1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciArrayKlass.hpp"
  27 #include "ci/ciFlatArrayKlass.hpp"
  28 #include "ci/ciInstanceKlass.hpp"
  29 #include "ci/ciSymbols.hpp"
  30 #include "ci/ciUtilities.inline.hpp"
  31 #include "classfile/vmIntrinsics.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "gc/shared/barrierSet.hpp"
  35 #include "gc/shared/c2/barrierSetC2.hpp"
  36 #include "jfr/support/jfrIntrinsics.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/accessDecorators.hpp"
  39 #include "oops/klass.inline.hpp"
  40 #include "oops/layoutKind.hpp"
  41 #include "oops/objArrayKlass.hpp"
  42 #include "opto/addnode.hpp"
  43 #include "opto/arraycopynode.hpp"
  44 #include "opto/c2compiler.hpp"
  45 #include "opto/castnode.hpp"
  46 #include "opto/cfgnode.hpp"
  47 #include "opto/convertnode.hpp"
  48 #include "opto/countbitsnode.hpp"
  49 #include "opto/graphKit.hpp"
  50 #include "opto/idealKit.hpp"
  51 #include "opto/inlinetypenode.hpp"
  52 #include "opto/library_call.hpp"
  53 #include "opto/mathexactnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/opaquenode.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/rootnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "opto/type.hpp"
  63 #include "opto/vectornode.hpp"
  64 #include "prims/jvmtiExport.hpp"
  65 #include "prims/jvmtiThreadState.hpp"
  66 #include "prims/unsafe.hpp"
  67 #include "runtime/jniHandles.inline.hpp"
  68 #include "runtime/objectMonitor.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/stubRoutines.hpp"
  71 #include "utilities/globalDefinitions.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/powerOfTwo.hpp"
  74 
  75 //---------------------------make_vm_intrinsic----------------------------
  76 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  77   vmIntrinsicID id = m->intrinsic_id();
  78   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  79 
  80   if (!m->is_loaded()) {
  81     // Do not attempt to inline unloaded methods.
  82     return nullptr;
  83   }
  84 
  85   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  86   bool is_available = false;
  87 
  88   {
  89     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  90     // the compiler must transition to '_thread_in_vm' state because both
  91     // methods access VM-internal data.
  92     VM_ENTRY_MARK;
  93     methodHandle mh(THREAD, m->get_Method());
  94     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  95     if (is_available && is_virtual) {
  96       is_available = vmIntrinsics::does_virtual_dispatch(id);
  97     }
  98   }
  99 
 100   if (is_available) {
 101     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 102     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 103     return new LibraryIntrinsic(m, is_virtual,
 104                                 vmIntrinsics::predicates_needed(id),
 105                                 vmIntrinsics::does_virtual_dispatch(id),
 106                                 id);
 107   } else {
 108     return nullptr;
 109   }
 110 }
 111 
 112 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 113   LibraryCallKit kit(jvms, this);
 114   Compile* C = kit.C;
 115   int nodes = C->unique();
 116 #ifndef PRODUCT
 117   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 118     char buf[1000];
 119     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 120     tty->print_cr("Intrinsic %s", str);
 121   }
 122 #endif
 123   ciMethod* callee = kit.callee();
 124   const int bci    = kit.bci();
 125 #ifdef ASSERT
 126   Node* ctrl = kit.control();
 127 #endif
 128   // Try to inline the intrinsic.
 129   if (callee->check_intrinsic_candidate() &&
 130       kit.try_to_inline(_last_predicate)) {
 131     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 132                                           : "(intrinsic)";
 133     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 134     C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
 135     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 136     if (C->log()) {
 137       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 138                      vmIntrinsics::name_at(intrinsic_id()),
 139                      (is_virtual() ? " virtual='1'" : ""),
 140                      C->unique() - nodes);
 141     }
 142     // Push the result from the inlined method onto the stack.
 143     kit.push_result();
 144     return kit.transfer_exceptions_into_jvms();
 145   }
 146 
 147   // The intrinsic bailed out
 148   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 149   assert(jvms->map() == kit.map(), "Out of sync JVM state");
 150   if (jvms->has_method()) {
 151     // Not a root compile.
 152     const char* msg;
 153     if (callee->intrinsic_candidate()) {
 154       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 155     } else {
 156       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 157                          : "failed to inline (intrinsic), method not annotated";
 158     }
 159     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 160     C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg);
 161   } else {
 162     // Root compile
 163     ResourceMark rm;
 164     stringStream msg_stream;
 165     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 166                      vmIntrinsics::name_at(intrinsic_id()),
 167                      is_virtual() ? " (virtual)" : "", bci);
 168     const char *msg = msg_stream.freeze();
 169     log_debug(jit, inlining)("%s", msg);
 170     if (C->print_intrinsics() || C->print_inlining()) {
 171       tty->print("%s", msg);
 172     }
 173   }
 174   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 175 
 176   return nullptr;
 177 }
 178 
 179 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 180   LibraryCallKit kit(jvms, this);
 181   Compile* C = kit.C;
 182   int nodes = C->unique();
 183   _last_predicate = predicate;
 184 #ifndef PRODUCT
 185   assert(is_predicated() && predicate < predicates_count(), "sanity");
 186   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 187     char buf[1000];
 188     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 189     tty->print_cr("Predicate for intrinsic %s", str);
 190   }
 191 #endif
 192   ciMethod* callee = kit.callee();
 193   const int bci    = kit.bci();
 194 
 195   Node* slow_ctl = kit.try_to_predicate(predicate);
 196   if (!kit.failing()) {
 197     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 198                                           : "(intrinsic, predicate)";
 199     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 200     C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
 201 
 202     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 203     if (C->log()) {
 204       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 205                      vmIntrinsics::name_at(intrinsic_id()),
 206                      (is_virtual() ? " virtual='1'" : ""),
 207                      C->unique() - nodes);
 208     }
 209     return slow_ctl; // Could be null if the check folds.
 210   }
 211 
 212   // The intrinsic bailed out
 213   if (jvms->has_method()) {
 214     // Not a root compile.
 215     const char* msg = "failed to generate predicate for intrinsic";
 216     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 217     C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
 218   } else {
 219     // Root compile
 220     ResourceMark rm;
 221     stringStream msg_stream;
 222     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 223                      vmIntrinsics::name_at(intrinsic_id()),
 224                      is_virtual() ? " (virtual)" : "", bci);
 225     const char *msg = msg_stream.freeze();
 226     log_debug(jit, inlining)("%s", msg);
 227     C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
 228   }
 229   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 230   return nullptr;
 231 }
 232 
 233 bool LibraryCallKit::try_to_inline(int predicate) {
 234   // Handle symbolic names for otherwise undistinguished boolean switches:
 235   const bool is_store       = true;
 236   const bool is_compress    = true;
 237   const bool is_static      = true;
 238   const bool is_volatile    = true;
 239 
 240   if (!jvms()->has_method()) {
 241     // Root JVMState has a null method.
 242     assert(map()->memory()->Opcode() == Op_Parm, "");
 243     // Insert the memory aliasing node
 244     set_all_memory(reset_memory());
 245   }
 246   assert(merged_memory(), "");
 247 
 248   switch (intrinsic_id()) {
 249   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 250   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 251   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 252 
 253   case vmIntrinsics::_ceil:
 254   case vmIntrinsics::_floor:
 255   case vmIntrinsics::_rint:
 256   case vmIntrinsics::_dsin:
 257   case vmIntrinsics::_dcos:
 258   case vmIntrinsics::_dtan:
 259   case vmIntrinsics::_dsinh:
 260   case vmIntrinsics::_dtanh:
 261   case vmIntrinsics::_dcbrt:
 262   case vmIntrinsics::_dabs:
 263   case vmIntrinsics::_fabs:
 264   case vmIntrinsics::_iabs:
 265   case vmIntrinsics::_labs:
 266   case vmIntrinsics::_datan2:
 267   case vmIntrinsics::_dsqrt:
 268   case vmIntrinsics::_dsqrt_strict:
 269   case vmIntrinsics::_dexp:
 270   case vmIntrinsics::_dlog:
 271   case vmIntrinsics::_dlog10:
 272   case vmIntrinsics::_dpow:
 273   case vmIntrinsics::_dcopySign:
 274   case vmIntrinsics::_fcopySign:
 275   case vmIntrinsics::_dsignum:
 276   case vmIntrinsics::_roundF:
 277   case vmIntrinsics::_roundD:
 278   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 279 
 280   case vmIntrinsics::_notify:
 281   case vmIntrinsics::_notifyAll:
 282     return inline_notify(intrinsic_id());
 283 
 284   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 285   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 286   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 287   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 288   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 289   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 290   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 291   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 292   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 293   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 294   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 295   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 296   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 297   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 298 
 299   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 300 
 301   case vmIntrinsics::_arraySort:                return inline_array_sort();
 302   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 303 
 304   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 305   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 306   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 307   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 308 
 309   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 310   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 311   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 312   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 313   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 314   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 315   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 316   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 317 
 318   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 319 
 320   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 321 
 322   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 323   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 324   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 325   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 326 
 327   case vmIntrinsics::_compressStringC:
 328   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 329   case vmIntrinsics::_inflateStringC:
 330   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 331 
 332   case vmIntrinsics::_makePrivateBuffer:        return inline_unsafe_make_private_buffer();
 333   case vmIntrinsics::_finishPrivateBuffer:      return inline_unsafe_finish_private_buffer();
 334   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 335   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 336   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 337   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 338   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 339   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 340   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 341   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 342   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 343   case vmIntrinsics::_getValue:                 return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false, true);
 344 
 345   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 346   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 347   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 348   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 349   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 350   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 351   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 352   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 353   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 354   case vmIntrinsics::_putValue:                 return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false, true);
 355 
 356   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 357   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 358   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 359   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 360   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 361   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 362   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 363   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 364   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 365 
 366   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 367   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 368   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 369   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 370   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 371   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 372   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 373   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 374   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 375 
 376   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 377   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 378   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 379   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 380 
 381   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 382   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 383   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 384   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 385 
 386   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 387   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 388   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 389   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 390   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 391   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 392   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 393   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 394   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 395 
 396   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 397   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 398   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 399   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 400   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 401   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 402   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 403   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 404   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 405 
 406   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 407   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 408   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 409   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 410   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 411   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 412   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 413   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 414   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 415 
 416   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 417   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 418   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 419   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 420   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 421   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 422   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 423   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 424   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 425 
 426   case vmIntrinsics::_getFlatValue:             return inline_unsafe_flat_access(!is_store, Relaxed);
 427   case vmIntrinsics::_putFlatValue:             return inline_unsafe_flat_access( is_store, Relaxed);
 428 
 429   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 430   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 431   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 432   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 433   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 434 
 435   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 436   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 437   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 438   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 439   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 440   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 441   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 442   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 443   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 444   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 445   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 446   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 447   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 448   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 449   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 450   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 451   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 452   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 453   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 454   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 455 
 456   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 457   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 458   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 459   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 460   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 461   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 462   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 463   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 464   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 465   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 466   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 467   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 468   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 469   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 470   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 471 
 472   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 473   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 474   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 475   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 476 
 477   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 478   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 479   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 480   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 481   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 482 
 483   case vmIntrinsics::_loadFence:
 484   case vmIntrinsics::_storeFence:
 485   case vmIntrinsics::_storeStoreFence:
 486   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 487 
 488   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 489 
 490   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 491   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 492   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 493 
 494   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 495   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 496 
 497   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 498   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 499 
 500 #if INCLUDE_JVMTI
 501   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 502                                                                                          "notifyJvmtiStart", true, false);
 503   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 504                                                                                          "notifyJvmtiEnd", false, true);
 505   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 506                                                                                          "notifyJvmtiMount", false, false);
 507   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 508                                                                                          "notifyJvmtiUnmount", false, false);
 509   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 510 #endif
 511 
 512 #ifdef JFR_HAVE_INTRINSICS
 513   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 514   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 515   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 516 #endif
 517   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 518   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 519   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 520   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 521   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 522   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 523   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 524   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 525   case vmIntrinsics::_getLength:                return inline_native_getLength();
 526   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 527   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 528   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 529   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 530   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 531   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 532   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 533 
 534   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 535   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 536   case vmIntrinsics::_newNullRestrictedNonAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ false);
 537   case vmIntrinsics::_newNullRestrictedAtomicArray: return inline_newArray(/* null_free */ true, /* atomic */ true);
 538   case vmIntrinsics::_newNullableAtomicArray:     return inline_newArray(/* null_free */ false, /* atomic */ true);
 539   case vmIntrinsics::_isFlatArray:              return inline_getArrayProperties(IsFlat);
 540   case vmIntrinsics::_isNullRestrictedArray:    return inline_getArrayProperties(IsNullRestricted);
 541   case vmIntrinsics::_isAtomicArray:            return inline_getArrayProperties(IsAtomic);
 542 
 543   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 544 
 545   case vmIntrinsics::_isInstance:
 546   case vmIntrinsics::_isHidden:
 547   case vmIntrinsics::_getSuperclass:            return inline_native_Class_query(intrinsic_id());
 548 
 549   case vmIntrinsics::_floatToRawIntBits:
 550   case vmIntrinsics::_floatToIntBits:
 551   case vmIntrinsics::_intBitsToFloat:
 552   case vmIntrinsics::_doubleToRawLongBits:
 553   case vmIntrinsics::_doubleToLongBits:
 554   case vmIntrinsics::_longBitsToDouble:
 555   case vmIntrinsics::_floatToFloat16:
 556   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 557   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 558   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 559   case vmIntrinsics::_floatIsFinite:
 560   case vmIntrinsics::_floatIsInfinite:
 561   case vmIntrinsics::_doubleIsFinite:
 562   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 563 
 564   case vmIntrinsics::_numberOfLeadingZeros_i:
 565   case vmIntrinsics::_numberOfLeadingZeros_l:
 566   case vmIntrinsics::_numberOfTrailingZeros_i:
 567   case vmIntrinsics::_numberOfTrailingZeros_l:
 568   case vmIntrinsics::_bitCount_i:
 569   case vmIntrinsics::_bitCount_l:
 570   case vmIntrinsics::_reverse_i:
 571   case vmIntrinsics::_reverse_l:
 572   case vmIntrinsics::_reverseBytes_i:
 573   case vmIntrinsics::_reverseBytes_l:
 574   case vmIntrinsics::_reverseBytes_s:
 575   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 576 
 577   case vmIntrinsics::_compress_i:
 578   case vmIntrinsics::_compress_l:
 579   case vmIntrinsics::_expand_i:
 580   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 581 
 582   case vmIntrinsics::_compareUnsigned_i:
 583   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 584 
 585   case vmIntrinsics::_divideUnsigned_i:
 586   case vmIntrinsics::_divideUnsigned_l:
 587   case vmIntrinsics::_remainderUnsigned_i:
 588   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 589 
 590   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 591 
 592   case vmIntrinsics::_Reference_get0:           return inline_reference_get0();
 593   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 594   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 595   case vmIntrinsics::_Reference_clear0:         return inline_reference_clear0(false);
 596   case vmIntrinsics::_PhantomReference_clear0:  return inline_reference_clear0(true);
 597 
 598   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 599 
 600   case vmIntrinsics::_aescrypt_encryptBlock:
 601   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 602 
 603   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 604   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 605     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 606 
 607   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 608   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 609     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 610 
 611   case vmIntrinsics::_counterMode_AESCrypt:
 612     return inline_counterMode_AESCrypt(intrinsic_id());
 613 
 614   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 615     return inline_galoisCounterMode_AESCrypt();
 616 
 617   case vmIntrinsics::_md5_implCompress:
 618   case vmIntrinsics::_sha_implCompress:
 619   case vmIntrinsics::_sha2_implCompress:
 620   case vmIntrinsics::_sha5_implCompress:
 621   case vmIntrinsics::_sha3_implCompress:
 622     return inline_digestBase_implCompress(intrinsic_id());
 623   case vmIntrinsics::_double_keccak:
 624     return inline_double_keccak();
 625 
 626   case vmIntrinsics::_digestBase_implCompressMB:
 627     return inline_digestBase_implCompressMB(predicate);
 628 
 629   case vmIntrinsics::_multiplyToLen:
 630     return inline_multiplyToLen();
 631 
 632   case vmIntrinsics::_squareToLen:
 633     return inline_squareToLen();
 634 
 635   case vmIntrinsics::_mulAdd:
 636     return inline_mulAdd();
 637 
 638   case vmIntrinsics::_montgomeryMultiply:
 639     return inline_montgomeryMultiply();
 640   case vmIntrinsics::_montgomerySquare:
 641     return inline_montgomerySquare();
 642 
 643   case vmIntrinsics::_bigIntegerRightShiftWorker:
 644     return inline_bigIntegerShift(true);
 645   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 646     return inline_bigIntegerShift(false);
 647 
 648   case vmIntrinsics::_vectorizedMismatch:
 649     return inline_vectorizedMismatch();
 650 
 651   case vmIntrinsics::_ghash_processBlocks:
 652     return inline_ghash_processBlocks();
 653   case vmIntrinsics::_chacha20Block:
 654     return inline_chacha20Block();
 655   case vmIntrinsics::_kyberNtt:
 656     return inline_kyberNtt();
 657   case vmIntrinsics::_kyberInverseNtt:
 658     return inline_kyberInverseNtt();
 659   case vmIntrinsics::_kyberNttMult:
 660     return inline_kyberNttMult();
 661   case vmIntrinsics::_kyberAddPoly_2:
 662     return inline_kyberAddPoly_2();
 663   case vmIntrinsics::_kyberAddPoly_3:
 664     return inline_kyberAddPoly_3();
 665   case vmIntrinsics::_kyber12To16:
 666     return inline_kyber12To16();
 667   case vmIntrinsics::_kyberBarrettReduce:
 668     return inline_kyberBarrettReduce();
 669   case vmIntrinsics::_dilithiumAlmostNtt:
 670     return inline_dilithiumAlmostNtt();
 671   case vmIntrinsics::_dilithiumAlmostInverseNtt:
 672     return inline_dilithiumAlmostInverseNtt();
 673   case vmIntrinsics::_dilithiumNttMult:
 674     return inline_dilithiumNttMult();
 675   case vmIntrinsics::_dilithiumMontMulByConstant:
 676     return inline_dilithiumMontMulByConstant();
 677   case vmIntrinsics::_dilithiumDecomposePoly:
 678     return inline_dilithiumDecomposePoly();
 679   case vmIntrinsics::_base64_encodeBlock:
 680     return inline_base64_encodeBlock();
 681   case vmIntrinsics::_base64_decodeBlock:
 682     return inline_base64_decodeBlock();
 683   case vmIntrinsics::_poly1305_processBlocks:
 684     return inline_poly1305_processBlocks();
 685   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 686     return inline_intpoly_montgomeryMult_P256();
 687   case vmIntrinsics::_intpoly_assign:
 688     return inline_intpoly_assign();
 689   case vmIntrinsics::_encodeISOArray:
 690   case vmIntrinsics::_encodeByteISOArray:
 691     return inline_encodeISOArray(false);
 692   case vmIntrinsics::_encodeAsciiArray:
 693     return inline_encodeISOArray(true);
 694 
 695   case vmIntrinsics::_updateCRC32:
 696     return inline_updateCRC32();
 697   case vmIntrinsics::_updateBytesCRC32:
 698     return inline_updateBytesCRC32();
 699   case vmIntrinsics::_updateByteBufferCRC32:
 700     return inline_updateByteBufferCRC32();
 701 
 702   case vmIntrinsics::_updateBytesCRC32C:
 703     return inline_updateBytesCRC32C();
 704   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 705     return inline_updateDirectByteBufferCRC32C();
 706 
 707   case vmIntrinsics::_updateBytesAdler32:
 708     return inline_updateBytesAdler32();
 709   case vmIntrinsics::_updateByteBufferAdler32:
 710     return inline_updateByteBufferAdler32();
 711 
 712   case vmIntrinsics::_profileBoolean:
 713     return inline_profileBoolean();
 714   case vmIntrinsics::_isCompileConstant:
 715     return inline_isCompileConstant();
 716 
 717   case vmIntrinsics::_countPositives:
 718     return inline_countPositives();
 719 
 720   case vmIntrinsics::_fmaD:
 721   case vmIntrinsics::_fmaF:
 722     return inline_fma(intrinsic_id());
 723 
 724   case vmIntrinsics::_isDigit:
 725   case vmIntrinsics::_isLowerCase:
 726   case vmIntrinsics::_isUpperCase:
 727   case vmIntrinsics::_isWhitespace:
 728     return inline_character_compare(intrinsic_id());
 729 
 730   case vmIntrinsics::_min:
 731   case vmIntrinsics::_max:
 732   case vmIntrinsics::_min_strict:
 733   case vmIntrinsics::_max_strict:
 734   case vmIntrinsics::_minL:
 735   case vmIntrinsics::_maxL:
 736   case vmIntrinsics::_minF:
 737   case vmIntrinsics::_maxF:
 738   case vmIntrinsics::_minD:
 739   case vmIntrinsics::_maxD:
 740   case vmIntrinsics::_minF_strict:
 741   case vmIntrinsics::_maxF_strict:
 742   case vmIntrinsics::_minD_strict:
 743   case vmIntrinsics::_maxD_strict:
 744     return inline_min_max(intrinsic_id());
 745 
 746   case vmIntrinsics::_VectorUnaryOp:
 747     return inline_vector_nary_operation(1);
 748   case vmIntrinsics::_VectorBinaryOp:
 749     return inline_vector_nary_operation(2);
 750   case vmIntrinsics::_VectorUnaryLibOp:
 751     return inline_vector_call(1);
 752   case vmIntrinsics::_VectorBinaryLibOp:
 753     return inline_vector_call(2);
 754   case vmIntrinsics::_VectorTernaryOp:
 755     return inline_vector_nary_operation(3);
 756   case vmIntrinsics::_VectorFromBitsCoerced:
 757     return inline_vector_frombits_coerced();
 758   case vmIntrinsics::_VectorMaskOp:
 759     return inline_vector_mask_operation();
 760   case vmIntrinsics::_VectorLoadOp:
 761     return inline_vector_mem_operation(/*is_store=*/false);
 762   case vmIntrinsics::_VectorLoadMaskedOp:
 763     return inline_vector_mem_masked_operation(/*is_store*/false);
 764   case vmIntrinsics::_VectorStoreOp:
 765     return inline_vector_mem_operation(/*is_store=*/true);
 766   case vmIntrinsics::_VectorStoreMaskedOp:
 767     return inline_vector_mem_masked_operation(/*is_store=*/true);
 768   case vmIntrinsics::_VectorGatherOp:
 769     return inline_vector_gather_scatter(/*is_scatter*/ false);
 770   case vmIntrinsics::_VectorScatterOp:
 771     return inline_vector_gather_scatter(/*is_scatter*/ true);
 772   case vmIntrinsics::_VectorReductionCoerced:
 773     return inline_vector_reduction();
 774   case vmIntrinsics::_VectorTest:
 775     return inline_vector_test();
 776   case vmIntrinsics::_VectorBlend:
 777     return inline_vector_blend();
 778   case vmIntrinsics::_VectorRearrange:
 779     return inline_vector_rearrange();
 780   case vmIntrinsics::_VectorSelectFrom:
 781     return inline_vector_select_from();
 782   case vmIntrinsics::_VectorCompare:
 783     return inline_vector_compare();
 784   case vmIntrinsics::_VectorBroadcastInt:
 785     return inline_vector_broadcast_int();
 786   case vmIntrinsics::_VectorConvert:
 787     return inline_vector_convert();
 788   case vmIntrinsics::_VectorInsert:
 789     return inline_vector_insert();
 790   case vmIntrinsics::_VectorExtract:
 791     return inline_vector_extract();
 792   case vmIntrinsics::_VectorCompressExpand:
 793     return inline_vector_compress_expand();
 794   case vmIntrinsics::_VectorSelectFromTwoVectorOp:
 795     return inline_vector_select_from_two_vectors();
 796   case vmIntrinsics::_IndexVector:
 797     return inline_index_vector();
 798   case vmIntrinsics::_IndexPartiallyInUpperRange:
 799     return inline_index_partially_in_upper_range();
 800 
 801   case vmIntrinsics::_getObjectSize:
 802     return inline_getObjectSize();
 803 
 804   case vmIntrinsics::_blackhole:
 805     return inline_blackhole();
 806 
 807   default:
 808     // If you get here, it may be that someone has added a new intrinsic
 809     // to the list in vmIntrinsics.hpp without implementing it here.
 810 #ifndef PRODUCT
 811     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 812       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 813                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 814     }
 815 #endif
 816     return false;
 817   }
 818 }
 819 
 820 Node* LibraryCallKit::try_to_predicate(int predicate) {
 821   if (!jvms()->has_method()) {
 822     // Root JVMState has a null method.
 823     assert(map()->memory()->Opcode() == Op_Parm, "");
 824     // Insert the memory aliasing node
 825     set_all_memory(reset_memory());
 826   }
 827   assert(merged_memory(), "");
 828 
 829   switch (intrinsic_id()) {
 830   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 831     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 832   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 833     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 834   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 835     return inline_electronicCodeBook_AESCrypt_predicate(false);
 836   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 837     return inline_electronicCodeBook_AESCrypt_predicate(true);
 838   case vmIntrinsics::_counterMode_AESCrypt:
 839     return inline_counterMode_AESCrypt_predicate();
 840   case vmIntrinsics::_digestBase_implCompressMB:
 841     return inline_digestBase_implCompressMB_predicate(predicate);
 842   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 843     return inline_galoisCounterMode_AESCrypt_predicate();
 844 
 845   default:
 846     // If you get here, it may be that someone has added a new intrinsic
 847     // to the list in vmIntrinsics.hpp without implementing it here.
 848 #ifndef PRODUCT
 849     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 850       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 851                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 852     }
 853 #endif
 854     Node* slow_ctl = control();
 855     set_control(top()); // No fast path intrinsic
 856     return slow_ctl;
 857   }
 858 }
 859 
 860 //------------------------------set_result-------------------------------
 861 // Helper function for finishing intrinsics.
 862 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 863   record_for_igvn(region);
 864   set_control(_gvn.transform(region));
 865   set_result( _gvn.transform(value));
 866   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 867 }
 868 
 869 //------------------------------generate_guard---------------------------
 870 // Helper function for generating guarded fast-slow graph structures.
 871 // The given 'test', if true, guards a slow path.  If the test fails
 872 // then a fast path can be taken.  (We generally hope it fails.)
 873 // In all cases, GraphKit::control() is updated to the fast path.
 874 // The returned value represents the control for the slow path.
 875 // The return value is never 'top'; it is either a valid control
 876 // or null if it is obvious that the slow path can never be taken.
 877 // Also, if region and the slow control are not null, the slow edge
 878 // is appended to the region.
 879 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 880   if (stopped()) {
 881     // Already short circuited.
 882     return nullptr;
 883   }
 884 
 885   // Build an if node and its projections.
 886   // If test is true we take the slow path, which we assume is uncommon.
 887   if (_gvn.type(test) == TypeInt::ZERO) {
 888     // The slow branch is never taken.  No need to build this guard.
 889     return nullptr;
 890   }
 891 
 892   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 893 
 894   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 895   if (if_slow == top()) {
 896     // The slow branch is never taken.  No need to build this guard.
 897     return nullptr;
 898   }
 899 
 900   if (region != nullptr)
 901     region->add_req(if_slow);
 902 
 903   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 904   set_control(if_fast);
 905 
 906   return if_slow;
 907 }
 908 
 909 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 910   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 911 }
 912 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 913   return generate_guard(test, region, PROB_FAIR);
 914 }
 915 
 916 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 917                                                      Node* *pos_index) {
 918   if (stopped())
 919     return nullptr;                // already stopped
 920   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 921     return nullptr;                // index is already adequately typed
 922   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 923   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 924   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 925   if (is_neg != nullptr && pos_index != nullptr) {
 926     // Emulate effect of Parse::adjust_map_after_if.
 927     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 928     (*pos_index) = _gvn.transform(ccast);
 929   }
 930   return is_neg;
 931 }
 932 
 933 // Make sure that 'position' is a valid limit index, in [0..length].
 934 // There are two equivalent plans for checking this:
 935 //   A. (offset + copyLength)  unsigned<=  arrayLength
 936 //   B. offset  <=  (arrayLength - copyLength)
 937 // We require that all of the values above, except for the sum and
 938 // difference, are already known to be non-negative.
 939 // Plan A is robust in the face of overflow, if offset and copyLength
 940 // are both hugely positive.
 941 //
 942 // Plan B is less direct and intuitive, but it does not overflow at
 943 // all, since the difference of two non-negatives is always
 944 // representable.  Whenever Java methods must perform the equivalent
 945 // check they generally use Plan B instead of Plan A.
 946 // For the moment we use Plan A.
 947 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 948                                                   Node* subseq_length,
 949                                                   Node* array_length,
 950                                                   RegionNode* region) {
 951   if (stopped())
 952     return nullptr;                // already stopped
 953   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 954   if (zero_offset && subseq_length->eqv_uncast(array_length))
 955     return nullptr;                // common case of whole-array copy
 956   Node* last = subseq_length;
 957   if (!zero_offset)             // last += offset
 958     last = _gvn.transform(new AddINode(last, offset));
 959   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 960   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 961   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 962   return is_over;
 963 }
 964 
 965 // Emit range checks for the given String.value byte array
 966 void LibraryCallKit::generate_string_range_check(Node* array,
 967                                                  Node* offset,
 968                                                  Node* count,
 969                                                  bool char_count,
 970                                                  bool halt_on_oob) {
 971   if (stopped()) {
 972     return; // already stopped
 973   }
 974   RegionNode* bailout = new RegionNode(1);
 975   record_for_igvn(bailout);
 976   if (char_count) {
 977     // Convert char count to byte count
 978     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 979   }
 980 
 981   // Offset and count must not be negative
 982   generate_negative_guard(offset, bailout);
 983   generate_negative_guard(count, bailout);
 984   // Offset + count must not exceed length of array
 985   generate_limit_guard(offset, count, load_array_length(array), bailout);
 986 
 987   if (bailout->req() > 1) {
 988     if (halt_on_oob) {
 989       bailout = _gvn.transform(bailout)->as_Region();
 990       Node* frame = _gvn.transform(new ParmNode(C->start(), TypeFunc::FramePtr));
 991       Node* halt = _gvn.transform(new HaltNode(bailout, frame, "unexpected guard failure in intrinsic"));
 992       C->root()->add_req(halt);
 993     } else {
 994       PreserveJVMState pjvms(this);
 995       set_control(_gvn.transform(bailout));
 996       uncommon_trap(Deoptimization::Reason_intrinsic,
 997                     Deoptimization::Action_maybe_recompile);
 998     }
 999   }
1000 }
1001 
1002 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
1003                                             bool is_immutable) {
1004   ciKlass* thread_klass = env()->Thread_klass();
1005   const Type* thread_type
1006     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1007 
1008   Node* thread = _gvn.transform(new ThreadLocalNode());
1009   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
1010   tls_output = thread;
1011 
1012   Node* thread_obj_handle
1013     = (is_immutable
1014       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
1015         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
1016       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
1017   thread_obj_handle = _gvn.transform(thread_obj_handle);
1018 
1019   DecoratorSet decorators = IN_NATIVE;
1020   if (is_immutable) {
1021     decorators |= C2_IMMUTABLE_MEMORY;
1022   }
1023   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
1024 }
1025 
1026 //--------------------------generate_current_thread--------------------
1027 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1028   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
1029                                /*is_immutable*/false);
1030 }
1031 
1032 //--------------------------generate_virtual_thread--------------------
1033 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
1034   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
1035                                !C->method()->changes_current_thread());
1036 }
1037 
1038 //------------------------------make_string_method_node------------------------
1039 // Helper method for String intrinsic functions. This version is called with
1040 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1041 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1042 // containing the lengths of str1 and str2.
1043 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1044   Node* result = nullptr;
1045   switch (opcode) {
1046   case Op_StrIndexOf:
1047     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1048                                 str1_start, cnt1, str2_start, cnt2, ae);
1049     break;
1050   case Op_StrComp:
1051     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1052                              str1_start, cnt1, str2_start, cnt2, ae);
1053     break;
1054   case Op_StrEquals:
1055     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1056     // Use the constant length if there is one because optimized match rule may exist.
1057     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1058                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1059     break;
1060   default:
1061     ShouldNotReachHere();
1062     return nullptr;
1063   }
1064 
1065   // All these intrinsics have checks.
1066   C->set_has_split_ifs(true); // Has chance for split-if optimization
1067   clear_upper_avx();
1068 
1069   return _gvn.transform(result);
1070 }
1071 
1072 //------------------------------inline_string_compareTo------------------------
1073 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1074   Node* arg1 = argument(0);
1075   Node* arg2 = argument(1);
1076 
1077   arg1 = must_be_not_null(arg1, true);
1078   arg2 = must_be_not_null(arg2, true);
1079 
1080   // Get start addr and length of first argument
1081   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1082   Node* arg1_cnt    = load_array_length(arg1);
1083 
1084   // Get start addr and length of second argument
1085   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1086   Node* arg2_cnt    = load_array_length(arg2);
1087 
1088   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1089   set_result(result);
1090   return true;
1091 }
1092 
1093 //------------------------------inline_string_equals------------------------
1094 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1095   Node* arg1 = argument(0);
1096   Node* arg2 = argument(1);
1097 
1098   // paths (plus control) merge
1099   RegionNode* region = new RegionNode(3);
1100   Node* phi = new PhiNode(region, TypeInt::BOOL);
1101 
1102   if (!stopped()) {
1103 
1104     arg1 = must_be_not_null(arg1, true);
1105     arg2 = must_be_not_null(arg2, true);
1106 
1107     // Get start addr and length of first argument
1108     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1109     Node* arg1_cnt    = load_array_length(arg1);
1110 
1111     // Get start addr and length of second argument
1112     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1113     Node* arg2_cnt    = load_array_length(arg2);
1114 
1115     // Check for arg1_cnt != arg2_cnt
1116     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1117     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1118     Node* if_ne = generate_slow_guard(bol, nullptr);
1119     if (if_ne != nullptr) {
1120       phi->init_req(2, intcon(0));
1121       region->init_req(2, if_ne);
1122     }
1123 
1124     // Check for count == 0 is done by assembler code for StrEquals.
1125 
1126     if (!stopped()) {
1127       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1128       phi->init_req(1, equals);
1129       region->init_req(1, control());
1130     }
1131   }
1132 
1133   // post merge
1134   set_control(_gvn.transform(region));
1135   record_for_igvn(region);
1136 
1137   set_result(_gvn.transform(phi));
1138   return true;
1139 }
1140 
1141 //------------------------------inline_array_equals----------------------------
1142 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1143   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1144   Node* arg1 = argument(0);
1145   Node* arg2 = argument(1);
1146 
1147   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1148   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1149   clear_upper_avx();
1150 
1151   return true;
1152 }
1153 
1154 
1155 //------------------------------inline_countPositives------------------------------
1156 // int java.lang.StringCoding#countPositives0(byte[] ba, int off, int len)
1157 bool LibraryCallKit::inline_countPositives() {
1158   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1159     return false;
1160   }
1161 
1162   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1163   // no receiver since it is static method
1164   Node* ba         = argument(0);
1165   Node* offset     = argument(1);
1166   Node* len        = argument(2);
1167 
1168   if (VerifyIntrinsicChecks) {
1169     ba = must_be_not_null(ba, true);
1170     generate_string_range_check(ba, offset, len, false, true);
1171     if (stopped()) {
1172       return true;
1173     }
1174   }
1175 
1176   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1177   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1178   set_result(_gvn.transform(result));
1179   clear_upper_avx();
1180   return true;
1181 }
1182 
1183 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1184   Node* index = argument(0);
1185   Node* length = bt == T_INT ? argument(1) : argument(2);
1186   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1187     return false;
1188   }
1189 
1190   // check that length is positive
1191   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1192   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1193 
1194   {
1195     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1196     uncommon_trap(Deoptimization::Reason_intrinsic,
1197                   Deoptimization::Action_make_not_entrant);
1198   }
1199 
1200   if (stopped()) {
1201     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1202     return true;
1203   }
1204 
1205   // length is now known positive, add a cast node to make this explicit
1206   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1207   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1208       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1209       ConstraintCastNode::RegularDependency, bt);
1210   casted_length = _gvn.transform(casted_length);
1211   replace_in_map(length, casted_length);
1212   length = casted_length;
1213 
1214   // Use an unsigned comparison for the range check itself
1215   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1216   BoolTest::mask btest = BoolTest::lt;
1217   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1218   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1219   _gvn.set_type(rc, rc->Value(&_gvn));
1220   if (!rc_bool->is_Con()) {
1221     record_for_igvn(rc);
1222   }
1223   set_control(_gvn.transform(new IfTrueNode(rc)));
1224   {
1225     PreserveJVMState pjvms(this);
1226     set_control(_gvn.transform(new IfFalseNode(rc)));
1227     uncommon_trap(Deoptimization::Reason_range_check,
1228                   Deoptimization::Action_make_not_entrant);
1229   }
1230 
1231   if (stopped()) {
1232     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1233     return true;
1234   }
1235 
1236   // index is now known to be >= 0 and < length, cast it
1237   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1238       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1239       ConstraintCastNode::RegularDependency, bt);
1240   result = _gvn.transform(result);
1241   set_result(result);
1242   replace_in_map(index, result);
1243   return true;
1244 }
1245 
1246 //------------------------------inline_string_indexOf------------------------
1247 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1248   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1249     return false;
1250   }
1251   Node* src = argument(0);
1252   Node* tgt = argument(1);
1253 
1254   // Make the merge point
1255   RegionNode* result_rgn = new RegionNode(4);
1256   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1257 
1258   src = must_be_not_null(src, true);
1259   tgt = must_be_not_null(tgt, true);
1260 
1261   // Get start addr and length of source string
1262   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1263   Node* src_count = load_array_length(src);
1264 
1265   // Get start addr and length of substring
1266   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1267   Node* tgt_count = load_array_length(tgt);
1268 
1269   Node* result = nullptr;
1270   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1271 
1272   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1273     // Divide src size by 2 if String is UTF16 encoded
1274     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1275   }
1276   if (ae == StrIntrinsicNode::UU) {
1277     // Divide substring size by 2 if String is UTF16 encoded
1278     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1279   }
1280 
1281   if (call_opt_stub) {
1282     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1283                                    StubRoutines::_string_indexof_array[ae],
1284                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1285                                    src_count, tgt_start, tgt_count);
1286     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1287   } else {
1288     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1289                                result_rgn, result_phi, ae);
1290   }
1291   if (result != nullptr) {
1292     result_phi->init_req(3, result);
1293     result_rgn->init_req(3, control());
1294   }
1295   set_control(_gvn.transform(result_rgn));
1296   record_for_igvn(result_rgn);
1297   set_result(_gvn.transform(result_phi));
1298 
1299   return true;
1300 }
1301 
1302 //-----------------------------inline_string_indexOfI-----------------------
1303 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1304   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1305     return false;
1306   }
1307   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1308     return false;
1309   }
1310 
1311   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1312   Node* src         = argument(0); // byte[]
1313   Node* src_count   = argument(1); // char count
1314   Node* tgt         = argument(2); // byte[]
1315   Node* tgt_count   = argument(3); // char count
1316   Node* from_index  = argument(4); // char index
1317 
1318   src = must_be_not_null(src, true);
1319   tgt = must_be_not_null(tgt, true);
1320 
1321   // Multiply byte array index by 2 if String is UTF16 encoded
1322   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1323   src_count = _gvn.transform(new SubINode(src_count, from_index));
1324   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1325   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1326 
1327   // Range checks
1328   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1329   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1330   if (stopped()) {
1331     return true;
1332   }
1333 
1334   RegionNode* region = new RegionNode(5);
1335   Node* phi = new PhiNode(region, TypeInt::INT);
1336   Node* result = nullptr;
1337 
1338   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1339 
1340   if (call_opt_stub) {
1341     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1342                                    StubRoutines::_string_indexof_array[ae],
1343                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1344                                    src_count, tgt_start, tgt_count);
1345     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1346   } else {
1347     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1348                                region, phi, ae);
1349   }
1350   if (result != nullptr) {
1351     // The result is index relative to from_index if substring was found, -1 otherwise.
