1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciUtilities.inline.hpp"
  29 #include "classfile/vmIntrinsics.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/castnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/convertnode.hpp"
  43 #include "opto/countbitsnode.hpp"
  44 #include "opto/idealKit.hpp"
  45 #include "opto/library_call.hpp"
  46 #include "opto/mathexactnode.hpp"
  47 #include "opto/mulnode.hpp"
  48 #include "opto/narrowptrnode.hpp"
  49 #include "opto/opaquenode.hpp"
  50 #include "opto/parse.hpp"
  51 #include "opto/runtime.hpp"
  52 #include "opto/rootnode.hpp"
  53 #include "opto/subnode.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/unsafe.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/powerOfTwo.hpp"
  63 
  64 //---------------------------make_vm_intrinsic----------------------------
  65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  66   vmIntrinsicID id = m->intrinsic_id();
  67   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  68 
  69   if (!m->is_loaded()) {
  70     // Do not attempt to inline unloaded methods.
  71     return nullptr;
  72   }
  73 
  74   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  75   bool is_available = false;
  76 
  77   {
  78     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  79     // the compiler must transition to '_thread_in_vm' state because both
  80     // methods access VM-internal data.
  81     VM_ENTRY_MARK;
  82     methodHandle mh(THREAD, m->get_Method());
  83     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  84     if (is_available && is_virtual) {
  85       is_available = vmIntrinsics::does_virtual_dispatch(id);
  86     }
  87   }
  88 
  89   if (is_available) {
  90     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  91     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  92     return new LibraryIntrinsic(m, is_virtual,
  93                                 vmIntrinsics::predicates_needed(id),
  94                                 vmIntrinsics::does_virtual_dispatch(id),
  95                                 id);
  96   } else {
  97     return nullptr;
  98   }
  99 }
 100 
 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 102   LibraryCallKit kit(jvms, this);
 103   Compile* C = kit.C;
 104   int nodes = C->unique();
 105 #ifndef PRODUCT
 106   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 107     char buf[1000];
 108     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 109     tty->print_cr("Intrinsic %s", str);
 110   }
 111 #endif
 112   ciMethod* callee = kit.callee();
 113   const int bci    = kit.bci();
 114 #ifdef ASSERT
 115   Node* ctrl = kit.control();
 116 #endif
 117   // Try to inline the intrinsic.
 118   if (callee->check_intrinsic_candidate() &&
 119       kit.try_to_inline(_last_predicate)) {
 120     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 121                                           : "(intrinsic)";
 122     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 123     if (C->print_intrinsics() || C->print_inlining()) {
 124       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 125     }
 126     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 127     if (C->log()) {
 128       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 129                      vmIntrinsics::name_at(intrinsic_id()),
 130                      (is_virtual() ? " virtual='1'" : ""),
 131                      C->unique() - nodes);
 132     }
 133     // Push the result from the inlined method onto the stack.
 134     kit.push_result();
 135     C->print_inlining_update(this);
 136     return kit.transfer_exceptions_into_jvms();
 137   }
 138 
 139   // The intrinsic bailed out
 140   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 141   if (jvms->has_method()) {
 142     // Not a root compile.
 143     const char* msg;
 144     if (callee->intrinsic_candidate()) {
 145       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 146     } else {
 147       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 148                          : "failed to inline (intrinsic), method not annotated";
 149     }
 150     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 151     if (C->print_intrinsics() || C->print_inlining()) {
 152       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 153     }
 154   } else {
 155     // Root compile
 156     ResourceMark rm;
 157     stringStream msg_stream;
 158     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 159                      vmIntrinsics::name_at(intrinsic_id()),
 160                      is_virtual() ? " (virtual)" : "", bci);
 161     const char *msg = msg_stream.freeze();
 162     log_debug(jit, inlining)("%s", msg);
 163     if (C->print_intrinsics() || C->print_inlining()) {
 164       tty->print("%s", msg);
 165     }
 166   }
 167   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 168   C->print_inlining_update(this);
 169 
 170   return nullptr;
 171 }
 172 
 173 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 174   LibraryCallKit kit(jvms, this);
 175   Compile* C = kit.C;
 176   int nodes = C->unique();
 177   _last_predicate = predicate;
 178 #ifndef PRODUCT
 179   assert(is_predicated() && predicate < predicates_count(), "sanity");
 180   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 181     char buf[1000];
 182     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 183     tty->print_cr("Predicate for intrinsic %s", str);
 184   }
 185 #endif
 186   ciMethod* callee = kit.callee();
 187   const int bci    = kit.bci();
 188 
 189   Node* slow_ctl = kit.try_to_predicate(predicate);
 190   if (!kit.failing()) {
 191     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 192                                           : "(intrinsic, predicate)";
 193     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 194     if (C->print_intrinsics() || C->print_inlining()) {
 195       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 196     }
 197     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 198     if (C->log()) {
 199       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 200                      vmIntrinsics::name_at(intrinsic_id()),
 201                      (is_virtual() ? " virtual='1'" : ""),
 202                      C->unique() - nodes);
 203     }
 204     return slow_ctl; // Could be null if the check folds.
 205   }
 206 
 207   // The intrinsic bailed out
 208   if (jvms->has_method()) {
 209     // Not a root compile.
 210     const char* msg = "failed to generate predicate for intrinsic";
 211     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 212     if (C->print_intrinsics() || C->print_inlining()) {
 213       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 214     }
 215   } else {
 216     // Root compile
 217     ResourceMark rm;
 218     stringStream msg_stream;
 219     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 220                      vmIntrinsics::name_at(intrinsic_id()),
 221                      is_virtual() ? " (virtual)" : "", bci);
 222     const char *msg = msg_stream.freeze();
 223     log_debug(jit, inlining)("%s", msg);
 224     if (C->print_intrinsics() || C->print_inlining()) {
 225       C->print_inlining_stream()->print("%s", msg);
 226     }
 227   }
 228   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 229   return nullptr;
 230 }
 231 
 232 bool LibraryCallKit::try_to_inline(int predicate) {
 233   // Handle symbolic names for otherwise undistinguished boolean switches:
 234   const bool is_store       = true;
 235   const bool is_compress    = true;
 236   const bool is_static      = true;
 237   const bool is_volatile    = true;
 238 
 239   if (!jvms()->has_method()) {
 240     // Root JVMState has a null method.
 241     assert(map()->memory()->Opcode() == Op_Parm, "");
 242     // Insert the memory aliasing node
 243     set_all_memory(reset_memory());
 244   }
 245   assert(merged_memory(), "");
 246 
 247   switch (intrinsic_id()) {
 248   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 249   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 250   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 251 
 252   case vmIntrinsics::_ceil:
 253   case vmIntrinsics::_floor:
 254   case vmIntrinsics::_rint:
 255   case vmIntrinsics::_dsin:
 256   case vmIntrinsics::_dcos:
 257   case vmIntrinsics::_dtan:
 258   case vmIntrinsics::_dabs:
 259   case vmIntrinsics::_fabs:
 260   case vmIntrinsics::_iabs:
 261   case vmIntrinsics::_labs:
 262   case vmIntrinsics::_datan2:
 263   case vmIntrinsics::_dsqrt:
 264   case vmIntrinsics::_dsqrt_strict:
 265   case vmIntrinsics::_dexp:
 266   case vmIntrinsics::_dlog:
 267   case vmIntrinsics::_dlog10:
 268   case vmIntrinsics::_dpow:
 269   case vmIntrinsics::_dcopySign:
 270   case vmIntrinsics::_fcopySign:
 271   case vmIntrinsics::_dsignum:
 272   case vmIntrinsics::_roundF:
 273   case vmIntrinsics::_roundD:
 274   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 275 
 276   case vmIntrinsics::_notify:
 277   case vmIntrinsics::_notifyAll:
 278     return inline_notify(intrinsic_id());
 279 
 280   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 281   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 282   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 283   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 284   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 285   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 286   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 287   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 288   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 289   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 290   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 291   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 292   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 293   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 294 
 295   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 296 
 297   case vmIntrinsics::_arraySort:                return inline_array_sort();
 298   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 299 
 300   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 301   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 302   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 303   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 304 
 305   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 306   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 307   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 308   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 309   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 310   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 311   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 312   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 313 
 314   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 315 
 316   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 317 
 318   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 319   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 320   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 321   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 322 
 323   case vmIntrinsics::_compressStringC:
 324   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 325   case vmIntrinsics::_inflateStringC:
 326   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 327 
 328   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 329   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 330   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 331   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 332   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 333   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 334   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 335   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 336   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 337   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 338   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 339   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 340 
 341   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 342   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 343   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 344   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 345   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 346   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 347   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 348   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 349   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 350   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 351 
 352   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 353   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 354   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 355   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 356   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 357   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 358   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 359   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 360   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 361 
 362   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 363   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 364   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 365   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 366   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 367   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 368   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 369   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 370   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 371 
 372   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 373   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 374   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 375   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 376 
 377   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 378   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 379   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 380   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 381 
 382   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 383   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 384   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 385   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 386   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 387   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 388   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 389   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 390   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 391 
 392   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 393   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 394   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 395   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 396   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 397   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 398   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 399   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 400   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 401 
 402   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 403   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 404   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 405   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 406   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 407   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 408   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 409   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 410   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 411 
 412   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 413   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 414   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 415   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 416   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 417   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 418   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 419   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 420   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 421 
 422   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 423   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 424   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 425   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 426   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 427 
 428   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 429   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 430   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 431   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 432   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 433   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 434   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 435   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 436   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 437   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 438   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 439   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 440   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 441   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 442   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 443   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 444   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 445   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 446   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 447   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 448 
 449   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 450   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 451   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 452   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 453   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 454   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 455   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 456   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 457   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 458   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 459   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 460   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 461   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 462   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 463   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 464 
 465   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 466   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 467   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 468   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 469 
 470   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 471   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 472   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 473   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 474   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 475 
 476   case vmIntrinsics::_loadFence:
 477   case vmIntrinsics::_storeFence:
 478   case vmIntrinsics::_storeStoreFence:
 479   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 480 
 481   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 482 
 483   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 484   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 485   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 486 
 487   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 488   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 489 
 490   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 491   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 492 
 493 #if INCLUDE_JVMTI
 494   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 495                                                                                          "notifyJvmtiStart", true, false);
 496   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 497                                                                                          "notifyJvmtiEnd", false, true);
 498   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 499                                                                                          "notifyJvmtiMount", false, false);
 500   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 501                                                                                          "notifyJvmtiUnmount", false, false);
 502   case vmIntrinsics::_notifyJvmtiVThreadHideFrames:     return inline_native_notify_jvmti_hide();
 503   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 504 #endif
 505 
 506 #ifdef JFR_HAVE_INTRINSICS
 507   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 508   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 509   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 510 #endif
 511   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 512   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 513   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 514   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 515   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 516   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 517   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 518   case vmIntrinsics::_isFlatArray:              return inline_unsafe_isFlatArray();
 519   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 520   case vmIntrinsics::_getLength:                return inline_native_getLength();
 521   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 522   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 523   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 524   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 525   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 526   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 527   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 528 
 529   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 530   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 531   case vmIntrinsics::_newNullRestrictedArray:   return inline_newNullRestrictedArray();
 532 
 533   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 534 
 535   case vmIntrinsics::_isInstance:
 536   case vmIntrinsics::_getModifiers:
 537   case vmIntrinsics::_isInterface:
 538   case vmIntrinsics::_isArray:
 539   case vmIntrinsics::_isPrimitive:
 540   case vmIntrinsics::_isHidden:
 541   case vmIntrinsics::_getSuperclass:
 542   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 543 
 544   case vmIntrinsics::_floatToRawIntBits:
 545   case vmIntrinsics::_floatToIntBits:
 546   case vmIntrinsics::_intBitsToFloat:
 547   case vmIntrinsics::_doubleToRawLongBits:
 548   case vmIntrinsics::_doubleToLongBits:
 549   case vmIntrinsics::_longBitsToDouble:
 550   case vmIntrinsics::_floatToFloat16:
 551   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 552 
 553   case vmIntrinsics::_floatIsFinite:
 554   case vmIntrinsics::_floatIsInfinite:
 555   case vmIntrinsics::_doubleIsFinite:
 556   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 557 
 558   case vmIntrinsics::_numberOfLeadingZeros_i:
 559   case vmIntrinsics::_numberOfLeadingZeros_l:
 560   case vmIntrinsics::_numberOfTrailingZeros_i:
 561   case vmIntrinsics::_numberOfTrailingZeros_l:
 562   case vmIntrinsics::_bitCount_i:
 563   case vmIntrinsics::_bitCount_l:
 564   case vmIntrinsics::_reverse_i:
 565   case vmIntrinsics::_reverse_l:
 566   case vmIntrinsics::_reverseBytes_i:
 567   case vmIntrinsics::_reverseBytes_l:
 568   case vmIntrinsics::_reverseBytes_s:
 569   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 570 
 571   case vmIntrinsics::_compress_i:
 572   case vmIntrinsics::_compress_l:
 573   case vmIntrinsics::_expand_i:
 574   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 575 
 576   case vmIntrinsics::_compareUnsigned_i:
 577   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 578 
 579   case vmIntrinsics::_divideUnsigned_i:
 580   case vmIntrinsics::_divideUnsigned_l:
 581   case vmIntrinsics::_remainderUnsigned_i:
 582   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 583 
 584   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 585 
 586   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 587   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 588   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 589 
 590   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 591 
 592   case vmIntrinsics::_aescrypt_encryptBlock:
 593   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 594 
 595   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 596   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 597     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 598 
 599   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 600   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 601     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 602 
 603   case vmIntrinsics::_counterMode_AESCrypt:
 604     return inline_counterMode_AESCrypt(intrinsic_id());
 605 
 606   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 607     return inline_galoisCounterMode_AESCrypt();
 608 
 609   case vmIntrinsics::_md5_implCompress:
 610   case vmIntrinsics::_sha_implCompress:
 611   case vmIntrinsics::_sha2_implCompress:
 612   case vmIntrinsics::_sha5_implCompress:
 613   case vmIntrinsics::_sha3_implCompress:
 614     return inline_digestBase_implCompress(intrinsic_id());
 615 
 616   case vmIntrinsics::_digestBase_implCompressMB:
 617     return inline_digestBase_implCompressMB(predicate);
 618 
 619   case vmIntrinsics::_multiplyToLen:
 620     return inline_multiplyToLen();
 621 
 622   case vmIntrinsics::_squareToLen:
 623     return inline_squareToLen();
 624 
 625   case vmIntrinsics::_mulAdd:
 626     return inline_mulAdd();
 627 
 628   case vmIntrinsics::_montgomeryMultiply:
 629     return inline_montgomeryMultiply();
 630   case vmIntrinsics::_montgomerySquare:
 631     return inline_montgomerySquare();
 632 
 633   case vmIntrinsics::_bigIntegerRightShiftWorker:
 634     return inline_bigIntegerShift(true);
 635   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 636     return inline_bigIntegerShift(false);
 637 
 638   case vmIntrinsics::_vectorizedMismatch:
 639     return inline_vectorizedMismatch();
 640 
 641   case vmIntrinsics::_ghash_processBlocks:
 642     return inline_ghash_processBlocks();
 643   case vmIntrinsics::_chacha20Block:
 644     return inline_chacha20Block();
 645   case vmIntrinsics::_base64_encodeBlock:
 646     return inline_base64_encodeBlock();
 647   case vmIntrinsics::_base64_decodeBlock:
 648     return inline_base64_decodeBlock();
 649   case vmIntrinsics::_poly1305_processBlocks:
 650     return inline_poly1305_processBlocks();
 651   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 652     return inline_intpoly_montgomeryMult_P256();
 653   case vmIntrinsics::_intpoly_assign:
 654     return inline_intpoly_assign();
 655   case vmIntrinsics::_encodeISOArray:
 656   case vmIntrinsics::_encodeByteISOArray:
 657     return inline_encodeISOArray(false);
 658   case vmIntrinsics::_encodeAsciiArray:
 659     return inline_encodeISOArray(true);
 660 
 661   case vmIntrinsics::_updateCRC32:
 662     return inline_updateCRC32();
 663   case vmIntrinsics::_updateBytesCRC32:
 664     return inline_updateBytesCRC32();
 665   case vmIntrinsics::_updateByteBufferCRC32:
 666     return inline_updateByteBufferCRC32();
 667 
 668   case vmIntrinsics::_updateBytesCRC32C:
 669     return inline_updateBytesCRC32C();
 670   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 671     return inline_updateDirectByteBufferCRC32C();
 672 
 673   case vmIntrinsics::_updateBytesAdler32:
 674     return inline_updateBytesAdler32();
 675   case vmIntrinsics::_updateByteBufferAdler32:
 676     return inline_updateByteBufferAdler32();
 677 
 678   case vmIntrinsics::_profileBoolean:
 679     return inline_profileBoolean();
 680   case vmIntrinsics::_isCompileConstant:
 681     return inline_isCompileConstant();
 682 
 683   case vmIntrinsics::_countPositives:
 684     return inline_countPositives();
 685 
 686   case vmIntrinsics::_fmaD:
 687   case vmIntrinsics::_fmaF:
 688     return inline_fma(intrinsic_id());
 689 
 690   case vmIntrinsics::_isDigit:
 691   case vmIntrinsics::_isLowerCase:
 692   case vmIntrinsics::_isUpperCase:
 693   case vmIntrinsics::_isWhitespace:
 694     return inline_character_compare(intrinsic_id());
 695 
 696   case vmIntrinsics::_min:
 697   case vmIntrinsics::_max:
 698   case vmIntrinsics::_min_strict:
 699   case vmIntrinsics::_max_strict:
 700     return inline_min_max(intrinsic_id());
 701 
 702   case vmIntrinsics::_maxF:
 703   case vmIntrinsics::_minF:
 704   case vmIntrinsics::_maxD:
 705   case vmIntrinsics::_minD:
 706   case vmIntrinsics::_maxF_strict:
 707   case vmIntrinsics::_minF_strict:
 708   case vmIntrinsics::_maxD_strict:
 709   case vmIntrinsics::_minD_strict:
 710       return inline_fp_min_max(intrinsic_id());
 711 
 712   case vmIntrinsics::_VectorUnaryOp:
 713     return inline_vector_nary_operation(1);
 714   case vmIntrinsics::_VectorBinaryOp:
 715     return inline_vector_nary_operation(2);
 716   case vmIntrinsics::_VectorTernaryOp:
 717     return inline_vector_nary_operation(3);
 718   case vmIntrinsics::_VectorFromBitsCoerced:
 719     return inline_vector_frombits_coerced();
 720   case vmIntrinsics::_VectorShuffleIota:
 721     return inline_vector_shuffle_iota();
 722   case vmIntrinsics::_VectorMaskOp:
 723     return inline_vector_mask_operation();
 724   case vmIntrinsics::_VectorShuffleToVector:
 725     return inline_vector_shuffle_to_vector();
 726   case vmIntrinsics::_VectorLoadOp:
 727     return inline_vector_mem_operation(/*is_store=*/false);
 728   case vmIntrinsics::_VectorLoadMaskedOp:
 729     return inline_vector_mem_masked_operation(/*is_store*/false);
 730   case vmIntrinsics::_VectorStoreOp:
 731     return inline_vector_mem_operation(/*is_store=*/true);
 732   case vmIntrinsics::_VectorStoreMaskedOp:
 733     return inline_vector_mem_masked_operation(/*is_store=*/true);
 734   case vmIntrinsics::_VectorGatherOp:
 735     return inline_vector_gather_scatter(/*is_scatter*/ false);
 736   case vmIntrinsics::_VectorScatterOp:
 737     return inline_vector_gather_scatter(/*is_scatter*/ true);
 738   case vmIntrinsics::_VectorReductionCoerced:
 739     return inline_vector_reduction();
 740   case vmIntrinsics::_VectorTest:
 741     return inline_vector_test();
 742   case vmIntrinsics::_VectorBlend:
 743     return inline_vector_blend();
 744   case vmIntrinsics::_VectorRearrange:
 745     return inline_vector_rearrange();
 746   case vmIntrinsics::_VectorCompare:
 747     return inline_vector_compare();
 748   case vmIntrinsics::_VectorBroadcastInt:
 749     return inline_vector_broadcast_int();
 750   case vmIntrinsics::_VectorConvert:
 751     return inline_vector_convert();
 752   case vmIntrinsics::_VectorInsert:
 753     return inline_vector_insert();
 754   case vmIntrinsics::_VectorExtract:
 755     return inline_vector_extract();
 756   case vmIntrinsics::_VectorCompressExpand:
 757     return inline_vector_compress_expand();
 758   case vmIntrinsics::_IndexVector:
 759     return inline_index_vector();
 760   case vmIntrinsics::_IndexPartiallyInUpperRange:
 761     return inline_index_partially_in_upper_range();
 762 
 763   case vmIntrinsics::_getObjectSize:
 764     return inline_getObjectSize();
 765 
 766   case vmIntrinsics::_blackhole:
 767     return inline_blackhole();
 768 
 769   default:
 770     // If you get here, it may be that someone has added a new intrinsic
 771     // to the list in vmIntrinsics.hpp without implementing it here.
 772 #ifndef PRODUCT
 773     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 774       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 775                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 776     }
 777 #endif
 778     return false;
 779   }
 780 }
 781 
 782 Node* LibraryCallKit::try_to_predicate(int predicate) {
 783   if (!jvms()->has_method()) {
 784     // Root JVMState has a null method.
 785     assert(map()->memory()->Opcode() == Op_Parm, "");
 786     // Insert the memory aliasing node
 787     set_all_memory(reset_memory());
 788   }
 789   assert(merged_memory(), "");
 790 
 791   switch (intrinsic_id()) {
 792   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 793     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 794   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 795     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 796   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 797     return inline_electronicCodeBook_AESCrypt_predicate(false);
 798   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 799     return inline_electronicCodeBook_AESCrypt_predicate(true);
 800   case vmIntrinsics::_counterMode_AESCrypt:
 801     return inline_counterMode_AESCrypt_predicate();
 802   case vmIntrinsics::_digestBase_implCompressMB:
 803     return inline_digestBase_implCompressMB_predicate(predicate);
 804   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 805     return inline_galoisCounterMode_AESCrypt_predicate();
 806 
 807   default:
 808     // If you get here, it may be that someone has added a new intrinsic
 809     // to the list in vmIntrinsics.hpp without implementing it here.
 810 #ifndef PRODUCT
 811     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 812       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 813                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 814     }
 815 #endif
 816     Node* slow_ctl = control();
 817     set_control(top()); // No fast path intrinsic
 818     return slow_ctl;
 819   }
 820 }
 821 
 822 //------------------------------set_result-------------------------------
 823 // Helper function for finishing intrinsics.
 824 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 825   record_for_igvn(region);
 826   set_control(_gvn.transform(region));
 827   set_result( _gvn.transform(value));
 828   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 829 }
 830 
 831 //------------------------------generate_guard---------------------------
 832 // Helper function for generating guarded fast-slow graph structures.
 833 // The given 'test', if true, guards a slow path.  If the test fails
 834 // then a fast path can be taken.  (We generally hope it fails.)
 835 // In all cases, GraphKit::control() is updated to the fast path.
 836 // The returned value represents the control for the slow path.
 837 // The return value is never 'top'; it is either a valid control
 838 // or null if it is obvious that the slow path can never be taken.
 839 // Also, if region and the slow control are not null, the slow edge
 840 // is appended to the region.
 841 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 842   if (stopped()) {
 843     // Already short circuited.
 844     return nullptr;
 845   }
 846 
 847   // Build an if node and its projections.
 848   // If test is true we take the slow path, which we assume is uncommon.
 849   if (_gvn.type(test) == TypeInt::ZERO) {
 850     // The slow branch is never taken.  No need to build this guard.
 851     return nullptr;
 852   }
 853 
 854   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 855 
 856   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 857   if (if_slow == top()) {
 858     // The slow branch is never taken.  No need to build this guard.
 859     return nullptr;
 860   }
 861 
 862   if (region != nullptr)
 863     region->add_req(if_slow);
 864 
 865   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 866   set_control(if_fast);
 867 
 868   return if_slow;
 869 }
 870 
 871 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 872   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 873 }
 874 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 875   return generate_guard(test, region, PROB_FAIR);
 876 }
 877 
 878 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 879                                                      Node* *pos_index) {
 880   if (stopped())
 881     return nullptr;                // already stopped
 882   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 883     return nullptr;                // index is already adequately typed
 884   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 885   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 886   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 887   if (is_neg != nullptr && pos_index != nullptr) {
 888     // Emulate effect of Parse::adjust_map_after_if.
 889     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 890     (*pos_index) = _gvn.transform(ccast);
 891   }
 892   return is_neg;
 893 }
 894 
 895 // Make sure that 'position' is a valid limit index, in [0..length].
 896 // There are two equivalent plans for checking this:
 897 //   A. (offset + copyLength)  unsigned<=  arrayLength
 898 //   B. offset  <=  (arrayLength - copyLength)
 899 // We require that all of the values above, except for the sum and
 900 // difference, are already known to be non-negative.
 901 // Plan A is robust in the face of overflow, if offset and copyLength
 902 // are both hugely positive.
 903 //
 904 // Plan B is less direct and intuitive, but it does not overflow at
 905 // all, since the difference of two non-negatives is always
 906 // representable.  Whenever Java methods must perform the equivalent
 907 // check they generally use Plan B instead of Plan A.
 908 // For the moment we use Plan A.
 909 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 910                                                   Node* subseq_length,
 911                                                   Node* array_length,
 912                                                   RegionNode* region) {
 913   if (stopped())
 914     return nullptr;                // already stopped
 915   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 916   if (zero_offset && subseq_length->eqv_uncast(array_length))
 917     return nullptr;                // common case of whole-array copy
 918   Node* last = subseq_length;
 919   if (!zero_offset)             // last += offset
 920     last = _gvn.transform(new AddINode(last, offset));
 921   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 922   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 923   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 924   return is_over;
 925 }
 926 
 927 // Emit range checks for the given String.value byte array
 928 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 929   if (stopped()) {
 930     return; // already stopped
 931   }
 932   RegionNode* bailout = new RegionNode(1);
 933   record_for_igvn(bailout);
 934   if (char_count) {
 935     // Convert char count to byte count
 936     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 937   }
 938 
 939   // Offset and count must not be negative
 940   generate_negative_guard(offset, bailout);
 941   generate_negative_guard(count, bailout);
 942   // Offset + count must not exceed length of array
 943   generate_limit_guard(offset, count, load_array_length(array), bailout);
 944 
 945   if (bailout->req() > 1) {
 946     PreserveJVMState pjvms(this);
 947     set_control(_gvn.transform(bailout));
 948     uncommon_trap(Deoptimization::Reason_intrinsic,
 949                   Deoptimization::Action_maybe_recompile);
 950   }
 951 }
 952 
 953 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 954                                             bool is_immutable) {
 955   ciKlass* thread_klass = env()->Thread_klass();
 956   const Type* thread_type
 957     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 958 
 959   Node* thread = _gvn.transform(new ThreadLocalNode());
 960   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 961   tls_output = thread;
 962 
 963   Node* thread_obj_handle
 964     = (is_immutable
 965       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
 966         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 967       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 968   thread_obj_handle = _gvn.transform(thread_obj_handle);
 969 
 970   DecoratorSet decorators = IN_NATIVE;
 971   if (is_immutable) {
 972     decorators |= C2_IMMUTABLE_MEMORY;
 973   }
 974   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 975 }
 976 
 977 //--------------------------generate_current_thread--------------------
 978 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 979   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 980                                /*is_immutable*/false);
 981 }
 982 
 983 //--------------------------generate_virtual_thread--------------------
 984 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 985   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 986                                !C->method()->changes_current_thread());
 987 }
 988 
 989 //------------------------------make_string_method_node------------------------
 990 // Helper method for String intrinsic functions. This version is called with
 991 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 992 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 993 // containing the lengths of str1 and str2.
 994 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 995   Node* result = nullptr;
 996   switch (opcode) {
 997   case Op_StrIndexOf:
 998     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 999                                 str1_start, cnt1, str2_start, cnt2, ae);
1000     break;
1001   case Op_StrComp:
1002     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1003                              str1_start, cnt1, str2_start, cnt2, ae);
1004     break;
1005   case Op_StrEquals:
1006     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1007     // Use the constant length if there is one because optimized match rule may exist.
1008     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1009                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1010     break;
1011   default:
1012     ShouldNotReachHere();
1013     return nullptr;
1014   }
1015 
1016   // All these intrinsics have checks.
1017   C->set_has_split_ifs(true); // Has chance for split-if optimization
1018   clear_upper_avx();
1019 
1020   return _gvn.transform(result);
1021 }
1022 
1023 //------------------------------inline_string_compareTo------------------------
1024 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1025   Node* arg1 = argument(0);
1026   Node* arg2 = argument(1);
1027 
1028   arg1 = must_be_not_null(arg1, true);
1029   arg2 = must_be_not_null(arg2, true);
1030 
1031   // Get start addr and length of first argument
1032   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1033   Node* arg1_cnt    = load_array_length(arg1);
1034 
1035   // Get start addr and length of second argument
1036   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1037   Node* arg2_cnt    = load_array_length(arg2);
1038 
1039   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1040   set_result(result);
1041   return true;
1042 }
1043 
1044 //------------------------------inline_string_equals------------------------
1045 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1046   Node* arg1 = argument(0);
1047   Node* arg2 = argument(1);
1048 
1049   // paths (plus control) merge
1050   RegionNode* region = new RegionNode(3);
1051   Node* phi = new PhiNode(region, TypeInt::BOOL);
1052 
1053   if (!stopped()) {
1054 
1055     arg1 = must_be_not_null(arg1, true);
1056     arg2 = must_be_not_null(arg2, true);
1057 
1058     // Get start addr and length of first argument
1059     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1060     Node* arg1_cnt    = load_array_length(arg1);
1061 
1062     // Get start addr and length of second argument
1063     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1064     Node* arg2_cnt    = load_array_length(arg2);
1065 
1066     // Check for arg1_cnt != arg2_cnt
1067     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1068     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1069     Node* if_ne = generate_slow_guard(bol, nullptr);
1070     if (if_ne != nullptr) {
1071       phi->init_req(2, intcon(0));
1072       region->init_req(2, if_ne);
1073     }
1074 
1075     // Check for count == 0 is done by assembler code for StrEquals.
1076 
1077     if (!stopped()) {
1078       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1079       phi->init_req(1, equals);
1080       region->init_req(1, control());
1081     }
1082   }
1083 
1084   // post merge
1085   set_control(_gvn.transform(region));
1086   record_for_igvn(region);
1087 
1088   set_result(_gvn.transform(phi));
1089   return true;
1090 }
1091 
1092 //------------------------------inline_array_equals----------------------------
1093 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1094   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1095   Node* arg1 = argument(0);
1096   Node* arg2 = argument(1);
1097 
1098   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1099   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1100   clear_upper_avx();
1101 
1102   return true;
1103 }
1104 
1105 
1106 //------------------------------inline_countPositives------------------------------
1107 bool LibraryCallKit::inline_countPositives() {
1108   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1109     return false;
1110   }
1111 
1112   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1113   // no receiver since it is static method
1114   Node* ba         = argument(0);
1115   Node* offset     = argument(1);
1116   Node* len        = argument(2);
1117 
1118   ba = must_be_not_null(ba, true);
1119 
1120   // Range checks
1121   generate_string_range_check(ba, offset, len, false);
1122   if (stopped()) {
1123     return true;
1124   }
1125   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1126   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1127   set_result(_gvn.transform(result));
1128   clear_upper_avx();
1129   return true;
1130 }
1131 
1132 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1133   Node* index = argument(0);
1134   Node* length = bt == T_INT ? argument(1) : argument(2);
1135   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1136     return false;
1137   }
1138 
1139   // check that length is positive
1140   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1141   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1142 
1143   {
1144     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1145     uncommon_trap(Deoptimization::Reason_intrinsic,
1146                   Deoptimization::Action_make_not_entrant);
1147   }
1148 
1149   if (stopped()) {
1150     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1151     return true;
1152   }
1153 
1154   // length is now known positive, add a cast node to make this explicit
1155   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1156   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1157       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1158       ConstraintCastNode::RegularDependency, bt);
1159   casted_length = _gvn.transform(casted_length);
1160   replace_in_map(length, casted_length);
1161   length = casted_length;
1162 
1163   // Use an unsigned comparison for the range check itself
1164   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1165   BoolTest::mask btest = BoolTest::lt;
1166   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1167   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1168   _gvn.set_type(rc, rc->Value(&_gvn));
1169   if (!rc_bool->is_Con()) {
1170     record_for_igvn(rc);
1171   }
1172   set_control(_gvn.transform(new IfTrueNode(rc)));
1173   {
1174     PreserveJVMState pjvms(this);
1175     set_control(_gvn.transform(new IfFalseNode(rc)));
1176     uncommon_trap(Deoptimization::Reason_range_check,
1177                   Deoptimization::Action_make_not_entrant);
1178   }
1179 
1180   if (stopped()) {
1181     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1182     return true;
1183   }
1184 
1185   // index is now known to be >= 0 and < length, cast it
1186   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1187       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1188       ConstraintCastNode::RegularDependency, bt);
1189   result = _gvn.transform(result);
1190   set_result(result);
1191   replace_in_map(index, result);
1192   return true;
1193 }
1194 
1195 //------------------------------inline_string_indexOf------------------------
1196 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1197   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1198     return false;
1199   }
1200   Node* src = argument(0);
1201   Node* tgt = argument(1);
1202 
1203   // Make the merge point
1204   RegionNode* result_rgn = new RegionNode(4);
1205   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1206 
1207   src = must_be_not_null(src, true);
1208   tgt = must_be_not_null(tgt, true);
1209 
1210   // Get start addr and length of source string
1211   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1212   Node* src_count = load_array_length(src);
1213 
1214   // Get start addr and length of substring
1215   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1216   Node* tgt_count = load_array_length(tgt);
1217 
1218   Node* result = nullptr;
1219   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1220 
1221   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1222     // Divide src size by 2 if String is UTF16 encoded
1223     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1224   }
1225   if (ae == StrIntrinsicNode::UU) {
1226     // Divide substring size by 2 if String is UTF16 encoded
1227     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1228   }
1229 
1230   if (call_opt_stub) {
1231     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1232                                    StubRoutines::_string_indexof_array[ae],
1233                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1234                                    src_count, tgt_start, tgt_count);
1235     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1236   } else {
1237     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1238                                result_rgn, result_phi, ae);
1239   }
1240   if (result != nullptr) {
1241     result_phi->init_req(3, result);
1242     result_rgn->init_req(3, control());
1243   }
1244   set_control(_gvn.transform(result_rgn));
1245   record_for_igvn(result_rgn);
1246   set_result(_gvn.transform(result_phi));
1247 
1248   return true;
1249 }
1250 
1251 //-----------------------------inline_string_indexOfI-----------------------
1252 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1253   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1254     return false;
1255   }
1256   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1257     return false;
1258   }
1259 
1260   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1261   Node* src         = argument(0); // byte[]
1262   Node* src_count   = argument(1); // char count
1263   Node* tgt         = argument(2); // byte[]
1264   Node* tgt_count   = argument(3); // char count
1265   Node* from_index  = argument(4); // char index
1266 
1267   src = must_be_not_null(src, true);
1268   tgt = must_be_not_null(tgt, true);
1269 
1270   // Multiply byte array index by 2 if String is UTF16 encoded
1271   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1272   src_count = _gvn.transform(new SubINode(src_count, from_index));
1273   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1274   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1275 
1276   // Range checks
1277   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1278   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1279   if (stopped()) {
1280     return true;
1281   }
1282 
1283   RegionNode* region = new RegionNode(5);
1284   Node* phi = new PhiNode(region, TypeInt::INT);
1285   Node* result = nullptr;
1286 
1287   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1288 
1289   if (call_opt_stub) {
1290     assert(arrayOopDesc::base_offset_in_bytes(T_BYTE) >= 16, "Needed for indexOf");
1291     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1292                                    StubRoutines::_string_indexof_array[ae],
1293                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1294                                    src_count, tgt_start, tgt_count);
1295     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1296   } else {
1297     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1298                                region, phi, ae);
1299   }
1300   if (result != nullptr) {
1301     // The result is index relative to from_index if substring was found, -1 otherwise.
