 7186 Node* call_stub_path = control(); 7187 7188 BasicType elem_bt = T_ILLEGAL; 7189 7190 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 7191 if (scale_t->is_con()) { 7192 switch (scale_t->get_con()) { 7193 case 0: elem_bt = T_BYTE; break; 7194 case 1: elem_bt = T_SHORT; break; 7195 case 2: elem_bt = T_INT; break; 7196 case 3: elem_bt = T_LONG; break; 7197 7198 default: elem_bt = T_ILLEGAL; break; // not supported 7199 } 7200 } 7201 7202 int inline_limit = 0; 7203 bool do_partial_inline = false; 7204 7205 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 7206 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 7207 do_partial_inline = inline_limit >= 16; 7208 } 7209 7210 if (do_partial_inline) { 7211 assert(elem_bt != T_ILLEGAL, "sanity"); 7212 7213 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 7214 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 7215 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 7216 7217 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 7218 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 7219 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 7220 7221 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 7222 7223 if (!stopped()) { 7224 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 7225 7226 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 7227 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 7228 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 7229 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 7230 7231 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 7232 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 7233 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 7234 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 7235 7236 exit_block->init_req(inline_path, control()); 7237 memory_phi->init_req(inline_path, map()->memory()); 7238 result_phi->init_req(inline_path, result); 7239 7240 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 7241 clear_upper_avx(); 7242 } 7243 } 7244 } 7245 7246 if (call_stub_path != nullptr) { 7247 set_control(call_stub_path); 7248 7249 Node* call = make_runtime_call(RC_LEAF, 7250 OptoRuntime::vectorizedMismatch_Type(), 7251 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 7252 obja_adr, objb_adr, length, scale); 7253 7254 exit_block->init_req(stub_path, control()); 7255 memory_phi->init_req(stub_path, map()->memory()); 7256 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 7257 } 7258 7259 exit_block = _gvn.transform(exit_block); 7260 memory_phi = _gvn.transform(memory_phi); 7261 result_phi = _gvn.transform(result_phi); 7262 7263 record_for_igvn(exit_block); 7264 record_for_igvn(memory_phi); 7265 record_for_igvn(result_phi); 7266 7267 set_control(exit_block); 7268 set_all_memory(memory_phi); 7269 set_result(result_phi); 7270 7271 return true; 7272 } 7273 7274 //------------------------------inline_vectorizedHashcode---------------------------- 7275 bool LibraryCallKit::inline_vectorizedHashCode() { 7276 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 7277 7278 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 7279 Node* array = argument(0); 7280 Node* offset = argument(1); 7281 Node* length = argument(2); 7282 Node* initialValue = argument(3); 7283 Node* basic_type = argument(4); 7284 7285 if (basic_type == top()) { 7286 return false; // failed input validation 7287 } 7288 7289 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 7290 if (!basic_type_t->is_con()) { 7291 return false; // Only intrinsify if mode argument is constant 7292 } 7293 7294 array = must_be_not_null(array, true); 7295 7296 BasicType bt = (BasicType)basic_type_t->get_con(); 7297 7298 // Resolve address of first element 7299 Node* array_start = array_element_address(array, offset, bt); 7300 7301 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 7302 array_start, length, initialValue, basic_type))); 7303 clear_upper_avx(); 7304 7305 return true; 7306 } 7307 7308 /** 7309 * Calculate CRC32 for byte. 7310 * int java.util.zip.CRC32.update(int crc, int b) 7311 */ 7312 bool LibraryCallKit::inline_updateCRC32() { 7313 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7314 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 7315 // no receiver since it is static method 7316 Node* crc = argument(0); // type: int 7317 Node* b = argument(1); // type: int 7318 7319 /* 7320 * int c = ~ crc; 7321 * b = timesXtoThe32[(b ^ c) & 0xFF]; 7322 * b = b ^ (c >>> 8); 7323 * crc = ~b; 7324 */ 7325 7326 Node* M1 = intcon(-1); 7327 crc = _gvn.transform(new XorINode(crc, M1)); 7328 Node* result = _gvn.transform(new XorINode(crc, b)); 7329 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 7330 7331 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 7332 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 7333 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 7334 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 7335 7336 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 7337 result = _gvn.transform(new XorINode(crc, result)); 7338 result = _gvn.transform(new XorINode(result, M1)); 7339 set_result(result); 7340 return true; 7341 } 7342 7343 /** 7344 * Calculate CRC32 for byte[] array. 7345 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 7346 */ 7347 bool LibraryCallKit::inline_updateBytesCRC32() { 7348 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7349 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7350 // no receiver since it is static method 7351 Node* crc = argument(0); // type: int 7352 Node* src = argument(1); // type: oop 7353 Node* offset = argument(2); // type: int 7354 Node* length = argument(3); // type: int 7355 7356 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7357 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7358 // failed array check 7359 return false; 7360 } 7361 7362 // Figure out the size and type of the elements we will be copying. 7363 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7364 if (src_elem != T_BYTE) { 7365 return false; 7366 } 7367 7368 // 'src_start' points to src array + scaled offset 7369 src = must_be_not_null(src, true); 7370 Node* src_start = array_element_address(src, offset, src_elem); 7371 7372 // We assume that range check is done by caller. 7373 // TODO: generate range check (offset+length < src.length) in debug VM. 7374 7375 // Call the stub. 7376 address stubAddr = StubRoutines::updateBytesCRC32(); 7377 const char *stubName = "updateBytesCRC32"; 7378 7379 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7380 stubAddr, stubName, TypePtr::BOTTOM, 7381 crc, src_start, length); 7382 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7383 set_result(result); 7384 return true; 7385 } 7386 7387 /** 7388 * Calculate CRC32 for ByteBuffer. 7389 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 7390 */ 7391 bool LibraryCallKit::inline_updateByteBufferCRC32() { 7392 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 7393 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7394 // no receiver since it is static method 7395 Node* crc = argument(0); // type: int 7396 Node* src = argument(1); // type: long 7397 Node* offset = argument(3); // type: int 7398 Node* length = argument(4); // type: int 7399 7400 src = ConvL2X(src); // adjust Java long to machine word 7401 Node* base = _gvn.transform(new CastX2PNode(src)); 7402 offset = ConvI2X(offset); 7403 7404 // 'src_start' points to src array + scaled offset 7405 Node* src_start = basic_plus_adr(top(), base, offset); 7406 7407 // Call the stub. 7408 address stubAddr = StubRoutines::updateBytesCRC32(); 7409 const char *stubName = "updateBytesCRC32"; 7410 7411 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 7412 stubAddr, stubName, TypePtr::BOTTOM, 7413 crc, src_start, length); 7414 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7415 set_result(result); 7416 return true; 7417 } 7418 7419 //------------------------------get_table_from_crc32c_class----------------------- 7420 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 7421 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 7422 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 7423 7424 return table; 7425 } 7426 7427 //------------------------------inline_updateBytesCRC32C----------------------- 7428 // 7429 // Calculate CRC32C for byte[] array. 7430 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 7431 // 7432 bool LibraryCallKit::inline_updateBytesCRC32C() { 7433 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7434 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7435 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7436 // no receiver since it is a static method 7437 Node* crc = argument(0); // type: int 7438 Node* src = argument(1); // type: oop 7439 Node* offset = argument(2); // type: int 7440 Node* end = argument(3); // type: int 7441 7442 Node* length = _gvn.transform(new SubINode(end, offset)); 7443 7444 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7445 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7446 // failed array check 7447 return false; 7448 } 7449 7450 // Figure out the size and type of the elements we will be copying. 7451 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7452 if (src_elem != T_BYTE) { 7453 return false; 7454 } 7455 7456 // 'src_start' points to src array + scaled offset 7457 src = must_be_not_null(src, true); 7458 Node* src_start = array_element_address(src, offset, src_elem); 7459 7460 // static final int[] byteTable in class CRC32C 7461 Node* table = get_table_from_crc32c_class(callee()->holder()); 7462 table = must_be_not_null(table, true); 7463 Node* table_start = array_element_address(table, intcon(0), T_INT); 7464 7465 // We assume that range check is done by caller. 7466 // TODO: generate range check (offset+length < src.length) in debug VM. 7467 7468 // Call the stub. 7469 address stubAddr = StubRoutines::updateBytesCRC32C(); 7470 const char *stubName = "updateBytesCRC32C"; 7471 7472 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7473 stubAddr, stubName, TypePtr::BOTTOM, 7474 crc, src_start, length, table_start); 7475 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7476 set_result(result); 7477 return true; 7478 } 7479 7480 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 7481 // 7482 // Calculate CRC32C for DirectByteBuffer. 7483 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 7484 // 7485 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 7486 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 7487 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 7488 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 7489 // no receiver since it is a static method 7490 Node* crc = argument(0); // type: int 7491 Node* src = argument(1); // type: long 7492 Node* offset = argument(3); // type: int 7493 Node* end = argument(4); // type: int 7494 7495 Node* length = _gvn.transform(new SubINode(end, offset)); 7496 7497 src = ConvL2X(src); // adjust Java long to machine word 7498 Node* base = _gvn.transform(new CastX2PNode(src)); 7499 offset = ConvI2X(offset); 7500 7501 // 'src_start' points to src array + scaled offset 7502 Node* src_start = basic_plus_adr(top(), base, offset); 7503 7504 // static final int[] byteTable in class CRC32C 7505 Node* table = get_table_from_crc32c_class(callee()->holder()); 7506 table = must_be_not_null(table, true); 7507 Node* table_start = array_element_address(table, intcon(0), T_INT); 7508 7509 // Call the stub. 7510 address stubAddr = StubRoutines::updateBytesCRC32C(); 7511 const char *stubName = "updateBytesCRC32C"; 7512 7513 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 7514 stubAddr, stubName, TypePtr::BOTTOM, 7515 crc, src_start, length, table_start); 7516 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7517 set_result(result); 7518 return true; 7519 } 7520 7521 //------------------------------inline_updateBytesAdler32---------------------- 7522 // 7523 // Calculate Adler32 checksum for byte[] array. 