1352     // Generate code which will fold into cmove.
1353     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1354     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1355 
1356     Node* if_lt = generate_slow_guard(bol, nullptr);
1357     if (if_lt != nullptr) {
1358       // result == -1
1359       phi->init_req(3, result);
1360       region->init_req(3, if_lt);
1361     }
1362     if (!stopped()) {
1363       result = _gvn.transform(new AddINode(result, from_index));
1364       phi->init_req(4, result);
1365       region->init_req(4, control());
1366     }
1367   }
1368 
1369   set_control(_gvn.transform(region));
1370   record_for_igvn(region);
1371   set_result(_gvn.transform(phi));
1372   clear_upper_avx();
1373 
1374   return true;
1375 }
1376 
1377 // Create StrIndexOfNode with fast path checks
1378 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1379                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1380   // Check for substr count > string count
1381   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1382   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1383   Node* if_gt = generate_slow_guard(bol, nullptr);
1384   if (if_gt != nullptr) {
1385     phi->init_req(1, intcon(-1));
1386     region->init_req(1, if_gt);
1387   }
1388   if (!stopped()) {
1389     // Check for substr count == 0
1390     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1391     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1392     Node* if_zero = generate_slow_guard(bol, nullptr);
1393     if (if_zero != nullptr) {
1394       phi->init_req(2, intcon(0));
1395       region->init_req(2, if_zero);
1396     }
1397   }
1398   if (!stopped()) {
1399     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1400   }
1401   return nullptr;
1402 }
1403 
1404 //-----------------------------inline_string_indexOfChar-----------------------
1405 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1406   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1407     return false;
1408   }
1409   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1410     return false;
1411   }
1412   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1413   Node* src         = argument(0); // byte[]
1414   Node* int_ch      = argument(1);
1415   Node* from_index  = argument(2);
1416   Node* max         = argument(3);
1417 
1418   src = must_be_not_null(src, true);
1419 
1420   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1421   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1422   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1423 
1424   // Range checks
1425   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1426 
1427   // Check for int_ch >= 0
1428   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1429   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1430   {
1431     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1432     uncommon_trap(Deoptimization::Reason_intrinsic,
1433                   Deoptimization::Action_maybe_recompile);
1434   }
1435   if (stopped()) {
1436     return true;
1437   }
1438 
1439   RegionNode* region = new RegionNode(3);
1440   Node* phi = new PhiNode(region, TypeInt::INT);
1441 
1442   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1443   C->set_has_split_ifs(true); // Has chance for split-if optimization
1444   _gvn.transform(result);
1445 
1446   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1447   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1448 
1449   Node* if_lt = generate_slow_guard(bol, nullptr);
1450   if (if_lt != nullptr) {
1451     // result == -1
1452     phi->init_req(2, result);
1453     region->init_req(2, if_lt);
1454   }
1455   if (!stopped()) {
1456     result = _gvn.transform(new AddINode(result, from_index));
1457     phi->init_req(1, result);
1458     region->init_req(1, control());
1459   }
1460   set_control(_gvn.transform(region));
1461   record_for_igvn(region);
1462   set_result(_gvn.transform(phi));
1463   clear_upper_avx();
1464 
1465   return true;
1466 }
1467 //---------------------------inline_string_copy---------------------
1468 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1469 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1470 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1471 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1472 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1473 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1474 bool LibraryCallKit::inline_string_copy(bool compress) {
1475   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1476     return false;
1477   }
1478   int nargs = 5;  // 2 oops, 3 ints
1479   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1480 
1481   Node* src         = argument(0);
1482   Node* src_offset  = argument(1);
1483   Node* dst         = argument(2);
1484   Node* dst_offset  = argument(3);
1485   Node* length      = argument(4);
1486 
1487   // Check for allocation before we add nodes that would confuse
1488   // tightly_coupled_allocation()
1489   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1490 
1491   // Figure out the size and type of the elements we will be copying.
1492   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1493   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1494   if (src_type == nullptr || dst_type == nullptr) {
1495     return false;
1496   }
1497   BasicType src_elem = src_type->elem()->array_element_basic_type();
1498   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1499   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1500          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1501          "Unsupported array types for inline_string_copy");
1502 
1503   src = must_be_not_null(src, true);
1504   dst = must_be_not_null(dst, true);
1505 
1506   // Convert char[] offsets to byte[] offsets
1507   bool convert_src = (compress && src_elem == T_BYTE);
1508   bool convert_dst = (!compress && dst_elem == T_BYTE);
1509   if (convert_src) {
1510     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1511   } else if (convert_dst) {
1512     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1513   }
1514 
1515   // Range checks
1516   generate_string_range_check(src, src_offset, length, convert_src);
1517   generate_string_range_check(dst, dst_offset, length, convert_dst);
1518   if (stopped()) {
1519     return true;
1520   }
1521 
1522   Node* src_start = array_element_address(src, src_offset, src_elem);
1523   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1524   // 'src_start' points to src array + scaled offset
1525   // 'dst_start' points to dst array + scaled offset
1526   Node* count = nullptr;
1527   if (compress) {
1528     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1529   } else {
1530     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1531   }
1532 
1533   if (alloc != nullptr) {
1534     if (alloc->maybe_set_complete(&_gvn)) {
1535       // "You break it, you buy it."
1536       InitializeNode* init = alloc->initialization();
1537       assert(init->is_complete(), "we just did this");
1538       init->set_complete_with_arraycopy();
1539       assert(dst->is_CheckCastPP(), "sanity");
1540       assert(dst->in(0)->in(0) == init, "dest pinned");
1541     }
1542     // Do not let stores that initialize this object be reordered with
1543     // a subsequent store that would make this object accessible by
1544     // other threads.
1545     // Record what AllocateNode this StoreStore protects so that
1546     // escape analysis can go from the MemBarStoreStoreNode to the
1547     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1548     // based on the escape status of the AllocateNode.
1549     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1550   }
1551   if (compress) {
1552     set_result(_gvn.transform(count));
1553   }
1554   clear_upper_avx();
1555 
1556   return true;
1557 }
1558 
1559 #ifdef _LP64
1560 #define XTOP ,top() /*additional argument*/
1561 #else  //_LP64
1562 #define XTOP        /*no additional argument*/
1563 #endif //_LP64
1564 
1565 //------------------------inline_string_toBytesU--------------------------
1566 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1567 bool LibraryCallKit::inline_string_toBytesU() {
1568   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1569     return false;
1570   }
1571   // Get the arguments.
1572   Node* value     = argument(0);
1573   Node* offset    = argument(1);
1574   Node* length    = argument(2);
1575 
1576   Node* newcopy = nullptr;
1577 
1578   // Set the original stack and the reexecute bit for the interpreter to reexecute
1579   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1580   { PreserveReexecuteState preexecs(this);
1581     jvms()->set_should_reexecute(true);
1582 
1583     // Check if a null path was taken unconditionally.
1584     value = null_check(value);
1585 
1586     RegionNode* bailout = new RegionNode(1);
1587     record_for_igvn(bailout);
1588 
1589     // Range checks
1590     generate_negative_guard(offset, bailout);
1591     generate_negative_guard(length, bailout);
1592     generate_limit_guard(offset, length, load_array_length(value), bailout);
1593     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1594     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1595 
1596     if (bailout->req() > 1) {
1597       PreserveJVMState pjvms(this);
1598       set_control(_gvn.transform(bailout));
1599       uncommon_trap(Deoptimization::Reason_intrinsic,
1600                     Deoptimization::Action_maybe_recompile);
1601     }
1602     if (stopped()) {
1603       return true;
1604     }
1605 
1606     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1607     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1608     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1609     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1610     guarantee(alloc != nullptr, "created above");
1611 
1612     // Calculate starting addresses.
1613     Node* src_start = array_element_address(value, offset, T_CHAR);
1614     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1615 
1616     // Check if dst array address is aligned to HeapWordSize
1617     bool aligned = (arrayOopDesc::base_offset_in_bytes(T_BYTE) % HeapWordSize == 0);
1618     // If true, then check if src array address is aligned to HeapWordSize
1619     if (aligned) {
1620       const TypeInt* toffset = gvn().type(offset)->is_int();
1621       aligned = toffset->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_CHAR) +
1622                                        toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1623     }
1624 
1625     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1626     const char* copyfunc_name = "arraycopy";
1627     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1628     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1629                       OptoRuntime::fast_arraycopy_Type(),
1630                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1631                       src_start, dst_start, ConvI2X(length) XTOP);
1632     // Do not let reads from the cloned object float above the arraycopy.
1633     if (alloc->maybe_set_complete(&_gvn)) {
1634       // "You break it, you buy it."
1635       InitializeNode* init = alloc->initialization();
1636       assert(init->is_complete(), "we just did this");
1637       init->set_complete_with_arraycopy();
1638       assert(newcopy->is_CheckCastPP(), "sanity");
1639       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1640     }
1641     // Do not let stores that initialize this object be reordered with
1642     // a subsequent store that would make this object accessible by
1643     // other threads.
1644     // Record what AllocateNode this StoreStore protects so that
1645     // escape analysis can go from the MemBarStoreStoreNode to the
1646     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1647     // based on the escape status of the AllocateNode.
1648     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1649   } // original reexecute is set back here
1650 
1651   C->set_has_split_ifs(true); // Has chance for split-if optimization
1652   if (!stopped()) {
1653     set_result(newcopy);
1654   }
1655   clear_upper_avx();
1656 
1657   return true;
1658 }
1659 
1660 //------------------------inline_string_getCharsU--------------------------
1661 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1662 bool LibraryCallKit::inline_string_getCharsU() {
1663   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1664     return false;
1665   }
1666 
1667   // Get the arguments.
1668   Node* src       = argument(0);
1669   Node* src_begin = argument(1);
1670   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1671   Node* dst       = argument(3);
1672   Node* dst_begin = argument(4);
1673 
1674   // Check for allocation before we add nodes that would confuse
1675   // tightly_coupled_allocation()
1676   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1677 
1678   // Check if a null path was taken unconditionally.
1679   src = null_check(src);
1680   dst = null_check(dst);
1681   if (stopped()) {
1682     return true;
1683   }
1684 
1685   // Get length and convert char[] offset to byte[] offset
1686   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1687   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1688 
1689   // Range checks
1690   generate_string_range_check(src, src_begin, length, true);
1691   generate_string_range_check(dst, dst_begin, length, false);
1692   if (stopped()) {
1693     return true;
1694   }
1695 
1696   if (!stopped()) {
1697     // Calculate starting addresses.
1698     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1699     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1700 
1701     // Check if array addresses are aligned to HeapWordSize
1702     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1703     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1704     bool aligned = tsrc->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_BYTE) + tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1705                    tdst->is_con() && ((arrayOopDesc::base_offset_in_bytes(T_CHAR) + tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1706 
1707     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1708     const char* copyfunc_name = "arraycopy";
1709     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1710     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1711                       OptoRuntime::fast_arraycopy_Type(),
1712                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1713                       src_start, dst_start, ConvI2X(length) XTOP);
1714     // Do not let reads from the cloned object float above the arraycopy.
1715     if (alloc != nullptr) {
1716       if (alloc->maybe_set_complete(&_gvn)) {
1717         // "You break it, you buy it."
1718         InitializeNode* init = alloc->initialization();
1719         assert(init->is_complete(), "we just did this");
1720         init->set_complete_with_arraycopy();
1721         assert(dst->is_CheckCastPP(), "sanity");
1722         assert(dst->in(0)->in(0) == init, "dest pinned");
1723       }
1724       // Do not let stores that initialize this object be reordered with
1725       // a subsequent store that would make this object accessible by
1726       // other threads.
1727       // Record what AllocateNode this StoreStore protects so that
1728       // escape analysis can go from the MemBarStoreStoreNode to the
1729       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1730       // based on the escape status of the AllocateNode.
1731       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1732     } else {
1733       insert_mem_bar(Op_MemBarCPUOrder);
1734     }
1735   }
1736 
1737   C->set_has_split_ifs(true); // Has chance for split-if optimization
1738   return true;
1739 }
1740 
1741 //----------------------inline_string_char_access----------------------------
1742 // Store/Load char to/from byte[] array.
1743 // static void StringUTF16.putChar(byte[] val, int index, int c)
1744 // static char StringUTF16.getChar(byte[] val, int index)
1745 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1746   Node* value  = argument(0);
1747   Node* index  = argument(1);
1748   Node* ch = is_store ? argument(2) : nullptr;
1749 
1750   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1751   // correctly requires matched array shapes.
1752   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1753           "sanity: byte[] and char[] bases agree");
1754   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1755           "sanity: byte[] and char[] scales agree");
1756 
1757   // Bail when getChar over constants is requested: constant folding would
1758   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1759   // Java method would constant fold nicely instead.
1760   if (!is_store && value->is_Con() && index->is_Con()) {
1761     return false;
1762   }
1763 
1764   // Save state and restore on bailout
1765   SavedState old_state(this);
1766 
1767   value = must_be_not_null(value, true);
1768 
1769   Node* adr = array_element_address(value, index, T_CHAR);
1770   if (adr->is_top()) {
1771     return false;
1772   }
1773   old_state.discard();
1774   if (is_store) {
1775     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1776   } else {
1777     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1778     set_result(ch);
1779   }
1780   return true;
1781 }
1782 
1783 
1784 //------------------------------inline_math-----------------------------------
1785 // public static double Math.abs(double)
1786 // public static double Math.sqrt(double)
1787 // public static double Math.log(double)
1788 // public static double Math.log10(double)
1789 // public static double Math.round(double)
1790 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1791   Node* arg = argument(0);
1792   Node* n = nullptr;
1793   switch (id) {
1794   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1795   case vmIntrinsics::_dsqrt:
1796   case vmIntrinsics::_dsqrt_strict:
1797                               n = new SqrtDNode(C, control(),  arg);  break;
1798   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1799   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1800   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1801   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1802   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break;
1803   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1804   default:  fatal_unexpected_iid(id);  break;
1805   }
1806   set_result(_gvn.transform(n));
1807   return true;
1808 }
1809 
1810 //------------------------------inline_math-----------------------------------
1811 // public static float Math.abs(float)
1812 // public static int Math.abs(int)
1813 // public static long Math.abs(long)
1814 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1815   Node* arg = argument(0);
1816   Node* n = nullptr;
1817   switch (id) {
1818   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1819   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1820   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1821   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1822   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1823   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1824   default:  fatal_unexpected_iid(id);  break;
1825   }
1826   set_result(_gvn.transform(n));
1827   return true;
1828 }
1829 
1830 //------------------------------runtime_math-----------------------------
1831 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1832   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1833          "must be (DD)D or (D)D type");
1834 
1835   // Inputs
1836   Node* a = argument(0);
1837   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr;
1838 
1839   const TypePtr* no_memory_effects = nullptr;
1840   Node* trig = make_runtime_call(RC_LEAF | RC_PURE, call_type, funcAddr, funcName,
1841                                  no_memory_effects,
1842                                  a, top(), b, b ? top() : nullptr);
1843   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1844 #ifdef ASSERT
1845   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1846   assert(value_top == top(), "second value must be top");
1847 #endif
1848 
1849   set_result(value);
1850   return true;
1851 }
1852 
1853 //------------------------------inline_math_pow-----------------------------
1854 bool LibraryCallKit::inline_math_pow() {
1855   Node* exp = argument(2);
1856   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1857   if (d != nullptr) {
1858     if (d->getd() == 2.0) {
1859       // Special case: pow(x, 2.0) => x * x
1860       Node* base = argument(0);
1861       set_result(_gvn.transform(new MulDNode(base, base)));
1862       return true;
1863     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1864       // Special case: pow(x, 0.5) => sqrt(x)
1865       Node* base = argument(0);
1866       Node* zero = _gvn.zerocon(T_DOUBLE);
1867 
1868       RegionNode* region = new RegionNode(3);
1869       Node* phi = new PhiNode(region, Type::DOUBLE);
1870 
1871       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1872       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1873       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1874       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1875       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1876 
1877       Node* if_pow = generate_slow_guard(test, nullptr);
1878       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1879       phi->init_req(1, value_sqrt);
1880       region->init_req(1, control());
1881 
1882       if (if_pow != nullptr) {
1883         set_control(if_pow);
1884         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1885                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1886         const TypePtr* no_memory_effects = nullptr;
1887         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1888                                        no_memory_effects, base, top(), exp, top());
1889         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1890 #ifdef ASSERT
1891         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1892         assert(value_top == top(), "second value must be top");
1893 #endif
1894         phi->init_req(2, value_pow);
1895         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1896       }
1897 
1898       C->set_has_split_ifs(true); // Has chance for split-if optimization
1899       set_control(_gvn.transform(region));
1900       record_for_igvn(region);
1901       set_result(_gvn.transform(phi));
1902 
1903       return true;
1904     }
1905   }
1906 
1907   return StubRoutines::dpow() != nullptr ?
1908     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1909     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1910 }
1911 
1912 //------------------------------inline_math_native-----------------------------
1913 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1914   switch (id) {
1915   case vmIntrinsics::_dsin:
1916     return StubRoutines::dsin() != nullptr ?
1917       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1918       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1919   case vmIntrinsics::_dcos:
1920     return StubRoutines::dcos() != nullptr ?
1921       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1922       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1923   case vmIntrinsics::_dtan:
1924     return StubRoutines::dtan() != nullptr ?
1925       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1926       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1927   case vmIntrinsics::_dsinh:
1928     return StubRoutines::dsinh() != nullptr ?
1929       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsinh(), "dsinh") : false;
1930   case vmIntrinsics::_dtanh:
1931     return StubRoutines::dtanh() != nullptr ?
1932       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false;
1933   case vmIntrinsics::_dcbrt:
1934     return StubRoutines::dcbrt() != nullptr ?
1935       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcbrt(), "dcbrt") : false;
1936   case vmIntrinsics::_dexp:
1937     return StubRoutines::dexp() != nullptr ?
1938       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1939       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1940   case vmIntrinsics::_dlog:
1941     return StubRoutines::dlog() != nullptr ?
1942       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1943       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1944   case vmIntrinsics::_dlog10:
1945     return StubRoutines::dlog10() != nullptr ?
1946       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1947       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1948 
1949   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1950   case vmIntrinsics::_ceil:
1951   case vmIntrinsics::_floor:
1952   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1953 
1954   case vmIntrinsics::_dsqrt:
1955   case vmIntrinsics::_dsqrt_strict:
1956                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1957   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1958   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1959   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1960   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1961 
1962   case vmIntrinsics::_dpow:      return inline_math_pow();
1963   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1964   case vmIntrinsics::_fcopySign: return inline_math(id);
1965   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1966   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1967   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1968 
1969    // These intrinsics are not yet correctly implemented
1970   case vmIntrinsics::_datan2:
1971     return false;
1972 
1973   default:
1974     fatal_unexpected_iid(id);
1975     return false;
1976   }
1977 }
1978 
1979 //----------------------------inline_notify-----------------------------------*
1980 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1981   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1982   address func;
1983   if (id == vmIntrinsics::_notify) {
1984     func = OptoRuntime::monitor_notify_Java();
1985   } else {
1986     func = OptoRuntime::monitor_notifyAll_Java();
1987   }
1988   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1989   make_slow_call_ex(call, env()->Throwable_klass(), false);
1990   return true;
1991 }
1992 
1993 
1994 //----------------------------inline_min_max-----------------------------------
1995 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1996   Node* a = nullptr;
1997   Node* b = nullptr;
1998   Node* n = nullptr;
1999   switch (id) {
2000     case vmIntrinsics::_min:
2001     case vmIntrinsics::_max:
2002     case vmIntrinsics::_minF:
2003     case vmIntrinsics::_maxF:
2004     case vmIntrinsics::_minF_strict:
2005     case vmIntrinsics::_maxF_strict:
2006     case vmIntrinsics::_min_strict:
2007     case vmIntrinsics::_max_strict:
2008       assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
2009       a = argument(0);
2010       b = argument(1);
2011       break;
2012     case vmIntrinsics::_minD:
2013     case vmIntrinsics::_maxD:
2014     case vmIntrinsics::_minD_strict:
2015     case vmIntrinsics::_maxD_strict:
2016       assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
2017       a = argument(0);
2018       b = argument(2);
2019       break;
2020     case vmIntrinsics::_minL:
2021     case vmIntrinsics::_maxL:
2022       assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each.");
2023       a = argument(0);
2024       b = argument(2);
2025       break;
2026     default:
2027       fatal_unexpected_iid(id);
2028       break;
2029   }
2030 
2031   switch (id) {
2032     case vmIntrinsics::_min:
2033     case vmIntrinsics::_min_strict:
2034       n = new MinINode(a, b);
2035       break;
2036     case vmIntrinsics::_max:
2037     case vmIntrinsics::_max_strict:
2038       n = new MaxINode(a, b);
2039       break;
2040     case vmIntrinsics::_minF:
2041     case vmIntrinsics::_minF_strict:
2042       n = new MinFNode(a, b);
2043       break;
2044     case vmIntrinsics::_maxF:
2045     case vmIntrinsics::_maxF_strict:
2046       n = new MaxFNode(a, b);
2047       break;
2048     case vmIntrinsics::_minD:
2049     case vmIntrinsics::_minD_strict:
2050       n = new MinDNode(a, b);
2051       break;
2052     case vmIntrinsics::_maxD:
2053     case vmIntrinsics::_maxD_strict:
2054       n = new MaxDNode(a, b);
2055       break;
2056     case vmIntrinsics::_minL:
2057       n = new MinLNode(_gvn.C, a, b);
2058       break;
2059     case vmIntrinsics::_maxL:
2060       n = new MaxLNode(_gvn.C, a, b);
2061       break;
2062     default:
2063       fatal_unexpected_iid(id);
2064       break;
2065   }
2066 
2067   set_result(_gvn.transform(n));
2068   return true;
2069 }
2070 
2071 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) {
2072   if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic,
2073                                    env()->ArithmeticException_instance())) {
2074     // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces),
2075     // so let's bail out intrinsic rather than risking deopting again.
2076     return false;
2077   }
2078 
2079   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2080   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2081   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2082   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2083 
2084   {
2085     PreserveJVMState pjvms(this);
2086     PreserveReexecuteState preexecs(this);
2087     jvms()->set_should_reexecute(true);
2088 
2089     set_control(slow_path);
2090     set_i_o(i_o());
2091 
2092     builtin_throw(Deoptimization::Reason_intrinsic,
2093                   env()->ArithmeticException_instance(),
2094                   /*allow_too_many_traps*/ false);
2095   }
2096 
2097   set_control(fast_path);
2098   set_result(math);
2099   return true;
2100 }
2101 
2102 template <typename OverflowOp>
2103 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2104   typedef typename OverflowOp::MathOp MathOp;
2105 
2106   MathOp* mathOp = new MathOp(arg1, arg2);
2107   Node* operation = _gvn.transform( mathOp );
2108   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2109   return inline_math_mathExact(operation, ofcheck);
2110 }
2111 
2112 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2113   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2114 }
2115 
2116 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2117   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2118 }
2119 
2120 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2121   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2122 }
2123 
2124 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2125   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2126 }
2127 
2128 bool LibraryCallKit::inline_math_negateExactI() {
2129   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2130 }
2131 
2132 bool LibraryCallKit::inline_math_negateExactL() {
2133   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2134 }
2135 
2136 bool LibraryCallKit::inline_math_multiplyExactI() {
2137   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2138 }
2139 
2140 bool LibraryCallKit::inline_math_multiplyExactL() {
2141   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2142 }
2143 
2144 bool LibraryCallKit::inline_math_multiplyHigh() {
2145   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2146   return true;
2147 }
2148 
2149 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2150   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2151   return true;
2152 }
2153 
2154 inline int
2155 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2156   const TypePtr* base_type = TypePtr::NULL_PTR;
2157   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2158   if (base_type == nullptr) {
2159     // Unknown type.
2160     return Type::AnyPtr;
2161   } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) {
2162     // Since this is a null+long form, we have to switch to a rawptr.
2163     base   = _gvn.transform(new CastX2PNode(offset));
2164     offset = MakeConX(0);
2165     return Type::RawPtr;
2166   } else if (base_type->base() == Type::RawPtr) {
2167     return Type::RawPtr;
2168   } else if (base_type->isa_oopptr()) {
2169     // Base is never null => always a heap address.
2170     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2171       return Type::OopPtr;
2172     }
2173     // Offset is small => always a heap address.
2174     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2175     if (offset_type != nullptr &&
2176         base_type->offset() == 0 &&     // (should always be?)
2177         offset_type->_lo >= 0 &&
2178         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2179       return Type::OopPtr;
2180     } else if (type == T_OBJECT) {
2181       // off heap access to an oop doesn't make any sense. Has to be on
2182       // heap.
2183       return Type::OopPtr;
2184     }
2185     // Otherwise, it might either be oop+off or null+addr.
2186     return Type::AnyPtr;
2187   } else {
2188     // No information:
2189     return Type::AnyPtr;
2190   }
2191 }
2192 
2193 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2194   Node* uncasted_base = base;
2195   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2196   if (kind == Type::RawPtr) {
2197     return basic_plus_adr(top(), uncasted_base, offset);
2198   } else if (kind == Type::AnyPtr) {
2199     assert(base == uncasted_base, "unexpected base change");
2200     if (can_cast) {
2201       if (!_gvn.type(base)->speculative_maybe_null() &&
2202           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2203         // According to profiling, this access is always on
2204         // heap. Casting the base to not null and thus avoiding membars
2205         // around the access should allow better optimizations
2206         Node* null_ctl = top();
2207         base = null_check_oop(base, &null_ctl, true, true, true);
2208         assert(null_ctl->is_top(), "no null control here");
2209         return basic_plus_adr(base, offset);
2210       } else if (_gvn.type(base)->speculative_always_null() &&
2211                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2212         // According to profiling, this access is always off
2213         // heap.
2214         base = null_assert(base);
2215         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2216         offset = MakeConX(0);
2217         return basic_plus_adr(top(), raw_base, offset);
2218       }
2219     }
2220     // We don't know if it's an on heap or off heap access. Fall back
2221     // to raw memory access.
2222     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2223     return basic_plus_adr(top(), raw, offset);
2224   } else {
2225     assert(base == uncasted_base, "unexpected base change");
2226     // We know it's an on heap access so base can't be null
2227     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2228       base = must_be_not_null(base, true);
2229     }
2230     return basic_plus_adr(base, offset);
2231   }
2232 }
2233 
2234 //--------------------------inline_number_methods-----------------------------
2235 // inline int     Integer.numberOfLeadingZeros(int)
2236 // inline int        Long.numberOfLeadingZeros(long)
2237 //
2238 // inline int     Integer.numberOfTrailingZeros(int)
2239 // inline int        Long.numberOfTrailingZeros(long)
2240 //
2241 // inline int     Integer.bitCount(int)
2242 // inline int        Long.bitCount(long)
2243 //
2244 // inline char  Character.reverseBytes(char)
2245 // inline short     Short.reverseBytes(short)
2246 // inline int     Integer.reverseBytes(int)
2247 // inline long       Long.reverseBytes(long)
2248 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2249   Node* arg = argument(0);
2250   Node* n = nullptr;
2251   switch (id) {
2252   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg); break;
2253   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg); break;
2254   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg); break;
2255   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg); break;
2256   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg); break;
2257   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg); break;
2258   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(     arg); break;
2259   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode(      arg); break;
2260   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode(      arg); break;
2261   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode(      arg); break;
2262   case vmIntrinsics::_reverse_i:                n = new ReverseINode(           arg); break;
2263   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(           arg); break;
2264   default:  fatal_unexpected_iid(id);  break;
2265   }
2266   set_result(_gvn.transform(n));
2267   return true;
2268 }
2269 
2270 //--------------------------inline_bitshuffle_methods-----------------------------
2271 // inline int Integer.compress(int, int)
2272 // inline int Integer.expand(int, int)
2273 // inline long Long.compress(long, long)
2274 // inline long Long.expand(long, long)
2275 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2276   Node* n = nullptr;
2277   switch (id) {
2278     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2279     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2280     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2281     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2282     default:  fatal_unexpected_iid(id);  break;
2283   }
2284   set_result(_gvn.transform(n));
2285   return true;
2286 }
2287 
2288 //--------------------------inline_number_methods-----------------------------
2289 // inline int Integer.compareUnsigned(int, int)
2290 // inline int    Long.compareUnsigned(long, long)
2291 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2292   Node* arg1 = argument(0);
2293   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2294   Node* n = nullptr;
2295   switch (id) {
2296     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2297     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2298     default:  fatal_unexpected_iid(id);  break;
2299   }
2300   set_result(_gvn.transform(n));
2301   return true;
2302 }
2303 
2304 //--------------------------inline_unsigned_divmod_methods-----------------------------
2305 // inline int Integer.divideUnsigned(int, int)
2306 // inline int Integer.remainderUnsigned(int, int)
2307 // inline long Long.divideUnsigned(long, long)
2308 // inline long Long.remainderUnsigned(long, long)
2309 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2310   Node* n = nullptr;
2311   switch (id) {
2312     case vmIntrinsics::_divideUnsigned_i: {
2313       zero_check_int(argument(1));
2314       // Compile-time detect of null-exception
2315       if (stopped()) {
2316         return true; // keep the graph constructed so far
2317       }
2318       n = new UDivINode(control(), argument(0), argument(1));
2319       break;
2320     }
2321     case vmIntrinsics::_divideUnsigned_l: {
2322       zero_check_long(argument(2));
2323       // Compile-time detect of null-exception
2324       if (stopped()) {
2325         return true; // keep the graph constructed so far
2326       }
2327       n = new UDivLNode(control(), argument(0), argument(2));
2328       break;
2329     }
2330     case vmIntrinsics::_remainderUnsigned_i: {
2331       zero_check_int(argument(1));
2332       // Compile-time detect of null-exception
2333       if (stopped()) {
2334         return true; // keep the graph constructed so far
2335       }
2336       n = new UModINode(control(), argument(0), argument(1));
2337       break;
2338     }
2339     case vmIntrinsics::_remainderUnsigned_l: {
2340       zero_check_long(argument(2));
2341       // Compile-time detect of null-exception
2342       if (stopped()) {
2343         return true; // keep the graph constructed so far
2344       }
2345       n = new UModLNode(control(), argument(0), argument(2));
2346       break;
2347     }
2348     default:  fatal_unexpected_iid(id);  break;
2349   }
2350   set_result(_gvn.transform(n));
2351   return true;
2352 }
2353 
2354 //----------------------------inline_unsafe_access----------------------------
2355 
2356 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2357   // Attempt to infer a sharper value type from the offset and base type.
2358   ciKlass* sharpened_klass = nullptr;
2359   bool null_free = false;
2360 
2361   // See if it is an instance field, with an object type.
2362   if (alias_type->field() != nullptr) {
2363     if (alias_type->field()->type()->is_klass()) {
2364       sharpened_klass = alias_type->field()->type()->as_klass();
2365       null_free = alias_type->field()->is_null_free();
2366     }
2367   }
2368 
2369   const TypeOopPtr* result = nullptr;
2370   // See if it is a narrow oop array.
2371   if (adr_type->isa_aryptr()) {
2372     if (adr_type->offset() >= refArrayOopDesc::base_offset_in_bytes()) {
2373       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2374       null_free = adr_type->is_aryptr()->is_null_free();
2375       if (elem_type != nullptr && elem_type->is_loaded()) {
2376         // Sharpen the value type.
2377         result = elem_type;
2378       }
2379     }
2380   }
2381 
2382   // The sharpened class might be unloaded if there is no class loader
2383   // contraint in place.
2384   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2385     // Sharpen the value type.
2386     result = TypeOopPtr::make_from_klass(sharpened_klass);
2387     if (null_free) {
2388       result = result->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2389     }
2390   }
2391   if (result != nullptr) {
2392 #ifndef PRODUCT
2393     if (C->print_intrinsics() || C->print_inlining()) {
2394       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2395       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2396     }
2397 #endif
2398   }
2399   return result;
2400 }
2401 
2402 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2403   switch (kind) {
2404       case Relaxed:
2405         return MO_UNORDERED;
2406       case Opaque:
2407         return MO_RELAXED;
2408       case Acquire:
2409         return MO_ACQUIRE;
2410       case Release:
2411         return MO_RELEASE;
2412       case Volatile:
2413         return MO_SEQ_CST;
2414       default:
2415         ShouldNotReachHere();
2416         return 0;
2417   }
2418 }
2419 
2420 LibraryCallKit::SavedState::SavedState(LibraryCallKit* kit) :
2421   _kit(kit),
2422   _sp(kit->sp()),
2423   _jvms(kit->jvms()),
2424   _map(kit->clone_map()),
2425   _discarded(false)
2426 {
2427   for (DUIterator_Fast imax, i = kit->control()->fast_outs(imax); i < imax; i++) {
2428     Node* out = kit->control()->fast_out(i);
2429     if (out->is_CFG()) {
2430       _ctrl_succ.push(out);
2431     }
2432   }
2433 }
2434 
2435 LibraryCallKit::SavedState::~SavedState() {
2436   if (_discarded) {
2437     _kit->destruct_map_clone(_map);
2438     return;
2439   }
2440   _kit->jvms()->set_map(_map);
2441   _kit->jvms()->set_sp(_sp);
2442   _map->set_jvms(_kit->jvms());
2443   _kit->set_map(_map);
2444   _kit->set_sp(_sp);
2445   for (DUIterator_Fast imax, i = _kit->control()->fast_outs(imax); i < imax; i++) {
2446     Node* out = _kit->control()->fast_out(i);
2447     if (out->is_CFG() && out->in(0) == _kit->control() && out != _kit->map() && !_ctrl_succ.member(out)) {
2448       _kit->_gvn.hash_delete(out);
2449       out->set_req(0, _kit->C->top());
2450       _kit->C->record_for_igvn(out);
2451       --i; --imax;
2452       _kit->_gvn.hash_find_insert(out);
2453     }
2454   }
2455 }
2456 
2457 void LibraryCallKit::SavedState::discard() {
2458   _discarded = true;
2459 }
2460 
2461 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned, const bool is_flat) {
2462   if (callee()->is_static())  return false;  // caller must have the capability!
2463   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2464   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2465   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2466   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2467 
2468   if (is_reference_type(type)) {
2469     decorators |= ON_UNKNOWN_OOP_REF;
2470   }
2471 
2472   if (unaligned) {
2473     decorators |= C2_UNALIGNED;
2474   }
2475 
2476 #ifndef PRODUCT
2477   {
2478     ResourceMark rm;
2479     // Check the signatures.
2480     ciSignature* sig = callee()->signature();
2481 #ifdef ASSERT
2482     if (!is_store) {
2483       // Object getReference(Object base, int/long offset), etc.
2484       BasicType rtype = sig->return_type()->basic_type();
2485       assert(rtype == type, "getter must return the expected value");
2486       assert(sig->count() == 2 || (is_flat && sig->count() == 3), "oop getter has 2 or 3 arguments");
2487       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2488       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2489     } else {
2490       // void putReference(Object base, int/long offset, Object x), etc.
2491       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2492       assert(sig->count() == 3 || (is_flat && sig->count() == 4), "oop putter has 3 arguments");
2493       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2494       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2495       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2496       assert(vtype == type, "putter must accept the expected value");
2497     }
2498 #endif // ASSERT
2499  }
2500 #endif //PRODUCT
2501 
2502   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2503 
2504   Node* receiver = argument(0);  // type: oop
2505 
2506   // Build address expression.
2507   Node* heap_base_oop = top();
2508 
2509   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2510   Node* base = argument(1);  // type: oop
2511   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2512   Node* offset = argument(2);  // type: long
2513   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2514   // to be plain byte offsets, which are also the same as those accepted
2515   // by oopDesc::field_addr.
2516   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2517          "fieldOffset must be byte-scaled");
2518 
2519   ciInlineKlass* inline_klass = nullptr;
2520   if (is_flat) {
2521     const TypeInstPtr* cls = _gvn.type(argument(4))->isa_instptr();
2522     if (cls == nullptr || cls->const_oop() == nullptr) {
2523       return false;
2524     }
2525     ciType* mirror_type = cls->const_oop()->as_instance()->java_mirror_type();
2526     if (!mirror_type->is_inlinetype()) {
2527       return false;
2528     }
2529     inline_klass = mirror_type->as_inline_klass();
2530   }
2531 
2532   if (base->is_InlineType()) {
2533     assert(!is_store, "InlineTypeNodes are non-larval value objects");
2534     InlineTypeNode* vt = base->as_InlineType();
2535     if (offset->is_Con()) {
2536       long off = find_long_con(offset, 0);
2537       ciInlineKlass* vk = vt->type()->inline_klass();
2538       if ((long)(int)off != off || !vk->contains_field_offset(off)) {
2539         return false;
2540       }
2541 
2542       ciField* field = vk->get_non_flat_field_by_offset(off);
2543       if (field != nullptr) {
2544         BasicType bt = type2field[field->type()->basic_type()];
2545         if (bt == T_ARRAY || bt == T_NARROWOOP) {
2546           bt = T_OBJECT;
2547         }
2548         if (bt == type && (!field->is_flat() || field->type() == inline_klass)) {
2549           Node* value = vt->field_value_by_offset(off, false);
2550           if (value->is_InlineType()) {
2551             value = value->as_InlineType()->adjust_scalarization_depth(this);
2552           }
2553           set_result(value);
2554           return true;
2555         }
2556       }
2557     }
2558     {
2559       // Re-execute the unsafe access if allocation triggers deoptimization.
2560       PreserveReexecuteState preexecs(this);
2561       jvms()->set_should_reexecute(true);
2562       vt = vt->buffer(this);
2563     }
2564     base = vt->get_oop();
2565   }
2566 
2567   // 32-bit machines ignore the high half!
2568   offset = ConvL2X(offset);
2569 
2570   // Save state and restore on bailout
2571   SavedState old_state(this);
2572 
2573   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2574   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2575 
2576   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2577     if (type != T_OBJECT && (inline_klass == nullptr || !inline_klass->has_object_fields())) {
2578       decorators |= IN_NATIVE; // off-heap primitive access
2579     } else {
2580       return false; // off-heap oop accesses are not supported
2581     }
2582   } else {
2583     heap_base_oop = base; // on-heap or mixed access
2584   }
2585 
2586   // Can base be null? Otherwise, always on-heap access.
2587   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2588 
2589   if (!can_access_non_heap) {
2590     decorators |= IN_HEAP;
2591   }
2592 
2593   Node* val = is_store ? argument(4 + (is_flat ? 1 : 0)) : nullptr;
2594 
2595   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2596   if (adr_type == TypePtr::NULL_PTR) {
2597     return false; // off-heap access with zero address
2598   }
2599 
2600   // Try to categorize the address.
2601   Compile::AliasType* alias_type = C->alias_type(adr_type);
2602   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2603 
2604   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2605       alias_type->adr_type() == TypeAryPtr::RANGE) {
2606     return false; // not supported
2607   }
2608 
2609   bool mismatched = false;
2610   BasicType bt = T_ILLEGAL;
2611   ciField* field = nullptr;
2612   if (adr_type->isa_instptr()) {
2613     const TypeInstPtr* instptr = adr_type->is_instptr();
2614     ciInstanceKlass* k = instptr->instance_klass();
2615     int off = instptr->offset();
2616     if (instptr->const_oop() != nullptr &&
2617         k == ciEnv::current()->Class_klass() &&
2618         instptr->offset() >= (k->size_helper() * wordSize)) {
2619       k = instptr->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
2620       field = k->get_field_by_offset(off, true);
2621     } else {
2622       field = k->get_non_flat_field_by_offset(off);
2623     }
2624     if (field != nullptr) {
2625       bt = type2field[field->type()->basic_type()];
2626     }
2627     if (bt != alias_type->basic_type()) {
2628       // Type mismatch. Is it an access to a nested flat field?