1302     // Generate code which will fold into cmove.
1303     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1304     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1305 
1306     Node* if_lt = generate_slow_guard(bol, nullptr);
1307     if (if_lt != nullptr) {
1308       // result == -1
1309       phi->init_req(3, result);
1310       region->init_req(3, if_lt);
1311     }
1312     if (!stopped()) {
1313       result = _gvn.transform(new AddINode(result, from_index));
1314       phi->init_req(4, result);
1315       region->init_req(4, control());
1316     }
1317   }
1318 
1319   set_control(_gvn.transform(region));
1320   record_for_igvn(region);
1321   set_result(_gvn.transform(phi));
1322   clear_upper_avx();
1323 
1324   return true;
1325 }
1326 
1327 // Create StrIndexOfNode with fast path checks
1328 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1329                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1330   // Check for substr count > string count
1331   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1332   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1333   Node* if_gt = generate_slow_guard(bol, nullptr);
1334   if (if_gt != nullptr) {
1335     phi->init_req(1, intcon(-1));
1336     region->init_req(1, if_gt);
1337   }
1338   if (!stopped()) {
1339     // Check for substr count == 0
1340     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1341     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1342     Node* if_zero = generate_slow_guard(bol, nullptr);
1343     if (if_zero != nullptr) {
1344       phi->init_req(2, intcon(0));
1345       region->init_req(2, if_zero);
1346     }
1347   }
1348   if (!stopped()) {
1349     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1350   }
1351   return nullptr;
1352 }
1353 
1354 //-----------------------------inline_string_indexOfChar-----------------------
1355 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1356   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1357     return false;
1358   }
1359   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1360     return false;
1361   }
1362   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1363   Node* src         = argument(0); // byte[]
1364   Node* int_ch      = argument(1);
1365   Node* from_index  = argument(2);
1366   Node* max         = argument(3);
1367 
1368   src = must_be_not_null(src, true);
1369 
1370   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1371   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1372   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1373 
1374   // Range checks
1375   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1376 
1377   // Check for int_ch >= 0
1378   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1379   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1380   {
1381     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1382     uncommon_trap(Deoptimization::Reason_intrinsic,
1383                   Deoptimization::Action_maybe_recompile);
1384   }
1385   if (stopped()) {
1386     return true;
1387   }
1388 
1389   RegionNode* region = new RegionNode(3);
1390   Node* phi = new PhiNode(region, TypeInt::INT);
1391 
1392   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1393   C->set_has_split_ifs(true); // Has chance for split-if optimization
1394   _gvn.transform(result);
1395 
1396   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1397   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1398 
1399   Node* if_lt = generate_slow_guard(bol, nullptr);
1400   if (if_lt != nullptr) {
1401     // result == -1
1402     phi->init_req(2, result);
1403     region->init_req(2, if_lt);
1404   }
1405   if (!stopped()) {
1406     result = _gvn.transform(new AddINode(result, from_index));
1407     phi->init_req(1, result);
1408     region->init_req(1, control());
1409   }
1410   set_control(_gvn.transform(region));
1411   record_for_igvn(region);
1412   set_result(_gvn.transform(phi));
1413   clear_upper_avx();
1414 
1415   return true;
1416 }
1417 //---------------------------inline_string_copy---------------------
1418 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1419 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1420 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1421 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1422 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1423 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1424 bool LibraryCallKit::inline_string_copy(bool compress) {
1425   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1426     return false;
1427   }
1428   int nargs = 5;  // 2 oops, 3 ints
1429   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1430 
1431   Node* src         = argument(0);
1432   Node* src_offset  = argument(1);
1433   Node* dst         = argument(2);
1434   Node* dst_offset  = argument(3);
1435   Node* length      = argument(4);
1436 
1437   // Check for allocation before we add nodes that would confuse
1438   // tightly_coupled_allocation()
1439   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1440 
1441   // Figure out the size and type of the elements we will be copying.
1442   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1443   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1444   if (src_type == nullptr || dst_type == nullptr) {
1445     return false;
1446   }
1447   BasicType src_elem = src_type->elem()->array_element_basic_type();
1448   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1449   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1450          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1451          "Unsupported array types for inline_string_copy");
1452 
1453   src = must_be_not_null(src, true);
1454   dst = must_be_not_null(dst, true);
1455 
1456   // Convert char[] offsets to byte[] offsets
1457   bool convert_src = (compress && src_elem == T_BYTE);
1458   bool convert_dst = (!compress && dst_elem == T_BYTE);
1459   if (convert_src) {
1460     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1461   } else if (convert_dst) {
1462     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1463   }
1464 
1465   // Range checks
1466   generate_string_range_check(src, src_offset, length, convert_src);
1467   generate_string_range_check(dst, dst_offset, length, convert_dst);
1468   if (stopped()) {
1469     return true;
1470   }
1471 
1472   Node* src_start = array_element_address(src, src_offset, src_elem);
1473   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1474   // 'src_start' points to src array + scaled offset
1475   // 'dst_start' points to dst array + scaled offset
1476   Node* count = nullptr;
1477   if (compress) {
1478     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1479   } else {
1480     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1481   }
1482 
1483   if (alloc != nullptr) {
1484     if (alloc->maybe_set_complete(&_gvn)) {
1485       // "You break it, you buy it."
1486       InitializeNode* init = alloc->initialization();
1487       assert(init->is_complete(), "we just did this");
1488       init->set_complete_with_arraycopy();
1489       assert(dst->is_CheckCastPP(), "sanity");
1490       assert(dst->in(0)->in(0) == init, "dest pinned");
1491     }
1492     // Do not let stores that initialize this object be reordered with
1493     // a subsequent store that would make this object accessible by
1494     // other threads.
1495     // Record what AllocateNode this StoreStore protects so that
1496     // escape analysis can go from the MemBarStoreStoreNode to the
1497     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1498     // based on the escape status of the AllocateNode.
1499     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1500   }
1501   if (compress) {
1502     set_result(_gvn.transform(count));
1503   }
1504   clear_upper_avx();
1505 
1506   return true;
1507 }
1508 
1509 #ifdef _LP64
1510 #define XTOP ,top() /*additional argument*/
1511 #else  //_LP64
1512 #define XTOP        /*no additional argument*/
1513 #endif //_LP64
1514 
1515 //------------------------inline_string_toBytesU--------------------------
1516 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1517 bool LibraryCallKit::inline_string_toBytesU() {
1518   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1519     return false;
1520   }
1521   // Get the arguments.
1522   Node* value     = argument(0);
1523   Node* offset    = argument(1);
1524   Node* length    = argument(2);
1525 
1526   Node* newcopy = nullptr;
1527 
1528   // Set the original stack and the reexecute bit for the interpreter to reexecute
1529   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1530   { PreserveReexecuteState preexecs(this);
1531     jvms()->set_should_reexecute(true);
1532 
1533     // Check if a null path was taken unconditionally.
1534     value = null_check(value);
1535 
1536     RegionNode* bailout = new RegionNode(1);
1537     record_for_igvn(bailout);
1538 
1539     // Range checks
1540     generate_negative_guard(offset, bailout);
1541     generate_negative_guard(length, bailout);
1542     generate_limit_guard(offset, length, load_array_length(value), bailout);
1543     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1544     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1545 
1546     if (bailout->req() > 1) {
1547       PreserveJVMState pjvms(this);
1548       set_control(_gvn.transform(bailout));
1549       uncommon_trap(Deoptimization::Reason_intrinsic,
1550                     Deoptimization::Action_maybe_recompile);
1551     }
1552     if (stopped()) {
1553       return true;
1554     }
1555 
1556     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1557     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1558     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1559     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1560     guarantee(alloc != nullptr, "created above");
1561 
1562     // Calculate starting addresses.
1563     Node* src_start = array_element_address(value, offset, T_CHAR);
1564     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1565 
1566     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1567     const TypeInt* toffset = gvn().type(offset)->is_int();
1568     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1569 
1570     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1571     const char* copyfunc_name = "arraycopy";
1572     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1573     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1574                       OptoRuntime::fast_arraycopy_Type(),
1575                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1576                       src_start, dst_start, ConvI2X(length) XTOP);
1577     // Do not let reads from the cloned object float above the arraycopy.
1578     if (alloc->maybe_set_complete(&_gvn)) {
1579       // "You break it, you buy it."
1580       InitializeNode* init = alloc->initialization();
1581       assert(init->is_complete(), "we just did this");
1582       init->set_complete_with_arraycopy();
1583       assert(newcopy->is_CheckCastPP(), "sanity");
1584       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1585     }
1586     // Do not let stores that initialize this object be reordered with
1587     // a subsequent store that would make this object accessible by
1588     // other threads.
1589     // Record what AllocateNode this StoreStore protects so that
1590     // escape analysis can go from the MemBarStoreStoreNode to the
1591     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1592     // based on the escape status of the AllocateNode.
1593     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1594   } // original reexecute is set back here
1595 
1596   C->set_has_split_ifs(true); // Has chance for split-if optimization
1597   if (!stopped()) {
1598     set_result(newcopy);
1599   }
1600   clear_upper_avx();
1601 
1602   return true;
1603 }
1604 
1605 //------------------------inline_string_getCharsU--------------------------
1606 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1607 bool LibraryCallKit::inline_string_getCharsU() {
1608   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1609     return false;
1610   }
1611 
1612   // Get the arguments.
1613   Node* src       = argument(0);
1614   Node* src_begin = argument(1);
1615   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1616   Node* dst       = argument(3);
1617   Node* dst_begin = argument(4);
1618 
1619   // Check for allocation before we add nodes that would confuse
1620   // tightly_coupled_allocation()
1621   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1622 
1623   // Check if a null path was taken unconditionally.
1624   src = null_check(src);
1625   dst = null_check(dst);
1626   if (stopped()) {
1627     return true;
1628   }
1629 
1630   // Get length and convert char[] offset to byte[] offset
1631   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1632   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1633 
1634   // Range checks
1635   generate_string_range_check(src, src_begin, length, true);
1636   generate_string_range_check(dst, dst_begin, length, false);
1637   if (stopped()) {
1638     return true;
1639   }
1640 
1641   if (!stopped()) {
1642     // Calculate starting addresses.
1643     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1644     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1645 
1646     // Check if array addresses are aligned to HeapWordSize
1647     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1648     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1649     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1650                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1651 
1652     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1653     const char* copyfunc_name = "arraycopy";
1654     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1655     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1656                       OptoRuntime::fast_arraycopy_Type(),
1657                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1658                       src_start, dst_start, ConvI2X(length) XTOP);
1659     // Do not let reads from the cloned object float above the arraycopy.
1660     if (alloc != nullptr) {
1661       if (alloc->maybe_set_complete(&_gvn)) {
1662         // "You break it, you buy it."
1663         InitializeNode* init = alloc->initialization();
1664         assert(init->is_complete(), "we just did this");
1665         init->set_complete_with_arraycopy();
1666         assert(dst->is_CheckCastPP(), "sanity");
1667         assert(dst->in(0)->in(0) == init, "dest pinned");
1668       }
1669       // Do not let stores that initialize this object be reordered with
1670       // a subsequent store that would make this object accessible by
1671       // other threads.
1672       // Record what AllocateNode this StoreStore protects so that
1673       // escape analysis can go from the MemBarStoreStoreNode to the
1674       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1675       // based on the escape status of the AllocateNode.
1676       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1677     } else {
1678       insert_mem_bar(Op_MemBarCPUOrder);
1679     }
1680   }
1681 
1682   C->set_has_split_ifs(true); // Has chance for split-if optimization
1683   return true;
1684 }
1685 
1686 //----------------------inline_string_char_access----------------------------
1687 // Store/Load char to/from byte[] array.
1688 // static void StringUTF16.putChar(byte[] val, int index, int c)
1689 // static char StringUTF16.getChar(byte[] val, int index)
1690 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1691   Node* value  = argument(0);
1692   Node* index  = argument(1);
1693   Node* ch = is_store ? argument(2) : nullptr;
1694 
1695   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1696   // correctly requires matched array shapes.
1697   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1698           "sanity: byte[] and char[] bases agree");
1699   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1700           "sanity: byte[] and char[] scales agree");
1701 
1702   // Bail when getChar over constants is requested: constant folding would
1703   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1704   // Java method would constant fold nicely instead.
1705   if (!is_store && value->is_Con() && index->is_Con()) {
1706     return false;
1707   }
1708 
1709   // Save state and restore on bailout
1710   uint old_sp = sp();
1711   SafePointNode* old_map = clone_map();
1712 
1713   value = must_be_not_null(value, true);
1714 
1715   Node* adr = array_element_address(value, index, T_CHAR);
1716   if (adr->is_top()) {
1717     set_map(old_map);
1718     set_sp(old_sp);
1719     return false;
1720   }
1721   destruct_map_clone(old_map);
1722   if (is_store) {
1723     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1724   } else {
1725     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1726     set_result(ch);
1727   }
1728   return true;
1729 }
1730 
1731 //--------------------------round_double_node--------------------------------
1732 // Round a double node if necessary.
1733 Node* LibraryCallKit::round_double_node(Node* n) {
1734   if (Matcher::strict_fp_requires_explicit_rounding) {
1735 #ifdef IA32
1736     if (UseSSE < 2) {
1737       n = _gvn.transform(new RoundDoubleNode(nullptr, n));
1738     }
1739 #else
1740     Unimplemented();
1741 #endif // IA32
1742   }
1743   return n;
1744 }
1745 
1746 //------------------------------inline_math-----------------------------------
1747 // public static double Math.abs(double)
1748 // public static double Math.sqrt(double)
1749 // public static double Math.log(double)
1750 // public static double Math.log10(double)
1751 // public static double Math.round(double)
1752 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1753   Node* arg = round_double_node(argument(0));
1754   Node* n = nullptr;
1755   switch (id) {
1756   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1757   case vmIntrinsics::_dsqrt:
1758   case vmIntrinsics::_dsqrt_strict:
1759                               n = new SqrtDNode(C, control(),  arg);  break;
1760   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1761   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1762   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1763   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1764   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break;
1765   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1766   default:  fatal_unexpected_iid(id);  break;
1767   }
1768   set_result(_gvn.transform(n));
1769   return true;
1770 }
1771 
1772 //------------------------------inline_math-----------------------------------
1773 // public static float Math.abs(float)
1774 // public static int Math.abs(int)
1775 // public static long Math.abs(long)
1776 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1777   Node* arg = argument(0);
1778   Node* n = nullptr;
1779   switch (id) {
1780   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1781   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1782   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1783   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1784   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1785   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1786   default:  fatal_unexpected_iid(id);  break;
1787   }
1788   set_result(_gvn.transform(n));
1789   return true;
1790 }
1791 
1792 //------------------------------runtime_math-----------------------------
1793 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1794   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1795          "must be (DD)D or (D)D type");
1796 
1797   // Inputs
1798   Node* a = round_double_node(argument(0));
1799   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr;
1800 
1801   const TypePtr* no_memory_effects = nullptr;
1802   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1803                                  no_memory_effects,
1804                                  a, top(), b, b ? top() : nullptr);
1805   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1806 #ifdef ASSERT
1807   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1808   assert(value_top == top(), "second value must be top");
1809 #endif
1810 
1811   set_result(value);
1812   return true;
1813 }
1814 
1815 //------------------------------inline_math_pow-----------------------------
1816 bool LibraryCallKit::inline_math_pow() {
1817   Node* exp = round_double_node(argument(2));
1818   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1819   if (d != nullptr) {
1820     if (d->getd() == 2.0) {
1821       // Special case: pow(x, 2.0) => x * x
1822       Node* base = round_double_node(argument(0));
1823       set_result(_gvn.transform(new MulDNode(base, base)));
1824       return true;
1825     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1826       // Special case: pow(x, 0.5) => sqrt(x)
1827       Node* base = round_double_node(argument(0));
1828       Node* zero = _gvn.zerocon(T_DOUBLE);
1829 
1830       RegionNode* region = new RegionNode(3);
1831       Node* phi = new PhiNode(region, Type::DOUBLE);
1832 
1833       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1834       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1835       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1836       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1837       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1838 
1839       Node* if_pow = generate_slow_guard(test, nullptr);
1840       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1841       phi->init_req(1, value_sqrt);
1842       region->init_req(1, control());
1843 
1844       if (if_pow != nullptr) {
1845         set_control(if_pow);
1846         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1847                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1848         const TypePtr* no_memory_effects = nullptr;
1849         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1850                                        no_memory_effects, base, top(), exp, top());
1851         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1852 #ifdef ASSERT
1853         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1854         assert(value_top == top(), "second value must be top");
1855 #endif
1856         phi->init_req(2, value_pow);
1857         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1858       }
1859 
1860       C->set_has_split_ifs(true); // Has chance for split-if optimization
1861       set_control(_gvn.transform(region));
1862       record_for_igvn(region);
1863       set_result(_gvn.transform(phi));
1864 
1865       return true;
1866     }
1867   }
1868 
1869   return StubRoutines::dpow() != nullptr ?
1870     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1871     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1872 }
1873 
1874 //------------------------------inline_math_native-----------------------------
1875 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1876   switch (id) {
1877   case vmIntrinsics::_dsin:
1878     return StubRoutines::dsin() != nullptr ?
1879       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1880       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1881   case vmIntrinsics::_dcos:
1882     return StubRoutines::dcos() != nullptr ?
1883       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1884       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1885   case vmIntrinsics::_dtan:
1886     return StubRoutines::dtan() != nullptr ?
1887       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1888       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1889   case vmIntrinsics::_dexp:
1890     return StubRoutines::dexp() != nullptr ?
1891       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1892       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1893   case vmIntrinsics::_dlog:
1894     return StubRoutines::dlog() != nullptr ?
1895       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1896       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1897   case vmIntrinsics::_dlog10:
1898     return StubRoutines::dlog10() != nullptr ?
1899       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1900       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1901 
1902   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1903   case vmIntrinsics::_ceil:
1904   case vmIntrinsics::_floor:
1905   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1906 
1907   case vmIntrinsics::_dsqrt:
1908   case vmIntrinsics::_dsqrt_strict:
1909                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1910   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1911   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1912   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1913   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1914 
1915   case vmIntrinsics::_dpow:      return inline_math_pow();
1916   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1917   case vmIntrinsics::_fcopySign: return inline_math(id);
1918   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1919   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1920   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1921 
1922    // These intrinsics are not yet correctly implemented
1923   case vmIntrinsics::_datan2:
1924     return false;
1925 
1926   default:
1927     fatal_unexpected_iid(id);
1928     return false;
1929   }
1930 }
1931 
1932 //----------------------------inline_notify-----------------------------------*
1933 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1934   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1935   address func;
1936   if (id == vmIntrinsics::_notify) {
1937     func = OptoRuntime::monitor_notify_Java();
1938   } else {
1939     func = OptoRuntime::monitor_notifyAll_Java();
1940   }
1941   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1942   make_slow_call_ex(call, env()->Throwable_klass(), false);
1943   return true;
1944 }
1945 
1946 
1947 //----------------------------inline_min_max-----------------------------------
1948 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1949   set_result(generate_min_max(id, argument(0), argument(1)));
1950   return true;
1951 }
1952 
1953 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1954   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1955   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1956   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1957   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1958 
1959   {
1960     PreserveJVMState pjvms(this);
1961     PreserveReexecuteState preexecs(this);
1962     jvms()->set_should_reexecute(true);
1963 
1964     set_control(slow_path);
1965     set_i_o(i_o());
1966 
1967     uncommon_trap(Deoptimization::Reason_intrinsic,
1968                   Deoptimization::Action_none);
1969   }
1970 
1971   set_control(fast_path);
1972   set_result(math);
1973 }
1974 
1975 template <typename OverflowOp>
1976 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1977   typedef typename OverflowOp::MathOp MathOp;
1978 
1979   MathOp* mathOp = new MathOp(arg1, arg2);
1980   Node* operation = _gvn.transform( mathOp );
1981   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1982   inline_math_mathExact(operation, ofcheck);
1983   return true;
1984 }
1985 
1986 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1987   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1988 }
1989 
1990 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1991   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1992 }
1993 
1994 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1995   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1996 }
1997 
1998 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1999   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2000 }
2001 
2002 bool LibraryCallKit::inline_math_negateExactI() {
2003   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2004 }
2005 
2006 bool LibraryCallKit::inline_math_negateExactL() {
2007   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2008 }
2009 
2010 bool LibraryCallKit::inline_math_multiplyExactI() {
2011   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2012 }
2013 
2014 bool LibraryCallKit::inline_math_multiplyExactL() {
2015   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2016 }
2017 
2018 bool LibraryCallKit::inline_math_multiplyHigh() {
2019   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2020   return true;
2021 }
2022 
2023 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2024   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2025   return true;
2026 }
2027 
2028 Node*
2029 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2030   Node* result_val = nullptr;
2031   switch (id) {
2032   case vmIntrinsics::_min:
2033   case vmIntrinsics::_min_strict:
2034     result_val = _gvn.transform(new MinINode(x0, y0));
2035     break;
2036   case vmIntrinsics::_max:
2037   case vmIntrinsics::_max_strict:
2038     result_val = _gvn.transform(new MaxINode(x0, y0));
2039     break;
2040   default:
2041     fatal_unexpected_iid(id);
2042     break;
2043   }
2044   return result_val;
2045 }
2046 
2047 inline int
2048 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2049   const TypePtr* base_type = TypePtr::NULL_PTR;
2050   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2051   if (base_type == nullptr) {
2052     // Unknown type.
2053     return Type::AnyPtr;
2054   } else if (base_type == TypePtr::NULL_PTR) {
2055     // Since this is a null+long form, we have to switch to a rawptr.
2056     base   = _gvn.transform(new CastX2PNode(offset));
2057     offset = MakeConX(0);
2058     return Type::RawPtr;
2059   } else if (base_type->base() == Type::RawPtr) {
2060     return Type::RawPtr;
2061   } else if (base_type->isa_oopptr()) {
2062     // Base is never null => always a heap address.
2063     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2064       return Type::OopPtr;
2065     }
2066     // Offset is small => always a heap address.
2067     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2068     if (offset_type != nullptr &&
2069         base_type->offset() == 0 &&     // (should always be?)
2070         offset_type->_lo >= 0 &&
2071         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2072       return Type::OopPtr;
2073     } else if (type == T_OBJECT) {
2074       // off heap access to an oop doesn't make any sense. Has to be on
2075       // heap.
2076       return Type::OopPtr;
2077     }
2078     // Otherwise, it might either be oop+off or null+addr.
2079     return Type::AnyPtr;
2080   } else {
2081     // No information:
2082     return Type::AnyPtr;
2083   }
2084 }
2085 
2086 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2087   Node* uncasted_base = base;
2088   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2089   if (kind == Type::RawPtr) {
2090     return basic_plus_adr(top(), uncasted_base, offset);
2091   } else if (kind == Type::AnyPtr) {
2092     assert(base == uncasted_base, "unexpected base change");
2093     if (can_cast) {
2094       if (!_gvn.type(base)->speculative_maybe_null() &&
2095           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2096         // According to profiling, this access is always on
2097         // heap. Casting the base to not null and thus avoiding membars
2098         // around the access should allow better optimizations
2099         Node* null_ctl = top();
2100         base = null_check_oop(base, &null_ctl, true, true, true);
2101         assert(null_ctl->is_top(), "no null control here");
2102         return basic_plus_adr(base, offset);
2103       } else if (_gvn.type(base)->speculative_always_null() &&
2104                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2105         // According to profiling, this access is always off
2106         // heap.
2107         base = null_assert(base);
2108         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2109         offset = MakeConX(0);
2110         return basic_plus_adr(top(), raw_base, offset);
2111       }
2112     }
2113     // We don't know if it's an on heap or off heap access. Fall back
2114     // to raw memory access.
2115     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2116     return basic_plus_adr(top(), raw, offset);
2117   } else {
2118     assert(base == uncasted_base, "unexpected base change");
2119     // We know it's an on heap access so base can't be null
2120     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2121       base = must_be_not_null(base, true);
2122     }
2123     return basic_plus_adr(base, offset);
2124   }
2125 }
2126 
2127 //--------------------------inline_number_methods-----------------------------
2128 // inline int     Integer.numberOfLeadingZeros(int)
2129 // inline int        Long.numberOfLeadingZeros(long)
2130 //
2131 // inline int     Integer.numberOfTrailingZeros(int)
2132 // inline int        Long.numberOfTrailingZeros(long)
2133 //
2134 // inline int     Integer.bitCount(int)
2135 // inline int        Long.bitCount(long)
2136 //
2137 // inline char  Character.reverseBytes(char)
2138 // inline short     Short.reverseBytes(short)
2139 // inline int     Integer.reverseBytes(int)
2140 // inline long       Long.reverseBytes(long)
2141 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2142   Node* arg = argument(0);
2143   Node* n = nullptr;
2144   switch (id) {
2145   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2146   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2147   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2148   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2149   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2150   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2151   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(nullptr, arg);  break;
2152   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( nullptr, arg);  break;
2153   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( nullptr, arg);  break;
2154   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( nullptr, arg);  break;
2155   case vmIntrinsics::_reverse_i:                n = new ReverseINode(nullptr, arg); break;
2156   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(nullptr, arg); break;
2157   default:  fatal_unexpected_iid(id);  break;
2158   }
2159   set_result(_gvn.transform(n));
2160   return true;
2161 }
2162 
2163 //--------------------------inline_bitshuffle_methods-----------------------------
2164 // inline int Integer.compress(int, int)
2165 // inline int Integer.expand(int, int)
2166 // inline long Long.compress(long, long)
2167 // inline long Long.expand(long, long)
2168 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2169   Node* n = nullptr;
2170   switch (id) {
2171     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2172     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2173     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2174     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2175     default:  fatal_unexpected_iid(id);  break;
2176   }
2177   set_result(_gvn.transform(n));
2178   return true;
2179 }
2180 
2181 //--------------------------inline_number_methods-----------------------------
2182 // inline int Integer.compareUnsigned(int, int)
2183 // inline int    Long.compareUnsigned(long, long)
2184 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2185   Node* arg1 = argument(0);
2186   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2187   Node* n = nullptr;
2188   switch (id) {
2189     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2190     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2191     default:  fatal_unexpected_iid(id);  break;
2192   }
2193   set_result(_gvn.transform(n));
2194   return true;
2195 }
2196 
2197 //--------------------------inline_unsigned_divmod_methods-----------------------------
2198 // inline int Integer.divideUnsigned(int, int)
2199 // inline int Integer.remainderUnsigned(int, int)
2200 // inline long Long.divideUnsigned(long, long)
2201 // inline long Long.remainderUnsigned(long, long)
2202 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2203   Node* n = nullptr;
2204   switch (id) {
2205     case vmIntrinsics::_divideUnsigned_i: {
2206       zero_check_int(argument(1));
2207       // Compile-time detect of null-exception
2208       if (stopped()) {
2209         return true; // keep the graph constructed so far
2210       }
2211       n = new UDivINode(control(), argument(0), argument(1));
2212       break;
2213     }
2214     case vmIntrinsics::_divideUnsigned_l: {
2215       zero_check_long(argument(2));
2216       // Compile-time detect of null-exception
2217       if (stopped()) {
2218         return true; // keep the graph constructed so far
2219       }
2220       n = new UDivLNode(control(), argument(0), argument(2));
2221       break;
2222     }
2223     case vmIntrinsics::_remainderUnsigned_i: {
2224       zero_check_int(argument(1));
2225       // Compile-time detect of null-exception
2226       if (stopped()) {
2227         return true; // keep the graph constructed so far
2228       }
2229       n = new UModINode(control(), argument(0), argument(1));
2230       break;
2231     }
2232     case vmIntrinsics::_remainderUnsigned_l: {
2233       zero_check_long(argument(2));
2234       // Compile-time detect of null-exception
2235       if (stopped()) {
2236         return true; // keep the graph constructed so far
2237       }
2238       n = new UModLNode(control(), argument(0), argument(2));
2239       break;
2240     }
2241     default:  fatal_unexpected_iid(id);  break;
2242   }
2243   set_result(_gvn.transform(n));
2244   return true;
2245 }
2246 
2247 //----------------------------inline_unsafe_access----------------------------
2248 
2249 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2250   // Attempt to infer a sharper value type from the offset and base type.
2251   ciKlass* sharpened_klass = nullptr;
2252   bool null_free = false;
2253 
2254   // See if it is an instance field, with an object type.
2255   if (alias_type->field() != nullptr) {
2256     if (alias_type->field()->type()->is_klass()) {
2257       sharpened_klass = alias_type->field()->type()->as_klass();
2258       null_free = alias_type->field()->is_null_free();
2259     }
2260   }
2261 
2262   const TypeOopPtr* result = nullptr;
2263   // See if it is a narrow oop array.
2264   if (adr_type->isa_aryptr()) {
2265     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2266       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2267       null_free = adr_type->is_aryptr()->is_null_free();
2268       if (elem_type != nullptr && elem_type->is_loaded()) {
2269         // Sharpen the value type.
2270         result = elem_type;
2271       }
2272     }
2273   }
2274 
2275   // The sharpened class might be unloaded if there is no class loader
2276   // contraint in place.
2277   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2278     // Sharpen the value type.
2279     result = TypeOopPtr::make_from_klass(sharpened_klass);
2280     if (null_free) {
2281       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2282     }
2283   }
2284   if (result != nullptr) {
2285 #ifndef PRODUCT
2286     if (C->print_intrinsics() || C->print_inlining()) {
2287       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2288       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2289     }
2290 #endif
2291   }
2292   return result;
2293 }
2294 
2295 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2296   switch (kind) {
2297       case Relaxed:
2298         return MO_UNORDERED;
2299       case Opaque:
2300         return MO_RELAXED;
2301       case Acquire:
2302         return MO_ACQUIRE;
2303       case Release:
2304         return MO_RELEASE;
2305       case Volatile:
2306         return MO_SEQ_CST;
2307       default:
2308         ShouldNotReachHere();
2309         return 0;
2310   }
2311 }
2312 
2313 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2314   if (callee()->is_static())  return false;  // caller must have the capability!
2315   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2316   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2317   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2318   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2319 
2320   if (is_reference_type(type)) {
2321     decorators |= ON_UNKNOWN_OOP_REF;
2322   }
2323 
2324   if (unaligned) {
2325     decorators |= C2_UNALIGNED;
2326   }
2327 
2328 #ifndef PRODUCT
2329   {
2330     ResourceMark rm;
2331     // Check the signatures.
2332     ciSignature* sig = callee()->signature();
2333 #ifdef ASSERT
2334     if (!is_store) {
2335       // Object getReference(Object base, int/long offset), etc.
2336       BasicType rtype = sig->return_type()->basic_type();
2337       assert(rtype == type, "getter must return the expected value");
2338       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2339       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2340       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2341     } else {
2342       // void putReference(Object base, int/long offset, Object x), etc.
2343       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2344       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2345       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2346       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2347       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2348       assert(vtype == type, "putter must accept the expected value");
2349     }
2350 #endif // ASSERT
2351  }
2352 #endif //PRODUCT
2353 
2354   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2355 
2356   Node* receiver = argument(0);  // type: oop
2357 
2358   // Build address expression.
2359   Node* heap_base_oop = top();
2360 
2361   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2362   Node* base = argument(1);  // type: oop
2363   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2364   Node* offset = argument(2);  // type: long
2365   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2366   // to be plain byte offsets, which are also the same as those accepted
2367   // by oopDesc::field_addr.