7524 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 7525 // 7526 bool LibraryCallKit::inline_updateBytesAdler32() { 7527 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7528 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 7529 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7530 // no receiver since it is static method 7531 Node* crc = argument(0); // type: int 7532 Node* src = argument(1); // type: oop 7533 Node* offset = argument(2); // type: int 7534 Node* length = argument(3); // type: int 7535 7536 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7537 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7538 // failed array check 7539 return false; 7540 } 7541 7542 // Figure out the size and type of the elements we will be copying. 7543 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7544 if (src_elem != T_BYTE) { 7545 return false; 7546 } 7547 7548 // 'src_start' points to src array + scaled offset 7549 Node* src_start = array_element_address(src, offset, src_elem); 7550 7551 // We assume that range check is done by caller. 7552 // TODO: generate range check (offset+length < src.length) in debug VM. 7553 7554 // Call the stub. 7555 address stubAddr = StubRoutines::updateBytesAdler32(); 7556 const char *stubName = "updateBytesAdler32"; 7557 7558 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7559 stubAddr, stubName, TypePtr::BOTTOM, 7560 crc, src_start, length); 7561 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7562 set_result(result); 7563 return true; 7564 } 7565 7566 //------------------------------inline_updateByteBufferAdler32--------------- 7567 // 7568 // Calculate Adler32 checksum for DirectByteBuffer. 7569 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 7570 // 7571 bool LibraryCallKit::inline_updateByteBufferAdler32() { 7572 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 7573 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 7574 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 7575 // no receiver since it is static method 7576 Node* crc = argument(0); // type: int 7577 Node* src = argument(1); // type: long 7578 Node* offset = argument(3); // type: int 7579 Node* length = argument(4); // type: int 7580 7581 src = ConvL2X(src); // adjust Java long to machine word 7582 Node* base = _gvn.transform(new CastX2PNode(src)); 7583 offset = ConvI2X(offset); 7584 7585 // 'src_start' points to src array + scaled offset 7586 Node* src_start = basic_plus_adr(top(), base, offset); 7587 7588 // Call the stub. 7589 address stubAddr = StubRoutines::updateBytesAdler32(); 7590 const char *stubName = "updateBytesAdler32"; 7591 7592 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 7593 stubAddr, stubName, TypePtr::BOTTOM, 7594 crc, src_start, length); 7595 7596 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7597 set_result(result); 7598 return true; 7599 } 7600 7601 //----------------------------inline_reference_get0---------------------------- 7602 // public T java.lang.ref.Reference.get(); 7603 bool LibraryCallKit::inline_reference_get0() { 7604 const int referent_offset = java_lang_ref_Reference::referent_offset(); 7605 7606 // Get the argument: 7607 Node* reference_obj = null_check_receiver(); 7608 if (stopped()) return true; 7609 7610 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 7611 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7612 decorators, /*is_static*/ false, nullptr); 7613 if (result == nullptr) return false; 7614 7615 // Add memory barrier to prevent commoning reads from this field 7616 // across safepoint since GC can change its value. 7617 insert_mem_bar(Op_MemBarCPUOrder); 7618 7619 set_result(result); 7620 return true; 7621 } 7622 7623 //----------------------------inline_reference_refersTo0---------------------------- 7624 // bool java.lang.ref.Reference.refersTo0(); 7625 // bool java.lang.ref.PhantomReference.refersTo0(); 7626 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 7627 // Get arguments: 7628 Node* reference_obj = null_check_receiver(); 7629 Node* other_obj = argument(1); 7630 if (stopped()) return true; 7631 7632 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7633 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7634 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 7635 decorators, /*is_static*/ false, nullptr); 7636 if (referent == nullptr) return false; 7637 7638 // Add memory barrier to prevent commoning reads from this field 7639 // across safepoint since GC can change its value. 7640 insert_mem_bar(Op_MemBarCPUOrder); 7641 7642 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 7643 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7644 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 7645 7646 RegionNode* region = new RegionNode(3); 7647 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 7648 7649 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 7650 region->init_req(1, if_true); 7651 phi->init_req(1, intcon(1)); 7652 7653 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 7654 region->init_req(2, if_false); 7655 phi->init_req(2, intcon(0)); 7656 7657 set_control(_gvn.transform(region)); 7658 record_for_igvn(region); 7659 set_result(_gvn.transform(phi)); 7660 return true; 7661 } 7662 7663 //----------------------------inline_reference_clear0---------------------------- 7664 // void java.lang.ref.Reference.clear0(); 7665 // void java.lang.ref.PhantomReference.clear0(); 7666 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 7667 // This matches the implementation in JVM_ReferenceClear, see the comments there. 7668 7669 // Get arguments 7670 Node* reference_obj = null_check_receiver(); 7671 if (stopped()) return true; 7672 7673 // Common access parameters 7674 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 7675 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 7676 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 7677 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 7678 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 7679 7680 Node* referent = access_load_at(reference_obj, 7681 referent_field_addr, 7682 referent_field_addr_type, 7683 val_type, 7684 T_OBJECT, 7685 decorators); 7686 7687 IdealKit ideal(this); 7688 #define __ ideal. 7689 __ if_then(referent, BoolTest::ne, null()); 7690 sync_kit(ideal); 7691 access_store_at(reference_obj, 7692 referent_field_addr, 7693 referent_field_addr_type, 7694 null(), 7695 val_type, 7696 T_OBJECT, 7697 decorators); 7698 __ sync_kit(this); 7699 __ end_if(); 7700 final_sync(ideal); 7701 #undef __ 7702 7703 return true; 7704 } 7705 7706 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7707 DecoratorSet decorators, bool is_static, 7708 ciInstanceKlass* fromKls) { 7709 if (fromKls == nullptr) { 7710 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7711 assert(tinst != nullptr, "obj is null"); 7712 assert(tinst->is_loaded(), "obj is not loaded"); 7713 fromKls = tinst->instance_klass(); 7714 } else { 7715 assert(is_static, "only for static field access"); 7716 } 7717 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7718 ciSymbol::make(fieldTypeString), 7719 is_static); 7720 7721 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7722 if (field == nullptr) return (Node *) nullptr; 7723 7724 if (is_static) { 7725 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7726 fromObj = makecon(tip); 7727 } 7728 7729 // Next code copied from Parse::do_get_xxx(): 7730 7731 // Compute address and memory type. 7732 int offset = field->offset_in_bytes(); 7733 bool is_vol = field->is_volatile(); 7734 ciType* field_klass = field->type(); 7735 assert(field_klass->is_loaded(), "should be loaded"); 7736 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7737 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7738 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7739 "slice of address and input slice don't match"); 7740 BasicType bt = field->layout_type(); 7741 7742 // Build the resultant type of the load 7743 const Type *type; 7744 if (bt == T_OBJECT) { 7745 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7746 } else { 7747 type = Type::get_const_basic_type(bt); 7748 } 7749 7750 if (is_vol) { 7751 decorators |= MO_SEQ_CST; 7752 } 7753 7754 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7755 } 7756 7757 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7758 bool is_exact /* true */, bool is_static /* false */, 7759 ciInstanceKlass * fromKls /* nullptr */) { 7760 if (fromKls == nullptr) { 7761 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7762 assert(tinst != nullptr, "obj is null"); 7763 assert(tinst->is_loaded(), "obj is not loaded"); 7764 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7765 fromKls = tinst->instance_klass(); 7766 } 7767 else { 7768 assert(is_static, "only for static field access"); 7769 } 7770 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7771 ciSymbol::make(fieldTypeString), 7772 is_static); 7773 7774 assert(field != nullptr, "undefined field"); 7775 assert(!field->is_volatile(), "not defined for volatile fields"); 7776 7777 if (is_static) { 7778 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7779 fromObj = makecon(tip); 7780 } 7781 7782 // Next code copied from Parse::do_get_xxx(): 7783 7784 // Compute address and memory type. 7785 int offset = field->offset_in_bytes(); 7786 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7787 7788 return adr; 7789 } 7790 7791 //------------------------------inline_aescrypt_Block----------------------- 7792 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7793 address stubAddr = nullptr; 7794 const char *stubName; 7795 assert(UseAES, "need AES instruction support"); 7796 7797 switch(id) { 7798 case vmIntrinsics::_aescrypt_encryptBlock: 7799 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7800 stubName = "aescrypt_encryptBlock"; 7801 break; 7802 case vmIntrinsics::_aescrypt_decryptBlock: 7803 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7804 stubName = "aescrypt_decryptBlock"; 7805 break; 7806 default: 7807 break; 7808 } 7809 if (stubAddr == nullptr) return false; 7810 7811 Node* aescrypt_object = argument(0); 7812 Node* src = argument(1); 7813 Node* src_offset = argument(2); 7814 Node* dest = argument(3); 7815 Node* dest_offset = argument(4); 7816 7817 src = must_be_not_null(src, true); 7818 dest = must_be_not_null(dest, true); 7819 7820 // (1) src and dest are arrays. 7821 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7822 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7823 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7824 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7825 7826 // for the quick and dirty code we will skip all the checks. 7827 // we are just trying to get the call to be generated. 7828 Node* src_start = src; 7829 Node* dest_start = dest; 7830 if (src_offset != nullptr || dest_offset != nullptr) { 7831 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7832 src_start = array_element_address(src, src_offset, T_BYTE); 7833 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7834 } 7835 7836 // now need to get the start of its expanded key array 7837 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7838 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7839 if (k_start == nullptr) return false; 7840 7841 // Call the stub. 7842 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7843 stubAddr, stubName, TypePtr::BOTTOM, 7844 src_start, dest_start, k_start); 7845 7846 return true; 7847 } 7848 7849 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7850 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7851 address stubAddr = nullptr; 7852 const char *stubName = nullptr; 7853 7854 assert(UseAES, "need AES instruction support"); 7855 7856 switch(id) { 7857 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7858 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7859 stubName = "cipherBlockChaining_encryptAESCrypt"; 7860 break; 7861 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7862 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7863 stubName = "cipherBlockChaining_decryptAESCrypt"; 7864 break; 7865 default: 7866 break; 7867 } 7868 if (stubAddr == nullptr) return false; 7869 7870 Node* cipherBlockChaining_object = argument(0); 7871 Node* src = argument(1); 7872 Node* src_offset = argument(2); 7873 Node* len = argument(3); 7874 Node* dest = argument(4); 7875 Node* dest_offset = argument(5); 7876 7877 src = must_be_not_null(src, false); 7878 dest = must_be_not_null(dest, false); 7879 7880 // (1) src and dest are arrays. 