2629       field = k->get_field_by_offset(off, false);
2630       if (field != nullptr) {
2631         bt = type2field[field->type()->basic_type()];
2632       }
2633     }
2634     assert(bt == alias_type->basic_type() || is_flat, "should match");
2635   } else {
2636     bt = alias_type->basic_type();
2637   }
2638 
2639   if (bt != T_ILLEGAL) {
2640     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2641     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2642       // Alias type doesn't differentiate between byte[] and boolean[]).
2643       // Use address type to get the element type.
2644       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2645     }
2646     if (is_reference_type(bt, true)) {
2647       // accessing an array field with getReference is not a mismatch
2648       bt = T_OBJECT;
2649     }
2650     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2651       // Don't intrinsify mismatched object accesses
2652       return false;
2653     }
2654     mismatched = (bt != type);
2655   } else if (alias_type->adr_type()->isa_oopptr()) {
2656     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2657   }
2658 
2659   if (is_flat) {
2660     if (adr_type->isa_instptr()) {
2661       if (field == nullptr || field->type() != inline_klass) {
2662         mismatched = true;
2663       }
2664     } else if (adr_type->isa_aryptr()) {
2665       const Type* elem = adr_type->is_aryptr()->elem();
2666       if (!adr_type->is_flat() || elem->inline_klass() != inline_klass) {
2667         mismatched = true;
2668       }
2669     } else {
2670       mismatched = true;
2671     }
2672     if (is_store) {
2673       const Type* val_t = _gvn.type(val);
2674       if (!val_t->is_inlinetypeptr() || val_t->inline_klass() != inline_klass) {
2675         return false;
2676       }
2677     }
2678   }
2679 
2680   old_state.discard();
2681   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2682 
2683   if (mismatched) {
2684     decorators |= C2_MISMATCHED;
2685   }
2686 
2687   // First guess at the value type.
2688   const Type *value_type = Type::get_const_basic_type(type);
2689 
2690   // Figure out the memory ordering.
2691   decorators |= mo_decorator_for_access_kind(kind);
2692 
2693   if (!is_store) {
2694     if (type == T_OBJECT && !is_flat) {
2695       const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2696       if (tjp != nullptr) {
2697         value_type = tjp;
2698       }
2699     }
2700   }
2701 
2702   receiver = null_check(receiver);
2703   if (stopped()) {
2704     return true;
2705   }
2706   // Heap pointers get a null-check from the interpreter,
2707   // as a courtesy.  However, this is not guaranteed by Unsafe,
2708   // and it is not possible to fully distinguish unintended nulls
2709   // from intended ones in this API.
2710 
2711   if (!is_store) {
2712     Node* p = nullptr;
2713     // Try to constant fold a load from a constant field
2714 
2715     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !field->is_flat() && !mismatched) {
2716       // final or stable field
2717       p = make_constant_from_field(field, heap_base_oop);
2718     }
2719 
2720     if (p == nullptr) { // Could not constant fold the load
2721       if (is_flat) {
2722         p = InlineTypeNode::make_from_flat(this, inline_klass, base, adr, adr_type, false, false, true);
2723       } else {
2724         p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2725         const TypeOopPtr* ptr = value_type->make_oopptr();
2726         if (ptr != nullptr && ptr->is_inlinetypeptr()) {
2727           // Load a non-flattened inline type from memory
2728           p = InlineTypeNode::make_from_oop(this, p, ptr->inline_klass());
2729         }
2730       }
2731       // Normalize the value returned by getBoolean in the following cases
2732       if (type == T_BOOLEAN &&
2733           (mismatched ||
2734            heap_base_oop == top() ||                  // - heap_base_oop is null or
2735            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2736                                                       //   and the unsafe access is made to large offset
2737                                                       //   (i.e., larger than the maximum offset necessary for any
2738                                                       //   field access)
2739             ) {
2740           IdealKit ideal = IdealKit(this);
2741 #define __ ideal.
2742           IdealVariable normalized_result(ideal);
2743           __ declarations_done();
2744           __ set(normalized_result, p);
2745           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2746           __ set(normalized_result, ideal.ConI(1));
2747           ideal.end_if();
2748           final_sync(ideal);
2749           p = __ value(normalized_result);
2750 #undef __
2751       }
2752     }
2753     if (type == T_ADDRESS) {
2754       p = gvn().transform(new CastP2XNode(nullptr, p));
2755       p = ConvX2UL(p);
2756     }
2757     // The load node has the control of the preceding MemBarCPUOrder.  All
2758     // following nodes will have the control of the MemBarCPUOrder inserted at
2759     // the end of this method.  So, pushing the load onto the stack at a later
2760     // point is fine.
2761     set_result(p);
2762   } else {
2763     if (bt == T_ADDRESS) {
2764       // Repackage the long as a pointer.
2765       val = ConvL2X(val);
2766       val = gvn().transform(new CastX2PNode(val));
2767     }
2768     if (is_flat) {
2769       val->as_InlineType()->store_flat(this, base, adr, false, false, true, decorators);
2770     } else {
2771       access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2772     }
2773   }
2774 
2775   return true;
2776 }
2777 
2778 bool LibraryCallKit::inline_unsafe_flat_access(bool is_store, AccessKind kind) {
2779 #ifdef ASSERT
2780   {
2781     ResourceMark rm;
2782     // Check the signatures.
2783     ciSignature* sig = callee()->signature();
2784     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base should be object, but is %s", type2name(sig->type_at(0)->basic_type()));
2785     assert(sig->type_at(1)->basic_type() == T_LONG, "offset should be long, but is %s", type2name(sig->type_at(1)->basic_type()));
2786     assert(sig->type_at(2)->basic_type() == T_INT, "layout kind should be int, but is %s", type2name(sig->type_at(3)->basic_type()));
2787     assert(sig->type_at(3)->basic_type() == T_OBJECT, "value klass should be object, but is %s", type2name(sig->type_at(4)->basic_type()));
2788     if (is_store) {
2789       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value, but returns %s", type2name(sig->return_type()->basic_type()));
2790       assert(sig->count() == 5, "flat putter should have 5 arguments, but has %d", sig->count());
2791       assert(sig->type_at(4)->basic_type() == T_OBJECT, "put value should be object, but is %s", type2name(sig->type_at(5)->basic_type()));
2792     } else {
2793       assert(sig->return_type()->basic_type() == T_OBJECT, "getter must return an object, but returns %s", type2name(sig->return_type()->basic_type()));
2794       assert(sig->count() == 4, "flat getter should have 4 arguments, but has %d", sig->count());
2795     }
2796  }
2797 #endif // ASSERT
2798 
2799   assert(kind == Relaxed, "Only plain accesses for now");
2800   if (callee()->is_static()) {
2801     // caller must have the capability!
2802     return false;
2803   }
2804   C->set_has_unsafe_access(true);
2805 
2806   const TypeInstPtr* value_klass_node = _gvn.type(argument(5))->isa_instptr();
2807   if (value_klass_node == nullptr || value_klass_node->const_oop() == nullptr) {
2808     // parameter valueType is not a constant
2809     return false;
2810   }
2811   ciType* mirror_type = value_klass_node->const_oop()->as_instance()->java_mirror_type();
2812   if (!mirror_type->is_inlinetype()) {
2813     // Dead code
2814     return false;
2815   }
2816   ciInlineKlass* value_klass = mirror_type->as_inline_klass();
2817 
2818   const TypeInt* layout_type = _gvn.type(argument(4))->isa_int();
2819   if (layout_type == nullptr || !layout_type->is_con()) {
2820     // parameter layoutKind is not a constant
2821     return false;
2822   }
2823   assert(layout_type->get_con() >= static_cast<int>(LayoutKind::REFERENCE) &&
2824          layout_type->get_con() <= static_cast<int>(LayoutKind::UNKNOWN),
2825          "invalid layoutKind %d", layout_type->get_con());
2826   LayoutKind layout = static_cast<LayoutKind>(layout_type->get_con());
2827   assert(layout == LayoutKind::REFERENCE || layout == LayoutKind::NON_ATOMIC_FLAT ||
2828          layout == LayoutKind::ATOMIC_FLAT || layout == LayoutKind::NULLABLE_ATOMIC_FLAT,
2829          "unexpected layoutKind %d", layout_type->get_con());
2830 
2831   null_check(argument(0));
2832   if (stopped()) {
2833     return true;
2834   }
2835 
2836   Node* base = must_be_not_null(argument(1), true);
2837   Node* offset = argument(2);
2838   const Type* base_type = _gvn.type(base);
2839 
2840   Node* ptr;
2841   bool immutable_memory = false;
2842   DecoratorSet decorators = C2_UNSAFE_ACCESS | IN_HEAP | MO_UNORDERED;
2843   if (base_type->isa_instptr()) {
2844     const TypeLong* offset_type = _gvn.type(offset)->isa_long();
2845     if (offset_type == nullptr || !offset_type->is_con()) {
2846       // Offset into a non-array should be a constant
2847       decorators |= C2_MISMATCHED;
2848     } else {
2849       int offset_con = checked_cast<int>(offset_type->get_con());
2850       ciInstanceKlass* base_klass = base_type->is_instptr()->instance_klass();
2851       ciField* field = base_klass->get_non_flat_field_by_offset(offset_con);
2852       if (field == nullptr) {
2853         assert(!base_klass->is_final(), "non-existence field at offset %d of class %s", offset_con, base_klass->name()->as_utf8());
2854         decorators |= C2_MISMATCHED;
2855       } else {
2856         assert(field->type() == value_klass, "field at offset %d of %s is of type %s, but valueType is %s",
2857                offset_con, base_klass->name()->as_utf8(), field->type()->name(), value_klass->name()->as_utf8());
2858         immutable_memory = field->is_strict() && field->is_final();
2859 
2860         if (base->is_InlineType()) {
2861           assert(!is_store, "Cannot store into a non-larval value object");
2862           set_result(base->as_InlineType()->field_value_by_offset(offset_con, false));
2863           return true;
2864         }
2865       }
2866     }
2867 
2868     if (base->is_InlineType()) {
2869       assert(!is_store, "Cannot store into a non-larval value object");
2870       base = base->as_InlineType()->buffer(this, true);
2871     }
2872     ptr = basic_plus_adr(base, ConvL2X(offset));
2873   } else if (base_type->isa_aryptr()) {
2874     decorators |= IS_ARRAY;
2875     if (layout == LayoutKind::REFERENCE) {
2876       if (!base_type->is_aryptr()->is_not_flat()) {
2877         const TypeAryPtr* array_type = base_type->is_aryptr()->cast_to_not_flat();
2878         Node* new_base = _gvn.transform(new CastPPNode(control(), base, array_type, ConstraintCastNode::StrongDependency));
2879         replace_in_map(base, new_base);
2880         base = new_base;
2881       }
2882       ptr = basic_plus_adr(base, ConvL2X(offset));
2883     } else {
2884       if (UseArrayFlattening) {
2885         // Flat array must have an exact type
2886         bool is_null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2887         bool is_atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2888         Node* new_base = cast_to_flat_array(base, value_klass, is_null_free, !is_null_free, is_atomic);
2889         replace_in_map(base, new_base);
2890         base = new_base;
2891         ptr = basic_plus_adr(base, ConvL2X(offset));
2892         const TypeAryPtr* ptr_type = _gvn.type(ptr)->is_aryptr();
2893         if (ptr_type->field_offset().get() != 0) {
2894           ptr = _gvn.transform(new CastPPNode(control(), ptr, ptr_type->with_field_offset(0), ConstraintCastNode::StrongDependency));
2895         }
2896       } else {
2897         uncommon_trap(Deoptimization::Reason_intrinsic,
2898                       Deoptimization::Action_none);
2899         return true;
2900       }
2901     }
2902   } else {
2903     decorators |= C2_MISMATCHED;
2904     ptr = basic_plus_adr(base, ConvL2X(offset));
2905   }
2906 
2907   if (is_store) {
2908     Node* value = argument(6);
2909     const Type* value_type = _gvn.type(value);
2910     if (!value_type->is_inlinetypeptr()) {
2911       value_type = Type::get_const_type(value_klass)->filter_speculative(value_type);
2912       Node* new_value = _gvn.transform(new CastPPNode(control(), value, value_type, ConstraintCastNode::StrongDependency));
2913       new_value = InlineTypeNode::make_from_oop(this, new_value, value_klass);
2914       replace_in_map(value, new_value);
2915       value = new_value;
2916     }
2917 
2918     assert(value_type->inline_klass() == value_klass, "value is of type %s while valueType is %s", value_type->inline_klass()->name()->as_utf8(), value_klass->name()->as_utf8());
2919     if (layout == LayoutKind::REFERENCE) {
2920       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2921       access_store_at(base, ptr, ptr_type, value, value_type, T_OBJECT, decorators);
2922     } else {
2923       bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2924       bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2925       value->as_InlineType()->store_flat(this, base, ptr, atomic, immutable_memory, null_free, decorators);
2926     }
2927 
2928     return true;
2929   } else {
2930     decorators |= (C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
2931     InlineTypeNode* result;
2932     if (layout == LayoutKind::REFERENCE) {
2933       const TypePtr* ptr_type = (decorators & C2_MISMATCHED) != 0 ? TypeRawPtr::BOTTOM : _gvn.type(ptr)->is_ptr();
2934       Node* oop = access_load_at(base, ptr, ptr_type, Type::get_const_type(value_klass), T_OBJECT, decorators);
2935       result = InlineTypeNode::make_from_oop(this, oop, value_klass);
2936     } else {
2937       bool atomic = layout != LayoutKind::NON_ATOMIC_FLAT;
2938       bool null_free = layout != LayoutKind::NULLABLE_ATOMIC_FLAT;
2939       result = InlineTypeNode::make_from_flat(this, value_klass, base, ptr, atomic, immutable_memory, null_free, decorators);
2940     }
2941 
2942     set_result(result);
2943     return true;
2944   }
2945 }
2946 
2947 bool LibraryCallKit::inline_unsafe_make_private_buffer() {
2948   Node* receiver = argument(0);
2949   Node* value = argument(1);
2950 
2951   const Type* type = gvn().type(value);
2952   if (!type->is_inlinetypeptr()) {
2953     C->record_method_not_compilable("value passed to Unsafe::makePrivateBuffer is not of a constant value type");
2954     return false;
2955   }
2956 
2957   null_check(receiver);
2958   if (stopped()) {
2959     return true;
2960   }
2961 
2962   value = null_check(value);
2963   if (stopped()) {
2964     return true;
2965   }
2966 
2967   ciInlineKlass* vk = type->inline_klass();
2968   Node* klass = makecon(TypeKlassPtr::make(vk));
2969   Node* obj = new_instance(klass);
2970   AllocateNode::Ideal_allocation(obj)->_larval = true;
2971 
2972   assert(value->is_InlineType(), "must be an InlineTypeNode");
2973   Node* payload_ptr = basic_plus_adr(obj, vk->payload_offset());
2974   value->as_InlineType()->store_flat(this, obj, payload_ptr, false, true, true, IN_HEAP | MO_UNORDERED);
2975 
2976   set_result(obj);
2977   return true;
2978 }
2979 
2980 bool LibraryCallKit::inline_unsafe_finish_private_buffer() {
2981   Node* receiver = argument(0);
2982   Node* buffer = argument(1);
2983 
2984   const Type* type = gvn().type(buffer);
2985   if (!type->is_inlinetypeptr()) {
2986     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer is not of a constant value type");
2987     return false;
2988   }
2989 
2990   AllocateNode* alloc = AllocateNode::Ideal_allocation(buffer);
2991   if (alloc == nullptr) {
2992     C->record_method_not_compilable("value passed to Unsafe::finishPrivateBuffer must be allocated by Unsafe::makePrivateBuffer");
2993     return false;
2994   }
2995 
2996   null_check(receiver);
2997   if (stopped()) {
2998     return true;
2999   }
3000 
3001   // Unset the larval bit in the object header
3002   Node* old_header = make_load(control(), buffer, TypeX_X, TypeX_X->basic_type(), MemNode::unordered, LoadNode::Pinned);
3003   Node* new_header = gvn().transform(new AndXNode(old_header, MakeConX(~markWord::larval_bit_in_place)));
3004   access_store_at(buffer, buffer, type->is_ptr(), new_header, TypeX_X, TypeX_X->basic_type(), MO_UNORDERED | IN_HEAP);
3005 
3006   // We must ensure that the buffer is properly published
3007   insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
3008   assert(!type->maybe_null(), "result of an allocation should not be null");
3009   set_result(InlineTypeNode::make_from_oop(this, buffer, type->inline_klass()));
3010   return true;
3011 }
3012 
3013 //----------------------------inline_unsafe_load_store----------------------------
3014 // This method serves a couple of different customers (depending on LoadStoreKind):
3015 //
3016 // LS_cmp_swap:
3017 //
3018 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
3019 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
3020 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
3021 //
3022 // LS_cmp_swap_weak:
3023 //
3024 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
3025 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
3026 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
3027 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
3028 //
3029 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
3030 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
3031 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
3032 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
3033 //
3034 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
3035 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
3036 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
3037 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
3038 //
3039 // LS_cmp_exchange:
3040 //
3041 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
3042 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
3043 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
3044 //
3045 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
3046 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
3047 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
3048 //
3049 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
3050 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
3051 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
3052 //
3053 // LS_get_add:
3054 //
3055 //   int  getAndAddInt( Object o, long offset, int  delta)
3056 //   long getAndAddLong(Object o, long offset, long delta)
3057 //
3058 // LS_get_set:
3059 //
3060 //   int    getAndSet(Object o, long offset, int    newValue)
3061 //   long   getAndSet(Object o, long offset, long   newValue)
3062 //   Object getAndSet(Object o, long offset, Object newValue)
3063 //
3064 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
3065   // This basic scheme here is the same as inline_unsafe_access, but
3066   // differs in enough details that combining them would make the code
3067   // overly confusing.  (This is a true fact! I originally combined
3068   // them, but even I was confused by it!) As much code/comments as
3069   // possible are retained from inline_unsafe_access though to make
3070   // the correspondences clearer. - dl
3071 
3072   if (callee()->is_static())  return false;  // caller must have the capability!
3073 
3074   DecoratorSet decorators = C2_UNSAFE_ACCESS;
3075   decorators |= mo_decorator_for_access_kind(access_kind);
3076 
3077 #ifndef PRODUCT
3078   BasicType rtype;
3079   {
3080     ResourceMark rm;
3081     // Check the signatures.
3082     ciSignature* sig = callee()->signature();
3083     rtype = sig->return_type()->basic_type();
3084     switch(kind) {
3085       case LS_get_add:
3086       case LS_get_set: {
3087       // Check the signatures.
3088 #ifdef ASSERT
3089       assert(rtype == type, "get and set must return the expected type");
3090       assert(sig->count() == 3, "get and set has 3 arguments");
3091       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
3092       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
3093       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
3094       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
3095 #endif // ASSERT
3096         break;
3097       }
3098       case LS_cmp_swap:
3099       case LS_cmp_swap_weak: {
3100       // Check the signatures.
3101 #ifdef ASSERT
3102       assert(rtype == T_BOOLEAN, "CAS must return boolean");
3103       assert(sig->count() == 4, "CAS has 4 arguments");
3104       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
3105       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
3106 #endif // ASSERT
3107         break;
3108       }
3109       case LS_cmp_exchange: {
3110       // Check the signatures.
3111 #ifdef ASSERT
3112       assert(rtype == type, "CAS must return the expected type");
3113       assert(sig->count() == 4, "CAS has 4 arguments");
3114       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
3115       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
3116 #endif // ASSERT
3117         break;
3118       }
3119       default:
3120         ShouldNotReachHere();
3121     }
3122   }
3123 #endif //PRODUCT
3124 
3125   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3126 
3127   // Get arguments:
3128   Node* receiver = nullptr;
3129   Node* base     = nullptr;
3130   Node* offset   = nullptr;
3131   Node* oldval   = nullptr;
3132   Node* newval   = nullptr;
3133   switch(kind) {
3134     case LS_cmp_swap:
3135     case LS_cmp_swap_weak:
3136     case LS_cmp_exchange: {
3137       const bool two_slot_type = type2size[type] == 2;
3138       receiver = argument(0);  // type: oop
3139       base     = argument(1);  // type: oop
3140       offset   = argument(2);  // type: long
3141       oldval   = argument(4);  // type: oop, int, or long
3142       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
3143       break;
3144     }
3145     case LS_get_add:
3146     case LS_get_set: {
3147       receiver = argument(0);  // type: oop
3148       base     = argument(1);  // type: oop
3149       offset   = argument(2);  // type: long
3150       oldval   = nullptr;
3151       newval   = argument(4);  // type: oop, int, or long
3152       break;
3153     }
3154     default:
3155       ShouldNotReachHere();
3156   }
3157 
3158   // Build field offset expression.
3159   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
3160   // to be plain byte offsets, which are also the same as those accepted
3161   // by oopDesc::field_addr.
3162   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3163   // 32-bit machines ignore the high half of long offsets
3164   offset = ConvL2X(offset);
3165   // Save state and restore on bailout
3166   SavedState old_state(this);
3167   Node* adr = make_unsafe_address(base, offset,type, false);
3168   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3169 
3170   Compile::AliasType* alias_type = C->alias_type(adr_type);
3171   BasicType bt = alias_type->basic_type();
3172   if (bt != T_ILLEGAL &&
3173       (is_reference_type(bt) != (type == T_OBJECT))) {
3174     // Don't intrinsify mismatched object accesses.
3175     return false;
3176   }
3177 
3178   old_state.discard();
3179 
3180   // For CAS, unlike inline_unsafe_access, there seems no point in
3181   // trying to refine types. Just use the coarse types here.
3182   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
3183   const Type *value_type = Type::get_const_basic_type(type);
3184 
3185   switch (kind) {
3186     case LS_get_set:
3187     case LS_cmp_exchange: {
3188       if (type == T_OBJECT) {
3189         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
3190         if (tjp != nullptr) {
3191           value_type = tjp;
3192         }
3193       }
3194       break;
3195     }
3196     case LS_cmp_swap:
3197     case LS_cmp_swap_weak:
3198     case LS_get_add:
3199       break;
3200     default:
3201       ShouldNotReachHere();
3202   }
3203 
3204   // Null check receiver.
3205   receiver = null_check(receiver);
3206   if (stopped()) {
3207     return true;
3208   }
3209 
3210   int alias_idx = C->get_alias_index(adr_type);
3211 
3212   if (is_reference_type(type)) {
3213     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
3214 
3215     if (oldval != nullptr && oldval->is_InlineType()) {
3216       // Re-execute the unsafe access if allocation triggers deoptimization.
3217       PreserveReexecuteState preexecs(this);
3218       jvms()->set_should_reexecute(true);
3219       oldval = oldval->as_InlineType()->buffer(this)->get_oop();
3220     }
3221     if (newval != nullptr && newval->is_InlineType()) {
3222       // Re-execute the unsafe access if allocation triggers deoptimization.
3223       PreserveReexecuteState preexecs(this);
3224       jvms()->set_should_reexecute(true);
3225       newval = newval->as_InlineType()->buffer(this)->get_oop();
3226     }
3227 
3228     // Transformation of a value which could be null pointer (CastPP #null)
3229     // could be delayed during Parse (for example, in adjust_map_after_if()).
3230     // Execute transformation here to avoid barrier generation in such case.
3231     if (_gvn.type(newval) == TypePtr::NULL_PTR)
3232       newval = _gvn.makecon(TypePtr::NULL_PTR);
3233 
3234     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
3235       // Refine the value to a null constant, when it is known to be null
3236       oldval = _gvn.makecon(TypePtr::NULL_PTR);
3237     }
3238   }
3239 
3240   Node* result = nullptr;
3241   switch (kind) {
3242     case LS_cmp_exchange: {
3243       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
3244                                             oldval, newval, value_type, type, decorators);
3245       break;
3246     }
3247     case LS_cmp_swap_weak:
3248       decorators |= C2_WEAK_CMPXCHG;
3249     case LS_cmp_swap: {
3250       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
3251                                              oldval, newval, value_type, type, decorators);
3252       break;
3253     }
3254     case LS_get_set: {
3255       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
3256                                      newval, value_type, type, decorators);
3257       break;
3258     }
3259     case LS_get_add: {
3260       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
3261                                     newval, value_type, type, decorators);
3262       break;
3263     }
3264     default:
3265       ShouldNotReachHere();
3266   }
3267 
3268   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3269   set_result(result);
3270   return true;
3271 }
3272 
3273 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3274   // Regardless of form, don't allow previous ld/st to move down,
3275   // then issue acquire, release, or volatile mem_bar.
3276   insert_mem_bar(Op_MemBarCPUOrder);
3277   switch(id) {
3278     case vmIntrinsics::_loadFence:
3279       insert_mem_bar(Op_LoadFence);
3280       return true;
3281     case vmIntrinsics::_storeFence:
3282       insert_mem_bar(Op_StoreFence);
3283       return true;
3284     case vmIntrinsics::_storeStoreFence:
3285       insert_mem_bar(Op_StoreStoreFence);
3286       return true;
3287     case vmIntrinsics::_fullFence:
3288       insert_mem_bar(Op_MemBarVolatile);
3289       return true;
3290     default:
3291       fatal_unexpected_iid(id);
3292       return false;
3293   }
3294 }
3295 
3296 bool LibraryCallKit::inline_onspinwait() {
3297   insert_mem_bar(Op_OnSpinWait);
3298   return true;
3299 }
3300 
3301 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3302   if (!kls->is_Con()) {
3303     return true;
3304   }
3305   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
3306   if (klsptr == nullptr) {
3307     return true;
3308   }
3309   ciInstanceKlass* ik = klsptr->instance_klass();
3310   // don't need a guard for a klass that is already initialized
3311   return !ik->is_initialized();
3312 }
3313 
3314 //----------------------------inline_unsafe_writeback0-------------------------
3315 // public native void Unsafe.writeback0(long address)
3316 bool LibraryCallKit::inline_unsafe_writeback0() {
3317   if (!Matcher::has_match_rule(Op_CacheWB)) {
3318     return false;
3319   }
3320 #ifndef PRODUCT
3321   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
3322   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
3323   ciSignature* sig = callee()->signature();
3324   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
3325 #endif
3326   null_check_receiver();  // null-check, then ignore
3327   Node *addr = argument(1);
3328   addr = new CastX2PNode(addr);
3329   addr = _gvn.transform(addr);
3330   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
3331   flush = _gvn.transform(flush);
3332   set_memory(flush, TypeRawPtr::BOTTOM);
3333   return true;
3334 }
3335 
3336 //----------------------------inline_unsafe_writeback0-------------------------
3337 // public native void Unsafe.writeback0(long address)
3338 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
3339   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
3340     return false;
3341   }
3342   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
3343     return false;
3344   }
3345 #ifndef PRODUCT
3346   assert(Matcher::has_match_rule(Op_CacheWB),
3347          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
3348                 : "found match rule for CacheWBPostSync but not CacheWB"));
3349 
3350 #endif
3351   null_check_receiver();  // null-check, then ignore
3352   Node *sync;
3353   if (is_pre) {
3354     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
3355   } else {
3356     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
3357   }
3358   sync = _gvn.transform(sync);
3359   set_memory(sync, TypeRawPtr::BOTTOM);
3360   return true;
3361 }
3362 
3363 //----------------------------inline_unsafe_allocate---------------------------
3364 // public native Object Unsafe.allocateInstance(Class<?> cls);
3365 bool LibraryCallKit::inline_unsafe_allocate() {
3366 
3367 #if INCLUDE_JVMTI
3368   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3369     return false;
3370   }
3371 #endif //INCLUDE_JVMTI
3372 
3373   if (callee()->is_static())  return false;  // caller must have the capability!
3374 
3375   null_check_receiver();  // null-check, then ignore
3376   Node* cls = null_check(argument(1));
3377   if (stopped())  return true;
3378 
3379   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
3380   kls = null_check(kls);
3381   if (stopped())  return true;  // argument was like int.class
3382 
3383 #if INCLUDE_JVMTI
3384     // Don't try to access new allocated obj in the intrinsic.
3385     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
3386     // Deoptimize and allocate in interpreter instead.
3387     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
3388     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
3389     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
3390     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
3391     {
3392       BuildCutout unless(this, tst, PROB_MAX);
3393       uncommon_trap(Deoptimization::Reason_intrinsic,
3394                     Deoptimization::Action_make_not_entrant);
3395     }
3396     if (stopped()) {
3397       return true;
3398     }
3399 #endif //INCLUDE_JVMTI
3400 
3401   Node* test = nullptr;
3402   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3403     // Note:  The argument might still be an illegal value like
3404     // Serializable.class or Object[].class.   The runtime will handle it.
3405     // But we must make an explicit check for initialization.
3406     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3407     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3408     // can generate code to load it as unsigned byte.
3409     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
3410     Node* bits = intcon(InstanceKlass::fully_initialized);
3411     test = _gvn.transform(new SubINode(inst, bits));
3412     // The 'test' is non-zero if we need to take a slow path.
3413   }
3414   Node* obj = nullptr;
3415   const TypeInstKlassPtr* tkls = _gvn.type(kls)->isa_instklassptr();
3416   if (tkls != nullptr && tkls->instance_klass()->is_inlinetype()) {
3417     obj = InlineTypeNode::make_all_zero(_gvn, tkls->instance_klass()->as_inline_klass())->buffer(this);
3418   } else {
3419     obj = new_instance(kls, test);
3420   }
3421   set_result(obj);
3422   return true;
3423 }
3424 
3425 //------------------------inline_native_time_funcs--------------
3426 // inline code for System.currentTimeMillis() and System.nanoTime()
3427 // these have the same type and signature
3428 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3429   const TypeFunc* tf = OptoRuntime::void_long_Type();
3430   const TypePtr* no_memory_effects = nullptr;
3431   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3432   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3433 #ifdef ASSERT
3434   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3435   assert(value_top == top(), "second value must be top");
3436 #endif
3437   set_result(value);
3438   return true;
3439 }
3440 
3441 
3442 #if INCLUDE_JVMTI
3443 
3444 // When notifications are disabled then just update the VTMS transition bit and return.
3445 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
3446 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
3447   if (!DoJVMTIVirtualThreadTransitions) {
3448     return true;
3449   }
3450   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
3451   IdealKit ideal(this);
3452 
3453   Node* ONE = ideal.ConI(1);
3454   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
3455   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
3456   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3457 
3458   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
3459     sync_kit(ideal);
3460     // if notifyJvmti enabled then make a call to the given SharedRuntime function
3461     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
3462     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
3463     ideal.sync_kit(this);
3464   } ideal.else_(); {
3465     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
3466     Node* thread = ideal.thread();
3467     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
3468     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
3469 
3470     sync_kit(ideal);
3471     access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3472     access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3473 
3474     ideal.sync_kit(this);
3475   } ideal.end_if();
3476   final_sync(ideal);
3477 
3478   return true;
3479 }
3480 
3481 // Always update the is_disable_suspend bit.
3482 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
3483   if (!DoJVMTIVirtualThreadTransitions) {
3484     return true;
3485   }
3486   IdealKit ideal(this);
3487 
3488   {
3489     // unconditionally update the is_disable_suspend bit in current JavaThread
3490     Node* thread = ideal.thread();
3491     Node* arg = _gvn.transform(argument(0)); // argument for notification
3492     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
3493     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3494 
3495     sync_kit(ideal);
3496     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3497     ideal.sync_kit(this);
3498   }
3499   final_sync(ideal);
3500 
3501   return true;
3502 }
3503 
3504 #endif // INCLUDE_JVMTI
3505 
3506 #ifdef JFR_HAVE_INTRINSICS
3507 
3508 /**
3509  * if oop->klass != null
3510  *   // normal class
3511  *   epoch = _epoch_state ? 2 : 1
3512  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3513  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3514  *   }
3515  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3516  * else
3517  *   // primitive class
3518  *   if oop->array_klass != null
3519  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3520  *   else
3521  *     id = LAST_TYPE_ID + 1 // void class path
3522  *   if (!signaled)
3523  *     signaled = true
3524  */
3525 bool LibraryCallKit::inline_native_classID() {
3526   Node* cls = argument(0);
3527 
3528   IdealKit ideal(this);
3529 #define __ ideal.
3530   IdealVariable result(ideal); __ declarations_done();
3531   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3532                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3533                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3534 
3535 
3536   __ if_then(kls, BoolTest::ne, null()); {
3537     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3538     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3539 
3540     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3541     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3542     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3543     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3544     mask = _gvn.transform(new OrLNode(mask, epoch));
3545     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3546 
3547     float unlikely  = PROB_UNLIKELY(0.999);
3548     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3549       sync_kit(ideal);
3550       make_runtime_call(RC_LEAF,
3551                         OptoRuntime::class_id_load_barrier_Type(),
3552                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3553                         "class id load barrier",
3554                         TypePtr::BOTTOM,
3555                         kls);
3556       ideal.sync_kit(this);
3557     } __ end_if();
3558 
3559     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3560   } __ else_(); {
3561     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3562                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3563                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3564     __ if_then(array_kls, BoolTest::ne, null()); {
3565       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3566       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3567       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3568       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3569     } __ else_(); {
3570       // void class case
3571       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3572     } __ end_if();
3573 
3574     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3575     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3576     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3577       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3578     } __ end_if();
3579   } __ end_if();
3580 
3581   final_sync(ideal);
3582   set_result(ideal.value(result));
3583 #undef __
3584   return true;
3585 }
3586 
3587 //------------------------inline_native_jvm_commit------------------
3588 bool LibraryCallKit::inline_native_jvm_commit() {
3589   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3590 
3591   // Save input memory and i_o state.
3592   Node* input_memory_state = reset_memory();
3593   set_all_memory(input_memory_state);
3594   Node* input_io_state = i_o();
3595 
3596   // TLS.
3597   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3598   // Jfr java buffer.
3599   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3600   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3601   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3602 
3603   // Load the current value of the notified field in the JfrThreadLocal.
3604   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3605   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3606 
3607   // Test for notification.
3608   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3609   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3610   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3611 
3612   // True branch, is notified.
3613   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3614   set_control(is_notified);
3615 
3616   // Reset notified state.
3617   store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered);
3618   Node* notified_reset_memory = reset_memory();
3619 
3620   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3621   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3622   // Convert the machine-word to a long.
3623   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3624 
3625   // False branch, not notified.
3626   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3627   set_control(not_notified);
3628   set_all_memory(input_memory_state);
3629 
3630   // Arg is the next position as a long.
3631   Node* arg = argument(0);
3632   // Convert long to machine-word.
3633   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3634 
3635   // Store the next_position to the underlying jfr java buffer.
3636   store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release);
3637 
3638   Node* commit_memory = reset_memory();
3639   set_all_memory(commit_memory);
3640 
3641   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3642   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3643   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3644   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3645 
3646   // And flags with lease constant.
3647   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3648 
3649   // Branch on lease to conditionalize returning the leased java buffer.
3650   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3651   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3652   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3653 
3654   // False branch, not a lease.
3655   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3656 
3657   // True branch, is lease.
3658   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3659   set_control(is_lease);
3660 
3661   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3662   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3663                                               OptoRuntime::void_void_Type(),
3664                                               SharedRuntime::jfr_return_lease(),
3665                                               "return_lease", TypePtr::BOTTOM);
3666   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3667 
3668   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3669   record_for_igvn(lease_compare_rgn);
3670   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3671   record_for_igvn(lease_compare_mem);
3672   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3673   record_for_igvn(lease_compare_io);
3674   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3675   record_for_igvn(lease_result_value);
3676 
3677   // Update control and phi nodes.
3678   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3679   lease_compare_rgn->init_req(_false_path, not_lease);
3680 
3681   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3682   lease_compare_mem->init_req(_false_path, commit_memory);
3683 
3684   lease_compare_io->init_req(_true_path, i_o());
3685   lease_compare_io->init_req(_false_path, input_io_state);
3686 
3687   lease_result_value->init_req(_true_path, _gvn.longcon(0)); // if the lease was returned, return 0L.
3688   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3689 
3690   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3691   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3692   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3693   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3694 
3695   // Update control and phi nodes.
3696   result_rgn->init_req(_true_path, is_notified);
3697   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3698 
3699   result_mem->init_req(_true_path, notified_reset_memory);
3700   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3701 
3702   result_io->init_req(_true_path, input_io_state);
3703   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3704 
3705   result_value->init_req(_true_path, current_pos);
3706   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3707 
3708   // Set output state.
3709   set_control(_gvn.transform(result_rgn));
3710   set_all_memory(_gvn.transform(result_mem));
3711   set_i_o(_gvn.transform(result_io));
3712   set_result(result_rgn, result_value);
3713   return true;
3714 }
3715 
3716 /*
3717  * The intrinsic is a model of this pseudo-code:
3718  *
3719  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3720  * jobject h_event_writer = tl->java_event_writer();
3721  * if (h_event_writer == nullptr) {
3722  *   return nullptr;
3723  * }
3724  * oop threadObj = Thread::threadObj();
3725  * oop vthread = java_lang_Thread::vthread(threadObj);
3726  * traceid tid;
3727  * bool pinVirtualThread;
3728  * bool excluded;
3729  * if (vthread != threadObj) {  // i.e. current thread is virtual
3730  *   tid = java_lang_Thread::tid(vthread);
3731  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3732  *   pinVirtualThread = VMContinuations;
3733  *   excluded = vthread_epoch_raw & excluded_mask;
3734  *   if (!excluded) {
3735  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3736  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3737  *     if (vthread_epoch != current_epoch) {
3738  *       write_checkpoint();
3739  *     }
3740  *   }
3741  * } else {
3742  *   tid = java_lang_Thread::tid(threadObj);
3743  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3744  *   pinVirtualThread = false;
3745  *   excluded = thread_epoch_raw & excluded_mask;
3746  * }
3747  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3748  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3749  * if (tid_in_event_writer != tid) {
3750  *   setField(event_writer, "pinVirtualThread", pinVirtualThread);
3751  *   setField(event_writer, "excluded", excluded);
3752  *   setField(event_writer, "threadID", tid);
3753  * }
3754  * return event_writer
3755  */
3756 bool LibraryCallKit::inline_native_getEventWriter() {
3757   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3758 
3759   // Save input memory and i_o state.
3760   Node* input_memory_state = reset_memory();
3761   set_all_memory(input_memory_state);
3762   Node* input_io_state = i_o();
3763 
3764   // The most significant bit of the u2 is used to denote thread exclusion
3765   Node* excluded_shift = _gvn.intcon(15);
3766   Node* excluded_mask = _gvn.intcon(1 << 15);
3767   // The epoch generation is the range [1-32767]
3768   Node* epoch_mask = _gvn.intcon(32767);
3769 
3770   // TLS
3771   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3772 
3773   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3774   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3775 
3776   // Load the eventwriter jobject handle.
3777   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3778 
3779   // Null check the jobject handle.
3780   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3781   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3782   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3783 
3784   // False path, jobj is null.
3785   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3786 
3787   // True path, jobj is not null.
3788   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3789 
3790   set_control(jobj_is_not_null);
3791 
3792   // Load the threadObj for the CarrierThread.
3793   Node* threadObj = generate_current_thread(tls_ptr);
3794 
3795   // Load the vthread.
3796   Node* vthread = generate_virtual_thread(tls_ptr);
3797 
3798   // If vthread != threadObj, this is a virtual thread.
3799   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3800   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3801   IfNode* iff_vthread_not_equal_threadObj =
3802     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3803 
3804   // False branch, fallback to threadObj.
3805   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3806   set_control(vthread_equal_threadObj);
3807 
3808   // Load the tid field from the vthread object.
3809   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3810 
3811   // Load the raw epoch value from the threadObj.