2368   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2369          "fieldOffset must be byte-scaled");
2370 
2371   ciInlineKlass* inline_klass = nullptr;
2372   if (is_flat) {
2373     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2374     if (cls == nullptr || cls->const_oop() == nullptr) {
2375       return false;
2376     }
2377     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2378     if (!mirror_type->is_inlinetype()) {
2379       return false;
2380     }
2381     inline_klass = mirror_type->as_inline_klass();
2382   }
2383 
2384   if (base->is_InlineType()) {
2385     InlineTypeNode* vt = base->as_InlineType();
2386     if (is_store) {
2387       if (!vt->is_allocated(&_gvn)) {
2388         return false;
2389       }
2390       base = vt->get_oop();
2391     } else {
2392       if (offset->is_Con()) {
2393         long off = find_long_con(offset, 0);
2394         ciInlineKlass* vk = vt->type()->inline_klass();
2395         if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2396           return false;
2397         }
2398 
2399         ciField* field = vk->get_non_flat_field_by_offset(off);
2400         if (field != nullptr) {
2401           BasicType bt = type2field[field->type()->basic_type()];
2402           if (bt == T_ARRAY || bt == T_NARROWOOP) {
2403             bt = T_OBJECT;
2404           }
2405           if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2406             Node* value = vt->field_value_by_offset(off, false);
2407             if (value->is_InlineType()) {
2408               value = value->as_InlineType()->adjust_scalarization_depth(this);
2409             }
2410             set_result(value);
2411             return true;
2412           }
2413         }
2414       }
2415       {
2416         // Re-execute the unsafe access if allocation triggers deoptimization.
2417         PreserveReexecuteState preexecs(this);
2418         jvms()->set_should_reexecute(true);
2419         vt = vt->buffer(this);
2420       }
2421       base = vt->get_oop();
2422     }
2423   }
2424 
2425   // 32-bit machines ignore the high half!
2426   offset = ConvL2X(offset);
2427 
2428   // Save state and restore on bailout
2429   uint old_sp = sp();
2430   SafePointNode* old_map = clone_map();
2431 
2432   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2433 
2434   if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) {
2435     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2436       decorators |= IN_NATIVE; // off-heap primitive access
2437     } else {
2438       set_map(old_map);
2439       set_sp(old_sp);
2440       return false; // off-heap oop accesses are not supported
2441     }
2442   } else {
2443     heap_base_oop = base; // on-heap or mixed access
2444   }
2445 
2446   // Can base be null? Otherwise, always on-heap access.
2447   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2448 
2449   if (!can_access_non_heap) {
2450     decorators |= IN_HEAP;
2451   }
2452 
2453   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2454 
2455   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2456   if (adr_type == TypePtr::NULL_PTR) {
2457     set_map(old_map);
2458     set_sp(old_sp);
2459     return false; // off-heap access with zero address
2460   }
2461 
2462   // Try to categorize the address.
2463   Compile::AliasType* alias_type = C->alias_type(adr_type);
2464   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2465 
2466   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2467       alias_type->adr_type() == TypeAryPtr::RANGE) {
2468     set_map(old_map);
2469     set_sp(old_sp);
2470     return false; // not supported
2471   }
2472 
2473   bool mismatched = false;
2474   BasicType bt = T_ILLEGAL;
2475   ciField* field = nullptr;
2476   if (adr_type->isa_instptr()) {
2477     const TypeInstPtr* instptr = adr_type->is_instptr();
2478     ciInstanceKlass* k = instptr->instance_klass();
2479     int off = instptr->offset();
2480     if (instptr->const_oop() != nullptr &&
2481         k == ciEnv::current()->Class_klass() &&
2482         instptr->offset() >= (k->size_helper() * wordSize)) {
2483       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2484       field = k->get_field_by_offset(off, true);
2485     } else {
2486       field = k->get_non_flat_field_by_offset(off);
2487     }
2488     if (field != nullptr) {
2489       bt = type2field[field->type()->basic_type()];
2490     }
2491     assert(bt == alias_type->basic_type() || is_flat, "should match");
2492   } else {
2493     bt = alias_type->basic_type();
2494   }
2495 
2496   if (bt != T_ILLEGAL) {
2497     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2498     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2499       // Alias type doesn't differentiate between byte[] and boolean[]).
2500       // Use address type to get the element type.
2501       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2502     }
2503     if (is_reference_type(bt, true)) {
2504       // accessing an array field with getReference is not a mismatch
2505       bt = T_OBJECT;
2506     }
2507     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2508       // Don't intrinsify mismatched object accesses
2509       set_map(old_map);
2510       set_sp(old_sp);
2511       return false;
2512     }
2513     mismatched = (bt != type);
2514   } else if (alias_type->adr_type()->isa_oopptr()) {
2515     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2516   }
2517 
2518   if (is_flat) {
2519     if (adr_type->isa_instptr()) {
2520       if (field == nullptr || field->type() != inline_klass) {
2521         mismatched = true;
2522       }
2523     } else if (adr_type->isa_aryptr()) {
2524       const Type* elem = adr_type->is_aryptr()->elem();
2525       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2526         mismatched = true;
2527       }
2528     } else {
2529       mismatched = true;
2530     }
2531     if (is_store) {
2532       const Type* val_t = _gvn.type(val);
2533       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2534         set_map(old_map);
2535         set_sp(old_sp);
2536         return false;
2537       }
2538     }
2539   }
2540 
2541   destruct_map_clone(old_map);
2542   assert(!mismatched || is_flat || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2543 
2544   if (mismatched) {
2545     decorators |= C2_MISMATCHED;
2546   }
2547 
2548   // First guess at the value type.
2549   const Type *value_type = Type::get_const_basic_type(type);
2550 
2551   // Figure out the memory ordering.
2552   decorators |= mo_decorator_for_access_kind(kind);
2553 
2554   if (!is_store) {
2555     if (type == T_OBJECT && !is_flat) {
2556       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2557       if (tjp != nullptr) {
2558         value_type = tjp;
2559       }
2560     }
2561   }
2562 
2563   receiver = null_check(receiver);
2564   if (stopped()) {
2565     return true;
2566   }
2567   // Heap pointers get a null-check from the interpreter,
2568   // as a courtesy.  However, this is not guaranteed by Unsafe,
2569   // and it is not possible to fully distinguish unintended nulls
2570   // from intended ones in this API.
2571 
2572   if (!is_store) {
2573     Node* p = nullptr;
2574     // Try to constant fold a load from a constant field
2575 
2576     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2577       // final or stable field
2578       p = make_constant_from_field(field, heap_base_oop);
2579     }
2580 
2581     if (p == nullptr) { // Could not constant fold the load
2582       if (is_flat) {
2583         if (adr_type->isa_instptr() && !mismatched) {
2584           ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2585           int offset = adr_type->is_instptr()->offset();
2586           p = InlineTypeNode::make_from_flat(this, inline_klass, base, base, holder, offset, decorators);
2587         } else {
2588           p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, nullptr, 0, decorators);
2589         }
2590       } else {
2591         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2592         const TypeOopPtr* ptr = value_type->make_oopptr();
2593         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2594           // Load a non-flattened inline type from memory
2595           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass(), !ptr->maybe_null());
2596         }
2597       }
2598       // Normalize the value returned by getBoolean in the following cases
2599       if (type == T_BOOLEAN &&
2600           (mismatched ||
2601            heap_base_oop == top() ||                  // - heap_base_oop is null or
2602            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2603                                                       //   and the unsafe access is made to large offset
2604                                                       //   (i.e., larger than the maximum offset necessary for any
2605                                                       //   field access)
2606             ) {
2607           IdealKit ideal = IdealKit(this);
2608 #define __ ideal.
2609           IdealVariable normalized_result(ideal);
2610           __ declarations_done();
2611           __ set(normalized_result, p);
2612           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2613           __ set(normalized_result, ideal.ConI(1));
2614           ideal.end_if();
2615           final_sync(ideal);
2616           p = __ value(normalized_result);
2617 #undef __
2618       }
2619     }
2620     if (type == T_ADDRESS) {
2621       p = gvn().transform(new CastP2XNode(nullptr, p));
2622       p = ConvX2UL(p);
2623     }
2624     // The load node has the control of the preceding MemBarCPUOrder.  All
2625     // following nodes will have the control of the MemBarCPUOrder inserted at
2626     // the end of this method.  So, pushing the load onto the stack at a later
2627     // point is fine.
2628     set_result(p);
2629   } else {
2630     if (bt == T_ADDRESS) {
2631       // Repackage the long as a pointer.
2632       val = ConvL2X(val);
2633       val = gvn().transform(new CastX2PNode(val));
2634     }
2635     if (is_flat) {
2636       if (adr_type->isa_instptr() && !mismatched) {
2637         ciInstanceKlass* holder = adr_type->is_instptr()->instance_klass();
2638         int offset = adr_type->is_instptr()->offset();
2639         val->as_InlineType()->store_flat(this, base, base, holder, offset, decorators);
2640       } else {
2641         val->as_InlineType()->store_flat(this, base, adr, nullptr, 0, decorators);
2642       }
2643     } else {
2644       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2645     }
2646   }
2647 
2648   if (argument(1)->is_InlineType() && is_store) {
2649     InlineTypeNode* value = InlineTypeNode::make_from_oop(this, base, _gvn.type(argument(1))->inline_klass());
2650     value = value->make_larval(this, false);
2651     replace_in_map(argument(1), value);
2652   }
2653 
2654   return true;
2655 }
2656 
2657 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2658   Node* receiver = argument(0);
2659   Node* value = argument(1);
2660   if (!value->is_InlineType()) {
2661     return false;
2662   }
2663 
2664   receiver = null_check(receiver);
2665   if (stopped()) {
2666     return true;
2667   }
2668 
2669   set_result(value->as_InlineType()->make_larval(this, true));
2670   return true;
2671 }
2672 
2673 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2674   Node* receiver = argument(0);
2675   Node* buffer = argument(1);
2676   if (!buffer->is_InlineType()) {
2677     return false;
2678   }
2679   InlineTypeNode* vt = buffer->as_InlineType();
2680   if (!vt->is_allocated(&_gvn)) {
2681     return false;
2682   }
2683   // TODO 8239003 Why is this needed?
2684   if (AllocateNode::Ideal_allocation(vt->get_oop()) == nullptr) {
2685     return false;
2686   }
2687 
2688   receiver = null_check(receiver);
2689   if (stopped()) {
2690     return true;
2691   }
2692 
2693   set_result(vt->finish_larval(this));
2694   return true;
2695 }
2696 
2697 //----------------------------inline_unsafe_load_store----------------------------
2698 // This method serves a couple of different customers (depending on LoadStoreKind):
2699 //
2700 // LS_cmp_swap:
2701 //
2702 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2703 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2704 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2705 //
2706 // LS_cmp_swap_weak:
2707 //
2708 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2709 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2710 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2711 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2712 //
2713 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2714 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2715 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2716 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2717 //
2718 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2719 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2720 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2721 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2722 //
2723 // LS_cmp_exchange:
2724 //
2725 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2726 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2727 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2728 //
2729 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2730 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2731 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2732 //
2733 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2734 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2735 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2736 //
2737 // LS_get_add:
2738 //
2739 //   int  getAndAddInt( Object o, long offset, int  delta)
2740 //   long getAndAddLong(Object o, long offset, long delta)
2741 //
2742 // LS_get_set:
2743 //
2744 //   int    getAndSet(Object o, long offset, int    newValue)
2745 //   long   getAndSet(Object o, long offset, long   newValue)
2746 //   Object getAndSet(Object o, long offset, Object newValue)
2747 //
2748 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2749   // This basic scheme here is the same as inline_unsafe_access, but
2750   // differs in enough details that combining them would make the code
2751   // overly confusing.  (This is a true fact! I originally combined
2752   // them, but even I was confused by it!) As much code/comments as
2753   // possible are retained from inline_unsafe_access though to make
2754   // the correspondences clearer. - dl
2755 
2756   if (callee()->is_static())  return false;  // caller must have the capability!
2757 
2758   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2759   decorators |= mo_decorator_for_access_kind(access_kind);
2760 
2761 #ifndef PRODUCT
2762   BasicType rtype;
2763   {
2764     ResourceMark rm;
2765     // Check the signatures.
2766     ciSignature* sig = callee()->signature();
2767     rtype = sig->return_type()->basic_type();
2768     switch(kind) {
2769       case LS_get_add:
2770       case LS_get_set: {
2771       // Check the signatures.
2772 #ifdef ASSERT
2773       assert(rtype == type, "get and set must return the expected type");
2774       assert(sig->count() == 3, "get and set has 3 arguments");
2775       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2776       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2777       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2778       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2779 #endif // ASSERT
2780         break;
2781       }
2782       case LS_cmp_swap:
2783       case LS_cmp_swap_weak: {
2784       // Check the signatures.
2785 #ifdef ASSERT
2786       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2787       assert(sig->count() == 4, "CAS has 4 arguments");
2788       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2789       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2790 #endif // ASSERT
2791         break;
2792       }
2793       case LS_cmp_exchange: {
2794       // Check the signatures.
2795 #ifdef ASSERT
2796       assert(rtype == type, "CAS must return the expected type");
2797       assert(sig->count() == 4, "CAS has 4 arguments");
2798       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2799       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2800 #endif // ASSERT
2801         break;
2802       }
2803       default:
2804         ShouldNotReachHere();
2805     }
2806   }
2807 #endif //PRODUCT
2808 
2809   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2810 
2811   // Get arguments:
2812   Node* receiver = nullptr;
2813   Node* base     = nullptr;
2814   Node* offset   = nullptr;
2815   Node* oldval   = nullptr;
2816   Node* newval   = nullptr;
2817   switch(kind) {
2818     case LS_cmp_swap:
2819     case LS_cmp_swap_weak:
2820     case LS_cmp_exchange: {
2821       const bool two_slot_type = type2size[type] == 2;
2822       receiver = argument(0);  // type: oop
2823       base     = argument(1);  // type: oop
2824       offset   = argument(2);  // type: long
2825       oldval   = argument(4);  // type: oop, int, or long
2826       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2827       break;
2828     }
2829     case LS_get_add:
2830     case LS_get_set: {
2831       receiver = argument(0);  // type: oop
2832       base     = argument(1);  // type: oop
2833       offset   = argument(2);  // type: long
2834       oldval   = nullptr;
2835       newval   = argument(4);  // type: oop, int, or long
2836       break;
2837     }
2838     default:
2839       ShouldNotReachHere();
2840   }
2841 
2842   // Build field offset expression.
2843   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2844   // to be plain byte offsets, which are also the same as those accepted
2845   // by oopDesc::field_addr.
2846   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2847   // 32-bit machines ignore the high half of long offsets
2848   offset = ConvL2X(offset);
2849   // Save state and restore on bailout
2850   uint old_sp = sp();
2851   SafePointNode* old_map = clone_map();
2852   Node* adr = make_unsafe_address(base, offset,type, false);
2853   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2854 
2855   Compile::AliasType* alias_type = C->alias_type(adr_type);
2856   BasicType bt = alias_type->basic_type();
2857   if (bt != T_ILLEGAL &&
2858       (is_reference_type(bt) != (type == T_OBJECT))) {
2859     // Don't intrinsify mismatched object accesses.
2860     set_map(old_map);
2861     set_sp(old_sp);
2862     return false;
2863   }
2864 
2865   destruct_map_clone(old_map);
2866 
2867   // For CAS, unlike inline_unsafe_access, there seems no point in
2868   // trying to refine types. Just use the coarse types here.
2869   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2870   const Type *value_type = Type::get_const_basic_type(type);
2871 
2872   switch (kind) {
2873     case LS_get_set:
2874     case LS_cmp_exchange: {
2875       if (type == T_OBJECT) {
2876         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2877         if (tjp != nullptr) {
2878           value_type = tjp;
2879         }
2880       }
2881       break;
2882     }
2883     case LS_cmp_swap:
2884     case LS_cmp_swap_weak:
2885     case LS_get_add:
2886       break;
2887     default:
2888       ShouldNotReachHere();
2889   }
2890 
2891   // Null check receiver.
2892   receiver = null_check(receiver);
2893   if (stopped()) {
2894     return true;
2895   }
2896 
2897   int alias_idx = C->get_alias_index(adr_type);
2898 
2899   if (is_reference_type(type)) {
2900     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2901 
2902     if (oldval != nullptr && oldval->is_InlineType()) {
2903       // Re-execute the unsafe access if allocation triggers deoptimization.
2904       PreserveReexecuteState preexecs(this);
2905       jvms()->set_should_reexecute(true);
2906       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
2907     }
2908     if (newval != nullptr && newval->is_InlineType()) {
2909       // Re-execute the unsafe access if allocation triggers deoptimization.
2910       PreserveReexecuteState preexecs(this);
2911       jvms()->set_should_reexecute(true);
2912       newval = newval->as_InlineType()->buffer(this)->get_oop();
2913     }
2914 
2915     // Transformation of a value which could be null pointer (CastPP #null)
2916     // could be delayed during Parse (for example, in adjust_map_after_if()).
2917     // Execute transformation here to avoid barrier generation in such case.
2918     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2919       newval = _gvn.makecon(TypePtr::NULL_PTR);
2920 
2921     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2922       // Refine the value to a null constant, when it is known to be null
2923       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2924     }
2925   }
2926 
2927   Node* result = nullptr;
2928   switch (kind) {
2929     case LS_cmp_exchange: {
2930       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2931                                             oldval, newval, value_type, type, decorators);
2932       break;
2933     }
2934     case LS_cmp_swap_weak:
2935       decorators |= C2_WEAK_CMPXCHG;
2936     case LS_cmp_swap: {
2937       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2938                                              oldval, newval, value_type, type, decorators);
2939       break;
2940     }
2941     case LS_get_set: {
2942       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2943                                      newval, value_type, type, decorators);
2944       break;
2945     }
2946     case LS_get_add: {
2947       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2948                                     newval, value_type, type, decorators);
2949       break;
2950     }
2951     default:
2952       ShouldNotReachHere();
2953   }
2954 
2955   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2956   set_result(result);
2957   return true;
2958 }
2959 
2960 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2961   // Regardless of form, don't allow previous ld/st to move down,
2962   // then issue acquire, release, or volatile mem_bar.
2963   insert_mem_bar(Op_MemBarCPUOrder);
2964   switch(id) {
2965     case vmIntrinsics::_loadFence:
2966       insert_mem_bar(Op_LoadFence);
2967       return true;
2968     case vmIntrinsics::_storeFence:
2969       insert_mem_bar(Op_StoreFence);
2970       return true;
2971     case vmIntrinsics::_storeStoreFence:
2972       insert_mem_bar(Op_StoreStoreFence);
2973       return true;
2974     case vmIntrinsics::_fullFence:
2975       insert_mem_bar(Op_MemBarVolatile);
2976       return true;
2977     default:
2978       fatal_unexpected_iid(id);
2979       return false;
2980   }
2981 }
2982 
2983 bool LibraryCallKit::inline_onspinwait() {
2984   insert_mem_bar(Op_OnSpinWait);
2985   return true;
2986 }
2987 
2988 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2989   if (!kls->is_Con()) {
2990     return true;
2991   }
2992   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2993   if (klsptr == nullptr) {
2994     return true;
2995   }
2996   ciInstanceKlass* ik = klsptr->instance_klass();
2997   // don't need a guard for a klass that is already initialized
2998   return !ik->is_initialized();
2999 }
3000 
3001 //----------------------------inline_unsafe_writeback0-------------------------
3002 // public native void Unsafe.writeback0(long address)
3003 bool LibraryCallKit::inline_unsafe_writeback0() {
3004   if (!Matcher::has_match_rule(Op_CacheWB)) {
3005     return false;
3006   }
3007 #ifndef PRODUCT
3008   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
3009   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
3010   ciSignature* sig = callee()->signature();
3011   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
3012 #endif
3013   null_check_receiver();  // null-check, then ignore
3014   Node *addr = argument(1);
3015   addr = new CastX2PNode(addr);
3016   addr = _gvn.transform(addr);
3017   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
3018   flush = _gvn.transform(flush);
3019   set_memory(flush, TypeRawPtr::BOTTOM);
3020   return true;
3021 }
3022 
3023 //----------------------------inline_unsafe_writeback0-------------------------
3024 // public native void Unsafe.writeback0(long address)
3025 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
3026   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
3027     return false;
3028   }
3029   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
3030     return false;
3031   }
3032 #ifndef PRODUCT
3033   assert(Matcher::has_match_rule(Op_CacheWB),
3034          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
3035                 : "found match rule for CacheWBPostSync but not CacheWB"));
3036 
3037 #endif
3038   null_check_receiver();  // null-check, then ignore
3039   Node *sync;
3040   if (is_pre) {
3041     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
3042   } else {
3043     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
3044   }
3045   sync = _gvn.transform(sync);
3046   set_memory(sync, TypeRawPtr::BOTTOM);
3047   return true;
3048 }
3049 
3050 //----------------------------inline_unsafe_allocate---------------------------
3051 // public native Object Unsafe.allocateInstance(Class<?> cls);
3052 bool LibraryCallKit::inline_unsafe_allocate() {
3053 
3054 #if INCLUDE_JVMTI
3055   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3056     return false;
3057   }
3058 #endif //INCLUDE_JVMTI
3059 
3060   if (callee()->is_static())  return false;  // caller must have the capability!
3061 
3062   null_check_receiver();  // null-check, then ignore
3063   Node* cls = null_check(argument(1));
3064   if (stopped())  return true;
3065 
3066   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
3067   kls = null_check(kls);
3068   if (stopped())  return true;  // argument was like int.class
3069 
3070 #if INCLUDE_JVMTI
3071     // Don't try to access new allocated obj in the intrinsic.
3072     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
3073     // Deoptimize and allocate in interpreter instead.
3074     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
3075     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
3076     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
3077     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3078     {
3079       BuildCutout unless(this, tst, PROB_MAX);
3080       uncommon_trap(Deoptimization::Reason_intrinsic,
3081                     Deoptimization::Action_make_not_entrant);
3082     }
3083     if (stopped()) {
3084       return true;
3085     }
3086 #endif //INCLUDE_JVMTI
3087 
3088   Node* test = nullptr;
3089   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3090     // Note:  The argument might still be an illegal value like
3091     // Serializable.class or Object[].class.   The runtime will handle it.
3092     // But we must make an explicit check for initialization.
3093     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3094     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3095     // can generate code to load it as unsigned byte.
3096     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3097     Node* bits = intcon(InstanceKlass::fully_initialized);
3098     test = _gvn.transform(new SubINode(inst, bits));
3099     // The 'test' is non-zero if we need to take a slow path.
3100   }
3101   Node* obj = nullptr;
3102   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3103   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3104     obj = InlineTypeNode::make_default(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3105   } else {
3106     obj = new_instance(kls, test);
3107   }
3108   set_result(obj);
3109   return true;
3110 }
3111 
3112 //------------------------inline_native_time_funcs--------------
3113 // inline code for System.currentTimeMillis() and System.nanoTime()
3114 // these have the same type and signature
3115 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3116   const TypeFunc* tf = OptoRuntime::void_long_Type();
3117   const TypePtr* no_memory_effects = nullptr;
3118   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3119   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3120 #ifdef ASSERT
3121   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3122   assert(value_top == top(), "second value must be top");
3123 #endif
3124   set_result(value);
3125   return true;
3126 }
3127 
3128 
3129 #if INCLUDE_JVMTI
3130 
3131 // When notifications are disabled then just update the VTMS transition bit and return.
3132 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
3133 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
3134   if (!DoJVMTIVirtualThreadTransitions) {
3135     return true;
3136   }
3137   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
3138   IdealKit ideal(this);
3139 
3140   Node* ONE = ideal.ConI(1);
3141   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
3142   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
3143   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3144 
3145   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
3146     sync_kit(ideal);
3147     // if notifyJvmti enabled then make a call to the given SharedRuntime function
3148     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
3149     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
3150     ideal.sync_kit(this);
3151   } ideal.else_(); {
3152     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
3153     Node* thread = ideal.thread();
3154     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
3155     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
3156     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3157 
3158     sync_kit(ideal);
3159     access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3160     access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3161 
3162     ideal.sync_kit(this);
3163   } ideal.end_if();
3164   final_sync(ideal);
3165 
3166   return true;
3167 }
3168 
3169 // Always update the temporary VTMS transition bit.
3170 bool LibraryCallKit::inline_native_notify_jvmti_hide() {
3171   if (!DoJVMTIVirtualThreadTransitions) {
3172     return true;
3173   }
3174   IdealKit ideal(this);
3175 
3176   {
3177     // unconditionally update the temporary VTMS transition bit in current JavaThread
3178     Node* thread = ideal.thread();
3179     Node* hide = _gvn.transform(argument(0)); // hide argument for temporary VTMS transition notification
3180     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset()));
3181     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3182 
3183     sync_kit(ideal);
3184     access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3185     ideal.sync_kit(this);
3186   }
3187   final_sync(ideal);
3188 
3189   return true;
3190 }
3191 
3192 // Always update the is_disable_suspend bit.
3193 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
3194   if (!DoJVMTIVirtualThreadTransitions) {
3195     return true;
3196   }
3197   IdealKit ideal(this);
3198 
3199   {
3200     // unconditionally update the is_disable_suspend bit in current JavaThread
3201     Node* thread = ideal.thread();
3202     Node* arg = _gvn.transform(argument(0)); // argument for notification
3203     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
3204     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3205 
3206     sync_kit(ideal);
3207     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3208     ideal.sync_kit(this);
3209   }
3210   final_sync(ideal);
3211 
3212   return true;
3213 }
3214 
3215 #endif // INCLUDE_JVMTI
3216 
3217 #ifdef JFR_HAVE_INTRINSICS
3218 
3219 /**
3220  * if oop->klass != null
3221  *   // normal class
3222  *   epoch = _epoch_state ? 2 : 1
3223  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3224  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3225  *   }
3226  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3227  * else
3228  *   // primitive class
3229  *   if oop->array_klass != null
3230  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3231  *   else
3232  *     id = LAST_TYPE_ID + 1 // void class path
3233  *   if (!signaled)
3234  *     signaled = true
3235  */
3236 bool LibraryCallKit::inline_native_classID() {
3237   Node* cls = argument(0);
3238 
3239   IdealKit ideal(this);
3240 #define __ ideal.
3241   IdealVariable result(ideal); __ declarations_done();
3242   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3243                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3244                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3245 
3246 
3247   __ if_then(kls, BoolTest::ne, null()); {
3248     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3249     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3250 
3251     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3252     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3253     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3254     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3255     mask = _gvn.transform(new OrLNode(mask, epoch));
3256     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3257 
3258     float unlikely  = PROB_UNLIKELY(0.999);
3259     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3260       sync_kit(ideal);
3261       make_runtime_call(RC_LEAF,
3262                         OptoRuntime::class_id_load_barrier_Type(),
3263                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3264                         "class id load barrier",
3265                         TypePtr::BOTTOM,
3266                         kls);
3267       ideal.sync_kit(this);
3268     } __ end_if();
3269 
3270     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3271   } __ else_(); {
3272     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3273                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3274                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3275     __ if_then(array_kls, BoolTest::ne, null()); {
3276       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3277       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3278       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3279       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3280     } __ else_(); {
3281       // void class case
3282       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3283     } __ end_if();
3284 
3285     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3286     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3287     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3288       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3289     } __ end_if();
3290   } __ end_if();
3291 
3292   final_sync(ideal);
3293   set_result(ideal.value(result));
3294 #undef __
3295   return true;
3296 }
3297 
3298 //------------------------inline_native_jvm_commit------------------
3299 bool LibraryCallKit::inline_native_jvm_commit() {
3300   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3301 
3302   // Save input memory and i_o state.
3303   Node* input_memory_state = reset_memory();
3304   set_all_memory(input_memory_state);
3305   Node* input_io_state = i_o();
3306 
3307   // TLS.
3308   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3309   // Jfr java buffer.
3310   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3311   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3312   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3313 
3314   // Load the current value of the notified field in the JfrThreadLocal.
3315   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3316   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3317 
3318   // Test for notification.
3319   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3320   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3321   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3322 
3323   // True branch, is notified.
3324   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3325   set_control(is_notified);
3326 
3327   // Reset notified state.
3328   Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered);
3329 
3330   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3331   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3332   // Convert the machine-word to a long.
3333   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3334 
3335   // False branch, not notified.
3336   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3337   set_control(not_notified);
3338   set_all_memory(input_memory_state);
3339 
3340   // Arg is the next position as a long.
3341   Node* arg = argument(0);
3342   // Convert long to machine-word.
3343   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3344 
3345   // Store the next_position to the underlying jfr java buffer.
3346   Node* commit_memory;
3347 #ifdef _LP64
3348   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release);
3349 #else
3350   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release);
3351 #endif
3352 
3353   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3354   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3355   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3356   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3357 
3358   // And flags with lease constant.
3359   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3360 
3361   // Branch on lease to conditionalize returning the leased java buffer.
3362   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3363   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3364   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3365 
3366   // False branch, not a lease.
3367   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3368 
3369   // True branch, is lease.
3370   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3371   set_control(is_lease);
3372 
3373   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3374   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3375                                               OptoRuntime::void_void_Type(),
3376                                               SharedRuntime::jfr_return_lease(),
3377                                               "return_lease", TypePtr::BOTTOM);
3378   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3379 
3380   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3381   record_for_igvn(lease_compare_rgn);
3382   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3383   record_for_igvn(lease_compare_mem);
3384   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3385   record_for_igvn(lease_compare_io);
3386   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3387   record_for_igvn(lease_result_value);
3388 
3389   // Update control and phi nodes.
3390   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3391   lease_compare_rgn->init_req(_false_path, not_lease);
3392 
3393   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3394   lease_compare_mem->init_req(_false_path, commit_memory);
3395 
3396   lease_compare_io->init_req(_true_path, i_o());
3397   lease_compare_io->init_req(_false_path, input_io_state);
3398 
3399   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3400   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3401 
3402   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3403   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3404   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3405   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3406 
3407   // Update control and phi nodes.
3408   result_rgn->init_req(_true_path, is_notified);
3409   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3410 
3411   result_mem->init_req(_true_path, notified_reset_memory);
3412   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3413 
3414   result_io->init_req(_true_path, input_io_state);
3415   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3416 
3417   result_value->init_req(_true_path, current_pos);
3418   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3419 
3420   // Set output state.
3421   set_control(_gvn.transform(result_rgn));
3422   set_all_memory(_gvn.transform(result_mem));
3423   set_i_o(_gvn.transform(result_io));
3424   set_result(result_rgn, result_value);
3425   return true;
3426 }
3427 
3428 /*
3429  * The intrinsic is a model of this pseudo-code:
3430  *
3431  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3432  * jobject h_event_writer = tl->java_event_writer();
3433  * if (h_event_writer == nullptr) {
3434  *   return nullptr;
3435  * }
3436  * oop threadObj = Thread::threadObj();
3437  * oop vthread = java_lang_Thread::vthread(threadObj);
3438  * traceid tid;
3439  * bool pinVirtualThread;
3440  * bool excluded;
3441  * if (vthread != threadObj) {  // i.e. current thread is virtual
3442  *   tid = java_lang_Thread::tid(vthread);
3443  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3444  *   pinVirtualThread = VMContinuations;
3445  *   excluded = vthread_epoch_raw & excluded_mask;
3446  *   if (!excluded) {
3447  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3448  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3449  *     if (vthread_epoch != current_epoch) {
3450  *       write_checkpoint();
3451  *     }
3452  *   }
3453  * } else {
3454  *   tid = java_lang_Thread::tid(threadObj);
3455  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3456  *   pinVirtualThread = false;
3457  *   excluded = thread_epoch_raw & excluded_mask;
3458  * }
3459  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3460  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3461  * if (tid_in_event_writer != tid) {
3462  *   setField(event_writer, "pinVirtualThread", pinVirtualThread);
3463  *   setField(event_writer, "excluded", excluded);
3464  *   setField(event_writer, "threadID", tid);
3465  * }
3466  * return event_writer
3467  */
3468 bool LibraryCallKit::inline_native_getEventWriter() {
3469   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3470 
3471   // Save input memory and i_o state.
3472   Node* input_memory_state = reset_memory();
3473   set_all_memory(input_memory_state);
3474   Node* input_io_state = i_o();
3475 
3476   Node* excluded_mask = _gvn.intcon(32768);
3477   Node* epoch_mask = _gvn.intcon(32767);
3478 
3479   // TLS
3480   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3481 
3482   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3483   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3484 
3485   // Load the eventwriter jobject handle.
3486   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3487 
3488   // Null check the jobject handle.
3489   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3490   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3491   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3492 
3493   // False path, jobj is null.
3494   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3495 
3496   // True path, jobj is not null.
3497   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3498 
3499   set_control(jobj_is_not_null);
3500 
3501   // Load the threadObj for the CarrierThread.
3502   Node* threadObj = generate_current_thread(tls_ptr);
3503 
3504   // Load the vthread.
3505   Node* vthread = generate_virtual_thread(tls_ptr);
3506 
3507   // If vthread != threadObj, this is a virtual thread.
3508   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3509   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3510   IfNode* iff_vthread_not_equal_threadObj =
3511     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3512 
3513   // False branch, fallback to threadObj.
3514   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3515   set_control(vthread_equal_threadObj);
3516 
3517   // Load the tid field from the vthread object.
3518   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3519 
3520   // Load the raw epoch value from the threadObj.
3521   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3522   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3523                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3524 
3525   // Mask off the excluded information from the epoch.
3526   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3527 
3528   // True branch, this is a virtual thread.
3529   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3530   set_control(vthread_not_equal_threadObj);
3531 
3532   // Load the tid field from the vthread object.
3533   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3534 
3535   // Continuation support determines if a virtual thread should be pinned.
3536   Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations));
3537   Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3538 
3539   // Load the raw epoch value from the vthread.
3540   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3541   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3542                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3543 
3544   // Mask off the excluded information from the epoch.
3545   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3546 
3547   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3548   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3549   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3550   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3551 
3552   // False branch, vthread is excluded, no need to write epoch info.