7881 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7882 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7883 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7884 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7885 7886 // checks are the responsibility of the caller 7887 Node* src_start = src; 7888 Node* dest_start = dest; 7889 if (src_offset != nullptr || dest_offset != nullptr) { 7890 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7891 src_start = array_element_address(src, src_offset, T_BYTE); 7892 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7893 } 7894 7895 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7896 // (because of the predicated logic executed earlier). 7897 // so we cast it here safely. 7898 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7899 7900 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7901 if (embeddedCipherObj == nullptr) return false; 7902 7903 // cast it to what we know it will be at runtime 7904 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7905 assert(tinst != nullptr, "CBC obj is null"); 7906 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7907 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7908 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7909 7910 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7911 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7912 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7913 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7914 aescrypt_object = _gvn.transform(aescrypt_object); 7915 7916 // we need to get the start of the aescrypt_object's expanded key array 7917 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7918 if (k_start == nullptr) return false; 7919 7920 // similarly, get the start address of the r vector 7921 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7922 if (objRvec == nullptr) return false; 7923 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7924 7925 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7926 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7927 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7928 stubAddr, stubName, TypePtr::BOTTOM, 7929 src_start, dest_start, k_start, r_start, len); 7930 7931 // return cipher length (int) 7932 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7933 set_result(retvalue); 7934 return true; 7935 } 7936 7937 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7938 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7939 address stubAddr = nullptr; 7940 const char *stubName = nullptr; 7941 7942 assert(UseAES, "need AES instruction support"); 7943 7944 switch (id) { 7945 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7946 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7947 stubName = "electronicCodeBook_encryptAESCrypt"; 7948 break; 7949 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7950 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7951 stubName = "electronicCodeBook_decryptAESCrypt"; 7952 break; 7953 default: 7954 break; 7955 } 7956 7957 if (stubAddr == nullptr) return false; 7958 7959 Node* electronicCodeBook_object = argument(0); 7960 Node* src = argument(1); 7961 Node* src_offset = argument(2); 7962 Node* len = argument(3); 7963 Node* dest = argument(4); 7964 Node* dest_offset = argument(5); 7965 7966 // (1) src and dest are arrays. 7967 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7968 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7969 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7970 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7971 7972 // checks are the responsibility of the caller 7973 Node* src_start = src; 7974 Node* dest_start = dest; 7975 if (src_offset != nullptr || dest_offset != nullptr) { 7976 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7977 src_start = array_element_address(src, src_offset, T_BYTE); 7978 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7979 } 7980 7981 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7982 // (because of the predicated logic executed earlier). 7983 // so we cast it here safely. 7984 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7985 7986 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7987 if (embeddedCipherObj == nullptr) return false; 7988 7989 // cast it to what we know it will be at runtime 7990 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7991 assert(tinst != nullptr, "ECB obj is null"); 7992 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7993 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7994 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7995 7996 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7997 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7998 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7999 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8000 aescrypt_object = _gvn.transform(aescrypt_object); 8001 8002 // we need to get the start of the aescrypt_object's expanded key array 8003 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8004 if (k_start == nullptr) return false; 8005 8006 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 8007 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 8008 OptoRuntime::electronicCodeBook_aescrypt_Type(), 8009 stubAddr, stubName, TypePtr::BOTTOM, 8010 src_start, dest_start, k_start, len); 8011 8012 // return cipher length (int) 8013 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 8014 set_result(retvalue); 8015 return true; 8016 } 8017 8018 //------------------------------inline_counterMode_AESCrypt----------------------- 8019 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 8020 assert(UseAES, "need AES instruction support"); 8021 if (!UseAESCTRIntrinsics) return false; 8022 8023 address stubAddr = nullptr; 8024 const char *stubName = nullptr; 8025 if (id == vmIntrinsics::_counterMode_AESCrypt) { 8026 stubAddr = StubRoutines::counterMode_AESCrypt(); 8027 stubName = "counterMode_AESCrypt"; 8028 } 8029 if (stubAddr == nullptr) return false; 8030 8031 Node* counterMode_object = argument(0); 8032 Node* src = argument(1); 8033 Node* src_offset = argument(2); 8034 Node* len = argument(3); 8035 Node* dest = argument(4); 8036 Node* dest_offset = argument(5); 8037 8038 // (1) src and dest are arrays. 8039 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8040 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 8041 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 8042 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 8043 8044 // checks are the responsibility of the caller 8045 Node* src_start = src; 8046 Node* dest_start = dest; 8047 if (src_offset != nullptr || dest_offset != nullptr) { 8048 assert(src_offset != nullptr && dest_offset != nullptr, ""); 8049 src_start = array_element_address(src, src_offset, T_BYTE); 8050 dest_start = array_element_address(dest, dest_offset, T_BYTE); 8051 } 8052 8053 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8054 // (because of the predicated logic executed earlier). 8055 // so we cast it here safely. 8056 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8057 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8058 if (embeddedCipherObj == nullptr) return false; 8059 // cast it to what we know it will be at runtime 8060 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 8061 assert(tinst != nullptr, "CTR obj is null"); 8062 assert(tinst->is_loaded(), "CTR obj is not loaded"); 8063 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8064 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8065 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8066 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8067 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8068 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8069 aescrypt_object = _gvn.transform(aescrypt_object); 8070 // we need to get the start of the aescrypt_object's expanded key array 8071 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8072 if (k_start == nullptr) return false; 8073 // similarly, get the start address of the r vector 8074 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 8075 if (obj_counter == nullptr) return false; 8076 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 8077 8078 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 8079 if (saved_encCounter == nullptr) return false; 8080 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 8081 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 8082 8083 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 8084 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8085 OptoRuntime::counterMode_aescrypt_Type(), 8086 stubAddr, stubName, TypePtr::BOTTOM, 8087 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 8088 8089 // return cipher length (int) 8090 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 8091 set_result(retvalue); 8092 return true; 8093 } 8094 8095 //------------------------------get_key_start_from_aescrypt_object----------------------- 8096 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 8097 #if defined(PPC64) || defined(S390) || defined(RISCV64) 8098 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 8099 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 8100 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 8101 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 8102 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 8103 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 8104 if (objSessionK == nullptr) { 8105 return (Node *) nullptr; 8106 } 8107 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 8108 #else 8109 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 8110 #endif // PPC64 8111 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 8112 if (objAESCryptKey == nullptr) return (Node *) nullptr; 8113 8114 // now have the array, need to get the start address of the K array 8115 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 8116 return k_start; 8117 } 8118 8119 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 8120 // Return node representing slow path of predicate check. 8121 // the pseudo code we want to emulate with this predicate is: 8122 // for encryption: 8123 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8124 // for decryption: 8125 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8126 // note cipher==plain is more conservative than the original java code but that's OK 8127 // 8128 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 8129 // The receiver was checked for null already. 8130 Node* objCBC = argument(0); 8131 8132 Node* src = argument(1); 8133 Node* dest = argument(4); 8134 8135 // Load embeddedCipher field of CipherBlockChaining object. 8136 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8137 8138 // get AESCrypt klass for instanceOf check 8139 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8140 // will have same classloader as CipherBlockChaining object 8141 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 8142 assert(tinst != nullptr, "CBCobj is null"); 8143 assert(tinst->is_loaded(), "CBCobj is not loaded"); 8144 8145 // we want to do an instanceof comparison against the AESCrypt class 8146 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8147 if (!klass_AESCrypt->is_loaded()) { 8148 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8149 Node* ctrl = control(); 8150 set_control(top()); // no regular fast path 8151 return ctrl; 8152 } 8153 8154 src = must_be_not_null(src, true); 8155 dest = must_be_not_null(dest, true); 8156 8157 // Resolve oops to stable for CmpP below. 