3812   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3813   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset,
3814                                              _gvn.type(threadObj_epoch_offset)->isa_ptr(),
3815                                              TypeInt::CHAR, T_CHAR,
3816                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3817 
3818   // Mask off the excluded information from the epoch.
3819   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3820 
3821   // True branch, this is a virtual thread.
3822   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3823   set_control(vthread_not_equal_threadObj);
3824 
3825   // Load the tid field from the vthread object.
3826   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3827 
3828   // Continuation support determines if a virtual thread should be pinned.
3829   Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations));
3830   Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3831 
3832   // Load the raw epoch value from the vthread.
3833   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3834   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(),
3835                                            TypeInt::CHAR, T_CHAR,
3836                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3837 
3838   // Mask off the excluded information from the epoch.
3839   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3840 
3841   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3842   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3843   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3844   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3845 
3846   // False branch, vthread is excluded, no need to write epoch info.
3847   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3848 
3849   // True branch, vthread is included, update epoch info.
3850   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3851   set_control(included);
3852 
3853   // Get epoch value.
3854   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3855 
3856   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3857   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3858   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3859 
3860   // Compare the epoch in the vthread to the current epoch generation.
3861   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3862   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3863   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3864 
3865   // False path, epoch is equal, checkpoint information is valid.
3866   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3867 
3868   // True path, epoch is not equal, write a checkpoint for the vthread.
3869   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3870 
3871   set_control(epoch_is_not_equal);
3872 
3873   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3874   // The call also updates the native thread local thread id and the vthread with the current epoch.
3875   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3876                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3877                                                   SharedRuntime::jfr_write_checkpoint(),
3878                                                   "write_checkpoint", TypePtr::BOTTOM);
3879   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3880 
3881   // vthread epoch != current epoch
3882   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3883   record_for_igvn(epoch_compare_rgn);
3884   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3885   record_for_igvn(epoch_compare_mem);
3886   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3887   record_for_igvn(epoch_compare_io);
3888 
3889   // Update control and phi nodes.
3890   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3891   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3892   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3893   epoch_compare_mem->init_req(_false_path, input_memory_state);
3894   epoch_compare_io->init_req(_true_path, i_o());
3895   epoch_compare_io->init_req(_false_path, input_io_state);
3896 
3897   // excluded != true
3898   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3899   record_for_igvn(exclude_compare_rgn);
3900   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3901   record_for_igvn(exclude_compare_mem);
3902   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3903   record_for_igvn(exclude_compare_io);
3904 
3905   // Update control and phi nodes.
3906   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3907   exclude_compare_rgn->init_req(_false_path, excluded);
3908   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3909   exclude_compare_mem->init_req(_false_path, input_memory_state);
3910   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3911   exclude_compare_io->init_req(_false_path, input_io_state);
3912 
3913   // vthread != threadObj
3914   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3915   record_for_igvn(vthread_compare_rgn);
3916   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3917   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3918   record_for_igvn(vthread_compare_io);
3919   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3920   record_for_igvn(tid);
3921   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR);
3922   record_for_igvn(exclusion);
3923   PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3924   record_for_igvn(pinVirtualThread);
3925 
3926   // Update control and phi nodes.
3927   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3928   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3929   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3930   vthread_compare_mem->init_req(_false_path, input_memory_state);
3931   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3932   vthread_compare_io->init_req(_false_path, input_io_state);
3933   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3934   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3935   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3936   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3937   pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support));
3938   pinVirtualThread->init_req(_false_path, _gvn.intcon(0));
3939 
3940   // Update branch state.
3941   set_control(_gvn.transform(vthread_compare_rgn));
3942   set_all_memory(_gvn.transform(vthread_compare_mem));
3943   set_i_o(_gvn.transform(vthread_compare_io));
3944 
3945   // Load the event writer oop by dereferencing the jobject handle.
3946   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3947   assert(klass_EventWriter->is_loaded(), "invariant");
3948   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3949   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3950   const TypeOopPtr* const xtype = aklass->as_instance_type();
3951   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3952   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3953 
3954   // Load the current thread id from the event writer object.
3955   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3956   // Get the field offset to, conditionally, store an updated tid value later.
3957   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3958   // Get the field offset to, conditionally, store an updated exclusion value later.
3959   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3960   // Get the field offset to, conditionally, store an updated pinVirtualThread value later.
3961   Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false);
3962 
3963   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3964   record_for_igvn(event_writer_tid_compare_rgn);
3965   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3966   record_for_igvn(event_writer_tid_compare_mem);
3967   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3968   record_for_igvn(event_writer_tid_compare_io);
3969 
3970   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3971   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3972   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3973   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3974 
3975   // False path, tids are the same.
3976   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3977 
3978   // True path, tid is not equal, need to update the tid in the event writer.
3979   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3980   record_for_igvn(tid_is_not_equal);
3981 
3982   // Store the pin state to the event writer.
3983   store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered);
3984 
3985   // Store the exclusion state to the event writer.
3986   Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift));
3987   store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered);
3988 
3989   // Store the tid to the event writer.
3990   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered);
3991 
3992   // Update control and phi nodes.
3993   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3994   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3995   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3996   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3997   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3998   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3999 
4000   // Result of top level CFG, Memory, IO and Value.
4001   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4002   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4003   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
4004   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
4005 
4006   // Result control.
4007   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
4008   result_rgn->init_req(_false_path, jobj_is_null);
4009 
4010   // Result memory.
4011   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
4012   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4013 
4014   // Result IO.
4015   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
4016   result_io->init_req(_false_path, _gvn.transform(input_io_state));
4017 
4018   // Result value.
4019   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
4020   result_value->init_req(_false_path, null()); // return null
4021 
4022   // Set output state.
4023   set_control(_gvn.transform(result_rgn));
4024   set_all_memory(_gvn.transform(result_mem));
4025   set_i_o(_gvn.transform(result_io));
4026   set_result(result_rgn, result_value);
4027   return true;
4028 }
4029 
4030 /*
4031  * The intrinsic is a model of this pseudo-code:
4032  *
4033  * JfrThreadLocal* const tl = thread->jfr_thread_local();
4034  * if (carrierThread != thread) { // is virtual thread
4035  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
4036  *   bool excluded = vthread_epoch_raw & excluded_mask;
4037  *   AtomicAccess::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
4038  *   AtomicAccess::store(&tl->_contextual_thread_excluded, is_excluded);
4039  *   if (!excluded) {
4040  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
4041  *     AtomicAccess::store(&tl->_vthread_epoch, vthread_epoch);
4042  *   }
4043  *   AtomicAccess::release_store(&tl->_vthread, true);
4044  *   return;
4045  * }
4046  * AtomicAccess::release_store(&tl->_vthread, false);
4047  */
4048 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
4049   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
4050 
4051   Node* input_memory_state = reset_memory();
4052   set_all_memory(input_memory_state);
4053 
4054   // The most significant bit of the u2 is used to denote thread exclusion
4055   Node* excluded_mask = _gvn.intcon(1 << 15);
4056   // The epoch generation is the range [1-32767]
4057   Node* epoch_mask = _gvn.intcon(32767);
4058 
4059   Node* const carrierThread = generate_current_thread(jt);
4060   // If thread != carrierThread, this is a virtual thread.
4061   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
4062   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
4063   IfNode* iff_thread_not_equal_carrierThread =
4064     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
4065 
4066   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
4067 
4068   // False branch, is carrierThread.
4069   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
4070   // Store release
4071   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true);
4072 
4073   set_all_memory(input_memory_state);
4074 
4075   // True branch, is virtual thread.
4076   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
4077   set_control(thread_not_equal_carrierThread);
4078 
4079   // Load the raw epoch value from the vthread.
4080   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
4081   Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR,
4082                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
4083 
4084   // Mask off the excluded information from the epoch.
4085   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
4086 
4087   // Load the tid field from the thread.
4088   Node* tid = load_field_from_object(thread, "tid", "J");
4089 
4090   // Store the vthread tid to the jfr thread local.
4091   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
4092   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true);
4093 
4094   // Branch is_excluded to conditionalize updating the epoch .
4095   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
4096   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
4097   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
4098 
4099   // True branch, vthread is excluded, no need to write epoch info.
4100   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
4101   set_control(excluded);
4102   Node* vthread_is_excluded = _gvn.intcon(1);
4103 
4104   // False branch, vthread is included, update epoch info.
4105   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
4106   set_control(included);
4107   Node* vthread_is_included = _gvn.intcon(0);
4108 
4109   // Get epoch value.
4110   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
4111 
4112   // Store the vthread epoch to the jfr thread local.
4113   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
4114   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true);
4115 
4116   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
4117   record_for_igvn(excluded_rgn);
4118   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
4119   record_for_igvn(excluded_mem);
4120   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
4121   record_for_igvn(exclusion);
4122 
4123   // Merge the excluded control and memory.
4124   excluded_rgn->init_req(_true_path, excluded);
4125   excluded_rgn->init_req(_false_path, included);
4126   excluded_mem->init_req(_true_path, tid_memory);
4127   excluded_mem->init_req(_false_path, included_memory);
4128   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
4129   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
4130 
4131   // Set intermediate state.
4132   set_control(_gvn.transform(excluded_rgn));
4133   set_all_memory(excluded_mem);
4134 
4135   // Store the vthread exclusion state to the jfr thread local.
4136   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
4137   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true);
4138 
4139   // Store release
4140   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true);
4141 
4142   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
4143   record_for_igvn(thread_compare_rgn);
4144   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
4145   record_for_igvn(thread_compare_mem);
4146   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
4147   record_for_igvn(vthread);
4148 
4149   // Merge the thread_compare control and memory.
4150   thread_compare_rgn->init_req(_true_path, control());
4151   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
4152   thread_compare_mem->init_req(_true_path, vthread_true_memory);
4153   thread_compare_mem->init_req(_false_path, vthread_false_memory);
4154 
4155   // Set output state.
4156   set_control(_gvn.transform(thread_compare_rgn));
4157   set_all_memory(_gvn.transform(thread_compare_mem));
4158 }
4159 
4160 #endif // JFR_HAVE_INTRINSICS
4161 
4162 //------------------------inline_native_currentCarrierThread------------------
4163 bool LibraryCallKit::inline_native_currentCarrierThread() {
4164   Node* junk = nullptr;
4165   set_result(generate_current_thread(junk));
4166   return true;
4167 }
4168 
4169 //------------------------inline_native_currentThread------------------
4170 bool LibraryCallKit::inline_native_currentThread() {
4171   Node* junk = nullptr;
4172   set_result(generate_virtual_thread(junk));
4173   return true;
4174 }
4175 
4176 //------------------------inline_native_setVthread------------------
4177 bool LibraryCallKit::inline_native_setCurrentThread() {
4178   assert(C->method()->changes_current_thread(),
4179          "method changes current Thread but is not annotated ChangesCurrentThread");
4180   Node* arr = argument(1);
4181   Node* thread = _gvn.transform(new ThreadLocalNode());
4182   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
4183   Node* thread_obj_handle
4184     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
4185   thread_obj_handle = _gvn.transform(thread_obj_handle);
4186   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
4187   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
4188 
4189   // Change the _monitor_owner_id of the JavaThread
4190   Node* tid = load_field_from_object(arr, "tid", "J");
4191   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
4192   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
4193 
4194   JFR_ONLY(extend_setCurrentThread(thread, arr);)
4195   return true;
4196 }
4197 
4198 const Type* LibraryCallKit::scopedValueCache_type() {
4199   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
4200   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
4201   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS, /* stable= */ false, /* flat= */ false, /* not_flat= */ true, /* not_null_free= */ true);
4202 
4203   // Because we create the scopedValue cache lazily we have to make the
4204   // type of the result BotPTR.
4205   bool xk = etype->klass_is_exact();
4206   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, TypeAryPtr::Offset(0));
4207   return objects_type;
4208 }
4209 
4210 Node* LibraryCallKit::scopedValueCache_helper() {
4211   Node* thread = _gvn.transform(new ThreadLocalNode());
4212   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
4213   // We cannot use immutable_memory() because we might flip onto a
4214   // different carrier thread, at which point we'll need to use that
4215   // carrier thread's cache.
4216   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
4217   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
4218   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
4219 }
4220 
4221 //------------------------inline_native_scopedValueCache------------------
4222 bool LibraryCallKit::inline_native_scopedValueCache() {
4223   Node* cache_obj_handle = scopedValueCache_helper();
4224   const Type* objects_type = scopedValueCache_type();
4225   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
4226 
4227   return true;
4228 }
4229 
4230 //------------------------inline_native_setScopedValueCache------------------
4231 bool LibraryCallKit::inline_native_setScopedValueCache() {
4232   Node* arr = argument(0);
4233   Node* cache_obj_handle = scopedValueCache_helper();
4234   const Type* objects_type = scopedValueCache_type();
4235 
4236   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
4237   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
4238 
4239   return true;
4240 }
4241 
4242 //------------------------inline_native_Continuation_pin and unpin-----------
4243 
4244 // Shared implementation routine for both pin and unpin.
4245 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) {
4246   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
4247 
4248   // Save input memory.
4249   Node* input_memory_state = reset_memory();
4250   set_all_memory(input_memory_state);
4251 
4252   // TLS
4253   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
4254   Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset()));
4255   Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered);
4256 
4257   // Null check the last continuation object.
4258   Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null()));
4259   Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne));
4260   IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
4261 
4262   // False path, last continuation is null.
4263   Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null));
4264 
4265   // True path, last continuation is not null.
4266   Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null));
4267 
4268   set_control(continuation_is_not_null);
4269 
4270   // Load the pin count from the last continuation.
4271   Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset()));
4272   Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered);
4273 
4274   // The loaded pin count is compared against a context specific rhs for over/underflow detection.
4275   Node* pin_count_rhs;
4276   if (unpin) {
4277     pin_count_rhs = _gvn.intcon(0);
4278   } else {
4279     pin_count_rhs = _gvn.intcon(UINT32_MAX);
4280   }
4281   Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs));
4282   Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq));
4283   IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN);
4284 
4285   // True branch, pin count over/underflow.
4286   Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow));
4287   {
4288     // Trap (but not deoptimize (Action_none)) and continue in the interpreter
4289     // which will throw IllegalStateException for pin count over/underflow.
4290     // No memory changed so far - we can use memory create by reset_memory()
4291     // at the beginning of this intrinsic. No need to call reset_memory() again.
4292     PreserveJVMState pjvms(this);
4293     set_control(pin_count_over_underflow);
4294     uncommon_trap(Deoptimization::Reason_intrinsic,
4295                   Deoptimization::Action_none);
4296     assert(stopped(), "invariant");
4297   }
4298 
4299   // False branch, no pin count over/underflow. Increment or decrement pin count and store back.
4300   Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow));
4301   set_control(valid_pin_count);
4302 
4303   Node* next_pin_count;
4304   if (unpin) {
4305     next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1)));
4306   } else {
4307     next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1)));
4308   }
4309 
4310   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
4311 
4312   // Result of top level CFG and Memory.
4313   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
4314   record_for_igvn(result_rgn);
4315   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
4316   record_for_igvn(result_mem);
4317 
4318   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
4319   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
4320   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
4321   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
4322 
4323   // Set output state.
4324   set_control(_gvn.transform(result_rgn));
4325   set_all_memory(_gvn.transform(result_mem));
4326 
4327   return true;
4328 }
4329 
4330 //-----------------------load_klass_from_mirror_common-------------------------
4331 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
4332 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
4333 // and branch to the given path on the region.
4334 // If never_see_null, take an uncommon trap on null, so we can optimistically
4335 // compile for the non-null case.
4336 // If the region is null, force never_see_null = true.
4337 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
4338                                                     bool never_see_null,
4339                                                     RegionNode* region,
4340                                                     int null_path,
4341                                                     int offset) {
4342   if (region == nullptr)  never_see_null = true;
4343   Node* p = basic_plus_adr(mirror, offset);
4344   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4345   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
4346   Node* null_ctl = top();
4347   kls = null_check_oop(kls, &null_ctl, never_see_null);
4348   if (region != nullptr) {
4349     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
4350     region->init_req(null_path, null_ctl);
4351   } else {
4352     assert(null_ctl == top(), "no loose ends");
4353   }
4354   return kls;
4355 }
4356 
4357 //--------------------(inline_native_Class_query helpers)---------------------
4358 // Use this for JVM_ACC_INTERFACE.
4359 // Fall through if (mods & mask) == bits, take the guard otherwise.
4360 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
4361                                                  ByteSize offset, const Type* type, BasicType bt) {
4362   // Branch around if the given klass has the given modifier bit set.
4363   // Like generate_guard, adds a new path onto the region.
4364   Node* modp = basic_plus_adr(kls, in_bytes(offset));
4365   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
4366   Node* mask = intcon(modifier_mask);
4367   Node* bits = intcon(modifier_bits);
4368   Node* mbit = _gvn.transform(new AndINode(mods, mask));
4369   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
4370   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
4371   return generate_fair_guard(bol, region);
4372 }
4373 
4374 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
4375   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
4376                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
4377 }
4378 
4379 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
4380 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
4381   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
4382                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
4383 }
4384 
4385 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
4386   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
4387 }
4388 
4389 //-------------------------inline_native_Class_query-------------------
4390 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
4391   const Type* return_type = TypeInt::BOOL;
4392   Node* prim_return_value = top();  // what happens if it's a primitive class?
4393   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4394   bool expect_prim = false;     // most of these guys expect to work on refs
4395 
4396   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
4397 
4398   Node* mirror = argument(0);
4399   Node* obj    = top();
4400 
4401   switch (id) {
4402   case vmIntrinsics::_isInstance:
4403     // nothing is an instance of a primitive type
4404     prim_return_value = intcon(0);
4405     obj = argument(1);
4406     break;
4407   case vmIntrinsics::_isHidden:
4408     prim_return_value = intcon(0);
4409     break;
4410   case vmIntrinsics::_getSuperclass:
4411     prim_return_value = null();
4412     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
4413     break;
4414   default:
4415     fatal_unexpected_iid(id);
4416     break;
4417   }
4418 
4419   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4420   if (mirror_con == nullptr)  return false;  // cannot happen?
4421 
4422 #ifndef PRODUCT
4423   if (C->print_intrinsics() || C->print_inlining()) {
4424     ciType* k = mirror_con->java_mirror_type();
4425     if (k) {
4426       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
4427       k->print_name();
4428       tty->cr();
4429     }
4430   }
4431 #endif
4432 
4433   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
4434   RegionNode* region = new RegionNode(PATH_LIMIT);
4435   record_for_igvn(region);
4436   PhiNode* phi = new PhiNode(region, return_type);
4437 
4438   // The mirror will never be null of Reflection.getClassAccessFlags, however
4439   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
4440   // if it is. See bug 4774291.
4441 
4442   // For Reflection.getClassAccessFlags(), the null check occurs in
4443   // the wrong place; see inline_unsafe_access(), above, for a similar
4444   // situation.
4445   mirror = null_check(mirror);
4446   // If mirror or obj is dead, only null-path is taken.
4447   if (stopped())  return true;
4448 
4449   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
4450 
4451   // Now load the mirror's klass metaobject, and null-check it.
4452   // Side-effects region with the control path if the klass is null.
4453   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
4454   // If kls is null, we have a primitive mirror.
4455   phi->init_req(_prim_path, prim_return_value);
4456   if (stopped()) { set_result(region, phi); return true; }
4457   bool safe_for_replace = (region->in(_prim_path) == top());
4458 
4459   Node* p;  // handy temp
4460   Node* null_ctl;
4461 
4462   // Now that we have the non-null klass, we can perform the real query.
4463   // For constant classes, the query will constant-fold in LoadNode::Value.
4464   Node* query_value = top();
4465   switch (id) {
4466   case vmIntrinsics::_isInstance:
4467     // nothing is an instance of a primitive type
4468     query_value = gen_instanceof(obj, kls, safe_for_replace);
4469     break;
4470 
4471   case vmIntrinsics::_isHidden:
4472     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
4473     if (generate_hidden_class_guard(kls, region) != nullptr)
4474       // A guard was added.  If the guard is taken, it was an hidden class.
4475       phi->add_req(intcon(1));
4476     // If we fall through, it's a plain class.
4477     query_value = intcon(0);
4478     break;
4479 
4480 
4481   case vmIntrinsics::_getSuperclass:
4482     // The rules here are somewhat unfortunate, but we can still do better
4483     // with random logic than with a JNI call.
4484     // Interfaces store null or Object as _super, but must report null.
4485     // Arrays store an intermediate super as _super, but must report Object.
4486     // Other types can report the actual _super.
4487     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4488     if (generate_interface_guard(kls, region) != nullptr)
4489       // A guard was added.  If the guard is taken, it was an interface.
4490       phi->add_req(null());
4491     if (generate_array_guard(kls, region) != nullptr)
4492       // A guard was added.  If the guard is taken, it was an array.
4493       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4494     // If we fall through, it's a plain class.  Get its _super.
4495     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4496     kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4497     null_ctl = top();
4498     kls = null_check_oop(kls, &null_ctl);
4499     if (null_ctl != top()) {
4500       // If the guard is taken, Object.superClass is null (both klass and mirror).
4501       region->add_req(null_ctl);
4502       phi   ->add_req(null());
4503     }
4504     if (!stopped()) {
4505       query_value = load_mirror_from_klass(kls);
4506     }
4507     break;
4508 
4509   default:
4510     fatal_unexpected_iid(id);
4511     break;
4512   }
4513 
4514   // Fall-through is the normal case of a query to a real class.
4515   phi->init_req(1, query_value);
4516   region->init_req(1, control());
4517 
4518   C->set_has_split_ifs(true); // Has chance for split-if optimization
4519   set_result(region, phi);
4520   return true;
4521 }
4522 
4523 
4524 //-------------------------inline_Class_cast-------------------
4525 bool LibraryCallKit::inline_Class_cast() {
4526   Node* mirror = argument(0); // Class
4527   Node* obj    = argument(1);
4528   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4529   if (mirror_con == nullptr) {
4530     return false;  // dead path (mirror->is_top()).
4531   }
4532   if (obj == nullptr || obj->is_top()) {
4533     return false;  // dead path
4534   }
4535   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4536 
4537   // First, see if Class.cast() can be folded statically.
4538   // java_mirror_type() returns non-null for compile-time Class constants.
4539   ciType* tm = mirror_con->java_mirror_type();
4540   if (tm != nullptr && tm->is_klass() &&
4541       tp != nullptr) {
4542     if (!tp->is_loaded()) {
4543       // Don't use intrinsic when class is not loaded.
4544       return false;
4545     } else {
4546       const TypeKlassPtr* tklass = TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces);
4547       int static_res = C->static_subtype_check(tklass, tp->as_klass_type());
4548       if (static_res == Compile::SSC_always_true) {
4549         // isInstance() is true - fold the code.
4550         set_result(obj);
4551         return true;
4552       } else if (static_res == Compile::SSC_always_false) {
4553         // Don't use intrinsic, have to throw ClassCastException.
4554         // If the reference is null, the non-intrinsic bytecode will
4555         // be optimized appropriately.
4556         return false;
4557       }
4558     }
4559   }
4560 
4561   // Bailout intrinsic and do normal inlining if exception path is frequent.
4562   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4563     return false;
4564   }
4565 
4566   // Generate dynamic checks.
4567   // Class.cast() is java implementation of _checkcast bytecode.
4568   // Do checkcast (Parse::do_checkcast()) optimizations here.
4569 
4570   mirror = null_check(mirror);
4571   // If mirror is dead, only null-path is taken.
4572   if (stopped()) {
4573     return true;
4574   }
4575 
4576   // Not-subtype or the mirror's klass ptr is nullptr (in case it is a primitive).
4577   enum { _bad_type_path = 1, _prim_path = 2, _npe_path = 3, PATH_LIMIT };
4578   RegionNode* region = new RegionNode(PATH_LIMIT);
4579   record_for_igvn(region);
4580 
4581   // Now load the mirror's klass metaobject, and null-check it.
4582   // If kls is null, we have a primitive mirror and
4583   // nothing is an instance of a primitive type.
4584   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4585 
4586   Node* res = top();
4587   Node* io = i_o();
4588   Node* mem = merged_memory();
4589   if (!stopped()) {
4590 
4591     Node* bad_type_ctrl = top();
4592     // Do checkcast optimizations.
4593     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4594     region->init_req(_bad_type_path, bad_type_ctrl);
4595   }
4596   if (region->in(_prim_path) != top() ||
4597       region->in(_bad_type_path) != top() ||
4598       region->in(_npe_path) != top()) {
4599     // Let Interpreter throw ClassCastException.
4600     PreserveJVMState pjvms(this);
4601     set_control(_gvn.transform(region));
4602     // Set IO and memory because gen_checkcast may override them when buffering inline types
4603     set_i_o(io);
4604     set_all_memory(mem);
4605     uncommon_trap(Deoptimization::Reason_intrinsic,
4606                   Deoptimization::Action_maybe_recompile);
4607   }
4608   if (!stopped()) {
4609     set_result(res);
4610   }
4611   return true;
4612 }
4613 
4614 
4615 //--------------------------inline_native_subtype_check------------------------
4616 // This intrinsic takes the JNI calls out of the heart of
4617 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4618 bool LibraryCallKit::inline_native_subtype_check() {
4619   // Pull both arguments off the stack.
4620   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4621   args[0] = argument(0);
4622   args[1] = argument(1);
4623   Node* klasses[2];             // corresponding Klasses: superk, subk
4624   klasses[0] = klasses[1] = top();
4625 
4626   enum {
4627     // A full decision tree on {superc is prim, subc is prim}:
4628     _prim_0_path = 1,           // {P,N} => false
4629                                 // {P,P} & superc!=subc => false
4630     _prim_same_path,            // {P,P} & superc==subc => true
4631     _prim_1_path,               // {N,P} => false
4632     _ref_subtype_path,          // {N,N} & subtype check wins => true
4633     _both_ref_path,             // {N,N} & subtype check loses => false
4634     PATH_LIMIT
4635   };
4636 
4637   RegionNode* region = new RegionNode(PATH_LIMIT);
4638   RegionNode* prim_region = new RegionNode(2);
4639   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4640   record_for_igvn(region);
4641   record_for_igvn(prim_region);
4642 
4643   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4644   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4645   int class_klass_offset = java_lang_Class::klass_offset();
4646 
4647   // First null-check both mirrors and load each mirror's klass metaobject.
4648   int which_arg;
4649   for (which_arg = 0; which_arg <= 1; which_arg++) {
4650     Node* arg = args[which_arg];
4651     arg = null_check(arg);
4652     if (stopped())  break;
4653     args[which_arg] = arg;
4654 
4655     Node* p = basic_plus_adr(arg, class_klass_offset);
4656     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4657     klasses[which_arg] = _gvn.transform(kls);
4658   }
4659 
4660   // Having loaded both klasses, test each for null.
4661   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4662   for (which_arg = 0; which_arg <= 1; which_arg++) {
4663     Node* kls = klasses[which_arg];
4664     Node* null_ctl = top();
4665     kls = null_check_oop(kls, &null_ctl, never_see_null);
4666     if (which_arg == 0) {
4667       prim_region->init_req(1, null_ctl);
4668     } else {
4669       region->init_req(_prim_1_path, null_ctl);
4670     }
4671     if (stopped())  break;
4672     klasses[which_arg] = kls;
4673   }
4674 
4675   if (!stopped()) {
4676     // now we have two reference types, in klasses[0..1]
4677     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4678     Node* superk = klasses[0];  // the receiver
4679     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4680     region->set_req(_ref_subtype_path, control());
4681   }
4682 
4683   // If both operands are primitive (both klasses null), then
4684   // we must return true when they are identical primitives.
4685   // It is convenient to test this after the first null klass check.
4686   // This path is also used if superc is a value mirror.
4687   set_control(_gvn.transform(prim_region));
4688   if (!stopped()) {
4689     // Since superc is primitive, make a guard for the superc==subc case.
4690     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4691     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4692     generate_fair_guard(bol_eq, region);
4693     if (region->req() == PATH_LIMIT+1) {
4694       // A guard was added.  If the added guard is taken, superc==subc.
4695       region->swap_edges(PATH_LIMIT, _prim_same_path);
4696       region->del_req(PATH_LIMIT);
4697     }
4698     region->set_req(_prim_0_path, control()); // Not equal after all.
4699   }
4700 
4701   // these are the only paths that produce 'true':
4702   phi->set_req(_prim_same_path,   intcon(1));
4703   phi->set_req(_ref_subtype_path, intcon(1));
4704 
4705   // pull together the cases:
4706   assert(region->req() == PATH_LIMIT, "sane region");
4707   for (uint i = 1; i < region->req(); i++) {
4708     Node* ctl = region->in(i);
4709     if (ctl == nullptr || ctl == top()) {
4710       region->set_req(i, top());
4711       phi   ->set_req(i, top());
4712     } else if (phi->in(i) == nullptr) {
4713       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4714     }
4715   }
4716 
4717   set_control(_gvn.transform(region));
4718   set_result(_gvn.transform(phi));
4719   return true;
4720 }
4721 
4722 //---------------------generate_array_guard_common------------------------
4723 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, ArrayKind kind, Node** obj) {
4724 
4725   if (stopped()) {
4726     return nullptr;
4727   }
4728 
4729   // Like generate_guard, adds a new path onto the region.
4730   jint  layout_con = 0;
4731   Node* layout_val = get_layout_helper(kls, layout_con);
4732   if (layout_val == nullptr) {
4733     bool query = 0;
4734     switch(kind) {
4735       case RefArray:       query = Klass::layout_helper_is_refArray(layout_con); break;
4736       case NonRefArray:    query = !Klass::layout_helper_is_refArray(layout_con); break;
4737       case TypeArray:      query = Klass::layout_helper_is_typeArray(layout_con); break;
4738       case AnyArray:       query = Klass::layout_helper_is_array(layout_con); break;
4739       case NonArray:       query = !Klass::layout_helper_is_array(layout_con); break;
4740       default:
4741         ShouldNotReachHere();
4742     }
4743     if (!query) {
4744       return nullptr;                       // never a branch
4745     } else {                             // always a branch
4746       Node* always_branch = control();
4747       if (region != nullptr)
4748         region->add_req(always_branch);
4749       set_control(top());
4750       return always_branch;
4751     }
4752   }
4753   unsigned int value = 0;
4754   BoolTest::mask btest = BoolTest::illegal;
4755   switch(kind) {
4756     case RefArray:
4757     case NonRefArray: {
4758       value = Klass::_lh_array_tag_ref_value;
4759       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4760       btest = (kind == RefArray) ? BoolTest::eq : BoolTest::ne;
4761       break;
4762     }
4763     case TypeArray: {
4764       value = Klass::_lh_array_tag_type_value;
4765       layout_val = _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
4766       btest = BoolTest::eq;
4767       break;
4768     }
4769     case AnyArray:    value = Klass::_lh_neutral_value; btest = BoolTest::lt; break;
4770     case NonArray:    value = Klass::_lh_neutral_value; btest = BoolTest::gt; break;
4771     default:
4772       ShouldNotReachHere();
4773   }
4774   // Now test the correct condition.
4775   jint nval = (jint)value;
4776   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4777   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4778   Node* ctrl = generate_fair_guard(bol, region);
4779   Node* is_array_ctrl = kind == NonArray ? control() : ctrl;
4780   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4781     // Keep track of the fact that 'obj' is an array to prevent
4782     // array specific accesses from floating above the guard.
4783     *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4784   }
4785   return ctrl;
4786 }
4787 
4788 // public static native Object[] ValueClass::newNullRestrictedAtomicArray(Class<?> componentType, int length, Object initVal);
4789 // public static native Object[] ValueClass::newNullRestrictedNonAtomicArray(Class<?> componentType, int length, Object initVal);
4790 // public static native Object[] ValueClass::newNullableAtomicArray(Class<?> componentType, int length);
4791 bool LibraryCallKit::inline_newArray(bool null_free, bool atomic) {
4792   assert(null_free || atomic, "nullable implies atomic");
4793   Node* componentType = argument(0);
4794   Node* length = argument(1);
4795   Node* init_val = null_free ? argument(2) : nullptr;
4796 
4797   const TypeInstPtr* tp = _gvn.type(componentType)->isa_instptr();
4798   if (tp != nullptr) {
4799     ciInstanceKlass* ik = tp->instance_klass();
4800     if (ik == C->env()->Class_klass()) {
4801       ciType* t = tp->java_mirror_type();
4802       if (t != nullptr && t->is_inlinetype()) {
4803 
4804         ciArrayKlass* array_klass = ciArrayKlass::make(t, null_free, atomic, true);
4805         assert(array_klass->is_elem_null_free() == null_free, "inconsistency");
4806         assert(array_klass->is_elem_atomic() == atomic, "inconsistency");
4807 
4808         // TOOD 8350865 ZGC needs card marks on initializing oop stores
4809         if (UseZGC && null_free && !array_klass->is_flat_array_klass()) {
4810           return false;
4811         }
4812 
4813         if (array_klass->is_loaded() && array_klass->element_klass()->as_inline_klass()->is_initialized()) {
4814           const TypeAryKlassPtr* array_klass_type = TypeAryKlassPtr::make(array_klass, Type::trust_interfaces, true);
4815           if (null_free) {
4816             if (init_val->is_InlineType()) {
4817               if (array_klass_type->is_flat() && init_val->as_InlineType()->is_all_zero(&gvn(), /* flat */ true)) {
4818                 // Zeroing is enough because the init value is the all-zero value
4819                 init_val = nullptr;
4820               } else {
4821                 init_val = init_val->as_InlineType()->buffer(this);
4822               }
4823             }
4824             // TODO 8350865 Should we add a check of the init_val type (maybe in debug only + halt)?
4825           }
4826           Node* obj = new_array(makecon(array_klass_type), length, 0, nullptr, false, init_val);
4827           const TypeAryPtr* arytype = gvn().type(obj)->is_aryptr();
4828           assert(arytype->is_null_free() == null_free, "inconsistency");
4829           assert(arytype->is_not_null_free() == !null_free, "inconsistency");
4830           assert(arytype->is_atomic() == atomic, "inconsistency");
4831           set_result(obj);
4832           return true;
4833         }
4834       }
4835     }
4836   }
4837   return false;
4838 }
4839 
4840 // public static native boolean ValueClass::isFlatArray(Object array);
4841 // public static native boolean ValueClass::isNullRestrictedArray(Object array);
4842 // public static native boolean ValueClass::isAtomicArray(Object array);
4843 bool LibraryCallKit::inline_getArrayProperties(ArrayPropertiesCheck check) {
4844   Node* array = argument(0);
4845 
4846   Node* bol;
4847   switch(check) {
4848     case IsFlat:
4849       // TODO 8350865 Use the object version here instead of loading the klass
4850       // The problem is that PhaseMacroExpand::expand_flatarraycheck_node can only handle some IR shapes and will fail, for example, if the bol is directly wired to a ReturnNode
4851       bol = flat_array_test(load_object_klass(array));
4852       break;
4853     case IsNullRestricted:
4854       bol = null_free_array_test(array);
4855       break;
4856     case IsAtomic:
4857       // TODO 8350865 Implement this. It's a bit more complicated, see conditions in JVM_IsAtomicArray
4858       // Enable TestIntrinsics::test87/88 once this is implemented
4859       // bol = null_free_atomic_array_test
4860       return false;
4861     default:
4862       ShouldNotReachHere();
4863   }
4864 
4865   Node* res = gvn().transform(new CMoveINode(bol, intcon(0), intcon(1), TypeInt::BOOL));
4866   set_result(res);
4867   return true;
4868 }
4869 
4870 // Load the default refined array klass from an ObjArrayKlass. This relies on the first entry in the
4871 // '_next_refined_array_klass' linked list being the default (see ObjArrayKlass::klass_with_properties).
4872 Node* LibraryCallKit::load_default_refined_array_klass(Node* klass_node, bool type_array_guard) {
4873   RegionNode* region = new RegionNode(2);
4874   Node* phi = new PhiNode(region, TypeInstKlassPtr::OBJECT_OR_NULL);
4875 
4876   if (type_array_guard) {
4877     generate_typeArray_guard(klass_node, region);
4878     if (region->req() == 3) {
4879       phi->add_req(klass_node);
4880     }
4881   }
4882   Node* adr_refined_klass = basic_plus_adr(klass_node, in_bytes(ObjArrayKlass::next_refined_array_klass_offset()));
4883   Node* refined_klass = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), adr_refined_klass, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4884 
4885   // Can be null if not initialized yet, just deopt
4886   Node* null_ctl = top();
4887   refined_klass = null_check_oop(refined_klass, &null_ctl, /* never_see_null= */ true);
4888 
4889   region->init_req(1, control());
4890   phi->init_req(1, refined_klass);
4891 
4892   set_control(_gvn.transform(region));
4893   return _gvn.transform(phi);
4894 }
4895 
4896 //-----------------------inline_native_newArray--------------------------
4897 // private static native Object java.lang.reflect.Array.newArray(Class<?> componentType, int length);
4898 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4899 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4900   Node* mirror;
4901   Node* count_val;
4902   if (uninitialized) {
4903     null_check_receiver();
4904     mirror    = argument(1);
4905     count_val = argument(2);
4906   } else {
4907     mirror    = argument(0);
4908     count_val = argument(1);
4909   }
4910 
4911   mirror = null_check(mirror);
4912   // If mirror or obj is dead, only null-path is taken.
4913   if (stopped())  return true;
4914 
4915   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4916   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4917   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4918   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4919   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4920 
4921   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4922   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4923                                                   result_reg, _slow_path);
4924   Node* normal_ctl   = control();
4925   Node* no_array_ctl = result_reg->in(_slow_path);
4926 
4927   // Generate code for the slow case.  We make a call to newArray().
4928   set_control(no_array_ctl);
4929   if (!stopped()) {
4930     // Either the input type is void.class, or else the
4931     // array klass has not yet been cached.  Either the
4932     // ensuing call will throw an exception, or else it
4933     // will cache the array klass for next time.
4934     PreserveJVMState pjvms(this);
4935     CallJavaNode* slow_call = nullptr;
4936     if (uninitialized) {
4937       // Generate optimized virtual call (holder class 'Unsafe' is final)
4938       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4939     } else {
4940       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4941     }
4942     Node* slow_result = set_results_for_java_call(slow_call);
4943     // this->control() comes from set_results_for_java_call
4944     result_reg->set_req(_slow_path, control());
4945     result_val->set_req(_slow_path, slow_result);
4946     result_io ->set_req(_slow_path, i_o());
4947     result_mem->set_req(_slow_path, reset_memory());
4948   }
4949 
4950   set_control(normal_ctl);
4951   if (!stopped()) {
4952     // Normal case:  The array type has been cached in the java.lang.Class.
4953     // The following call works fine even if the array type is polymorphic.
4954     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4955 
4956     klass_node = load_default_refined_array_klass(klass_node);
4957 
4958     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4959     result_reg->init_req(_normal_path, control());
4960     result_val->init_req(_normal_path, obj);
4961     result_io ->init_req(_normal_path, i_o());
4962     result_mem->init_req(_normal_path, reset_memory());
4963 
4964     if (uninitialized) {
4965       // Mark the allocation so that zeroing is skipped
4966       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4967       alloc->maybe_set_complete(&_gvn);
4968     }
4969   }
4970 
4971   // Return the combined state.
4972   set_i_o(        _gvn.transform(result_io)  );
4973   set_all_memory( _gvn.transform(result_mem));
4974 
4975   C->set_has_split_ifs(true); // Has chance for split-if optimization
4976   set_result(result_reg, result_val);
4977   return true;
4978 }
4979 
4980 //----------------------inline_native_getLength--------------------------
4981 // public static native int java.lang.reflect.Array.getLength(Object array);
4982 bool LibraryCallKit::inline_native_getLength() {
4983   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4984 
4985   Node* array = null_check(argument(0));
4986   // If array is dead, only null-path is taken.
4987   if (stopped())  return true;
4988 
4989   // Deoptimize if it is a non-array.