3553   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3554 
3555   // True branch, vthread is included, update epoch info.
3556   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3557   set_control(included);
3558 
3559   // Get epoch value.
3560   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3561 
3562   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3563   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3564   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3565 
3566   // Compare the epoch in the vthread to the current epoch generation.
3567   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3568   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3569   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3570 
3571   // False path, epoch is equal, checkpoint information is valid.
3572   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3573 
3574   // True path, epoch is not equal, write a checkpoint for the vthread.
3575   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3576 
3577   set_control(epoch_is_not_equal);
3578 
3579   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3580   // The call also updates the native thread local thread id and the vthread with the current epoch.
3581   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3582                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3583                                                   SharedRuntime::jfr_write_checkpoint(),
3584                                                   "write_checkpoint", TypePtr::BOTTOM);
3585   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3586 
3587   // vthread epoch != current epoch
3588   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3589   record_for_igvn(epoch_compare_rgn);
3590   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3591   record_for_igvn(epoch_compare_mem);
3592   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3593   record_for_igvn(epoch_compare_io);
3594 
3595   // Update control and phi nodes.
3596   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3597   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3598   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3599   epoch_compare_mem->init_req(_false_path, input_memory_state);
3600   epoch_compare_io->init_req(_true_path, i_o());
3601   epoch_compare_io->init_req(_false_path, input_io_state);
3602 
3603   // excluded != true
3604   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3605   record_for_igvn(exclude_compare_rgn);
3606   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3607   record_for_igvn(exclude_compare_mem);
3608   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3609   record_for_igvn(exclude_compare_io);
3610 
3611   // Update control and phi nodes.
3612   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3613   exclude_compare_rgn->init_req(_false_path, excluded);
3614   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3615   exclude_compare_mem->init_req(_false_path, input_memory_state);
3616   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3617   exclude_compare_io->init_req(_false_path, input_io_state);
3618 
3619   // vthread != threadObj
3620   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3621   record_for_igvn(vthread_compare_rgn);
3622   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3623   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3624   record_for_igvn(vthread_compare_io);
3625   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3626   record_for_igvn(tid);
3627   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3628   record_for_igvn(exclusion);
3629   PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3630   record_for_igvn(pinVirtualThread);
3631 
3632   // Update control and phi nodes.
3633   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3634   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3635   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3636   vthread_compare_mem->init_req(_false_path, input_memory_state);
3637   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3638   vthread_compare_io->init_req(_false_path, input_io_state);
3639   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3640   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3641   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3642   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3643   pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support));
3644   pinVirtualThread->init_req(_false_path, _gvn.intcon(0));
3645 
3646   // Update branch state.
3647   set_control(_gvn.transform(vthread_compare_rgn));
3648   set_all_memory(_gvn.transform(vthread_compare_mem));
3649   set_i_o(_gvn.transform(vthread_compare_io));
3650 
3651   // Load the event writer oop by dereferencing the jobject handle.
3652   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3653   assert(klass_EventWriter->is_loaded(), "invariant");
3654   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3655   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3656   const TypeOopPtr* const xtype = aklass->as_instance_type();
3657   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3658   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3659 
3660   // Load the current thread id from the event writer object.
3661   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3662   // Get the field offset to, conditionally, store an updated tid value later.
3663   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3664   const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr();
3665   // Get the field offset to, conditionally, store an updated exclusion value later.
3666   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3667   const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr();
3668   // Get the field offset to, conditionally, store an updated pinVirtualThread value later.
3669   Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false);
3670   const TypePtr* event_writer_pin_field_type = _gvn.type(event_writer_pin_field)->isa_ptr();
3671 
3672   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3673   record_for_igvn(event_writer_tid_compare_rgn);
3674   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3675   record_for_igvn(event_writer_tid_compare_mem);
3676   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3677   record_for_igvn(event_writer_tid_compare_io);
3678 
3679   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3680   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3681   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3682   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3683 
3684   // False path, tids are the same.
3685   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3686 
3687   // True path, tid is not equal, need to update the tid in the event writer.
3688   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3689   record_for_igvn(tid_is_not_equal);
3690 
3691   // Store the pin state to the event writer.
3692   store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, event_writer_pin_field_type, MemNode::unordered);
3693 
3694   // Store the exclusion state to the event writer.
3695   store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered);
3696 
3697   // Store the tid to the event writer.
3698   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered);
3699 
3700   // Update control and phi nodes.
3701   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3702   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3703   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3704   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3705   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3706   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3707 
3708   // Result of top level CFG, Memory, IO and Value.
3709   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3710   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3711   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3712   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3713 
3714   // Result control.
3715   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3716   result_rgn->init_req(_false_path, jobj_is_null);
3717 
3718   // Result memory.
3719   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3720   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3721 
3722   // Result IO.
3723   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3724   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3725 
3726   // Result value.
3727   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3728   result_value->init_req(_false_path, null()); // return null
3729 
3730   // Set output state.
3731   set_control(_gvn.transform(result_rgn));
3732   set_all_memory(_gvn.transform(result_mem));
3733   set_i_o(_gvn.transform(result_io));
3734   set_result(result_rgn, result_value);
3735   return true;
3736 }
3737 
3738 /*
3739  * The intrinsic is a model of this pseudo-code:
3740  *
3741  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3742  * if (carrierThread != thread) { // is virtual thread
3743  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3744  *   bool excluded = vthread_epoch_raw & excluded_mask;
3745  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3746  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3747  *   if (!excluded) {
3748  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3749  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3750  *   }
3751  *   Atomic::release_store(&tl->_vthread, true);
3752  *   return;
3753  * }
3754  * Atomic::release_store(&tl->_vthread, false);
3755  */
3756 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3757   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3758 
3759   Node* input_memory_state = reset_memory();
3760   set_all_memory(input_memory_state);
3761 
3762   Node* excluded_mask = _gvn.intcon(32768);
3763   Node* epoch_mask = _gvn.intcon(32767);
3764 
3765   Node* const carrierThread = generate_current_thread(jt);
3766   // If thread != carrierThread, this is a virtual thread.
3767   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3768   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3769   IfNode* iff_thread_not_equal_carrierThread =
3770     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3771 
3772   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3773 
3774   // False branch, is carrierThread.
3775   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3776   // Store release
3777   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3778 
3779   set_all_memory(input_memory_state);
3780 
3781   // True branch, is virtual thread.
3782   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3783   set_control(thread_not_equal_carrierThread);
3784 
3785   // Load the raw epoch value from the vthread.
3786   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3787   Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR,
3788                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3789 
3790   // Mask off the excluded information from the epoch.
3791   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3792 
3793   // Load the tid field from the thread.
3794   Node* tid = load_field_from_object(thread, "tid", "J");
3795 
3796   // Store the vthread tid to the jfr thread local.
3797   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3798   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true);
3799 
3800   // Branch is_excluded to conditionalize updating the epoch .
3801   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3802   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3803   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3804 
3805   // True branch, vthread is excluded, no need to write epoch info.
3806   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3807   set_control(excluded);
3808   Node* vthread_is_excluded = _gvn.intcon(1);
3809 
3810   // False branch, vthread is included, update epoch info.
3811   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3812   set_control(included);
3813   Node* vthread_is_included = _gvn.intcon(0);
3814 
3815   // Get epoch value.
3816   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3817 
3818   // Store the vthread epoch to the jfr thread local.
3819   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3820   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true);
3821 
3822   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3823   record_for_igvn(excluded_rgn);
3824   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3825   record_for_igvn(excluded_mem);
3826   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3827   record_for_igvn(exclusion);
3828 
3829   // Merge the excluded control and memory.
3830   excluded_rgn->init_req(_true_path, excluded);
3831   excluded_rgn->init_req(_false_path, included);
3832   excluded_mem->init_req(_true_path, tid_memory);
3833   excluded_mem->init_req(_false_path, included_memory);
3834   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3835   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3836 
3837   // Set intermediate state.
3838   set_control(_gvn.transform(excluded_rgn));
3839   set_all_memory(excluded_mem);
3840 
3841   // Store the vthread exclusion state to the jfr thread local.
3842   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3843   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true);
3844 
3845   // Store release
3846   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3847 
3848   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3849   record_for_igvn(thread_compare_rgn);
3850   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3851   record_for_igvn(thread_compare_mem);
3852   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3853   record_for_igvn(vthread);
3854 
3855   // Merge the thread_compare control and memory.
3856   thread_compare_rgn->init_req(_true_path, control());
3857   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3858   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3859   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3860 
3861   // Set output state.
3862   set_control(_gvn.transform(thread_compare_rgn));
3863   set_all_memory(_gvn.transform(thread_compare_mem));
3864 }
3865 
3866 #endif // JFR_HAVE_INTRINSICS
3867 
3868 //------------------------inline_native_currentCarrierThread------------------
3869 bool LibraryCallKit::inline_native_currentCarrierThread() {
3870   Node* junk = nullptr;
3871   set_result(generate_current_thread(junk));
3872   return true;
3873 }
3874 
3875 //------------------------inline_native_currentThread------------------
3876 bool LibraryCallKit::inline_native_currentThread() {
3877   Node* junk = nullptr;
3878   set_result(generate_virtual_thread(junk));
3879   return true;
3880 }
3881 
3882 //------------------------inline_native_setVthread------------------
3883 bool LibraryCallKit::inline_native_setCurrentThread() {
3884   assert(C->method()->changes_current_thread(),
3885          "method changes current Thread but is not annotated ChangesCurrentThread");
3886   Node* arr = argument(1);
3887   Node* thread = _gvn.transform(new ThreadLocalNode());
3888   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3889   Node* thread_obj_handle
3890     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3891   thread_obj_handle = _gvn.transform(thread_obj_handle);
3892   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3893   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3894   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3895   return true;
3896 }
3897 
3898 const Type* LibraryCallKit::scopedValueCache_type() {
3899   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3900   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3901   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
3902 
3903   // Because we create the scopedValue cache lazily we have to make the
3904   // type of the result BotPTR.
3905   bool xk = etype->klass_is_exact();
3906   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
3907   return objects_type;
3908 }
3909 
3910 Node* LibraryCallKit::scopedValueCache_helper() {
3911   Node* thread = _gvn.transform(new ThreadLocalNode());
3912   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3913   // We cannot use immutable_memory() because we might flip onto a
3914   // different carrier thread, at which point we'll need to use that
3915   // carrier thread's cache.
3916   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3917   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3918   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3919 }
3920 
3921 //------------------------inline_native_scopedValueCache------------------
3922 bool LibraryCallKit::inline_native_scopedValueCache() {
3923   Node* cache_obj_handle = scopedValueCache_helper();
3924   const Type* objects_type = scopedValueCache_type();
3925   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3926 
3927   return true;
3928 }
3929 
3930 //------------------------inline_native_setScopedValueCache------------------
3931 bool LibraryCallKit::inline_native_setScopedValueCache() {
3932   Node* arr = argument(0);
3933   Node* cache_obj_handle = scopedValueCache_helper();
3934   const Type* objects_type = scopedValueCache_type();
3935 
3936   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3937   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3938 
3939   return true;
3940 }
3941 
3942 //------------------------inline_native_Continuation_pin and unpin-----------
3943 
3944 // Shared implementation routine for both pin and unpin.
3945 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) {
3946   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3947 
3948   // Save input memory.
3949   Node* input_memory_state = reset_memory();
3950   set_all_memory(input_memory_state);
3951 
3952   // TLS
3953   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3954   Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset()));
3955   Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered);
3956 
3957   // Null check the last continuation object.
3958   Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null()));
3959   Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne));
3960   IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3961 
3962   // False path, last continuation is null.
3963   Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null));
3964 
3965   // True path, last continuation is not null.
3966   Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null));
3967 
3968   set_control(continuation_is_not_null);
3969 
3970   // Load the pin count from the last continuation.
3971   Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset()));
3972   Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered);
3973 
3974   // The loaded pin count is compared against a context specific rhs for over/underflow detection.
3975   Node* pin_count_rhs;
3976   if (unpin) {
3977     pin_count_rhs = _gvn.intcon(0);
3978   } else {
3979     pin_count_rhs = _gvn.intcon(UINT32_MAX);
3980   }
3981   Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs));
3982   Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq));
3983   IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN);
3984 
3985   // False branch, no pin count over/underflow. Increment or decrement pin count and store back.
3986   Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow));
3987   set_control(valid_pin_count);
3988 
3989   Node* next_pin_count;
3990   if (unpin) {
3991     next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1)));
3992   } else {
3993     next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1)));
3994   }
3995 
3996   Node* updated_pin_count_memory = store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, Compile::AliasIdxRaw, MemNode::unordered);
3997 
3998   // True branch, pin count over/underflow.
3999   Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow));
4000   {
4001     // Trap (but not deoptimize (Action_none)) and continue in the interpreter
4002     // which will throw IllegalStateException for pin count over/underflow.
4003     PreserveJVMState pjvms(this);
4004     set_control(pin_count_over_underflow);
4005     set_all_memory(input_memory_state);
4006     uncommon_trap_exact(Deoptimization::Reason_intrinsic,
4007                         Deoptimization::Action_none);
4008     assert(stopped(), "invariant");
4009   }
4010 
4011   // Result of top level CFG and Memory.
4012   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4013   record_for_igvn(result_rgn);
4014   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4015   record_for_igvn(result_mem);
4016 
4017   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
4018   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
4019   result_mem->init_req(_true_path, _gvn.transform(updated_pin_count_memory));
4020   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4021 
4022   // Set output state.
4023   set_control(_gvn.transform(result_rgn));
4024   set_all_memory(_gvn.transform(result_mem));
4025 
4026   return true;
4027 }
4028 
4029 //-----------------------load_klass_from_mirror_common-------------------------
4030 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
4031 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
4032 // and branch to the given path on the region.
4033 // If never_see_null, take an uncommon trap on null, so we can optimistically
4034 // compile for the non-null case.
4035 // If the region is null, force never_see_null = true.
4036 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
4037                                                     bool never_see_null,
4038                                                     RegionNode* region,
4039                                                     int null_path,
4040                                                     int offset) {
4041   if (region == nullptr)  never_see_null = true;
4042   Node* p = basic_plus_adr(mirror, offset);
4043   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4044   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
4045   Node* null_ctl = top();
4046   kls = null_check_oop(kls, &null_ctl, never_see_null);
4047   if (region != nullptr) {
4048     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
4049     region->init_req(null_path, null_ctl);
4050   } else {
4051     assert(null_ctl == top(), "no loose ends");
4052   }
4053   return kls;
4054 }
4055 
4056 //--------------------(inline_native_Class_query helpers)---------------------
4057 // Use this for JVM_ACC_INTERFACE.
4058 // Fall through if (mods & mask) == bits, take the guard otherwise.
4059 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4060                                                  ByteSize offset, const Type* type, BasicType bt) {
4061   // Branch around if the given klass has the given modifier bit set.
4062   // Like generate_guard, adds a new path onto the region.
4063   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4064   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4065   Node* mask = intcon(modifier_mask);
4066   Node* bits = intcon(modifier_bits);
4067   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4068   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4069   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4070   return generate_fair_guard(bol, region);
4071 }
4072 
4073 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4074   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4075                                     Klass::access_flags_offset(), TypeInt::INT, T_INT);
4076 }
4077 
4078 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4079 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4080   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4081                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4082 }
4083 
4084 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4085   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4086 }
4087 
4088 //-------------------------inline_native_Class_query-------------------
4089 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4090   const Type* return_type = TypeInt::BOOL;
4091   Node* prim_return_value = top();  // what happens if it's a primitive class?
4092   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4093   bool expect_prim = false;     // most of these guys expect to work on refs
4094 
4095   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
4096 
4097   Node* mirror = argument(0);
4098   Node* obj    = top();
4099 
4100   switch (id) {
4101   case vmIntrinsics::_isInstance:
4102     // nothing is an instance of a primitive type
4103     prim_return_value = intcon(0);
4104     obj = argument(1);
4105     break;
4106   case vmIntrinsics::_getModifiers:
4107     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
4108     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
4109     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
4110     break;
4111   case vmIntrinsics::_isInterface:
4112     prim_return_value = intcon(0);
4113     break;
4114   case vmIntrinsics::_isArray:
4115     prim_return_value = intcon(0);
4116     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
4117     break;
4118   case vmIntrinsics::_isPrimitive:
4119     prim_return_value = intcon(1);
4120     expect_prim = true;  // obviously
4121     break;
4122   case vmIntrinsics::_isHidden:
4123     prim_return_value = intcon(0);
4124     break;
4125   case vmIntrinsics::_getSuperclass:
4126     prim_return_value = null();
4127     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
4128     break;
4129   case vmIntrinsics::_getClassAccessFlags:
4130     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
4131     return_type = TypeInt::INT;  // not bool!  6297094
4132     break;
4133   default:
4134     fatal_unexpected_iid(id);
4135     break;
4136   }
4137 
4138   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4139   if (mirror_con == nullptr)  return false;  // cannot happen?
4140 
4141 #ifndef PRODUCT
4142   if (C->print_intrinsics() || C->print_inlining()) {
4143     ciType* k = mirror_con->java_mirror_type();
4144     if (k) {
4145       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
4146       k->print_name();
4147       tty->cr();
4148     }
4149   }
4150 #endif
4151 
4152   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
4153   RegionNode* region = new RegionNode(PATH_LIMIT);
4154   record_for_igvn(region);
4155   PhiNode* phi = new PhiNode(region, return_type);
4156 
4157   // The mirror will never be null of Reflection.getClassAccessFlags, however
4158   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
4159   // if it is. See bug 4774291.
4160 
4161   // For Reflection.getClassAccessFlags(), the null check occurs in
4162   // the wrong place; see inline_unsafe_access(), above, for a similar
4163   // situation.
4164   mirror = null_check(mirror);
4165   // If mirror or obj is dead, only null-path is taken.
4166   if (stopped())  return true;
4167 
4168   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
4169 
4170   // Now load the mirror's klass metaobject, and null-check it.
4171   // Side-effects region with the control path if the klass is null.
4172   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
4173   // If kls is null, we have a primitive mirror.
4174   phi->init_req(_prim_path, prim_return_value);
4175   if (stopped()) { set_result(region, phi); return true; }
4176   bool safe_for_replace = (region->in(_prim_path) == top());
4177 
4178   Node* p;  // handy temp
4179   Node* null_ctl;
4180 
4181   // Now that we have the non-null klass, we can perform the real query.
4182   // For constant classes, the query will constant-fold in LoadNode::Value.
4183   Node* query_value = top();
4184   switch (id) {
4185   case vmIntrinsics::_isInstance:
4186     // nothing is an instance of a primitive type
4187     query_value = gen_instanceof(obj, kls, safe_for_replace);
4188     break;
4189 
4190   case vmIntrinsics::_getModifiers:
4191     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
4192     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4193     break;
4194 
4195   case vmIntrinsics::_isInterface:
4196     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4197     if (generate_interface_guard(kls, region) != nullptr)
4198       // A guard was added.  If the guard is taken, it was an interface.
4199       phi->add_req(intcon(1));
4200     // If we fall through, it's a plain class.
4201     query_value = intcon(0);
4202     break;
4203 
4204   case vmIntrinsics::_isArray:
4205     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
4206     if (generate_array_guard(kls, region) != nullptr)
4207       // A guard was added.  If the guard is taken, it was an array.
4208       phi->add_req(intcon(1));
4209     // If we fall through, it's a plain class.
4210     query_value = intcon(0);
4211     break;
4212 
4213   case vmIntrinsics::_isPrimitive:
4214     query_value = intcon(0); // "normal" path produces false
4215     break;
4216 
4217   case vmIntrinsics::_isHidden:
4218     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
4219     if (generate_hidden_class_guard(kls, region) != nullptr)
4220       // A guard was added.  If the guard is taken, it was an hidden class.
4221       phi->add_req(intcon(1));
4222     // If we fall through, it's a plain class.
4223     query_value = intcon(0);
4224     break;
4225 
4226 
4227   case vmIntrinsics::_getSuperclass:
4228     // The rules here are somewhat unfortunate, but we can still do better
4229     // with random logic than with a JNI call.
4230     // Interfaces store null or Object as _super, but must report null.
4231     // Arrays store an intermediate super as _super, but must report Object.
4232     // Other types can report the actual _super.
4233     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4234     if (generate_interface_guard(kls, region) != nullptr)
4235       // A guard was added.  If the guard is taken, it was an interface.
4236       phi->add_req(null());
4237     if (generate_array_guard(kls, region) != nullptr)
4238       // A guard was added.  If the guard is taken, it was an array.
4239       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4240     // If we fall through, it's a plain class.  Get its _super.
4241     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4242     kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4243     null_ctl = top();
4244     kls = null_check_oop(kls, &null_ctl);
4245     if (null_ctl != top()) {
4246       // If the guard is taken, Object.superClass is null (both klass and mirror).
4247       region->add_req(null_ctl);
4248       phi   ->add_req(null());
4249     }
4250     if (!stopped()) {
4251       query_value = load_mirror_from_klass(kls);
4252     }
4253     break;
4254 
4255   case vmIntrinsics::_getClassAccessFlags:
4256     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4257     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4258     break;
4259 
4260   default:
4261     fatal_unexpected_iid(id);
4262     break;
4263   }
4264 
4265   // Fall-through is the normal case of a query to a real class.
4266   phi->init_req(1, query_value);
4267   region->init_req(1, control());
4268 
4269   C->set_has_split_ifs(true); // Has chance for split-if optimization
4270   set_result(region, phi);
4271   return true;
4272 }
4273 
4274 
4275 //-------------------------inline_Class_cast-------------------
4276 bool LibraryCallKit::inline_Class_cast() {
4277   Node* mirror = argument(0); // Class
4278   Node* obj    = argument(1);
4279   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4280   if (mirror_con == nullptr) {
4281     return false;  // dead path (mirror->is_top()).
4282   }
4283   if (obj == nullptr || obj->is_top()) {
4284     return false;  // dead path
4285   }
4286   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4287 
4288   // First, see if Class.cast() can be folded statically.
4289   // java_mirror_type() returns non-null for compile-time Class constants.
4290   bool is_null_free_array = false;
4291   ciType* tm = mirror_con->java_mirror_type(&is_null_free_array);
4292   if (tm != nullptr && tm->is_klass() &&
4293       tp != nullptr) {
4294     if (!tp->is_loaded()) {
4295       // Don't use intrinsic when class is not loaded.
4296       return false;
4297     } else {
4298       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4299       if (is_null_free_array) {
4300         tklass = tklass->is_aryklassptr()->cast_to_null_free();
4301       }
4302       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4303       if (static_res == Compile::SSC_always_true) {
4304         // isInstance() is true - fold the code.
4305         set_result(obj);
4306         return true;
4307       } else if (static_res == Compile::SSC_always_false) {
4308         // Don't use intrinsic, have to throw ClassCastException.
4309         // If the reference is null, the non-intrinsic bytecode will
4310         // be optimized appropriately.
4311         return false;
4312       }
4313     }
4314   }
4315 
4316   // Bailout intrinsic and do normal inlining if exception path is frequent.
4317   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4318     return false;
4319   }
4320 
4321   // Generate dynamic checks.
4322   // Class.cast() is java implementation of _checkcast bytecode.
4323   // Do checkcast (Parse::do_checkcast()) optimizations here.
4324 
4325   mirror = null_check(mirror);
4326   // If mirror is dead, only null-path is taken.
4327   if (stopped()) {
4328     return true;
4329   }
4330 
4331   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4332   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4333   RegionNode* region = new RegionNode(PATH_LIMIT);
4334   record_for_igvn(region);
4335 
4336   // Now load the mirror's klass metaobject, and null-check it.
4337   // If kls is null, we have a primitive mirror and
4338   // nothing is an instance of a primitive type.
4339   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4340 
4341   Node* res = top();
4342   Node* io = i_o();
4343   Node* mem = merged_memory();
4344   if (!stopped()) {
4345 
4346     Node* bad_type_ctrl = top();
4347     // Do checkcast optimizations.
4348     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4349     region->init_req(_bad_type_path, bad_type_ctrl);
4350   }
4351   if (region->in(_prim_path) != top() ||
4352       region->in(_bad_type_path) != top() ||
4353       region->in(_npe_path) != top()) {
4354     // Let Interpreter throw ClassCastException.
4355     PreserveJVMState pjvms(this);
4356     set_control(_gvn.transform(region));
4357     // Set IO and memory because gen_checkcast may override them when buffering inline types
4358     set_i_o(io);
4359     set_all_memory(mem);
4360     uncommon_trap(Deoptimization::Reason_intrinsic,
4361                   Deoptimization::Action_maybe_recompile);
4362   }
4363   if (!stopped()) {
4364     set_result(res);
4365   }
4366   return true;
4367 }
4368 
4369 
4370 //--------------------------inline_native_subtype_check------------------------
4371 // This intrinsic takes the JNI calls out of the heart of
4372 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4373 bool LibraryCallKit::inline_native_subtype_check() {
4374   // Pull both arguments off the stack.
4375   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4376   args[0] = argument(0);
4377   args[1] = argument(1);
4378   Node* klasses[2];             // corresponding Klasses: superk, subk
4379   klasses[0] = klasses[1] = top();
4380 
4381   enum {
4382     // A full decision tree on {superc is prim, subc is prim}:
4383     _prim_0_path = 1,           // {P,N} => false
4384                                 // {P,P} & superc!=subc => false
4385     _prim_same_path,            // {P,P} & superc==subc => true
4386     _prim_1_path,               // {N,P} => false
4387     _ref_subtype_path,          // {N,N} & subtype check wins => true
4388     _both_ref_path,             // {N,N} & subtype check loses => false
4389     PATH_LIMIT
4390   };
4391 
4392   RegionNode* region = new RegionNode(PATH_LIMIT);
4393   RegionNode* prim_region = new RegionNode(2);
4394   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4395   record_for_igvn(region);
4396   record_for_igvn(prim_region);
4397 
4398   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4399   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4400   int class_klass_offset = java_lang_Class::klass_offset();
4401 
4402   // First null-check both mirrors and load each mirror's klass metaobject.
4403   int which_arg;
4404   for (which_arg = 0; which_arg <= 1; which_arg++) {
4405     Node* arg = args[which_arg];
4406     arg = null_check(arg);
4407     if (stopped())  break;
4408     args[which_arg] = arg;
4409 
4410     Node* p = basic_plus_adr(arg, class_klass_offset);
4411     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4412     klasses[which_arg] = _gvn.transform(kls);
4413   }
4414 
4415   // Having loaded both klasses, test each for null.
4416   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4417   for (which_arg = 0; which_arg <= 1; which_arg++) {
4418     Node* kls = klasses[which_arg];
4419     Node* null_ctl = top();
4420     kls = null_check_oop(kls, &null_ctl, never_see_null);
4421     if (which_arg == 0) {
4422       prim_region->init_req(1, null_ctl);
4423     } else {
4424       region->init_req(_prim_1_path, null_ctl);
4425     }
4426     if (stopped())  break;
4427     klasses[which_arg] = kls;
4428   }
4429 
4430   if (!stopped()) {
4431     // now we have two reference types, in klasses[0..1]
4432     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4433     Node* superk = klasses[0];  // the receiver
4434     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4435     region->set_req(_ref_subtype_path, control());
4436   }
4437 
4438   // If both operands are primitive (both klasses null), then
4439   // we must return true when they are identical primitives.
4440   // It is convenient to test this after the first null klass check.
4441   // This path is also used if superc is a value mirror.
4442   set_control(_gvn.transform(prim_region));
4443   if (!stopped()) {
4444     // Since superc is primitive, make a guard for the superc==subc case.
4445     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4446     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4447     generate_fair_guard(bol_eq, region);
4448     if (region->req() == PATH_LIMIT+1) {
4449       // A guard was added.  If the added guard is taken, superc==subc.
4450       region->swap_edges(PATH_LIMIT, _prim_same_path);
4451       region->del_req(PATH_LIMIT);
4452     }
4453     region->set_req(_prim_0_path, control()); // Not equal after all.
4454   }
4455 
4456   // these are the only paths that produce 'true':
4457   phi->set_req(_prim_same_path,   intcon(1));
4458   phi->set_req(_ref_subtype_path, intcon(1));
4459 
4460   // pull together the cases:
4461   assert(region->req() == PATH_LIMIT, "sane region");
4462   for (uint i = 1; i < region->req(); i++) {
4463     Node* ctl = region->in(i);
4464     if (ctl == nullptr || ctl == top()) {
4465       region->set_req(i, top());
4466       phi   ->set_req(i, top());
4467     } else if (phi->in(i) == nullptr) {
4468       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4469     }
4470   }
4471 
4472   set_control(_gvn.transform(region));
4473   set_result(_gvn.transform(phi));
4474   return true;
4475 }
4476 
4477 //---------------------generate_array_guard_common------------------------
4478 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind) {
4479 
4480   if (stopped()) {
4481     return nullptr;
4482   }
4483 
4484   // Like generate_guard, adds a new path onto the region.
4485   jint  layout_con = 0;
4486   Node* layout_val = get_layout_helper(kls, layout_con);
4487   if (layout_val == nullptr) {
4488     bool query = 0;
4489     switch(kind) {
4490       case ObjectArray:    query = Klass::layout_helper_is_objArray(layout_con); break;
4491       case NonObjectArray: query = !Klass::layout_helper_is_objArray(layout_con); break;
4492       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4493       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4494       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4495       default:
4496         ShouldNotReachHere();
4497     }
4498     if (!query) {
4499       return nullptr;                       // never a branch
4500     } else {                             // always a branch
4501       Node* always_branch = control();
4502       if (region != nullptr)
4503         region->add_req(always_branch);
4504       set_control(top());
4505       return always_branch;
4506     }
4507   }
4508   unsigned int value = 0;
4509   BoolTest::mask btest = BoolTest::illegal;
4510   switch(kind) {
4511     case ObjectArray:
4512     case NonObjectArray: {
4513       value = Klass::_lh_array_tag_obj_value;
4514       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4515       btest = (kind == ObjectArray) ? BoolTest::eq : BoolTest::ne;
4516       break;
4517     }
4518     case TypeArray: {
4519       value = Klass::_lh_array_tag_type_value;
4520       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4521       btest = BoolTest::eq;
4522       break;
4523     }
4524     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4525     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4526     default:
4527       ShouldNotReachHere();
4528   }
4529   // Now test the correct condition.
4530   jint nval = (jint)value;
4531   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4532   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4533   return generate_fair_guard(bol, region);
4534 }
4535 
4536 //-----------------------inline_newNullRestrictedArray--------------------------
4537 // public static native Object[] newNullRestrictedArray(Class<?> componentType, int length);
4538 bool LibraryCallKit::inline_newNullRestrictedArray() {
4539   Node* componentType = argument(0);
4540   Node* length = argument(1);
4541 
4542   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4543   if (tp != nullptr) {
4544     ciInstanceKlass* ik = tp->instance_klass();
4545     if (ik == C->env()->Class_klass()) {
4546       ciType* t = tp->java_mirror_type();
4547       if (t != nullptr && t->is_inlinetype()) {
4548         ciArrayKlass* array_klass = ciArrayKlass::make(t, true);
4549         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4550           const TypeAryKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass, Type::trust_interfaces)->is_aryklassptr();
4551           array_klass_type = array_klass_type->cast_to_null_free();
4552           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false);  // no arguments to push
4553           set_result(obj);
4554           assert(gvn().type(obj)->is_aryptr()->is_null_free(), "must be null-free");
4555           return true;
4556         }
4557       }
4558     }
4559   }
4560   return false;
4561 }
4562 
4563 //-----------------------inline_native_newArray--------------------------
4564 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4565 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4566 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4567   Node* mirror;
4568   Node* count_val;
4569   if (uninitialized) {
4570     null_check_receiver();
4571     mirror    = argument(1);
4572     count_val = argument(2);
4573   } else {
4574     mirror    = argument(0);
4575     count_val = argument(1);
4576   }
4577 
4578   mirror = null_check(mirror);
4579   // If mirror or obj is dead, only null-path is taken.
4580   if (stopped())  return true;
4581 
4582   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4583   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4584   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4585   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4586   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4587 
4588   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4589   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4590                                                   result_reg, _slow_path);
4591   Node* normal_ctl   = control();
4592   Node* no_array_ctl = result_reg->in(_slow_path);
4593 
4594   // Generate code for the slow case.  We make a call to newArray().
4595   set_control(no_array_ctl);
4596   if (!stopped()) {
4597     // Either the input type is void.class, or else the
4598     // array klass has not yet been cached.  Either the
4599     // ensuing call will throw an exception, or else it
4600     // will cache the array klass for next time.
4601     PreserveJVMState pjvms(this);
4602     CallJavaNode* slow_call = nullptr;
4603     if (uninitialized) {
4604       // Generate optimized virtual call (holder class 'Unsafe' is final)
4605       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4606     } else {
4607       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4608     }
4609     Node* slow_result = set_results_for_java_call(slow_call);
4610     // this->control() comes from set_results_for_java_call
4611     result_reg->set_req(_slow_path, control());
4612     result_val->set_req(_slow_path, slow_result);
4613     result_io ->set_req(_slow_path, i_o());
4614     result_mem->set_req(_slow_path, reset_memory());
4615   }
4616 
4617   set_control(normal_ctl);
4618   if (!stopped()) {
4619     // Normal case:  The array type has been cached in the java.lang.Class.
4620     // The following call works fine even if the array type is polymorphic.
4621     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4622     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4623     result_reg->init_req(_normal_path, control());
4624     result_val->init_req(_normal_path, obj);
4625     result_io ->init_req(_normal_path, i_o());
4626     result_mem->init_req(_normal_path, reset_memory());
4627 
4628     if (uninitialized) {
4629       // Mark the allocation so that zeroing is skipped
4630       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4631       alloc->maybe_set_complete(&_gvn);
4632     }
4633   }
4634 
4635   // Return the combined state.