8158 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8159 8160 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8161 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8162 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8163 8164 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8165 8166 // for encryption, we are done 8167 if (!decrypting) 8168 return instof_false; // even if it is null 8169 8170 // for decryption, we need to add a further check to avoid 8171 // taking the intrinsic path when cipher and plain are the same 8172 // see the original java code for why. 8173 RegionNode* region = new RegionNode(3); 8174 region->init_req(1, instof_false); 8175 8176 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 8177 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 8178 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 8179 region->init_req(2, src_dest_conjoint); 8180 8181 record_for_igvn(region); 8182 return _gvn.transform(region); 8183 } 8184 8185 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 8186 // Return node representing slow path of predicate check. 8187 // the pseudo code we want to emulate with this predicate is: 8188 // for encryption: 8189 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8190 // for decryption: 8191 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8192 // note cipher==plain is more conservative than the original java code but that's OK 8193 // 8194 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 8195 // The receiver was checked for null already. 8196 Node* objECB = argument(0); 8197 8198 // Load embeddedCipher field of ElectronicCodeBook object. 8199 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8200 8201 // get AESCrypt klass for instanceOf check 8202 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8203 // will have same classloader as ElectronicCodeBook object 8204 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 8205 assert(tinst != nullptr, "ECBobj is null"); 8206 assert(tinst->is_loaded(), "ECBobj is not loaded"); 8207 8208 // we want to do an instanceof comparison against the AESCrypt class 8209 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8210 if (!klass_AESCrypt->is_loaded()) { 8211 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8212 Node* ctrl = control(); 8213 set_control(top()); // no regular fast path 8214 return ctrl; 8215 } 8216 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8217 8218 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8219 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8220 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8221 8222 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8223 8224 // for encryption, we are done 8225 if (!decrypting) 8226 return instof_false; // even if it is null 8227 8228 // for decryption, we need to add a further check to avoid 8229 // taking the intrinsic path when cipher and plain are the same 8230 // see the original java code for why. 8231 RegionNode* region = new RegionNode(3); 8232 region->init_req(1, instof_false); 8233 Node* src = argument(1); 8234 Node* dest = argument(4); 8235 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 8236 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 8237 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 8238 region->init_req(2, src_dest_conjoint); 8239 8240 record_for_igvn(region); 8241 return _gvn.transform(region); 8242 } 8243 8244 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 8245 // Return node representing slow path of predicate check. 8246 // the pseudo code we want to emulate with this predicate is: 8247 // for encryption: 8248 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8249 // for decryption: 8250 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8251 // note cipher==plain is more conservative than the original java code but that's OK 8252 // 8253 8254 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 8255 // The receiver was checked for null already. 8256 Node* objCTR = argument(0); 8257 8258 // Load embeddedCipher field of CipherBlockChaining object. 8259 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8260 8261 // get AESCrypt klass for instanceOf check 8262 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8263 // will have same classloader as CipherBlockChaining object 8264 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 8265 assert(tinst != nullptr, "CTRobj is null"); 8266 assert(tinst->is_loaded(), "CTRobj is not loaded"); 8267 8268 // we want to do an instanceof comparison against the AESCrypt class 8269 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8270 if (!klass_AESCrypt->is_loaded()) { 8271 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8272 Node* ctrl = control(); 8273 set_control(top()); // no regular fast path 8274 return ctrl; 8275 } 8276 8277 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8278 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8279 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8280 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8281 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8282 8283 return instof_false; // even if it is null 8284 } 8285 8286 //------------------------------inline_ghash_processBlocks 8287 bool LibraryCallKit::inline_ghash_processBlocks() { 8288 address stubAddr; 8289 const char *stubName; 8290 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 8291 8292 stubAddr = StubRoutines::ghash_processBlocks(); 8293 stubName = "ghash_processBlocks"; 8294 8295 Node* data = argument(0); 8296 Node* offset = argument(1); 8297 Node* len = argument(2); 8298 Node* state = argument(3); 8299 Node* subkeyH = argument(4); 8300 8301 state = must_be_not_null(state, true); 8302 subkeyH = must_be_not_null(subkeyH, true); 8303 data = must_be_not_null(data, true); 8304 8305 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8306 assert(state_start, "state is null"); 8307 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 8308 assert(subkeyH_start, "subkeyH is null"); 8309 Node* data_start = array_element_address(data, offset, T_BYTE); 8310 assert(data_start, "data is null"); 8311 8312 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 8313 OptoRuntime::ghash_processBlocks_Type(), 8314 stubAddr, stubName, TypePtr::BOTTOM, 8315 state_start, subkeyH_start, data_start, len); 8316 return true; 8317 } 8318 8319 //------------------------------inline_chacha20Block 8320 bool LibraryCallKit::inline_chacha20Block() { 8321 address stubAddr; 8322 const char *stubName; 8323 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 8324 8325 stubAddr = StubRoutines::chacha20Block(); 8326 stubName = "chacha20Block"; 8327 8328 Node* state = argument(0); 8329 Node* result = argument(1); 8330 8331 state = must_be_not_null(state, true); 8332 result = must_be_not_null(result, true); 8333 8334 Node* state_start = array_element_address(state, intcon(0), T_INT); 8335 assert(state_start, "state is null"); 8336 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 8337 assert(result_start, "result is null"); 8338 8339 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 8340 OptoRuntime::chacha20Block_Type(), 8341 stubAddr, stubName, TypePtr::BOTTOM, 8342 state_start, result_start); 8343 // return key stream length (int) 8344 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 8345 set_result(retvalue); 8346 return true; 8347 } 8348 8349 //------------------------------inline_kyberNtt 8350 bool LibraryCallKit::inline_kyberNtt() { 8351 address stubAddr; 8352 const char *stubName; 8353 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8354 assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters"); 8355 8356 stubAddr = StubRoutines::kyberNtt(); 8357 stubName = "kyberNtt"; 8358 if (!stubAddr) return false; 8359 8360 Node* coeffs = argument(0); 8361 Node* ntt_zetas = argument(1); 8362 8363 coeffs = must_be_not_null(coeffs, true); 8364 ntt_zetas = must_be_not_null(ntt_zetas, true); 8365 8366 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 8367 assert(coeffs_start, "coeffs is null"); 8368 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_SHORT); 8369 assert(ntt_zetas_start, "ntt_zetas is null"); 8370 Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8371 OptoRuntime::kyberNtt_Type(), 8372 stubAddr, stubName, TypePtr::BOTTOM, 8373 coeffs_start, ntt_zetas_start); 8374 // return an int 8375 Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms)); 8376 set_result(retvalue); 8377 return true; 8378 } 8379 8380 //------------------------------inline_kyberInverseNtt 8381 bool LibraryCallKit::inline_kyberInverseNtt() { 8382 address stubAddr; 8383 const char *stubName; 8384 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8385 assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters"); 8386 8387 stubAddr = StubRoutines::kyberInverseNtt(); 8388 stubName = "kyberInverseNtt"; 8389 if (!stubAddr) return false; 8390 8391 Node* coeffs = argument(0); 8392 Node* zetas = argument(1); 8393 8394 coeffs = must_be_not_null(coeffs, true); 8395 zetas = must_be_not_null(zetas, true); 8396 8397 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 8398 assert(coeffs_start, "coeffs is null"); 8399 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 8400 assert(zetas_start, "inverseNtt_zetas is null"); 8401 Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8402 OptoRuntime::kyberInverseNtt_Type(), 8403 stubAddr, stubName, TypePtr::BOTTOM, 8404 coeffs_start, zetas_start); 8405 8406 // return an int 8407 Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms)); 8408 set_result(retvalue); 8409 return true; 8410 } 8411 8412 //------------------------------inline_kyberNttMult 8413 bool LibraryCallKit::inline_kyberNttMult() { 8414 address stubAddr; 8415 const char *stubName; 8416 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8417 assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters"); 8418 8419 stubAddr = StubRoutines::kyberNttMult(); 8420 stubName = "kyberNttMult"; 8421 if (!stubAddr) return false; 8422 8423 Node* result = argument(0); 8424 Node* ntta = argument(1); 8425 Node* nttb = argument(2); 8426 Node* zetas = argument(3); 8427 8428 result = must_be_not_null(result, true); 8429 ntta = must_be_not_null(ntta, true); 8430 nttb = must_be_not_null(nttb, true); 8431 zetas = must_be_not_null(zetas, true); 8432 8433 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 8434 assert(result_start, "result is null"); 8435 Node* ntta_start = array_element_address(ntta, intcon(0), T_SHORT); 8436 assert(ntta_start, "ntta is null"); 8437 Node* nttb_start = array_element_address(nttb, intcon(0), T_SHORT); 8438 assert(nttb_start, "nttb is null"); 8439 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 8440 assert(zetas_start, "nttMult_zetas is null"); 8441 Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 8442 OptoRuntime::kyberNttMult_Type(), 8443 stubAddr, stubName, TypePtr::BOTTOM, 8444 result_start, ntta_start, nttb_start, 8445 zetas_start); 8446 8447 // return an int 8448 Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms)); 8449 set_result(retvalue); 8450 8451 return true; 8452 } 8453 8454 //------------------------------inline_kyberAddPoly_2 8455 bool LibraryCallKit::inline_kyberAddPoly_2() { 8456 address stubAddr; 8457 const char *stubName; 8458 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8459 assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters"); 8460 8461 stubAddr = StubRoutines::kyberAddPoly_2(); 8462 stubName = "kyberAddPoly_2"; 8463 if (!stubAddr) return false; 8464 8465 Node* result = argument(0); 8466 Node* a = argument(1); 8467 Node* b = argument(2); 8468 8469 result = must_be_not_null(result, true); 8470 a = must_be_not_null(a, true); 8471 b = must_be_not_null(b, true); 8472 8473 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 8474 assert(result_start, "result is null"); 8475 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 8476 assert(a_start, "a