4990   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array);
4991 
4992   if (non_array != nullptr) {
4993     PreserveJVMState pjvms(this);
4994     set_control(non_array);
4995     uncommon_trap(Deoptimization::Reason_intrinsic,
4996                   Deoptimization::Action_maybe_recompile);
4997   }
4998 
4999   // If control is dead, only non-array-path is taken.
5000   if (stopped())  return true;
5001 
5002   // The works fine even if the array type is polymorphic.
5003   // It could be a dynamic mix of int[], boolean[], Object[], etc.
5004   Node* result = load_array_length(array);
5005 
5006   C->set_has_split_ifs(true);  // Has chance for split-if optimization
5007   set_result(result);
5008   return true;
5009 }
5010 
5011 //------------------------inline_array_copyOf----------------------------
5012 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
5013 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
5014 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
5015   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
5016 
5017   // Get the arguments.
5018   Node* original          = argument(0);
5019   Node* start             = is_copyOfRange? argument(1): intcon(0);
5020   Node* end               = is_copyOfRange? argument(2): argument(1);
5021   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
5022 
5023   Node* newcopy = nullptr;
5024 
5025   // Set the original stack and the reexecute bit for the interpreter to reexecute
5026   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
5027   { PreserveReexecuteState preexecs(this);
5028     jvms()->set_should_reexecute(true);
5029 
5030     array_type_mirror = null_check(array_type_mirror);
5031     original          = null_check(original);
5032 
5033     // Check if a null path was taken unconditionally.
5034     if (stopped())  return true;
5035 
5036     Node* orig_length = load_array_length(original);
5037 
5038     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
5039     klass_node = null_check(klass_node);
5040 
5041     RegionNode* bailout = new RegionNode(1);
5042     record_for_igvn(bailout);
5043 
5044     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
5045     // Bail out if that is so.
5046     // Inline type array may have object field that would require a
5047     // write barrier. Conservatively, go to slow path.
5048     // TODO 8251971: Optimize for the case when flat src/dst are later found
5049     // to not contain oops (i.e., move this check to the macro expansion phase).
5050     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5051     const TypeAryPtr* orig_t = _gvn.type(original)->isa_aryptr();
5052     const TypeKlassPtr* tklass = _gvn.type(klass_node)->is_klassptr();
5053     bool exclude_flat = UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, false, false, BarrierSetC2::Parsing) &&
5054                         // Can src array be flat and contain oops?
5055                         (orig_t == nullptr || (!orig_t->is_not_flat() && (!orig_t->is_flat() || orig_t->elem()->inline_klass()->contains_oops()))) &&
5056                         // Can dest array be flat and contain oops?
5057                         tklass->can_be_inline_array() && (!tklass->is_flat() || tklass->is_aryklassptr()->elem()->is_instklassptr()->instance_klass()->as_inline_klass()->contains_oops());
5058     Node* not_objArray = exclude_flat ? generate_non_refArray_guard(klass_node, bailout) : generate_typeArray_guard(klass_node, bailout);
5059 
5060     klass_node = load_default_refined_array_klass(klass_node, /* type_array_guard= */ false);
5061 
5062     if (not_objArray != nullptr) {
5063       // Improve the klass node's type from the new optimistic assumption:
5064       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
5065       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, Type::Offset(0));
5066       Node* cast = new CastPPNode(control(), klass_node, akls);
5067       klass_node = _gvn.transform(cast);
5068     }
5069 
5070     // Bail out if either start or end is negative.
5071     generate_negative_guard(start, bailout, &start);
5072     generate_negative_guard(end,   bailout, &end);
5073 
5074     Node* length = end;
5075     if (_gvn.type(start) != TypeInt::ZERO) {
5076       length = _gvn.transform(new SubINode(end, start));
5077     }
5078 
5079     // Bail out if length is negative (i.e., if start > end).
5080     // Without this the new_array would throw
5081     // NegativeArraySizeException but IllegalArgumentException is what
5082     // should be thrown
5083     generate_negative_guard(length, bailout, &length);
5084 
5085     // Handle inline type arrays
5086     bool can_validate = !too_many_traps(Deoptimization::Reason_class_check);
5087     if (!stopped()) {
5088       // TODO JDK-8329224
5089       if (!orig_t->is_null_free()) {
5090         // Not statically known to be null free, add a check
5091         generate_fair_guard(null_free_array_test(original), bailout);
5092       }
5093       orig_t = _gvn.type(original)->isa_aryptr();
5094       if (orig_t != nullptr && orig_t->is_flat()) {
5095         // Src is flat, check that dest is flat as well
5096         if (exclude_flat) {
5097           // Dest can't be flat, bail out
5098           bailout->add_req(control());
5099           set_control(top());
5100         } else {
5101           generate_fair_guard(flat_array_test(klass_node, /* flat = */ false), bailout);
5102         }
5103         // TODO 8350865 This is not correct anymore. Write tests and fix logic similar to arraycopy.
5104       } else if (UseArrayFlattening && (orig_t == nullptr || !orig_t->is_not_flat()) &&
5105                  // If dest is flat, src must be flat as well (guaranteed by src <: dest check if validated).
5106                  ((!tklass->is_flat() && tklass->can_be_inline_array()) || !can_validate)) {
5107         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
5108         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
5109         generate_fair_guard(flat_array_test(load_object_klass(original)), bailout);
5110         if (orig_t != nullptr) {
5111           orig_t = orig_t->cast_to_not_flat();
5112           original = _gvn.transform(new CheckCastPPNode(control(), original, orig_t));
5113         }
5114       }
5115       if (!can_validate) {
5116         // No validation. The subtype check emitted at macro expansion time will not go to the slow
5117         // path but call checkcast_arraycopy which can not handle flat/null-free inline type arrays.
5118         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat/null-free.
5119         generate_fair_guard(flat_array_test(klass_node), bailout);
5120         generate_fair_guard(null_free_array_test(original), bailout);
5121       }
5122     }
5123 
5124     // Bail out if start is larger than the original length
5125     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
5126     generate_negative_guard(orig_tail, bailout, &orig_tail);
5127 
5128     if (bailout->req() > 1) {
5129       PreserveJVMState pjvms(this);
5130       set_control(_gvn.transform(bailout));
5131       uncommon_trap(Deoptimization::Reason_intrinsic,
5132                     Deoptimization::Action_maybe_recompile);
5133     }
5134 
5135     if (!stopped()) {
5136       // How many elements will we copy from the original?
5137       // The answer is MinI(orig_tail, length).
5138       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
5139 
5140       // Generate a direct call to the right arraycopy function(s).
5141       // We know the copy is disjoint but we might not know if the
5142       // oop stores need checking.
5143       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
5144       // This will fail a store-check if x contains any non-nulls.
5145 
5146       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
5147       // loads/stores but it is legal only if we're sure the
5148       // Arrays.copyOf would succeed. So we need all input arguments
5149       // to the copyOf to be validated, including that the copy to the
5150       // new array won't trigger an ArrayStoreException. That subtype
5151       // check can be optimized if we know something on the type of
5152       // the input array from type speculation.
5153       if (_gvn.type(klass_node)->singleton()) {
5154         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
5155         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
5156 
5157         int test = C->static_subtype_check(superk, subk);
5158         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
5159           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
5160           if (t_original->speculative_type() != nullptr) {
5161             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
5162           }
5163         }
5164       }
5165 
5166       bool validated = false;
5167       // Reason_class_check rather than Reason_intrinsic because we
5168       // want to intrinsify even if this traps.
5169       if (can_validate) {
5170         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
5171 
5172         if (not_subtype_ctrl != top()) {
5173           PreserveJVMState pjvms(this);
5174           set_control(not_subtype_ctrl);
5175           uncommon_trap(Deoptimization::Reason_class_check,
5176                         Deoptimization::Action_make_not_entrant);
5177           assert(stopped(), "Should be stopped");
5178         }
5179         validated = true;
5180       }
5181 
5182       if (!stopped()) {
5183         newcopy = new_array(klass_node, length, 0);  // no arguments to push
5184 
5185         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
5186                                                 load_object_klass(original), klass_node);
5187         if (!is_copyOfRange) {
5188           ac->set_copyof(validated);
5189         } else {
5190           ac->set_copyofrange(validated);
5191         }
5192         Node* n = _gvn.transform(ac);
5193         if (n == ac) {
5194           ac->connect_outputs(this);
5195         } else {
5196           assert(validated, "shouldn't transform if all arguments not validated");
5197           set_all_memory(n);
5198         }
5199       }
5200     }
5201   } // original reexecute is set back here
5202 
5203   C->set_has_split_ifs(true); // Has chance for split-if optimization
5204   if (!stopped()) {
5205     set_result(newcopy);
5206   }
5207   return true;
5208 }
5209 
5210 
5211 //----------------------generate_virtual_guard---------------------------
5212 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
5213 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
5214                                              RegionNode* slow_region) {
5215   ciMethod* method = callee();
5216   int vtable_index = method->vtable_index();
5217   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5218          "bad index %d", vtable_index);
5219   // Get the Method* out of the appropriate vtable entry.
5220   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
5221                      vtable_index*vtableEntry::size_in_bytes() +
5222                      in_bytes(vtableEntry::method_offset());
5223   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
5224   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
5225 
5226   // Compare the target method with the expected method (e.g., Object.hashCode).
5227   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
5228 
5229   Node* native_call = makecon(native_call_addr);
5230   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
5231   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
5232 
5233   return generate_slow_guard(test_native, slow_region);
5234 }
5235 
5236 //-----------------------generate_method_call----------------------------
5237 // Use generate_method_call to make a slow-call to the real
5238 // method if the fast path fails.  An alternative would be to
5239 // use a stub like OptoRuntime::slow_arraycopy_Java.
5240 // This only works for expanding the current library call,
5241 // not another intrinsic.  (E.g., don't use this for making an
5242 // arraycopy call inside of the copyOf intrinsic.)
5243 CallJavaNode*
5244 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
5245   // When compiling the intrinsic method itself, do not use this technique.
5246   guarantee(callee() != C->method(), "cannot make slow-call to self");
5247 
5248   ciMethod* method = callee();
5249   // ensure the JVMS we have will be correct for this call
5250   guarantee(method_id == method->intrinsic_id(), "must match");
5251 
5252   const TypeFunc* tf = TypeFunc::make(method);
5253   if (res_not_null) {
5254     assert(tf->return_type() == T_OBJECT, "");
5255     const TypeTuple* range = tf->range_cc();
5256     const Type** fields = TypeTuple::fields(range->cnt());
5257     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
5258     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
5259     tf = TypeFunc::make(tf->domain_cc(), new_range);
5260   }
5261   CallJavaNode* slow_call;
5262   if (is_static) {
5263     assert(!is_virtual, "");
5264     slow_call = new CallStaticJavaNode(C, tf,
5265                            SharedRuntime::get_resolve_static_call_stub(), method);
5266   } else if (is_virtual) {
5267     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
5268     int vtable_index = Method::invalid_vtable_index;
5269     if (UseInlineCaches) {
5270       // Suppress the vtable call
5271     } else {
5272       // hashCode and clone are not a miranda methods,
5273       // so the vtable index is fixed.
5274       // No need to use the linkResolver to get it.
5275        vtable_index = method->vtable_index();
5276        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
5277               "bad index %d", vtable_index);
5278     }
5279     slow_call = new CallDynamicJavaNode(tf,
5280                           SharedRuntime::get_resolve_virtual_call_stub(),
5281                           method, vtable_index);
5282   } else {  // neither virtual nor static:  opt_virtual
5283     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
5284     slow_call = new CallStaticJavaNode(C, tf,
5285                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
5286     slow_call->set_optimized_virtual(true);
5287   }
5288   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
5289     // To be able to issue a direct call (optimized virtual or virtual)
5290     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
5291     // about the method being invoked should be attached to the call site to
5292     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
5293     slow_call->set_override_symbolic_info(true);
5294   }
5295   set_arguments_for_java_call(slow_call);
5296   set_edges_for_java_call(slow_call);
5297   return slow_call;
5298 }
5299 
5300 
5301 /**
5302  * Build special case code for calls to hashCode on an object. This call may
5303  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
5304  * slightly different code.
5305  */
5306 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
5307   assert(is_static == callee()->is_static(), "correct intrinsic selection");
5308   assert(!(is_virtual && is_static), "either virtual, special, or static");
5309 
5310   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
5311 
5312   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5313   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
5314   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
5315   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5316   Node* obj = argument(0);
5317 
5318   // Don't intrinsify hashcode on inline types for now.
5319   // The "is locked" runtime check also subsumes the inline type check (as inline types cannot be locked) and goes to the slow path.
5320   if (gvn().type(obj)->is_inlinetypeptr()) {
5321     return false;
5322   }
5323 
5324   if (!is_static) {
5325     // Check for hashing null object
5326     obj = null_check_receiver();
5327     if (stopped())  return true;        // unconditionally null
5328     result_reg->init_req(_null_path, top());
5329     result_val->init_req(_null_path, top());
5330   } else {
5331     // Do a null check, and return zero if null.
5332     // System.identityHashCode(null) == 0
5333     Node* null_ctl = top();
5334     obj = null_check_oop(obj, &null_ctl);
5335     result_reg->init_req(_null_path, null_ctl);
5336     result_val->init_req(_null_path, _gvn.intcon(0));
5337   }
5338 
5339   // Unconditionally null?  Then return right away.
5340   if (stopped()) {
5341     set_control( result_reg->in(_null_path));
5342     if (!stopped())
5343       set_result(result_val->in(_null_path));
5344     return true;
5345   }
5346 
5347   // We only go to the fast case code if we pass a number of guards.  The
5348   // paths which do not pass are accumulated in the slow_region.
5349   RegionNode* slow_region = new RegionNode(1);
5350   record_for_igvn(slow_region);
5351 
5352   // If this is a virtual call, we generate a funny guard.  We pull out
5353   // the vtable entry corresponding to hashCode() from the target object.
5354   // If the target method which we are calling happens to be the native
5355   // Object hashCode() method, we pass the guard.  We do not need this
5356   // guard for non-virtual calls -- the caller is known to be the native
5357   // Object hashCode().
5358   if (is_virtual) {
5359     // After null check, get the object's klass.
5360     Node* obj_klass = load_object_klass(obj);
5361     generate_virtual_guard(obj_klass, slow_region);
5362   }
5363 
5364   // Get the header out of the object, use LoadMarkNode when available
5365   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
5366   // The control of the load must be null. Otherwise, the load can move before
5367   // the null check after castPP removal.
5368   Node* no_ctrl = nullptr;
5369   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
5370 
5371   if (!UseObjectMonitorTable) {
5372     // Test the header to see if it is safe to read w.r.t. locking.
5373     // We cannot use the inline type mask as this may check bits that are overriden
5374     // by an object monitor's pointer when inflating locking.
5375     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
5376     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
5377     Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
5378     Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
5379     Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
5380 
5381     generate_slow_guard(test_monitor, slow_region);
5382   }
5383 
5384   // Get the hash value and check to see that it has been properly assigned.
5385   // We depend on hash_mask being at most 32 bits and avoid the use of
5386   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
5387   // vm: see markWord.hpp.
5388   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
5389   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
5390   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
5391   // This hack lets the hash bits live anywhere in the mark object now, as long
5392   // as the shift drops the relevant bits into the low 32 bits.  Note that
5393   // Java spec says that HashCode is an int so there's no point in capturing
5394   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
5395   hshifted_header      = ConvX2I(hshifted_header);
5396   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
5397 
5398   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
5399   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
5400   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
5401 
5402   generate_slow_guard(test_assigned, slow_region);
5403 
5404   Node* init_mem = reset_memory();
5405   // fill in the rest of the null path:
5406   result_io ->init_req(_null_path, i_o());
5407   result_mem->init_req(_null_path, init_mem);
5408 
5409   result_val->init_req(_fast_path, hash_val);
5410   result_reg->init_req(_fast_path, control());
5411   result_io ->init_req(_fast_path, i_o());
5412   result_mem->init_req(_fast_path, init_mem);
5413 
5414   // Generate code for the slow case.  We make a call to hashCode().
5415   set_control(_gvn.transform(slow_region));
5416   if (!stopped()) {
5417     // No need for PreserveJVMState, because we're using up the present state.
5418     set_all_memory(init_mem);
5419     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
5420     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
5421     Node* slow_result = set_results_for_java_call(slow_call);
5422     // this->control() comes from set_results_for_java_call
5423     result_reg->init_req(_slow_path, control());
5424     result_val->init_req(_slow_path, slow_result);
5425     result_io  ->set_req(_slow_path, i_o());
5426     result_mem ->set_req(_slow_path, reset_memory());
5427   }
5428 
5429   // Return the combined state.
5430   set_i_o(        _gvn.transform(result_io)  );
5431   set_all_memory( _gvn.transform(result_mem));
5432 
5433   set_result(result_reg, result_val);
5434   return true;
5435 }
5436 
5437 //---------------------------inline_native_getClass----------------------------
5438 // public final native Class<?> java.lang.Object.getClass();
5439 //
5440 // Build special case code for calls to getClass on an object.
5441 bool LibraryCallKit::inline_native_getClass() {
5442   Node* obj = argument(0);
5443   if (obj->is_InlineType()) {
5444     const Type* t = _gvn.type(obj);
5445     if (t->maybe_null()) {
5446       null_check(obj);
5447     }
5448     set_result(makecon(TypeInstPtr::make(t->inline_klass()->java_mirror())));
5449     return true;
5450   }
5451   obj = null_check_receiver();
5452   if (stopped())  return true;
5453   set_result(load_mirror_from_klass(load_object_klass(obj)));
5454   return true;
5455 }
5456 
5457 //-----------------inline_native_Reflection_getCallerClass---------------------
5458 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
5459 //
5460 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
5461 //
5462 // NOTE: This code must perform the same logic as JVM_GetCallerClass
5463 // in that it must skip particular security frames and checks for
5464 // caller sensitive methods.
5465 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
5466 #ifndef PRODUCT
5467   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5468     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
5469   }
5470 #endif
5471 
5472   if (!jvms()->has_method()) {
5473 #ifndef PRODUCT
5474     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5475       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
5476     }
5477 #endif
5478     return false;
5479   }
5480 
5481   // Walk back up the JVM state to find the caller at the required
5482   // depth.
5483   JVMState* caller_jvms = jvms();
5484 
5485   // Cf. JVM_GetCallerClass
5486   // NOTE: Start the loop at depth 1 because the current JVM state does
5487   // not include the Reflection.getCallerClass() frame.
5488   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
5489     ciMethod* m = caller_jvms->method();
5490     switch (n) {
5491     case 0:
5492       fatal("current JVM state does not include the Reflection.getCallerClass frame");
5493       break;
5494     case 1:
5495       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
5496       if (!m->caller_sensitive()) {
5497 #ifndef PRODUCT
5498         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5499           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
5500         }
5501 #endif
5502         return false;  // bail-out; let JVM_GetCallerClass do the work
5503       }
5504       break;
5505     default:
5506       if (!m->is_ignored_by_security_stack_walk()) {
5507         // We have reached the desired frame; return the holder class.
5508         // Acquire method holder as java.lang.Class and push as constant.
5509         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
5510         ciInstance* caller_mirror = caller_klass->java_mirror();
5511         set_result(makecon(TypeInstPtr::make(caller_mirror)));
5512 
5513 #ifndef PRODUCT
5514         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5515           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
5516           tty->print_cr("  JVM state at this point:");
5517           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
5518             ciMethod* m = jvms()->of_depth(i)->method();
5519             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
5520           }
5521         }
5522 #endif
5523         return true;
5524       }
5525       break;
5526     }
5527   }
5528 
5529 #ifndef PRODUCT
5530   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5531     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
5532     tty->print_cr("  JVM state at this point:");
5533     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
5534       ciMethod* m = jvms()->of_depth(i)->method();
5535       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
5536     }
5537   }
5538 #endif
5539 
5540   return false;  // bail-out; let JVM_GetCallerClass do the work
5541 }
5542 
5543 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
5544   Node* arg = argument(0);
5545   Node* result = nullptr;
5546 
5547   switch (id) {
5548   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
5549   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
5550   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
5551   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
5552   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
5553   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
5554 
5555   case vmIntrinsics::_doubleToLongBits: {
5556     // two paths (plus control) merge in a wood
5557     RegionNode *r = new RegionNode(3);
5558     Node *phi = new PhiNode(r, TypeLong::LONG);
5559 
5560     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
5561     // Build the boolean node
5562     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5563 
5564     // Branch either way.
5565     // NaN case is less traveled, which makes all the difference.
5566     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5567     Node *opt_isnan = _gvn.transform(ifisnan);
5568     assert( opt_isnan->is_If(), "Expect an IfNode");
5569     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5570     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5571 
5572     set_control(iftrue);
5573 
5574     static const jlong nan_bits = CONST64(0x7ff8000000000000);
5575     Node *slow_result = longcon(nan_bits); // return NaN
5576     phi->init_req(1, _gvn.transform( slow_result ));
5577     r->init_req(1, iftrue);
5578 
5579     // Else fall through
5580     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5581     set_control(iffalse);
5582 
5583     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
5584     r->init_req(2, iffalse);
5585 
5586     // Post merge
5587     set_control(_gvn.transform(r));
5588     record_for_igvn(r);
5589 
5590     C->set_has_split_ifs(true); // Has chance for split-if optimization
5591     result = phi;
5592     assert(result->bottom_type()->isa_long(), "must be");
5593     break;
5594   }
5595 
5596   case vmIntrinsics::_floatToIntBits: {
5597     // two paths (plus control) merge in a wood
5598     RegionNode *r = new RegionNode(3);
5599     Node *phi = new PhiNode(r, TypeInt::INT);
5600 
5601     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
5602     // Build the boolean node
5603     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5604 
5605     // Branch either way.
5606     // NaN case is less traveled, which makes all the difference.
5607     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5608     Node *opt_isnan = _gvn.transform(ifisnan);
5609     assert( opt_isnan->is_If(), "Expect an IfNode");
5610     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5611     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5612 
5613     set_control(iftrue);
5614 
5615     static const jint nan_bits = 0x7fc00000;
5616     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
5617     phi->init_req(1, _gvn.transform( slow_result ));
5618     r->init_req(1, iftrue);
5619 
5620     // Else fall through
5621     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5622     set_control(iffalse);
5623 
5624     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
5625     r->init_req(2, iffalse);
5626 
5627     // Post merge
5628     set_control(_gvn.transform(r));
5629     record_for_igvn(r);
5630 
5631     C->set_has_split_ifs(true); // Has chance for split-if optimization
5632     result = phi;
5633     assert(result->bottom_type()->isa_int(), "must be");
5634     break;
5635   }
5636 
5637   default:
5638     fatal_unexpected_iid(id);
5639     break;
5640   }
5641   set_result(_gvn.transform(result));
5642   return true;
5643 }
5644 
5645 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
5646   Node* arg = argument(0);
5647   Node* result = nullptr;
5648 
5649   switch (id) {
5650   case vmIntrinsics::_floatIsInfinite:
5651     result = new IsInfiniteFNode(arg);
5652     break;
5653   case vmIntrinsics::_floatIsFinite:
5654     result = new IsFiniteFNode(arg);
5655     break;
5656   case vmIntrinsics::_doubleIsInfinite:
5657     result = new IsInfiniteDNode(arg);
5658     break;
5659   case vmIntrinsics::_doubleIsFinite:
5660     result = new IsFiniteDNode(arg);
5661     break;
5662   default:
5663     fatal_unexpected_iid(id);
5664     break;
5665   }
5666   set_result(_gvn.transform(result));
5667   return true;
5668 }
5669 
5670 //----------------------inline_unsafe_copyMemory-------------------------
5671 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
5672 
5673 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
5674   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
5675   const Type*       base_t = gvn.type(base);
5676 
5677   bool in_native = (base_t == TypePtr::NULL_PTR);
5678   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
5679   bool is_mixed  = !in_heap && !in_native;
5680 
5681   if (is_mixed) {
5682     return true; // mixed accesses can touch both on-heap and off-heap memory
5683   }
5684   if (in_heap) {
5685     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
5686     if (!is_prim_array) {
5687       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
5688       // there's not enough type information available to determine proper memory slice for it.
5689       return true;
5690     }
5691   }
5692   return false;
5693 }
5694 
5695 bool LibraryCallKit::inline_unsafe_copyMemory() {
5696   if (callee()->is_static())  return false;  // caller must have the capability!
5697   null_check_receiver();  // null-check receiver
5698   if (stopped())  return true;
5699 
5700   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5701 
5702   Node* src_base =         argument(1);  // type: oop
5703   Node* src_off  = ConvL2X(argument(2)); // type: long
5704   Node* dst_base =         argument(4);  // type: oop
5705   Node* dst_off  = ConvL2X(argument(5)); // type: long
5706   Node* size     = ConvL2X(argument(7)); // type: long
5707 
5708   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5709          "fieldOffset must be byte-scaled");
5710 
5711   Node* src_addr = make_unsafe_address(src_base, src_off);
5712   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5713 
5714   Node* thread = _gvn.transform(new ThreadLocalNode());
5715   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5716   BasicType doing_unsafe_access_bt = T_BYTE;
5717   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5718 
5719   // update volatile field
5720   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5721 
5722   int flags = RC_LEAF | RC_NO_FP;
5723 
5724   const TypePtr* dst_type = TypePtr::BOTTOM;
5725 
5726   // Adjust memory effects of the runtime call based on input values.
5727   if (!has_wide_mem(_gvn, src_addr, src_base) &&
5728       !has_wide_mem(_gvn, dst_addr, dst_base)) {
5729     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5730 
5731     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5732     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5733       flags |= RC_NARROW_MEM; // narrow in memory
5734     }
5735   }
5736 
5737   // Call it.  Note that the length argument is not scaled.
5738   make_runtime_call(flags,
5739                     OptoRuntime::fast_arraycopy_Type(),
5740                     StubRoutines::unsafe_arraycopy(),
5741                     "unsafe_arraycopy",
5742                     dst_type,
5743                     src_addr, dst_addr, size XTOP);
5744 
5745   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5746 
5747   return true;
5748 }
5749 
5750 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5751 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5752 bool LibraryCallKit::inline_unsafe_setMemory() {
5753   if (callee()->is_static())  return false;  // caller must have the capability!
5754   null_check_receiver();  // null-check receiver
5755   if (stopped())  return true;
5756 
5757   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5758 
5759   Node* dst_base =         argument(1);  // type: oop
5760   Node* dst_off  = ConvL2X(argument(2)); // type: long
5761   Node* size     = ConvL2X(argument(4)); // type: long
5762   Node* byte     =         argument(6);  // type: byte
5763 
5764   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5765          "fieldOffset must be byte-scaled");
5766 
5767   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5768 
5769   Node* thread = _gvn.transform(new ThreadLocalNode());
5770   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5771   BasicType doing_unsafe_access_bt = T_BYTE;
5772   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5773 
5774   // update volatile field
5775   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5776 
5777   int flags = RC_LEAF | RC_NO_FP;
5778 
5779   const TypePtr* dst_type = TypePtr::BOTTOM;
5780 
5781   // Adjust memory effects of the runtime call based on input values.
5782   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5783     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5784 
5785     flags |= RC_NARROW_MEM; // narrow in memory
5786   }
5787 
5788   // Call it.  Note that the length argument is not scaled.
5789   make_runtime_call(flags,
5790                     OptoRuntime::unsafe_setmemory_Type(),
5791                     StubRoutines::unsafe_setmemory(),
5792                     "unsafe_setmemory",
5793                     dst_type,
5794                     dst_addr, size XTOP, byte);
5795 
5796   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5797 
5798   return true;
5799 }
5800 
5801 #undef XTOP
5802 
5803 //------------------------clone_coping-----------------------------------
5804 // Helper function for inline_native_clone.
5805 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5806   assert(obj_size != nullptr, "");
5807   Node* raw_obj = alloc_obj->in(1);
5808   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5809 
5810   AllocateNode* alloc = nullptr;
5811   if (ReduceBulkZeroing &&
5812       // If we are implementing an array clone without knowing its source type
5813       // (can happen when compiling the array-guarded branch of a reflective
5814       // Object.clone() invocation), initialize the array within the allocation.
5815       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5816       // to a runtime clone call that assumes fully initialized source arrays.
5817       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5818     // We will be completely responsible for initializing this object -
5819     // mark Initialize node as complete.
5820     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5821     // The object was just allocated - there should be no any stores!
5822     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5823     // Mark as complete_with_arraycopy so that on AllocateNode
5824     // expansion, we know this AllocateNode is initialized by an array
5825     // copy and a StoreStore barrier exists after the array copy.
5826     alloc->initialization()->set_complete_with_arraycopy();
5827   }
5828 
5829   Node* size = _gvn.transform(obj_size);
5830   access_clone(obj, alloc_obj, size, is_array);
5831 
5832   // Do not let reads from the cloned object float above the arraycopy.
5833   if (alloc != nullptr) {
5834     // Do not let stores that initialize this object be reordered with
5835     // a subsequent store that would make this object accessible by
5836     // other threads.
5837     // Record what AllocateNode this StoreStore protects so that
5838     // escape analysis can go from the MemBarStoreStoreNode to the
5839     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5840     // based on the escape status of the AllocateNode.
5841     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5842   } else {
5843     insert_mem_bar(Op_MemBarCPUOrder);
5844   }
5845 }
5846 
5847 //------------------------inline_native_clone----------------------------
5848 // protected native Object java.lang.Object.clone();
5849 //
5850 // Here are the simple edge cases:
5851 //  null receiver => normal trap
5852 //  virtual and clone was overridden => slow path to out-of-line clone
5853 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5854 //
5855 // The general case has two steps, allocation and copying.
5856 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5857 //
5858 // Copying also has two cases, oop arrays and everything else.
5859 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5860 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5861 //
5862 // These steps fold up nicely if and when the cloned object's klass
5863 // can be sharply typed as an object array, a type array, or an instance.
5864 //
5865 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5866   PhiNode* result_val;
5867 
5868   // Set the reexecute bit for the interpreter to reexecute
5869   // the bytecode that invokes Object.clone if deoptimization happens.
5870   { PreserveReexecuteState preexecs(this);
5871     jvms()->set_should_reexecute(true);
5872 
5873     Node* obj = argument(0);
5874     obj = null_check_receiver();
5875     if (stopped())  return true;
5876 
5877     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5878     if (obj_type->is_inlinetypeptr()) {
5879       // If the object to clone is an inline type, we can simply return it (i.e. a nop) since inline types have
5880       // no identity.
5881       set_result(obj);
5882       return true;
5883     }
5884 
5885     // If we are going to clone an instance, we need its exact type to
5886     // know the number and types of fields to convert the clone to
5887     // loads/stores. Maybe a speculative type can help us.
5888     if (!obj_type->klass_is_exact() &&
5889         obj_type->speculative_type() != nullptr &&
5890         obj_type->speculative_type()->is_instance_klass() &&
5891         !obj_type->speculative_type()->is_inlinetype()) {
5892       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5893       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5894           !spec_ik->has_injected_fields()) {
5895         if (!obj_type->isa_instptr() ||
5896             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5897           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5898         }
5899       }
5900     }
5901 
5902     // Conservatively insert a memory barrier on all memory slices.
5903     // Do not let writes into the original float below the clone.
5904     insert_mem_bar(Op_MemBarCPUOrder);
5905 
5906     // paths into result_reg:
5907     enum {
5908       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5909       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5910       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5911       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5912       PATH_LIMIT
5913     };
5914     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5915     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5916     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5917     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5918     record_for_igvn(result_reg);
5919 
5920     Node* obj_klass = load_object_klass(obj);
5921     // We only go to the fast case code if we pass a number of guards.
5922     // The paths which do not pass are accumulated in the slow_region.
5923     RegionNode* slow_region = new RegionNode(1);
5924     record_for_igvn(slow_region);
5925 
5926     Node* array_obj = obj;
5927     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5928     if (array_ctl != nullptr) {
5929       // It's an array.
5930       PreserveJVMState pjvms(this);
5931       set_control(array_ctl);
5932 
5933       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5934       const TypeAryPtr* ary_ptr = obj_type->isa_aryptr();
5935       if (UseArrayFlattening && bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Expansion) &&
5936           obj_type->can_be_inline_array() &&
5937           (ary_ptr == nullptr || (!ary_ptr->is_not_flat() && (!ary_ptr->is_flat() || ary_ptr->elem()->inline_klass()->contains_oops())))) {
5938         // Flat inline type array may have object field that would require a
5939         // write barrier. Conservatively, go to slow path.
5940         generate_fair_guard(flat_array_test(obj_klass), slow_region);
5941       }
5942 
5943       if (!stopped()) {
5944         Node* obj_length = load_array_length(array_obj);
5945         Node* array_size = nullptr; // Size of the array without object alignment padding.
5946         Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5947 
5948         BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5949         if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5950           // If it is an oop array, it requires very special treatment,
5951           // because gc barriers are required when accessing the array.
5952           Node* is_obja = generate_refArray_guard(obj_klass, (RegionNode*)nullptr);
5953           if (is_obja != nullptr) {
5954             PreserveJVMState pjvms2(this);
5955             set_control(is_obja);
5956             // Generate a direct call to the right arraycopy function(s).
5957             // Clones are always tightly coupled.
5958             ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5959             ac->set_clone_oop_array();
5960             Node* n = _gvn.transform(ac);
5961             assert(n == ac, "cannot disappear");
5962             ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5963 
5964             result_reg->init_req(_objArray_path, control());
5965             result_val->init_req(_objArray_path, alloc_obj);
5966             result_i_o ->set_req(_objArray_path, i_o());
5967             result_mem ->set_req(_objArray_path, reset_memory());
5968           }
5969         }
5970         // Otherwise, there are no barriers to worry about.
5971         // (We can dispense with card marks if we know the allocation
5972         //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5973         //  causes the non-eden paths to take compensating steps to
5974         //  simulate a fresh allocation, so that no further
5975         //  card marks are required in compiled code to initialize
5976         //  the object.)
5977 
5978         if (!stopped()) {
5979           copy_to_clone(obj, alloc_obj, array_size, true);
5980 
5981           // Present the results of the copy.
5982           result_reg->init_req(_array_path, control());
5983           result_val->init_req(_array_path, alloc_obj);
5984           result_i_o ->set_req(_array_path, i_o());
5985           result_mem ->set_req(_array_path, reset_memory());
5986         }
5987       }
5988     }
5989 
5990     if (!stopped()) {
5991       // It's an instance (we did array above).  Make the slow-path tests.
5992       // If this is a virtual call, we generate a funny guard.  We grab
5993       // the vtable entry corresponding to clone() from the target object.
5994       // If the target method which we are calling happens to be the
5995       // Object clone() method, we pass the guard.  We do not need this
5996       // guard for non-virtual calls; the caller is known to be the native
5997       // Object clone().
5998       if (is_virtual) {
5999         generate_virtual_guard(obj_klass, slow_region);
6000       }
6001 
6002       // The object must be easily cloneable and must not have a finalizer.
6003       // Both of these conditions may be checked in a single test.
6004       // We could optimize the test further, but we don't care.
6005       generate_misc_flags_guard(obj_klass,
6006                                 // Test both conditions:
6007                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
6008                                 // Must be cloneable but not finalizer:
6009                                 KlassFlags::_misc_is_cloneable_fast,
6010                                 slow_region);
6011     }
6012 
6013     if (!stopped()) {
6014       // It's an instance, and it passed the slow-path tests.
6015       PreserveJVMState pjvms(this);
6016       Node* obj_size = nullptr; // Total object size, including object alignment padding.
6017       // Need to deoptimize on exception from allocation since Object.clone intrinsic
6018       // is reexecuted if deoptimization occurs and there could be problems when merging
6019       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
6020       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
6021 
6022       copy_to_clone(obj, alloc_obj, obj_size, false);
6023 
6024       // Present the results of the slow call.
6025       result_reg->init_req(_instance_path, control());
6026       result_val->init_req(_instance_path, alloc_obj);
6027       result_i_o ->set_req(_instance_path, i_o());
6028       result_mem ->set_req(_instance_path, reset_memory());
6029     }
6030 
6031     // Generate code for the slow case.  We make a call to clone().
6032     set_control(_gvn.transform(slow_region));
6033     if (!stopped()) {
6034       PreserveJVMState pjvms(this);
6035       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
6036       // We need to deoptimize on exception (see comment above)
6037       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
6038       // this->control() comes from set_results_for_java_call
6039       result_reg->init_req(_slow_path, control());
6040       result_val->init_req(_slow_path, slow_result);
6041       result_i_o ->set_req(_slow_path, i_o());
6042       result_mem ->set_req(_slow_path, reset_memory());
6043     }
6044 
6045     // Return the combined state.
6046     set_control(    _gvn.transform(result_reg));
6047     set_i_o(        _gvn.transform(result_i_o));
6048     set_all_memory( _gvn.transform(result_mem));
6049   } // original reexecute is set back here
6050 
6051   set_result(_gvn.transform(result_val));
6052   return true;
6053 }
6054 
6055 // If we have a tightly coupled allocation, the arraycopy may take care
6056 // of the array initialization. If one of the guards we insert between
6057 // the allocation and the arraycopy causes a deoptimization, an
6058 // uninitialized array will escape the compiled method. To prevent that
6059 // we set the JVM state for uncommon traps between the allocation and
6060 // the arraycopy to the state before the allocation so, in case of
6061 // deoptimization, we'll reexecute the allocation and the
6062 // initialization.
6063 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
6064   if (alloc != nullptr) {
6065     ciMethod* trap_method = alloc->jvms()->method();
6066     int trap_bci = alloc->jvms()->bci();
6067 
6068     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6069         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
6070       // Make sure there's no store between the allocation and the
6071       // arraycopy otherwise visible side effects could be rexecuted
6072       // in case of deoptimization and cause incorrect execution.
6073       bool no_interfering_store = true;
6074       Node* mem = alloc->in(TypeFunc::Memory);
6075       if (mem->is_MergeMem()) {
6076         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
6077           Node* n = mms.memory();
6078           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
6079             assert(n->is_Store(), "what else?");
6080             no_interfering_store = false;
6081             break;
6082           }
6083         }
6084       } else {
6085         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
6086           Node* n = mms.memory();
6087           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
6088             assert(n->is_Store(), "what else?");
6089             no_interfering_store = false;
6090             break;
6091           }
6092         }
6093       }
6094 
6095       if (no_interfering_store) {
6096         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
6097 
6098         JVMState* saved_jvms = jvms();
6099         saved_reexecute_sp = _reexecute_sp;
6100 
6101         set_jvms(sfpt->jvms());
6102         _reexecute_sp = jvms()->sp();
6103 
6104         return saved_jvms;
6105       }
6106     }
6107   }
6108   return nullptr;
6109 }
6110 
6111 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
6112 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
6113 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
6114   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
6115   uint size = alloc->req();
6116   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
6117   old_jvms->set_map(sfpt);
6118   for (uint i = 0; i < size; i++) {
6119     sfpt->init_req(i, alloc->in(i));
6120   }
6121   int adjustment = 1;
6122   const TypeAryKlassPtr* ary_klass_ptr = alloc->in(AllocateNode::KlassNode)->bottom_type()->is_aryklassptr();
6123   if (ary_klass_ptr->is_null_free()) {
6124     // A null-free, tightly coupled array allocation can only come from LibraryCallKit::inline_newArray which
6125     // also requires the componentType and initVal on stack for re-execution.
6126     // Re-create and push the componentType.
6127     ciArrayKlass* klass = ary_klass_ptr->exact_klass()->as_array_klass();
6128     ciInstance* instance = klass->component_mirror_instance();
6129     const TypeInstPtr* t_instance = TypeInstPtr::make(instance);
6130     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), makecon(t_instance));
6131     adjustment++;
6132   }
6133   // re-push array length for deoptimization
6134   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment - 1, alloc->in(AllocateNode::ALength));
6135   if (ary_klass_ptr->is_null_free()) {
6136     // Re-create and push the initVal.