4636   set_i_o(        _gvn.transform(result_io)  );
4637   set_all_memory( _gvn.transform(result_mem));
4638 
4639   C->set_has_split_ifs(true); // Has chance for split-if optimization
4640   set_result(result_reg, result_val);
4641   return true;
4642 }
4643 
4644 //----------------------inline_native_getLength--------------------------
4645 // public static native int java.lang.reflect.Array.getLength(Object array);
4646 bool LibraryCallKit::inline_native_getLength() {
4647   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4648 
4649   Node* array = null_check(argument(0));
4650   // If array is dead, only null-path is taken.
4651   if (stopped())  return true;
4652 
4653   // Deoptimize if it is a non-array.
4654   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr);
4655 
4656   if (non_array != nullptr) {
4657     PreserveJVMState pjvms(this);
4658     set_control(non_array);
4659     uncommon_trap(Deoptimization::Reason_intrinsic,
4660                   Deoptimization::Action_maybe_recompile);
4661   }
4662 
4663   // If control is dead, only non-array-path is taken.
4664   if (stopped())  return true;
4665 
4666   // The works fine even if the array type is polymorphic.
4667   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4668   Node* result = load_array_length(array);
4669 
4670   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4671   set_result(result);
4672   return true;
4673 }
4674 
4675 //------------------------inline_array_copyOf----------------------------
4676 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4677 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4678 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4679   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4680 
4681   // Get the arguments.
4682   Node* original          = argument(0);
4683   Node* start             = is_copyOfRange? argument(1): intcon(0);
4684   Node* end               = is_copyOfRange? argument(2): argument(1);
4685   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4686 
4687   Node* newcopy = nullptr;
4688 
4689   // Set the original stack and the reexecute bit for the interpreter to reexecute
4690   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4691   { PreserveReexecuteState preexecs(this);
4692     jvms()->set_should_reexecute(true);
4693 
4694     array_type_mirror = null_check(array_type_mirror);
4695     original          = null_check(original);
4696 
4697     // Check if a null path was taken unconditionally.
4698     if (stopped())  return true;
4699 
4700     Node* orig_length = load_array_length(original);
4701 
4702     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4703     klass_node = null_check(klass_node);
4704 
4705     RegionNode* bailout = new RegionNode(1);
4706     record_for_igvn(bailout);
4707 
4708     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4709     // Bail out if that is so.
4710     // Inline type array may have object field that would require a
4711     // write barrier. Conservatively, go to slow path.
4712     // TODO 8251971: Optimize for the case when flat src/dst are later found
4713     // to not contain oops (i.e., move this check to the macro expansion phase).
4714     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4715     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
4716     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
4717     bool exclude_flat = UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
4718                         // Can src array be flat and contain oops?
4719                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
4720                         // Can dest array be flat and contain oops?
4721                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
4722     Node* not_objArray = exclude_flat ? generate_non_objArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
4723     if (not_objArray != nullptr) {
4724       // Improve the klass node's type from the new optimistic assumption:
4725       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4726       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
4727       Node* cast = new CastPPNode(control(), klass_node, akls);
4728       klass_node = _gvn.transform(cast);
4729     }
4730 
4731     // Bail out if either start or end is negative.
4732     generate_negative_guard(start, bailout, &start);
4733     generate_negative_guard(end,   bailout, &end);
4734 
4735     Node* length = end;
4736     if (_gvn.type(start) != TypeInt::ZERO) {
4737       length = _gvn.transform(new SubINode(end, start));
4738     }
4739 
4740     // Bail out if length is negative (i.e., if start > end).
4741     // Without this the new_array would throw
4742     // NegativeArraySizeException but IllegalArgumentException is what
4743     // should be thrown
4744     generate_negative_guard(length, bailout, &length);
4745 
4746     // Handle inline type arrays
4747     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
4748     if (!stopped()) {
4749       // TODO JDK-8329224
4750       if (!orig_t->is_null_free()) {
4751         // Not statically known to be null free, add a check
4752         generate_fair_guard(null_free_array_test(original), bailout);
4753       }
4754       orig_t = _gvn.type(original)->isa_aryptr();
4755       if (orig_t != nullptr && orig_t->is_flat()) {
4756         // Src is flat, check that dest is flat as well
4757         if (exclude_flat) {
4758           // Dest can't be flat, bail out
4759           bailout->add_req(control());
4760           set_control(top());
4761         } else {
4762           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
4763         }
4764       } else if (UseFlatArray && (orig_t == nullptr || !orig_t->is_not_flat()) &&
4765                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
4766                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
4767         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
4768         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
4769         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
4770         if (orig_t != nullptr) {
4771           orig_t = orig_t->cast_to_not_flat();
4772           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
4773         }
4774       }
4775       if (!can_validate) {
4776         // No validation. The subtype check emitted at macro expansion time will not go to the slow
4777         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
4778         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
4779         generate_fair_guard(flat_array_test(klass_node), bailout);
4780         generate_fair_guard(null_free_array_test(original), bailout);
4781       }
4782     }
4783 
4784     // Bail out if start is larger than the original length
4785     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4786     generate_negative_guard(orig_tail, bailout, &orig_tail);
4787 
4788     if (bailout->req() > 1) {
4789       PreserveJVMState pjvms(this);
4790       set_control(_gvn.transform(bailout));
4791       uncommon_trap(Deoptimization::Reason_intrinsic,
4792                     Deoptimization::Action_maybe_recompile);
4793     }
4794 
4795     if (!stopped()) {
4796       // How many elements will we copy from the original?
4797       // The answer is MinI(orig_tail, length).
4798       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4799 
4800       // Generate a direct call to the right arraycopy function(s).
4801       // We know the copy is disjoint but we might not know if the
4802       // oop stores need checking.
4803       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4804       // This will fail a store-check if x contains any non-nulls.
4805 
4806       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4807       // loads/stores but it is legal only if we're sure the
4808       // Arrays.copyOf would succeed. So we need all input arguments
4809       // to the copyOf to be validated, including that the copy to the
4810       // new array won't trigger an ArrayStoreException. That subtype
4811       // check can be optimized if we know something on the type of
4812       // the input array from type speculation.
4813       if (_gvn.type(klass_node)->singleton()) {
4814         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4815         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4816 
4817         int test = C->static_subtype_check(superk, subk);
4818         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4819           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4820           if (t_original->speculative_type() != nullptr) {
4821             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4822           }
4823         }
4824       }
4825 
4826       bool validated = false;
4827       // Reason_class_check rather than Reason_intrinsic because we
4828       // want to intrinsify even if this traps.
4829       if (can_validate) {
4830         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4831 
4832         if (not_subtype_ctrl != top()) {
4833           PreserveJVMState pjvms(this);
4834           set_control(not_subtype_ctrl);
4835           uncommon_trap(Deoptimization::Reason_class_check,
4836                         Deoptimization::Action_make_not_entrant);
4837           assert(stopped(), "Should be stopped");
4838         }
4839         validated = true;
4840       }
4841 
4842       if (!stopped()) {
4843         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4844 
4845         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4846                                                 load_object_klass(original), klass_node);
4847         if (!is_copyOfRange) {
4848           ac->set_copyof(validated);
4849         } else {
4850           ac->set_copyofrange(validated);
4851         }
4852         Node* n = _gvn.transform(ac);
4853         if (n == ac) {
4854           ac->connect_outputs(this);
4855         } else {
4856           assert(validated, "shouldn't transform if all arguments not validated");
4857           set_all_memory(n);
4858         }
4859       }
4860     }
4861   } // original reexecute is set back here
4862 
4863   C->set_has_split_ifs(true); // Has chance for split-if optimization
4864   if (!stopped()) {
4865     set_result(newcopy);
4866   }
4867   return true;
4868 }
4869 
4870 
4871 //----------------------generate_virtual_guard---------------------------
4872 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4873 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4874                                              RegionNode* slow_region) {
4875   ciMethod* method = callee();
4876   int vtable_index = method->vtable_index();
4877   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4878          "bad index %d", vtable_index);
4879   // Get the Method* out of the appropriate vtable entry.
4880   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4881                      vtable_index*vtableEntry::size_in_bytes() +
4882                      in_bytes(vtableEntry::method_offset());
4883   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4884   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4885 
4886   // Compare the target method with the expected method (e.g., Object.hashCode).
4887   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4888 
4889   Node* native_call = makecon(native_call_addr);
4890   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4891   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4892 
4893   return generate_slow_guard(test_native, slow_region);
4894 }
4895 
4896 //-----------------------generate_method_call----------------------------
4897 // Use generate_method_call to make a slow-call to the real
4898 // method if the fast path fails.  An alternative would be to
4899 // use a stub like OptoRuntime::slow_arraycopy_Java.
4900 // This only works for expanding the current library call,
4901 // not another intrinsic.  (E.g., don't use this for making an
4902 // arraycopy call inside of the copyOf intrinsic.)
4903 CallJavaNode*
4904 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4905   // When compiling the intrinsic method itself, do not use this technique.
4906   guarantee(callee() != C->method(), "cannot make slow-call to self");
4907 
4908   ciMethod* method = callee();
4909   // ensure the JVMS we have will be correct for this call
4910   guarantee(method_id == method->intrinsic_id(), "must match");
4911 
4912   const TypeFunc* tf = TypeFunc::make(method);
4913   if (res_not_null) {
4914     assert(tf->return_type() == T_OBJECT, "");
4915     const TypeTuple* range = tf->range_cc();
4916     const Type** fields = TypeTuple::fields(range->cnt());
4917     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4918     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4919     tf = TypeFunc::make(tf->domain_cc(), new_range);
4920   }
4921   CallJavaNode* slow_call;
4922   if (is_static) {
4923     assert(!is_virtual, "");
4924     slow_call = new CallStaticJavaNode(C, tf,
4925                            SharedRuntime::get_resolve_static_call_stub(), method);
4926   } else if (is_virtual) {
4927     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4928     int vtable_index = Method::invalid_vtable_index;
4929     if (UseInlineCaches) {
4930       // Suppress the vtable call
4931     } else {
4932       // hashCode and clone are not a miranda methods,
4933       // so the vtable index is fixed.
4934       // No need to use the linkResolver to get it.
4935        vtable_index = method->vtable_index();
4936        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4937               "bad index %d", vtable_index);
4938     }
4939     slow_call = new CallDynamicJavaNode(tf,
4940                           SharedRuntime::get_resolve_virtual_call_stub(),
4941                           method, vtable_index);
4942   } else {  // neither virtual nor static:  opt_virtual
4943     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4944     slow_call = new CallStaticJavaNode(C, tf,
4945                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4946     slow_call->set_optimized_virtual(true);
4947   }
4948   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4949     // To be able to issue a direct call (optimized virtual or virtual)
4950     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4951     // about the method being invoked should be attached to the call site to
4952     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4953     slow_call->set_override_symbolic_info(true);
4954   }
4955   set_arguments_for_java_call(slow_call);
4956   set_edges_for_java_call(slow_call);
4957   return slow_call;
4958 }
4959 
4960 
4961 /**
4962  * Build special case code for calls to hashCode on an object. This call may
4963  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4964  * slightly different code.
4965  */
4966 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4967   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4968   assert(!(is_virtual && is_static), "either virtual, special, or static");
4969 
4970   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4971 
4972   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4973   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4974   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4975   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4976   Node* obj = argument(0);
4977 
4978   // Don't intrinsify hashcode on inline types for now.
4979   // The "is locked" runtime check below also serves as inline type check and goes to the slow path.
4980   if (gvn().type(obj)->is_inlinetypeptr()) {
4981     return false;
4982   }
4983 
4984   if (!is_static) {
4985     // Check for hashing null object
4986     obj = null_check_receiver();
4987     if (stopped())  return true;        // unconditionally null
4988     result_reg->init_req(_null_path, top());
4989     result_val->init_req(_null_path, top());
4990   } else {
4991     // Do a null check, and return zero if null.
4992     // System.identityHashCode(null) == 0
4993     Node* null_ctl = top();
4994     obj = null_check_oop(obj, &null_ctl);
4995     result_reg->init_req(_null_path, null_ctl);
4996     result_val->init_req(_null_path, _gvn.intcon(0));
4997   }
4998 
4999   // Unconditionally null?  Then return right away.
5000   if (stopped()) {
5001     set_control( result_reg->in(_null_path));
5002     if (!stopped())
5003       set_result(result_val->in(_null_path));
5004     return true;
5005   }
5006 
5007   // We only go to the fast case code if we pass a number of guards.  The
5008   // paths which do not pass are accumulated in the slow_region.
5009   RegionNode* slow_region = new RegionNode(1);
5010   record_for_igvn(slow_region);
5011 
5012   // If this is a virtual call, we generate a funny guard.  We pull out
5013   // the vtable entry corresponding to hashCode() from the target object.
5014   // If the target method which we are calling happens to be the native
5015   // Object hashCode() method, we pass the guard.  We do not need this
5016   // guard for non-virtual calls -- the caller is known to be the native
5017   // Object hashCode().
5018   if (is_virtual) {
5019     // After null check, get the object's klass.
5020     Node* obj_klass = load_object_klass(obj);
5021     generate_virtual_guard(obj_klass, slow_region);
5022   }
5023 
5024   // Get the header out of the object, use LoadMarkNode when available
5025   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5026   // The control of the load must be null. Otherwise, the load can move before
5027   // the null check after castPP removal.
5028   Node* no_ctrl = nullptr;
5029   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5030 
5031   if (!UseObjectMonitorTable) {
5032     // Test the header to see if it is safe to read w.r.t. locking.
5033   // This also serves as guard against inline types
5034     Node *lock_mask      = _gvn.MakeConX(markWord::inline_type_mask_in_place);
5035     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5036     if (LockingMode == LM_LIGHTWEIGHT) {
5037       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5038       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5039       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5040 
5041       generate_slow_guard(test_monitor, slow_region);
5042     } else {
5043       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
5044       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
5045       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
5046 
5047       generate_slow_guard(test_not_unlocked, slow_region);
5048     }
5049   }
5050 
5051   // Get the hash value and check to see that it has been properly assigned.
5052   // We depend on hash_mask being at most 32 bits and avoid the use of
5053   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5054   // vm: see markWord.hpp.
5055   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
5056   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
5057   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
5058   // This hack lets the hash bits live anywhere in the mark object now, as long
5059   // as the shift drops the relevant bits into the low 32 bits.  Note that
5060   // Java spec says that HashCode is an int so there's no point in capturing
5061   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
5062   hshifted_header      = ConvX2I(hshifted_header);
5063   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
5064 
5065   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
5066   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
5067   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
5068 
5069   generate_slow_guard(test_assigned, slow_region);
5070 
5071   Node* init_mem = reset_memory();
5072   // fill in the rest of the null path:
5073   result_io ->init_req(_null_path, i_o());
5074   result_mem->init_req(_null_path, init_mem);
5075 
5076   result_val->init_req(_fast_path, hash_val);
5077   result_reg->init_req(_fast_path, control());
5078   result_io ->init_req(_fast_path, i_o());
5079   result_mem->init_req(_fast_path, init_mem);
5080 
5081   // Generate code for the slow case.  We make a call to hashCode().
5082   set_control(_gvn.transform(slow_region));
5083   if (!stopped()) {
5084     // No need for PreserveJVMState, because we're using up the present state.
5085     set_all_memory(init_mem);
5086     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
5087     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
5088     Node* slow_result = set_results_for_java_call(slow_call);
5089     // this->control() comes from set_results_for_java_call
5090     result_reg->init_req(_slow_path, control());
5091     result_val->init_req(_slow_path, slow_result);
5092     result_io  ->set_req(_slow_path, i_o());
5093     result_mem ->set_req(_slow_path, reset_memory());
5094   }
5095 
5096   // Return the combined state.
5097   set_i_o(        _gvn.transform(result_io)  );
5098   set_all_memory( _gvn.transform(result_mem));
5099 
5100   set_result(result_reg, result_val);
5101   return true;
5102 }
5103 
5104 //---------------------------inline_native_getClass----------------------------
5105 // public final native Class<?> java.lang.Object.getClass();
5106 //
5107 // Build special case code for calls to getClass on an object.
5108 bool LibraryCallKit::inline_native_getClass() {
5109   Node* obj = argument(0);
5110   if (obj->is_InlineType()) {
5111     const Type* t = _gvn.type(obj);
5112     if (t->maybe_null()) {
5113       null_check(obj);
5114     }
5115     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5116     return true;
5117   }
5118   obj = null_check_receiver();
5119   if (stopped())  return true;
5120   set_result(load_mirror_from_klass(load_object_klass(obj)));
5121   return true;
5122 }
5123 
5124 //-----------------inline_native_Reflection_getCallerClass---------------------
5125 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5126 //
5127 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5128 //
5129 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5130 // in that it must skip particular security frames and checks for
5131 // caller sensitive methods.
5132 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5133 #ifndef PRODUCT
5134   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5135     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5136   }
5137 #endif
5138 
5139   if (!jvms()->has_method()) {
5140 #ifndef PRODUCT
5141     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5142       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
5143     }
5144 #endif
5145     return false;
5146   }
5147 
5148   // Walk back up the JVM state to find the caller at the required
5149   // depth.
5150   JVMState* caller_jvms = jvms();
5151 
5152   // Cf. JVM_GetCallerClass
5153   // NOTE: Start the loop at depth 1 because the current JVM state does
5154   // not include the Reflection.getCallerClass() frame.
5155   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
5156     ciMethod* m = caller_jvms->method();
5157     switch (n) {
5158     case 0:
5159       fatal("current JVM state does not include the Reflection.getCallerClass frame");
5160       break;
5161     case 1:
5162       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
5163       if (!m->caller_sensitive()) {
5164 #ifndef PRODUCT
5165         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5166           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
5167         }
5168 #endif
5169         return false;  // bail-out; let JVM_GetCallerClass do the work
5170       }
5171       break;
5172     default:
5173       if (!m->is_ignored_by_security_stack_walk()) {
5174         // We have reached the desired frame; return the holder class.
5175         // Acquire method holder as java.lang.Class and push as constant.
5176         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
5177         ciInstance* caller_mirror = caller_klass->java_mirror();
5178         set_result(makecon(TypeInstPtr::make(caller_mirror)));
5179 
5180 #ifndef PRODUCT
5181         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5182           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
5183           tty->print_cr("  JVM state at this point:");
5184           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
5185             ciMethod* m = jvms()->of_depth(i)->method();
5186             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
5187           }
5188         }
5189 #endif
5190         return true;
5191       }
5192       break;
5193     }
5194   }
5195 
5196 #ifndef PRODUCT
5197   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5198     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
5199     tty->print_cr("  JVM state at this point:");
5200     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
5201       ciMethod* m = jvms()->of_depth(i)->method();
5202       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
5203     }
5204   }
5205 #endif
5206 
5207   return false;  // bail-out; let JVM_GetCallerClass do the work
5208 }
5209 
5210 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
5211   Node* arg = argument(0);
5212   Node* result = nullptr;
5213 
5214   switch (id) {
5215   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
5216   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
5217   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
5218   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
5219   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
5220   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
5221 
5222   case vmIntrinsics::_doubleToLongBits: {
5223     // two paths (plus control) merge in a wood
5224     RegionNode *r = new RegionNode(3);
5225     Node *phi = new PhiNode(r, TypeLong::LONG);
5226 
5227     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
5228     // Build the boolean node
5229     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5230 
5231     // Branch either way.
5232     // NaN case is less traveled, which makes all the difference.
5233     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5234     Node *opt_isnan = _gvn.transform(ifisnan);
5235     assert( opt_isnan->is_If(), "Expect an IfNode");
5236     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5237     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5238 
5239     set_control(iftrue);
5240 
5241     static const jlong nan_bits = CONST64(0x7ff8000000000000);
5242     Node *slow_result = longcon(nan_bits); // return NaN
5243     phi->init_req(1, _gvn.transform( slow_result ));
5244     r->init_req(1, iftrue);
5245 
5246     // Else fall through
5247     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5248     set_control(iffalse);
5249 
5250     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
5251     r->init_req(2, iffalse);
5252 
5253     // Post merge
5254     set_control(_gvn.transform(r));
5255     record_for_igvn(r);
5256 
5257     C->set_has_split_ifs(true); // Has chance for split-if optimization
5258     result = phi;
5259     assert(result->bottom_type()->isa_long(), "must be");
5260     break;
5261   }
5262 
5263   case vmIntrinsics::_floatToIntBits: {
5264     // two paths (plus control) merge in a wood
5265     RegionNode *r = new RegionNode(3);
5266     Node *phi = new PhiNode(r, TypeInt::INT);
5267 
5268     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
5269     // Build the boolean node
5270     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5271 
5272     // Branch either way.
5273     // NaN case is less traveled, which makes all the difference.
5274     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5275     Node *opt_isnan = _gvn.transform(ifisnan);
5276     assert( opt_isnan->is_If(), "Expect an IfNode");
5277     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5278     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5279 
5280     set_control(iftrue);
5281 
5282     static const jint nan_bits = 0x7fc00000;
5283     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
5284     phi->init_req(1, _gvn.transform( slow_result ));
5285     r->init_req(1, iftrue);
5286 
5287     // Else fall through
5288     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5289     set_control(iffalse);
5290 
5291     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
5292     r->init_req(2, iffalse);
5293 
5294     // Post merge
5295     set_control(_gvn.transform(r));
5296     record_for_igvn(r);
5297 
5298     C->set_has_split_ifs(true); // Has chance for split-if optimization
5299     result = phi;
5300     assert(result->bottom_type()->isa_int(), "must be");
5301     break;
5302   }
5303 
5304   default:
5305     fatal_unexpected_iid(id);
5306     break;
5307   }
5308   set_result(_gvn.transform(result));
5309   return true;
5310 }
5311 
5312 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
5313   Node* arg = argument(0);
5314   Node* result = nullptr;
5315 
5316   switch (id) {
5317   case vmIntrinsics::_floatIsInfinite:
5318     result = new IsInfiniteFNode(arg);
5319     break;
5320   case vmIntrinsics::_floatIsFinite:
5321     result = new IsFiniteFNode(arg);
5322     break;
5323   case vmIntrinsics::_doubleIsInfinite:
5324     result = new IsInfiniteDNode(arg);
5325     break;
5326   case vmIntrinsics::_doubleIsFinite:
5327     result = new IsFiniteDNode(arg);
5328     break;
5329   default:
5330     fatal_unexpected_iid(id);
5331     break;
5332   }
5333   set_result(_gvn.transform(result));
5334   return true;
5335 }
5336 
5337 //----------------------inline_unsafe_copyMemory-------------------------
5338 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
5339 
5340 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
5341   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
5342   const Type*       base_t = gvn.type(base);
5343 
5344   bool in_native = (base_t == TypePtr::NULL_PTR);
5345   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
5346   bool is_mixed  = !in_heap && !in_native;
5347 
5348   if (is_mixed) {
5349     return true; // mixed accesses can touch both on-heap and off-heap memory
5350   }
5351   if (in_heap) {
5352     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
5353     if (!is_prim_array) {
5354       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
5355       // there's not enough type information available to determine proper memory slice for it.
5356       return true;
5357     }
5358   }
5359   return false;
5360 }
5361 
5362 bool LibraryCallKit::inline_unsafe_copyMemory() {
5363   if (callee()->is_static())  return false;  // caller must have the capability!
5364   null_check_receiver();  // null-check receiver
5365   if (stopped())  return true;
5366 
5367   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5368 
5369   Node* src_base =         argument(1);  // type: oop
5370   Node* src_off  = ConvL2X(argument(2)); // type: long
5371   Node* dst_base =         argument(4);  // type: oop
5372   Node* dst_off  = ConvL2X(argument(5)); // type: long
5373   Node* size     = ConvL2X(argument(7)); // type: long
5374 
5375   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5376          "fieldOffset must be byte-scaled");
5377 
5378   Node* src_addr = make_unsafe_address(src_base, src_off);
5379   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5380 
5381   Node* thread = _gvn.transform(new ThreadLocalNode());
5382   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5383   BasicType doing_unsafe_access_bt = T_BYTE;
5384   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5385 
5386   // update volatile field
5387   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5388 
5389   int flags = RC_LEAF | RC_NO_FP;
5390 
5391   const TypePtr* dst_type = TypePtr::BOTTOM;
5392 
5393   // Adjust memory effects of the runtime call based on input values.
5394   if (!has_wide_mem(_gvn, src_addr, src_base) &&
5395       !has_wide_mem(_gvn, dst_addr, dst_base)) {
5396     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5397 
5398     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5399     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5400       flags |= RC_NARROW_MEM; // narrow in memory
5401     }
5402   }
5403 
5404   // Call it.  Note that the length argument is not scaled.
5405   make_runtime_call(flags,
5406                     OptoRuntime::fast_arraycopy_Type(),
5407                     StubRoutines::unsafe_arraycopy(),
5408                     "unsafe_arraycopy",
5409                     dst_type,
5410                     src_addr, dst_addr, size XTOP);
5411 
5412   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5413 
5414   return true;
5415 }
5416 
5417 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5418 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5419 bool LibraryCallKit::inline_unsafe_setMemory() {
5420   if (callee()->is_static())  return false;  // caller must have the capability!
5421   null_check_receiver();  // null-check receiver
5422   if (stopped())  return true;
5423 
5424   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5425 
5426   Node* dst_base =         argument(1);  // type: oop
5427   Node* dst_off  = ConvL2X(argument(2)); // type: long
5428   Node* size     = ConvL2X(argument(4)); // type: long
5429   Node* byte     =         argument(6);  // type: byte
5430 
5431   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5432          "fieldOffset must be byte-scaled");
5433 
5434   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5435 
5436   Node* thread = _gvn.transform(new ThreadLocalNode());
5437   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5438   BasicType doing_unsafe_access_bt = T_BYTE;
5439   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5440 
5441   // update volatile field
5442   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5443 
5444   int flags = RC_LEAF | RC_NO_FP;
5445 
5446   const TypePtr* dst_type = TypePtr::BOTTOM;
5447 
5448   // Adjust memory effects of the runtime call based on input values.
5449   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5450     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5451 
5452     flags |= RC_NARROW_MEM; // narrow in memory
5453   }
5454 
5455   // Call it.  Note that the length argument is not scaled.
5456   make_runtime_call(flags,
5457                     OptoRuntime::make_setmemory_Type(),
5458                     StubRoutines::unsafe_setmemory(),
5459                     "unsafe_setmemory",
5460                     dst_type,
5461                     dst_addr, size XTOP, byte);
5462 
5463   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
5464 
5465   return true;
5466 }
5467 
5468 #undef XTOP
5469 
5470 //----------------------inline_unsafe_isFlatArray------------------------
5471 // public native boolean Unsafe.isFlatArray(Class<?> arrayClass);
5472 // This intrinsic exploits assumptions made by the native implementation
5473 // (arrayClass is neither null nor primitive) to avoid unnecessary null checks.
5474 bool LibraryCallKit::inline_unsafe_isFlatArray() {
5475   Node* cls = argument(1);
5476   Node* p = basic_plus_adr(cls, java_lang_Class::klass_offset());
5477   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p,
5478                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT));
5479   Node* result = flat_array_test(kls);
5480   set_result(result);
5481   return true;
5482 }
5483 
5484 //------------------------clone_coping-----------------------------------
5485 // Helper function for inline_native_clone.
5486 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5487   assert(obj_size != nullptr, "");
5488   Node* raw_obj = alloc_obj->in(1);
5489   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5490 
5491   AllocateNode* alloc = nullptr;
5492   if (ReduceBulkZeroing &&
5493       // If we are implementing an array clone without knowing its source type
5494       // (can happen when compiling the array-guarded branch of a reflective
5495       // Object.clone() invocation), initialize the array within the allocation.
5496       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5497       // to a runtime clone call that assumes fully initialized source arrays.
5498       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5499     // We will be completely responsible for initializing this object -
5500     // mark Initialize node as complete.
5501     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5502     // The object was just allocated - there should be no any stores!
5503     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5504     // Mark as complete_with_arraycopy so that on AllocateNode
5505     // expansion, we know this AllocateNode is initialized by an array
5506     // copy and a StoreStore barrier exists after the array copy.
5507     alloc->initialization()->set_complete_with_arraycopy();
5508   }
5509 
5510   Node* size = _gvn.transform(obj_size);
5511   access_clone(obj, alloc_obj, size, is_array);
5512 
5513   // Do not let reads from the cloned object float above the arraycopy.
5514   if (alloc != nullptr) {
5515     // Do not let stores that initialize this object be reordered with
5516     // a subsequent store that would make this object accessible by
5517     // other threads.
5518     // Record what AllocateNode this StoreStore protects so that
5519     // escape analysis can go from the MemBarStoreStoreNode to the
5520     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5521     // based on the escape status of the AllocateNode.
5522     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5523   } else {
5524     insert_mem_bar(Op_MemBarCPUOrder);
5525   }
5526 }
5527 
5528 //------------------------inline_native_clone----------------------------
5529 // protected native Object java.lang.Object.clone();
5530 //
5531 // Here are the simple edge cases:
5532 //  null receiver => normal trap
5533 //  virtual and clone was overridden => slow path to out-of-line clone
5534 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5535 //
5536 // The general case has two steps, allocation and copying.
5537 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5538 //
5539 // Copying also has two cases, oop arrays and everything else.
5540 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5541 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5542 //
5543 // These steps fold up nicely if and when the cloned object's klass
5544 // can be sharply typed as an object array, a type array, or an instance.
5545 //
5546 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5547   PhiNode* result_val;
5548 
5549   // Set the reexecute bit for the interpreter to reexecute
5550   // the bytecode that invokes Object.clone if deoptimization happens.
5551   { PreserveReexecuteState preexecs(this);
5552     jvms()->set_should_reexecute(true);
5553 
5554     Node* obj = argument(0);
5555     obj = null_check_receiver();
5556     if (stopped())  return true;
5557 
5558     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5559     if (obj_type->is_inlinetypeptr()) {
5560       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5561       // no identity.
5562       set_result(obj);
5563       return true;
5564     }
5565 
5566     // If we are going to clone an instance, we need its exact type to
5567     // know the number and types of fields to convert the clone to
5568     // loads/stores. Maybe a speculative type can help us.
5569     if (!obj_type->klass_is_exact() &&
5570         obj_type->speculative_type() != nullptr &&
5571         obj_type->speculative_type()->is_instance_klass() &&
5572         !obj_type->speculative_type()->is_inlinetype()) {
5573       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5574       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5575           !spec_ik->has_injected_fields()) {
5576         if (!obj_type->isa_instptr() ||
5577             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5578           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5579         }
5580       }
5581     }
5582 
5583     // Conservatively insert a memory barrier on all memory slices.
5584     // Do not let writes into the original float below the clone.
5585     insert_mem_bar(Op_MemBarCPUOrder);
5586 
5587     // paths into result_reg:
5588     enum {
5589       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5590       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5591       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5592       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5593       PATH_LIMIT
5594     };
5595     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5596     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5597     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5598     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5599     record_for_igvn(result_reg);
5600 
5601     Node* obj_klass = load_object_klass(obj);
5602     // We only go to the fast case code if we pass a number of guards.
5603     // The paths which do not pass are accumulated in the slow_region.
5604     RegionNode* slow_region = new RegionNode(1);
5605     record_for_igvn(slow_region);
5606 
5607     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5608     if (array_ctl != nullptr) {
5609       // It's an array.
5610       PreserveJVMState pjvms(this);
5611       set_control(array_ctl);
5612 
5613       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5614       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5615       if (UseFlatArray && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5616           obj_type->can_be_inline_array() &&
5617           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5618         // Flat inline type array may have object field that would require a
5619         // write barrier. Conservatively, go to slow path.
5620         generate_fair_guard(flat_array_test(obj_klass), slow_region);
5621       }
5622 
5623       if (!stopped()) {
5624         Node* obj_length = load_array_length(obj);
5625         Node* array_size = nullptr; // Size of the array without object alignment padding.
5626         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5627 
5628         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5629         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5630           // If it is an oop array, it requires very special treatment,
5631           // because gc barriers are required when accessing the array.
5632           Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5633           if (is_obja != nullptr) {
5634             PreserveJVMState pjvms2(this);
5635             set_control(is_obja);
5636             // Generate a direct call to the right arraycopy function(s).
5637             // Clones are always tightly coupled.
5638             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5639             ac->set_clone_oop_array();
5640             Node* n = _gvn.transform(ac);
5641             assert(n == ac, "cannot disappear");
5642             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5643 
5644             result_reg->init_req(_objArray_path, control());
5645             result_val->init_req(_objArray_path, alloc_obj);
5646             result_i_o ->set_req(_objArray_path, i_o());
5647             result_mem ->set_req(_objArray_path, reset_memory());
5648           }
5649         }
5650         // Otherwise, there are no barriers to worry about.
5651         // (We can dispense with card marks if we know the allocation
5652         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5653         //  causes the non-eden paths to take compensating steps to
5654         //  simulate a fresh allocation, so that no further
5655         //  card marks are required in compiled code to initialize
5656         //  the object.)
5657 
5658         if (!stopped()) {
5659           copy_to_clone(obj, alloc_obj, array_size, true);
5660 
5661           // Present the results of the copy.
5662           result_reg->init_req(_array_path, control());
5663           result_val->init_req(_array_path, alloc_obj);
5664           result_i_o ->set_req(_array_path, i_o());
5665           result_mem ->set_req(_array_path, reset_memory());
5666         }
5667       }
5668     }
5669 
5670     if (!stopped()) {
5671       // It's an instance (we did array above).  Make the slow-path tests.
5672       // If this is a virtual call, we generate a funny guard.  We grab
5673       // the vtable entry corresponding to clone() from the target object.
5674       // If the target method which we are calling happens to be the
5675       // Object clone() method, we pass the guard.  We do not need this
5676       // guard for non-virtual calls; the caller is known to be the native
5677       // Object clone().
5678       if (is_virtual) {
5679         generate_virtual_guard(obj_klass, slow_region);
5680       }
5681 
5682       // The object must be easily cloneable and must not have a finalizer.
5683       // Both of these conditions may be checked in a single test.
5684       // We could optimize the test further, but we don't care.