is null"); 8477 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 8478 assert(b_start, "b is null"); 8479 Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP, 8480 OptoRuntime::kyberAddPoly_2_Type(), 8481 stubAddr, stubName, TypePtr::BOTTOM, 8482 result_start, a_start, b_start); 8483 // return an int 8484 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms)); 8485 set_result(retvalue); 8486 return true; 8487 } 8488 8489 //------------------------------inline_kyberAddPoly_3 8490 bool LibraryCallKit::inline_kyberAddPoly_3() { 8491 address stubAddr; 8492 const char *stubName; 8493 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8494 assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters"); 8495 8496 stubAddr = StubRoutines::kyberAddPoly_3(); 8497 stubName = "kyberAddPoly_3"; 8498 if (!stubAddr) return false; 8499 8500 Node* result = argument(0); 8501 Node* a = argument(1); 8502 Node* b = argument(2); 8503 Node* c = argument(3); 8504 8505 result = must_be_not_null(result, true); 8506 a = must_be_not_null(a, true); 8507 b = must_be_not_null(b, true); 8508 c = must_be_not_null(c, true); 8509 8510 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 8511 assert(result_start, "result is null"); 8512 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 8513 assert(a_start, "a is null"); 8514 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 8515 assert(b_start, "b is null"); 8516 Node* c_start = array_element_address(c, intcon(0), T_SHORT); 8517 assert(c_start, "c is null"); 8518 Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP, 8519 OptoRuntime::kyberAddPoly_3_Type(), 8520 stubAddr, stubName, TypePtr::BOTTOM, 8521 result_start, a_start, b_start, c_start); 8522 // return an int 8523 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms)); 8524 set_result(retvalue); 8525 return true; 8526 } 8527 8528 //------------------------------inline_kyber12To16 8529 bool LibraryCallKit::inline_kyber12To16() { 8530 address stubAddr; 8531 const char *stubName; 8532 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8533 assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters"); 8534 8535 stubAddr = StubRoutines::kyber12To16(); 8536 stubName = "kyber12To16"; 8537 if (!stubAddr) return false; 8538 8539 Node* condensed = argument(0); 8540 Node* condensedOffs = argument(1); 8541 Node* parsed = argument(2); 8542 Node* parsedLength = argument(3); 8543 8544 condensed = must_be_not_null(condensed, true); 8545 parsed = must_be_not_null(parsed, true); 8546 8547 Node* condensed_start = array_element_address(condensed, intcon(0), T_BYTE); 8548 assert(condensed_start, "condensed is null"); 8549 Node* parsed_start = array_element_address(parsed, intcon(0), T_SHORT); 8550 assert(parsed_start, "parsed is null"); 8551 Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP, 8552 OptoRuntime::kyber12To16_Type(), 8553 stubAddr, stubName, TypePtr::BOTTOM, 8554 condensed_start, condensedOffs, parsed_start, parsedLength); 8555 // return an int 8556 Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms)); 8557 set_result(retvalue); 8558 return true; 8559 8560 } 8561 8562 //------------------------------inline_kyberBarrettReduce 8563 bool LibraryCallKit::inline_kyberBarrettReduce() { 8564 address stubAddr; 8565 const char *stubName; 8566 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 8567 assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters"); 8568 8569 stubAddr = StubRoutines::kyberBarrettReduce(); 8570 stubName = "kyberBarrettReduce"; 8571 if (!stubAddr) return false; 8572 8573 Node* coeffs = argument(0); 8574 8575 coeffs = must_be_not_null(coeffs, true); 8576 8577 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 8578 assert(coeffs_start, "coeffs is null"); 8579 Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP, 8580 OptoRuntime::kyberBarrettReduce_Type(), 8581 stubAddr, stubName, TypePtr::BOTTOM, 8582 coeffs_start); 8583 // return an int 8584 Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms)); 8585 set_result(retvalue); 8586 return true; 8587 } 8588 8589 //------------------------------inline_dilithiumAlmostNtt 8590 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 8591 address stubAddr; 8592 const char *stubName; 8593 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8594 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 8595 8596 stubAddr = StubRoutines::dilithiumAlmostNtt(); 8597 stubName = "dilithiumAlmostNtt"; 8598 if (!stubAddr) return false; 8599 8600 Node* coeffs = argument(0); 8601 Node* ntt_zetas = argument(1); 8602 8603 coeffs = must_be_not_null(coeffs, true); 8604 ntt_zetas = must_be_not_null(ntt_zetas, true); 8605 8606 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8607 assert(coeffs_start, "coeffs is null"); 8608 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 8609 assert(ntt_zetas_start, "ntt_zetas is null"); 8610 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8611 OptoRuntime::dilithiumAlmostNtt_Type(), 8612 stubAddr, stubName, TypePtr::BOTTOM, 8613 coeffs_start, ntt_zetas_start); 8614 // return an int 8615 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 8616 set_result(retvalue); 8617 return true; 8618 } 8619 8620 //------------------------------inline_dilithiumAlmostInverseNtt 8621 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 8622 address stubAddr; 8623 const char *stubName; 8624 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8625 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 8626 8627 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 8628 stubName = "dilithiumAlmostInverseNtt"; 8629 if (!stubAddr) return false; 8630 8631 Node* coeffs = argument(0); 8632 Node* zetas = argument(1); 8633 8634 coeffs = must_be_not_null(coeffs, true); 8635 zetas = must_be_not_null(zetas, true); 8636 8637 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8638 assert(coeffs_start, "coeffs is null"); 8639 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 8640 assert(zetas_start, "inverseNtt_zetas is null"); 8641 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 8642 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 8643 stubAddr, stubName, TypePtr::BOTTOM, 8644 coeffs_start, zetas_start); 8645 // return an int 8646 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 8647 set_result(retvalue); 8648 return true; 8649 } 8650 8651 //------------------------------inline_dilithiumNttMult 8652 bool LibraryCallKit::inline_dilithiumNttMult() { 8653 address stubAddr; 8654 const char *stubName; 8655 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8656 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 8657 8658 stubAddr = StubRoutines::dilithiumNttMult(); 8659 stubName = "dilithiumNttMult"; 8660 if (!stubAddr) return false; 8661 8662 Node* result = argument(0); 8663 Node* ntta = argument(1); 8664 Node* nttb = argument(2); 8665 Node* zetas = argument(3); 8666 8667 result = must_be_not_null(result, true); 8668 ntta = must_be_not_null(ntta, true); 8669 nttb = must_be_not_null(nttb, true); 8670 zetas = must_be_not_null(zetas, true); 8671 8672 Node* result_start = array_element_address(result, intcon(0), T_INT); 8673 assert(result_start, "result is null"); 8674 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 8675 assert(ntta_start, "ntta is null"); 8676 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 8677 assert(nttb_start, "nttb is null"); 8678 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 8679 OptoRuntime::dilithiumNttMult_Type(), 8680 stubAddr, stubName, TypePtr::BOTTOM, 8681 result_start, ntta_start, nttb_start); 8682 8683 // return an int 8684 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 8685 set_result(retvalue); 8686 8687 return true; 8688 } 8689 8690 //------------------------------inline_dilithiumMontMulByConstant 8691 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 8692 address stubAddr; 8693 const char *stubName; 8694 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8695 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 8696 8697 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 8698 stubName = "dilithiumMontMulByConstant"; 8699 if (!stubAddr) return false; 8700 8701 Node* coeffs = argument(0); 8702 Node* constant = argument(1); 8703 8704 coeffs = must_be_not_null(coeffs, true); 8705 8706 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8707 assert(coeffs_start, "coeffs is null"); 8708 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 8709 OptoRuntime::dilithiumMontMulByConstant_Type(), 8710 stubAddr, stubName, TypePtr::BOTTOM, 8711 coeffs_start, constant); 8712 8713 // return an int 8714 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 8715 set_result(retvalue); 8716 return true; 8717 } 8718 8719 8720 //------------------------------inline_dilithiumDecomposePoly 8721 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 8722 address stubAddr; 8723 const char *stubName; 8724 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8725 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 8726 8727 stubAddr = StubRoutines::dilithiumDecomposePoly(); 8728 stubName = "dilithiumDecomposePoly"; 8729 if (!stubAddr) return false; 8730 8731 Node* input = argument(0); 8732 Node* lowPart = argument(1); 8733 Node* highPart = argument(2); 8734 Node* twoGamma2 = argument(3); 8735 Node* multiplier = argument(4); 8736 8737 input = must_be_not_null(input, true); 8738 lowPart = must_be_not_null(lowPart, true); 8739 highPart = must_be_not_null(highPart, true); 8740 8741 Node* input_start = array_element_address(input, intcon(0), T_INT); 8742 assert(input_start, "input is null"); 8743 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 8744 assert(lowPart_start, "lowPart is null"); 8745 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 8746 assert(highPart_start, "highPart is null"); 8747 8748 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 8749 OptoRuntime::dilithiumDecomposePoly_Type(), 8750 stubAddr, stubName, TypePtr::BOTTOM, 8751 input_start, lowPart_start, highPart_start, 8752 twoGamma2, multiplier); 8753 8754 // return an int 8755 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 8756 set_result(retvalue); 8757 return true; 8758 } 8759 8760 bool LibraryCallKit::inline_base64_encodeBlock() { 8761 address stubAddr; 8762 const char *stubName; 8763 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8764 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8765 stubAddr = StubRoutines::base64_encodeBlock(); 8766 stubName = "encodeBlock"; 8767 8768 if (!stubAddr) return false; 8769 Node* base64obj = argument(0); 8770 Node* src = argument(1); 8771 Node* offset = argument(2); 8772 Node* len = argument(3); 8773 Node* dest = argument(4); 8774 Node* dp = argument(5); 8775 Node* isURL = argument(6); 8776 8777 src = must_be_not_null(src, true); 8778 dest = must_be_not_null(dest, true); 8779 8780 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8781 assert(src_start, "source array is null"); 8782 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8783 assert(dest_start, "destination array is null"); 8784 8785 Node* base64 = make_runtime_call(RC_LEAF, 8786 OptoRuntime::base64_encodeBlock_Type(), 8787 stubAddr, stubName, TypePtr::BOTTOM, 8788 src_start, offset, len, dest_start, dp, isURL); 8789 return true; 8790 } 8791 8792 bool LibraryCallKit::inline_base64_decodeBlock() { 8793 address stubAddr; 8794 const char *stubName; 8795 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8796 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8797 stubAddr = StubRoutines::base64_decodeBlock(); 8798 stubName = "decodeBlock"; 8799 8800 if (!stubAddr) return false; 8801 Node* base64obj = argument(0); 8802 Node* src = argument(1); 8803 Node* src_offset = argument(2); 8804 Node* len = argument(3); 8805 Node* dest = argument(4); 8806 Node* dest_offset = argument(5); 8807 Node* isURL = argument(6); 8808 Node* isMIME = argument(7); 8809 8810 src = must_be_not_null(src, true); 8811 dest = must_be_not_null(dest, true); 8812 8813 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8814 