6137     Node* init_val = alloc->in(AllocateNode::InitValue);
6138     if (init_val == nullptr) {
6139       init_val = InlineTypeNode::make_all_zero(_gvn, ary_klass_ptr->elem()->is_instklassptr()->instance_klass()->as_inline_klass());
6140     } else if (UseCompressedOops) {
6141       init_val = _gvn.transform(new DecodeNNode(init_val, init_val->bottom_type()->make_ptr()));
6142     }
6143     sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp() + adjustment, init_val);
6144     adjustment++;
6145   }
6146   old_jvms->set_sp(old_jvms->sp() + adjustment);
6147   old_jvms->set_monoff(old_jvms->monoff() + adjustment);
6148   old_jvms->set_scloff(old_jvms->scloff() + adjustment);
6149   old_jvms->set_endoff(old_jvms->endoff() + adjustment);
6150   old_jvms->set_should_reexecute(true);
6151 
6152   sfpt->set_i_o(map()->i_o());
6153   sfpt->set_memory(map()->memory());
6154   sfpt->set_control(map()->control());
6155   return sfpt;
6156 }
6157 
6158 // In case of a deoptimization, we restart execution at the
6159 // allocation, allocating a new array. We would leave an uninitialized
6160 // array in the heap that GCs wouldn't expect. Move the allocation
6161 // after the traps so we don't allocate the array if we
6162 // deoptimize. This is possible because tightly_coupled_allocation()
6163 // guarantees there's no observer of the allocated array at this point
6164 // and the control flow is simple enough.
6165 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
6166                                                     int saved_reexecute_sp, uint new_idx) {
6167   if (saved_jvms_before_guards != nullptr && !stopped()) {
6168     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
6169 
6170     assert(alloc != nullptr, "only with a tightly coupled allocation");
6171     // restore JVM state to the state at the arraycopy
6172     saved_jvms_before_guards->map()->set_control(map()->control());
6173     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
6174     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
6175     // If we've improved the types of some nodes (null check) while
6176     // emitting the guards, propagate them to the current state
6177     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
6178     set_jvms(saved_jvms_before_guards);
6179     _reexecute_sp = saved_reexecute_sp;
6180 
6181     // Remove the allocation from above the guards
6182     CallProjections* callprojs = alloc->extract_projections(true);
6183     InitializeNode* init = alloc->initialization();
6184     Node* alloc_mem = alloc->in(TypeFunc::Memory);
6185     C->gvn_replace_by(callprojs->fallthrough_ioproj, alloc->in(TypeFunc::I_O));
6186     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
6187 
6188     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
6189     // the allocation (i.e. is only valid if the allocation succeeds):
6190     // 1) replace CastIINode with AllocateArrayNode's length here
6191     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
6192     //
6193     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
6194     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
6195     Node* init_control = init->proj_out(TypeFunc::Control);
6196     Node* alloc_length = alloc->Ideal_length();
6197 #ifdef ASSERT
6198     Node* prev_cast = nullptr;
6199 #endif
6200     for (uint i = 0; i < init_control->outcnt(); i++) {
6201       Node* init_out = init_control->raw_out(i);
6202       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
6203 #ifdef ASSERT
6204         if (prev_cast == nullptr) {
6205           prev_cast = init_out;
6206         } else {
6207           if (prev_cast->cmp(*init_out) == false) {
6208             prev_cast->dump();
6209             init_out->dump();
6210             assert(false, "not equal CastIINode");
6211           }
6212         }
6213 #endif
6214         C->gvn_replace_by(init_out, alloc_length);
6215       }
6216     }
6217     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
6218 
6219     // move the allocation here (after the guards)
6220     _gvn.hash_delete(alloc);
6221     alloc->set_req(TypeFunc::Control, control());
6222     alloc->set_req(TypeFunc::I_O, i_o());
6223     Node *mem = reset_memory();
6224     set_all_memory(mem);
6225     alloc->set_req(TypeFunc::Memory, mem);
6226     set_control(init->proj_out_or_null(TypeFunc::Control));
6227     set_i_o(callprojs->fallthrough_ioproj);
6228 
6229     // Update memory as done in GraphKit::set_output_for_allocation()
6230     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
6231     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
6232     if (ary_type->isa_aryptr() && length_type != nullptr) {
6233       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
6234     }
6235     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
6236     int            elemidx  = C->get_alias_index(telemref);
6237     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
6238     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
6239 
6240     Node* allocx = _gvn.transform(alloc);
6241     assert(allocx == alloc, "where has the allocation gone?");
6242     assert(dest->is_CheckCastPP(), "not an allocation result?");
6243 
6244     _gvn.hash_delete(dest);
6245     dest->set_req(0, control());
6246     Node* destx = _gvn.transform(dest);
6247     assert(destx == dest, "where has the allocation result gone?");
6248 
6249     array_ideal_length(alloc, ary_type, true);
6250   }
6251 }
6252 
6253 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
6254 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
6255 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
6256 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
6257 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
6258 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
6259 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
6260                                                                        JVMState* saved_jvms_before_guards) {
6261   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
6262     // There is at least one unrelated uncommon trap which needs to be replaced.
6263     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
6264 
6265     JVMState* saved_jvms = jvms();
6266     const int saved_reexecute_sp = _reexecute_sp;
6267     set_jvms(sfpt->jvms());
6268     _reexecute_sp = jvms()->sp();
6269 
6270     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
6271 
6272     // Restore state
6273     set_jvms(saved_jvms);
6274     _reexecute_sp = saved_reexecute_sp;
6275   }
6276 }
6277 
6278 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
6279 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
6280 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
6281   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
6282   while (if_proj->is_IfProj()) {
6283     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
6284     if (uncommon_trap != nullptr) {
6285       create_new_uncommon_trap(uncommon_trap);
6286     }
6287     assert(if_proj->in(0)->is_If(), "must be If");
6288     if_proj = if_proj->in(0)->in(0);
6289   }
6290   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
6291          "must have reached control projection of init node");
6292 }
6293 
6294 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
6295   const int trap_request = uncommon_trap_call->uncommon_trap_request();
6296   assert(trap_request != 0, "no valid UCT trap request");
6297   PreserveJVMState pjvms(this);
6298   set_control(uncommon_trap_call->in(0));
6299   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
6300                 Deoptimization::trap_request_action(trap_request));
6301   assert(stopped(), "Should be stopped");
6302   _gvn.hash_delete(uncommon_trap_call);
6303   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
6304 }
6305 
6306 // Common checks for array sorting intrinsics arguments.
6307 // Returns `true` if checks passed.
6308 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
6309   // check address of the class
6310   if (elementType == nullptr || elementType->is_top()) {
6311     return false;  // dead path
6312   }
6313   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
6314   if (elem_klass == nullptr) {
6315     return false;  // dead path
6316   }
6317   // java_mirror_type() returns non-null for compile-time Class constants only
6318   ciType* elem_type = elem_klass->java_mirror_type();
6319   if (elem_type == nullptr) {
6320     return false;
6321   }
6322   bt = elem_type->basic_type();
6323   // Disable the intrinsic if the CPU does not support SIMD sort
6324   if (!Matcher::supports_simd_sort(bt)) {
6325     return false;
6326   }
6327   // check address of the array
6328   if (obj == nullptr || obj->is_top()) {
6329     return false;  // dead path
6330   }
6331   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
6332   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
6333     return false; // failed input validation
6334   }
6335   return true;
6336 }
6337 
6338 //------------------------------inline_array_partition-----------------------
6339 bool LibraryCallKit::inline_array_partition() {
6340   address stubAddr = StubRoutines::select_array_partition_function();
6341   if (stubAddr == nullptr) {
6342     return false; // Intrinsic's stub is not implemented on this platform
6343   }
6344   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
6345 
6346   // no receiver because it is a static method
6347   Node* elementType     = argument(0);
6348   Node* obj             = argument(1);
6349   Node* offset          = argument(2); // long
6350   Node* fromIndex       = argument(4);
6351   Node* toIndex         = argument(5);
6352   Node* indexPivot1     = argument(6);
6353   Node* indexPivot2     = argument(7);
6354   // PartitionOperation:  argument(8) is ignored
6355 
6356   Node* pivotIndices = nullptr;
6357   BasicType bt = T_ILLEGAL;
6358 
6359   if (!check_array_sort_arguments(elementType, obj, bt)) {
6360     return false;
6361   }
6362   null_check(obj);
6363   // If obj is dead, only null-path is taken.
6364   if (stopped()) {
6365     return true;
6366   }
6367   // Set the original stack and the reexecute bit for the interpreter to reexecute
6368   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
6369   { PreserveReexecuteState preexecs(this);
6370     jvms()->set_should_reexecute(true);
6371 
6372     Node* obj_adr = make_unsafe_address(obj, offset);
6373 
6374     // create the pivotIndices array of type int and size = 2
6375     Node* size = intcon(2);
6376     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
6377     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
6378     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
6379     guarantee(alloc != nullptr, "created above");
6380     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
6381 
6382     // pass the basic type enum to the stub
6383     Node* elemType = intcon(bt);
6384 
6385     // Call the stub
6386     const char *stubName = "array_partition_stub";
6387     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
6388                       stubAddr, stubName, TypePtr::BOTTOM,
6389                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
6390                       indexPivot1, indexPivot2);
6391 
6392   } // original reexecute is set back here
6393 
6394   if (!stopped()) {
6395     set_result(pivotIndices);
6396   }
6397 
6398   return true;
6399 }
6400 
6401 
6402 //------------------------------inline_array_sort-----------------------
6403 bool LibraryCallKit::inline_array_sort() {
6404   address stubAddr = StubRoutines::select_arraysort_function();
6405   if (stubAddr == nullptr) {
6406     return false; // Intrinsic's stub is not implemented on this platform
6407   }
6408   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
6409 
6410   // no receiver because it is a static method
6411   Node* elementType     = argument(0);
6412   Node* obj             = argument(1);
6413   Node* offset          = argument(2); // long
6414   Node* fromIndex       = argument(4);
6415   Node* toIndex         = argument(5);
6416   // SortOperation:       argument(6) is ignored
6417 
6418   BasicType bt = T_ILLEGAL;
6419 
6420   if (!check_array_sort_arguments(elementType, obj, bt)) {
6421     return false;
6422   }
6423   null_check(obj);
6424   // If obj is dead, only null-path is taken.
6425   if (stopped()) {
6426     return true;
6427   }
6428   Node* obj_adr = make_unsafe_address(obj, offset);
6429 
6430   // pass the basic type enum to the stub
6431   Node* elemType = intcon(bt);
6432 
6433   // Call the stub.
6434   const char *stubName = "arraysort_stub";
6435   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
6436                     stubAddr, stubName, TypePtr::BOTTOM,
6437                     obj_adr, elemType, fromIndex, toIndex);
6438 
6439   return true;
6440 }
6441 
6442 
6443 //------------------------------inline_arraycopy-----------------------
6444 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
6445 //                                                      Object dest, int destPos,
6446 //                                                      int length);
6447 bool LibraryCallKit::inline_arraycopy() {
6448   // Get the arguments.
6449   Node* src         = argument(0);  // type: oop
6450   Node* src_offset  = argument(1);  // type: int
6451   Node* dest        = argument(2);  // type: oop
6452   Node* dest_offset = argument(3);  // type: int
6453   Node* length      = argument(4);  // type: int
6454 
6455   uint new_idx = C->unique();
6456 
6457   // Check for allocation before we add nodes that would confuse
6458   // tightly_coupled_allocation()
6459   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
6460 
6461   int saved_reexecute_sp = -1;
6462   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
6463   // See arraycopy_restore_alloc_state() comment
6464   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
6465   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
6466   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
6467   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
6468 
6469   // The following tests must be performed
6470   // (1) src and dest are arrays.
6471   // (2) src and dest arrays must have elements of the same BasicType
6472   // (3) src and dest must not be null.
6473   // (4) src_offset must not be negative.
6474   // (5) dest_offset must not be negative.
6475   // (6) length must not be negative.
6476   // (7) src_offset + length must not exceed length of src.
6477   // (8) dest_offset + length must not exceed length of dest.
6478   // (9) each element of an oop array must be assignable
6479 
6480   // (3) src and dest must not be null.
6481   // always do this here because we need the JVM state for uncommon traps
6482   Node* null_ctl = top();
6483   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
6484   assert(null_ctl->is_top(), "no null control here");
6485   dest = null_check(dest, T_ARRAY);
6486 
6487   if (!can_emit_guards) {
6488     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
6489     // guards but the arraycopy node could still take advantage of a
6490     // tightly allocated allocation. tightly_coupled_allocation() is
6491     // called again to make sure it takes the null check above into
6492     // account: the null check is mandatory and if it caused an
6493     // uncommon trap to be emitted then the allocation can't be
6494     // considered tightly coupled in this context.
6495     alloc = tightly_coupled_allocation(dest);
6496   }
6497 
6498   bool validated = false;
6499 
6500   const Type* src_type  = _gvn.type(src);
6501   const Type* dest_type = _gvn.type(dest);
6502   const TypeAryPtr* top_src  = src_type->isa_aryptr();
6503   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6504 
6505   // Do we have the type of src?
6506   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6507   // Do we have the type of dest?
6508   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6509   // Is the type for src from speculation?
6510   bool src_spec = false;
6511   // Is the type for dest from speculation?
6512   bool dest_spec = false;
6513 
6514   if ((!has_src || !has_dest) && can_emit_guards) {
6515     // We don't have sufficient type information, let's see if
6516     // speculative types can help. We need to have types for both src
6517     // and dest so that it pays off.
6518 
6519     // Do we already have or could we have type information for src
6520     bool could_have_src = has_src;
6521     // Do we already have or could we have type information for dest
6522     bool could_have_dest = has_dest;
6523 
6524     ciKlass* src_k = nullptr;
6525     if (!has_src) {
6526       src_k = src_type->speculative_type_not_null();
6527       if (src_k != nullptr && src_k->is_array_klass()) {
6528         could_have_src = true;
6529       }
6530     }
6531 
6532     ciKlass* dest_k = nullptr;
6533     if (!has_dest) {
6534       dest_k = dest_type->speculative_type_not_null();
6535       if (dest_k != nullptr && dest_k->is_array_klass()) {
6536         could_have_dest = true;
6537       }
6538     }
6539 
6540     if (could_have_src && could_have_dest) {
6541       // This is going to pay off so emit the required guards
6542       if (!has_src) {
6543         src = maybe_cast_profiled_obj(src, src_k, true);
6544         src_type  = _gvn.type(src);
6545         top_src  = src_type->isa_aryptr();
6546         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
6547         src_spec = true;
6548       }
6549       if (!has_dest) {
6550         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6551         dest_type  = _gvn.type(dest);
6552         top_dest  = dest_type->isa_aryptr();
6553         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6554         dest_spec = true;
6555       }
6556     }
6557   }
6558 
6559   if (has_src && has_dest && can_emit_guards) {
6560     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6561     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6562     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6563     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6564 
6565     if (src_elem == dest_elem && top_src->is_flat() == top_dest->is_flat() && src_elem == T_OBJECT) {
6566       // If both arrays are object arrays then having the exact types
6567       // for both will remove the need for a subtype check at runtime
6568       // before the call and may make it possible to pick a faster copy
6569       // routine (without a subtype check on every element)
6570       // Do we have the exact type of src?
6571       bool could_have_src = src_spec;
6572       // Do we have the exact type of dest?
6573       bool could_have_dest = dest_spec;
6574       ciKlass* src_k = nullptr;
6575       ciKlass* dest_k = nullptr;
6576       if (!src_spec) {
6577         src_k = src_type->speculative_type_not_null();
6578         if (src_k != nullptr && src_k->is_array_klass()) {
6579           could_have_src = true;
6580         }
6581       }
6582       if (!dest_spec) {
6583         dest_k = dest_type->speculative_type_not_null();
6584         if (dest_k != nullptr && dest_k->is_array_klass()) {
6585           could_have_dest = true;
6586         }
6587       }
6588       if (could_have_src && could_have_dest) {
6589         // If we can have both exact types, emit the missing guards
6590         if (could_have_src && !src_spec) {
6591           src = maybe_cast_profiled_obj(src, src_k, true);
6592           src_type = _gvn.type(src);
6593           top_src = src_type->isa_aryptr();
6594         }
6595         if (could_have_dest && !dest_spec) {
6596           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6597           dest_type = _gvn.type(dest);
6598           top_dest = dest_type->isa_aryptr();
6599         }
6600       }
6601     }
6602   }
6603 
6604   ciMethod* trap_method = method();
6605   int trap_bci = bci();
6606   if (saved_jvms_before_guards != nullptr) {
6607     trap_method = alloc->jvms()->method();
6608     trap_bci = alloc->jvms()->bci();
6609   }
6610 
6611   bool negative_length_guard_generated = false;
6612 
6613   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6614       can_emit_guards && !src->is_top() && !dest->is_top()) {
6615     // validate arguments: enables transformation the ArrayCopyNode
6616     validated = true;
6617 
6618     RegionNode* slow_region = new RegionNode(1);
6619     record_for_igvn(slow_region);
6620 
6621     // (1) src and dest are arrays.
6622     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6623     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6624 
6625     // (2) src and dest arrays must have elements of the same BasicType
6626     // done at macro expansion or at Ideal transformation time
6627 
6628     // (4) src_offset must not be negative.
6629     generate_negative_guard(src_offset, slow_region);
6630 
6631     // (5) dest_offset must not be negative.
6632     generate_negative_guard(dest_offset, slow_region);
6633 
6634     // (7) src_offset + length must not exceed length of src.
6635     generate_limit_guard(src_offset, length,
6636                          load_array_length(src),
6637                          slow_region);
6638 
6639     // (8) dest_offset + length must not exceed length of dest.
6640     generate_limit_guard(dest_offset, length,
6641                          load_array_length(dest),
6642                          slow_region);
6643 
6644     // (6) length must not be negative.
6645     // This is also checked in generate_arraycopy() during macro expansion, but
6646     // we also have to check it here for the case where the ArrayCopyNode will
6647     // be eliminated by Escape Analysis.
6648     if (EliminateAllocations) {
6649       generate_negative_guard(length, slow_region);
6650       negative_length_guard_generated = true;
6651     }
6652 
6653     // (9) each element of an oop array must be assignable
6654     Node* dest_klass = load_object_klass(dest);
6655     if (src != dest) {
6656       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6657       slow_region->add_req(not_subtype_ctrl);
6658     }
6659 
6660     // TODO 8350865 Fix below logic. Also handle atomicity.
6661     generate_fair_guard(flat_array_test(src), slow_region);
6662     generate_fair_guard(flat_array_test(dest), slow_region);
6663 
6664     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6665     const Type* toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6666     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6667     src_type = _gvn.type(src);
6668     top_src  = src_type->isa_aryptr();
6669 
6670     // Handle flat inline type arrays (null-free arrays are handled by the subtype check above)
6671     if (!stopped() && UseArrayFlattening) {
6672       // If dest is flat, src must be flat as well (guaranteed by src <: dest check). Handle flat src here.
6673       assert(top_dest == nullptr || !top_dest->is_flat() || top_src->is_flat(), "src array must be flat");
6674       if (top_src != nullptr && top_src->is_flat()) {
6675         // Src is flat, check that dest is flat as well
6676         if (top_dest != nullptr && !top_dest->is_flat()) {
6677           generate_fair_guard(flat_array_test(dest_klass, /* flat = */ false), slow_region);
6678           // Since dest is flat and src <: dest, dest must have the same type as src.
6679           top_dest = top_src->cast_to_exactness(false);
6680           assert(top_dest->is_flat(), "dest must be flat");
6681           dest = _gvn.transform(new CheckCastPPNode(control(), dest, top_dest));
6682         }
6683       } else if (top_src == nullptr || !top_src->is_not_flat()) {
6684         // Src might be flat and dest might not be flat. Go to the slow path if src is flat.
6685         // TODO 8251971: Optimize for the case when src/dest are later found to be both flat.
6686         assert(top_dest == nullptr || !top_dest->is_flat(), "dest array must not be flat");
6687         generate_fair_guard(flat_array_test(src), slow_region);
6688         if (top_src != nullptr) {
6689           top_src = top_src->cast_to_not_flat();
6690           src = _gvn.transform(new CheckCastPPNode(control(), src, top_src));
6691         }
6692       }
6693     }
6694 
6695     {
6696       PreserveJVMState pjvms(this);
6697       set_control(_gvn.transform(slow_region));
6698       uncommon_trap(Deoptimization::Reason_intrinsic,
6699                     Deoptimization::Action_make_not_entrant);
6700       assert(stopped(), "Should be stopped");
6701     }
6702     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6703   }
6704 
6705   if (stopped()) {
6706     return true;
6707   }
6708 
6709   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6710                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6711                                           // so the compiler has a chance to eliminate them: during macro expansion,
6712                                           // we have to set their control (CastPP nodes are eliminated).
6713                                           load_object_klass(src), load_object_klass(dest),
6714                                           load_array_length(src), load_array_length(dest));
6715 
6716   ac->set_arraycopy(validated);
6717 
6718   Node* n = _gvn.transform(ac);
6719   if (n == ac) {
6720     ac->connect_outputs(this);
6721   } else {
6722     assert(validated, "shouldn't transform if all arguments not validated");
6723     set_all_memory(n);
6724   }
6725   clear_upper_avx();
6726 
6727 
6728   return true;
6729 }
6730 
6731 
6732 // Helper function which determines if an arraycopy immediately follows
6733 // an allocation, with no intervening tests or other escapes for the object.
6734 AllocateArrayNode*
6735 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
6736   if (stopped())             return nullptr;  // no fast path
6737   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
6738 
6739   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
6740   if (alloc == nullptr)  return nullptr;
6741 
6742   Node* rawmem = memory(Compile::AliasIdxRaw);
6743   // Is the allocation's memory state untouched?
6744   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
6745     // Bail out if there have been raw-memory effects since the allocation.
6746     // (Example:  There might have been a call or safepoint.)
6747     return nullptr;
6748   }
6749   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
6750   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
6751     return nullptr;
6752   }
6753 
6754   // There must be no unexpected observers of this allocation.
6755   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
6756     Node* obs = ptr->fast_out(i);
6757     if (obs != this->map()) {
6758       return nullptr;
6759     }
6760   }
6761 
6762   // This arraycopy must unconditionally follow the allocation of the ptr.
6763   Node* alloc_ctl = ptr->in(0);
6764   Node* ctl = control();
6765   while (ctl != alloc_ctl) {
6766     // There may be guards which feed into the slow_region.
6767     // Any other control flow means that we might not get a chance
6768     // to finish initializing the allocated object.
6769     // Various low-level checks bottom out in uncommon traps. These
6770     // are considered safe since we've already checked above that
6771     // there is no unexpected observer of this allocation.
6772     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6773       assert(ctl->in(0)->is_If(), "must be If");
6774       ctl = ctl->in(0)->in(0);
6775     } else {
6776       return nullptr;
6777     }
6778   }
6779 
6780   // If we get this far, we have an allocation which immediately
6781   // precedes the arraycopy, and we can take over zeroing the new object.
6782   // The arraycopy will finish the initialization, and provide
6783   // a new control state to which we will anchor the destination pointer.
6784 
6785   return alloc;
6786 }
6787 
6788 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6789   if (node->is_IfProj()) {
6790     Node* other_proj = node->as_IfProj()->other_if_proj();
6791     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6792       Node* obs = other_proj->fast_out(j);
6793       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6794           (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) {
6795         return obs->as_CallStaticJava();
6796       }
6797     }
6798   }
6799   return nullptr;
6800 }
6801 
6802 //-------------inline_encodeISOArray-----------------------------------
6803 // int sun.nio.cs.ISO_8859_1.Encoder#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len)
6804 // int java.lang.StringCoding#encodeISOArray0(byte[] sa, int sp, byte[] da, int dp, int len)
6805 // int java.lang.StringCoding#encodeAsciiArray0(char[] sa, int sp, byte[] da, int dp, int len)
6806 // encode char[] to byte[] in ISO_8859_1 or ASCII
6807 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6808   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6809   // no receiver since it is static method
6810   Node *src         = argument(0);
6811   Node *src_offset  = argument(1);
6812   Node *dst         = argument(2);
6813   Node *dst_offset  = argument(3);
6814   Node *length      = argument(4);
6815 
6816   // Cast source & target arrays to not-null
6817   if (VerifyIntrinsicChecks) {
6818     src = must_be_not_null(src, true);
6819     dst = must_be_not_null(dst, true);
6820     if (stopped()) {
6821       return true;
6822     }
6823   }
6824 
6825   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6826   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6827   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6828       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6829     // failed array check
6830     return false;
6831   }
6832 
6833   // Figure out the size and type of the elements we will be copying.
6834   BasicType src_elem = src_type->elem()->array_element_basic_type();
6835   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6836   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6837     return false;
6838   }
6839 
6840   // Check source & target bounds
6841   if (VerifyIntrinsicChecks) {
6842     generate_string_range_check(src, src_offset, length, src_elem == T_BYTE, true);
6843     generate_string_range_check(dst, dst_offset, length, false, true);
6844     if (stopped()) {
6845       return true;
6846     }
6847   }
6848 
6849   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6850   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6851   // 'src_start' points to src array + scaled offset
6852   // 'dst_start' points to dst array + scaled offset
6853 
6854   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6855   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6856   enc = _gvn.transform(enc);
6857   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6858   set_memory(res_mem, mtype);
6859   set_result(enc);
6860   clear_upper_avx();
6861 
6862   return true;
6863 }
6864 
6865 //-------------inline_multiplyToLen-----------------------------------
6866 bool LibraryCallKit::inline_multiplyToLen() {
6867   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6868 
6869   address stubAddr = StubRoutines::multiplyToLen();
6870   if (stubAddr == nullptr) {
6871     return false; // Intrinsic's stub is not implemented on this platform
6872   }
6873   const char* stubName = "multiplyToLen";
6874 
6875   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6876 
6877   // no receiver because it is a static method
6878   Node* x    = argument(0);
6879   Node* xlen = argument(1);
6880   Node* y    = argument(2);
6881   Node* ylen = argument(3);
6882   Node* z    = argument(4);
6883 
6884   x = must_be_not_null(x, true);
6885   y = must_be_not_null(y, true);
6886 
6887   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6888   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6889   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6890       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6891     // failed array check
6892     return false;
6893   }
6894 
6895   BasicType x_elem = x_type->elem()->array_element_basic_type();
6896   BasicType y_elem = y_type->elem()->array_element_basic_type();
6897   if (x_elem != T_INT || y_elem != T_INT) {
6898     return false;
6899   }
6900 
6901   Node* x_start = array_element_address(x, intcon(0), x_elem);
6902   Node* y_start = array_element_address(y, intcon(0), y_elem);
6903   // 'x_start' points to x array + scaled xlen
6904   // 'y_start' points to y array + scaled ylen
6905 
6906   Node* z_start = array_element_address(z, intcon(0), T_INT);
6907 
6908   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6909                                  OptoRuntime::multiplyToLen_Type(),
6910                                  stubAddr, stubName, TypePtr::BOTTOM,
6911                                  x_start, xlen, y_start, ylen, z_start);
6912 
6913   C->set_has_split_ifs(true); // Has chance for split-if optimization
6914   set_result(z);
6915   return true;
6916 }
6917 
6918 //-------------inline_squareToLen------------------------------------
6919 bool LibraryCallKit::inline_squareToLen() {
6920   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6921 
6922   address stubAddr = StubRoutines::squareToLen();
6923   if (stubAddr == nullptr) {
6924     return false; // Intrinsic's stub is not implemented on this platform
6925   }
6926   const char* stubName = "squareToLen";
6927 
6928   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6929 
6930   Node* x    = argument(0);
6931   Node* len  = argument(1);
6932   Node* z    = argument(2);
6933   Node* zlen = argument(3);
6934 
6935   x = must_be_not_null(x, true);
6936   z = must_be_not_null(z, true);
6937 
6938   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6939   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6940   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6941       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6942     // failed array check
6943     return false;
6944   }
6945 
6946   BasicType x_elem = x_type->elem()->array_element_basic_type();
6947   BasicType z_elem = z_type->elem()->array_element_basic_type();
6948   if (x_elem != T_INT || z_elem != T_INT) {
6949     return false;
6950   }
6951 
6952 
6953   Node* x_start = array_element_address(x, intcon(0), x_elem);
6954   Node* z_start = array_element_address(z, intcon(0), z_elem);
6955 
6956   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6957                                   OptoRuntime::squareToLen_Type(),
6958                                   stubAddr, stubName, TypePtr::BOTTOM,
6959                                   x_start, len, z_start, zlen);
6960 
6961   set_result(z);
6962   return true;
6963 }
6964 
6965 //-------------inline_mulAdd------------------------------------------
6966 bool LibraryCallKit::inline_mulAdd() {
6967   assert(UseMulAddIntrinsic, "not implemented on this platform");
6968 
6969   address stubAddr = StubRoutines::mulAdd();
6970   if (stubAddr == nullptr) {
6971     return false; // Intrinsic's stub is not implemented on this platform
6972   }
6973   const char* stubName = "mulAdd";
6974 
6975   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6976 
6977   Node* out      = argument(0);
6978   Node* in       = argument(1);
6979   Node* offset   = argument(2);
6980   Node* len      = argument(3);
6981   Node* k        = argument(4);
6982 
6983   in = must_be_not_null(in, true);
6984   out = must_be_not_null(out, true);
6985 
6986   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6987   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6988   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6989        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6990     // failed array check
6991     return false;
6992   }
6993 
6994   BasicType out_elem = out_type->elem()->array_element_basic_type();
6995   BasicType in_elem = in_type->elem()->array_element_basic_type();
6996   if (out_elem != T_INT || in_elem != T_INT) {
6997     return false;
6998   }
6999 
7000   Node* outlen = load_array_length(out);
7001   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
7002   Node* out_start = array_element_address(out, intcon(0), out_elem);
7003   Node* in_start = array_element_address(in, intcon(0), in_elem);
7004 
7005   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
7006                                   OptoRuntime::mulAdd_Type(),
7007                                   stubAddr, stubName, TypePtr::BOTTOM,
7008                                   out_start,in_start, new_offset, len, k);
7009   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7010   set_result(result);
7011   return true;
7012 }
7013 
7014 //-------------inline_montgomeryMultiply-----------------------------------
7015 bool LibraryCallKit::inline_montgomeryMultiply() {
7016   address stubAddr = StubRoutines::montgomeryMultiply();
7017   if (stubAddr == nullptr) {
7018     return false; // Intrinsic's stub is not implemented on this platform
7019   }
7020 
7021   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
7022   const char* stubName = "montgomery_multiply";
7023 
7024   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
7025 
7026   Node* a    = argument(0);
7027   Node* b    = argument(1);
7028   Node* n    = argument(2);
7029   Node* len  = argument(3);
7030   Node* inv  = argument(4);
7031   Node* m    = argument(6);
7032 
7033   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
7034   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
7035   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
7036   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
7037   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
7038       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
7039       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
7040       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
7041     // failed array check
7042     return false;
7043   }
7044 
7045   BasicType a_elem = a_type->elem()->array_element_basic_type();
7046   BasicType b_elem = b_type->elem()->array_element_basic_type();
7047   BasicType n_elem = n_type->elem()->array_element_basic_type();
7048   BasicType m_elem = m_type->elem()->array_element_basic_type();
7049   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
7050     return false;
7051   }
7052 
7053   // Make the call
7054   {
7055     Node* a_start = array_element_address(a, intcon(0), a_elem);
7056     Node* b_start = array_element_address(b, intcon(0), b_elem);
7057     Node* n_start = array_element_address(n, intcon(0), n_elem);
7058     Node* m_start = array_element_address(m, intcon(0), m_elem);
7059 
7060     Node* call = make_runtime_call(RC_LEAF,
7061                                    OptoRuntime::montgomeryMultiply_Type(),
7062                                    stubAddr, stubName, TypePtr::BOTTOM,
7063                                    a_start, b_start, n_start, len, inv, top(),
7064                                    m_start);
7065     set_result(m);
7066   }
7067 
7068   return true;
7069 }
7070 
7071 bool LibraryCallKit::inline_montgomerySquare() {
7072   address stubAddr = StubRoutines::montgomerySquare();
7073   if (stubAddr == nullptr) {
7074     return false; // Intrinsic's stub is not implemented on this platform
7075   }
7076 
7077   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
7078   const char* stubName = "montgomery_square";
7079 
7080   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
7081 
7082   Node* a    = argument(0);
7083   Node* n    = argument(1);
7084   Node* len  = argument(2);
7085   Node* inv  = argument(3);
7086   Node* m    = argument(5);
7087 
7088   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
7089   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
7090   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
7091   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
7092       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
7093       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
7094     // failed array check
7095     return false;
7096   }
7097 
7098   BasicType a_elem = a_type->elem()->array_element_basic_type();
7099   BasicType n_elem = n_type->elem()->array_element_basic_type();
7100   BasicType m_elem = m_type->elem()->array_element_basic_type();
7101   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
7102     return false;
7103   }
7104 
7105   // Make the call
7106   {
7107     Node* a_start = array_element_address(a, intcon(0), a_elem);
7108     Node* n_start = array_element_address(n, intcon(0), n_elem);
7109     Node* m_start = array_element_address(m, intcon(0), m_elem);
7110 
7111     Node* call = make_runtime_call(RC_LEAF,
7112                                    OptoRuntime::montgomerySquare_Type(),
7113                                    stubAddr, stubName, TypePtr::BOTTOM,
7114                                    a_start, n_start, len, inv, top(),
7115                                    m_start);
7116     set_result(m);
7117   }
7118 
7119   return true;
7120 }
7121 
7122 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
7123   address stubAddr = nullptr;
7124   const char* stubName = nullptr;
7125 
7126   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
7127   if (stubAddr == nullptr) {
7128     return false; // Intrinsic's stub is not implemented on this platform
7129   }
7130 
7131   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
7132 
7133   assert(callee()->signature()->size() == 5, "expected 5 arguments");
7134 
7135   Node* newArr = argument(0);
7136   Node* oldArr = argument(1);
7137   Node* newIdx = argument(2);
7138   Node* shiftCount = argument(3);
7139   Node* numIter = argument(4);
7140 
7141   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
7142   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
7143   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
7144       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
7145     return false;
7146   }
7147 
7148   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
7149   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
7150   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
7151     return false;
7152   }
7153 
7154   // Make the call
7155   {
7156     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
7157     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
7158 
7159     Node* call = make_runtime_call(RC_LEAF,
7160                                    OptoRuntime::bigIntegerShift_Type(),
7161                                    stubAddr,
7162                                    stubName,
7163                                    TypePtr::BOTTOM,
7164                                    newArr_start,
7165                                    oldArr_start,
7166                                    newIdx,
7167                                    shiftCount,
7168                                    numIter);
7169   }
7170 
7171   return true;
7172 }
7173 
7174 //-------------inline_vectorizedMismatch------------------------------
7175 bool LibraryCallKit::inline_vectorizedMismatch() {
7176   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
7177 
7178   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
7179   Node* obja    = argument(0); // Object
7180   Node* aoffset = argument(1); // long
7181   Node* objb    = argument(3); // Object
7182   Node* boffset = argument(4); // long
7183   Node* length  = argument(6); // int
7184   Node* scale   = argument(7); // int
7185 
7186   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
7187   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
7188   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
7189       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
7190       scale == top()) {
7191     return false; // failed input validation
7192   }
7193 
7194   Node* obja_adr = make_unsafe_address(obja, aoffset);
7195   Node* objb_adr = make_unsafe_address(objb, boffset);
7196 
7197   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
7198   //
7199   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
7200   //    if (length <= inline_limit) {
7201   //      inline_path:
7202   //        vmask   = VectorMaskGen length
7203   //        vload1  = LoadVectorMasked obja, vmask
7204   //        vload2  = LoadVectorMasked objb, vmask
7205   //        result1 = VectorCmpMasked vload1, vload2, vmask
7206   //    } else {
7207   //      call_stub_path:
7208   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
7209   //    }
7210   //    exit_block:
7211   //      return Phi(result1, result2);
7212   //
7213   enum { inline_path = 1,  // input is small enough to process it all at once
7214          stub_path   = 2,  // input is too large; call into the VM
7215          PATH_LIMIT  = 3
7216   };
7217 
7218   Node* exit_block = new RegionNode(PATH_LIMIT);
7219   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
7220   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
7221 
7222   Node* call_stub_path = control();
7223 
7224   BasicType elem_bt = T_ILLEGAL;
7225 
7226   const TypeInt* scale_t = _gvn.type(scale)->is_int();
7227   if (scale_t->is_con()) {
7228     switch (scale_t->get_con()) {
7229       case 0: elem_bt = T_BYTE;  break;
7230       case 1: elem_bt = T_SHORT; break;
7231       case 2: elem_bt = T_INT;   break;
7232       case 3: elem_bt = T_LONG;  break;
7233 
7234       default: elem_bt = T_ILLEGAL; break; // not supported
7235     }
7236   }
7237 
7238   int inline_limit = 0;
7239   bool do_partial_inline = false;
7240 
7241   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
7242     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
7243     do_partial_inline = inline_limit >= 16;
7244   }
7245 
7246   if (do_partial_inline) {
7247     assert(elem_bt != T_ILLEGAL, "sanity");
7248 
7249     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
7250         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
7251         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
7252 
7253       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
7254       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
7255       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
7256 
7257       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
7258 
7259       if (!stopped()) {
7260         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
7261 
7262         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
7263         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
7264         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
7265         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
7266 
7267         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
7268         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
7269         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
7270         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
7271 
7272         exit_block->init_req(inline_path, control());
7273         memory_phi->init_req(inline_path, map()->memory());
7274         result_phi->init_req(inline_path, result);
7275 
7276         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
7277         clear_upper_avx();
7278       }
7279     }
7280   }
7281 
7282   if (call_stub_path != nullptr) {
7283     set_control(call_stub_path);
7284 
7285     Node* call = make_runtime_call(RC_LEAF,
7286                                    OptoRuntime::vectorizedMismatch_Type(),
7287                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
7288                                    obja_adr, objb_adr, length, scale);
7289 
7290     exit_block->init_req(stub_path, control());
7291     memory_phi->init_req(stub_path, map()->memory());
7292     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
7293   }
7294 
7295   exit_block = _gvn.transform(exit_block);
7296   memory_phi = _gvn.transform(memory_phi);
7297   result_phi = _gvn.transform(result_phi);
7298 
7299   record_for_igvn(exit_block);
7300   record_for_igvn(memory_phi);
7301   record_for_igvn(result_phi);
7302 
7303   set_control(exit_block);
7304   set_all_memory(memory_phi);
7305   set_result(result_phi);
7306 
7307   return true;
7308 }
7309 
7310 //------------------------------inline_vectorizedHashcode----------------------------
7311 bool LibraryCallKit::inline_vectorizedHashCode() {
7312   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
7313 
7314   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
7315   Node* array          = argument(0);
7316   Node* offset         = argument(1);
7317   Node* length         = argument(2);
7318   Node* initialValue   = argument(3);
7319   Node* basic_type     = argument(4);
7320 
7321   if (basic_type == top()) {
7322     return false; // failed input validation
7323   }
7324 
7325   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
7326   if (!basic_type_t->is_con()) {
7327     return false; // Only intrinsify if mode argument is constant
7328   }
7329 
7330   array = must_be_not_null(array, true);
7331 
7332   BasicType bt = (BasicType)basic_type_t->get_con();
7333 
7334   // Resolve address of first element
7335   Node* array_start = array_element_address(array, offset, bt);
7336 
7337   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
7338     array_start, length, initialValue, basic_type)));
7339   clear_upper_avx();
7340 
7341   return true;
7342 }
7343 
7344 /**
7345  * Calculate CRC32 for byte.