5685       generate_misc_flags_guard(obj_klass,
5686                                 // Test both conditions:
5687                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5688                                 // Must be cloneable but not finalizer:
5689                                 KlassFlags::_misc_is_cloneable_fast,
5690                                 slow_region);
5691     }
5692 
5693     if (!stopped()) {
5694       // It's an instance, and it passed the slow-path tests.
5695       PreserveJVMState pjvms(this);
5696       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5697       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5698       // is reexecuted if deoptimization occurs and there could be problems when merging
5699       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5700       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5701 
5702       copy_to_clone(obj, alloc_obj, obj_size, false);
5703 
5704       // Present the results of the slow call.
5705       result_reg->init_req(_instance_path, control());
5706       result_val->init_req(_instance_path, alloc_obj);
5707       result_i_o ->set_req(_instance_path, i_o());
5708       result_mem ->set_req(_instance_path, reset_memory());
5709     }
5710 
5711     // Generate code for the slow case.  We make a call to clone().
5712     set_control(_gvn.transform(slow_region));
5713     if (!stopped()) {
5714       PreserveJVMState pjvms(this);
5715       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5716       // We need to deoptimize on exception (see comment above)
5717       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5718       // this->control() comes from set_results_for_java_call
5719       result_reg->init_req(_slow_path, control());
5720       result_val->init_req(_slow_path, slow_result);
5721       result_i_o ->set_req(_slow_path, i_o());
5722       result_mem ->set_req(_slow_path, reset_memory());
5723     }
5724 
5725     // Return the combined state.
5726     set_control(    _gvn.transform(result_reg));
5727     set_i_o(        _gvn.transform(result_i_o));
5728     set_all_memory( _gvn.transform(result_mem));
5729   } // original reexecute is set back here
5730 
5731   set_result(_gvn.transform(result_val));
5732   return true;
5733 }
5734 
5735 // If we have a tightly coupled allocation, the arraycopy may take care
5736 // of the array initialization. If one of the guards we insert between
5737 // the allocation and the arraycopy causes a deoptimization, an
5738 // uninitialized array will escape the compiled method. To prevent that
5739 // we set the JVM state for uncommon traps between the allocation and
5740 // the arraycopy to the state before the allocation so, in case of
5741 // deoptimization, we'll reexecute the allocation and the
5742 // initialization.
5743 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5744   if (alloc != nullptr) {
5745     ciMethod* trap_method = alloc->jvms()->method();
5746     int trap_bci = alloc->jvms()->bci();
5747 
5748     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5749         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5750       // Make sure there's no store between the allocation and the
5751       // arraycopy otherwise visible side effects could be rexecuted
5752       // in case of deoptimization and cause incorrect execution.
5753       bool no_interfering_store = true;
5754       Node* mem = alloc->in(TypeFunc::Memory);
5755       if (mem->is_MergeMem()) {
5756         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5757           Node* n = mms.memory();
5758           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5759             assert(n->is_Store(), "what else?");
5760             no_interfering_store = false;
5761             break;
5762           }
5763         }
5764       } else {
5765         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5766           Node* n = mms.memory();
5767           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5768             assert(n->is_Store(), "what else?");
5769             no_interfering_store = false;
5770             break;
5771           }
5772         }
5773       }
5774 
5775       if (no_interfering_store) {
5776         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5777 
5778         JVMState* saved_jvms = jvms();
5779         saved_reexecute_sp = _reexecute_sp;
5780 
5781         set_jvms(sfpt->jvms());
5782         _reexecute_sp = jvms()->sp();
5783 
5784         return saved_jvms;
5785       }
5786     }
5787   }
5788   return nullptr;
5789 }
5790 
5791 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5792 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5793 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5794   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5795   uint size = alloc->req();
5796   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5797   old_jvms->set_map(sfpt);
5798   for (uint i = 0; i < size; i++) {
5799     sfpt->init_req(i, alloc->in(i));
5800   }
5801   int adjustment = 1;
5802   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
5803   if (ary_klass_ptr->is_null_free()) {
5804     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newNullRestrictedArray
5805     // which requires both the component type and the array length on stack for re-execution. Re-create and push
5806     // the component type.
5807     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
5808     ciInstance* instance = klass->component_mirror_instance();
5809     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
5810     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
5811     adjustment++;
5812   }
5813   // re-push array length for deoptimization
5814   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
5815   old_jvms->set_sp(old_jvms->sp() + adjustment);
5816   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
5817   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
5818   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
5819   old_jvms->set_should_reexecute(true);
5820 
5821   sfpt->set_i_o(map()->i_o());
5822   sfpt->set_memory(map()->memory());
5823   sfpt->set_control(map()->control());
5824   return sfpt;
5825 }
5826 
5827 // In case of a deoptimization, we restart execution at the
5828 // allocation, allocating a new array. We would leave an uninitialized
5829 // array in the heap that GCs wouldn't expect. Move the allocation
5830 // after the traps so we don't allocate the array if we
5831 // deoptimize. This is possible because tightly_coupled_allocation()
5832 // guarantees there's no observer of the allocated array at this point
5833 // and the control flow is simple enough.
5834 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5835                                                     int saved_reexecute_sp, uint new_idx) {
5836   if (saved_jvms_before_guards != nullptr && !stopped()) {
5837     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5838 
5839     assert(alloc != nullptr, "only with a tightly coupled allocation");
5840     // restore JVM state to the state at the arraycopy
5841     saved_jvms_before_guards->map()->set_control(map()->control());
5842     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5843     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5844     // If we've improved the types of some nodes (null check) while
5845     // emitting the guards, propagate them to the current state
5846     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5847     set_jvms(saved_jvms_before_guards);
5848     _reexecute_sp = saved_reexecute_sp;
5849 
5850     // Remove the allocation from above the guards
5851     CallProjections* callprojs = alloc->extract_projections(true);
5852     InitializeNode* init = alloc->initialization();
5853     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5854     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5855     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5856 
5857     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5858     // the allocation (i.e. is only valid if the allocation succeeds):
5859     // 1) replace CastIINode with AllocateArrayNode's length here
5860     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5861     //
5862     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5863     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5864     Node* init_control = init->proj_out(TypeFunc::Control);
5865     Node* alloc_length = alloc->Ideal_length();
5866 #ifdef ASSERT
5867     Node* prev_cast = nullptr;
5868 #endif
5869     for (uint i = 0; i < init_control->outcnt(); i++) {
5870       Node* init_out = init_control->raw_out(i);
5871       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5872 #ifdef ASSERT
5873         if (prev_cast == nullptr) {
5874           prev_cast = init_out;
5875         } else {
5876           if (prev_cast->cmp(*init_out) == false) {
5877             prev_cast->dump();
5878             init_out->dump();
5879             assert(false, "not equal CastIINode");
5880           }
5881         }
5882 #endif
5883         C->gvn_replace_by(init_out, alloc_length);
5884       }
5885     }
5886     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5887 
5888     // move the allocation here (after the guards)
5889     _gvn.hash_delete(alloc);
5890     alloc->set_req(TypeFunc::Control, control());
5891     alloc->set_req(TypeFunc::I_O, i_o());
5892     Node *mem = reset_memory();
5893     set_all_memory(mem);
5894     alloc->set_req(TypeFunc::Memory, mem);
5895     set_control(init->proj_out_or_null(TypeFunc::Control));
5896     set_i_o(callprojs->fallthrough_ioproj);
5897 
5898     // Update memory as done in GraphKit::set_output_for_allocation()
5899     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5900     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5901     if (ary_type->isa_aryptr() && length_type != nullptr) {
5902       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5903     }
5904     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5905     int            elemidx  = C->get_alias_index(telemref);
5906     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5907     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5908 
5909     Node* allocx = _gvn.transform(alloc);
5910     assert(allocx == alloc, "where has the allocation gone?");
5911     assert(dest->is_CheckCastPP(), "not an allocation result?");
5912 
5913     _gvn.hash_delete(dest);
5914     dest->set_req(0, control());
5915     Node* destx = _gvn.transform(dest);
5916     assert(destx == dest, "where has the allocation result gone?");
5917 
5918     array_ideal_length(alloc, ary_type, true);
5919   }
5920 }
5921 
5922 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5923 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5924 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5925 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5926 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5927 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5928 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5929                                                                        JVMState* saved_jvms_before_guards) {
5930   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5931     // There is at least one unrelated uncommon trap which needs to be replaced.
5932     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5933 
5934     JVMState* saved_jvms = jvms();
5935     const int saved_reexecute_sp = _reexecute_sp;
5936     set_jvms(sfpt->jvms());
5937     _reexecute_sp = jvms()->sp();
5938 
5939     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5940 
5941     // Restore state
5942     set_jvms(saved_jvms);
5943     _reexecute_sp = saved_reexecute_sp;
5944   }
5945 }
5946 
5947 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5948 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5949 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5950   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5951   while (if_proj->is_IfProj()) {
5952     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5953     if (uncommon_trap != nullptr) {
5954       create_new_uncommon_trap(uncommon_trap);
5955     }
5956     assert(if_proj->in(0)->is_If(), "must be If");
5957     if_proj = if_proj->in(0)->in(0);
5958   }
5959   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5960          "must have reached control projection of init node");
5961 }
5962 
5963 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5964   const int trap_request = uncommon_trap_call->uncommon_trap_request();
5965   assert(trap_request != 0, "no valid UCT trap request");
5966   PreserveJVMState pjvms(this);
5967   set_control(uncommon_trap_call->in(0));
5968   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5969                 Deoptimization::trap_request_action(trap_request));
5970   assert(stopped(), "Should be stopped");
5971   _gvn.hash_delete(uncommon_trap_call);
5972   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5973 }
5974 
5975 // Common checks for array sorting intrinsics arguments.
5976 // Returns `true` if checks passed.
5977 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
5978   // check address of the class
5979   if (elementType == nullptr || elementType->is_top()) {
5980     return false;  // dead path
5981   }
5982   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5983   if (elem_klass == nullptr) {
5984     return false;  // dead path
5985   }
5986   // java_mirror_type() returns non-null for compile-time Class constants only
5987   ciType* elem_type = elem_klass->java_mirror_type();
5988   if (elem_type == nullptr) {
5989     return false;
5990   }
5991   bt = elem_type->basic_type();
5992   // Disable the intrinsic if the CPU does not support SIMD sort
5993   if (!Matcher::supports_simd_sort(bt)) {
5994     return false;
5995   }
5996   // check address of the array
5997   if (obj == nullptr || obj->is_top()) {
5998     return false;  // dead path
5999   }
6000   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
6001   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
6002     return false; // failed input validation
6003   }
6004   return true;
6005 }
6006 
6007 //------------------------------inline_array_partition-----------------------
6008 bool LibraryCallKit::inline_array_partition() {
6009   address stubAddr = StubRoutines::select_array_partition_function();
6010   if (stubAddr == nullptr) {
6011     return false; // Intrinsic's stub is not implemented on this platform
6012   }
6013   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
6014 
6015   // no receiver because it is a static method
6016   Node* elementType     = argument(0);
6017   Node* obj             = argument(1);
6018   Node* offset          = argument(2); // long
6019   Node* fromIndex       = argument(4);
6020   Node* toIndex         = argument(5);
6021   Node* indexPivot1     = argument(6);
6022   Node* indexPivot2     = argument(7);
6023   // PartitionOperation:  argument(8) is ignored
6024 
6025   Node* pivotIndices = nullptr;
6026   BasicType bt = T_ILLEGAL;
6027 
6028   if (!check_array_sort_arguments(elementType, obj, bt)) {
6029     return false;
6030   }
6031   null_check(obj);
6032   // If obj is dead, only null-path is taken.
6033   if (stopped()) {
6034     return true;
6035   }
6036   // Set the original stack and the reexecute bit for the interpreter to reexecute
6037   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
6038   { PreserveReexecuteState preexecs(this);
6039     jvms()->set_should_reexecute(true);
6040 
6041     Node* obj_adr = make_unsafe_address(obj, offset);
6042 
6043     // create the pivotIndices array of type int and size = 2
6044     Node* size = intcon(2);
6045     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
6046     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
6047     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
6048     guarantee(alloc != nullptr, "created above");
6049     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
6050 
6051     // pass the basic type enum to the stub
6052     Node* elemType = intcon(bt);
6053 
6054     // Call the stub
6055     const char *stubName = "array_partition_stub";
6056     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
6057                       stubAddr, stubName, TypePtr::BOTTOM,
6058                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
6059                       indexPivot1, indexPivot2);
6060 
6061   } // original reexecute is set back here
6062 
6063   if (!stopped()) {
6064     set_result(pivotIndices);
6065   }
6066 
6067   return true;
6068 }
6069 
6070 
6071 //------------------------------inline_array_sort-----------------------
6072 bool LibraryCallKit::inline_array_sort() {
6073   address stubAddr = StubRoutines::select_arraysort_function();
6074   if (stubAddr == nullptr) {
6075     return false; // Intrinsic's stub is not implemented on this platform
6076   }
6077   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
6078 
6079   // no receiver because it is a static method
6080   Node* elementType     = argument(0);
6081   Node* obj             = argument(1);
6082   Node* offset          = argument(2); // long
6083   Node* fromIndex       = argument(4);
6084   Node* toIndex         = argument(5);
6085   // SortOperation:       argument(6) is ignored
6086 
6087   BasicType bt = T_ILLEGAL;
6088 
6089   if (!check_array_sort_arguments(elementType, obj, bt)) {
6090     return false;
6091   }
6092   null_check(obj);
6093   // If obj is dead, only null-path is taken.
6094   if (stopped()) {
6095     return true;
6096   }
6097   Node* obj_adr = make_unsafe_address(obj, offset);
6098 
6099   // pass the basic type enum to the stub
6100   Node* elemType = intcon(bt);
6101 
6102   // Call the stub.
6103   const char *stubName = "arraysort_stub";
6104   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
6105                     stubAddr, stubName, TypePtr::BOTTOM,
6106                     obj_adr, elemType, fromIndex, toIndex);
6107 
6108   return true;
6109 }
6110 
6111 
6112 //------------------------------inline_arraycopy-----------------------
6113 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
6114 //                                                      Object dest, int destPos,
6115 //                                                      int length);
6116 bool LibraryCallKit::inline_arraycopy() {
6117   // Get the arguments.
6118   Node* src         = argument(0);  // type: oop
6119   Node* src_offset  = argument(1);  // type: int
6120   Node* dest        = argument(2);  // type: oop
6121   Node* dest_offset = argument(3);  // type: int
6122   Node* length      = argument(4);  // type: int
6123 
6124   uint new_idx = C->unique();
6125 
6126   // Check for allocation before we add nodes that would confuse
6127   // tightly_coupled_allocation()
6128   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
6129 
6130   int saved_reexecute_sp = -1;
6131   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
6132   // See arraycopy_restore_alloc_state() comment
6133   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
6134   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
6135   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
6136   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
6137 
6138   // The following tests must be performed
6139   // (1) src and dest are arrays.
6140   // (2) src and dest arrays must have elements of the same BasicType
6141   // (3) src and dest must not be null.
6142   // (4) src_offset must not be negative.
6143   // (5) dest_offset must not be negative.
6144   // (6) length must not be negative.
6145   // (7) src_offset + length must not exceed length of src.
6146   // (8) dest_offset + length must not exceed length of dest.
6147   // (9) each element of an oop array must be assignable
6148 
6149   // (3) src and dest must not be null.
6150   // always do this here because we need the JVM state for uncommon traps
6151   Node* null_ctl = top();
6152   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
6153   assert(null_ctl->is_top(), "no null control here");
6154   dest = null_check(dest, T_ARRAY);
6155 
6156   if (!can_emit_guards) {
6157     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
6158     // guards but the arraycopy node could still take advantage of a
6159     // tightly allocated allocation. tightly_coupled_allocation() is
6160     // called again to make sure it takes the null check above into
6161     // account: the null check is mandatory and if it caused an
6162     // uncommon trap to be emitted then the allocation can't be
6163     // considered tightly coupled in this context.
6164     alloc = tightly_coupled_allocation(dest);
6165   }
6166 
6167   bool validated = false;
6168 
6169   const Type* src_type  = _gvn.type(src);
6170   const Type* dest_type = _gvn.type(dest);
6171   const TypeAryPtr* top_src  = src_type->isa_aryptr();
6172   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6173 
6174   // Do we have the type of src?
6175   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6176   // Do we have the type of dest?
6177   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6178   // Is the type for src from speculation?
6179   bool src_spec = false;
6180   // Is the type for dest from speculation?
6181   bool dest_spec = false;
6182 
6183   if ((!has_src || !has_dest) && can_emit_guards) {
6184     // We don't have sufficient type information, let's see if
6185     // speculative types can help. We need to have types for both src
6186     // and dest so that it pays off.
6187 
6188     // Do we already have or could we have type information for src
6189     bool could_have_src = has_src;
6190     // Do we already have or could we have type information for dest
6191     bool could_have_dest = has_dest;
6192 
6193     ciKlass* src_k = nullptr;
6194     if (!has_src) {
6195       src_k = src_type->speculative_type_not_null();
6196       if (src_k != nullptr && src_k->is_array_klass()) {
6197         could_have_src = true;
6198       }
6199     }
6200 
6201     ciKlass* dest_k = nullptr;
6202     if (!has_dest) {
6203       dest_k = dest_type->speculative_type_not_null();
6204       if (dest_k != nullptr && dest_k->is_array_klass()) {
6205         could_have_dest = true;
6206       }
6207     }
6208 
6209     if (could_have_src && could_have_dest) {
6210       // This is going to pay off so emit the required guards
6211       if (!has_src) {
6212         src = maybe_cast_profiled_obj(src, src_k, true);
6213         src_type  = _gvn.type(src);
6214         top_src  = src_type->isa_aryptr();
6215         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6216         src_spec = true;
6217       }
6218       if (!has_dest) {
6219         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6220         dest_type  = _gvn.type(dest);
6221         top_dest  = dest_type->isa_aryptr();
6222         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6223         dest_spec = true;
6224       }
6225     }
6226   }
6227 
6228   if (has_src && has_dest && can_emit_guards) {
6229     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6230     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6231     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6232     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6233 
6234     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6235       // If both arrays are object arrays then having the exact types
6236       // for both will remove the need for a subtype check at runtime
6237       // before the call and may make it possible to pick a faster copy
6238       // routine (without a subtype check on every element)
6239       // Do we have the exact type of src?
6240       bool could_have_src = src_spec;
6241       // Do we have the exact type of dest?
6242       bool could_have_dest = dest_spec;
6243       ciKlass* src_k = nullptr;
6244       ciKlass* dest_k = nullptr;
6245       if (!src_spec) {
6246         src_k = src_type->speculative_type_not_null();
6247         if (src_k != nullptr && src_k->is_array_klass()) {
6248           could_have_src = true;
6249         }
6250       }
6251       if (!dest_spec) {
6252         dest_k = dest_type->speculative_type_not_null();
6253         if (dest_k != nullptr && dest_k->is_array_klass()) {
6254           could_have_dest = true;
6255         }
6256       }
6257       if (could_have_src && could_have_dest) {
6258         // If we can have both exact types, emit the missing guards
6259         if (could_have_src && !src_spec) {
6260           src = maybe_cast_profiled_obj(src, src_k, true);
6261           src_type = _gvn.type(src);
6262           top_src = src_type->isa_aryptr();
6263         }
6264         if (could_have_dest && !dest_spec) {
6265           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6266           dest_type = _gvn.type(dest);
6267           top_dest = dest_type->isa_aryptr();
6268         }
6269       }
6270     }
6271   }
6272 
6273   ciMethod* trap_method = method();
6274   int trap_bci = bci();
6275   if (saved_jvms_before_guards != nullptr) {
6276     trap_method = alloc->jvms()->method();
6277     trap_bci = alloc->jvms()->bci();
6278   }
6279 
6280   bool negative_length_guard_generated = false;
6281 
6282   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6283       can_emit_guards && !src->is_top() && !dest->is_top()) {
6284     // validate arguments: enables transformation the ArrayCopyNode
6285     validated = true;
6286 
6287     RegionNode* slow_region = new RegionNode(1);
6288     record_for_igvn(slow_region);
6289 
6290     // (1) src and dest are arrays.
6291     generate_non_array_guard(load_object_klass(src), slow_region);
6292     generate_non_array_guard(load_object_klass(dest), slow_region);
6293 
6294     // (2) src and dest arrays must have elements of the same BasicType
6295     // done at macro expansion or at Ideal transformation time
6296 
6297     // (4) src_offset must not be negative.
6298     generate_negative_guard(src_offset, slow_region);
6299 
6300     // (5) dest_offset must not be negative.
6301     generate_negative_guard(dest_offset, slow_region);
6302 
6303     // (7) src_offset + length must not exceed length of src.
6304     generate_limit_guard(src_offset, length,
6305                          load_array_length(src),
6306                          slow_region);
6307 
6308     // (8) dest_offset + length must not exceed length of dest.
6309     generate_limit_guard(dest_offset, length,
6310                          load_array_length(dest),
6311                          slow_region);
6312 
6313     // (6) length must not be negative.
6314     // This is also checked in generate_arraycopy() during macro expansion, but
6315     // we also have to check it here for the case where the ArrayCopyNode will
6316     // be eliminated by Escape Analysis.
6317     if (EliminateAllocations) {
6318       generate_negative_guard(length, slow_region);
6319       negative_length_guard_generated = true;
6320     }
6321 
6322     // (9) each element of an oop array must be assignable
6323     Node* dest_klass = load_object_klass(dest);
6324     if (src != dest) {
6325       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6326       slow_region->add_req(not_subtype_ctrl);
6327     }
6328 
6329     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6330     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6331     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6332     src_type = _gvn.type(src);
6333     top_src  = src_type->isa_aryptr();
6334 
6335     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6336     if (!stopped() && UseFlatArray) {
6337       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6338       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6339       if (top_src != nullptr && top_src->is_flat()) {
6340         // Src is flat, check that dest is flat as well
6341         if (top_dest != nullptr && !top_dest->is_flat()) {
6342           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6343           // Since dest is flat and src <: dest, dest must have the same type as src.
6344           top_dest = top_src->cast_to_exactness(false);
6345           assert(top_dest->is_flat(), "dest must be flat");
6346           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6347         }
6348       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6349         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6350         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6351         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6352         generate_fair_guard(flat_array_test(src), slow_region);
6353         if (top_src != nullptr) {
6354           top_src = top_src->cast_to_not_flat();
6355           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6356         }
6357       }
6358     }
6359 
6360     {
6361       PreserveJVMState pjvms(this);
6362       set_control(_gvn.transform(slow_region));
6363       uncommon_trap(Deoptimization::Reason_intrinsic,
6364                     Deoptimization::Action_make_not_entrant);
6365       assert(stopped(), "Should be stopped");
6366     }
6367     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6368   }
6369 
6370   if (stopped()) {
6371     return true;
6372   }
6373 
6374   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6375                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6376                                           // so the compiler has a chance to eliminate them: during macro expansion,
6377                                           // we have to set their control (CastPP nodes are eliminated).
6378                                           load_object_klass(src), load_object_klass(dest),
6379                                           load_array_length(src), load_array_length(dest));
6380 
6381   ac->set_arraycopy(validated);
6382 
6383   Node* n = _gvn.transform(ac);
6384   if (n == ac) {
6385     ac->connect_outputs(this);
6386   } else {
6387     assert(validated, "shouldn't transform if all arguments not validated");
6388     set_all_memory(n);
6389   }
6390   clear_upper_avx();
6391 
6392 
6393   return true;
6394 }
6395 
6396 
6397 // Helper function which determines if an arraycopy immediately follows
6398 // an allocation, with no intervening tests or other escapes for the object.
6399 AllocateArrayNode*
6400 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
6401   if (stopped())             return nullptr;  // no fast path
6402   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
6403 
6404   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
6405   if (alloc == nullptr)  return nullptr;
6406 
6407   Node* rawmem = memory(Compile::AliasIdxRaw);
6408   // Is the allocation's memory state untouched?
6409   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
6410     // Bail out if there have been raw-memory effects since the allocation.
6411     // (Example:  There might have been a call or safepoint.)
6412     return nullptr;
6413   }
6414   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
6415   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
6416     return nullptr;
6417   }
6418 
6419   // There must be no unexpected observers of this allocation.
6420   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
6421     Node* obs = ptr->fast_out(i);
6422     if (obs != this->map()) {
6423       return nullptr;
6424     }
6425   }
6426 
6427   // This arraycopy must unconditionally follow the allocation of the ptr.
6428   Node* alloc_ctl = ptr->in(0);
6429   Node* ctl = control();
6430   while (ctl != alloc_ctl) {
6431     // There may be guards which feed into the slow_region.
6432     // Any other control flow means that we might not get a chance
6433     // to finish initializing the allocated object.
6434     // Various low-level checks bottom out in uncommon traps. These
6435     // are considered safe since we've already checked above that
6436     // there is no unexpected observer of this allocation.
6437     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6438       assert(ctl->in(0)->is_If(), "must be If");
6439       ctl = ctl->in(0)->in(0);
6440     } else {
6441       return nullptr;
6442     }
6443   }
6444 
6445   // If we get this far, we have an allocation which immediately
6446   // precedes the arraycopy, and we can take over zeroing the new object.
6447   // The arraycopy will finish the initialization, and provide
6448   // a new control state to which we will anchor the destination pointer.
6449 
6450   return alloc;
6451 }
6452 
6453 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6454   if (node->is_IfProj()) {
6455     Node* other_proj = node->as_IfProj()->other_if_proj();
6456     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6457       Node* obs = other_proj->fast_out(j);
6458       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6459           (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) {
6460         return obs->as_CallStaticJava();
6461       }
6462     }
6463   }
6464   return nullptr;
6465 }
6466 
6467 //-------------inline_encodeISOArray-----------------------------------
6468 // encode char[] to byte[] in ISO_8859_1 or ASCII
6469 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6470   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6471   // no receiver since it is static method
6472   Node *src         = argument(0);
6473   Node *src_offset  = argument(1);
6474   Node *dst         = argument(2);
6475   Node *dst_offset  = argument(3);
6476   Node *length      = argument(4);
6477 
6478   src = must_be_not_null(src, true);
6479   dst = must_be_not_null(dst, true);
6480 
6481   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6482   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6483   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6484       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6485     // failed array check
6486     return false;
6487   }
6488 
6489   // Figure out the size and type of the elements we will be copying.
6490   BasicType src_elem = src_type->elem()->array_element_basic_type();
6491   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6492   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6493     return false;
6494   }
6495 
6496   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6497   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6498   // 'src_start' points to src array + scaled offset
6499   // 'dst_start' points to dst array + scaled offset
6500 
6501   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6502   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6503   enc = _gvn.transform(enc);
6504   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6505   set_memory(res_mem, mtype);
6506   set_result(enc);
6507   clear_upper_avx();
6508 
6509   return true;
6510 }
6511 
6512 //-------------inline_multiplyToLen-----------------------------------
6513 bool LibraryCallKit::inline_multiplyToLen() {
6514   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6515 
6516   address stubAddr = StubRoutines::multiplyToLen();
6517   if (stubAddr == nullptr) {
6518     return false; // Intrinsic's stub is not implemented on this platform
6519   }
6520   const char* stubName = "multiplyToLen";
6521 
6522   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6523 
6524   // no receiver because it is a static method
6525   Node* x    = argument(0);
6526   Node* xlen = argument(1);
6527   Node* y    = argument(2);
6528   Node* ylen = argument(3);
6529   Node* z    = argument(4);
6530 
6531   x = must_be_not_null(x, true);
6532   y = must_be_not_null(y, true);
6533 
6534   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6535   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6536   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6537       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6538     // failed array check
6539     return false;
6540   }
6541 
6542   BasicType x_elem = x_type->elem()->array_element_basic_type();
6543   BasicType y_elem = y_type->elem()->array_element_basic_type();
6544   if (x_elem != T_INT || y_elem != T_INT) {
6545     return false;
6546   }
6547 
6548   Node* x_start = array_element_address(x, intcon(0), x_elem);
6549   Node* y_start = array_element_address(y, intcon(0), y_elem);
6550   // 'x_start' points to x array + scaled xlen
6551   // 'y_start' points to y array + scaled ylen
6552 
6553   Node* z_start = array_element_address(z, intcon(0), T_INT);
6554 
6555   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6556                                  OptoRuntime::multiplyToLen_Type(),
6557                                  stubAddr, stubName, TypePtr::BOTTOM,
6558                                  x_start, xlen, y_start, ylen, z_start);
6559 
6560   C->set_has_split_ifs(true); // Has chance for split-if optimization
6561   set_result(z);
6562   return true;
6563 }
6564 
6565 //-------------inline_squareToLen------------------------------------
6566 bool LibraryCallKit::inline_squareToLen() {
6567   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6568 
6569   address stubAddr = StubRoutines::squareToLen();
6570   if (stubAddr == nullptr) {
6571     return false; // Intrinsic's stub is not implemented on this platform
6572   }
6573   const char* stubName = "squareToLen";
6574 
6575   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6576 
6577   Node* x    = argument(0);
6578   Node* len  = argument(1);
6579   Node* z    = argument(2);
6580   Node* zlen = argument(3);
6581 
6582   x = must_be_not_null(x, true);
6583   z = must_be_not_null(z, true);
6584 
6585   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6586   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6587   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6588       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6589     // failed array check
6590     return false;
6591   }
6592 
6593   BasicType x_elem = x_type->elem()->array_element_basic_type();
6594   BasicType z_elem = z_type->elem()->array_element_basic_type();
6595   if (x_elem != T_INT || z_elem != T_INT) {
6596     return false;
6597   }
6598 
6599 
6600   Node* x_start = array_element_address(x, intcon(0), x_elem);
6601   Node* z_start = array_element_address(z, intcon(0), z_elem);
6602 
6603   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6604                                   OptoRuntime::squareToLen_Type(),
6605                                   stubAddr, stubName, TypePtr::BOTTOM,
6606                                   x_start, len, z_start, zlen);
6607 
6608   set_result(z);
6609   return true;
6610 }
6611 
6612 //-------------inline_mulAdd------------------------------------------
6613 bool LibraryCallKit::inline_mulAdd() {
6614   assert(UseMulAddIntrinsic, "not implemented on this platform");
6615 
6616   address stubAddr = StubRoutines::mulAdd();
6617   if (stubAddr == nullptr) {
6618     return false; // Intrinsic's stub is not implemented on this platform
6619   }
6620   const char* stubName = "mulAdd";
6621 
6622   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6623 
6624   Node* out      = argument(0);
6625   Node* in       = argument(1);
6626   Node* offset   = argument(2);
6627   Node* len      = argument(3);
6628   Node* k        = argument(4);
6629 
6630   in = must_be_not_null(in, true);
6631   out = must_be_not_null(out, true);
6632 
6633   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6634   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6635   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6636        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6637     // failed array check
6638     return false;
6639   }
6640 
6641   BasicType out_elem = out_type->elem()->array_element_basic_type();
6642   BasicType in_elem = in_type->elem()->array_element_basic_type();
6643   if (out_elem != T_INT || in_elem != T_INT) {
6644     return false;
6645   }
6646 
6647   Node* outlen = load_array_length(out);
6648   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6649   Node* out_start = array_element_address(out, intcon(0), out_elem);
6650   Node* in_start = array_element_address(in, intcon(0), in_elem);
6651 
6652   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6653                                   OptoRuntime::mulAdd_Type(),
6654                                   stubAddr, stubName, TypePtr::BOTTOM,
6655                                   out_start,in_start, new_offset, len, k);
6656   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6657   set_result(result);
6658   return true;
6659 }
6660 
6661 //-------------inline_montgomeryMultiply-----------------------------------
6662 bool LibraryCallKit::inline_montgomeryMultiply() {
6663   address stubAddr = StubRoutines::montgomeryMultiply();
6664   if (stubAddr == nullptr) {
6665     return false; // Intrinsic's stub is not implemented on this platform
6666   }
6667 
6668   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6669   const char* stubName = "montgomery_multiply";
6670 
6671   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6672 
6673   Node* a    = argument(0);
6674   Node* b    = argument(1);
6675   Node* n    = argument(2);
6676   Node* len  = argument(3);
6677   Node* inv  = argument(4);
6678   Node* m    = argument(6);
6679 
6680   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6681   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6682   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6683   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6684   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6685       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6686       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6687       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6688     // failed array check
6689     return false;
6690   }
6691 
6692   BasicType a_elem = a_type->elem()->array_element_basic_type();
6693   BasicType b_elem = b_type->elem()->array_element_basic_type();
6694   BasicType n_elem = n_type->elem()->array_element_basic_type();
6695   BasicType m_elem = m_type->elem()->array_element_basic_type();
6696   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6697     return false;
6698   }
6699 
6700   // Make the call
6701   {
6702     Node* a_start = array_element_address(a, intcon(0), a_elem);
6703     Node* b_start = array_element_address(b, intcon(0), b_elem);
6704     Node* n_start = array_element_address(n, intcon(0), n_elem);
6705     Node* m_start = array_element_address(m, intcon(0), m_elem);
6706 
6707     Node* call = make_runtime_call(RC_LEAF,
6708                                    OptoRuntime::montgomeryMultiply_Type(),
6709                                    stubAddr, stubName, TypePtr::BOTTOM,
6710                                    a_start, b_start, n_start, len, inv, top(),
6711                                    m_start);
6712     set_result(m);
6713   }
6714 
6715   return true;
6716 }
6717 
6718 bool LibraryCallKit::inline_montgomerySquare() {
6719   address stubAddr = StubRoutines::montgomerySquare();
6720   if (stubAddr == nullptr) {
6721     return false; // Intrinsic's stub is not implemented on this platform
6722   }
6723 
6724   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6725   const char* stubName = "montgomery_square";
6726 
6727   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6728 
6729   Node* a    = argument(0);
6730   Node* n    = argument(1);
6731   Node* len  = argument(2);
6732   Node* inv  = argument(3);
6733   Node* m    = argument(5);
6734 
6735   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6736   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6737   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6738   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6739       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6740       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6741     // failed array check
6742     return false;
6743   }
6744 
6745   BasicType a_elem = a_type->elem()->array_element_basic_type();
6746   BasicType n_elem = n_type->elem()->array_element_basic_type();
6747   BasicType m_elem = m_type->elem()->array_element_basic_type();
6748   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6749     return false;
6750   }
6751 
6752   // Make the call
6753   {
6754     Node* a_start = array_element_address(a, intcon(0), a_elem);
6755     Node* n_start = array_element_address(n, intcon(0), n_elem);
6756     Node* m_start = array_element_address(m, intcon(0), m_elem);
6757 
6758     Node* call = make_runtime_call(RC_LEAF,
6759                                    OptoRuntime::montgomerySquare_Type(),
6760                                    stubAddr, stubName, TypePtr::BOTTOM,
6761                                    a_start, n_start, len, inv, top(),
6762                                    m_start);
6763     set_result(m);
6764   }
6765 
6766   return true;
6767 }
6768 
6769 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6770   address stubAddr = nullptr;
6771   const char* stubName = nullptr;
6772 
6773   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6774   if (stubAddr == nullptr) {
6775     return false; // Intrinsic's stub is not implemented on this platform
6776   }
6777 
6778   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6779 
6780   assert(callee()->signature()->size() == 5, "expected 5 arguments");
6781 
6782   Node* newArr = argument(0);
6783   Node* oldArr = argument(1);
6784   Node* newIdx = argument(2);
6785   Node* shiftCount = argument(3);
6786   Node* numIter = argument(4);
6787 
6788   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6789   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6790   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6791       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6792     return false;
6793   }
6794 
6795   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6796   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6797   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6798     return false;
6799   }
6800 
6801   // Make the call
6802   {
6803     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6804     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6805 
6806     Node* call = make_runtime_call(RC_LEAF,
6807                                    OptoRuntime::bigIntegerShift_Type(),
6808                                    stubAddr,
6809                                    stubName,
6810                                    TypePtr::BOTTOM,
6811                                    newArr_start,
6812                                    oldArr_start,
6813                                    newIdx,
6814                                    shiftCount,
6815                                    numIter);
6816   }
6817 
6818   return true;
6819 }
6820 
6821 //-------------inline_vectorizedMismatch------------------------------
6822 bool LibraryCallKit::inline_vectorizedMismatch() {
6823   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6824 
6825   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6826   Node* obja    = argument(0); // Object
6827   Node* aoffset = argument(1); // long
6828   Node* objb    = argument(3); // Object
6829   Node* boffset = argument(4); // long
6830   Node* length  = argument(6); // int
6831   Node* scale   = argument(7); // int
6832 
6833   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6834   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6835   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6836       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6837       scale == top()) {
6838     return false; // failed input validation
6839   }
6840 
6841   Node* obja_adr = make_unsafe_address(obja, aoffset);
6842   Node* objb_adr = make_unsafe_address(objb, boffset);
6843 
6844   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6845   //
6846   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
6847   //    if (length <= inline_limit) {
6848   //      inline_path:
6849   //        vmask   = VectorMaskGen length
6850   //        vload1  = LoadVectorMasked obja, vmask
6851   //        vload2  = LoadVectorMasked objb, vmask
6852   //        result1 = VectorCmpMasked vload1, vload2, vmask
6853   //    } else {
6854   //      call_stub_path:
6855   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6856   //    }
6857   //    exit_block:
6858   //      return Phi(result1, result2);
6859   //
6860   enum { inline_path = 1,  // input is small enough to process it all at once
6861          stub_path   = 2,  // input is too large; call into the VM
6862          PATH_LIMIT  = 3
6863   };
6864 
6865   Node* exit_block = new RegionNode(PATH_LIMIT);
6866   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6867   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6868 
6869   Node* call_stub_path = control();
6870 
6871   BasicType elem_bt = T_ILLEGAL;
6872 
6873   const TypeInt* scale_t = _gvn.type(scale)->is_int();
6874   if (scale_t->is_con()) {
6875     switch (scale_t->get_con()) {
6876       case 0: elem_bt = T_BYTE;  break;
6877       case 1: elem_bt = T_SHORT; break;
6878       case 2: elem_bt = T_INT;   break;
6879       case 3: elem_bt = T_LONG;  break;
6880 
6881       default: elem_bt = T_ILLEGAL; break; // not supported
6882     }
6883   }
6884 
6885   int inline_limit = 0;
6886   bool do_partial_inline = false;
6887 
6888   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6889     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6890     do_partial_inline = inline_limit >= 16;
6891   }
6892 
6893   if (do_partial_inline) {
6894     assert(elem_bt != T_ILLEGAL, "sanity");
6895 
6896     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
6897         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6898         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
6899 
6900       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6901       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6902       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6903 
6904       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6905 
6906       if (!stopped()) {
6907         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6908 
6909         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6910         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6911         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6912         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6913 
6914         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6915         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6916         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6917         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6918 
6919         exit_block->init_req(inline_path, control());
6920         memory_phi->init_req(inline_path, map()->memory());
6921         result_phi->init_req(inline_path, result);
6922 
6923         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6924         clear_upper_avx();
6925       }
6926     }
6927   }
6928 
6929   if (call_stub_path != nullptr) {
6930     set_control(call_stub_path);
6931 
6932     Node* call = make_runtime_call(RC_LEAF,
6933                                    OptoRuntime::vectorizedMismatch_Type(),
6934                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6935                                    obja_adr, objb_adr, length, scale);
6936 
6937     exit_block->init_req(stub_path, control());
6938     memory_phi->init_req(stub_path, map()->memory());
6939     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6940   }
6941 
6942   exit_block = _gvn.transform(exit_block);
6943   memory_phi = _gvn.transform(memory_phi);
6944   result_phi = _gvn.transform(result_phi);
6945 
6946   set_control(exit_block);
6947   set_all_memory(memory_phi);
6948   set_result(result_phi);
6949 
6950   return true;
6951 }
6952 
6953 //------------------------------inline_vectorizedHashcode----------------------------
6954 bool LibraryCallKit::inline_vectorizedHashCode() {
6955   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6956 
6957   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6958   Node* array          = argument(0);
6959   Node* offset         = argument(1);
6960   Node* length         = argument(2);
6961   Node* initialValue   = argument(3);
6962   Node* basic_type     = argument(4);
6963 
6964   if (basic_type == top()) {
6965     return false; // failed input validation
6966   }
6967 
6968   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6969   if (!basic_type_t->is_con()) {
6970     return false; // Only intrinsify if mode argument is constant
6971   }
6972 
6973   array = must_be_not_null(array, true);
6974 
6975   BasicType bt = (BasicType)basic_type_t->get_con();
6976 
6977   // Resolve address of first element
6978   Node* array_start = array_element_address(array, offset, bt);
6979 
6980   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6981     array_start, length, initialValue, basic_type)));
6982   clear_upper_avx();
6983 
6984   return true;
6985 }
6986 
6987 /**
6988  * Calculate CRC32 for byte.