assert(src_start, "source array is null"); 8815 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8816 assert(dest_start, "destination array is null"); 8817 8818 Node* call = make_runtime_call(RC_LEAF, 8819 OptoRuntime::base64_decodeBlock_Type(), 8820 stubAddr, stubName, TypePtr::BOTTOM, 8821 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8822 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8823 set_result(result); 8824 return true; 8825 } 8826 8827 bool LibraryCallKit::inline_poly1305_processBlocks() { 8828 address stubAddr; 8829 const char *stubName; 8830 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8831 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8832 stubAddr = StubRoutines::poly1305_processBlocks(); 8833 stubName = "poly1305_processBlocks"; 8834 8835 if (!stubAddr) return false; 8836 null_check_receiver(); // null-check receiver 8837 if (stopped()) return true; 8838 8839 Node* input = argument(1); 8840 Node* input_offset = argument(2); 8841 Node* len = argument(3); 8842 Node* alimbs = argument(4); 8843 Node* rlimbs = argument(5); 8844 8845 input = must_be_not_null(input, true); 8846 alimbs = must_be_not_null(alimbs, true); 8847 rlimbs = must_be_not_null(rlimbs, true); 8848 8849 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8850 assert(input_start, "input array is null"); 8851 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8852 assert(acc_start, "acc array is null"); 8853 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8854 assert(r_start, "r array is null"); 8855 8856 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8857 OptoRuntime::poly1305_processBlocks_Type(), 8858 stubAddr, stubName, TypePtr::BOTTOM, 8859 input_start, len, acc_start, r_start); 8860 return true; 8861 } 8862 8863 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8864 address stubAddr; 8865 const char *stubName; 8866 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8867 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8868 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8869 stubName = "intpoly_montgomeryMult_P256"; 8870 8871 if (!stubAddr) return false; 8872 null_check_receiver(); // null-check receiver 8873 if (stopped()) return true; 8874 8875 Node* a = argument(1); 8876 Node* b = argument(2); 8877 Node* r = argument(3); 8878 8879 a = must_be_not_null(a, true); 8880 b = must_be_not_null(b, true); 8881 r = must_be_not_null(r, true); 8882 8883 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8884 assert(a_start, "a array is null"); 8885 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8886 assert(b_start, "b array is null"); 8887 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8888 assert(r_start, "r array is null"); 8889 8890 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8891 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8892 stubAddr, stubName, TypePtr::BOTTOM, 8893 a_start, b_start, r_start); 8894 return true; 8895 } 8896 8897 bool LibraryCallKit::inline_intpoly_assign() { 8898 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8899 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8900 const char *stubName = "intpoly_assign"; 8901 address stubAddr = StubRoutines::intpoly_assign(); 8902 if (!stubAddr) return false; 8903 8904 Node* set = argument(0); 8905 Node* a = argument(1); 8906 Node* b = argument(2); 8907 Node* arr_length = load_array_length(a); 8908 8909 a = must_be_not_null(a, true); 8910 b = must_be_not_null(b, true); 8911 8912 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8913 assert(a_start, "a array is null"); 8914 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8915 assert(b_start, "b array is null"); 8916 8917 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8918 OptoRuntime::intpoly_assign_Type(), 8919 stubAddr, stubName, TypePtr::BOTTOM, 8920 set, a_start, b_start, arr_length); 8921 return true; 8922 } 8923 8924 //------------------------------inline_digestBase_implCompress----------------------- 8925 // 8926 // Calculate MD5 for single-block byte[] array. 8927 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8928 // 8929 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8930 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8931 // 8932 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8933 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8934 // 8935 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8936 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8937 // 8938 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8939 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8940 // 8941 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8942 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8943 8944 Node* digestBase_obj = argument(0); 8945 Node* src = argument(1); // type oop 8946 Node* ofs = argument(2); // type int 8947 8948 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8949 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8950 // failed array check 8951 return false; 8952 } 8953 // Figure out the size and type of the elements we will be copying. 8954 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8955 if (src_elem != T_BYTE) { 8956 return false; 8957 } 8958 // 'src_start' points to src array + offset 8959 src = must_be_not_null(src, true); 8960 Node* src_start = array_element_address(src, ofs, src_elem); 8961 Node* state = nullptr; 8962 Node* block_size = nullptr; 8963 address stubAddr; 8964 const char *stubName; 8965 8966 switch(id) { 8967 case vmIntrinsics::_md5_implCompress: 8968 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8969 state = get_state_from_digest_object(digestBase_obj, T_INT); 8970 stubAddr = StubRoutines::md5_implCompress(); 8971 stubName = "md5_implCompress"; 8972 break; 8973 case vmIntrinsics::_sha_implCompress: 8974 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8975 state = get_state_from_digest_object(digestBase_obj, T_INT); 8976 stubAddr = StubRoutines::sha1_implCompress(); 8977 stubName = "sha1_implCompress"; 8978 break; 8979 case vmIntrinsics::_sha2_implCompress: 8980 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8981 state = get_state_from_digest_object(digestBase_obj, T_INT); 8982 stubAddr = StubRoutines::sha256_implCompress(); 8983 stubName = "sha256_implCompress"; 8984 break; 8985 case vmIntrinsics::_sha5_implCompress: 8986 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8987 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8988 stubAddr = StubRoutines::sha512_implCompress(); 8989 stubName = "sha512_implCompress"; 8990 break; 8991 case vmIntrinsics::_sha3_implCompress: 8992 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8993 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8994 stubAddr = StubRoutines::sha3_implCompress(); 8995 stubName = "sha3_implCompress"; 8996 block_size = get_block_size_from_digest_object(digestBase_obj); 8997 if (block_size == nullptr) return false; 8998 break; 8999 default: 9000 fatal_unexpected_iid(id); 9001 return false; 9002 } 9003 if (state == nullptr) return false; 9004 9005 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 9006 if (stubAddr == nullptr) return false; 9007 9008 // Call the stub. 9009 Node* call; 9010 if (block_size == nullptr) { 9011 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 9012 stubAddr, stubName, TypePtr::BOTTOM, 9013 src_start, state); 9014 } else { 9015 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 9016 stubAddr, stubName, TypePtr::BOTTOM, 9017 src_start, state, block_size); 9018 } 9019 9020 return true; 9021 } 9022 9023 //------------------------------inline_double_keccak 9024 bool LibraryCallKit::inline_double_keccak() { 9025 address stubAddr; 9026 const char *stubName; 9027 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 9028 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 9029 9030 stubAddr = StubRoutines::double_keccak(); 9031 stubName = "double_keccak"; 9032 if (!stubAddr) return false; 9033 9034 Node* status0 = argument(0); 9035 Node* status1 = argument(1); 9036 9037 status0 = must_be_not_null(status0, true); 9038 status1 = must_be_not_null(status1, true); 9039 9040 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 9041 assert(status0_start, "status0 is null"); 9042 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 9043 assert(status1_start, "status1 is null"); 9044 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 9045 OptoRuntime::double_keccak_Type(), 9046 stubAddr, stubName, TypePtr::BOTTOM, 9047 status0_start, status1_start); 9048 // return an int 9049 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 9050 set_result(retvalue); 9051 return true; 9052 } 9053 9054 9055 //------------------------------inline_digestBase_implCompressMB----------------------- 9056 // 9057 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 9058 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 9059 // 9060 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 9061 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 9062 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 9063 assert((uint)predicate < 5, "sanity"); 9064 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 9065 9066 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 9067 Node* src = argument(1); // byte[] array 9068 Node* ofs = argument(2); // type int 9069 Node* limit = argument(3); // type int 9070 9071 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 9072 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 9073 // failed array check 9074 return false; 9075 } 9076 // Figure out the size and type of the elements we will be copying. 9077 BasicType src_elem = src_type->elem()->array_element_basic_type(); 9078 if (src_elem != T_BYTE) { 9079 return false; 9080 } 9081 // 'src_start' points to src array + offset 9082 src = must_be_not_null(src, false); 9083 Node* src_start = array_element_address(src, ofs, src_elem); 9084 9085 const char* klass_digestBase_name = nullptr; 9086 const char* stub_name = nullptr; 9087 address stub_addr = nullptr; 9088 BasicType elem_type = T_INT; 9089 9090 switch (predicate) { 9091 case 0: 9092 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 9093 klass_digestBase_name = "sun/security/provider/MD5"; 9094 stub_name = "md5_implCompressMB"; 9095 stub_addr = StubRoutines::md5_implCompressMB(); 9096 } 9097 break; 9098 case 1: 9099 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 9100 klass_digestBase_name = "sun/security/provider/SHA"; 9101 stub_name = "sha1_implCompressMB"; 9102 stub_addr = StubRoutines::sha1_implCompressMB(); 9103 } 9104 break; 9105 case 2: 9106 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 9107 klass_digestBase_name = "sun/security/provider/SHA2"; 9108 stub_name = "sha256_implCompressMB"; 9109 stub_addr = StubRoutines::sha256_implCompressMB(); 9110 } 9111 break; 9112 case 3: 9113 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 9114 klass_digestBase_name = "sun/security/provider/SHA5"; 9115 stub_name = "sha512_implCompressMB"; 9116 stub_addr = StubRoutines::sha512_implCompressMB(); 9117 elem_type = T_LONG; 9118 } 9119 break; 9120 case 4: 9121 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 9122 klass_digestBase_name = "sun/security/provider/SHA3"; 9123 stub_name = "sha3_implCompressMB"; 9124 stub_addr = StubRoutines::sha3_implCompressMB(); 9125 elem_type = T_LONG; 9126 } 9127 break; 9128 default: 9129 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 9130 } 9131 if (klass_digestBase_name != nullptr) { 9132 assert(stub_addr != nullptr, "Stub is generated"); 9133 if (stub_addr == nullptr) return false; 9134 9135 // get DigestBase klass to lookup for SHA klass 9136 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 9137 assert(tinst != nullptr, "digestBase_obj is not instance???"); 9138 assert(tinst->is_loaded(), "DigestBase is not loaded"); 9139 9140 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 9141 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 9142 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 9143 