7346  * int java.util.zip.CRC32.update(int crc, int b)
7347  */
7348 bool LibraryCallKit::inline_updateCRC32() {
7349   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
7350   assert(callee()->signature()->size() == 2, "update has 2 parameters");
7351   // no receiver since it is static method
7352   Node* crc  = argument(0); // type: int
7353   Node* b    = argument(1); // type: int
7354 
7355   /*
7356    *    int c = ~ crc;
7357    *    b = timesXtoThe32[(b ^ c) & 0xFF];
7358    *    b = b ^ (c >>> 8);
7359    *    crc = ~b;
7360    */
7361 
7362   Node* M1 = intcon(-1);
7363   crc = _gvn.transform(new XorINode(crc, M1));
7364   Node* result = _gvn.transform(new XorINode(crc, b));
7365   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
7366 
7367   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
7368   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
7369   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
7370   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
7371 
7372   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
7373   result = _gvn.transform(new XorINode(crc, result));
7374   result = _gvn.transform(new XorINode(result, M1));
7375   set_result(result);
7376   return true;
7377 }
7378 
7379 /**
7380  * Calculate CRC32 for byte[] array.
7381  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
7382  */
7383 bool LibraryCallKit::inline_updateBytesCRC32() {
7384   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
7385   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
7386   // no receiver since it is static method
7387   Node* crc     = argument(0); // type: int
7388   Node* src     = argument(1); // type: oop
7389   Node* offset  = argument(2); // type: int
7390   Node* length  = argument(3); // type: int
7391 
7392   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7393   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7394     // failed array check
7395     return false;
7396   }
7397 
7398   // Figure out the size and type of the elements we will be copying.
7399   BasicType src_elem = src_type->elem()->array_element_basic_type();
7400   if (src_elem != T_BYTE) {
7401     return false;
7402   }
7403 
7404   // 'src_start' points to src array + scaled offset
7405   src = must_be_not_null(src, true);
7406   Node* src_start = array_element_address(src, offset, src_elem);
7407 
7408   // We assume that range check is done by caller.
7409   // TODO: generate range check (offset+length < src.length) in debug VM.
7410 
7411   // Call the stub.
7412   address stubAddr = StubRoutines::updateBytesCRC32();
7413   const char *stubName = "updateBytesCRC32";
7414 
7415   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
7416                                  stubAddr, stubName, TypePtr::BOTTOM,
7417                                  crc, src_start, length);
7418   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7419   set_result(result);
7420   return true;
7421 }
7422 
7423 /**
7424  * Calculate CRC32 for ByteBuffer.
7425  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
7426  */
7427 bool LibraryCallKit::inline_updateByteBufferCRC32() {
7428   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
7429   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
7430   // no receiver since it is static method
7431   Node* crc     = argument(0); // type: int
7432   Node* src     = argument(1); // type: long
7433   Node* offset  = argument(3); // type: int
7434   Node* length  = argument(4); // type: int
7435 
7436   src = ConvL2X(src);  // adjust Java long to machine word
7437   Node* base = _gvn.transform(new CastX2PNode(src));
7438   offset = ConvI2X(offset);
7439 
7440   // 'src_start' points to src array + scaled offset
7441   Node* src_start = basic_plus_adr(top(), base, offset);
7442 
7443   // Call the stub.
7444   address stubAddr = StubRoutines::updateBytesCRC32();
7445   const char *stubName = "updateBytesCRC32";
7446 
7447   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
7448                                  stubAddr, stubName, TypePtr::BOTTOM,
7449                                  crc, src_start, length);
7450   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7451   set_result(result);
7452   return true;
7453 }
7454 
7455 //------------------------------get_table_from_crc32c_class-----------------------
7456 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
7457   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
7458   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
7459 
7460   return table;
7461 }
7462 
7463 //------------------------------inline_updateBytesCRC32C-----------------------
7464 //
7465 // Calculate CRC32C for byte[] array.
7466 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
7467 //
7468 bool LibraryCallKit::inline_updateBytesCRC32C() {
7469   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
7470   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
7471   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
7472   // no receiver since it is a static method
7473   Node* crc     = argument(0); // type: int
7474   Node* src     = argument(1); // type: oop
7475   Node* offset  = argument(2); // type: int
7476   Node* end     = argument(3); // type: int
7477 
7478   Node* length = _gvn.transform(new SubINode(end, offset));
7479 
7480   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7481   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7482     // failed array check
7483     return false;
7484   }
7485 
7486   // Figure out the size and type of the elements we will be copying.
7487   BasicType src_elem = src_type->elem()->array_element_basic_type();
7488   if (src_elem != T_BYTE) {
7489     return false;
7490   }
7491 
7492   // 'src_start' points to src array + scaled offset
7493   src = must_be_not_null(src, true);
7494   Node* src_start = array_element_address(src, offset, src_elem);
7495 
7496   // static final int[] byteTable in class CRC32C
7497   Node* table = get_table_from_crc32c_class(callee()->holder());
7498   table = must_be_not_null(table, true);
7499   Node* table_start = array_element_address(table, intcon(0), T_INT);
7500 
7501   // We assume that range check is done by caller.
7502   // TODO: generate range check (offset+length < src.length) in debug VM.
7503 
7504   // Call the stub.
7505   address stubAddr = StubRoutines::updateBytesCRC32C();
7506   const char *stubName = "updateBytesCRC32C";
7507 
7508   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
7509                                  stubAddr, stubName, TypePtr::BOTTOM,
7510                                  crc, src_start, length, table_start);
7511   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7512   set_result(result);
7513   return true;
7514 }
7515 
7516 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
7517 //
7518 // Calculate CRC32C for DirectByteBuffer.
7519 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
7520 //
7521 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
7522   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
7523   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
7524   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
7525   // no receiver since it is a static method
7526   Node* crc     = argument(0); // type: int
7527   Node* src     = argument(1); // type: long
7528   Node* offset  = argument(3); // type: int
7529   Node* end     = argument(4); // type: int
7530 
7531   Node* length = _gvn.transform(new SubINode(end, offset));
7532 
7533   src = ConvL2X(src);  // adjust Java long to machine word
7534   Node* base = _gvn.transform(new CastX2PNode(src));
7535   offset = ConvI2X(offset);
7536 
7537   // 'src_start' points to src array + scaled offset
7538   Node* src_start = basic_plus_adr(top(), base, offset);
7539 
7540   // static final int[] byteTable in class CRC32C
7541   Node* table = get_table_from_crc32c_class(callee()->holder());
7542   table = must_be_not_null(table, true);
7543   Node* table_start = array_element_address(table, intcon(0), T_INT);
7544 
7545   // Call the stub.
7546   address stubAddr = StubRoutines::updateBytesCRC32C();
7547   const char *stubName = "updateBytesCRC32C";
7548 
7549   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
7550                                  stubAddr, stubName, TypePtr::BOTTOM,
7551                                  crc, src_start, length, table_start);
7552   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7553   set_result(result);
7554   return true;
7555 }
7556 
7557 //------------------------------inline_updateBytesAdler32----------------------
7558 //
7559 // Calculate Adler32 checksum for byte[] array.
7560 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
7561 //
7562 bool LibraryCallKit::inline_updateBytesAdler32() {
7563   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
7564   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
7565   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
7566   // no receiver since it is static method
7567   Node* crc     = argument(0); // type: int
7568   Node* src     = argument(1); // type: oop
7569   Node* offset  = argument(2); // type: int
7570   Node* length  = argument(3); // type: int
7571 
7572   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7573   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7574     // failed array check
7575     return false;
7576   }
7577 
7578   // Figure out the size and type of the elements we will be copying.
7579   BasicType src_elem = src_type->elem()->array_element_basic_type();
7580   if (src_elem != T_BYTE) {
7581     return false;
7582   }
7583 
7584   // 'src_start' points to src array + scaled offset
7585   Node* src_start = array_element_address(src, offset, src_elem);
7586 
7587   // We assume that range check is done by caller.
7588   // TODO: generate range check (offset+length < src.length) in debug VM.
7589 
7590   // Call the stub.
7591   address stubAddr = StubRoutines::updateBytesAdler32();
7592   const char *stubName = "updateBytesAdler32";
7593 
7594   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
7595                                  stubAddr, stubName, TypePtr::BOTTOM,
7596                                  crc, src_start, length);
7597   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7598   set_result(result);
7599   return true;
7600 }
7601 
7602 //------------------------------inline_updateByteBufferAdler32---------------
7603 //
7604 // Calculate Adler32 checksum for DirectByteBuffer.
7605 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
7606 //
7607 bool LibraryCallKit::inline_updateByteBufferAdler32() {
7608   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
7609   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
7610   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
7611   // no receiver since it is static method
7612   Node* crc     = argument(0); // type: int
7613   Node* src     = argument(1); // type: long
7614   Node* offset  = argument(3); // type: int
7615   Node* length  = argument(4); // type: int
7616 
7617   src = ConvL2X(src);  // adjust Java long to machine word
7618   Node* base = _gvn.transform(new CastX2PNode(src));
7619   offset = ConvI2X(offset);
7620 
7621   // 'src_start' points to src array + scaled offset
7622   Node* src_start = basic_plus_adr(top(), base, offset);
7623 
7624   // Call the stub.
7625   address stubAddr = StubRoutines::updateBytesAdler32();
7626   const char *stubName = "updateBytesAdler32";
7627 
7628   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
7629                                  stubAddr, stubName, TypePtr::BOTTOM,
7630                                  crc, src_start, length);
7631 
7632   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7633   set_result(result);
7634   return true;
7635 }
7636 
7637 //----------------------------inline_reference_get0----------------------------
7638 // public T java.lang.ref.Reference.get();
7639 bool LibraryCallKit::inline_reference_get0() {
7640   const int referent_offset = java_lang_ref_Reference::referent_offset();
7641 
7642   // Get the argument:
7643   Node* reference_obj = null_check_receiver();
7644   if (stopped()) return true;
7645 
7646   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
7647   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7648                                         decorators, /*is_static*/ false, nullptr);
7649   if (result == nullptr) return false;
7650 
7651   // Add memory barrier to prevent commoning reads from this field
7652   // across safepoint since GC can change its value.
7653   insert_mem_bar(Op_MemBarCPUOrder);
7654 
7655   set_result(result);
7656   return true;
7657 }
7658 
7659 //----------------------------inline_reference_refersTo0----------------------------
7660 // bool java.lang.ref.Reference.refersTo0();
7661 // bool java.lang.ref.PhantomReference.refersTo0();
7662 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
7663   // Get arguments:
7664   Node* reference_obj = null_check_receiver();
7665   Node* other_obj = argument(1);
7666   if (stopped()) return true;
7667 
7668   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
7669   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
7670   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7671                                           decorators, /*is_static*/ false, nullptr);
7672   if (referent == nullptr) return false;
7673 
7674   // Add memory barrier to prevent commoning reads from this field
7675   // across safepoint since GC can change its value.
7676   insert_mem_bar(Op_MemBarCPUOrder);
7677 
7678   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
7679   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
7680   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
7681 
7682   RegionNode* region = new RegionNode(3);
7683   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
7684 
7685   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
7686   region->init_req(1, if_true);
7687   phi->init_req(1, intcon(1));
7688 
7689   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
7690   region->init_req(2, if_false);
7691   phi->init_req(2, intcon(0));
7692 
7693   set_control(_gvn.transform(region));
7694   record_for_igvn(region);
7695   set_result(_gvn.transform(phi));
7696   return true;
7697 }
7698 
7699 //----------------------------inline_reference_clear0----------------------------
7700 // void java.lang.ref.Reference.clear0();
7701 // void java.lang.ref.PhantomReference.clear0();
7702 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) {
7703   // This matches the implementation in JVM_ReferenceClear, see the comments there.
7704 
7705   // Get arguments
7706   Node* reference_obj = null_check_receiver();
7707   if (stopped()) return true;
7708 
7709   // Common access parameters
7710   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
7711   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
7712   Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset());
7713   const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr();
7714   const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass());
7715 
7716   Node* referent = access_load_at(reference_obj,
7717                                   referent_field_addr,
7718                                   referent_field_addr_type,
7719                                   val_type,
7720                                   T_OBJECT,
7721                                   decorators);
7722 
7723   IdealKit ideal(this);
7724 #define __ ideal.
7725   __ if_then(referent, BoolTest::ne, null());
7726     sync_kit(ideal);
7727     access_store_at(reference_obj,
7728                     referent_field_addr,
7729                     referent_field_addr_type,
7730                     null(),
7731                     val_type,
7732                     T_OBJECT,
7733                     decorators);
7734     __ sync_kit(this);
7735   __ end_if();
7736   final_sync(ideal);
7737 #undef __
7738 
7739   return true;
7740 }
7741 
7742 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
7743                                              DecoratorSet decorators, bool is_static,
7744                                              ciInstanceKlass* fromKls) {
7745   if (fromKls == nullptr) {
7746     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7747     assert(tinst != nullptr, "obj is null");
7748     assert(tinst->is_loaded(), "obj is not loaded");
7749     fromKls = tinst->instance_klass();
7750   } else {
7751     assert(is_static, "only for static field access");
7752   }
7753   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7754                                               ciSymbol::make(fieldTypeString),
7755                                               is_static);
7756 
7757   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
7758   if (field == nullptr) return (Node *) nullptr;
7759 
7760   if (is_static) {
7761     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7762     fromObj = makecon(tip);
7763   }
7764 
7765   // Next code  copied from Parse::do_get_xxx():
7766 
7767   // Compute address and memory type.
7768   int offset  = field->offset_in_bytes();
7769   bool is_vol = field->is_volatile();
7770   ciType* field_klass = field->type();
7771   assert(field_klass->is_loaded(), "should be loaded");
7772   const TypePtr* adr_type = C->alias_type(field)->adr_type();
7773   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7774   assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
7775     "slice of address and input slice don't match");
7776   BasicType bt = field->layout_type();
7777 
7778   // Build the resultant type of the load
7779   const Type *type;
7780   if (bt == T_OBJECT) {
7781     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
7782   } else {
7783     type = Type::get_const_basic_type(bt);
7784   }
7785 
7786   if (is_vol) {
7787     decorators |= MO_SEQ_CST;
7788   }
7789 
7790   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
7791 }
7792 
7793 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7794                                                  bool is_exact /* true */, bool is_static /* false */,
7795                                                  ciInstanceKlass * fromKls /* nullptr */) {
7796   if (fromKls == nullptr) {
7797     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7798     assert(tinst != nullptr, "obj is null");
7799     assert(tinst->is_loaded(), "obj is not loaded");
7800     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7801     fromKls = tinst->instance_klass();
7802   }
7803   else {
7804     assert(is_static, "only for static field access");
7805   }
7806   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7807     ciSymbol::make(fieldTypeString),
7808     is_static);
7809 
7810   assert(field != nullptr, "undefined field");
7811   assert(!field->is_volatile(), "not defined for volatile fields");
7812 
7813   if (is_static) {
7814     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7815     fromObj = makecon(tip);
7816   }
7817 
7818   // Next code  copied from Parse::do_get_xxx():
7819 
7820   // Compute address and memory type.
7821   int offset = field->offset_in_bytes();
7822   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7823 
7824   return adr;
7825 }
7826 
7827 //------------------------------inline_aescrypt_Block-----------------------
7828 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7829   address stubAddr = nullptr;
7830   const char *stubName;
7831   assert(UseAES, "need AES instruction support");
7832 
7833   switch(id) {
7834   case vmIntrinsics::_aescrypt_encryptBlock:
7835     stubAddr = StubRoutines::aescrypt_encryptBlock();
7836     stubName = "aescrypt_encryptBlock";
7837     break;
7838   case vmIntrinsics::_aescrypt_decryptBlock:
7839     stubAddr = StubRoutines::aescrypt_decryptBlock();
7840     stubName = "aescrypt_decryptBlock";
7841     break;
7842   default:
7843     break;
7844   }
7845   if (stubAddr == nullptr) return false;
7846 
7847   Node* aescrypt_object = argument(0);
7848   Node* src             = argument(1);
7849   Node* src_offset      = argument(2);
7850   Node* dest            = argument(3);
7851   Node* dest_offset     = argument(4);
7852 
7853   src = must_be_not_null(src, true);
7854   dest = must_be_not_null(dest, true);
7855 
7856   // (1) src and dest are arrays.
7857   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7858   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7859   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7860          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7861 
7862   // for the quick and dirty code we will skip all the checks.
7863   // we are just trying to get the call to be generated.
7864   Node* src_start  = src;
7865   Node* dest_start = dest;
7866   if (src_offset != nullptr || dest_offset != nullptr) {
7867     assert(src_offset != nullptr && dest_offset != nullptr, "");
7868     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7869     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7870   }
7871 
7872   // now need to get the start of its expanded key array
7873   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7874   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7875   if (k_start == nullptr) return false;
7876 
7877   // Call the stub.
7878   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7879                     stubAddr, stubName, TypePtr::BOTTOM,
7880                     src_start, dest_start, k_start);
7881 
7882   return true;
7883 }
7884 
7885 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7886 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7887   address stubAddr = nullptr;
7888   const char *stubName = nullptr;
7889 
7890   assert(UseAES, "need AES instruction support");
7891 
7892   switch(id) {
7893   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7894     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7895     stubName = "cipherBlockChaining_encryptAESCrypt";
7896     break;
7897   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7898     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7899     stubName = "cipherBlockChaining_decryptAESCrypt";
7900     break;
7901   default:
7902     break;
7903   }
7904   if (stubAddr == nullptr) return false;
7905 
7906   Node* cipherBlockChaining_object = argument(0);
7907   Node* src                        = argument(1);
7908   Node* src_offset                 = argument(2);
7909   Node* len                        = argument(3);
7910   Node* dest                       = argument(4);
7911   Node* dest_offset                = argument(5);
7912 
7913   src = must_be_not_null(src, false);
7914   dest = must_be_not_null(dest, false);
7915 
7916   // (1) src and dest are arrays.
7917   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7918   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7919   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7920          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7921 
7922   // checks are the responsibility of the caller
7923   Node* src_start  = src;
7924   Node* dest_start = dest;
7925   if (src_offset != nullptr || dest_offset != nullptr) {
7926     assert(src_offset != nullptr && dest_offset != nullptr, "");
7927     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7928     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7929   }
7930 
7931   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7932   // (because of the predicated logic executed earlier).
7933   // so we cast it here safely.
7934   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7935 
7936   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7937   if (embeddedCipherObj == nullptr) return false;
7938 
7939   // cast it to what we know it will be at runtime
7940   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7941   assert(tinst != nullptr, "CBC obj is null");
7942   assert(tinst->is_loaded(), "CBC obj is not loaded");
7943   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7944   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7945 
7946   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7947   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7948   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7949   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7950   aescrypt_object = _gvn.transform(aescrypt_object);
7951 
7952   // we need to get the start of the aescrypt_object's expanded key array
7953   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7954   if (k_start == nullptr) return false;
7955 
7956   // similarly, get the start address of the r vector
7957   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7958   if (objRvec == nullptr) return false;
7959   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7960 
7961   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7962   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7963                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7964                                      stubAddr, stubName, TypePtr::BOTTOM,
7965                                      src_start, dest_start, k_start, r_start, len);
7966 
7967   // return cipher length (int)
7968   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7969   set_result(retvalue);
7970   return true;
7971 }
7972 
7973 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7974 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7975   address stubAddr = nullptr;
7976   const char *stubName = nullptr;
7977 
7978   assert(UseAES, "need AES instruction support");
7979 
7980   switch (id) {
7981   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7982     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7983     stubName = "electronicCodeBook_encryptAESCrypt";
7984     break;
7985   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7986     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7987     stubName = "electronicCodeBook_decryptAESCrypt";
7988     break;
7989   default:
7990     break;
7991   }
7992 
7993   if (stubAddr == nullptr) return false;
7994 
7995   Node* electronicCodeBook_object = argument(0);
7996   Node* src                       = argument(1);
7997   Node* src_offset                = argument(2);
7998   Node* len                       = argument(3);
7999   Node* dest                      = argument(4);
8000   Node* dest_offset               = argument(5);
8001 
8002   // (1) src and dest are arrays.
8003   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8004   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
8005   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
8006          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
8007 
8008   // checks are the responsibility of the caller
8009   Node* src_start = src;
8010   Node* dest_start = dest;
8011   if (src_offset != nullptr || dest_offset != nullptr) {
8012     assert(src_offset != nullptr && dest_offset != nullptr, "");
8013     src_start = array_element_address(src, src_offset, T_BYTE);
8014     dest_start = array_element_address(dest, dest_offset, T_BYTE);
8015   }
8016 
8017   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8018   // (because of the predicated logic executed earlier).
8019   // so we cast it here safely.
8020   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8021 
8022   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8023   if (embeddedCipherObj == nullptr) return false;
8024 
8025   // cast it to what we know it will be at runtime
8026   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
8027   assert(tinst != nullptr, "ECB obj is null");
8028   assert(tinst->is_loaded(), "ECB obj is not loaded");
8029   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8030   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8031 
8032   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8033   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8034   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
8035   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8036   aescrypt_object = _gvn.transform(aescrypt_object);
8037 
8038   // we need to get the start of the aescrypt_object's expanded key array
8039   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8040   if (k_start == nullptr) return false;
8041 
8042   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
8043   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
8044                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
8045                                      stubAddr, stubName, TypePtr::BOTTOM,
8046                                      src_start, dest_start, k_start, len);
8047 
8048   // return cipher length (int)
8049   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
8050   set_result(retvalue);
8051   return true;
8052 }
8053 
8054 //------------------------------inline_counterMode_AESCrypt-----------------------
8055 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
8056   assert(UseAES, "need AES instruction support");
8057   if (!UseAESCTRIntrinsics) return false;
8058 
8059   address stubAddr = nullptr;
8060   const char *stubName = nullptr;
8061   if (id == vmIntrinsics::_counterMode_AESCrypt) {
8062     stubAddr = StubRoutines::counterMode_AESCrypt();
8063     stubName = "counterMode_AESCrypt";
8064   }
8065   if (stubAddr == nullptr) return false;
8066 
8067   Node* counterMode_object = argument(0);
8068   Node* src = argument(1);
8069   Node* src_offset = argument(2);
8070   Node* len = argument(3);
8071   Node* dest = argument(4);
8072   Node* dest_offset = argument(5);
8073 
8074   // (1) src and dest are arrays.
8075   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8076   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
8077   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
8078          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
8079 
8080   // checks are the responsibility of the caller
8081   Node* src_start = src;
8082   Node* dest_start = dest;
8083   if (src_offset != nullptr || dest_offset != nullptr) {
8084     assert(src_offset != nullptr && dest_offset != nullptr, "");
8085     src_start = array_element_address(src, src_offset, T_BYTE);
8086     dest_start = array_element_address(dest, dest_offset, T_BYTE);
8087   }
8088 
8089   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8090   // (because of the predicated logic executed earlier).
8091   // so we cast it here safely.
8092   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8093   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8094   if (embeddedCipherObj == nullptr) return false;
8095   // cast it to what we know it will be at runtime
8096   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
8097   assert(tinst != nullptr, "CTR obj is null");
8098   assert(tinst->is_loaded(), "CTR obj is not loaded");
8099   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8100   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8101   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8102   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8103   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
8104   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8105   aescrypt_object = _gvn.transform(aescrypt_object);
8106   // we need to get the start of the aescrypt_object's expanded key array
8107   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8108   if (k_start == nullptr) return false;
8109   // similarly, get the start address of the r vector
8110   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
8111   if (obj_counter == nullptr) return false;
8112   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
8113 
8114   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
8115   if (saved_encCounter == nullptr) return false;
8116   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
8117   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
8118 
8119   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
8120   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8121                                      OptoRuntime::counterMode_aescrypt_Type(),
8122                                      stubAddr, stubName, TypePtr::BOTTOM,
8123                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
8124 
8125   // return cipher length (int)
8126   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
8127   set_result(retvalue);
8128   return true;
8129 }
8130 
8131 //------------------------------get_key_start_from_aescrypt_object-----------------------
8132 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
8133 #if defined(PPC64) || defined(S390) || defined(RISCV64)
8134   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
8135   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
8136   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
8137   // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]).
8138   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
8139   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
8140   if (objSessionK == nullptr) {
8141     return (Node *) nullptr;
8142   }
8143   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
8144 #else
8145   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
8146 #endif // PPC64
8147   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
8148   if (objAESCryptKey == nullptr) return (Node *) nullptr;
8149 
8150   // now have the array, need to get the start address of the K array
8151   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
8152   return k_start;
8153 }
8154 
8155 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
8156 // Return node representing slow path of predicate check.
8157 // the pseudo code we want to emulate with this predicate is:
8158 // for encryption:
8159 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8160 // for decryption:
8161 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8162 //    note cipher==plain is more conservative than the original java code but that's OK
8163 //
8164 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
8165   // The receiver was checked for null already.
8166   Node* objCBC = argument(0);
8167 
8168   Node* src = argument(1);
8169   Node* dest = argument(4);
8170 
8171   // Load embeddedCipher field of CipherBlockChaining object.
8172   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8173 
8174   // get AESCrypt klass for instanceOf check
8175   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8176   // will have same classloader as CipherBlockChaining object
8177   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
8178   assert(tinst != nullptr, "CBCobj is null");
8179   assert(tinst->is_loaded(), "CBCobj is not loaded");
8180 
8181   // we want to do an instanceof comparison against the AESCrypt class
8182   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8183   if (!klass_AESCrypt->is_loaded()) {
8184     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8185     Node* ctrl = control();
8186     set_control(top()); // no regular fast path
8187     return ctrl;
8188   }
8189 
8190   src = must_be_not_null(src, true);
8191   dest = must_be_not_null(dest, true);
8192 
8193   // Resolve oops to stable for CmpP below.
8194   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8195 
8196   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8197   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
8198   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8199 
8200   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8201 
8202   // for encryption, we are done
8203   if (!decrypting)
8204     return instof_false;  // even if it is null
8205 
8206   // for decryption, we need to add a further check to avoid
8207   // taking the intrinsic path when cipher and plain are the same
8208   // see the original java code for why.
8209   RegionNode* region = new RegionNode(3);
8210   region->init_req(1, instof_false);
8211 
8212   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
8213   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
8214   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
8215   region->init_req(2, src_dest_conjoint);
8216 
8217   record_for_igvn(region);
8218   return _gvn.transform(region);
8219 }
8220 
8221 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
8222 // Return node representing slow path of predicate check.
8223 // the pseudo code we want to emulate with this predicate is:
8224 // for encryption:
8225 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8226 // for decryption:
8227 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8228 //    note cipher==plain is more conservative than the original java code but that's OK
8229 //
8230 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
8231   // The receiver was checked for null already.
8232   Node* objECB = argument(0);
8233 
8234   // Load embeddedCipher field of ElectronicCodeBook object.
8235   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8236 
8237   // get AESCrypt klass for instanceOf check
8238   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8239   // will have same classloader as ElectronicCodeBook object
8240   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
8241   assert(tinst != nullptr, "ECBobj is null");
8242   assert(tinst->is_loaded(), "ECBobj is not loaded");
8243 
8244   // we want to do an instanceof comparison against the AESCrypt class
8245   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8246   if (!klass_AESCrypt->is_loaded()) {
8247     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8248     Node* ctrl = control();
8249     set_control(top()); // no regular fast path
8250     return ctrl;
8251   }
8252   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8253 
8254   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8255   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8256   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8257 
8258   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8259 
8260   // for encryption, we are done
8261   if (!decrypting)
8262     return instof_false;  // even if it is null
8263 
8264   // for decryption, we need to add a further check to avoid
8265   // taking the intrinsic path when cipher and plain are the same
8266   // see the original java code for why.
8267   RegionNode* region = new RegionNode(3);
8268   region->init_req(1, instof_false);
8269   Node* src = argument(1);
8270   Node* dest = argument(4);
8271   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
8272   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
8273   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
8274   region->init_req(2, src_dest_conjoint);
8275 
8276   record_for_igvn(region);
8277   return _gvn.transform(region);
8278 }
8279 
8280 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
8281 // Return node representing slow path of predicate check.
8282 // the pseudo code we want to emulate with this predicate is:
8283 // for encryption:
8284 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8285 // for decryption:
8286 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8287 //    note cipher==plain is more conservative than the original java code but that's OK
8288 //
8289 
8290 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
8291   // The receiver was checked for null already.
8292   Node* objCTR = argument(0);
8293 
8294   // Load embeddedCipher field of CipherBlockChaining object.