6989  * int java.util.zip.CRC32.update(int crc, int b)
6990  */
6991 bool LibraryCallKit::inline_updateCRC32() {
6992   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6993   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6994   // no receiver since it is static method
6995   Node* crc  = argument(0); // type: int
6996   Node* b    = argument(1); // type: int
6997 
6998   /*
6999    *    int c = ~ crc;
7000    *    b = timesXtoThe32[(b ^ c) & 0xFF];
7001    *    b = b ^ (c >>> 8);
7002    *    crc = ~b;
7003    */
7004 
7005   Node* M1 = intcon(-1);
7006   crc = _gvn.transform(new XorINode(crc, M1));
7007   Node* result = _gvn.transform(new XorINode(crc, b));
7008   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
7009 
7010   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
7011   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
7012   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
7013   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
7014 
7015   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
7016   result = _gvn.transform(new XorINode(crc, result));
7017   result = _gvn.transform(new XorINode(result, M1));
7018   set_result(result);
7019   return true;
7020 }
7021 
7022 /**
7023  * Calculate CRC32 for byte[] array.
7024  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
7025  */
7026 bool LibraryCallKit::inline_updateBytesCRC32() {
7027   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
7028   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
7029   // no receiver since it is static method
7030   Node* crc     = argument(0); // type: int
7031   Node* src     = argument(1); // type: oop
7032   Node* offset  = argument(2); // type: int
7033   Node* length  = argument(3); // type: int
7034 
7035   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7036   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7037     // failed array check
7038     return false;
7039   }
7040 
7041   // Figure out the size and type of the elements we will be copying.
7042   BasicType src_elem = src_type->elem()->array_element_basic_type();
7043   if (src_elem != T_BYTE) {
7044     return false;
7045   }
7046 
7047   // 'src_start' points to src array + scaled offset
7048   src = must_be_not_null(src, true);
7049   Node* src_start = array_element_address(src, offset, src_elem);
7050 
7051   // We assume that range check is done by caller.
7052   // TODO: generate range check (offset+length < src.length) in debug VM.
7053 
7054   // Call the stub.
7055   address stubAddr = StubRoutines::updateBytesCRC32();
7056   const char *stubName = "updateBytesCRC32";
7057 
7058   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
7059                                  stubAddr, stubName, TypePtr::BOTTOM,
7060                                  crc, src_start, length);
7061   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7062   set_result(result);
7063   return true;
7064 }
7065 
7066 /**
7067  * Calculate CRC32 for ByteBuffer.
7068  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
7069  */
7070 bool LibraryCallKit::inline_updateByteBufferCRC32() {
7071   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
7072   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
7073   // no receiver since it is static method
7074   Node* crc     = argument(0); // type: int
7075   Node* src     = argument(1); // type: long
7076   Node* offset  = argument(3); // type: int
7077   Node* length  = argument(4); // type: int
7078 
7079   src = ConvL2X(src);  // adjust Java long to machine word
7080   Node* base = _gvn.transform(new CastX2PNode(src));
7081   offset = ConvI2X(offset);
7082 
7083   // 'src_start' points to src array + scaled offset
7084   Node* src_start = basic_plus_adr(top(), base, offset);
7085 
7086   // Call the stub.
7087   address stubAddr = StubRoutines::updateBytesCRC32();
7088   const char *stubName = "updateBytesCRC32";
7089 
7090   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
7091                                  stubAddr, stubName, TypePtr::BOTTOM,
7092                                  crc, src_start, length);
7093   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7094   set_result(result);
7095   return true;
7096 }
7097 
7098 //------------------------------get_table_from_crc32c_class-----------------------
7099 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
7100   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
7101   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
7102 
7103   return table;
7104 }
7105 
7106 //------------------------------inline_updateBytesCRC32C-----------------------
7107 //
7108 // Calculate CRC32C for byte[] array.
7109 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
7110 //
7111 bool LibraryCallKit::inline_updateBytesCRC32C() {
7112   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
7113   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
7114   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
7115   // no receiver since it is a static method
7116   Node* crc     = argument(0); // type: int
7117   Node* src     = argument(1); // type: oop
7118   Node* offset  = argument(2); // type: int
7119   Node* end     = argument(3); // type: int
7120 
7121   Node* length = _gvn.transform(new SubINode(end, offset));
7122 
7123   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7124   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7125     // failed array check
7126     return false;
7127   }
7128 
7129   // Figure out the size and type of the elements we will be copying.
7130   BasicType src_elem = src_type->elem()->array_element_basic_type();
7131   if (src_elem != T_BYTE) {
7132     return false;
7133   }
7134 
7135   // 'src_start' points to src array + scaled offset
7136   src = must_be_not_null(src, true);
7137   Node* src_start = array_element_address(src, offset, src_elem);
7138 
7139   // static final int[] byteTable in class CRC32C
7140   Node* table = get_table_from_crc32c_class(callee()->holder());
7141   table = must_be_not_null(table, true);
7142   Node* table_start = array_element_address(table, intcon(0), T_INT);
7143 
7144   // We assume that range check is done by caller.
7145   // TODO: generate range check (offset+length < src.length) in debug VM.
7146 
7147   // Call the stub.
7148   address stubAddr = StubRoutines::updateBytesCRC32C();
7149   const char *stubName = "updateBytesCRC32C";
7150 
7151   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
7152                                  stubAddr, stubName, TypePtr::BOTTOM,
7153                                  crc, src_start, length, table_start);
7154   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7155   set_result(result);
7156   return true;
7157 }
7158 
7159 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
7160 //
7161 // Calculate CRC32C for DirectByteBuffer.
7162 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
7163 //
7164 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
7165   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
7166   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
7167   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
7168   // no receiver since it is a static method
7169   Node* crc     = argument(0); // type: int
7170   Node* src     = argument(1); // type: long
7171   Node* offset  = argument(3); // type: int
7172   Node* end     = argument(4); // type: int
7173 
7174   Node* length = _gvn.transform(new SubINode(end, offset));
7175 
7176   src = ConvL2X(src);  // adjust Java long to machine word
7177   Node* base = _gvn.transform(new CastX2PNode(src));
7178   offset = ConvI2X(offset);
7179 
7180   // 'src_start' points to src array + scaled offset
7181   Node* src_start = basic_plus_adr(top(), base, offset);
7182 
7183   // static final int[] byteTable in class CRC32C
7184   Node* table = get_table_from_crc32c_class(callee()->holder());
7185   table = must_be_not_null(table, true);
7186   Node* table_start = array_element_address(table, intcon(0), T_INT);
7187 
7188   // Call the stub.
7189   address stubAddr = StubRoutines::updateBytesCRC32C();
7190   const char *stubName = "updateBytesCRC32C";
7191 
7192   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
7193                                  stubAddr, stubName, TypePtr::BOTTOM,
7194                                  crc, src_start, length, table_start);
7195   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7196   set_result(result);
7197   return true;
7198 }
7199 
7200 //------------------------------inline_updateBytesAdler32----------------------
7201 //
7202 // Calculate Adler32 checksum for byte[] array.
7203 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
7204 //
7205 bool LibraryCallKit::inline_updateBytesAdler32() {
7206   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
7207   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
7208   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
7209   // no receiver since it is static method
7210   Node* crc     = argument(0); // type: int
7211   Node* src     = argument(1); // type: oop
7212   Node* offset  = argument(2); // type: int
7213   Node* length  = argument(3); // type: int
7214 
7215   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7216   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7217     // failed array check
7218     return false;
7219   }
7220 
7221   // Figure out the size and type of the elements we will be copying.
7222   BasicType src_elem = src_type->elem()->array_element_basic_type();
7223   if (src_elem != T_BYTE) {
7224     return false;
7225   }
7226 
7227   // 'src_start' points to src array + scaled offset
7228   Node* src_start = array_element_address(src, offset, src_elem);
7229 
7230   // We assume that range check is done by caller.
7231   // TODO: generate range check (offset+length < src.length) in debug VM.
7232 
7233   // Call the stub.
7234   address stubAddr = StubRoutines::updateBytesAdler32();
7235   const char *stubName = "updateBytesAdler32";
7236 
7237   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
7238                                  stubAddr, stubName, TypePtr::BOTTOM,
7239                                  crc, src_start, length);
7240   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7241   set_result(result);
7242   return true;
7243 }
7244 
7245 //------------------------------inline_updateByteBufferAdler32---------------
7246 //
7247 // Calculate Adler32 checksum for DirectByteBuffer.
7248 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
7249 //
7250 bool LibraryCallKit::inline_updateByteBufferAdler32() {
7251   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
7252   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
7253   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
7254   // no receiver since it is static method
7255   Node* crc     = argument(0); // type: int
7256   Node* src     = argument(1); // type: long
7257   Node* offset  = argument(3); // type: int
7258   Node* length  = argument(4); // type: int
7259 
7260   src = ConvL2X(src);  // adjust Java long to machine word
7261   Node* base = _gvn.transform(new CastX2PNode(src));
7262   offset = ConvI2X(offset);
7263 
7264   // 'src_start' points to src array + scaled offset
7265   Node* src_start = basic_plus_adr(top(), base, offset);
7266 
7267   // Call the stub.
7268   address stubAddr = StubRoutines::updateBytesAdler32();
7269   const char *stubName = "updateBytesAdler32";
7270 
7271   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
7272                                  stubAddr, stubName, TypePtr::BOTTOM,
7273                                  crc, src_start, length);
7274 
7275   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7276   set_result(result);
7277   return true;
7278 }
7279 
7280 //----------------------------inline_reference_get----------------------------
7281 // public T java.lang.ref.Reference.get();
7282 bool LibraryCallKit::inline_reference_get() {
7283   const int referent_offset = java_lang_ref_Reference::referent_offset();
7284 
7285   // Get the argument:
7286   Node* reference_obj = null_check_receiver();
7287   if (stopped()) return true;
7288 
7289   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
7290   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7291                                         decorators, /*is_static*/ false, nullptr);
7292   if (result == nullptr) return false;
7293 
7294   // Add memory barrier to prevent commoning reads from this field
7295   // across safepoint since GC can change its value.
7296   insert_mem_bar(Op_MemBarCPUOrder);
7297 
7298   set_result(result);
7299   return true;
7300 }
7301 
7302 //----------------------------inline_reference_refersTo0----------------------------
7303 // bool java.lang.ref.Reference.refersTo0();
7304 // bool java.lang.ref.PhantomReference.refersTo0();
7305 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
7306   // Get arguments:
7307   Node* reference_obj = null_check_receiver();
7308   Node* other_obj = argument(1);
7309   if (stopped()) return true;
7310 
7311   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
7312   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
7313   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7314                                           decorators, /*is_static*/ false, nullptr);
7315   if (referent == nullptr) return false;
7316 
7317   // Add memory barrier to prevent commoning reads from this field
7318   // across safepoint since GC can change its value.
7319   insert_mem_bar(Op_MemBarCPUOrder);
7320 
7321   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
7322   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
7323   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
7324 
7325   RegionNode* region = new RegionNode(3);
7326   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
7327 
7328   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
7329   region->init_req(1, if_true);
7330   phi->init_req(1, intcon(1));
7331 
7332   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
7333   region->init_req(2, if_false);
7334   phi->init_req(2, intcon(0));
7335 
7336   set_control(_gvn.transform(region));
7337   record_for_igvn(region);
7338   set_result(_gvn.transform(phi));
7339   return true;
7340 }
7341 
7342 
7343 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
7344                                              DecoratorSet decorators, bool is_static,
7345                                              ciInstanceKlass* fromKls) {
7346   if (fromKls == nullptr) {
7347     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7348     assert(tinst != nullptr, "obj is null");
7349     assert(tinst->is_loaded(), "obj is not loaded");
7350     fromKls = tinst->instance_klass();
7351   } else {
7352     assert(is_static, "only for static field access");
7353   }
7354   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7355                                               ciSymbol::make(fieldTypeString),
7356                                               is_static);
7357 
7358   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
7359   if (field == nullptr) return (Node *) nullptr;
7360 
7361   if (is_static) {
7362     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7363     fromObj = makecon(tip);
7364   }
7365 
7366   // Next code  copied from Parse::do_get_xxx():
7367 
7368   // Compute address and memory type.
7369   int offset  = field->offset_in_bytes();
7370   bool is_vol = field->is_volatile();
7371   ciType* field_klass = field->type();
7372   assert(field_klass->is_loaded(), "should be loaded");
7373   const TypePtr* adr_type = C->alias_type(field)->adr_type();
7374   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7375   BasicType bt = field->layout_type();
7376 
7377   // Build the resultant type of the load
7378   const Type *type;
7379   if (bt == T_OBJECT) {
7380     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
7381   } else {
7382     type = Type::get_const_basic_type(bt);
7383   }
7384 
7385   if (is_vol) {
7386     decorators |= MO_SEQ_CST;
7387   }
7388 
7389   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
7390 }
7391 
7392 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7393                                                  bool is_exact /* true */, bool is_static /* false */,
7394                                                  ciInstanceKlass * fromKls /* nullptr */) {
7395   if (fromKls == nullptr) {
7396     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7397     assert(tinst != nullptr, "obj is null");
7398     assert(tinst->is_loaded(), "obj is not loaded");
7399     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7400     fromKls = tinst->instance_klass();
7401   }
7402   else {
7403     assert(is_static, "only for static field access");
7404   }
7405   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7406     ciSymbol::make(fieldTypeString),
7407     is_static);
7408 
7409   assert(field != nullptr, "undefined field");
7410   assert(!field->is_volatile(), "not defined for volatile fields");
7411 
7412   if (is_static) {
7413     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7414     fromObj = makecon(tip);
7415   }
7416 
7417   // Next code  copied from Parse::do_get_xxx():
7418 
7419   // Compute address and memory type.
7420   int offset = field->offset_in_bytes();
7421   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7422 
7423   return adr;
7424 }
7425 
7426 //------------------------------inline_aescrypt_Block-----------------------
7427 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7428   address stubAddr = nullptr;
7429   const char *stubName;
7430   assert(UseAES, "need AES instruction support");
7431 
7432   switch(id) {
7433   case vmIntrinsics::_aescrypt_encryptBlock:
7434     stubAddr = StubRoutines::aescrypt_encryptBlock();
7435     stubName = "aescrypt_encryptBlock";
7436     break;
7437   case vmIntrinsics::_aescrypt_decryptBlock:
7438     stubAddr = StubRoutines::aescrypt_decryptBlock();
7439     stubName = "aescrypt_decryptBlock";
7440     break;
7441   default:
7442     break;
7443   }
7444   if (stubAddr == nullptr) return false;
7445 
7446   Node* aescrypt_object = argument(0);
7447   Node* src             = argument(1);
7448   Node* src_offset      = argument(2);
7449   Node* dest            = argument(3);
7450   Node* dest_offset     = argument(4);
7451 
7452   src = must_be_not_null(src, true);
7453   dest = must_be_not_null(dest, true);
7454 
7455   // (1) src and dest are arrays.
7456   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7457   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7458   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7459          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7460 
7461   // for the quick and dirty code we will skip all the checks.
7462   // we are just trying to get the call to be generated.
7463   Node* src_start  = src;
7464   Node* dest_start = dest;
7465   if (src_offset != nullptr || dest_offset != nullptr) {
7466     assert(src_offset != nullptr && dest_offset != nullptr, "");
7467     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7468     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7469   }
7470 
7471   // now need to get the start of its expanded key array
7472   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7473   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7474   if (k_start == nullptr) return false;
7475 
7476   // Call the stub.
7477   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7478                     stubAddr, stubName, TypePtr::BOTTOM,
7479                     src_start, dest_start, k_start);
7480 
7481   return true;
7482 }
7483 
7484 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7485 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7486   address stubAddr = nullptr;
7487   const char *stubName = nullptr;
7488 
7489   assert(UseAES, "need AES instruction support");
7490 
7491   switch(id) {
7492   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7493     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7494     stubName = "cipherBlockChaining_encryptAESCrypt";
7495     break;
7496   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7497     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7498     stubName = "cipherBlockChaining_decryptAESCrypt";
7499     break;
7500   default:
7501     break;
7502   }
7503   if (stubAddr == nullptr) return false;
7504 
7505   Node* cipherBlockChaining_object = argument(0);
7506   Node* src                        = argument(1);
7507   Node* src_offset                 = argument(2);
7508   Node* len                        = argument(3);
7509   Node* dest                       = argument(4);
7510   Node* dest_offset                = argument(5);
7511 
7512   src = must_be_not_null(src, false);
7513   dest = must_be_not_null(dest, false);
7514 
7515   // (1) src and dest are arrays.
7516   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7517   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7518   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7519          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7520 
7521   // checks are the responsibility of the caller
7522   Node* src_start  = src;
7523   Node* dest_start = dest;
7524   if (src_offset != nullptr || dest_offset != nullptr) {
7525     assert(src_offset != nullptr && dest_offset != nullptr, "");
7526     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7527     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7528   }
7529 
7530   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7531   // (because of the predicated logic executed earlier).
7532   // so we cast it here safely.
7533   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7534 
7535   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7536   if (embeddedCipherObj == nullptr) return false;
7537 
7538   // cast it to what we know it will be at runtime
7539   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7540   assert(tinst != nullptr, "CBC obj is null");
7541   assert(tinst->is_loaded(), "CBC obj is not loaded");
7542   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7543   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7544 
7545   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7546   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7547   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7548   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7549   aescrypt_object = _gvn.transform(aescrypt_object);
7550 
7551   // we need to get the start of the aescrypt_object's expanded key array
7552   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7553   if (k_start == nullptr) return false;
7554 
7555   // similarly, get the start address of the r vector
7556   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7557   if (objRvec == nullptr) return false;
7558   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7559 
7560   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7561   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7562                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7563                                      stubAddr, stubName, TypePtr::BOTTOM,
7564                                      src_start, dest_start, k_start, r_start, len);
7565 
7566   // return cipher length (int)
7567   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7568   set_result(retvalue);
7569   return true;
7570 }
7571 
7572 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7573 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7574   address stubAddr = nullptr;
7575   const char *stubName = nullptr;
7576 
7577   assert(UseAES, "need AES instruction support");
7578 
7579   switch (id) {
7580   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7581     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7582     stubName = "electronicCodeBook_encryptAESCrypt";
7583     break;
7584   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7585     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7586     stubName = "electronicCodeBook_decryptAESCrypt";
7587     break;
7588   default:
7589     break;
7590   }
7591 
7592   if (stubAddr == nullptr) return false;
7593 
7594   Node* electronicCodeBook_object = argument(0);
7595   Node* src                       = argument(1);
7596   Node* src_offset                = argument(2);
7597   Node* len                       = argument(3);
7598   Node* dest                      = argument(4);
7599   Node* dest_offset               = argument(5);
7600 
7601   // (1) src and dest are arrays.
7602   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7603   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7604   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7605          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7606 
7607   // checks are the responsibility of the caller
7608   Node* src_start = src;
7609   Node* dest_start = dest;
7610   if (src_offset != nullptr || dest_offset != nullptr) {
7611     assert(src_offset != nullptr && dest_offset != nullptr, "");
7612     src_start = array_element_address(src, src_offset, T_BYTE);
7613     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7614   }
7615 
7616   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7617   // (because of the predicated logic executed earlier).
7618   // so we cast it here safely.
7619   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7620 
7621   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7622   if (embeddedCipherObj == nullptr) return false;
7623 
7624   // cast it to what we know it will be at runtime
7625   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7626   assert(tinst != nullptr, "ECB obj is null");
7627   assert(tinst->is_loaded(), "ECB obj is not loaded");
7628   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7629   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7630 
7631   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7632   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7633   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7634   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7635   aescrypt_object = _gvn.transform(aescrypt_object);
7636 
7637   // we need to get the start of the aescrypt_object's expanded key array
7638   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7639   if (k_start == nullptr) return false;
7640 
7641   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7642   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7643                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7644                                      stubAddr, stubName, TypePtr::BOTTOM,
7645                                      src_start, dest_start, k_start, len);
7646 
7647   // return cipher length (int)
7648   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7649   set_result(retvalue);
7650   return true;
7651 }
7652 
7653 //------------------------------inline_counterMode_AESCrypt-----------------------
7654 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7655   assert(UseAES, "need AES instruction support");
7656   if (!UseAESCTRIntrinsics) return false;
7657 
7658   address stubAddr = nullptr;
7659   const char *stubName = nullptr;
7660   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7661     stubAddr = StubRoutines::counterMode_AESCrypt();
7662     stubName = "counterMode_AESCrypt";
7663   }
7664   if (stubAddr == nullptr) return false;
7665 
7666   Node* counterMode_object = argument(0);
7667   Node* src = argument(1);
7668   Node* src_offset = argument(2);
7669   Node* len = argument(3);
7670   Node* dest = argument(4);
7671   Node* dest_offset = argument(5);
7672 
7673   // (1) src and dest are arrays.
7674   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7675   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7676   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7677          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7678 
7679   // checks are the responsibility of the caller
7680   Node* src_start = src;
7681   Node* dest_start = dest;
7682   if (src_offset != nullptr || dest_offset != nullptr) {
7683     assert(src_offset != nullptr && dest_offset != nullptr, "");
7684     src_start = array_element_address(src, src_offset, T_BYTE);
7685     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7686   }
7687 
7688   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7689   // (because of the predicated logic executed earlier).
7690   // so we cast it here safely.
7691   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7692   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7693   if (embeddedCipherObj == nullptr) return false;
7694   // cast it to what we know it will be at runtime
7695   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7696   assert(tinst != nullptr, "CTR obj is null");
7697   assert(tinst->is_loaded(), "CTR obj is not loaded");
7698   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7699   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7700   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7701   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7702   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7703   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7704   aescrypt_object = _gvn.transform(aescrypt_object);
7705   // we need to get the start of the aescrypt_object's expanded key array
7706   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7707   if (k_start == nullptr) return false;
7708   // similarly, get the start address of the r vector
7709   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7710   if (obj_counter == nullptr) return false;
7711   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7712 
7713   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7714   if (saved_encCounter == nullptr) return false;
7715   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7716   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7717 
7718   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7719   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7720                                      OptoRuntime::counterMode_aescrypt_Type(),
7721                                      stubAddr, stubName, TypePtr::BOTTOM,
7722                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7723 
7724   // return cipher length (int)
7725   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7726   set_result(retvalue);
7727   return true;
7728 }
7729 
7730 //------------------------------get_key_start_from_aescrypt_object-----------------------
7731 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7732 #if defined(PPC64) || defined(S390)
7733   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7734   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7735   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7736   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7737   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7738   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7739   if (objSessionK == nullptr) {
7740     return (Node *) nullptr;
7741   }
7742   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7743 #else
7744   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7745 #endif // PPC64
7746   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7747   if (objAESCryptKey == nullptr) return (Node *) nullptr;
7748 
7749   // now have the array, need to get the start address of the K array
7750   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7751   return k_start;
7752 }
7753 
7754 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7755 // Return node representing slow path of predicate check.
7756 // the pseudo code we want to emulate with this predicate is:
7757 // for encryption:
7758 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7759 // for decryption:
7760 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7761 //    note cipher==plain is more conservative than the original java code but that's OK
7762 //
7763 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7764   // The receiver was checked for null already.
7765   Node* objCBC = argument(0);
7766 
7767   Node* src = argument(1);
7768   Node* dest = argument(4);
7769 
7770   // Load embeddedCipher field of CipherBlockChaining object.
7771   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7772 
7773   // get AESCrypt klass for instanceOf check
7774   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7775   // will have same classloader as CipherBlockChaining object
7776   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7777   assert(tinst != nullptr, "CBCobj is null");
7778   assert(tinst->is_loaded(), "CBCobj is not loaded");
7779 
7780   // we want to do an instanceof comparison against the AESCrypt class
7781   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7782   if (!klass_AESCrypt->is_loaded()) {
7783     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7784     Node* ctrl = control();
7785     set_control(top()); // no regular fast path
7786     return ctrl;
7787   }
7788 
7789   src = must_be_not_null(src, true);
7790   dest = must_be_not_null(dest, true);
7791 
7792   // Resolve oops to stable for CmpP below.
7793   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7794 
7795   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7796   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
7797   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7798 
7799   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7800 
7801   // for encryption, we are done
7802   if (!decrypting)
7803     return instof_false;  // even if it is null
7804 
7805   // for decryption, we need to add a further check to avoid
7806   // taking the intrinsic path when cipher and plain are the same
7807   // see the original java code for why.
7808   RegionNode* region = new RegionNode(3);
7809   region->init_req(1, instof_false);
7810 
7811   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7812   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7813   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7814   region->init_req(2, src_dest_conjoint);
7815 
7816   record_for_igvn(region);
7817   return _gvn.transform(region);
7818 }
7819 
7820 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7821 // Return node representing slow path of predicate check.
7822 // the pseudo code we want to emulate with this predicate is:
7823 // for encryption:
7824 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7825 // for decryption:
7826 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7827 //    note cipher==plain is more conservative than the original java code but that's OK
7828 //
7829 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7830   // The receiver was checked for null already.
7831   Node* objECB = argument(0);
7832 
7833   // Load embeddedCipher field of ElectronicCodeBook object.
7834   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7835 
7836   // get AESCrypt klass for instanceOf check
7837   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7838   // will have same classloader as ElectronicCodeBook object
7839   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7840   assert(tinst != nullptr, "ECBobj is null");
7841   assert(tinst->is_loaded(), "ECBobj is not loaded");
7842 
7843   // we want to do an instanceof comparison against the AESCrypt class
7844   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7845   if (!klass_AESCrypt->is_loaded()) {
7846     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7847     Node* ctrl = control();
7848     set_control(top()); // no regular fast path
7849     return ctrl;
7850   }
7851   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7852 
7853   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7854   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7855   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7856 
7857   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7858 
7859   // for encryption, we are done
7860   if (!decrypting)
7861     return instof_false;  // even if it is null
7862 
7863   // for decryption, we need to add a further check to avoid
7864   // taking the intrinsic path when cipher and plain are the same
7865   // see the original java code for why.
7866   RegionNode* region = new RegionNode(3);
7867   region->init_req(1, instof_false);
7868   Node* src = argument(1);
7869   Node* dest = argument(4);
7870   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7871   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7872   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7873   region->init_req(2, src_dest_conjoint);
7874 
7875   record_for_igvn(region);
7876   return _gvn.transform(region);
7877 }
7878 
7879 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7880 // Return node representing slow path of predicate check.
7881 // the pseudo code we want to emulate with this predicate is:
7882 // for encryption:
7883 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7884 // for decryption:
7885 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7886 //    note cipher==plain is more conservative than the original java code but that's OK
7887 //
7888 
7889 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7890   // The receiver was checked for null already.
7891   Node* objCTR = argument(0);
7892 
7893   // Load embeddedCipher field of CipherBlockChaining object.