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 9144 } 9145 return false; 9146 } 9147 9148 //------------------------------inline_digestBase_implCompressMB----------------------- 9149 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 9150 BasicType elem_type, address stubAddr, const char *stubName, 9151 Node* src_start, Node* ofs, Node* limit) { 9152 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 9153 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 9154 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 9155 digest_obj = _gvn.transform(digest_obj); 9156 9157 Node* state = get_state_from_digest_object(digest_obj, elem_type); 9158 if (state == nullptr) return false; 9159 9160 Node* block_size = nullptr; 9161 if (strcmp("sha3_implCompressMB", stubName) == 0) { 9162 block_size = get_block_size_from_digest_object(digest_obj); 9163 if (block_size == nullptr) return false; 9164 } 9165 9166 // Call the stub. 9167 Node* call; 9168 if (block_size == nullptr) { 9169 call = make_runtime_call(RC_LEAF|RC_NO_FP, 9170 OptoRuntime::digestBase_implCompressMB_Type(false), 9171 stubAddr, stubName, TypePtr::BOTTOM, 9172 src_start, state, ofs, limit); 9173 } else { 9174 call = make_runtime_call(RC_LEAF|RC_NO_FP, 9175 OptoRuntime::digestBase_implCompressMB_Type(true), 9176 stubAddr, stubName, TypePtr::BOTTOM, 9177 src_start, state, block_size, ofs, limit); 9178 } 9179 9180 // return ofs (int) 9181 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 9182 set_result(result); 9183 9184 return true; 9185 } 9186 9187 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 9188 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 9189 assert(UseAES, "need AES instruction support"); 9190 address stubAddr = nullptr; 9191 const char *stubName = nullptr; 9192 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 9193 stubName = "galoisCounterMode_AESCrypt"; 9194 9195 if (stubAddr == nullptr) return false; 9196 9197 Node* in = argument(0); 9198 Node* inOfs = argument(1); 9199 Node* len = argument(2); 9200 Node* ct = argument(3); 9201 Node* ctOfs = argument(4); 9202 Node* out = argument(5); 9203 Node* outOfs = argument(6); 9204 Node* gctr_object = argument(7); 9205 Node* ghash_object = argument(8); 9206 9207 // (1) in, ct and out are arrays. 9208 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 9209 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 9210 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 9211 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 9212 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 9213 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 9214 9215 // checks are the responsibility of the caller 9216 Node* in_start = in; 9217 Node* ct_start = ct; 9218 Node* out_start = out; 9219 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 9220 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 9221 in_start = array_element_address(in, inOfs, T_BYTE); 9222 ct_start = array_element_address(ct, ctOfs, T_BYTE); 9223 out_start = array_element_address(out, outOfs, T_BYTE); 9224 } 9225 9226 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 9227 // (because of the predicated logic executed earlier). 9228 // so we cast it here safely. 9229 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 9230 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 9231 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 9232 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 9233 Node* state = load_field_from_object(ghash_object, "state", "[J"); 9234 9235 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 9236 return false; 9237 } 9238 // cast it to what we know it will be at runtime 9239 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 9240 assert(tinst != nullptr, "GCTR obj is null"); 9241 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 9242 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 9243 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 9244 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 9245 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 9246 const TypeOopPtr* xtype = aklass->as_instance_type(); 9247 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 9248 aescrypt_object = _gvn.transform(aescrypt_object); 9249 // we need to get the start of the aescrypt_object's expanded key array 9250 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 9251 if (k_start == nullptr) return false; 9252 // similarly, get the start address of the r vector 9253 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 9254 Node* state_start = array_element_address(state, intcon(0), T_LONG); 9255 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 9256 9257 9258 // Call the stub, passing params 9259 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 9260 OptoRuntime::galoisCounterMode_aescrypt_Type(), 9261 stubAddr, stubName, TypePtr::BOTTOM, 9262 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 9263 9264 // return cipher length (int) 9265 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 9266 set_result(retvalue); 9267 9268 return true; 9269 } 9270 9271 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 9272 // Return node representing slow path of predicate check. 9273 // the pseudo code we want to emulate with this predicate is: 9274 // for encryption: 9275 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 9276 // for decryption: 9277 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 9278 // note cipher==plain is more conservative than the original java code but that's OK 9279 // 9280 9281 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 9282 // The receiver was checked for null already. 9283 Node* objGCTR = argument(7); 9284 // Load embeddedCipher field of GCTR object. 9285 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 9286 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 9287 9288 // get AESCrypt klass for instanceOf check 9289 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 9290 // will have same classloader as CipherBlockChaining object 9291 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 9292 assert(tinst != nullptr, "GCTR obj is null"); 9293 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 9294 9295 // we want to do an instanceof comparison against the AESCrypt class 9296 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 9297 if (!klass_AESCrypt->is_loaded()) { 9298 // if AESCrypt is not even loaded, we never take the intrinsic fast path 9299 Node* ctrl = control(); 9300 set_control(top()); // no regular fast path 9301 return ctrl; 9302 } 9303 9304 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 9305 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 9306 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 9307 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 9308 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 9309 9310 return instof_false; // even if it is null 9311 } 9312 9313 //------------------------------get_state_from_digest_object----------------------- 9314 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 9315 const char* state_type; 9316 switch (elem_type) { 9317 case T_BYTE: state_type = "[B"; break; 9318 case T_INT: state_type = "[I"; break; 9319 case T_LONG: state_type = "[J"; break; 9320 default: ShouldNotReachHere(); 9321 } 9322 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 9323 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 9324 if (digest_state == nullptr) return (Node *) nullptr; 9325 9326 // now have the array, need to get the start address of the state array 9327 Node* state = array_element_address(digest_state, intcon(0), elem_type); 9328 return state; 9329 } 9330 9331 //------------------------------get_block_size_from_sha3_object---------------------------------- 9332 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 9333 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 9334 assert (block_size != nullptr, "sanity"); 9335 return block_size; 9336 } 9337 9338 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 9339 // Return node representing slow path of predicate check. 9340 // the pseudo code we want to emulate with this predicate is: 9341 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 9342 // 9343 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 9344 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 9345 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 9346 assert((uint)predicate < 5, "sanity"); 9347 9348 // The receiver was checked for null already. 9349 Node* digestBaseObj = argument(0); 9350 9351 // get DigestBase klass for instanceOf check 9352 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 9353 assert(tinst != nullptr, "digestBaseObj is null"); 9354 assert(tinst->is_loaded(), "DigestBase is not loaded"); 9355 9356 const char* klass_name = nullptr; 9357 switch (predicate) { 9358 case 0: 9359 if (UseMD5Intrinsics) { 9360 // we want to do an instanceof comparison against the MD5 class 9361 klass_name = "sun/security/provider/MD5"; 9362 } 9363 break; 9364 case 1: 9365 if (UseSHA1Intrinsics) { 9366 // we want to do an instanceof comparison against the SHA class 9367 klass_name = "sun/security/provider/SHA"; 9368 } 9369 break; 9370 case 2: 9371 if (UseSHA256Intrinsics) { 9372 // we want to do an instanceof comparison against the SHA2 class 9373 klass_name = "sun/security/provider/SHA2"; 9374 } 9375 break; 9376 case 3: 9377 if (UseSHA512Intrinsics) { 9378 // we want to do an instanceof comparison against the SHA5 class 9379 klass_name = "sun/security/provider/SHA5"; 9380 } 9381 break; 9382 case 4: 9383 if (UseSHA3Intrinsics) { 9384 // we want to do an instanceof comparison against the SHA3 class 9385 klass_name = "sun/security/provider/SHA3"; 9386 } 9387 break; 9388 default: 9389 fatal("unknown SHA intrinsic predicate: %d", predicate); 9390 } 9391 9392 ciKlass* klass = nullptr; 9393 if (klass_name != nullptr) { 9394 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 9395 } 9396 if ((klass == nullptr) || !klass->is_loaded()) { 9397 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 9398 Node* ctrl = control(); 9399 set_control(top()); // no intrinsic path 9400 return ctrl; 9401 } 9402 ciInstanceKlass* instklass = klass->as_instance_klass(); 9403 9404 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 9405 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 9406 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 9407 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 9408 9409 return instof_false; // even if it is null 9410 } 9411 9412 //-------------inline_fma----------------------------------- 9413 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 9414 Node *a = nullptr; 9415 Node *b = nullptr; 9416 Node *c = nullptr; 9417 Node* result = nullptr; 9418 switch (id) { 9419 case vmIntrinsics::_fmaD: 9420 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 9421 // no receiver since it is static method 9422 a = argument(0); 9423 b = argument(2); 9424 c = argument(4); 9425 result = _gvn.transform(new FmaDNode(a, b, c)); 9426 break; 9427 case vmIntrinsics::_fmaF: 9428 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 9429 a = argument(0); 9430 b = argument(1); 9431 c = argument(2); 9432 result = _gvn.transform(new FmaFNode(a, b, c)); 9433 break; 9434 default: 9435 fatal_unexpected_iid(id); break; 9436 } 9437 set_result(result); 9438 return true; 9439 } 9440 9441 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 9442 // argument(0) is receiver 9443 Node* codePoint = argument(1); 9444 Node* n = nullptr; 9445 9446 switch (id) { 9447 case vmIntrinsics::_isDigit : 9448 n = new DigitNode(control(), codePoint); 9449 break; 9450 case vmIntrinsics::_isLowerCase : 9451 n = new LowerCaseNode(control(), codePoint); 9452 break; 9453 case vmIntrinsics::_isUpperCase : 9454 n = new UpperCaseNode(control(), codePoint); 9455 break; 9456 case vmIntrinsics::_isWhitespace : 9457 n = new WhitespaceNode(control(), codePoint); 9458 break; 9459 default: 9460 fatal_unexpected_iid(id); 9461 } 9462 9463 set_result(_gvn.transform(n)); 9464 return true; 9465 } 9466 9467 bool LibraryCallKit::inline_profileBoolean() { 9468 Node* counts = argument(1); 9469 const TypeAryPtr* ary = nullptr; 9470 ciArray* aobj = nullptr; 9471 if (counts->is_Con() 9472 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 9473 && (aobj = ary->const_oop()->as_array()) != nullptr 9474 && (aobj->length() == 2)) { 9475 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 9476 jint false_cnt = aobj->element_value(0).as_int(); 9477 jint true_cnt = aobj->element_value(1).as_int(); 9478 9479 if (C->log() != nullptr) { 9480 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 9481 false_cnt, true_cnt); 9482 } 9483 9484 if (false_cnt + true_cnt == 0) { 9485 // According to profile, never executed. 