8295   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8296 
8297   // get AESCrypt klass for instanceOf check
8298   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8299   // will have same classloader as CipherBlockChaining object
8300   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
8301   assert(tinst != nullptr, "CTRobj is null");
8302   assert(tinst->is_loaded(), "CTRobj is not loaded");
8303 
8304   // we want to do an instanceof comparison against the AESCrypt class
8305   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8306   if (!klass_AESCrypt->is_loaded()) {
8307     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8308     Node* ctrl = control();
8309     set_control(top()); // no regular fast path
8310     return ctrl;
8311   }
8312 
8313   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8314   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8315   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8316   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8317   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8318 
8319   return instof_false; // even if it is null
8320 }
8321 
8322 //------------------------------inline_ghash_processBlocks
8323 bool LibraryCallKit::inline_ghash_processBlocks() {
8324   address stubAddr;
8325   const char *stubName;
8326   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
8327 
8328   stubAddr = StubRoutines::ghash_processBlocks();
8329   stubName = "ghash_processBlocks";
8330 
8331   Node* data           = argument(0);
8332   Node* offset         = argument(1);
8333   Node* len            = argument(2);
8334   Node* state          = argument(3);
8335   Node* subkeyH        = argument(4);
8336 
8337   state = must_be_not_null(state, true);
8338   subkeyH = must_be_not_null(subkeyH, true);
8339   data = must_be_not_null(data, true);
8340 
8341   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
8342   assert(state_start, "state is null");
8343   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
8344   assert(subkeyH_start, "subkeyH is null");
8345   Node* data_start  = array_element_address(data, offset, T_BYTE);
8346   assert(data_start, "data is null");
8347 
8348   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
8349                                   OptoRuntime::ghash_processBlocks_Type(),
8350                                   stubAddr, stubName, TypePtr::BOTTOM,
8351                                   state_start, subkeyH_start, data_start, len);
8352   return true;
8353 }
8354 
8355 //------------------------------inline_chacha20Block
8356 bool LibraryCallKit::inline_chacha20Block() {
8357   address stubAddr;
8358   const char *stubName;
8359   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
8360 
8361   stubAddr = StubRoutines::chacha20Block();
8362   stubName = "chacha20Block";
8363 
8364   Node* state          = argument(0);
8365   Node* result         = argument(1);
8366 
8367   state = must_be_not_null(state, true);
8368   result = must_be_not_null(result, true);
8369 
8370   Node* state_start  = array_element_address(state, intcon(0), T_INT);
8371   assert(state_start, "state is null");
8372   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
8373   assert(result_start, "result is null");
8374 
8375   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
8376                                   OptoRuntime::chacha20Block_Type(),
8377                                   stubAddr, stubName, TypePtr::BOTTOM,
8378                                   state_start, result_start);
8379   // return key stream length (int)
8380   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
8381   set_result(retvalue);
8382   return true;
8383 }
8384 
8385 //------------------------------inline_kyberNtt
8386 bool LibraryCallKit::inline_kyberNtt() {
8387   address stubAddr;
8388   const char *stubName;
8389   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8390   assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters");
8391 
8392   stubAddr = StubRoutines::kyberNtt();
8393   stubName = "kyberNtt";
8394   if (!stubAddr) return false;
8395 
8396   Node* coeffs          = argument(0);
8397   Node* ntt_zetas        = argument(1);
8398 
8399   coeffs = must_be_not_null(coeffs, true);
8400   ntt_zetas = must_be_not_null(ntt_zetas, true);
8401 
8402   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_SHORT);
8403   assert(coeffs_start, "coeffs is null");
8404   Node* ntt_zetas_start  = array_element_address(ntt_zetas, intcon(0), T_SHORT);
8405   assert(ntt_zetas_start, "ntt_zetas is null");
8406   Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
8407                                   OptoRuntime::kyberNtt_Type(),
8408                                   stubAddr, stubName, TypePtr::BOTTOM,
8409                                   coeffs_start, ntt_zetas_start);
8410   // return an int
8411   Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms));
8412   set_result(retvalue);
8413   return true;
8414 }
8415 
8416 //------------------------------inline_kyberInverseNtt
8417 bool LibraryCallKit::inline_kyberInverseNtt() {
8418   address stubAddr;
8419   const char *stubName;
8420   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8421   assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters");
8422 
8423   stubAddr = StubRoutines::kyberInverseNtt();
8424   stubName = "kyberInverseNtt";
8425   if (!stubAddr) return false;
8426 
8427   Node* coeffs          = argument(0);
8428   Node* zetas           = argument(1);
8429 
8430   coeffs = must_be_not_null(coeffs, true);
8431   zetas = must_be_not_null(zetas, true);
8432 
8433   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_SHORT);
8434   assert(coeffs_start, "coeffs is null");
8435   Node* zetas_start  = array_element_address(zetas, intcon(0), T_SHORT);
8436   assert(zetas_start, "inverseNtt_zetas is null");
8437   Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
8438                                   OptoRuntime::kyberInverseNtt_Type(),
8439                                   stubAddr, stubName, TypePtr::BOTTOM,
8440                                   coeffs_start, zetas_start);
8441 
8442   // return an int
8443   Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms));
8444   set_result(retvalue);
8445   return true;
8446 }
8447 
8448 //------------------------------inline_kyberNttMult
8449 bool LibraryCallKit::inline_kyberNttMult() {
8450   address stubAddr;
8451   const char *stubName;
8452   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8453   assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters");
8454 
8455   stubAddr = StubRoutines::kyberNttMult();
8456   stubName = "kyberNttMult";
8457   if (!stubAddr) return false;
8458 
8459   Node* result          = argument(0);
8460   Node* ntta            = argument(1);
8461   Node* nttb            = argument(2);
8462   Node* zetas           = argument(3);
8463 
8464   result = must_be_not_null(result, true);
8465   ntta = must_be_not_null(ntta, true);
8466   nttb = must_be_not_null(nttb, true);
8467   zetas = must_be_not_null(zetas, true);
8468 
8469   Node* result_start  = array_element_address(result, intcon(0), T_SHORT);
8470   assert(result_start, "result is null");
8471   Node* ntta_start  = array_element_address(ntta, intcon(0), T_SHORT);
8472   assert(ntta_start, "ntta is null");
8473   Node* nttb_start  = array_element_address(nttb, intcon(0), T_SHORT);
8474   assert(nttb_start, "nttb is null");
8475   Node* zetas_start  = array_element_address(zetas, intcon(0), T_SHORT);
8476   assert(zetas_start, "nttMult_zetas is null");
8477   Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP,
8478                                   OptoRuntime::kyberNttMult_Type(),
8479                                   stubAddr, stubName, TypePtr::BOTTOM,
8480                                   result_start, ntta_start, nttb_start,
8481                                   zetas_start);
8482 
8483   // return an int
8484   Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms));
8485   set_result(retvalue);
8486 
8487   return true;
8488 }
8489 
8490 //------------------------------inline_kyberAddPoly_2
8491 bool LibraryCallKit::inline_kyberAddPoly_2() {
8492   address stubAddr;
8493   const char *stubName;
8494   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8495   assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters");
8496 
8497   stubAddr = StubRoutines::kyberAddPoly_2();
8498   stubName = "kyberAddPoly_2";
8499   if (!stubAddr) return false;
8500 
8501   Node* result          = argument(0);
8502   Node* a               = argument(1);
8503   Node* b               = argument(2);
8504 
8505   result = must_be_not_null(result, true);
8506   a = must_be_not_null(a, true);
8507   b = must_be_not_null(b, true);
8508 
8509   Node* result_start  = array_element_address(result, intcon(0), T_SHORT);
8510   assert(result_start, "result is null");
8511   Node* a_start  = array_element_address(a, intcon(0), T_SHORT);
8512   assert(a_start, "a is null");
8513   Node* b_start  = array_element_address(b, intcon(0), T_SHORT);
8514   assert(b_start, "b is null");
8515   Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP,
8516                                   OptoRuntime::kyberAddPoly_2_Type(),
8517                                   stubAddr, stubName, TypePtr::BOTTOM,
8518                                   result_start, a_start, b_start);
8519   // return an int
8520   Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms));
8521   set_result(retvalue);
8522   return true;
8523 }
8524 
8525 //------------------------------inline_kyberAddPoly_3
8526 bool LibraryCallKit::inline_kyberAddPoly_3() {
8527   address stubAddr;
8528   const char *stubName;
8529   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8530   assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters");
8531 
8532   stubAddr = StubRoutines::kyberAddPoly_3();
8533   stubName = "kyberAddPoly_3";
8534   if (!stubAddr) return false;
8535 
8536   Node* result          = argument(0);
8537   Node* a               = argument(1);
8538   Node* b               = argument(2);
8539   Node* c               = argument(3);
8540 
8541   result = must_be_not_null(result, true);
8542   a = must_be_not_null(a, true);
8543   b = must_be_not_null(b, true);
8544   c = must_be_not_null(c, true);
8545 
8546   Node* result_start  = array_element_address(result, intcon(0), T_SHORT);
8547   assert(result_start, "result is null");
8548   Node* a_start  = array_element_address(a, intcon(0), T_SHORT);
8549   assert(a_start, "a is null");
8550   Node* b_start  = array_element_address(b, intcon(0), T_SHORT);
8551   assert(b_start, "b is null");
8552   Node* c_start  = array_element_address(c, intcon(0), T_SHORT);
8553   assert(c_start, "c is null");
8554   Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP,
8555                                   OptoRuntime::kyberAddPoly_3_Type(),
8556                                   stubAddr, stubName, TypePtr::BOTTOM,
8557                                   result_start, a_start, b_start, c_start);
8558   // return an int
8559   Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms));
8560   set_result(retvalue);
8561   return true;
8562 }
8563 
8564 //------------------------------inline_kyber12To16
8565 bool LibraryCallKit::inline_kyber12To16() {
8566   address stubAddr;
8567   const char *stubName;
8568   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8569   assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters");
8570 
8571   stubAddr = StubRoutines::kyber12To16();
8572   stubName = "kyber12To16";
8573   if (!stubAddr) return false;
8574 
8575   Node* condensed       = argument(0);
8576   Node* condensedOffs   = argument(1);
8577   Node* parsed          = argument(2);
8578   Node* parsedLength    = argument(3);
8579 
8580   condensed = must_be_not_null(condensed, true);
8581   parsed = must_be_not_null(parsed, true);
8582 
8583   Node* condensed_start  = array_element_address(condensed, intcon(0), T_BYTE);
8584   assert(condensed_start, "condensed is null");
8585   Node* parsed_start  = array_element_address(parsed, intcon(0), T_SHORT);
8586   assert(parsed_start, "parsed is null");
8587   Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP,
8588                                   OptoRuntime::kyber12To16_Type(),
8589                                   stubAddr, stubName, TypePtr::BOTTOM,
8590                                   condensed_start, condensedOffs, parsed_start, parsedLength);
8591   // return an int
8592   Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms));
8593   set_result(retvalue);
8594   return true;
8595 
8596 }
8597 
8598 //------------------------------inline_kyberBarrettReduce
8599 bool LibraryCallKit::inline_kyberBarrettReduce() {
8600   address stubAddr;
8601   const char *stubName;
8602   assert(UseKyberIntrinsics, "need Kyber intrinsics support");
8603   assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters");
8604 
8605   stubAddr = StubRoutines::kyberBarrettReduce();
8606   stubName = "kyberBarrettReduce";
8607   if (!stubAddr) return false;
8608 
8609   Node* coeffs          = argument(0);
8610 
8611   coeffs = must_be_not_null(coeffs, true);
8612 
8613   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_SHORT);
8614   assert(coeffs_start, "coeffs is null");
8615   Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP,
8616                                   OptoRuntime::kyberBarrettReduce_Type(),
8617                                   stubAddr, stubName, TypePtr::BOTTOM,
8618                                   coeffs_start);
8619   // return an int
8620   Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms));
8621   set_result(retvalue);
8622   return true;
8623 }
8624 
8625 //------------------------------inline_dilithiumAlmostNtt
8626 bool LibraryCallKit::inline_dilithiumAlmostNtt() {
8627   address stubAddr;
8628   const char *stubName;
8629   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8630   assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters");
8631 
8632   stubAddr = StubRoutines::dilithiumAlmostNtt();
8633   stubName = "dilithiumAlmostNtt";
8634   if (!stubAddr) return false;
8635 
8636   Node* coeffs          = argument(0);
8637   Node* ntt_zetas        = argument(1);
8638 
8639   coeffs = must_be_not_null(coeffs, true);
8640   ntt_zetas = must_be_not_null(ntt_zetas, true);
8641 
8642   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
8643   assert(coeffs_start, "coeffs is null");
8644   Node* ntt_zetas_start  = array_element_address(ntt_zetas, intcon(0), T_INT);
8645   assert(ntt_zetas_start, "ntt_zetas is null");
8646   Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
8647                                   OptoRuntime::dilithiumAlmostNtt_Type(),
8648                                   stubAddr, stubName, TypePtr::BOTTOM,
8649                                   coeffs_start, ntt_zetas_start);
8650   // return an int
8651   Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms));
8652   set_result(retvalue);
8653   return true;
8654 }
8655 
8656 //------------------------------inline_dilithiumAlmostInverseNtt
8657 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() {
8658   address stubAddr;
8659   const char *stubName;
8660   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8661   assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters");
8662 
8663   stubAddr = StubRoutines::dilithiumAlmostInverseNtt();
8664   stubName = "dilithiumAlmostInverseNtt";
8665   if (!stubAddr) return false;
8666 
8667   Node* coeffs          = argument(0);
8668   Node* zetas           = argument(1);
8669 
8670   coeffs = must_be_not_null(coeffs, true);
8671   zetas = must_be_not_null(zetas, true);
8672 
8673   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
8674   assert(coeffs_start, "coeffs is null");
8675   Node* zetas_start  = array_element_address(zetas, intcon(0), T_INT);
8676   assert(zetas_start, "inverseNtt_zetas is null");
8677   Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
8678                                   OptoRuntime::dilithiumAlmostInverseNtt_Type(),
8679                                   stubAddr, stubName, TypePtr::BOTTOM,
8680                                   coeffs_start, zetas_start);
8681   // return an int
8682   Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms));
8683   set_result(retvalue);
8684   return true;
8685 }
8686 
8687 //------------------------------inline_dilithiumNttMult
8688 bool LibraryCallKit::inline_dilithiumNttMult() {
8689   address stubAddr;
8690   const char *stubName;
8691   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8692   assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters");
8693 
8694   stubAddr = StubRoutines::dilithiumNttMult();
8695   stubName = "dilithiumNttMult";
8696   if (!stubAddr) return false;
8697 
8698   Node* result          = argument(0);
8699   Node* ntta            = argument(1);
8700   Node* nttb            = argument(2);
8701   Node* zetas           = argument(3);
8702 
8703   result = must_be_not_null(result, true);
8704   ntta = must_be_not_null(ntta, true);
8705   nttb = must_be_not_null(nttb, true);
8706   zetas = must_be_not_null(zetas, true);
8707 
8708   Node* result_start  = array_element_address(result, intcon(0), T_INT);
8709   assert(result_start, "result is null");
8710   Node* ntta_start  = array_element_address(ntta, intcon(0), T_INT);
8711   assert(ntta_start, "ntta is null");
8712   Node* nttb_start  = array_element_address(nttb, intcon(0), T_INT);
8713   assert(nttb_start, "nttb is null");
8714   Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP,
8715                                   OptoRuntime::dilithiumNttMult_Type(),
8716                                   stubAddr, stubName, TypePtr::BOTTOM,
8717                                   result_start, ntta_start, nttb_start);
8718 
8719   // return an int
8720   Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms));
8721   set_result(retvalue);
8722 
8723   return true;
8724 }
8725 
8726 //------------------------------inline_dilithiumMontMulByConstant
8727 bool LibraryCallKit::inline_dilithiumMontMulByConstant() {
8728   address stubAddr;
8729   const char *stubName;
8730   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8731   assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters");
8732 
8733   stubAddr = StubRoutines::dilithiumMontMulByConstant();
8734   stubName = "dilithiumMontMulByConstant";
8735   if (!stubAddr) return false;
8736 
8737   Node* coeffs          = argument(0);
8738   Node* constant        = argument(1);
8739 
8740   coeffs = must_be_not_null(coeffs, true);
8741 
8742   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
8743   assert(coeffs_start, "coeffs is null");
8744   Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP,
8745                                   OptoRuntime::dilithiumMontMulByConstant_Type(),
8746                                   stubAddr, stubName, TypePtr::BOTTOM,
8747                                   coeffs_start, constant);
8748 
8749   // return an int
8750   Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms));
8751   set_result(retvalue);
8752   return true;
8753 }
8754 
8755 
8756 //------------------------------inline_dilithiumDecomposePoly
8757 bool LibraryCallKit::inline_dilithiumDecomposePoly() {
8758   address stubAddr;
8759   const char *stubName;
8760   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
8761   assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters");
8762 
8763   stubAddr = StubRoutines::dilithiumDecomposePoly();
8764   stubName = "dilithiumDecomposePoly";
8765   if (!stubAddr) return false;
8766 
8767   Node* input          = argument(0);
8768   Node* lowPart        = argument(1);
8769   Node* highPart       = argument(2);
8770   Node* twoGamma2      = argument(3);
8771   Node* multiplier     = argument(4);
8772 
8773   input = must_be_not_null(input, true);
8774   lowPart = must_be_not_null(lowPart, true);
8775   highPart = must_be_not_null(highPart, true);
8776 
8777   Node* input_start  = array_element_address(input, intcon(0), T_INT);
8778   assert(input_start, "input is null");
8779   Node* lowPart_start  = array_element_address(lowPart, intcon(0), T_INT);
8780   assert(lowPart_start, "lowPart is null");
8781   Node* highPart_start  = array_element_address(highPart, intcon(0), T_INT);
8782   assert(highPart_start, "highPart is null");
8783 
8784   Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP,
8785                                   OptoRuntime::dilithiumDecomposePoly_Type(),
8786                                   stubAddr, stubName, TypePtr::BOTTOM,
8787                                   input_start, lowPart_start, highPart_start,
8788                                   twoGamma2, multiplier);
8789 
8790   // return an int
8791   Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms));
8792   set_result(retvalue);
8793   return true;
8794 }
8795 
8796 bool LibraryCallKit::inline_base64_encodeBlock() {
8797   address stubAddr;
8798   const char *stubName;
8799   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
8800   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
8801   stubAddr = StubRoutines::base64_encodeBlock();
8802   stubName = "encodeBlock";
8803 
8804   if (!stubAddr) return false;
8805   Node* base64obj = argument(0);
8806   Node* src = argument(1);
8807   Node* offset = argument(2);
8808   Node* len = argument(3);
8809   Node* dest = argument(4);
8810   Node* dp = argument(5);
8811   Node* isURL = argument(6);
8812 
8813   src = must_be_not_null(src, true);
8814   dest = must_be_not_null(dest, true);
8815 
8816   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
8817   assert(src_start, "source array is null");
8818   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
8819   assert(dest_start, "destination array is null");
8820 
8821   Node* base64 = make_runtime_call(RC_LEAF,
8822                                    OptoRuntime::base64_encodeBlock_Type(),
8823                                    stubAddr, stubName, TypePtr::BOTTOM,
8824                                    src_start, offset, len, dest_start, dp, isURL);
8825   return true;
8826 }
8827 
8828 bool LibraryCallKit::inline_base64_decodeBlock() {
8829   address stubAddr;
8830   const char *stubName;
8831   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
8832   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
8833   stubAddr = StubRoutines::base64_decodeBlock();
8834   stubName = "decodeBlock";
8835 
8836   if (!stubAddr) return false;
8837   Node* base64obj = argument(0);
8838   Node* src = argument(1);
8839   Node* src_offset = argument(2);
8840   Node* len = argument(3);
8841   Node* dest = argument(4);
8842   Node* dest_offset = argument(5);
8843   Node* isURL = argument(6);
8844   Node* isMIME = argument(7);
8845 
8846   src = must_be_not_null(src, true);
8847   dest = must_be_not_null(dest, true);
8848 
8849   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
8850   assert(src_start, "source array is null");
8851   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
8852   assert(dest_start, "destination array is null");
8853 
8854   Node* call = make_runtime_call(RC_LEAF,
8855                                  OptoRuntime::base64_decodeBlock_Type(),
8856                                  stubAddr, stubName, TypePtr::BOTTOM,
8857                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
8858   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8859   set_result(result);
8860   return true;
8861 }
8862 
8863 bool LibraryCallKit::inline_poly1305_processBlocks() {
8864   address stubAddr;
8865   const char *stubName;
8866   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
8867   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
8868   stubAddr = StubRoutines::poly1305_processBlocks();
8869   stubName = "poly1305_processBlocks";
8870 
8871   if (!stubAddr) return false;
8872   null_check_receiver();  // null-check receiver
8873   if (stopped())  return true;
8874 
8875   Node* input = argument(1);
8876   Node* input_offset = argument(2);
8877   Node* len = argument(3);
8878   Node* alimbs = argument(4);
8879   Node* rlimbs = argument(5);
8880 
8881   input = must_be_not_null(input, true);
8882   alimbs = must_be_not_null(alimbs, true);
8883   rlimbs = must_be_not_null(rlimbs, true);
8884 
8885   Node* input_start = array_element_address(input, input_offset, T_BYTE);
8886   assert(input_start, "input array is null");
8887   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
8888   assert(acc_start, "acc array is null");
8889   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
8890   assert(r_start, "r array is null");
8891 
8892   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8893                                  OptoRuntime::poly1305_processBlocks_Type(),
8894                                  stubAddr, stubName, TypePtr::BOTTOM,
8895                                  input_start, len, acc_start, r_start);
8896   return true;
8897 }
8898 
8899 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
8900   address stubAddr;
8901   const char *stubName;
8902   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8903   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
8904   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
8905   stubName = "intpoly_montgomeryMult_P256";
8906 
8907   if (!stubAddr) return false;
8908   null_check_receiver();  // null-check receiver
8909   if (stopped())  return true;
8910 
8911   Node* a = argument(1);
8912   Node* b = argument(2);
8913   Node* r = argument(3);
8914 
8915   a = must_be_not_null(a, true);
8916   b = must_be_not_null(b, true);
8917   r = must_be_not_null(r, true);
8918 
8919   Node* a_start = array_element_address(a, intcon(0), T_LONG);
8920   assert(a_start, "a array is null");
8921   Node* b_start = array_element_address(b, intcon(0), T_LONG);
8922   assert(b_start, "b array is null");
8923   Node* r_start = array_element_address(r, intcon(0), T_LONG);
8924   assert(r_start, "r array is null");
8925 
8926   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8927                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
8928                                  stubAddr, stubName, TypePtr::BOTTOM,
8929                                  a_start, b_start, r_start);
8930   return true;
8931 }
8932 
8933 bool LibraryCallKit::inline_intpoly_assign() {
8934   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8935   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
8936   const char *stubName = "intpoly_assign";
8937   address stubAddr = StubRoutines::intpoly_assign();
8938   if (!stubAddr) return false;
8939 
8940   Node* set = argument(0);
8941   Node* a = argument(1);
8942   Node* b = argument(2);
8943   Node* arr_length = load_array_length(a);
8944 
8945   a = must_be_not_null(a, true);
8946   b = must_be_not_null(b, true);
8947 
8948   Node* a_start = array_element_address(a, intcon(0), T_LONG);
8949   assert(a_start, "a array is null");
8950   Node* b_start = array_element_address(b, intcon(0), T_LONG);
8951   assert(b_start, "b array is null");
8952 
8953   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8954                                  OptoRuntime::intpoly_assign_Type(),
8955                                  stubAddr, stubName, TypePtr::BOTTOM,
8956                                  set, a_start, b_start, arr_length);
8957   return true;
8958 }
8959 
8960 //------------------------------inline_digestBase_implCompress-----------------------
8961 //
8962 // Calculate MD5 for single-block byte[] array.
8963 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
8964 //
8965 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
8966 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
8967 //
8968 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
8969 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
8970 //
8971 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
8972 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
8973 //
8974 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
8975 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
8976 //
8977 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
8978   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
8979 
8980   Node* digestBase_obj = argument(0);
8981   Node* src            = argument(1); // type oop
8982   Node* ofs            = argument(2); // type int
8983 
8984   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8985   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8986     // failed array check
8987     return false;
8988   }
8989   // Figure out the size and type of the elements we will be copying.
8990   BasicType src_elem = src_type->elem()->array_element_basic_type();
8991   if (src_elem != T_BYTE) {
8992     return false;
8993   }
8994   // 'src_start' points to src array + offset
8995   src = must_be_not_null(src, true);
8996   Node* src_start = array_element_address(src, ofs, src_elem);
8997   Node* state = nullptr;
8998   Node* block_size = nullptr;
8999   address stubAddr;
9000   const char *stubName;
9001 
9002   switch(id) {
9003   case vmIntrinsics::_md5_implCompress:
9004     assert(UseMD5Intrinsics, "need MD5 instruction support");
9005     state = get_state_from_digest_object(digestBase_obj, T_INT);
9006     stubAddr = StubRoutines::md5_implCompress();
9007     stubName = "md5_implCompress";
9008     break;
9009   case vmIntrinsics::_sha_implCompress:
9010     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
9011     state = get_state_from_digest_object(digestBase_obj, T_INT);
9012     stubAddr = StubRoutines::sha1_implCompress();
9013     stubName = "sha1_implCompress";
9014     break;
9015   case vmIntrinsics::_sha2_implCompress:
9016     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
9017     state = get_state_from_digest_object(digestBase_obj, T_INT);
9018     stubAddr = StubRoutines::sha256_implCompress();
9019     stubName = "sha256_implCompress";
9020     break;
9021   case vmIntrinsics::_sha5_implCompress:
9022     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
9023     state = get_state_from_digest_object(digestBase_obj, T_LONG);
9024     stubAddr = StubRoutines::sha512_implCompress();
9025     stubName = "sha512_implCompress";
9026     break;
9027   case vmIntrinsics::_sha3_implCompress:
9028     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
9029     state = get_state_from_digest_object(digestBase_obj, T_LONG);
9030     stubAddr = StubRoutines::sha3_implCompress();
9031     stubName = "sha3_implCompress";
9032     block_size = get_block_size_from_digest_object(digestBase_obj);
9033     if (block_size == nullptr) return false;
9034     break;
9035   default:
9036     fatal_unexpected_iid(id);
9037     return false;
9038   }
9039   if (state == nullptr) return false;
9040 
9041   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
9042   if (stubAddr == nullptr) return false;
9043 
9044   // Call the stub.
9045   Node* call;
9046   if (block_size == nullptr) {
9047     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
9048                              stubAddr, stubName, TypePtr::BOTTOM,
9049                              src_start, state);
9050   } else {
9051     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
9052                              stubAddr, stubName, TypePtr::BOTTOM,
9053                              src_start, state, block_size);
9054   }
9055 
9056   return true;
9057 }
9058 
9059 //------------------------------inline_double_keccak
9060 bool LibraryCallKit::inline_double_keccak() {
9061   address stubAddr;
9062   const char *stubName;
9063   assert(UseSHA3Intrinsics, "need SHA3 intrinsics support");
9064   assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters");
9065 
9066   stubAddr = StubRoutines::double_keccak();
9067   stubName = "double_keccak";
9068   if (!stubAddr) return false;
9069 
9070   Node* status0        = argument(0);
9071   Node* status1        = argument(1);
9072 
9073   status0 = must_be_not_null(status0, true);
9074   status1 = must_be_not_null(status1, true);
9075 
9076   Node* status0_start  = array_element_address(status0, intcon(0), T_LONG);
9077   assert(status0_start, "status0 is null");
9078   Node* status1_start  = array_element_address(status1, intcon(0), T_LONG);
9079   assert(status1_start, "status1 is null");
9080   Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP,
9081                                   OptoRuntime::double_keccak_Type(),
9082                                   stubAddr, stubName, TypePtr::BOTTOM,
9083                                   status0_start, status1_start);
9084   // return an int
9085   Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms));
9086   set_result(retvalue);
9087   return true;
9088 }
9089 
9090 
9091 //------------------------------inline_digestBase_implCompressMB-----------------------
9092 //
9093 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
9094 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
9095 //
9096 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
9097   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
9098          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
9099   assert((uint)predicate < 5, "sanity");
9100   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
9101 
9102   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
9103   Node* src            = argument(1); // byte[] array
9104   Node* ofs            = argument(2); // type int
9105   Node* limit          = argument(3); // type int
9106 
9107   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
9108   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
9109     // failed array check
9110     return false;
9111   }
9112   // Figure out the size and type of the elements we will be copying.
9113   BasicType src_elem = src_type->elem()->array_element_basic_type();
9114   if (src_elem != T_BYTE) {
9115     return false;
9116   }
9117   // 'src_start' points to src array + offset
9118   src = must_be_not_null(src, false);
9119   Node* src_start = array_element_address(src, ofs, src_elem);
9120 
9121   const char* klass_digestBase_name = nullptr;
9122   const char* stub_name = nullptr;
9123   address     stub_addr = nullptr;
9124   BasicType elem_type = T_INT;
9125 
9126   switch (predicate) {
9127   case 0:
9128     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
9129       klass_digestBase_name = "sun/security/provider/MD5";
9130       stub_name = "md5_implCompressMB";
9131       stub_addr = StubRoutines::md5_implCompressMB();
9132     }
9133     break;
9134   case 1:
9135     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
9136       klass_digestBase_name = "sun/security/provider/SHA";
9137       stub_name = "sha1_implCompressMB";
9138       stub_addr = StubRoutines::sha1_implCompressMB();
9139     }
9140     break;
9141   case 2:
9142     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
9143       klass_digestBase_name = "sun/security/provider/SHA2";
9144       stub_name = "sha256_implCompressMB";
9145       stub_addr = StubRoutines::sha256_implCompressMB();
9146     }
9147     break;
9148   case 3:
9149     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
9150       klass_digestBase_name = "sun/security/provider/SHA5";
9151       stub_name = "sha512_implCompressMB";
9152       stub_addr = StubRoutines::sha512_implCompressMB();
9153       elem_type = T_LONG;
9154     }
9155     break;
9156   case 4:
9157     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
9158       klass_digestBase_name = "sun/security/provider/SHA3";
9159       stub_name = "sha3_implCompressMB";
9160       stub_addr = StubRoutines::sha3_implCompressMB();
9161       elem_type = T_LONG;
9162     }
9163     break;
9164   default:
9165     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
9166   }
9167   if (klass_digestBase_name != nullptr) {
9168     assert(stub_addr != nullptr, "Stub is generated");
9169     if (stub_addr == nullptr) return false;
9170 
9171     // get DigestBase klass to lookup for SHA klass
9172     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
9173     assert(tinst != nullptr, "digestBase_obj is not instance???");
9174     assert(tinst->is_loaded(), "DigestBase is not loaded");
9175 
9176     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
9177     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
9178     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
9179     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
9180   }
9181   return false;
9182 }
9183 
9184 //------------------------------inline_digestBase_implCompressMB-----------------------
9185 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
9186                                                       BasicType elem_type, address stubAddr, const char *stubName,
9187                                                       Node* src_start, Node* ofs, Node* limit) {
9188   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
9189   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
9190   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
9191   digest_obj = _gvn.transform(digest_obj);
9192 
9193   Node* state = get_state_from_digest_object(digest_obj, elem_type);
9194   if (state == nullptr) return false;
9195 
9196   Node* block_size = nullptr;
9197   if (strcmp("sha3_implCompressMB", stubName) == 0) {
9198     block_size = get_block_size_from_digest_object(digest_obj);
9199     if (block_size == nullptr) return false;
9200   }
9201 
9202   // Call the stub.
9203   Node* call;
9204   if (block_size == nullptr) {
9205     call = make_runtime_call(RC_LEAF|RC_NO_FP,
9206                              OptoRuntime::digestBase_implCompressMB_Type(false),
9207                              stubAddr, stubName, TypePtr::BOTTOM,
9208                              src_start, state, ofs, limit);
9209   } else {
9210      call = make_runtime_call(RC_LEAF|RC_NO_FP,
9211                              OptoRuntime::digestBase_implCompressMB_Type(true),
9212                              stubAddr, stubName, TypePtr::BOTTOM,
9213                              src_start, state, block_size, ofs, limit);
9214   }
9215 
9216   // return ofs (int)
9217   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
9218   set_result(result);
9219 
9220   return true;
9221 }
9222 
9223 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
9224 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
9225   assert(UseAES, "need AES instruction support");
9226   address stubAddr = nullptr;
9227   const char *stubName = nullptr;
9228   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
9229   stubName = "galoisCounterMode_AESCrypt";
9230 
9231   if (stubAddr == nullptr) return false;
9232 
9233   Node* in      = argument(0);
9234   Node* inOfs   = argument(1);
9235   Node* len     = argument(2);
9236   Node* ct      = argument(3);
9237   Node* ctOfs   = argument(4);
9238   Node* out     = argument(5);
9239   Node* outOfs  = argument(6);
9240   Node* gctr_object = argument(7);
9241   Node* ghash_object = argument(8);
9242 
9243   // (1) in, ct and out are arrays.
9244   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
9245   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
9246   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
9247   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
9248           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
9249          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
9250 
9251   // checks are the responsibility of the caller
9252   Node* in_start = in;
9253   Node* ct_start = ct;
9254   Node* out_start = out;
9255   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
9256     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
9257     in_start = array_element_address(in, inOfs, T_BYTE);
9258     ct_start = array_element_address(ct, ctOfs, T_BYTE);
9259     out_start = array_element_address(out, outOfs, T_BYTE);
9260   }
9261 
9262   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
9263   // (because of the predicated logic executed earlier).
9264   // so we cast it here safely.
9265   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
9266   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
9267   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
9268   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
9269   Node* state = load_field_from_object(ghash_object, "state", "[J");
9270 
9271   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
9272     return false;
9273   }
9274   // cast it to what we know it will be at runtime
9275   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
9276   assert(tinst != nullptr, "GCTR obj is null");
9277   assert(tinst->is_loaded(), "GCTR obj is not loaded");
9278   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
9279   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
9280   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
9281   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
9282   const TypeOopPtr* xtype = aklass->as_instance_type();
9283   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
9284   aescrypt_object = _gvn.transform(aescrypt_object);
9285   // we need to get the start of the aescrypt_object's expanded key array
9286   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
9287   if (k_start == nullptr) return false;
9288   // similarly, get the start address of the r vector
9289   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
9290   Node* state_start = array_element_address(state, intcon(0), T_LONG);
9291   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
9292 
9293 
9294   // Call the stub, passing params
9295   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
9296                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
9297                                stubAddr, stubName, TypePtr::BOTTOM,
9298                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
9299 
9300   // return cipher length (int)
9301   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
9302   set_result(retvalue);
9303 
9304   return true;
9305 }
9306 
9307 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
9308 // Return node representing slow path of predicate check.
9309 // the pseudo code we want to emulate with this predicate is:
9310 // for encryption:
9311 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
9312 // for decryption:
9313 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
9314 //    note cipher==plain is more conservative than the original java code but that's OK
9315 //
9316 
9317 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
9318   // The receiver was checked for null already.
9319   Node* objGCTR = argument(7);
9320   // Load embeddedCipher field of GCTR object.
9321   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
9322   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
9323 
9324   // get AESCrypt klass for instanceOf check
9325   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
9326   // will have same classloader as CipherBlockChaining object
9327   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
9328   assert(tinst != nullptr, "GCTR obj is null");
9329   assert(tinst->is_loaded(), "GCTR obj is not loaded");
9330 
9331   // we want to do an instanceof comparison against the AESCrypt class
9332   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
9333   if (!klass_AESCrypt->is_loaded()) {
9334     // if AESCrypt is not even loaded, we never take the intrinsic fast path
9335     Node* ctrl = control();
9336     set_control(top()); // no regular fast path
9337     return ctrl;
9338   }
9339 
9340   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
9341   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
9342   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
9343   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
9344   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
9345 
9346   return instof_false; // even if it is null
9347 }
9348 
9349 //------------------------------get_state_from_digest_object-----------------------
9350 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
9351   const char* state_type;
9352   switch (elem_type) {
9353     case T_BYTE: state_type = "[B"; break;
9354     case T_INT:  state_type = "[I"; break;
9355     case T_LONG: state_type = "[J"; break;
9356     default: ShouldNotReachHere();
9357   }
9358   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
9359   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
9360   if (digest_state == nullptr) return (Node *) nullptr;
9361 
9362   // now have the array, need to get the start address of the state array
9363   Node* state = array_element_address(digest_state, intcon(0), elem_type);
9364   return state;
9365 }
9366 
9367 //------------------------------get_block_size_from_sha3_object----------------------------------
9368 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
9369   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
9370   assert (block_size != nullptr, "sanity");
9371   return block_size;
9372 }
9373 
9374 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
9375 // Return node representing slow path of predicate check.
9376 // the pseudo code we want to emulate with this predicate is:
9377 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
9378 //
9379 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
9380   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
9381          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
9382   assert((uint)predicate < 5, "sanity");
9383 
9384   // The receiver was checked for null already.
9385   Node* digestBaseObj = argument(0);
9386 
9387   // get DigestBase klass for instanceOf check
9388   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
9389   assert(tinst != nullptr, "digestBaseObj is null");
9390   assert(tinst->is_loaded(), "DigestBase is not loaded");
9391 
9392   const char* klass_name = nullptr;
9393   switch (predicate) {
9394   case 0:
9395     if (UseMD5Intrinsics) {
9396       // we want to do an instanceof comparison against the MD5 class
9397       klass_name = "sun/security/provider/MD5";
9398     }
9399     break;
9400   case 1:
9401     if (UseSHA1Intrinsics) {
9402       // we want to do an instanceof comparison against the SHA class
9403       klass_name = "sun/security/provider/SHA";
9404     }
9405     break;
9406   case 2:
9407     if (UseSHA256Intrinsics) {
9408       // we want to do an instanceof comparison against the SHA2 class
9409       klass_name = "sun/security/provider/SHA2";
9410     }
9411     break;
9412   case 3:
9413     if (UseSHA512Intrinsics) {
9414       // we want to do an instanceof comparison against the SHA5 class
9415       klass_name = "sun/security/provider/SHA5";
9416     }
9417     break;
9418   case 4:
9419     if (UseSHA3Intrinsics) {
9420       // we want to do an instanceof comparison against the SHA3 class
9421       klass_name = "sun/security/provider/SHA3";
9422     }
9423     break;
9424   default:
9425     fatal("unknown SHA intrinsic predicate: %d", predicate);
9426   }
9427 
9428   ciKlass* klass = nullptr;
9429   if (klass_name != nullptr) {
9430     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
9431   }
9432   if ((klass == nullptr) || !klass->is_loaded()) {
9433     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
9434     Node* ctrl = control();
9435     set_control(top()); // no intrinsic path
9436     return ctrl;
9437   }
9438   ciInstanceKlass* instklass = klass->as_instance_klass();
9439 
9440   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
9441   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
9442   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
9443   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
9444 
9445   return instof_false;  // even if it is null
9446 }
9447 
9448 //-------------inline_fma-----------------------------------
9449 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
9450   Node *a = nullptr;
9451   Node *b = nullptr;
9452   Node *c = nullptr;
9453   Node* result = nullptr;
9454   switch (id) {
9455   case vmIntrinsics::_fmaD:
9456     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
9457     // no receiver since it is static method
9458     a = argument(0);
9459     b = argument(2);
9460     c = argument(4);
9461     result = _gvn.transform(new FmaDNode(a, b, c));
9462     break;
9463   case vmIntrinsics::_fmaF:
9464     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
9465     a = argument(0);
9466     b = argument(1);
9467     c = argument(2);
9468     result = _gvn.transform(new FmaFNode(a, b, c));
9469     break;
9470   default:
9471     fatal_unexpected_iid(id);  break;
9472   }
9473   set_result(result);
9474   return true;
9475 }
9476 
9477 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
9478   // argument(0) is receiver
9479   Node* codePoint = argument(1);
9480   Node* n = nullptr;
9481 
9482   switch (id) {
9483     case vmIntrinsics::_isDigit :
9484       n = new DigitNode(control(), codePoint);
9485       break;
9486     case vmIntrinsics::_isLowerCase :
9487       n = new LowerCaseNode(control(), codePoint);
9488       break;
9489     case vmIntrinsics::_isUpperCase :
9490       n = new UpperCaseNode(control(), codePoint);
9491       break;
9492     case vmIntrinsics::_isWhitespace :
9493       n = new WhitespaceNode(control(), codePoint);
9494       break;
9495     default:
9496       fatal_unexpected_iid(id);
9497   }
9498 
9499   set_result(_gvn.transform(n));
9500   return true;
9501 }
9502 
9503 bool LibraryCallKit::inline_profileBoolean() {
9504   Node* counts = argument(1);
9505   const TypeAryPtr* ary = nullptr;
9506   ciArray* aobj = nullptr;
9507   if (counts->is_Con()
9508       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
9509       && (aobj = ary->const_oop()->as_array()) != nullptr
9510       && (aobj->length() == 2)) {
9511     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
9512     jint false_cnt = aobj->element_value(0).as_int();
9513     jint  true_cnt = aobj->element_value(1).as_int();
9514 
9515     if (C->log() != nullptr) {
9516       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
9517                      false_cnt, true_cnt);
9518     }
9519 
9520     if (false_cnt + true_cnt == 0) {
9521       // According to profile, never executed.
9522       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
9523                           Deoptimization::Action_reinterpret);
9524       return true;
9525     }
9526 
9527     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
9528     // is a number of each value occurrences.
9529     Node* result = argument(0);
9530     if (false_cnt == 0 || true_cnt == 0) {
9531       // According to profile, one value has been never seen.
9532       int expected_val = (false_cnt == 0) ? 1 : 0;
9533 
9534       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
9535       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
9536 
9537       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
9538       Node* fast_path = _gvn.transform(new IfTrueNode(check));
9539       Node* slow_path = _gvn.transform(new IfFalseNode(check));
9540 
9541       { // Slow path: uncommon trap for never seen value and then reexecute
9542         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
9543         // the value has been seen at least once.
9544         PreserveJVMState pjvms(this);
9545         PreserveReexecuteState preexecs(this);
9546         jvms()->set_should_reexecute(true);
9547 
9548         set_control(slow_path);
9549         set_i_o(i_o());
9550 
9551         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
9552                             Deoptimization::Action_reinterpret);
9553       }
9554       // The guard for never seen value enables sharpening of the result and
9555       // returning a constant. It allows to eliminate branches on the same value
9556       // later on.
9557       set_control(fast_path);
9558       result = intcon(expected_val);
9559     }
9560     // Stop profiling.
9561     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
9562     // By replacing method body with profile data (represented as ProfileBooleanNode
9563     // on IR level) we effectively disable profiling.
9564     // It enables full speed execution once optimized code is generated.
9565     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
9566     C->record_for_igvn(profile);
9567     set_result(profile);
9568     return true;
9569   } else {
9570     // Continue profiling.
9571     // Profile data isn't available at the moment. So, execute method's bytecode version.
9572     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
9573     // is compiled and counters aren't available since corresponding MethodHandle
9574     // isn't a compile-time constant.
9575     return false;
9576   }
9577 }
9578 
9579 bool LibraryCallKit::inline_isCompileConstant() {
9580   Node* n = argument(0);
9581   set_result(n->is_Con() ? intcon(1) : intcon(0));
9582   return true;
9583 }
9584 
9585 //------------------------------- inline_getObjectSize --------------------------------------
9586 //
9587 // Calculate the runtime size of the object/array.
9588 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
9589 //
9590 bool LibraryCallKit::inline_getObjectSize() {
9591   Node* obj = argument(3);
9592   Node* klass_node = load_object_klass(obj);
9593 
9594   jint  layout_con = Klass::_lh_neutral_value;
9595   Node* layout_val = get_layout_helper(klass_node, layout_con);
9596   int   layout_is_con = (layout_val == nullptr);
9597 
9598   if (layout_is_con) {
9599     // Layout helper is constant, can figure out things at compile time.
9600 
9601     if (Klass::layout_helper_is_instance(layout_con)) {
9602       // Instance case:  layout_con contains the size itself.
9603       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
9604       set_result(size);
9605     } else {
9606       // Array case: size is round(header + element_size*arraylength).
9607       // Since arraylength is different for every array instance, we have to
9608       // compute the whole thing at runtime.
9609 
9610       Node* arr_length = load_array_length(obj);
9611 
9612       int round_mask = MinObjAlignmentInBytes - 1;
9613       int hsize  = Klass::layout_helper_header_size(layout_con);
9614       int eshift = Klass::layout_helper_log2_element_size(layout_con);
9615 
9616       if ((round_mask & ~right_n_bits(eshift)) == 0) {
9617         round_mask = 0;  // strength-reduce it if it goes away completely
9618       }
9619       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
9620       Node* header_size = intcon(hsize + round_mask);
9621 
9622       Node* lengthx = ConvI2X(arr_length);
9623       Node* headerx = ConvI2X(header_size);
9624 
9625       Node* abody = lengthx;
9626       if (eshift != 0) {
9627         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
9628       }
9629       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
9630       if (round_mask != 0) {
9631         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
9632       }
9633       size = ConvX2L(size);
9634       set_result(size);
9635     }
9636   } else {
9637     // Layout helper is not constant, need to test for array-ness at runtime.
9638 
9639     enum { _instance_path = 1, _array_path, PATH_LIMIT };
9640     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
9641     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
9642     record_for_igvn(result_reg);
9643 
9644     Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj);
9645     if (array_ctl != nullptr) {
9646       // Array case: size is round(header + element_size*arraylength).
9647       // Since arraylength is different for every array instance, we have to
9648       // compute the whole thing at runtime.
9649 
9650       PreserveJVMState pjvms(this);
9651       set_control(array_ctl);
9652       Node* arr_length = load_array_length(obj);
9653 
9654       int round_mask = MinObjAlignmentInBytes - 1;
9655       Node* mask = intcon(round_mask);
9656 
9657       Node* hss = intcon(Klass::_lh_header_size_shift);
9658       Node* hsm = intcon(Klass::_lh_header_size_mask);
9659       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
9660       header_size = _gvn.transform(new AndINode(header_size, hsm));
9661       header_size = _gvn.transform(new AddINode(header_size, mask));
9662 
9663       // There is no need to mask or shift this value.
9664       // The semantics of LShiftINode include an implicit mask to 0x1F.
9665       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
9666       Node* elem_shift = layout_val;
9667 
9668       Node* lengthx = ConvI2X(arr_length);
9669       Node* headerx = ConvI2X(header_size);
9670 
9671       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
9672       Node* size = _gvn.transform(new AddXNode(headerx, abody));
9673       if (round_mask != 0) {
9674         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
9675       }
9676       size = ConvX2L(size);
9677 
9678       result_reg->init_req(_array_path, control());
9679       result_val->init_req(_array_path, size);
9680     }
9681 
9682     if (!stopped()) {
9683       // Instance case: the layout helper gives us instance size almost directly,
9684       // but we need to mask out the _lh_instance_slow_path_bit.
9685       Node* size = ConvI2X(layout_val);
9686       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
9687       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
9688       size = _gvn.transform(new AndXNode(size, mask));
9689       size = ConvX2L(size);
9690 
9691       result_reg->init_req(_instance_path, control());
9692       result_val->init_req(_instance_path, size);
9693     }
9694 
9695     set_result(result_reg, result_val);
9696   }
9697 
9698   return true;
9699 }
9700 
9701 //------------------------------- inline_blackhole --------------------------------------
9702 //
9703 // Make sure all arguments to this node are alive.
9704 // This matches methods that were requested to be blackholed through compile commands.
9705 //
9706 bool LibraryCallKit::inline_blackhole() {
9707   assert(callee()->is_static(), "Should have been checked before: only static methods here");
9708   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
9709   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
9710 
9711   // Blackhole node pinches only the control, not memory. This allows
9712   // the blackhole to be pinned in the loop that computes blackholed
9713   // values, but have no other side effects, like breaking the optimizations
9714   // across the blackhole.
9715 
9716   Node* bh = _gvn.transform(new BlackholeNode(control()));
9717   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
9718 
9719   // Bind call arguments as blackhole arguments to keep them alive
9720   uint nargs = callee()->arg_size();
9721   for (uint i = 0; i < nargs; i++) {
9722     bh->add_req(argument(i));
9723   }
9724 
9725   return true;
9726 }
9727 
9728 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) {
9729   const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr();
9730   if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) {
9731     return nullptr; // box klass is not Float16
9732   }
9733 
9734   // Null check; get notnull casted pointer
9735   Node* null_ctl = top();
9736   Node* not_null_box = null_check_oop(box, &null_ctl, true);
9737   // If not_null_box is dead, only null-path is taken
9738   if (stopped()) {
9739     set_control(null_ctl);
9740     return nullptr;
9741   }
9742   assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, "");
9743   const TypePtr* adr_type = C->alias_type(field)->adr_type();
9744   Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes());
9745   return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP);
9746 }
9747 
9748 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) {
9749   PreserveReexecuteState preexecs(this);
9750   jvms()->set_should_reexecute(true);
9751 
9752   const TypeKlassPtr* klass_type = float16_box_type->as_klass_type();
9753   Node* klass_node = makecon(klass_type);
9754   Node* box = new_instance(klass_node);
9755 
9756   Node* value_field = basic_plus_adr(box, field->offset_in_bytes());
9757   const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr();
9758 
9759   Node* field_store = _gvn.transform(access_store_at(box,
9760                                                      value_field,
9761                                                      value_adr_type,
9762                                                      value,
9763                                                      TypeInt::SHORT,
9764                                                      T_SHORT,
9765                                                      IN_HEAP));
9766   set_memory(field_store, value_adr_type);
9767   return box;
9768 }
9769 
9770 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) {
9771   if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) ||
9772       !Matcher::match_rule_supported(Op_ReinterpretHF2S)) {
9773     return false;
9774   }
9775 
9776   const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr();
9777   if (box_type == nullptr || box_type->const_oop() == nullptr) {
9778     return false;
9779   }
9780 
9781   ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
9782   const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass);
9783   ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(),
9784                                                     ciSymbols::short_signature(),
9785                                                     false);
9786   assert(field != nullptr, "");
9787 
9788   // Transformed nodes
9789   Node* fld1 = nullptr;
9790   Node* fld2 = nullptr;
9791   Node* fld3 = nullptr;
9792   switch(num_args) {
9793     case 3:
9794       fld3 = unbox_fp16_value(float16_box_type, field, argument(3));
9795       if (fld3 == nullptr) {
9796         return false;
9797       }
9798       fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3));
9799     // fall-through
9800     case 2:
9801       fld2 = unbox_fp16_value(float16_box_type, field, argument(2));
9802       if (fld2 == nullptr) {
9803         return false;
9804       }
9805       fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2));
9806     // fall-through
9807     case 1:
9808       fld1 = unbox_fp16_value(float16_box_type, field, argument(1));
9809       if (fld1 == nullptr) {
9810         return false;
9811       }
9812       fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1));
9813       break;
9814     default: fatal("Unsupported number of arguments %d", num_args);
9815   }
9816 
9817   Node* result = nullptr;
9818   switch (id) {
9819     // Unary operations
9820     case vmIntrinsics::_sqrt_float16:
9821       result = _gvn.transform(new SqrtHFNode(C, control(), fld1));
9822       break;
9823     // Ternary operations
9824     case vmIntrinsics::_fma_float16:
9825       result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3));
9826       break;
9827     default:
9828       fatal_unexpected_iid(id);
9829       break;
9830   }
9831   result = _gvn.transform(new ReinterpretHF2SNode(result));
9832   set_result(box_fp16_value(float16_box_type, field, result));
9833   return true;
9834 }
9835