7894   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7895 
7896   // get AESCrypt klass for instanceOf check
7897   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7898   // will have same classloader as CipherBlockChaining object
7899   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7900   assert(tinst != nullptr, "CTRobj is null");
7901   assert(tinst->is_loaded(), "CTRobj is not loaded");
7902 
7903   // we want to do an instanceof comparison against the AESCrypt class
7904   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7905   if (!klass_AESCrypt->is_loaded()) {
7906     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7907     Node* ctrl = control();
7908     set_control(top()); // no regular fast path
7909     return ctrl;
7910   }
7911 
7912   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7913   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7914   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7915   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7916   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7917 
7918   return instof_false; // even if it is null
7919 }
7920 
7921 //------------------------------inline_ghash_processBlocks
7922 bool LibraryCallKit::inline_ghash_processBlocks() {
7923   address stubAddr;
7924   const char *stubName;
7925   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7926 
7927   stubAddr = StubRoutines::ghash_processBlocks();
7928   stubName = "ghash_processBlocks";
7929 
7930   Node* data           = argument(0);
7931   Node* offset         = argument(1);
7932   Node* len            = argument(2);
7933   Node* state          = argument(3);
7934   Node* subkeyH        = argument(4);
7935 
7936   state = must_be_not_null(state, true);
7937   subkeyH = must_be_not_null(subkeyH, true);
7938   data = must_be_not_null(data, true);
7939 
7940   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
7941   assert(state_start, "state is null");
7942   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
7943   assert(subkeyH_start, "subkeyH is null");
7944   Node* data_start  = array_element_address(data, offset, T_BYTE);
7945   assert(data_start, "data is null");
7946 
7947   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7948                                   OptoRuntime::ghash_processBlocks_Type(),
7949                                   stubAddr, stubName, TypePtr::BOTTOM,
7950                                   state_start, subkeyH_start, data_start, len);
7951   return true;
7952 }
7953 
7954 //------------------------------inline_chacha20Block
7955 bool LibraryCallKit::inline_chacha20Block() {
7956   address stubAddr;
7957   const char *stubName;
7958   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7959 
7960   stubAddr = StubRoutines::chacha20Block();
7961   stubName = "chacha20Block";
7962 
7963   Node* state          = argument(0);
7964   Node* result         = argument(1);
7965 
7966   state = must_be_not_null(state, true);
7967   result = must_be_not_null(result, true);
7968 
7969   Node* state_start  = array_element_address(state, intcon(0), T_INT);
7970   assert(state_start, "state is null");
7971   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
7972   assert(result_start, "result is null");
7973 
7974   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7975                                   OptoRuntime::chacha20Block_Type(),
7976                                   stubAddr, stubName, TypePtr::BOTTOM,
7977                                   state_start, result_start);
7978   // return key stream length (int)
7979   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7980   set_result(retvalue);
7981   return true;
7982 }
7983 
7984 bool LibraryCallKit::inline_base64_encodeBlock() {
7985   address stubAddr;
7986   const char *stubName;
7987   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7988   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
7989   stubAddr = StubRoutines::base64_encodeBlock();
7990   stubName = "encodeBlock";
7991 
7992   if (!stubAddr) return false;
7993   Node* base64obj = argument(0);
7994   Node* src = argument(1);
7995   Node* offset = argument(2);
7996   Node* len = argument(3);
7997   Node* dest = argument(4);
7998   Node* dp = argument(5);
7999   Node* isURL = argument(6);
8000 
8001   src = must_be_not_null(src, true);
8002   dest = must_be_not_null(dest, true);
8003 
8004   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
8005   assert(src_start, "source array is null");
8006   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
8007   assert(dest_start, "destination array is null");
8008 
8009   Node* base64 = make_runtime_call(RC_LEAF,
8010                                    OptoRuntime::base64_encodeBlock_Type(),
8011                                    stubAddr, stubName, TypePtr::BOTTOM,
8012                                    src_start, offset, len, dest_start, dp, isURL);
8013   return true;
8014 }
8015 
8016 bool LibraryCallKit::inline_base64_decodeBlock() {
8017   address stubAddr;
8018   const char *stubName;
8019   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
8020   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
8021   stubAddr = StubRoutines::base64_decodeBlock();
8022   stubName = "decodeBlock";
8023 
8024   if (!stubAddr) return false;
8025   Node* base64obj = argument(0);
8026   Node* src = argument(1);
8027   Node* src_offset = argument(2);
8028   Node* len = argument(3);
8029   Node* dest = argument(4);
8030   Node* dest_offset = argument(5);
8031   Node* isURL = argument(6);
8032   Node* isMIME = argument(7);
8033 
8034   src = must_be_not_null(src, true);
8035   dest = must_be_not_null(dest, true);
8036 
8037   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
8038   assert(src_start, "source array is null");
8039   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
8040   assert(dest_start, "destination array is null");
8041 
8042   Node* call = make_runtime_call(RC_LEAF,
8043                                  OptoRuntime::base64_decodeBlock_Type(),
8044                                  stubAddr, stubName, TypePtr::BOTTOM,
8045                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
8046   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8047   set_result(result);
8048   return true;
8049 }
8050 
8051 bool LibraryCallKit::inline_poly1305_processBlocks() {
8052   address stubAddr;
8053   const char *stubName;
8054   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
8055   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
8056   stubAddr = StubRoutines::poly1305_processBlocks();
8057   stubName = "poly1305_processBlocks";
8058 
8059   if (!stubAddr) return false;
8060   null_check_receiver();  // null-check receiver
8061   if (stopped())  return true;
8062 
8063   Node* input = argument(1);
8064   Node* input_offset = argument(2);
8065   Node* len = argument(3);
8066   Node* alimbs = argument(4);
8067   Node* rlimbs = argument(5);
8068 
8069   input = must_be_not_null(input, true);
8070   alimbs = must_be_not_null(alimbs, true);
8071   rlimbs = must_be_not_null(rlimbs, true);
8072 
8073   Node* input_start = array_element_address(input, input_offset, T_BYTE);
8074   assert(input_start, "input array is null");
8075   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
8076   assert(acc_start, "acc array is null");
8077   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
8078   assert(r_start, "r array is null");
8079 
8080   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8081                                  OptoRuntime::poly1305_processBlocks_Type(),
8082                                  stubAddr, stubName, TypePtr::BOTTOM,
8083                                  input_start, len, acc_start, r_start);
8084   return true;
8085 }
8086 
8087 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
8088   address stubAddr;
8089   const char *stubName;
8090   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8091   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
8092   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
8093   stubName = "intpoly_montgomeryMult_P256";
8094 
8095   if (!stubAddr) return false;
8096   null_check_receiver();  // null-check receiver
8097   if (stopped())  return true;
8098 
8099   Node* a = argument(1);
8100   Node* b = argument(2);
8101   Node* r = argument(3);
8102 
8103   a = must_be_not_null(a, true);
8104   b = must_be_not_null(b, true);
8105   r = must_be_not_null(r, true);
8106 
8107   Node* a_start = array_element_address(a, intcon(0), T_LONG);
8108   assert(a_start, "a array is NULL");
8109   Node* b_start = array_element_address(b, intcon(0), T_LONG);
8110   assert(b_start, "b array is NULL");
8111   Node* r_start = array_element_address(r, intcon(0), T_LONG);
8112   assert(r_start, "r array is NULL");
8113 
8114   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8115                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
8116                                  stubAddr, stubName, TypePtr::BOTTOM,
8117                                  a_start, b_start, r_start);
8118   return true;
8119 }
8120 
8121 bool LibraryCallKit::inline_intpoly_assign() {
8122   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8123   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
8124   const char *stubName = "intpoly_assign";
8125   address stubAddr = StubRoutines::intpoly_assign();
8126   if (!stubAddr) return false;
8127 
8128   Node* set = argument(0);
8129   Node* a = argument(1);
8130   Node* b = argument(2);
8131   Node* arr_length = load_array_length(a);
8132 
8133   a = must_be_not_null(a, true);
8134   b = must_be_not_null(b, true);
8135 
8136   Node* a_start = array_element_address(a, intcon(0), T_LONG);
8137   assert(a_start, "a array is NULL");
8138   Node* b_start = array_element_address(b, intcon(0), T_LONG);
8139   assert(b_start, "b array is NULL");
8140 
8141   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8142                                  OptoRuntime::intpoly_assign_Type(),
8143                                  stubAddr, stubName, TypePtr::BOTTOM,
8144                                  set, a_start, b_start, arr_length);
8145   return true;
8146 }
8147 
8148 //------------------------------inline_digestBase_implCompress-----------------------
8149 //
8150 // Calculate MD5 for single-block byte[] array.
8151 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
8152 //
8153 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
8154 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
8155 //
8156 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
8157 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
8158 //
8159 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
8160 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
8161 //
8162 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
8163 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
8164 //
8165 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
8166   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
8167 
8168   Node* digestBase_obj = argument(0);
8169   Node* src            = argument(1); // type oop
8170   Node* ofs            = argument(2); // type int
8171 
8172   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8173   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8174     // failed array check
8175     return false;
8176   }
8177   // Figure out the size and type of the elements we will be copying.
8178   BasicType src_elem = src_type->elem()->array_element_basic_type();
8179   if (src_elem != T_BYTE) {
8180     return false;
8181   }
8182   // 'src_start' points to src array + offset
8183   src = must_be_not_null(src, true);
8184   Node* src_start = array_element_address(src, ofs, src_elem);
8185   Node* state = nullptr;
8186   Node* block_size = nullptr;
8187   address stubAddr;
8188   const char *stubName;
8189 
8190   switch(id) {
8191   case vmIntrinsics::_md5_implCompress:
8192     assert(UseMD5Intrinsics, "need MD5 instruction support");
8193     state = get_state_from_digest_object(digestBase_obj, T_INT);
8194     stubAddr = StubRoutines::md5_implCompress();
8195     stubName = "md5_implCompress";
8196     break;
8197   case vmIntrinsics::_sha_implCompress:
8198     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
8199     state = get_state_from_digest_object(digestBase_obj, T_INT);
8200     stubAddr = StubRoutines::sha1_implCompress();
8201     stubName = "sha1_implCompress";
8202     break;
8203   case vmIntrinsics::_sha2_implCompress:
8204     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
8205     state = get_state_from_digest_object(digestBase_obj, T_INT);
8206     stubAddr = StubRoutines::sha256_implCompress();
8207     stubName = "sha256_implCompress";
8208     break;
8209   case vmIntrinsics::_sha5_implCompress:
8210     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
8211     state = get_state_from_digest_object(digestBase_obj, T_LONG);
8212     stubAddr = StubRoutines::sha512_implCompress();
8213     stubName = "sha512_implCompress";
8214     break;
8215   case vmIntrinsics::_sha3_implCompress:
8216     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
8217     state = get_state_from_digest_object(digestBase_obj, T_LONG);
8218     stubAddr = StubRoutines::sha3_implCompress();
8219     stubName = "sha3_implCompress";
8220     block_size = get_block_size_from_digest_object(digestBase_obj);
8221     if (block_size == nullptr) return false;
8222     break;
8223   default:
8224     fatal_unexpected_iid(id);
8225     return false;
8226   }
8227   if (state == nullptr) return false;
8228 
8229   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
8230   if (stubAddr == nullptr) return false;
8231 
8232   // Call the stub.
8233   Node* call;
8234   if (block_size == nullptr) {
8235     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
8236                              stubAddr, stubName, TypePtr::BOTTOM,
8237                              src_start, state);
8238   } else {
8239     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
8240                              stubAddr, stubName, TypePtr::BOTTOM,
8241                              src_start, state, block_size);
8242   }
8243 
8244   return true;
8245 }
8246 
8247 //------------------------------inline_digestBase_implCompressMB-----------------------
8248 //
8249 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
8250 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
8251 //
8252 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
8253   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8254          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8255   assert((uint)predicate < 5, "sanity");
8256   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
8257 
8258   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
8259   Node* src            = argument(1); // byte[] array
8260   Node* ofs            = argument(2); // type int
8261   Node* limit          = argument(3); // type int
8262 
8263   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8264   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8265     // failed array check
8266     return false;
8267   }
8268   // Figure out the size and type of the elements we will be copying.
8269   BasicType src_elem = src_type->elem()->array_element_basic_type();
8270   if (src_elem != T_BYTE) {
8271     return false;
8272   }
8273   // 'src_start' points to src array + offset
8274   src = must_be_not_null(src, false);
8275   Node* src_start = array_element_address(src, ofs, src_elem);
8276 
8277   const char* klass_digestBase_name = nullptr;
8278   const char* stub_name = nullptr;
8279   address     stub_addr = nullptr;
8280   BasicType elem_type = T_INT;
8281 
8282   switch (predicate) {
8283   case 0:
8284     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
8285       klass_digestBase_name = "sun/security/provider/MD5";
8286       stub_name = "md5_implCompressMB";
8287       stub_addr = StubRoutines::md5_implCompressMB();
8288     }
8289     break;
8290   case 1:
8291     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
8292       klass_digestBase_name = "sun/security/provider/SHA";
8293       stub_name = "sha1_implCompressMB";
8294       stub_addr = StubRoutines::sha1_implCompressMB();
8295     }
8296     break;
8297   case 2:
8298     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
8299       klass_digestBase_name = "sun/security/provider/SHA2";
8300       stub_name = "sha256_implCompressMB";
8301       stub_addr = StubRoutines::sha256_implCompressMB();
8302     }
8303     break;
8304   case 3:
8305     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
8306       klass_digestBase_name = "sun/security/provider/SHA5";
8307       stub_name = "sha512_implCompressMB";
8308       stub_addr = StubRoutines::sha512_implCompressMB();
8309       elem_type = T_LONG;
8310     }
8311     break;
8312   case 4:
8313     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
8314       klass_digestBase_name = "sun/security/provider/SHA3";
8315       stub_name = "sha3_implCompressMB";
8316       stub_addr = StubRoutines::sha3_implCompressMB();
8317       elem_type = T_LONG;
8318     }
8319     break;
8320   default:
8321     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
8322   }
8323   if (klass_digestBase_name != nullptr) {
8324     assert(stub_addr != nullptr, "Stub is generated");
8325     if (stub_addr == nullptr) return false;
8326 
8327     // get DigestBase klass to lookup for SHA klass
8328     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
8329     assert(tinst != nullptr, "digestBase_obj is not instance???");
8330     assert(tinst->is_loaded(), "DigestBase is not loaded");
8331 
8332     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
8333     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
8334     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
8335     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
8336   }
8337   return false;
8338 }
8339 
8340 //------------------------------inline_digestBase_implCompressMB-----------------------
8341 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
8342                                                       BasicType elem_type, address stubAddr, const char *stubName,
8343                                                       Node* src_start, Node* ofs, Node* limit) {
8344   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
8345   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
8346   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
8347   digest_obj = _gvn.transform(digest_obj);
8348 
8349   Node* state = get_state_from_digest_object(digest_obj, elem_type);
8350   if (state == nullptr) return false;
8351 
8352   Node* block_size = nullptr;
8353   if (strcmp("sha3_implCompressMB", stubName) == 0) {
8354     block_size = get_block_size_from_digest_object(digest_obj);
8355     if (block_size == nullptr) return false;
8356   }
8357 
8358   // Call the stub.
8359   Node* call;
8360   if (block_size == nullptr) {
8361     call = make_runtime_call(RC_LEAF|RC_NO_FP,
8362                              OptoRuntime::digestBase_implCompressMB_Type(false),
8363                              stubAddr, stubName, TypePtr::BOTTOM,
8364                              src_start, state, ofs, limit);
8365   } else {
8366      call = make_runtime_call(RC_LEAF|RC_NO_FP,
8367                              OptoRuntime::digestBase_implCompressMB_Type(true),
8368                              stubAddr, stubName, TypePtr::BOTTOM,
8369                              src_start, state, block_size, ofs, limit);
8370   }
8371 
8372   // return ofs (int)
8373   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8374   set_result(result);
8375 
8376   return true;
8377 }
8378 
8379 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
8380 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
8381   assert(UseAES, "need AES instruction support");
8382   address stubAddr = nullptr;
8383   const char *stubName = nullptr;
8384   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
8385   stubName = "galoisCounterMode_AESCrypt";
8386 
8387   if (stubAddr == nullptr) return false;
8388 
8389   Node* in      = argument(0);
8390   Node* inOfs   = argument(1);
8391   Node* len     = argument(2);
8392   Node* ct      = argument(3);
8393   Node* ctOfs   = argument(4);
8394   Node* out     = argument(5);
8395   Node* outOfs  = argument(6);
8396   Node* gctr_object = argument(7);
8397   Node* ghash_object = argument(8);
8398 
8399   // (1) in, ct and out are arrays.
8400   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
8401   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
8402   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
8403   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
8404           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
8405          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
8406 
8407   // checks are the responsibility of the caller
8408   Node* in_start = in;
8409   Node* ct_start = ct;
8410   Node* out_start = out;
8411   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
8412     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
8413     in_start = array_element_address(in, inOfs, T_BYTE);
8414     ct_start = array_element_address(ct, ctOfs, T_BYTE);
8415     out_start = array_element_address(out, outOfs, T_BYTE);
8416   }
8417 
8418   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8419   // (because of the predicated logic executed earlier).
8420   // so we cast it here safely.
8421   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8422   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8423   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
8424   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
8425   Node* state = load_field_from_object(ghash_object, "state", "[J");
8426 
8427   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
8428     return false;
8429   }
8430   // cast it to what we know it will be at runtime
8431   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
8432   assert(tinst != nullptr, "GCTR obj is null");
8433   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8434   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8435   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8436   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8437   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8438   const TypeOopPtr* xtype = aklass->as_instance_type();
8439   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8440   aescrypt_object = _gvn.transform(aescrypt_object);
8441   // we need to get the start of the aescrypt_object's expanded key array
8442   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8443   if (k_start == nullptr) return false;
8444   // similarly, get the start address of the r vector
8445   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
8446   Node* state_start = array_element_address(state, intcon(0), T_LONG);
8447   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
8448 
8449 
8450   // Call the stub, passing params
8451   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8452                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
8453                                stubAddr, stubName, TypePtr::BOTTOM,
8454                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
8455 
8456   // return cipher length (int)
8457   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
8458   set_result(retvalue);
8459 
8460   return true;
8461 }
8462 
8463 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
8464 // Return node representing slow path of predicate check.
8465 // the pseudo code we want to emulate with this predicate is:
8466 // for encryption:
8467 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8468 // for decryption:
8469 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8470 //    note cipher==plain is more conservative than the original java code but that's OK
8471 //
8472 
8473 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
8474   // The receiver was checked for null already.
8475   Node* objGCTR = argument(7);
8476   // Load embeddedCipher field of GCTR object.
8477   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8478   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
8479 
8480   // get AESCrypt klass for instanceOf check
8481   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8482   // will have same classloader as CipherBlockChaining object
8483   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
8484   assert(tinst != nullptr, "GCTR obj is null");
8485   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8486 
8487   // we want to do an instanceof comparison against the AESCrypt class
8488   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8489   if (!klass_AESCrypt->is_loaded()) {
8490     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8491     Node* ctrl = control();
8492     set_control(top()); // no regular fast path
8493     return ctrl;
8494   }
8495 
8496   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8497   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8498   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8499   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8500   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8501 
8502   return instof_false; // even if it is null
8503 }
8504 
8505 //------------------------------get_state_from_digest_object-----------------------
8506 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
8507   const char* state_type;
8508   switch (elem_type) {
8509     case T_BYTE: state_type = "[B"; break;
8510     case T_INT:  state_type = "[I"; break;
8511     case T_LONG: state_type = "[J"; break;
8512     default: ShouldNotReachHere();
8513   }
8514   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
8515   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
8516   if (digest_state == nullptr) return (Node *) nullptr;
8517 
8518   // now have the array, need to get the start address of the state array
8519   Node* state = array_element_address(digest_state, intcon(0), elem_type);
8520   return state;
8521 }
8522 
8523 //------------------------------get_block_size_from_sha3_object----------------------------------
8524 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
8525   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
8526   assert (block_size != nullptr, "sanity");
8527   return block_size;
8528 }
8529 
8530 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8531 // Return node representing slow path of predicate check.
8532 // the pseudo code we want to emulate with this predicate is:
8533 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
8534 //
8535 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8536   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8537          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8538   assert((uint)predicate < 5, "sanity");
8539 
8540   // The receiver was checked for null already.
8541   Node* digestBaseObj = argument(0);
8542 
8543   // get DigestBase klass for instanceOf check
8544   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8545   assert(tinst != nullptr, "digestBaseObj is null");
8546   assert(tinst->is_loaded(), "DigestBase is not loaded");
8547 
8548   const char* klass_name = nullptr;
8549   switch (predicate) {
8550   case 0:
8551     if (UseMD5Intrinsics) {
8552       // we want to do an instanceof comparison against the MD5 class
8553       klass_name = "sun/security/provider/MD5";
8554     }
8555     break;
8556   case 1:
8557     if (UseSHA1Intrinsics) {
8558       // we want to do an instanceof comparison against the SHA class
8559       klass_name = "sun/security/provider/SHA";
8560     }
8561     break;
8562   case 2:
8563     if (UseSHA256Intrinsics) {
8564       // we want to do an instanceof comparison against the SHA2 class
8565       klass_name = "sun/security/provider/SHA2";
8566     }
8567     break;
8568   case 3:
8569     if (UseSHA512Intrinsics) {
8570       // we want to do an instanceof comparison against the SHA5 class
8571       klass_name = "sun/security/provider/SHA5";
8572     }
8573     break;
8574   case 4:
8575     if (UseSHA3Intrinsics) {
8576       // we want to do an instanceof comparison against the SHA3 class
8577       klass_name = "sun/security/provider/SHA3";
8578     }
8579     break;
8580   default:
8581     fatal("unknown SHA intrinsic predicate: %d", predicate);
8582   }
8583 
8584   ciKlass* klass = nullptr;
8585   if (klass_name != nullptr) {
8586     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
8587   }
8588   if ((klass == nullptr) || !klass->is_loaded()) {
8589     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8590     Node* ctrl = control();
8591     set_control(top()); // no intrinsic path
8592     return ctrl;
8593   }
8594   ciInstanceKlass* instklass = klass->as_instance_klass();
8595 
8596   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
8597   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8598   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8599   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8600 
8601   return instof_false;  // even if it is null
8602 }
8603 
8604 //-------------inline_fma-----------------------------------
8605 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8606   Node *a = nullptr;
8607   Node *b = nullptr;
8608   Node *c = nullptr;
8609   Node* result = nullptr;
8610   switch (id) {
8611   case vmIntrinsics::_fmaD:
8612     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8613     // no receiver since it is static method
8614     a = round_double_node(argument(0));
8615     b = round_double_node(argument(2));
8616     c = round_double_node(argument(4));
8617     result = _gvn.transform(new FmaDNode(control(), a, b, c));
8618     break;
8619   case vmIntrinsics::_fmaF:
8620     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8621     a = argument(0);
8622     b = argument(1);
8623     c = argument(2);
8624     result = _gvn.transform(new FmaFNode(control(), a, b, c));
8625     break;
8626   default:
8627     fatal_unexpected_iid(id);  break;
8628   }
8629   set_result(result);
8630   return true;
8631 }
8632 
8633 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8634   // argument(0) is receiver
8635   Node* codePoint = argument(1);
8636   Node* n = nullptr;
8637 
8638   switch (id) {
8639     case vmIntrinsics::_isDigit :
8640       n = new DigitNode(control(), codePoint);
8641       break;
8642     case vmIntrinsics::_isLowerCase :
8643       n = new LowerCaseNode(control(), codePoint);
8644       break;
8645     case vmIntrinsics::_isUpperCase :
8646       n = new UpperCaseNode(control(), codePoint);
8647       break;
8648     case vmIntrinsics::_isWhitespace :
8649       n = new WhitespaceNode(control(), codePoint);
8650       break;
8651     default:
8652       fatal_unexpected_iid(id);
8653   }
8654 
8655   set_result(_gvn.transform(n));
8656   return true;
8657 }
8658 
8659 //------------------------------inline_fp_min_max------------------------------
8660 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
8661 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
8662 
8663   // The intrinsic should be used only when the API branches aren't predictable,
8664   // the last one performing the most important comparison. The following heuristic
8665   // uses the branch statistics to eventually bail out if necessary.
8666 
8667   ciMethodData *md = callee()->method_data();
8668 
8669   if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) {
8670     ciCallProfile cp = caller()->call_profile_at_bci(bci());
8671 
8672     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
8673       // Bail out if the call-site didn't contribute enough to the statistics.
8674       return false;
8675     }
8676 
8677     uint taken = 0, not_taken = 0;
8678 
8679     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
8680       if (p->is_BranchData()) {
8681         taken = ((ciBranchData*)p)->taken();
8682         not_taken = ((ciBranchData*)p)->not_taken();
8683       }
8684     }
8685 
8686     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
8687     balance = balance < 0 ? -balance : balance;
8688     if ( balance > 0.2 ) {
8689       // Bail out if the most important branch is predictable enough.
8690       return false;
8691     }
8692   }
8693 */
8694 
8695   Node *a = nullptr;
8696   Node *b = nullptr;
8697   Node *n = nullptr;
8698   switch (id) {
8699   case vmIntrinsics::_maxF:
8700   case vmIntrinsics::_minF:
8701   case vmIntrinsics::_maxF_strict:
8702   case vmIntrinsics::_minF_strict:
8703     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
8704     a = argument(0);
8705     b = argument(1);
8706     break;
8707   case vmIntrinsics::_maxD:
8708   case vmIntrinsics::_minD:
8709   case vmIntrinsics::_maxD_strict:
8710   case vmIntrinsics::_minD_strict:
8711     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
8712     a = round_double_node(argument(0));
8713     b = round_double_node(argument(2));
8714     break;
8715   default:
8716     fatal_unexpected_iid(id);
8717     break;
8718   }
8719   switch (id) {
8720   case vmIntrinsics::_maxF:
8721   case vmIntrinsics::_maxF_strict:
8722     n = new MaxFNode(a, b);
8723     break;
8724   case vmIntrinsics::_minF:
8725   case vmIntrinsics::_minF_strict:
8726     n = new MinFNode(a, b);
8727     break;
8728   case vmIntrinsics::_maxD:
8729   case vmIntrinsics::_maxD_strict:
8730     n = new MaxDNode(a, b);
8731     break;
8732   case vmIntrinsics::_minD:
8733   case vmIntrinsics::_minD_strict:
8734     n = new MinDNode(a, b);
8735     break;
8736   default:
8737     fatal_unexpected_iid(id);
8738     break;
8739   }
8740   set_result(_gvn.transform(n));
8741   return true;
8742 }
8743 
8744 bool LibraryCallKit::inline_profileBoolean() {
8745   Node* counts = argument(1);
8746   const TypeAryPtr* ary = nullptr;
8747   ciArray* aobj = nullptr;
8748   if (counts->is_Con()
8749       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8750       && (aobj = ary->const_oop()->as_array()) != nullptr
8751       && (aobj->length() == 2)) {
8752     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8753     jint false_cnt = aobj->element_value(0).as_int();
8754     jint  true_cnt = aobj->element_value(1).as_int();
8755 
8756     if (C->log() != nullptr) {
8757       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8758                      false_cnt, true_cnt);
8759     }
8760 
8761     if (false_cnt + true_cnt == 0) {
8762       // According to profile, never executed.
8763       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8764                           Deoptimization::Action_reinterpret);
8765       return true;
8766     }
8767 
8768     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8769     // is a number of each value occurrences.
8770     Node* result = argument(0);
8771     if (false_cnt == 0 || true_cnt == 0) {
8772       // According to profile, one value has been never seen.
8773       int expected_val = (false_cnt == 0) ? 1 : 0;
8774 
8775       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8776       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8777 
8778       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8779       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8780       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8781 
8782       { // Slow path: uncommon trap for never seen value and then reexecute
8783         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8784         // the value has been seen at least once.
8785         PreserveJVMState pjvms(this);
8786         PreserveReexecuteState preexecs(this);
8787         jvms()->set_should_reexecute(true);
8788 
8789         set_control(slow_path);
8790         set_i_o(i_o());
8791 
8792         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8793                             Deoptimization::Action_reinterpret);
8794       }
8795       // The guard for never seen value enables sharpening of the result and
8796       // returning a constant. It allows to eliminate branches on the same value
8797       // later on.
8798       set_control(fast_path);
8799       result = intcon(expected_val);
8800     }
8801     // Stop profiling.
8802     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8803     // By replacing method body with profile data (represented as ProfileBooleanNode
8804     // on IR level) we effectively disable profiling.
8805     // It enables full speed execution once optimized code is generated.
8806     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8807     C->record_for_igvn(profile);
8808     set_result(profile);
8809     return true;
8810   } else {
8811     // Continue profiling.
8812     // Profile data isn't available at the moment. So, execute method's bytecode version.
8813     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8814     // is compiled and counters aren't available since corresponding MethodHandle
8815     // isn't a compile-time constant.
8816     return false;
8817   }
8818 }
8819 
8820 bool LibraryCallKit::inline_isCompileConstant() {
8821   Node* n = argument(0);
8822   set_result(n->is_Con() ? intcon(1) : intcon(0));
8823   return true;
8824 }
8825 
8826 //------------------------------- inline_getObjectSize --------------------------------------
8827 //
8828 // Calculate the runtime size of the object/array.
8829 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8830 //
8831 bool LibraryCallKit::inline_getObjectSize() {
8832   Node* obj = argument(3);
8833   Node* klass_node = load_object_klass(obj);
8834 
8835   jint  layout_con = Klass::_lh_neutral_value;
8836   Node* layout_val = get_layout_helper(klass_node, layout_con);
8837   int   layout_is_con = (layout_val == nullptr);
8838 
8839   if (layout_is_con) {
8840     // Layout helper is constant, can figure out things at compile time.
8841 
8842     if (Klass::layout_helper_is_instance(layout_con)) {
8843       // Instance case:  layout_con contains the size itself.
8844       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8845       set_result(size);
8846     } else {
8847       // Array case: size is round(header + element_size*arraylength).
8848       // Since arraylength is different for every array instance, we have to
8849       // compute the whole thing at runtime.
8850 
8851       Node* arr_length = load_array_length(obj);
8852 
8853       int round_mask = MinObjAlignmentInBytes - 1;
8854       int hsize  = Klass::layout_helper_header_size(layout_con);
8855       int eshift = Klass::layout_helper_log2_element_size(layout_con);
8856 
8857       if ((round_mask & ~right_n_bits(eshift)) == 0) {
8858         round_mask = 0;  // strength-reduce it if it goes away completely
8859       }
8860       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8861       Node* header_size = intcon(hsize + round_mask);
8862 
8863       Node* lengthx = ConvI2X(arr_length);
8864       Node* headerx = ConvI2X(header_size);
8865 
8866       Node* abody = lengthx;
8867       if (eshift != 0) {
8868         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8869       }
8870       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8871       if (round_mask != 0) {
8872         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8873       }
8874       size = ConvX2L(size);
8875       set_result(size);
8876     }
8877   } else {
8878     // Layout helper is not constant, need to test for array-ness at runtime.
8879 
8880     enum { _instance_path = 1, _array_path, PATH_LIMIT };
8881     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8882     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8883     record_for_igvn(result_reg);
8884 
8885     Node* array_ctl = generate_array_guard(klass_node, nullptr);
8886     if (array_ctl != nullptr) {
8887       // Array case: size is round(header + element_size*arraylength).
8888       // Since arraylength is different for every array instance, we have to
8889       // compute the whole thing at runtime.
8890 
8891       PreserveJVMState pjvms(this);
8892       set_control(array_ctl);
8893       Node* arr_length = load_array_length(obj);
8894 
8895       int round_mask = MinObjAlignmentInBytes - 1;
8896       Node* mask = intcon(round_mask);
8897 
8898       Node* hss = intcon(Klass::_lh_header_size_shift);
8899       Node* hsm = intcon(Klass::_lh_header_size_mask);
8900       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
8901       header_size = _gvn.transform(new AndINode(header_size, hsm));
8902       header_size = _gvn.transform(new AddINode(header_size, mask));
8903 
8904       // There is no need to mask or shift this value.
8905       // The semantics of LShiftINode include an implicit mask to 0x1F.
8906       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
8907       Node* elem_shift = layout_val;
8908 
8909       Node* lengthx = ConvI2X(arr_length);
8910       Node* headerx = ConvI2X(header_size);
8911 
8912       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
8913       Node* size = _gvn.transform(new AddXNode(headerx, abody));
8914       if (round_mask != 0) {
8915         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
8916       }
8917       size = ConvX2L(size);
8918 
8919       result_reg->init_req(_array_path, control());
8920       result_val->init_req(_array_path, size);
8921     }
8922 
8923     if (!stopped()) {
8924       // Instance case: the layout helper gives us instance size almost directly,
8925       // but we need to mask out the _lh_instance_slow_path_bit.
8926       Node* size = ConvI2X(layout_val);
8927       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
8928       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
8929       size = _gvn.transform(new AndXNode(size, mask));
8930       size = ConvX2L(size);
8931 
8932       result_reg->init_req(_instance_path, control());
8933       result_val->init_req(_instance_path, size);
8934     }
8935 
8936     set_result(result_reg, result_val);
8937   }
8938 
8939   return true;
8940 }
8941 
8942 //------------------------------- inline_blackhole --------------------------------------
8943 //
8944 // Make sure all arguments to this node are alive.
8945 // This matches methods that were requested to be blackholed through compile commands.
8946 //
8947 bool LibraryCallKit::inline_blackhole() {
8948   assert(callee()->is_static(), "Should have been checked before: only static methods here");
8949   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
8950   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
8951 
8952   // Blackhole node pinches only the control, not memory. This allows
8953   // the blackhole to be pinned in the loop that computes blackholed
8954   // values, but have no other side effects, like breaking the optimizations
8955   // across the blackhole.
8956 
8957   Node* bh = _gvn.transform(new BlackholeNode(control()));
8958   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
8959 
8960   // Bind call arguments as blackhole arguments to keep them alive
8961   uint nargs = callee()->arg_size();
8962   for (uint i = 0; i < nargs; i++) {
8963     bh->add_req(argument(i));
8964   }
8965 
8966   return true;
8967 }