9486 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 9487 Deoptimization::Action_reinterpret); 9488 return true; 9489 } 9490 9491 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 9492 // is a number of each value occurrences. 9493 Node* result = argument(0); 9494 if (false_cnt == 0 || true_cnt == 0) { 9495 // According to profile, one value has been never seen. 9496 int expected_val = (false_cnt == 0) ? 1 : 0; 9497 9498 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 9499 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 9500 9501 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 9502 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 9503 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 9504 9505 { // Slow path: uncommon trap for never seen value and then reexecute 9506 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 9507 // the value has been seen at least once. 9508 PreserveJVMState pjvms(this); 9509 PreserveReexecuteState preexecs(this); 9510 jvms()->set_should_reexecute(true); 9511 9512 set_control(slow_path); 9513 set_i_o(i_o()); 9514 9515 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 9516 Deoptimization::Action_reinterpret); 9517 } 9518 // The guard for never seen value enables sharpening of the result and 9519 // returning a constant. It allows to eliminate branches on the same value 9520 // later on. 9521 set_control(fast_path); 9522 result = intcon(expected_val); 9523 } 9524 // Stop profiling. 9525 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 9526 // By replacing method body with profile data (represented as ProfileBooleanNode 9527 // on IR level) we effectively disable profiling. 9528 // It enables full speed execution once optimized code is generated. 9529 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 9530 C->record_for_igvn(profile); 9531 set_result(profile); 9532 return true; 9533 } else { 9534 // Continue profiling. 9535 // Profile data isn't available at the moment. So, execute method's bytecode version. 9536 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 9537 // is compiled and counters aren't available since corresponding MethodHandle 9538 // isn't a compile-time constant. 9539 return false; 9540 } 9541 } 9542 9543 bool LibraryCallKit::inline_isCompileConstant() { 9544 Node* n = argument(0); 9545 set_result(n->is_Con() ? intcon(1) : intcon(0)); 9546 return true; 9547 } 9548 9549 //------------------------------- inline_getObjectSize -------------------------------------- 9550 // 9551 // Calculate the runtime size of the object/array. 9552 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 9553 // 9554 bool LibraryCallKit::inline_getObjectSize() { 9555 Node* obj = argument(3); 9556 Node* klass_node = load_object_klass(obj); 9557 9558 jint layout_con = Klass::_lh_neutral_value; 9559 Node* layout_val = get_layout_helper(klass_node, layout_con); 9560 int layout_is_con = (layout_val == nullptr); 9561 9562 if (layout_is_con) { 9563 // Layout helper is constant, can figure out things at compile time. 9564 9565 if (Klass::layout_helper_is_instance(layout_con)) { 9566 // Instance case: layout_con contains the size itself. 9567 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 9568 set_result(size); 9569 } else { 9570 // Array case: size is round(header + element_size*arraylength). 9571 // Since arraylength is different for every array instance, we have to 9572 // compute the whole thing at runtime. 9573 9574 Node* arr_length = load_array_length(obj); 9575 9576 int round_mask = MinObjAlignmentInBytes - 1; 9577 int hsize = Klass::layout_helper_header_size(layout_con); 9578 int eshift = Klass::layout_helper_log2_element_size(layout_con); 9579 9580 if ((round_mask & ~right_n_bits(eshift)) == 0) { 9581 round_mask = 0; // strength-reduce it if it goes away completely 9582 } 9583 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 9584 Node* header_size = intcon(hsize + round_mask); 9585 9586 Node* lengthx = ConvI2X(arr_length); 9587 Node* headerx = ConvI2X(header_size); 9588 9589 Node* abody = lengthx; 9590 if (eshift != 0) { 9591 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 9592 } 9593 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 9594 if (round_mask != 0) { 9595 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 9596 } 9597 size = ConvX2L(size); 9598 set_result(size); 9599 } 9600 } else { 9601 // Layout helper is not constant, need to test for array-ness at runtime. 9602 9603 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 9604 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 9605 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 9606 record_for_igvn(result_reg); 9607 9608 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 9609 if (array_ctl != nullptr) { 9610 // Array case: size is round(header + element_size*arraylength). 9611 // Since arraylength is different for every array instance, we have to 9612 // compute the whole thing at runtime. 9613 9614 PreserveJVMState pjvms(this); 9615 set_control(array_ctl); 9616 Node* arr_length = load_array_length(obj); 9617 9618 int round_mask = MinObjAlignmentInBytes - 1; 9619 Node* mask = intcon(round_mask); 9620 9621 Node* hss = intcon(Klass::_lh_header_size_shift); 9622 Node* hsm = intcon(Klass::_lh_header_size_mask); 9623 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 9624 header_size = _gvn.transform(new AndINode(header_size, hsm)); 9625 header_size = _gvn.transform(new AddINode(header_size, mask)); 9626 9627 // There is no need to mask or shift this value. 9628 // The semantics of LShiftINode include an implicit mask to 0x1F. 9629 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 9630 Node* elem_shift = layout_val; 9631 9632 Node* lengthx = ConvI2X(arr_length); 9633 Node* headerx = ConvI2X(header_size); 9634 9635 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 9636 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 9637 if (round_mask != 0) { 9638 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 9639 } 9640 size = ConvX2L(size); 9641 9642 result_reg->init_req(_array_path, control()); 9643 result_val->init_req(_array_path, size); 9644 } 9645 9646 if (!stopped()) { 9647 // Instance case: the layout helper gives us instance size almost directly, 9648 // but we need to mask out the _lh_instance_slow_path_bit. 9649 Node* size = ConvI2X(layout_val); 9650 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 9651 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 9652 size = _gvn.transform(new AndXNode(size, mask)); 9653 size = ConvX2L(size); 9654 9655 result_reg->init_req(_instance_path, control()); 9656 result_val->init_req(_instance_path, size); 9657 } 9658 9659 set_result(result_reg, result_val); 9660 } 9661 9662 return true; 9663 } 9664 9665 //------------------------------- inline_blackhole -------------------------------------- 9666 // 9667 // Make sure all arguments to this node are alive. 9668 // This matches methods that were requested to be blackholed through compile commands. 9669 // 9670 bool LibraryCallKit::inline_blackhole() { 9671 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 9672 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 9673 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 9674 9675 // Blackhole node pinches only the control, not memory. This allows 9676 // the blackhole to be pinned in the loop that computes blackholed 9677 // values, but have no other side effects, like breaking the optimizations 9678 // across the blackhole. 9679 9680 Node* bh = _gvn.transform(new BlackholeNode(control())); 9681 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 9682 9683 // Bind call arguments as blackhole arguments to keep them alive 9684 uint nargs = callee()->arg_size(); 9685 for (uint i = 0; i < nargs; i++) { 9686 bh->add_req(argument(i)); 9687 } 9688 9689 return true; 9690 } 9691 9692 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 9693 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 9694 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 9695 return nullptr; // box klass is not Float16 9696 } 9697 9698 // Null check; get notnull casted pointer 9699 Node* null_ctl = top(); 9700 Node* not_null_box = null_check_oop(box, &null_ctl, true); 9701 // If not_null_box is dead, only null-path is taken 9702 if (stopped()) { 9703 set_control(null_ctl); 9704 return nullptr; 9705 } 9706 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 9707 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 9708 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 9709 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 9710 } 9711 9712 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 9713 PreserveReexecuteState preexecs(this); 9714 jvms()->set_should_reexecute(true); 9715 9716 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 9717 Node* klass_node = makecon(klass_type); 9718 Node* box = new_instance(klass_node); 9719 9720 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 9721 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 9722 9723 Node* field_store = _gvn.transform(access_store_at(box, 9724 value_field, 9725 value_adr_type, 9726 value, 9727 TypeInt::SHORT, 9728 T_SHORT, 9729 IN_HEAP)); 9730 set_memory(field_store, value_adr_type); 9731 return box; 9732 } 9733 9734 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 9735 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 9736 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 9737 return false; 9738 } 9739 9740 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 9741 if (box_type == nullptr || box_type->const_oop() == nullptr) { 9742 return false; 9743 } 9744 9745 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 9746 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 9747 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 9748 ciSymbols::short_signature(), 9749 false); 9750 assert(field != nullptr, ""); 9751 9752 // Transformed nodes 9753 Node* fld1 = nullptr; 9754 Node* fld2 = nullptr; 9755 Node* fld3 = nullptr; 9756 switch(num_args) { 9757 case 3: 9758 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 9759 if (fld3 == nullptr) { 9760 return false; 9761 } 9762 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 9763 // fall-through 9764 case 2: 9765 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 9766 if (fld2 == nullptr) { 9767 return false; 9768 } 9769 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 9770 // fall-through 9771 case 1: 9772 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 9773 if (fld1 == nullptr) { 9774 return false; 9775 } 9776 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 9777 break; 9778 default: fatal("Unsupported number of arguments %d", num_args); 9779 } 9780 9781 Node* result = nullptr; 9782 switch (id) { 9783 // Unary operations 9784 case vmIntrinsics::_sqrt_float16: 9785 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 9786 break; 9787 // Ternary operations 9788 case vmIntrinsics::_fma_float16: 9789 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 9790 break; 9791 default: 9792 fatal_unexpected_iid(id); 9793 break; 9794 } 9795 result = _gvn.transform(new ReinterpretHF2SNode(result)); 9796 set_result(box_fp16_value(float16_box_type, field, result)); 9797 return true; 9798 } 9799